Sample records for bone material quality

  1. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  2. Evaluating bone quality in patients with chronic kidney disease

    PubMed Central

    Malluche, Hartmut H.; Porter, Daniel S.; Pienkowski, David

    2013-01-01

    Bone of normal quality and quantity can successfully endure physiologically imposed mechanical loads. Chronic kidney disease–mineral and bone disorder (CKD–MBD) adversely affects bone quality through alterations in bone turnover and mineralization, whereas bone quantity is affected through changes in bone volume. Changes in bone quality can be associated with altered bone material, structure, or microdamage, which can result in an elevated rate of fracture in patients with CKD–MBD. Fractures cannot always be explained by reduced bone quantity and, therefore, bone quality should be assessed with a variety of techniques from the macro-organ level to the nanoscale level. In this Review, we demonstrate the importance of evaluating bone from multiple perspectives and hierarchical levels to understand CKD–MBD-related abnormalities in bone quality. Understanding the relationships between variations in material, structure, microdamage, and mechanical properties of bone in patients with CKD–MBD should aid in the development of new modalities to prevent, or treat, these abnormalities. PMID:24100399

  3. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less

  4. Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice.

    PubMed

    Heveran, Chelsea M; Ortega, Alicia M; Cureton, Andrew; Clark, Ryan; Livingston, Eric W; Bateman, Ted A; Levi, Moshe; King, Karen B; Ferguson, Virginia L

    2016-05-01

    Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60μm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Moderate Chronic Kidney Disease Impairs Bone Quality in C57Bl/6J Mice

    PubMed Central

    Heveran, Chelsea M.; Ortega, Alicia M.; Cureton, Andrew; Clark, Ryan; Livingston, Eric; Bateman, Ted; Levi, Moshe; King, Karen B.; Ferguson, Virginia L.

    2016-01-01

    Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham procedures. Mice were fed a normal chow diet and euthanized 11 weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture (μCT) and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60 micrometers of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction were also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. PMID:26860048

  6. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    PubMed

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  7. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling

    DOE PAGES

    Dole, Neha S.; Mazur, Courtney M.; Acevedo, Claire; ...

    2017-11-28

    Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRII ocy-/-), wemore » show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility. Resistance to fracture requires healthy bone mass and quality. However, the cellular mechanisms regulating bone quality are unclear. Dole et al. show that osteocyte-intrinsic TGF-β signaling maintains bone quality through perilacunar/canalicular remodeling. Thus, osteocytes mediate perilacunar/canalicular remodeling and osteoclast-directed remodeling to cooperatively maintain bone quality and mass and prevent fragility.« less

  8. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dole, Neha S.; Mazur, Courtney M.; Acevedo, Claire

    Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRII ocy-/-), wemore » show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility. Resistance to fracture requires healthy bone mass and quality. However, the cellular mechanisms regulating bone quality are unclear. Dole et al. show that osteocyte-intrinsic TGF-β signaling maintains bone quality through perilacunar/canalicular remodeling. Thus, osteocytes mediate perilacunar/canalicular remodeling and osteoclast-directed remodeling to cooperatively maintain bone quality and mass and prevent fragility.« less

  9. Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study.

    PubMed

    Shakibaie-M, Behnam

    2013-01-01

    The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.

  10. In vivo outcomes of tissue-engineered osteochondral grafts.

    PubMed

    Bal, B Sonny; Rahaman, Mohamed N; Jayabalan, Prakash; Kuroki, Keiichi; Cockrell, Mary K; Yao, Jian Q; Cook, James L

    2010-04-01

    Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.

  11. Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta.

    PubMed

    Paschalis, Eleftherios P; Gamsjaeger, Sonja; Fratzl-Zelman, Nadja; Roschger, Paul; Masic, Admir; Brozek, Wolfgang; Hassler, Norbert; Glorieux, Francis H; Rauch, Frank; Klaushofer, Klaus; Fratzl, Peter

    2016-05-01

    Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency OI type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  12. Lack of deleterious effect of slow-release sodium fluoride treatment on cortical bone histology and quality in osteoporotic patients

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Antich, P. P.; Sakhaee, K.; Prior, J.; Gonzales, J.; Gottschalk, F.; Pak, C. Y.

    1992-01-01

    We evaluated the effects of intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate therapy on cortical bone histology, reflection ultrasound velocity (material strength) and back-scattered electron image analysis (BEI) in 26 osteoporotic patients before and following therapy. All measurements were made on transiliac crest bone biopsies obtained before and following 2 years of therapy in each patient. For all 26 patients there were no significant changes in cortical bone histomorphometric parameters. In 15 patients in whom bone material quality was assessed by reflection ultrasound, there was no change in velocity (4000 +/- 227 SD to 4013 +/- 240 m/s). BEI disclosed no mineralization defects or the presence of woven bone. Mean atomic number (density) of bone increased slightly, but significantly (9.261 +/- 0.311 to 9.457 +/- 0.223, P = 0.031). While these changes are less marked than those observed for cancellous bone, they indicate that this form of therapy does not adversely affect cortical bone remodelling.

  13. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease.

    PubMed

    Chavassieux, P; Seeman, E; Delmas, P D

    2007-04-01

    Minimal trauma fractures in bone diseases are the result of bone fragility. Rather than considering bone fragility as being the result of a reduced amount of bone, we recognize that bone fragility is the result of changes in the material and structural properties of bone. A better understanding of the contribution of each component of the material composition and structure and how these interact to maintain whole bone strength is obtained by the study of metabolic bone diseases. Disorders of collagen (osteogenesis imperfecta and Paget's disease of bone), mineral content, composition and distribution (fluorosis and osteomalacia); diseases of high remodeling (postmenopausal osteoporosis, hyperparathyroidism, and hyperthyroidism) and low remodeling (osteopetrosis, pycnodysostosis); and other diseases (idiopathic male osteoporosis, corticosteroid-induced osteoporosis) produce abnormalities in the material composition and structure that lead to bone fragility. Observations in patients and in animal models provide insights on the biomechanical consequences of these illnesses and the nature of the qualities of bone that determine its strength.

  14. Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.

    PubMed

    Pahr, Dieter H; Zysset, Philippe K

    2016-12-01

    Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.

  15. Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail.

    PubMed

    Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana

    2016-09-01

    Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing or fusion treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  17. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  18. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  19. Growth-dependent effects of dietary protein concentration and quality on the biomechanical properties of the diaphyseal rat femur.

    PubMed

    Alippi, Rosa M; Picasso, Emilio; Huygens, Patricia; Bozzini, Carlos E; Bozzini, Clarisa

    2012-01-01

    This study compares the effects of feeding growing rats with increasing concentrations of casein (C) and wheat gluten (G), proteins that show different biological qualities, on the morphometrical and biomechanical properties of the femoral diaphysis. Female rats were fed with one of ten diets containing different concentrations (5-30%) of C and G between the 30th and 90th days of life (Control=C-20%). Biomechanical structural properties of the right femur middiaphysis were estimated using a 3-point bending mechanical test with calculation of some indicators of bone material properties. Body weight and length were affected by treatments, values being highest in rats fed the C-20% diet. G diets affected negatively both parameters. Changes in cross-sectional geometry (mid-diaphyseal cross-sectional and cortical areas, femoral volume, and rectangular moment of inertia) were positively related to the C content of the diet, while they were severely and negatively affected by G diets. Similar behaviors were observed in the bone structural properties (fracture load, yielding load, diaphyseal stiffness and elastic energy absorption). When values of strength and stiffness were normalized for body weight, the differences disappeared. The bone material quality indicators (elastic modulus, yielding stress, elastic energy absorption/volume) did not differ significantly among all studied groups. Femoral calcium concentration in ashes was not significantly different among groups. The clear differences in strength and stiffness of bone beams induced by dietary protein concentration and quality seemed to be the result of an induced subnormal gain in bone structural properties as a consequence of a correlative subnormal gain in bone growth and mass, yet not in bone material properties. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  20. Research Perspectives: The 2013 AAOS/ORS Research Symposium on Bone Quality and Fracture Prevention

    PubMed Central

    Donnelly, Eve; Lane, Joseph M.; Boskey, Adele L.

    2016-01-01

    Bone fracture resistance is determined by the amount of bone present (“bone quantity”) and by a number of other geometric and material factors grouped under the term “bone quality.” In May 2013, a workshop was convened among a group of clinicians and basic science investigators to review the current state of the art in Bone Quality and Fracture Prevention and to make recommendations for future directions for research. The AAOS/ORS/OREF workshop was attended by 64 participants, including two representatives of the National Institutes of Arthritis and Musculoskeletal and Skin Diseases and 13 new investigators whose posters stimulated additional interest. A key outcome of the workshop was a set of recommendations regarding clinically relevant aspects of both bone quality and quantity that clinicians can use to inform decisions about patient care and management. The common theme of these recommendations was the need for more education of clinicians in areas of bone quality and for basic science studies to address specific topics of pathophysiology, diagnosis, prevention, and treatment of altered bone quality. In this report, the organizers with the assistance of the speakers and other attendees highlight the major findings of the meeting that justify the recommendations and needs for this field. PMID:24700449

  1. A synthetic bioactive resorbable graft for predictable implant reconstruction: part one.

    PubMed

    Valen, Maurice; Ganz, Scott D

    2002-01-01

    Animal studies were conducted to evaluate the cell response and chemical potentiality of a synthetic bioactive resorbable graft (SBRG) made of nonceramic cluster particulate of low-temperature HA material. The study evaluated bone-bridging of the SBRG particulates in 1-mm wide implant channels of 5 x 8 mm long roughened titanium interface in 6 dogs and compared results to the same implant channels left empty as controls at 6- and 12-week intervals. Resorption rate capacity and cell response were evaluated with an assessment of the chemical characterization of the synthetic nonceramic material next to the titanium implant interfaces. Results of the animal studies were compared with human histologic biopsies of the SBRG for bone quality, density, and bone growth into defect sites concurrent with resorption time of the graft. One human biopsy consisted of a graft mixture of the SBRG and dense bovine-derived HA, compared under the electron microscope, including histology by H and E staining. Part 1 of this paper presents evidence of the predictability and efficacy of the SBRG osteoconductive, particulate chemical potentiality to aid in the regeneration of lost bone anatomy next to titanium implant interfaces. Recent technological innovations in computer hardware and software have given clinicians the tools to determine 3-dimensional quality and density of bone, including anatomical discrepancies, which can aid in the diagnosis and treatment planning for grafting procedures. When teeth are extracted, the surrounding bone and soft tissue are challenged as a result of the natural resorptive process. The diminished structural foundation for prosthetic reconstruction, with or without implants, can be compromised. A synthetic bioactive resorbable graft material having osteoconductive biochemical and biomechanical qualities similar to the host bone provides the means to improve compromised bone topography for ridge preservation, ridge augmentation, or to enhance the bony site for implant placement and subsequent prosthetic rehabilitation. Part two of this paper will demonstrate clinical applications of the SBRG material for purposes of implant placement and prosthetic reconstruction.

  2. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.

  3. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years.

    PubMed

    Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus

    2016-02-01

    Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor. © 2015 American Society for Bone and Mineral Research.

  4. Bone regeneration assessment by optical coherence tomography and MicroCT synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Canjau, Silvana; Manescu, Adrian; Topalá, Florin I.; Hoinoiu, Bogdan; Romînu, Mihai; Márcáuteanu, Corina; Duma, Virgil; Bradu, Adrian; Podoleanu, Adrian G.

    2013-06-01

    Bone grafting is a commonly performed surgical procedure to augment bone regeneration in a variety of orthopaedic and maxillofacial procedures, with autologous bone being considered as the "gold standard" bone-grafting material, as it combines all properties required in a bone-graft material: osteoinduction (bone morphogenetic proteins - BMPs - and other growth factors), osteogenesis (osteoprogenitor cells) and osteoconduction (scaffold). The problematic elements of bone regenerative materials are represented by their quality control methods, the adjustment of the initial bone regenerative material, the monitoring (noninvasive, if possible) during their osteoconduction and osteointegration period and biomedical evaluation of the new regenerated bone. One of the research directions was the interface investigation of the regenerative bone materials and their behavior at different time periods on the normal femoral rat bone. 12 rat femurs were used for this investigation. In each ones a 1 mm diameter hole were drilled and a bone grafting material was inserted in the artificial defect. The femurs were removed after one, three and six months. The defects repaired by bone grafting material were evaluated by optical coherence tomography working in Time Domain Mode at 1300 nm. Three dimensional reconstructions of the interfaces were generated. The validations of the results were evaluated by microCT. Synchrotron Radiation allows achieving high spatial resolution images to be generated with high signal-to-noise ratio. In addition, Synchrotron Radiation allows acquisition of volumes at different energies and volume subtraction to enhance contrast. Evaluation of the bone grafting material/bone interface with noninvasive methods such as optical coherence tomography could act as a valuable procedure that can be use in the future in the usual clinical techniques. The results were confirmed by microCT. Optical coherence tomography can be performed in vivo and can provide a qualitative and quantitative evaluation of the bone augmentation procedure.

  5. The effect of antiresorptives on bone quality.

    PubMed

    Recker, Robert R; Armas, Laura

    2011-08-01

    Currently, antiresorptive therapy in the treatment and prevention of osteoporosis includes bisphosphonates, estrogen replacement, selective estrogen receptor modulators (raloxifene), and denosumab (a human antibody that inactivates RANKL). The original paradigm driving the development of antiresorptive therapy was that inhibition of bone resorption would allow bone formation to continue and correct the defect. However, it is now clear increases in bone density account for little of the antifracture effect of these treatments. We examined the antifracture benefit of antiresorptives deriving from bone quality changes. We searched the archive of nearly 30,000 articles accumulated over more than 40 years in our research center library using a software program (Refman™). Approximately 250 publications were identified in locating the 69 cited here. The findings document antiresorptive agents are not primarily anabolic. All cause a modest increase in bone density due to a reduction in the bone remodeling space; however, the majority of their efficacy is due to suppression of the primary cause of osteoporosis, ie, excessive bone remodeling not driven by mechanical need. All of them improve some element(s) of bone quality. Antiresorptive therapy reduces risk of fracture by improving bone quality through halting removal of bone tissue and the resultant destruction of microarchitecture of bone and, perhaps to some extent, by improving the intrinsic material properties of bone tissue. Information presented here may help clinicians to improve selection of patients for antiresorptive therapy by avoiding them in cases clearly not due to excessive bone remodeling.

  6. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone

    PubMed Central

    Tang, S.Y.; Vashishth, D.

    2010-01-01

    The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk. PMID:21056419

  7. Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties.

    PubMed

    Janssen, D; Zwartelé, R E; Doets, H C; Verdonschot, N

    2010-01-01

    Patients suffering from rheumatoid arthritis typically have a poor subchondral bone quality, endangering implant fixation. Using finite element analysis (FEA) an investigation was made to find whether a press-fit acetabular implant with a polar clearance would reduce interfacial micromotions and improve fixation compared with a standard hemispherical design. In addition, the effects of interference fit, friction, and implant material were analysed. Cups were introduced into an FEA model of a human pelvis with simulated subchondral bone plasticity. The models were loaded with a loading configuration simulating two cycles of normal walking, during which contact stresses and interfacial micromotions were monitored. Subsequently, a lever-out simulation was performed to assess the fixation strength of the various cases. A flattened cup with good bone quality produced the lowest interfacial micromotions. Poor bone decreased the fixation strength regardless of the geometry of the cup. Increasing the interference fit of the flattened cup compensated for the loss of fixation strength caused by poor bone quality. In conclusion, a flattened cup did not significantly improve implant fixation over a hemispherical cup in the case of poor bone quality. However, implant fixation can be optimized by increasing interference fit and avoiding inferior frictional properties and low-stiffness implants.

  8. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  9. Effect of Anti-Sclerostin Therapy and Osteogenesis Imperfecta on Tissue-level Properties in Growing and Adult Mice While Controlling for Tissue Age

    PubMed Central

    Sinder, Benjamin P.; Lloyd, William R.; Salemi, Joseph D.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2016-01-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as Osteogenesis Imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly→Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5 weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2–4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages >3wk) and rapidly growing Brtl/+ (at tissue ages > 4wk) mice compared to WT. At identical tissue ages defined by fluorescent labels adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. PMID:26769006

  10. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    PubMed

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    PubMed

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Achievable accuracy of hip screw holding power estimation by insertion torque measurement.

    PubMed

    Erani, Paolo; Baleani, Massimiliano

    2018-02-01

    To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation

    PubMed Central

    Sheikh, Zeeshan; Sima, Corneliu; Glogauer, Michael

    2015-01-01

    Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.

  14. Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments

    PubMed Central

    Zhang, Yanshuai; McNerny, Erin Gatenby; Terajima, Masahiko; Raghavan, Mekhala; Romanowicz, Genevieve; Zhang, Zhanpeng; Zhang, Honghao; Kamiya, Nobuhiro; Tantillo, Margaret; Zhu, Peizhi; Scott, Gregory J.; Ray, Manas K.; Lynch, Michelle; Ma, Peter X.; Morris, Michael D.; Yamauchi, Mitsuo; Kohn, David H.; Mishina, Yuji

    2016-01-01

    Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments. PMID:27113526

  15. Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength.

    PubMed

    Shahnazari, M; Lang, D H; Fosmire, G J; Sharkey, N A; Mitchell, A D; Leach, R M

    2007-03-01

    Genetic selection for rapid body growth in broiler chickens has resulted in adverse effects on the skeletal system exemplified by a higher rate of cortical fractures in leg bones. Strontium (Sr) has been reported to have beneficial effects on bone formation and strength. We supplemented the diet of 300-day-old chicks with increasing dosages of Sr (0%, 0.12%, or 0.24%) to study the capacity of the element to improve bone quality and mechanical integrity. Treatment with Sr increased cortical bone volume and reduced bone porosity as measured by micro-computed tomography. The higher level of Sr significantly reduced bone Ca content (34.7%) relative to controls (37.2%), suggesting that Sr replaced some of the Ca in bone. Material properties determined by the three-point bending test showed that bone in the Sr-treated groups withstood greater deformation prior to fracture. Load to failure and ultimate stress were similar across groups. Our results indicate that Sr treatment in rapidly growing chickens induced positive effects on bone volume but did not improve the breaking strength of long bones.

  16. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla

    PubMed Central

    Desai, Shrikar R.; Singh, Rika; Karthikeyan, I.

    2013-01-01

    Aim: The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. Materials and Methods: A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm–diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. Results: The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Conclusion: Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results. PMID:24174759

  17. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    PubMed Central

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  18. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  19. Interactions between bone cells and biomaterials: An update.

    PubMed

    Beauvais, Sabrina; Drevelle, Olivier; Jann, Jessica; Lauzon, Marc-Antoine; Foruzanmehr, Mohammadreza; Grenier, Guillaume; Roux, Sophie; Faucheux, Nathalie

    2016-06-01

    As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.

  20. Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix.

    PubMed

    Burke, Mikhail V; Atkins, Ayelet; Akens, Margarete; Willett, Thomas L; Whyne, Cari M

    2016-12-01

    Metastatic involvement in vertebral bone diminishes the mechanical integrity of the spine; however minimal data exist on the potential impact of metastases on the intrinsic material characteristics of the bone matrix. Thirty-four (34) female athymic rats were inoculated with HeLa (N = 17) or Ace-1 (N = 17) cancer cells lines producing osteolytic or mixed (osteolytic and osteoblastic) metastases, respectively. A maximum of 21 days was allowed between inoculation and rat sacrifice for vertebrae extraction. High performance liquid chromatography (HPLC) was utilized to determine modifications in collagen-I parameters such as proline hydroxylation and the formation of specific enzymatic and non-enzymatic (pentosidine) cross-links. Raman spectroscopy was used to determine relative changes in mineral crystallinity, mineral carbonation, mineral/collagen matrix ratio, collagen quality ratio, and proline hydroxylation. HPLC results showed significant increase in the formation of pentosidine and decrease in the formation of the enzymatic cross-link deoxy-pryridinoline within osteolytic bone compared to mixed bone. Raman results showed decreased crystallinity, increased carbonation, and collagen quality (aka 1660/1690 sub-band) ratio with osteolytic bone compared to mixed bone and healthy controls along with an observed increase in proline hydroxylation with metastatic involvement. The mineral/matrix ratio decreased in both osteolytic and mixed bone compared to healthy controls. Quantifying modifications within the intrinsic characteristics of bone tissue will provide a foundation to assess the impact of current therapies on the material behavior of bone tissue in the metastatic spine and highlight targets for the development of new therapeutics and approaches for treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2126-2136, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Biomechanical properties of the mandible, as assessed by bending test, in rats fed a low-quality protein.

    PubMed

    Bozzini, Carlos E; Champin, Graciela M; Alippi, Rosa M; Bozzini, Clarisa

    2013-04-01

    The present study describes the effects of feeding growing rats with diets containing increasing concentrations of wheat gluten (a low quality protein, G) on both the morphometrical and the biomechanical properties of the mandible. Female rats were fed one of six diets containing different concentrations (5-30%) of G between the 30th and 90th days of life. Control rats were fed a diet containing 20% casein (C), which allows a normal growth and development of the bone. Mandibular growth was estimated directly on excised and cleaned bones by taking measurements between anatomical points. Mechanical properties of the right hemimandibles were determined by using a three-point bending mechanical test to obtain a load/deformation curve and estimate the structural properties of the bone. Bone material properties were calculated from structural and geometric properties. The left hemimandibles were ashed and the ash weight obtained. Calcium content was determined by atomic energy absorption. Results were summarised as means±SEM. Comparisons between parameters were performed by ANOVA and post-test. None of the G-fed groups could achieve a normal growth performance as compared to the C-fed control group. Like body size, age-related increments in mandibular weight, length, height and area (index of mandibular size) were negatively affected by the G diets, as was the posterior part of the bone (posterior to molar III). The cross-sectional geometry of the mandible (cross-sectional area and rectangular moment of inertia) as well as its structural properties (yielding load, fracture load, and stiffness) were also severely affected by the G diets. However, material properties (Young's modulus and maximum elastic stress) and calcium concentration in ashes and the degree of mineralisation were unaffected. The differences in strength and stiffness between treated and control rats seemed to be the result of an induced loss of gain in bone growth and mass, in the absence of changes in the quality of the bone mineralised material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Spatially offset raman spectroscopy for non-invasive assessment of fracture healing

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Lu, Guijin; West, Christopher; Gogola, Gloria; Kellam, James; Ambrose, Catherine; Bi, Xiaohong

    2016-02-01

    Fracture non-unions and bone re-fracture are common challenges for post-fracture management. To achieve better prognosis and treatment evaluation, it is important to be able to assess the quality of callus over the time course of healing. This study evaluated the potential of spatially offset Raman spectroscopy for assessing the fracture healing process in situ. We investigated a rat model of fracture healing at two weeks and 4 weeks post fracture with a fractured femur and a contralateral control in each animal. Raman spectra were collected from the depilated thighs on both sides transcutaneously in situ with various source/detection offsets. Bone signals were recovered from SORS spectra, and then compared with those collected from bare bones. The relative intensity of mineral from fractured bone was markedly decreased compared to the control. The fractured bones demonstrated lower mineral and carbonate level and higher collagen content in the callus at the early time point. Compared to week 2, collagen mineralization and mineral carbonation increased at 4 weeks post fracture. Similarly, the material properties of callus determined by reference point indentation also increased in the 4-week group, indicating improved callus quality with time. The results from Raman analysis are in agreement with radiographic and material testing, indicating the potential of this technique in assessing fracture healing in vivo.

  3. Pathophysiology of osteoporosis: new mechanistic insights.

    PubMed

    Armas, Laura A G; Recker, Robert R

    2012-09-01

    Understanding of the pathophysiology of osteoporosis has evolved to include compromised bone strength and skeletal fragility caused by several factors: (1) defects in microarchitecture of trabeculae, (2) defective intrinsic material properties of bone tissue, (3) defective repair of microdamage from normal daily activities, and (4) excessive bone remodeling rates. These factors occur in the context of age-related bone loss. Clinical studies of estrogen deprivation, antiresorptives, mechanical loading, and disuse have helped further knowledge of the factors affecting bone quality and the mechanisms that underlie them. This progress has led to several new drug targets in the treatment of osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Transmission of acoustic emission in bones, implants and dental materials.

    PubMed

    Ossi, Zannar; Abdou, Wael; Reuben, Robert L; Ibbetson, Richard J

    2013-11-01

    There is considerable interest in using acoustic emission (AE) and ultrasound to assess the quality of implant-bone interfaces and to monitor for micro-damage leading to loosening. However, remarkably little work has been done on the transmission of ultrasonic waves though the physical and biological structures involved. The aim of this in vitro study is to assess any differences in transmission between various dental materials and bovine rib bones with various degrees of hydration. Two types of tests have been carried out using pencil lead breaks as a standard AE source. The first set of tests was configured to assess the surface propagation of AE on various synthetic materials compared with fresh bovine rib bone. The second is a set of transmission tests on fresh, dried and hydrated bones each fitted with dental implants with various degrees of fixity, which includes components due to bone and interface transmission. The results indicate that transmission through glass ionomer cement is closest to the bone. This would suggest that complete osseointegration could potentially be simulated using such cement. The transmission of AE energy through bone was found to be dependent on its degree of hydration. It was also found that perfusing samples of fresh bone with water led to an increase in transmitted energy, but this appeared to affect transmission across the interface more than transmission through the bone. These findings have implications not only for implant interface inspection but also for passive AE monitoring of implants.

  5. Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta.

    PubMed

    Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn

    2018-04-17

    Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    PubMed

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Three-dimensional porous poly-DL-lactide/basic fibroblast growth factor composites for bone defect repair: an experimental study.

    PubMed

    Min, Shao-xiong; Jin, An-min; Tong, Bin-hui; Zhu, Li-xin; Tian, Jing

    2003-04-01

    To investigate the osteoinductive ability of the composites consisting of basic fibroblast growth factor (bFGF) and porous poly-DL-lactide (PDLLA) for the development of a new absorbable osteosynthesis material. Highly porous foams of PDLLA with the pore size ranging from 150 to 300 microm were prepared by a solvent-casting, particulate-leaching technique with NaCl as the leachable component. Animal models of radial diaphyseal defects of 1.0 cm with complete removal of the periosteum were induced in 45 rabbits, which were randomly divided into 3 groups to receive the defect repair with PDLLA and PDLLA/bFGF respectively, leaving one group untreated to serve as the control group. The implant specimens were harvested at 2, 4, 8, and 12 weeks respectively after the surgery and X-ray, histological and scanning electron microscopic (SEM) examinations were performed to evaluate the effectiveness of defect repair. At 8 and 12 weeks after implantation, biomechanical test (for three-point bending strength) was employed to study the quality of bone formation. PDLLA/bFGF composite stimulated more bone formation and had higher bending strength than PDLLA (P<0.05), and the bone formation induced by both materials was significantly more than that observed in the control group in every postoperative stage (P<0.05). PDLLA possesses good biocompatibility and absorbability, and when prepared into a porous material, it exhibits good osteoconductibility. As a good bFGF carrier, the foam of PDLLA with three- dimensional structure shows good osteoinductive ability with regard to the rapidity, quantity and quality of the bone formation.

  8. The use of water-jetting technology in prostheses revision surgery-first results of parameter studies on bone and bone cement.

    PubMed

    Honl, M; Rentzsch, R; Müller, G; Brandt, C; Bluhm, A; Hille, E; Louis, H; Morlock, M

    2000-01-01

    Water-jet cutting techniques have been used in industrial applications for many different materials. Recently these techniques have been developed into a revolutionary cutting tool for soft tissues in visceral surgery. The present study investigates the usage of this cutting technology for the revision surgery of endoprostheses. In the first part of the study, samples of bovine bone and acrylic bone cement (PMMA) were cut using an industrial jet cutting device with pure water. Below 400 bar, only PMMA was cut; above 400 bar, bone was also cut, but only pressures above 800 bar resulted in clinically useful rates of material removal (cut depth 2. 4 mm at 10 mm/min traverse speed). In the second part of the study, the effect of adding biocompatible abrasives to the water in order to reduce the required pressure was investigated, resulting in a significantly higher removal of material. At 600 bar, PMMA was cut 5. 2 mm deep with plain water and 15.2 mm deep with added abrasives. The quality of the cuts was increased by the abrasive. Though there was no clear selectivity between bone and PMMA any more, the rate of material removal at similar pressures was significantly higher for PMMA than for bone (600 bar: 1.6 mm cut depth for bone samples, 15.2 mm for PMMA). The measured cut depths with either method were not influenced by a change of the cutting direction with respect to the main direction of the osteons in the bone. However, a reduction of the jet surface angle (90 degrees to 23 degrees ) resulted for bone in a significantly lower cut depth at 600 bar (plain water: 0.62 mm vs. 0.06 mm; abrasive: 1.61 mm vs. 0.60 mm). The laboratory experiments indicate that abrasive water jets may be suitable for cutting biomaterials like bone and bone cement. Copyright 2000 John Wiley & Sons, Inc.

  9. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging.

    PubMed

    Wagner, A; Sachse, A; Keller, M; Aurich, M; Wetzel, W-D; Hortschansky, P; Schmuck, K; Lohmann, M; Reime, B; Metge, J; Arfelli, F; Menk, R; Rigon, L; Muehleman, C; Bravin, A; Coan, P; Mollenhauer, J

    2006-03-07

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  10. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Sachse, A.; Keller, M.; Aurich, M.; Wetzel, W.-D.; Hortschansky, P.; Schmuck, K.; Lohmann, M.; Reime, B.; Metge, J.; Arfelli, F.; Menk, R.; Rigon, L.; Muehleman, C.; Bravin, A.; Coan, P.; Mollenhauer, J.

    2006-03-01

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  11. Comparison of Piezosurgery and Conventional Rotary Instruments for Removal of Impacted Mandibular Third Molars: A Randomized Controlled Clinical and Radiographic Trial

    PubMed Central

    Shokry, Mohamed; Aboelsaad, Nayer

    2016-01-01

    The purpose of this study was to test the effect of the surgical removal of impacted mandibular third molars using piezosurgery versus the conventional surgical technique on postoperative sequelae and bone healing. Material and Methods. This study was carried out as a randomized controlled clinical trial: split mouth design. Twenty patients with bilateral mandibular third molar mesioangular impaction class II position B indicated for surgical extraction were treated randomly using either the piezosurgery or the conventional bur technique on each site. Duration of the procedure, postoperative edema, trismus, pain, healing, and bone density and quantity were evaluated up to 6 months postoperatively. Results. Test and control sites were compared using paired t-test. There was statistical significance in reduction of pain and swelling in test sites, where the time of the procedure was statistically increased in test site. For bone quantity and quality, statistical difference was found where test site showed better results. Conclusion. Piezosurgery technique improves quality of patient's life in form of decrease of postoperative pain, trismus, and swelling. Furthermore, it enhances bone quality within the extraction socket and bone quantity along the distal aspect of the mandibular second molar. PMID:27597866

  12. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.

    PubMed

    Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul

    2015-09-01

    An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.

  13. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Gulshan B., E-mail: gbsharma@ucalgary.ca; University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213; University of Calgary, Schulich School of Engineering, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta T2N 1N4

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respondmore » over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.« less

  14. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

  15. In-vivo investigation of material quality of bone tissue by measuring apparent phalangeal ultrasound transmission velocity.

    PubMed

    Kann, P; Schulz, U; Klaus, D; Piepkorn, B; Beyer, J

    1995-01-01

    The square of ultrasound transmission velocity in a material is related to the modulus of elasticity, which is known to be an indicator of stability in bone. The aim of our study was to use ultrasound transmission velocity to obtain information about the material properties of bone tissue, keeping other factors possibly influencing ultrasound transmission as constant as possible. Apparent phalangeal ultrasound transmission velocity (APU) measured in 54 isolated, fresh pig phalanges was shown to be independent of bone mineral density (BMD) measured by SPA. Fastest sound transmission led exclusively through cortical bone so that intertrabecular connectivity in spongious bone could not influence the result. In humans APU was measured in the mediolateral direction at the midphalanx of the middle finger. In 53 healthy subjects (15-81 years old; 27 women, 26 men), there was a decrease of APU with age (r = -0.30, p < 0.05). Further, when comparing the results of both hands intraindividually almost identical values indicated constant intraindividual architecture of bone at this location. There was no evidence for a relation of APU to physical load comparing dominant and nondominant hand and relating the results to subjectively estimated physical load. In a second group of 43 perimenopausal women (47-60 years old), APU, which again decreased with age (r = -0.33, p < 0.05), was found not to be correlated to BMD measured by SPA at the distal forearm (cortical bone).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Bone grafting materials in critical defects in rabbit calvariae. A systematic review and quality evaluation using ARRIVE guidelines.

    PubMed

    Delgado-Ruiz, Rafael Arcesio; Calvo Guirado, José Luis; Romanos, Georgios E

    2015-05-20

    To perform a systematic literature review of the regenerative potential of bone substitutes used to fill critical size defects (CSDs) in rabbit calvariae; to determine the quality of the included studies using ARRIVE guidelines. An Internet search was performed in duplicate using MEDLINE, PubMed and Google Scholar databases (without restrictions on publication date) for studies reporting the regenerative potential of bone substitutes in CSDs in rabbit calvariae. Four parameters were analyzed by histomorphometry: new bone formation (NB); defect closure (DC); residual graft (RG); and connective tissue (CT). Animal Research Reporting in In Vivo Experiments (ARRIVE) guidelines (a list of 20 aspects for scoring texts and ensuring comparison between different experimental studies in animals) were used to evaluate the quality of the selected works. Twenty-one manuscripts were included. CSDs with 15 mm were predominant (57.14%). Only one study described the four histomorphometric parameters. NB formation was analyzed in 15 studies (71.42%) and was higher for particulate autogenous bone grafts (range 52.1-82%) after 12 weeks. DC was evaluated in six studies (28.57%) and was higher for fragmented adipose tissue grafts (range 53.33-93.33%) after 12 weeks. RG was evaluated in four studies (19.04%) and was higher for hydroxyapatite/beta-tricalcium phosphate grafts with silica (HA/ß-TCP + Si) (range 35.78-47.54%) at 12 weeks. CT was evaluated in two studies (9.5%) and was higher for HA/ß-TCP + membrane (44.2%) at 12 weeks. Quality evaluation identified three items (title, introduction/objectives and experimental procedure) (15%) with excellent scores, 10 items (abstract, introduction/background, methods/ethical statement, experimental animals, experimental outcomes, statistics, results/baseline data, outcome/estimation and discussion interpretation/scientific implications) (50%) with average scores, and seven items (housing and husbandry, sample size, allocation, numbers analyzed, adverse effects, general applicability/relevance and funding) (35%) obtained poor scores. Only one manuscript obtained a quality evaluation considered as excellent. Autogenous bone grafts increase NB. DC is enhanced by the use of fragmented adipose tissue. RG remains in the defect for longer when hydroxyapatite/beta-tricalcium phosphate with silica is used, and more CT can be expected when hydroxyapatite/beta-tricalcium phosphate with silica grafts are covered by a membrane. The addition of stem cells of different origins to grafting materials enhances bone formation in early healing periods. The ARRIVE guidelines are still insufficiently used and the overall quality of studies remains low. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A paradigm shift for bone quality in dentistry: A literature review.

    PubMed

    Kuroshima, Shinichiro; Kaku, Masaru; Ishimoto, Takuya; Sasaki, Muneteru; Nakano, Takayoshi; Sawase, Takashi

    2017-10-01

    The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease.

    PubMed

    Oksztulska-Kolanek, Ewa; Znorko, Beata; Michałowska, Małgorzata; Pawlak, Krystyna

    2016-01-01

    Mineral metabolism disturbances are common in chronic kidney disease (CKD) and have been classified as a new clinical entity, also known as CKD-mineral and bone disorders (CKD-MBD). A decrease in the bone strength, whose clinical manifestation is a tendency for fracture, has been recognized as an important component of CKD-MBD. Because of ethical issues, measurements of the bone strength in the human body are usually limited to noninvasive techniques, such as radiography, dual-energy X-ray absorptiometry and the assays of bone turnover biomarkers. However, it has been postulated recently that the evidence concerning bone strength based solely on the determination of the bone quantity may be insufficient and that bone quality should also be examined. In this regard, an animal model of CKD can represent an experimental tool to test the effectiveness of new therapeutic strategies. Despite the many available methods that are used to diagnose metabolic bone disorders and predict fracture risk especially in small rodents with CKD, it turns out that the most appropriate are biomechanical tests, which can provide information about the structural and material properties of bone. The present review summarizes and discusses the principles for carrying out selected biomechanical tests (3-point bending test and compression test) and their application in clinical practice. © 2015 S. Karger AG, Basel.

  19. A Novel Videography Method for Generating Crack-Extension Resistance Curves in Small Bone Samples

    PubMed Central

    Katsamenis, Orestis L.; Jenkins, Thomas; Quinci, Federico; Michopoulou, Sofia; Sinclair, Ian; Thurner, Philipp J.

    2013-01-01

    Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the millimetre and sub-millimetre scale. This research proposes a novel “whitening front tracking” method that uses videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be observed. Here we present this method on sharp edge notched samples (<1 mm×1 mm×Length) prepared from four human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the “whitening front tracking” method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane longitudinal orientation were similar to those found in the literature, being between the published longitudinal and transverse orientations. The proposed technique shows the ability to generate full “crack” extension resistance curves by tracking the whitening front propagation to overcome the small size limitations and the single value approach. PMID:23405186

  20. Type 1 Diabetes in Young Rats Leads to Progressive Trabecular Bone Loss, Cessation of Cortical Bone Growth, and Diminished Whole Bone Strength and Fatigue Life

    PubMed Central

    Silva, Matthew J.; Brodt, Michael D.; Lynch, Michelle A.; McKenzie, Jennifer A.; Tanouye, Kristi M.; Nyman, Jeffry S.; Wang, Xiaodu

    2009-01-01

    People with diabetes have increased risk of fracture disproportionate to BMD, suggesting reduced material strength (quality). We quantified the skeletal effects of type 1 diabetes in the rat. Fischer 344 and Sprague-Dawley rats (12 wk of age) were injected with either vehicle (Control) or streptozotocin (Diabetic). Forelimbs were scanned at 0, 4, 8, and 12 wk using pQCT. Rats were killed after 12 wk. We observed progressive osteopenia in diabetic rats. Trabecular osteopenia was caused by bone loss: volumetric BMD decreased progressively with time in diabetic rats but was constant in controls. Cortical osteopenia was caused by premature arrest of cortical expansion: cortical area did not increase after 4–8 wk in diabetic rats but continued to increase in controls. Postmortem μCT showed a 60% reduction in proximal tibial trabecular BV/TV in diabetic versus control rats, whereas moments of inertia of the ulnar and femoral diaphysis were reduced ∼30%. Monotonic bending tests indicated that ulna and femora from diabetic animals were ∼25% less stiff and strong versus controls. Estimates of material properties indicated no changes in elastic modulus or ultimate stress but modest (∼10%) declines in yield stress for diabetic bone. These changes were associated with a ∼50% increase in the nonenzymatic collagen cross-link pentosidine. Last, cyclic testing showed diminished fatigue life in diabetic bones at the structural (force) level but not at the material (stress) level. In summary, type 1 diabetes, left untreated, causes trabecular bone loss and a reduction in diaphyseal growth. Diabetic bone has greatly increased nonenzymatic collagen cross-links but only modestly reduced material properties. The loss of whole bone strength under both monotonic and fatigue loading is attributed mainly to reduced bone size. PMID:19338453

  1. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    PubMed

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  2. One year of abaloparatide, a selective peptide activator of the PTH1 receptor, increased bone mass and strength in ovariectomized rats.

    PubMed

    Varela, Aurore; Chouinard, Luc; Lesage, Elisabeth; Guldberg, Robert; Smith, Susan Y; Kostenuik, Paul J; Hattersley, Gary

    2017-02-01

    Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25μg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength. Copyright © 2016. Published by Elsevier Inc.

  3. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla.

    PubMed

    Desai, Shrikar R; Singh, Rika; Karthikeyan, I

    2013-09-01

    The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.

  4. Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon ( Columba livia ) Ulna.

    PubMed

    Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi

    2015-06-01

    Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.

  5. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect.

    PubMed

    Olejnik, Cécile; Falgayrac, Guillaume; During, Alexandrine; Cortet, Bernard; Penel, Guillaume

    2016-08-01

    Due to their inhibitory effects on resorption, bisphosphonates are widely used in the treatment of diseases associated to an extensive bone loss. Yet, little is known about bisphosphonates effects on newly-formed bone quality. In the present study, adult male Sprague-Dawley rats (n=80) with a bone defect calvaria area were used and short-term effects of zoledronic acid (ZA) were studied on the healing bone area. Three ZA treatments were tested by using either: 1°) a low single dose (120μgZA/kg, n=10; equivalent to human osteoporosis treatment), 2°) a low fractionated doses (20μgZA/kg daily for 6days either a total of 120μg/kg, n=15), and 3°) a high fractionated doses, (100μgZA/kg weekly for 6weeks, n=15; equivalent to 6months of human bone metastasis treatment). For each treatment, a control "vehicle" treatment was performed (with an identical number of rats). After ZA administration, the intrinsic bone material properties were evaluated by quantitative backscattered electron imaging (qBEI) and Raman microspectroscopy. Neither single nor fractionated low ZA doses modify the intrinsic bone material properties of the newly-formed bone compared to their respective control animals. On the opposite, the high ZA treatment resulted in a significant decrease of the crystallinity (-25%, P< 0.05) and of the hydroxyproline-to-proline ratio (-30%, P<0.05) in newly-formed bones. Moreover, with the high ZA treatment, the crystallinity was positively correlated with the hydroxyproline-to-proline ratio (ρ=0.78, P<0.0001). The present data highlight new properties for ZA on bone formation in a craniofacial defect model. As such, ZA at high doses disrupted the apatite crystal organization. In addition, we report here for the first time that high ZA doses decreased the hydroxyproline-to-proline ratio suggesting that ZA may affect the early collagen organization during the bone healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Effect of Naturally Occurring Chronic Kidney Disease on the Micro-Structural and Mechanical Properties of Bone

    PubMed Central

    Meltzer, Hagar; Milrad, Moran; Brenner, Ori; Atkins, Ayelet; Shahar, Ron

    2014-01-01

    Chronic kidney disease (CKD) is a growing public health concern worldwide, and is associated with marked increase of bone fragility. Previous studies assessing the effect of CKD on bone quality were based on biopsies from human patients or on laboratory animal models. Such studies provide information of limited relevance due to the small size of the samples (biopsies) or the non-physiologic CKD syndrome studied (rodent models with artificially induced CKD). Furthermore, the type, architecture, structure and biology of the bone of rodents are remarkably different from human bones; therefore similar clinicopathologic circumstances may affect their bones differently. We describe the effects of naturally occurring CKD with features resembling human CKD on the skeleton of cats, whose bone biology, structure and composition are remarkably similar to those of humans. We show that CKD causes significant increase of resorption cavity density compared with healthy controls, as well as significantly lower cortical mineral density, cortical cross-sectional area and cortical cross-sectional thickness. Young's modulus, yield stress, and ultimate stress of the cortical bone material were all significantly decreased in the skeleton of CKD cats. Cancellous bone was also affected, having significantly lower trabecular thickness and bone volume over total volume in CKD cats compared with controls. This study shows that naturally occurring CKD has deleterious effects on bone quality and strength. Since many similarities exist between human and feline CKD patients, including the clinicopathologic features of the syndrome and bone microarchitecture and biology, these results contribute to better understanding of bone abnormalities associated with CKD. PMID:25333360

  7. Methods: a comparative analysis of radiography, microcomputed tomography, and histology for bone tissue engineering.

    PubMed

    Hedberg, Elizabeth L; Kroese-Deutman, Henriette C; Shih, Charles K; Lemoine, Jeremy J; Liebschner, Michael A K; Miller, Michael J; Yasko, Alan W; Crowther, Roger S; Carney, Darrell H; Mikos, Antonios G; Jansen, John A

    2005-01-01

    This study focused on the assessment of radiography, microcomputed tomography, and histology for the evaluation of bone formation in a 15.0-mm defect in the rabbit radius after the implantation of a tissue-engineered construct. Radiography was found to be useful as a noninvasive method for obtaining images of calcified tissue throughout the time course of the experiment. With this method, however, image quality was low, making it difficult to obtain precise information about the location and quantity of the bone formed. Microcomputed tomography was used to create three-dimensional reconstructions of the bone (25-microm resolution). These reconstructions allowed for greater spatial resolution than the radiography, but did not allow for imaging of the implanted scaffold material or the surrounding, nonmineralized tissue. To visualize all materials within the defect area at the cellular level, histology was used. Histological analysis, however, is a destructive technique that did not allow for any further analysis of the samples. Each technique examined here has its own advantages and limitations, but each yields unique information regarding bone regeneration. It is only through the use of all three techniques that complete characterization of the bone growth and tissue/construct responses after implantation in vivo.

  8. Open-Wedge High Tibial Osteotomy: RCT 2 Years RSA Follow-Up.

    PubMed

    Lind-Hansen, Thomas Bruno; Lind, Martin Carøe; Nielsen, Poul Torben; Laursen, Mogens Berg

    2016-11-01

    We investigated the influence of three different bone grafting materials on stability and clinical outcome of the healing open-wedge high tibial osteotomy (OW-HTO) with immediate partial weight bearing. A total of 45 (3 × 15) patients were randomized to injectable calcium phosphate cement (Calcibon; Biomet-Merck Biomaterials GmbH, Darmstadt, Germany), local bone autograft, or iliac crest autograft. Stability of the bony healing was evaluated with radiostereometric analysis (RSA) up to 24 months postoperatively. Clinical outcome was evaluated with the knee injury and osteoarthritis outcome score (KOOS). RSA revealed translations and rotations close to zero regardless of bone grafting material, with no statistically significant differences between the groups. Clinically, the Calcibon group had lower quality of life KOOS subscore at 2 years follow-up. We conclude that with a stable implant and 6 weeks of partial weight bearing, local autografting is sufficient to achieve solid bone consolidation following OW-HTO. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    PubMed

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  10. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  11. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants.

    PubMed

    Ballarre, Josefina; Manjubala, Inderchand; Schreiner, Wido H; Orellano, Juan Carlos; Fratzl, Peter; Ceré, Silvia

    2010-04-01

    In this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass-ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10mol.% SiO(2) samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Comparison of Quick-Set and mineral trioxide aggregate root-end fillings for the regeneration of apical tissues in dogs.

    PubMed

    Kohout, George D; He, Jianing; Primus, Carolyn M; Opperman, Lynne A; Woodmansey, Karl F

    2015-02-01

    Quick-Set (Avalon Biomed Inc, Bradenton, FL) is a calcium aluminosilicate cement that is a potential alternative to mineral trioxide aggregate (MTA) with greater acid resistance and faster setting. The purpose of this study was to compare the regeneration of apical tissues after root-end surgery when the apical tissues were exposed to Quick-Set or White ProRoot MTA (Dentsply Tulsa Dental Specialties, Tulsa, OK) by root-end resection. The root canals of 42 mandibular premolars in 7 beagle dogs were accessed, cleaned and shaped, and obturated with Quick-Set or white MTA. Osteotomies and root-end resections were performed immediately. The dogs were sacrificed at 90 days, and the teeth and surrounding tissues were removed and prepared for histologic analysis. The sections of the apical areas were scored for inflammation, new cementum formation, periodontal ligament formation, and bone quality. At 90 days, both materials supported some degree of cementum formation on the surface of the material, periodontal ligament regeneration, and excellent bone quality. The only significant difference was greater inflammation found in the Quick-Set group. Quick-Set and White ProRoot MTA had a similar effect on bone quality, cementum formation, and periodontal ligament formation after root-end surgery in dogs. Quick-Set was associated with greater inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones.

    PubMed

    Pieske, Oliver; Wittmann, Alexandra; Zaspel, Johannes; Löffler, Thomas; Rubenbauer, Bianka; Trentzsch, Heiko; Piltz, Stefan

    2009-12-15

    Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF) as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG) or demineralized-bone-matrix (DBM). From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10) or DBM-augmentation (n = 10). At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014). Mean duration of follow-up was 56.6 months (ICABG-group) and 41.2 months (DBM-group). All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20%) whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146). No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20%) (p = 0.146). Pain intensity were comparable in both groups (p = 0.326). However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031). With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160 euro/case). Nevertheless, this study demonstrated that the application of DBM compared to ICABG led to an advanced outcome in the treatment of non-unions and simultaneously to a decreased quantity of adverse effects. Therefore we conclude that DBM should be offered as an alternative to ICABG, in particular to patients with elevated comorbidity and those with limited availability or reduced quality of autologous-bone graft material.

  14. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted treatment strategy should focus on simulating, in vitro, a physiological bone environment to predict clinical effectiveness of engineered bone and understand cellular responses due to the proposed agents and bioactive scaffolds. An in vitro test system can be the necessary catalyst to reduce implant failures and non-unions in fragility fractures.

  15. Analgesic efficacy of zoledronic acid and its effect on functional status of prostate cancer patients with metastasis

    PubMed Central

    Gálvez, Rafael; Ribera, Victoria; González-Escalada, José Ramón; Souto, Alicia; Cánovas, María Luz; Castro, Andrés; Herrero, Begoña; de los Ángeles Maqueda, María; Castilforte, Matilde; Marco-Martínez, José Javier; Pérez, Concepción; Vicente-Fatela, Lorenza; MD, Consuelo Nieto; Orduña, Maria José; Padrol, Anna; Reig, Enrique; Carballido, Joaquín; Cózar, José Manuel

    2008-01-01

    Objectives A multi-centered observational study evaluated the efficacy of zoledronic acid for improving pain and mobility, and preventing skeletal-related events (SRE) (fracture, spinal compression, pain-relieving radiotherapy), in patients with prostate cancer and bone metastasis. Materials and Methods Males (n = 218) with prostate cancer and bone metastasis undergoing oncologic therapy received zoledronic acid (4 mg iv/month) for 6 months. Parameters evaluated were: 1) pain and movement after 2 consecutive doses; 2) quality of life; 3) SRE incidence and time-to-appearance. Medication tolerance and treatment satisfaction were assessed using a questionnaire. Results A total of 170 that matched all the inclusion criteria (78%) out of 218 were evaluable for efficacy. There was a measurable statistically significant reduction in pain at rest and on movement as well as an improvement in the quality of life compared with baseline. Best results were obtained with early treatment. Overall incidence of bone events was 11.2%. Of the 212 patients (97.2%) evaluable for safety, 16% suffered adverse events and 66% expressed satisfaction with the treatment Discussion Zoledronic acid is effective for reducing pain, improving mobility, and increasing the quality of life in patients with prostate cancer with bone metastasis. Its easy administration and good tolerability make zoledronic acid one of the principal therapeutic tools in the management of patients with pain associated with bone metastasis from prostate cancer. PMID:19920966

  16. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  17. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  18. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties

    PubMed Central

    Karim, Lamya; Bouxsein, Mary L.

    2015-01-01

    There is clear evidence that patients with type 2 diabetes mellitus (T2D) have increased fracture risk, despite having high bone mineral density (BMD) and body mass index (BMI). Thus, poor bone quality has been implicated as a mechanism contributing to diabetic skeletal fragility. Poor bone quality in T2D may result from the accumulation of advanced glycation end-products (AGEs), which are post-translational modifications of collagen resulting from a spontaneous reaction between extracellular sugars and amino acid residues on collagen fibers. This review discusses what is known and what is not known regarding AGE accumulation and diabetic skeletal fragility, examining evidence from in vitro experiments to simulate a diabetic state, ex vivo studies in normal and diabetic human bone, and diabetic animal models. Key findings in the literature are that AGEs increase with age, affect bone cell behavior, and are altered with changes in bone turnover. Further, they affect bone mechanical properties and microdamage accumulation, and can be inhibited in vitro by various inhibitors and breakers (e.g. aminoguanidine, N-Phenacylthiazolium Bromide, vitamin B6). While a few studies report higher AGEs in diabetic animal models, there is little evidence of AGE accumulation in bone from diabetic patients. There are several limitations and inconsistencies in the literature that should be noted and studied in greater depth including understanding the discrepancies between glycation levels across reported studies, clarifying differences in AGEs in cortical versus cancellous bone, and improving the very limited data available regarding glycation content in diabetic animal and human bone, and its corresponding effect on bone material properties in T2D. PMID:26211993

  19. Do Clinical and Radiological Assessments Contribute to the Understanding of Biomaterials? Results From a Prospective Randomized Sinus Augmentation Split-Mouth Trial.

    PubMed

    Lorenz, Jonas; Korzinskas, Tadas; Chia, Poju; Maawi, Sarah Al; Eichler, Katrin; Sader, Robert A; Ghanaati, Shahram

    2018-02-01

    The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis-histological, clinical, and radiological-is necessary for a detailed assessment of a biomaterial's quality for clinical application.

  20. Creation of a 3D printed temporal bone model from clinical CT data.

    PubMed

    Cohen, Joss; Reyes, Samuel A

    2015-01-01

    Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Patient-specific in silico models can quantify primary implant stability in elderly human bone.

    PubMed

    Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry

    2018-03-01

    Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women.

    PubMed

    Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P

    2017-04-01

    Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance. Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement

    PubMed Central

    Rodriguez, Lucas C.; Chari, Jonathan; Aghyarian, Shant; Gindri, Izabelle M.; Kosmopoulos, Victor; Rodrigues, Danieli C.

    2014-01-01

    Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects. PMID:28788212

  4. Application of Resorbable Poly(Lactide-co-Glycolide) with Entangled Hyaluronic Acid as an Autograft Extender for Posterolateral Intertransverse Lumbar Fusion in Rabbits

    PubMed Central

    Oliver, Rema A.; Gage, Gary; Yu, Yan; Bell, David; Bellemore, Jeremy; Adkisson, Huston Davis

    2011-01-01

    Facilitating fusion between bony segments in a reliable and reproducible manner using a synthetic bone graft material has a number of benefits for the surgeon as well as the patient. Although autograft remains the gold standard, associated comorbidities continue to drive the development of new biomaterials for use in spinal fusion. The ability of autograft alone and autograft combined with a radiolucent biomaterial composed of resorbable osteoconductive poly(lactide-co-glycolide) with entangled hyaluronic acid to facilitate fusion was examined in a single-level noninstrumented posterolateral intertransverse lumbar fusion model in New Zealand White rabbits. Progressive bone formation was demonstrated radiographically for the extender group (synthetic biomaterial plus autograft) between 3 and 6 months. Computed tomography revealed a new cortical shell in the fusion mass at 3 and 6 months for both study groups. Tensile testing at 6 months demonstrated that the quality of bone formed between the intertransverse space was equivalent for both study groups. Histologic evaluation of the fusion mass revealed new bone on and adjacent to the transverse processes with the synthetic biomaterial group that extended laterally, supporting the osteoconductive nature of the material. Histological evidence of endochondral bone growth in the intertransverse space was observed for the autograft plus synthetic biomaterial group. Bone remodeling, new marrow spaces, and peripheral cortices were observed for each study group at 3 months that matured by 6 months. These findings support the use of a radiolucent biosynthetic material comprising poly(lactide-co-glycolide) with integrated hyaluronic acid as an autograft extender for lumbar intertransverse fusion. PMID:20712417

  5. Experimental studies on a new highly porous hydroxyapatite matrix for obliterating open mastoid cavities.

    PubMed

    Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm

    2008-09-01

    In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.

  6. Bone Density, Microarchitecture, and Tissue Quality Long-term After Kidney Transplant.

    PubMed

    Pérez-Sáez, María José; Herrera, Sabina; Prieto-Alhambra, Daniel; Nogués, Xavier; Vera, María; Redondo-Pachón, Dolores; Mir, Marisa; Güerri, Roberto; Crespo, Marta; Díez-Pérez, Adolfo; Pascual, Julio

    2017-06-01

    Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is used to assess bone health in kidney transplant recipients (KTR). Trabecular bone score and in vivo microindentation are novel techniques that directly measure trabecular microarchitecture and mechanical properties of bone at a tissue level and independently predict fracture risk. We tested the bone status of long-term KTR using all 3 techniques. Cross-sectional study including 40 KTR with more than 10 years of follow-up and 94 healthy nontransplanted subjects as controls. Bone mineral density was measured at lumbar spine and the hip. Trabecular bone score was measured by specific software on the dual-energy x-ray absorptiometry scans of lumbar spine in 39 KTR and 77 controls. Microindentation was performed at the anterior tibial face with a reference-point indenter device. Bone measurements were standardized as percentage of a reference value, expressed as bone material strength index (BMSi) units. Multivariable (age, sex, and body mass index-adjusted) linear regression models were fitted to study the association between KTR and BMD/BMSi/trabecular bone score. Bone mineral density was lower at lumbar spine (0.925 ± 0.15 vs 0.982 ± 0.14; P = 0.025), total hip (0.792 ± 0.14 vs 0.902 ± 0.13; P < 0.001), and femoral neck (0.667 ± 0.13 vs 0.775 ± 0.12; P < 0.001) in KTR than in controls. BMSi was also lower in KTR (79.1 ± 7.7 vs 82.9 ± 7.8; P = 0.012) although this difference disappeared after adjusted model (P = 0.145). Trabecular bone score was borderline lower (1.21 ± 0.14 vs 1.3 ± 0.15; adjusted P = 0.072) in KTR. Despite persistent decrease in BMD, trabecular microarchitecture and tissue quality remain normal in long-term KTR, suggesting important recovery of bone health.

  7. ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES

    PubMed Central

    Karim, Lamya; Diab, Tamim; Vashishth, Deepak

    2015-01-01

    Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375

  8. Multiscale investigation on the effects of additional weight bearing in combination with low-magnitude high-frequency vibration on bone quality of growing female rats.

    PubMed

    Zhang, Tianlong; Gao, Jiazi; Fang, Juan; Gong, He

    2018-03-01

    This study aimed to explore the effects of additional weight bearing in combination with low-magnitude high-frequency vibration (LMHFV; 45 Hz, 0.3 g) on bone quality. One hundred twenty rats were randomly divided into ten groups; namely, sedentary (SED), additional weight bearing in which the rat wears a backpack whose weight is x% of the body weight (WBx; x = 5, 12, 19, 26), basic vibration (V), and additional weight bearing in combination with LMHFV in which the rat wears a backpack whose weight is x% of the body weight (Vx; x = 5, 12, 19, 26). The experiment was conducted for 12 weeks, 7 days per week, and 15 min per day. A three-point bending mechanical test, micro computed tomography, and a nanoindentation test were used. Serum samples were analyzed chemically. Failure load in V19 rats was significantly lower than that in SED rats (P < 0.05). Vx (x = 5, 12, 19, 26) rats showed poor microarchitectures. The content of tartrate-resistant acid phosphatase 5b was significantly higher in Vx (x = 5, 12, 19, 26) rats than that in SED rats (P < 0.05). V26 rats demonstrated comparatively better nanomechanical properties of materials than the other vibrational groups. Additional weight bearing in combination with LMHFV negatively affected the macromechanical properties and microarchitecture of bone. Heavy additional weight bearing, such as 26% of body weight, in combination with LMHFV was able to improve the nanomechanical properties of growing bone material compared with LMHFV. A combined mechanical stimulation was used, which may provide useful information to understand the mechanism of this mechanical stimulation on bone.

  9. Aging and loading rate effects on the mechanical behavior of equine bone

    NASA Astrophysics Data System (ADS)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  10. Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading.

    PubMed

    Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Sasaki, Muneteru; Inoue, Maaya; Yasutake, Munenori; Sawase, Takashi

    2017-01-15

    The aim was to investigate the effect of groove designs on bone quality under controlled-repetitive load conditions for optimizing dental implant design. Anodized Ti-6Al-4V alloy implants with -60° and +60° grooves around the neck were placed in the proximal tibial metaphysis of rabbits. The application of a repetitive mechanical load was initiated via the implants (50N, 3Hz, 1800 cycles, 2days/week) at 12weeks after surgery for 8weeks. Bone quality, defined as osteocyte density and degree of biological apatite (BAp) c-axis/collagen fibers, was then evaluated. Groove designs did not affect bone quality without mechanical loading; however, repetitive mechanical loading significantly increased bone-to-implant contact, bone mass, and bone mineral density (BMD). In +60° grooves, the BAp c-axis/collagen fibers preferentially aligned along the groove direction with mechanical loading. Moreover, osteocyte density was significantly higher both inside and in the adjacent region of the +60° grooves, but not -60° grooves. These results suggest that the +60° grooves successfully transmitted the load to the bone tissues surrounding implants through the grooves. An optimally oriented groove structure on the implant surface was shown to be a promising way for achieving bone tissue with appropriate bone quality. This is the first report to propose the optimal design of grooves on the necks of dental implants for improving bone quality parameters as well as BMD. The findings suggest that not only BMD, but also bone quality, could be a useful clinical parameter in implant dentistry. Although the paradigm of bone quality has shifted from density-based assessments to structural evaluations of bone, clarifying bone quality based on structural bone evaluations remains challenging in implant dentistry. In this study, we firstly demonstrated that the optimal design of dental implant necks improved bone quality defined as osteocytes and the preferential alignment degree of biological apatite c-axis/collagen fibers using light microscopy, polarized light microscopy, and a microbeam X-ray diffractometer system, after application of controlled mechanical load. Our new findings suggest that bone quality around dental implants could become a new clinical parameter as well as bone mineral density in order to completely account for bone strength in implant dentistry. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone.

    PubMed

    Sreenivasan, D; Watson, M; Callon, K; Dray, M; Das, R; Grey, A; Cornish, J; Fernandez, J

    2013-12-01

    In this study we evaluate the influence of low-dose fluoride treatment on 23 patient biopsies. Computational finite element (FE) models of each biopsy were subjected to a range of loads including compression, shear and torsion. The modelling framework was validated against three 3D printed models with known material properties subjected to compression till failure using an Instron machine. The primary outcomes from this study were that mechanical strength was not significantly correlated to low-dose (<10 mg/day) of fluoride levels (one-way ANOVA, P-values of 0.78, 0.69 and 0.62 for compression, shear and torsion, respectively). However, when bulk bone material properties were derived from DXA bone mineral density (BMD) from each patient's proximal femur a non-significant linear decline in mechanical strength with increase in fluoride was predicted. When the same material property was used for all bones (to evaluate bone architecture influence) then mechanical strength showed a characteristic concave upwards trend, consistent with the variation of micro CT derived percentage bone volume (BV/TV). The secondary outcomes from this study were that in compression, BV/TV was observed to be a strong surrogate measure for mechanical strength (R(2) = 0.83), while bone surface density (R(2)=0.6), trabecular thickness (R(2) = 0.5) and intersection surface (R(2) = 0.6) also explained the variation of mechanical strength well. However, trabecular separation and trabecular number were mildly correlated with mechanical strength (R(2) of 0.31 and 0.35, respectively). Compression was the loading mode most strongly correlated to micro CT indices. Material properties adapted from the proximal femur reduced the CT index correlations by up to 58% indicating that bulk density from a near proximity is a poor representation of specific localised density. Substituting the 3D micro CT indices with 2D histomorphometric data decreased correlations by at least 33% indicating that structural identification on a plane is not representative of the full 3D architecture necessary for a complete bone strength analysis. The presented computational framework may be used to assess the roles that bone architecture and loading modes play in bone quality, and which micro CT indices are good surrogate measures for mechanical strength. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Bone mineralization and vascularization in bisphosphonate-related osteonecrosis of the jaw: an experimental study in the rat.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Mabilleau, Guillaume; Pascaretti-Grizon, Florence; Chappard, Daniel

    2018-02-16

    Pathogenesis of bisphosphonate-related osteonecrosis of the jaws (BRONJ) is not fully explained. An antiangiogenic effect of bisphosphonates (BPs) or an altered bone quality have been advocated. The aims of the present study were to analyze alveolar mandibular vascularization and bone quality in rats with BRONJ. Thirty-eight Sprague-Dawley rats were randomized into two groups: zoledronic acid (ZA), n = 27, and control (CTRL) n = 11. The ZA group received a weekly IV injection of ZA (100 μg/kg) during 10 weeks. The CTRL group received saline. After 6 weeks, extraction of the right mandibular molars was performed. Rats were sacrificed after 14 weeks. Microtomography characterized bone lesions and vascularization after injection of a radio-opaque material. Raman microspectroscopy evaluated bone mineralization. Fifty-five percent of ZA rats presented bone exposure and signs of BRONJ. None sign was found at the left hemimandible in the ZA group and in the CTRL group. Vascular density appeared significantly increased in the right hemimandibles of the CTRL group compared to the left hemimandibles. Vascularization was reduced in the ZA group. A significantly increased of the mineral-to-amide ratio was found in the alveolar bone of ZA rats by Raman microspectroscopy. In a rat model of BRONJ, microtomography evidenced osteonecrosis in BRONJ. Raman spectroscopy showed an increased mineralization. Vascularization after tooth extraction was impaired by ZA. Prolonged BP administration caused an increase in the mineralization and a quantitative reduction of the vascularization in the alveolar bone; both factors might be involved concomitantly in the BRONJ pathophysiology.

  13. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials.

    PubMed

    Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf

    2012-12-01

    An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Clinical assessment of bone quality of human extraction sockets after conversion with growth factors.

    PubMed

    Ntounis, Athanasios; Geurs, Nico; Vassilopoulos, Philip; Reddy, Michael

    2015-01-01

    The study was conducted to evaluate the effect of mineralized freeze-dried bone allograft (FDBA), alone or in combination with growth factors in extraction sockets, on subjective assessment of bone quality during implant placement. Forty-one patients whose treatment plan involved extraction of anterior or premolar teeth were randomized into four groups: Group 1, collagen plug (control); Group 2, FDBA/β-tricalcium phosphate (β-TCP)/collagen plug; Group 3, FDBA/β-TCP/platelet-rich plasma (PRP)/collagen plug; Group 4, FDBA/β-TCP/recombinant human platelet-derived growth factor BB (rhPDGF-BB)/collagen plug. After 8 weeks of healing, implants were placed. The clinicians assessed bone quality according to the Misch classification. A benchtop calibration exercise test was conducted to evaluate agreement and accuracy of operators in recognizing different bone qualities. Differences were analyzed using one-way analysis of variance (ANOVA) or chi-square tests for continuous and categorical data. Pairwise comparisons were tested using least squares means (LS means). Spearman correlation coefficients were used to evaluate the relationship of bone growth with potential confounders. P < .05 was considered statistically significant. A simple (not weighted) kappa statistic was used to assess the agreement between raters. To assess accuracy in identifying bone quality, a chi-square test was used to compare the percent correct for each rater. The benchtop calibration exercise test demonstrated agreement among clinicians (0.75 and 0.92 between raters 1 and 2 and raters 1 and 3, respectively). Raters were more likely to identify the correct bone quality (P > .05). Inclusion of bone grafting is associated with a shift from D4 quality to D3 quality bone. Inclusion of PRP in bone grafting eliminates the incidence of D4 bone, establishing D3 and D2 quality bone as prevalent (56% vs. 42%, respectively). Inclusion of rhPDGF-BB and β-TCP in combination with the bone grafting has the same effect, although D2 quality is less prevalent. When compared to sockets grafted with FDBA/β-TCP/collagen plug alone, the sockets with growth factors demonstrated fewer residual bone graft particles. (1) Inclusion of bone grafting enhanced bone quality as assessed during implant placement. (2) Overall inclusion of PRP and rhPDGF-BB enhanced subjective bone quality, eliminating incidence of D4 quality in human extraction sockets. (3) The use of PRP or rhPDGF-BB may enhance healing within extraction sockets and decrease the healing time prior to dental implant placement.

  15. Optimization and characterization of bioactive glass nanofibers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Scarber, Reginna E.

    Disease affects different areas of the bone and can impact individuals of all pathologies and ethnicities. These bone diseases can result in weakening which leads to trauma during ordinary function, the need for reconstructive surgery, and eventual bone replacement. Tissue engineering can provide a less traumatic and more fundamental solution to the current therapies. Bioactive glasses are promising materials in tissue engineering applications because of their ability to form hydroxycarbonate apatite in the presence of simulated body fluid, support cell adhesion, growth, and differentiation, induce bone formation, and concentrate bone morphogenic proteins in vivo. The research in this dissertation will attempt to improve the quality, yield, and toughness of bioactive glass nanofibrous scaffolds. The three specific aims of this research include, (1) Optimization and Characterization of Surfactant Modified Bioactive Glass (2) Optimization of Direct Synthesis Bioactive glass Nanofibers from Sols (3) Mechanical Properties and In-vitro Biomineralization of Bioglass-loaded Polyglyconate Nanocomposites Created Using the Particulate Leaching Method. The purpose of the first specific aim was to optimize the processing of bioactive glass nanofibers, resulting in greater fiber uniformity with a reduction in beading. The increase in viscosity coupled with the ability of the surfactant to limit polymeric secondary bonding led to improved fiber quality. The focal point of the second specific aim is the production of sol-gel derived glass fibers with high bioactivity prepared by electrospinning without the use of any polymer carrier system. Advantages of this method include decreased processing time, increased production of fibers, and a decrease in the loss of material due to the calcining process. The solvent cast/ particulate leaching method was used to create a nanocomposite of bioglass and the co-polymer polyglyconate (MaxonRTM) for bone tissue scaffolds The biocompatibility of the composite foams was observed and calcium phosphate presence was quantified. The incorporation of bioglass into the polymer matrix improved the strength (modulus - 21.47 MPa) and biocompatibility of the polyglyconate foam. Keywords: Bioactive glass, Electrospinning, Solvent Casting/Particulate Leaching Method, Nanocomposites

  16. The role of fixation and bone quality on the mechanical stability of tibial knee components.

    PubMed

    Lee, R W; Volz, R G; Sheridan, D C

    1991-12-01

    Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.

  17. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  18. Physical modeling with orthotropic material based on harmonic fields.

    PubMed

    Liao, Sheng-Hui; Zou, Bei-Ji; Geng, Jian-Ping; Wang, Jin-Xiao; Ding, Xi

    2012-11-01

    Although it is well known that human bone tissues have obvious orthotropic material properties, most works in the physical modeling field adopted oversimplified isotropic or approximated transversely isotropic elasticity due to the simplicity. This paper presents a convenient methodology based on harmonic fields, to construct volumetric finite element mesh integrated with complete orthotropic material. The basic idea is taking advantage of the fact that the longitudinal axis direction indicated by the shape configuration of most bone tissues is compatible with the trajectory of the maximum material stiffness. First, surface harmonic fields of the longitudinal axis direction for individual bone models were generated, whose scalar distribution pattern tends to conform very well to the object shape. The scalar iso-contours were extracted and sampled adaptively to construct volumetric meshes of high quality. Following, the surface harmonic fields were expanded over the whole volumetric domain to create longitudinal and radial volumetric harmonic fields, from which the gradient vector fields were calculated and employed as the orthotropic principal axes vector fields. Contrastive finite element analyses demonstrated that elastic orthotropy has significant effect on simulating stresses and strains, including the value as well as distribution pattern, which underlines the relevance of our orthotropic modeling scheme. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  20. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  1. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  2. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  3. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  4. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    PubMed

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging.

    PubMed

    Beak, Songee; Kim, Hyeri; Song, Kyung Bin

    2017-11-01

    Olive flounder bone gelatin (OBG) was used for a film base material in this study. In addition, zinc oxide nanoparticles (ZnO) were incorporated into the OBG film to prepare a nanocomposite film and to impart antimicrobial activity to it. The tensile strength of the OBG film increased by 6.62 MPa, and water vapor permeability and water solubility decreased by 0.93 × 10 -9 g/m s Pa and 13.79%, respectively, by the addition of ZnO to the OBG film. In particular, the OBG-ZnO film exhibited antimicrobial activity against Listeria monocytogenes. To investigate the applicability of the OBG-ZnO packaging film, fresh spinach was wrapped in this film and stored for a week. The results indicated that the OBG-ZnO film showed antimicrobial activity against L. monocytogenes inoculated on spinach without affecting the quality of spinach, such as vitamin C content and color. Thus, the OBG-ZnO nanocomposite film can be applied as an efficient antimicrobial food packaging material. As a base material of edible films, gelatin was extracted from olive flounder bone, which is fish processing by-product. Olive flounder bone gelatin (OBG) nanocomposite films were prepared with zinc oxide nanoparticles (ZnO). For an application to antimicrobial packaging, spinach was wrapped with the OBG-ZnO nanocomposite film. © 2017 Institute of Food Technologists®.

  6. Drilling resistance: A method to investigate bone quality.

    PubMed

    Lughmani, Waqas A; Farukh, Farukh; Bouazza-Marouf, Kaddour; Ali, Hassan

    2017-01-01

    Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. The results show that drilling data can be used to indicate bone quality during orthopaedic surgery.

  7. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    PubMed

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  8. Peak bone strength is influenced by calcium intake in growing rats.

    PubMed

    Viguet-Carrin, S; Hoppler, M; Membrez Scalfo, F; Vuichoud, J; Vigo, M; Offord, E A; Ammann, P

    2014-11-01

    In this study we investigated the effect of supplementing the diet of the growing male rat with different levels of calcium (from low to higher than recommended intakes at constant Ca/P ratio), on multiple factors (bone mass, strength, size, geometry, material properties, turnover) influencing bone strength during the bone accrual period. Rats, age 28days were supplemented for 4weeks with high Ca (1.2%), adequate Ca (0.5%) or low Ca level (0.2%). Bone metabolism and structural parameters were measured. No changes in body weight or food intake were observed among the groups. As anticipated, compared to the adequate Ca intake, low-Ca intake had a detrimental impact on bone growth (33.63 vs. 33.68mm), bone strength (-19.7% for failure load), bone architecture (-58% for BV/TV) and peak bone mass accrual (-29% for BMD) due to the hormonal disruption implied in Ca metabolism. In contrast, novel, surprising results were observed in that higher than adequate Ca intake resulted in improved peak bone strength (106 vs. 184N/mm for the stiffness and 61 vs. 89N for the failure load) and bone material properties (467 vs. 514mPa for tissue hardness) but these effects were not accompanied by changes in bone mass, size, microarchitecture or bone turnover. Hormonal factors, IGF-I and bone modeling were also evaluated. Compared to the adequate level of Ca, IGF-I level was significantly lower in the low-Ca intake group and significantly higher in the high-Ca intake group. No detrimental effects of high Ca were observed on bone modeling (assessed by histomorphometry and bone markers), at least in this short-term intervention. In conclusion, the decrease in failure load in the low calcium group can be explained by the change in bone geometry and bone mass parameters. Thus, improvements in mechanical properties can be explained by the improved quality of intrinsic bone tissue as shown by nanoindentation. These results suggest that supplemental Ca may be beneficial for the attainment of peak bone strength and that multiple factors linked to bone mass and strength should be taken into account when setting dietary levels of adequate mineral intake to support optimal peak bone mass acquisition. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan; Yun, Pil-Young; Yeo, In-Sung; Jin, Seung-Chan; Oh, Ji-Su; Kim, Heung-Joong; Yu, Sun-Kyoung; Lee, Sook-Young; Kim, Jae-Sung; Um, In-Woong; Jeong, Mi-Ae; Kim, Gyung-Wook

    2014-01-01

    This study evaluated the surface structures and physicochemical characteristics of a novel autogenous tooth bone graft material currently in clinical use. The material's surface structure was compared with a variety of other bone graft materials via scanning electron microscope (SEM). The crystalline structure of the autogenous tooth bone graft material from the crown (AutoBT crown) and root (AutoBT root), xenograft (BioOss), alloplastic material (MBCP), allograft (ICB), and autogenous mandibular cortical bone were compared using x-ray diffraction (XRD) analysis. The solubility of each material was measured with the Ca/P dissolution test. The results of the SEM analysis showed that the pattern associated with AutoBT was similar to that from autogenous cortical bones. In the XRD analysis, AutoBT root and allograft showed a low crystalline structure similar to that of autogenous cortical bones. In the CaP dissolution test, the amount of calcium and phosphorus dissolution in AutoBT was significant from the beginning, while displaying a pattern similar to that of autogenous cortical bones. In conclusion, autogenous tooth bone graft materials can be considered to have physicochemical characteristics similar to those of autogenous bones. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Dose measurement in heterogeneous phantoms with an extrapolation chamber

    NASA Astrophysics Data System (ADS)

    Deblois, Francois

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.

  11. The influence of low temperatures on dynamic mechanical properties of animal bone

    NASA Astrophysics Data System (ADS)

    Mardas, Marcin; Kubisz, Leszek; Mielcarek, Slawomir; Biskupski, Piotr

    2009-01-01

    Different preservation methods are currently used in bone banks, even though their effects on allograft quality are not fully understood. Freezing is one of the most popular methods of preservation in tissue banking. Yet, there is not a lot of data on dynamic mechanical properties of frozen bone. Material used in this study was femoral bones from adult bovine that were machine cut and frozen to the temperature 140°C. Both elastic modulus and loss modulus were measured at 1, 3, 5, 10, and 20 Hz in the temperature range of 30-200°C. Differences between frozen and control samples were observed. The frequency increase always led to the increase in elastic modulus values and decrease in loss modulus values. Freezing reduced the elastic modulus values of about 25% and the loss modulus values of about 45% when measured at 20°C.

  12. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.

    PubMed

    Nguyen, Vu-Hieu; Naili, Salah

    2013-01-01

    This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.

  13. [Study on preparation and physicochemical properties of surface modified sintered bone].

    PubMed

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong

    2012-06-01

    The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.

  14. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  15. Do topical applications of bisphosphonates improve bone formation in oral implantology? A systematic review

    PubMed Central

    Lozano-Carrascal, Naroa; Hernández-Alfaro, Federico; Gehrke, Sergio-Alexandre; Gargallo-Albiol, Jordi; Calvo-Guirado, José-Luis

    2017-01-01

    Background The aim of this systematic literature review was to evaluate the feasibility of topical bisphosphonate application for preserving/enhancing alveolar bone in oral implantology. Material and Methods An electronic search was conducted in the PubMed/Medline, EMBASE, Scopus, Web of knowledge, and Google-Scholar databases for articles dated from January 2000 to December 2016. Two reviewers assessed the quality of the studies independently. Results A total of 154 abstracts were identified, of which 18 potentially relevant articles were selected; a final total of nine papers were included for analysis. Comparison of the findings of the selected studies was made difficult by the heterogeneity of the articles, all of them animal research papers that showed heterogeneity in the methodologies used and a high or moderate risk of bias. Conclusions The topical application of bisphosphonate solution would appear to favor new bone formation in alveolar defects, and boosts the regenerative capacities of biomaterials resulting in increased bone density. Key words:Alveolar bone, bone regeneration, topical application, biomaterial, bisphosphonates. PMID:28624840

  16. Strontium ranelate: a novel mode of action leading to renewed bone quality.

    PubMed

    Ammann, Patrick

    2005-01-01

    Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.

  17. Is there a relation between local bone quality as assessed on panoramic radiographs and alveolar bone level?

    PubMed

    Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde

    2008-03-01

    The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.

  18. Clinical Considerations of Adapted Drilling Protocol by Bone Quality Perception.

    PubMed

    Toia, Marco; Stocchero, Michele; Cecchinato, Francesca; Corrà, Enrico; Jimbo, Ryo; Cecchinato, Denis

    To evaluate insertion torque value (ITV) and marginal bone loss (MBL) of an implant system after a clinically perceived bone quality-adapted drilling. This multicenter retrospective study included patients treated with implants, conventionally loaded, in completely healed sites. Operators customized the osteotomy preparation according to radiographic assessment and their perception of bone quality. Drilling sequence, bone quality, and ITV were recorded at the time of surgery. Radiographs were taken at the time of implant placement and permanent restoration. MBL between implant placement and permanent restoration was calculated. The implant was used as the statistical unit. Demographic and implant characteristics were shown by means of descriptive statistics. Outcome values were compared using analysis of variance (ANOVA) and Kruskal-Wallis tests. Multiple regression models were used to test the effect of independent variables on ITV and MBL. One hundred eighty-eight implants placed in 87 patients were included in the analysis. The mean observation period was 144 ± 59 days. The mean ITV was 30.8 ± 15.1 Ncm. ITV differed significantly based on arches (mandible/maxilla) (P = .001), bone quality (P < .001), implant diameter (P = .032), and drilling protocol (P = .019). Median MBL was 0.05 mm (0.00; 0.24). A significant difference was found between the mandible and maxilla (P = .008) and between drilling protocols (P = .011). In particular, significantly higher MBL was found in the undersized drilling protocol. Multiple regression analysis showed that ITV was influenced by bone quality and implant diameter. MBL was influenced by bone quality, implant diameter, ITV, and the interaction between bone quality and ITV. It was estimated that MBL was greater with increased bone density and ITV. Excessive ITV in dense bone can cause negative marginal bone responses. A presurgical radiographic assessment and the perception of bone quality are necessary to select an optimal drilling protocol and to minimize surgical trauma.

  19. Effects of a buried magnetic field on cranial bone reconstruction in rats

    PubMed Central

    de ABREU, Maíra Cavallet; PONZONI, Deise; LANGIE, Renan; ARTUZI, Felipe Ernesto; PURICELLI, Edela

    2016-01-01

    ABSTRACT The understanding of bone repair phenomena is a fundamental part of dentistry and maxillofacial surgery. Objective The present study aimed to evaluate the influence of buried magnetic field stimulation on bone repair in rat calvaria after reconstruction with autogenous bone grafts, synthetic powdered hydroxyapatite, or allogeneic cartilage grafts, with or without exposure to magnetic stimulation. Material and Methods Ninety male Wistar rats were divided into 18 groups of five animals each. Critical bone defects were created in the rats’ calvaria and immediately reconstructed with autogenous bone, powdered synthetic hydroxyapatite or allogeneic cartilage. Magnetic implants were also placed in half the animals. Rats were euthanized for analysis at 15, 30, and 60 postoperative days. Histomorphometric analyses of the quantity of bone repair were performed at all times. Results These analyses showed significant group by postoperative time interactions (p=0.008). Among the rats subjected to autogenous bone reconstruction, those exposed to magnetic stimulation had higher bone fill percentages than those without magnetic implants. Results also showed that the quality of bone repair remained higher in the former group as compared to the latter at 60 postoperative days. Conclusions After 60 postoperative days, bone repair was greater in the group treated with autogenous bone grafts and exposed to a magnetic field, and bone repair was most pronounced in animals treated with autogenous bone grafts, followed by those treated with powdered synthetic hydroxyapatite and allogeneic cartilage grafts. PMID:27119765

  20. A new quality of bone ultrasound research.

    PubMed

    Gluer, C C

    2008-07-01

    Quantitative ultrasound (QUS) methods have strong power to predict osteoporotic fractures, but they are also very relevant for the assessment of bone quality. A representative sample of recent studies addressing these topics can be found in this special issue. Further pursuit of these methods will establish micro-QUS imaging methods as tools for measuring specific aspects of bone quality. Once this is achieved, we will be able to link such data to the clinical QUS methods used in vivo to determine which aspects of bone quality cause QUS to be a predictor of fracture risk that is independent of bone mineral density (BMD). Potentially this could lead to the development of a new generation of QUS devices for improved and expanded clinical assessment. Good quality of basic science work will thus lead to good quality of clinical patient examinations on the basis of a more detailed assessment of bone quality.

  1. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  2. How does bone quality differ between healthy-weight and overweight adolescents and young adults?

    PubMed

    Hoy, Christa L; Macdonald, Heather M; McKay, Heather A

    2013-04-01

    Overweight youth have greater bone mass than their healthy-weight peers but sustain more fractures. However, it is unclear whether and how excess body fat influences bone quality in youth. We determined whether overweight status correlated with three-dimensional aspects of bone quality influencing bone strength in adolescent and young adult females and males. We categorized males (n=103; mean age, 17 years) and females (n=85; mean age, 18 years) into healthy-weight and overweight groups. We measured lean mass (LM) and fat mass (FM) with dual-energy x-ray absorptiometry (DXA). We used high-resolution peripheral quantitative CT to assess the distal radius (7% site) and distal tibia (8% site). Bone quality measures included total bone mineral density (Tt.BMD), total area (Tt.Ar), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), separation (Tb.Sp), and thickness (Tb.Th). We used multiple regression to compare bone quality between healthy-weight and overweight adolescents adjusting for age, ethnicity, limb length, LM, and FM. Overweight males had higher (10%-21%) Tt.BMD, BV/TV, and Tb.N and lower Tb.Sp at the tibia and lower Tt.Ar at the radius than healthy-weight males. No differences were observed between overweight and healthy-weight females. LM attenuated the differences in bone quality between groups in males while FM negatively predicted Tt.BMD, BV/TV, Tb.N, and Tb.Th. Our data suggest overweight males have enhanced bone quality compared with healthy-weight males; however, when group differences are interpreted in the context of the mechanostat theory, it appears bone quality of overweight adolescents adapts to LM and not to greater FM.

  3. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    PubMed

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via IR sensors, and acoustic wave signals may be detected via sensitive pressure transducer, which is reserved for future realization.

  5. Recent progress in injectable bone repair materials research

    NASA Astrophysics Data System (ADS)

    Chen, Zonggang; Zhang, Xiuli; Kang, Lingzhi; Xu, Fei; Wang, Zhaoling; Cui, Fu-Zhai; Guo, Zhongwu

    2015-12-01

    Minimally invasive injectable self-setting materials are useful for bone repairs and for bone tissue regeneration in situ. Due to the potential advantages of these materials, such as causing minimal tissue injury, nearly no influence on blood supply, easy operation and negligible postoperative pain, they have shown great promises and successes in clinical applications. It has been proposed that an ideal injectable bone repair material should have features similar to that of natural bones, in terms of both the microstructure and the composition, so that it not only provides adequate stimulus to facilitate cell adhesion, proliferation and differentiation but also offers a satisfactory biological environment for new bone to grow at the implantation site. This article reviews the properties and applications of injectable bone repair materials, including those that are based on natural and synthetic polymers, calcium phosphate, calcium phosphate/polymer composites and calcium sulfate, to orthopedics and bone tissue repairs, as well as the progress made in biomimetic fabrication of injectable bone repair materials.

  6. In vivo evaluation of a novel nanocomposite porous 3D scaffold in a rabbit model: histological analysis

    PubMed Central

    Mahmood, Saffanah Khuder; Razak, Intan-Shameha Abdul; Ghaji, Mustafa Saddam; Yusof, Loqman Mohamed; Mahmood, Zaid Khudhur; Rameli, Mohd Adha Bin P; Zakaria, Zuki Abu Bakar

    2017-01-01

    The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3 aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit’s radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material. PMID:29238193

  7. Evaluation of bone quality in osteoporosis model mice by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishimaru, Yasumitsu; Oshima, Yusuke; Imai, Yuuki; Iimura, Tadahiro; Takanezawa, Sota; Hino, Kazunori; Miura, Hiromasa

    2017-04-01

    To evaluate the bone quality in the osteoporosis, we generated sciatic nerve resection (NX) mice as an osteoporosis model and analyzed by Raman spectroscopy. Raman spectra were measured in anterior cortical surface of the proximal tibia at 5 points in each bone. After that, the samples were fixed with 70% ethanol. We then performed DXA and μCT measurement. Raman peak intensity ratios were significantly different between NX and Control. Those changes in the Raman peak intensity ratios may reflect loss of bone quality in the osteoporosis model. Raman spectroscopy is a promising technique for measuring the bone quality and bone strength.

  8. Mechanical behavior of osteoporotic bone at sub-lamellar length scales

    NASA Astrophysics Data System (ADS)

    Jimenez-Palomar, Ines; Shipov, Anna; Shahar, Ron; Barber, Asa

    2015-02-01

    Osteoporosis is a disease known to promote bone fragility but the effect on the mechanical properties of bone material, which is independent of geometric effects, is particularly unclear. To address this problem, micro-beams of osteoporotic bone were prepared using focused ion beam (FIB) microscopy and mechanically tested in compression using an atomic force microscope (AFM) while observing using in situ electron microscopy. This experimental approach was shown to be effective at measuring the subtle changes in the mechanical properties of bone material required to evaluate the effects of osteoporosis. Osteoporotic bone material was found to have lower elastic modulus and increased strain to failure when compared to healthy bone material, while the strength of osteoporotic and healthy bone was similar. A mechanism is suggested based on these results and previous literature that indicates degradation of the organic material in osteoporosis bone is responsible for resultant mechanical properties.

  9. [Arthroscopic reconstruction of anterior cruciate ligament with press-fit technique].

    PubMed

    Halder, A M

    2010-08-01

    Problems related to the use of interference screws for fixation of bone-patellar tendon-bone grafts for anterior cruciate ligament (ACL) replacement have led to increasing interest in press-fit techniques. Most of the described techniques use press-fit fixation on either the femoral or tibial side. Therefore an arthroscopic technique was developed which achieves bone-patellar tendon-bone graft fixation by press-fit on both sides without the need for supplemental fixation material. The first consecutive 40 patients were examined clinically with a KT-1000 arthrometer and radiologically after a mean of 28.7 months (range 20-40 months) postoperatively. The mean difference in side-to-side laxity was 1.3 mm (SD 2.2 mm) and the results according to the International Knee Documentation Committee (IKDC) score were as follows: 7 A, 28 B, 5 C, 0 D. The presented press-fit technique avoids all complications related to the use of interference screws. It achieves primary stable fixation of the bone-patellar tendon-bone graft thereby allowing early functional rehabilitation. However, fixation strength depends on bone quality and the arthroscopic procedure is demanding. The results showed reliable stabilization of the operated knees.

  10. Apical and marginal bone alterations around implants in maxillary sinus augmentation grafted with autogenous bone or bovine bone material and simultaneous or delayed dental implant positioning.

    PubMed

    Sbordone, Ludovico; Levin, Liran; Guidetti, Franco; Sbordone, Carolina; Glikman, Ari; Schwartz-Arad, Devorah

    2011-05-01

    A re-pneumatization phenomenon was recorded in sinuses grafted with different materials. The specific aims of this paper were to assess the dental implant survival rate and the behavior of marginal and apical bone remodeling around dental implants placed following sinus augmentation. A retrospective study was conducted on consecutive patients treated in two surgical centers. Different surgical techniques were adopted for sinus augmentation: simultaneous or delayed dental implant insertion with bovine bone-material augmentation or autologous bone grafting (chin and iliac crest). Survival rates were recorded for the overall number of implants (patients of group A). Apical and marginal bone levels (ABL and MBL, respectively) were radiographically measured, and statistical analysis was performed in implants of a subgroup of patients (group B). A total of 282 dental implants were positioned. Recorded cumulative survival rates (CSRs) were 95.6% and 100% for autogenous and bovine bone material, respectively, while CSRs at 2-year follow-up for immediate and delayed procedures were 99.3% and 96.5%. For the subgroup B, 57 sinus augmentation procedures were performed in 39 patients, with the positioning of 154 implants. Generally, the apical- and marginal-bone resorption of the bovine bone-material group was less than that of the autogenous group. The differences between the ABL values of the bovine bone-material and iliac-crest groups were statistically significant at 1 year, whereas this significance disappeared at the 2-year follow-up; tests showed that a statistical difference was recorded in the bovine bone-material group between the 1- and 2-year follow-ups. With regard to MBL comparisons between simultaneous and delayed implantation, the differences maintained their significance at the 2-year follow-up also. Differences regarding apical bone alteration between autogenous bone from the iliac crest and bovine bone material at the 1- and 2-year follow-ups, as well as in the bovine bone-material group between the 1- and 2-year follow-ups, attested to slower but more prolonged physiologic bone remodeling in the bovine-graft-material group than in the autogenous-bone group. The MBL analysis showed that remodeling in the delayed implant group demonstrated a greater resorption in the cervical portion than was seen in the simultaneous implant group. © 2010 John Wiley & Sons A/S.

  11. Hard tissue regeneration using bone substitutes: an update on innovations in materials

    PubMed Central

    Sarkar, Swapan Kumar

    2015-01-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658

  12. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    PubMed

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  13. Guiding bone formation in a critical-sized defect and assessments.

    PubMed

    Jannetty, Joseph; Kolb, Eric; Boxberger, John; Deslauriers, Richard; Ganey, Timothy

    2010-11-01

    Development of alternatives to autologous bone has been served by many hypotheses and developments. Favorable properties of synthetic materials used currently in bone grafting support tissue differentiation without shielding capacity for integrated modeling. Ideally, new materials provide tissue compatibility and minimize patient morbidity and are attractive because of potential for in situ delivery, isothermal polymerization, porous structure, and nontoxic chemistry. For application in cranial bone, ability for materials to be laid adjacent to brain and offer postsurgical protection without neural risk is a critical asset. Kryptonite Bone Cement (KBC) meets the property criteria for cranial bone repair with regard to adhesive, conductive, and biologic transparency and US Food and Drug Administration approval for cranial bone void repair. To better delineate the morphology effective in cranial bone repair, a comparison was made between KBC and BoneSource, another material approved for the same indication. After Institutional Animal Care and Use Committee approval, the study assessed 24 rabbits, each with 2 separate cranial implants, to evaluate integration and absorption of the biomaterial at defined time points of 12, 18, 24, and 36 weeks. The 36-week assessment demonstrated near-complete resorption/integration of the BoneSource graft material. Bone was present within the biomaterial as well as independent of contact. The KBC was similarly integrated throughout the mass of the material, and new bone was in contact with the grafting material and also seen as separate islands of new bone. The bone demonstrated lamellar bone architecture with clear trabecular morphology. At higher magnification, the bone architecture can be clearly delineated, and comparison between the graft fillers is not obvious relative to the bone that has formed. Despite microscopic similarities, the most striking difference was maintenance of scaffold anatomy during bone regeneration. Kryptonite Bone Cement meets the criteria described in the introduction; properties of biologic transparency, osteoconductivity, and ergonomic utility offer other potential uses in bone repair. Key tenets of bone tissue regeneration observed in this analysis included adequate cell differentiation and tissue support. Bone that formed demonstrated lamellar rather than woven bone to suggest response to loading strain rather than merely biochemical precipitation. Over the 36-week study, the graft showed progressive bioabsorbable potential with calibrated replacement.

  14. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    PubMed Central

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-01-01

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance. PMID:29039749

  15. Bionic Design, Materials and Performance of Bone Tissue Scaffolds.

    PubMed

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-10-17

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  16. Obtaining of granular fertilizers based on ashes from combustion of waste residues and ground bones using phosphorous solubilization by bacteria Bacillus megaterium.

    PubMed

    Rolewicz, M; Rusek, P; Borowik, K

    2018-06-15

    The article presents research results on obtaining phosphorus granulated fertilizers on the basis of microbiologically activated sewage sludge ashes, ground bones and dried blood from meat industry. Granulation tests were carried out using a laboratory pan granulator as well as on an experimental pilot plant. The aim of the studies was to select the proper composition of the mixture of raw materials and binding agents to obtain granulated fertilizers from waste materials such as MSSA and MBM and bacteria lyophilisate. Obtained fertilizer samples were subjected to physical tests (granulation tests etc.) and quality assessment. The tests confirmed that it was possible to produce granulated phosphate fertilizers using the Bacillus megaterium for solubilization of phosphorus in a simple process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results

    PubMed Central

    Elschner, Cindy; Korn, Paula; Hauptstock, Maria; Schulz, Matthias C.; Range, Ursula; Jünger, Diana; Scheler, Ulrich

    2017-01-01

    One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of non-destructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume (biasHisto−MRI:Bone volume=2.40 %, p<0.005) and a clearly significant deviation for the remaining defect width (biasHisto−MRI:Defect width=−6.73 %, p≪0.005). But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally. PMID:28666026

  18. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality.

    PubMed

    Paschalis, E P; Gamsjaeger, S; Hassler, N; Fahrleitner-Pammer, A; Dobnig, H; Stepan, J J; Pavo, I; Eriksen, E F; Klaushofer, K

    2017-02-01

    Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Histomorphometric Study of New Bone Formation Comparing Defect Healing with Three Bone Grafting Materials: The Effect of Osteoporosis on Graft Consolidation.

    PubMed

    Zhang, Qiao; Jing, Dai; Zhang, Yufeng; Miron, Richard J

    Bone grafting materials are frequently utilized in oral surgery and periodontology to fill bone defects and augment lost or missing bone. The purpose of this study was to compare new bone formation in bone defects created in both normal and osteoporotic animals loaded with three types of bone grafts from different origins. Forty-eight female Wistar rats were equally divided into control normal and ovariectomized animals. Bilateral 2.5-mm femur defects were created and filled with an equal weight of (1) natural bone mineral (NBM, BioOss) of bovine origin, (2) demineralized freeze-dried bone allograft (DFDBA, LifeNet), or (3) biphasic calcium phosphate (BCP, Vivoss). Following 3 and 6 weeks of healing, hematoxylin and eosin and TRAP staining was performed to determine new bone formation, material degradation, and osteoclast activity. All bone substitutes demonstrated osteoconductive potential at 3 and 6 weeks with higher osteoclast numbers observed in all ovariectomized animals. NBM displayed continual new bone formation with little to no sign of particle degradation, even in osteoporotic animals. DFDBA particles showed similar levels of new bone formation but rapid particle degradation rates with lower levels of mineralized tissue. BCP bone grafts demonstrated significantly higher new bone formation when compared with both NBM and DFDBA particles; however, the material was associated with higher osteoclast activity and particle degradation. Interestingly, in osteoporotic animals, BCP displayed synergistically and markedly more rapid rates of particle degradation. Recent modifications to synthetically fabricated materials were shown to be equally or more osteopromotive than NBM and DFDBA. However, the current BCP utilized demonstrated much faster resorption properties in osteoporotic animals associated with a decrease in total bone volume when compared with the slowly/nonresorbing NBM. The results from this study point to the clinical relevance of minimizing fast-resorbing bone grafting materials in osteoporotic phenotypes due to the higher osteoclastic activity and greater material resorption.

  20. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    PubMed

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and augmentation procedures.

  1. Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material.

    PubMed

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Krüger, Jörg; Berger, Georg

    2010-08-01

    Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 Jcm(-2). In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Whole-body vibration improves fracture healing and bone quality in rats with ovariectomy-induced osteoporosis.

    PubMed

    Butezloff, Mariana Maloste; Zamarioli, Ariane; Leoni, Graziela Bianchi; Sousa-Neto, Manoel Damião; Volpon, Jose Batista

    2015-11-01

    To investigate the effect of vibration therapy on the bone callus of fractured femurs and the bone quality of intact femurs in ovariectomized rats. Fifty-six rats aged seven weeks were divided into four groups: control with femoral fracture (CON, n=14), ovariectomized with femoral fracture (OVX, n=14), control with femoral fracture plus vibration therapy (CON+VT, n=14), and ovariectomized with femoral fracture plus vibration therapy (OVX+VT, n=14). Three months after ovariectomy or sham surgery, a complete fracture was produced at the femoral mid-diaphysis and stabilized with a 1-mm-diameter intramedullary Kirschner wire. X-rays confirmed the fracture alignment and fixation. Three days later, the VT groups underwent vibration therapy (1 mm, 60 Hz for 20 minutes, three times per week for 14 or 28 days). The bone and callus quality were assessed by densitometry, three-dimensional microstructure, and mechanical test. Ovariectomized rats exhibited a substantial loss of bone mass and severe impairment in bone microarchitecture, both in the non-fractured femur and the bone callus. Whole-body vibration therapy exerted an important role in ameliorating the bone and fracture callus parameters in the osteoporotic bone. Vibration therapy improved bone quality and the quality of the fracture bone callus in ovariectomized rats.

  3. Quantitative analysis of imprint shape and its relation to mechanical properties measured by microindentation in bone.

    PubMed

    Schwiedrzik, J J; Zysset, P K

    2015-01-21

    Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Random field assessment of nanoscopic inhomogeneity of bone

    PubMed Central

    Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu

    2010-01-01

    Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to present the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. PMID:20817128

  5. Brief Report: HIV Infection Is Associated With Worse Bone Material Properties, Independently of Bone Mineral Density.

    PubMed

    Güerri-Fernández, Robert; Molina, Daniel; Villar-García, Judit; Prieto-Alhambra, Daniel; Mellibovsky, Leonardo; Nogués, Xavier; González-Mena, Alicia; Guelar, Ana; Trenchs-Rodríguez, Marta; Herrera-Fernández, Sabina; Horcajada, Juan Pablo; Díez-Pérez, Adolfo; Knobel, Hernando

    2016-07-01

    Low bone mineral density (BMD) in HIV-infected individuals has been documented in an increasing number of studies. However, it is not clear whether it is the infection itself or the treatment that causes bone impairment. Microindentation measures bone material strength (Bone Material Strength index) directly. We recruited 85 patients, 50 infected with HIV and 35 controls. Median Bone Material Strength index was 84.5 (interquartile range 83-87) in HIV-infected patients and 90 (88.5-93) in controls (P < 0.001). No significant differences in BMD between cases and controls at any of the sites examined (total hip, femoral neck, and lumbar spine). HIV infection is associated with bone damage, independently of BMD.

  6. Biomimetic materials for controlling bone cell responses.

    PubMed

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  7. Effectiveness of Reirradiation for Painful Bone Metastases: A Systematic Review and Meta-Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huisman, Merel, E-mail: m.huisman-7@umcutrecht.nl; Bosch, Maurice A.A.J. van den; Wijlemans, Joost W.

    2012-09-01

    Purpose: Reirradiation of painful bone metastases in nonresponders or patients with recurrent pain after initial response is performed in up to 42% of patients initially treated with radiotherapy. Literature on the effect of reirradiation for pain control in those patients is scarce. In this systematic review and meta-analysis, we quantify the effectiveness of reirradiation for achieving pain control in patients with painful bone metastases. Methods and Materials: A free text search was performed to identify eligible studies using the MEDLINE, EMBASE, and the Cochrane Collaboration library electronic databases. After study selection and quality assessment, a pooled estimate was calculated formore » overall pain response for reirradiation of metastatic bone pain. Results: Our literature search identified 707 titles, of which 10 articles were selected for systematic review and seven entered the meta-analysis. Overall study quality was mediocre. Of the 2,694 patients initially treated for metastatic bone pain, 527 (20%) patients underwent reirradiation. Overall, a pain response after reirradiation was achieved in 58% of patients (pooled overall response rate 0.58, 95% confidence interval = 0.49-0.67). There was a substantial between-study heterogeneity (I{sup 2} = 63.3%, p = 0.01) because of clinical and methodological differences between studies. Conclusions: Reirradiation of painful bone metastases is effective in terms of pain relief for a small majority of patients; approximately 40% of patients do not benefit from reirradiation. Although the validity of results is limited, this meta-analysis provides a comprehensive overview and the most quantitative estimate of reirradiation effectiveness to date.« less

  8. A New Biphasic Dicalcium Silicate Bone Cement Implant.

    PubMed

    Zuleta, Fausto; Murciano, Angel; Gehrke, Sergio A; Maté-Sánchez de Val, José E; Calvo-Guirado, José L; De Aza, Piedad N

    2017-07-06

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C₂S) cement. Biphasic α´ L + β-C₂S ss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C₂S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement's surface after soaking in SBF. The cell attachment test showed that α´ L + β-C₂S ss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  9. [Technology of cementless hip endoprosthetics].

    PubMed

    Ungethüm, M; Blömer, W

    1987-06-01

    The success achieved with non-cemented hip arthroplasty depends mainly on the stability of the fixation, the quality of the stabilizing bone being just as important as favourable biomechanical conditions. The results of the intensive research and development with respect to the particular features of a non-cemented hip endoprosthesis can be divided into the following basic categories: Biomechanical aspects with special reference to bone related to the design of the prosthesis; material characteristics, such as fatigue strength, tribology, corrosion resistance, and biocompatibility; and development of new materials and coatings to permit direct bonding of implant and bone. With regard to the stem of hip prostheses, the different design parameters of various types are examined to determine their typical design characteristics, such as bearing surface of the collar, geometry of cross section, anatomically adapted shaping, and surface of the implant forming the contact with the bone. The latter can be divided into macroprofiles and macro- and micro-porous coated surfaces. On the other hand, the methods of cementless fixation of acetabular cups can be primarily divided into conical and spherical screw fixation and pegged fixation with additional macroprofiles of porous surfaces. In a separate study of the biomechanical aspects of screwed sockets, the special importance of socket shape and thread geometry are presented with reference to primary stability and long-term fixation of prostheses.

  10. A New Biphasic Dicalcium Silicate Bone Cement Implant

    PubMed Central

    Murciano, Angel; Maté-Sánchez de Val, José E.

    2017-01-01

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S) cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration. PMID:28773119

  11. Effects of mechanical repetitive load on bone quality around implants in rat maxillae.

    PubMed

    Uto, Yusuke; Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi

    2017-01-01

    Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones.

  12. 3D bioactive composite scaffolds for bone tissue engineering.

    PubMed

    Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao

    2018-09-01

    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.

  13. Women with previous stress fractures show reduced bone material strength

    PubMed Central

    Duarte Sosa, Daysi; Fink Eriksen, Erik

    2016-01-01

    Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443

  14. Applications of Metals for Bone Regeneration.

    PubMed

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine; Barbeck, Mike

    2018-03-12

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum . In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  15. Applications of Metals for Bone Regeneration

    PubMed Central

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine

    2018-01-01

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration. PMID:29534546

  16. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  17. Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via cross-flow nanofiltrated amino acids.

    PubMed

    Boudin, Mathieu; Boeckx, Pascal; Vandenabeele, Peter; Van Strydonck, Mark

    2013-09-30

    Radiocarbon dating and stable isotope analyses of bone collagen, wool, hair and silk contaminated with extraneous carbon (e.g. humic substances) does not yield reliable results if these materials are pre-treated using conventional methods. A cross-flow nanofiltration method was developed that can be applied to various protein materials like collagen, hair, silk, wool and leather, and should be able to remove low-molecular and high-molecular weight contaminants. To avoid extraneous carbon contamination via the filter a ceramic filter (molecular weight cut-off of 200 Da) was used. The amino acids, released by hot acid hydrolysis of the protein material, were collected in the permeate and contaminants in the retentate (>200 Da). (14)C-dating results for various contaminated archaeological samples were compared for bulk material (pre-treated with the conventional methods) and for cross-flow nanofiltrated amino acids (permeate) originating from the same samples. Contamination and quality control of (14)C dates of bulk and permeate samples were obtained by measuring C:N ratios, fluorescence spectra, and δ(13)C and δ(15)N values of the samples. Cross-flow nanofiltration decreases the C:N ratio which means that contaminants have been removed. Cross-flow nanofiltration clearly improved sample quality and (14)C results. It is a quick and non-labor-intensive technique and can easily be implemented in any (14)C and stable isotope laboratory for routine sample pre-treatment analyses. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Bone strength in pure bending: bearing of geometric and material properties.

    PubMed

    Winter, Werner

    2008-01-01

    Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.

  19. Feedstock for ruminant, non-ruminant and aquatic fish in Malaysia-A review

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Muzarpar, Syafiq; Baba, I.; Sunar, N. M.; Wahab, R. Abdul

    2017-09-01

    Large demand of feedstock in Malaysia initiated the farmers to accelerate animal growth by improving quality of livestock's. However, quality increase will effect to the cost increment as well. Therefore, main objective of this study is to review various material and methods which acceptable in Malaysia in order to teach the farmer in selecting appropriate material for animal feed. Animal feed for ruminant, non-ruminant and aquatic fish has big issues in Halal animal feed. It caused by sources of existing animal feed from non-halal material such as blood meal and pig bone. There are various sources of halal animal feed sources such as from plant such as napier, PKC, banana tree and corn leaf as well as from waste material such as waste toufu, waste coconut, soy meal, coconut meal and sagoo. Therefore, the farmer able to select the appropriate material for own animal feed to reduce cost and fulfill the animal feed requirement regarding to protein and nutrient need.

  20. Preventing Cartilage Degeneration in Warfighters by Elucidating Novel Mechanisms Regulating Osteocyte-Mediated Perilacunar Bone Remodeling

    DTIC Science & Technology

    2015-10-01

    quality, and cartilage health in post-traumatic osteoarthritis (PTOA). Few molecular details are known about the regulation of PLR or bone quality...degeneration. 15. SUBJECT TERMS Osteocyte, remodeling, bone, bone quality, post-traumatic osteoarthritis , TGF-beta, mechanical load, matrix...joint health, and their contribution to post-traumatic osteoarthritis (PTOA). Osteocytes sense and respond to mechanical loads, and they are also

  1. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and therapeutics on bone quality will be discussed.

  2. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  3. Production, Quality Control and Biological Evaluation of 166Ho-PDTMP as a Possible Bone Palliation Agent

    PubMed Central

    Zolghadri, Samaneh; Jalilian, Amir Reza; Naseri, Zohreh; Yousefnia, Hassan; Bahrami-Samani, Ali; Ghannadi-Maragheh, Mohammad; Afarideh, Hossein

    2013-01-01

    Objective(s): In this study, 166Ho-1,2-propylene di-amino tetra(methy1enephosphonicAcid) (166Ho-PDTMP) complex was prepared as a bone palliation agent. Materials and Methods: The complex was successfully prepared using an in-house synthesized EDTMP ligand and 166HoCl3. Ho-166 chloride was obtained by thermal neutron irradiation (1 × 1013 n.cm-2.s-1) of natural Ho(NO3)3 samples followed by radiolabeling and stability studies. Biodistribution in wild type rats was also peformed. Results: The complex was prepared with the specific activity of 278 GBq/mg and high radiochemical purity (>99%, checked by ITLC). 166Ho-PDTMP complex was stabilized in the final preparation and in the presence of human serum (>90%) up to 72 hr. The biodistribution of 166Ho-PDTMP in wild-type rats demonstrated significant bone uptake was up to 48 hr compared to 166HoCl3. Conclusion: The produced 166Ho-PDTMP properties suggest a possible new bone palliative therapeutic to overcome the metastatic bone pains. PMID:23826495

  4. Fabric dependence of wave propagation in anisotropic porous media

    PubMed Central

    Cowin, Stephen C.; Cardoso, Luis

    2012-01-01

    Current diagnosis of bone loss and osteoporosis is based on the measurement of the Bone Mineral Density (BMD) or the apparent mass density. Unfortunately, in most clinical ultrasound densitometers: 1) measurements are often performed in a single anatomical direction, 2) only the first wave arriving to the ultrasound probe is characterized, and 3) the analysis of bone status is based on empirical relationships between measurable quantities such as Speed of Sound (SOS) and Broadband Ultrasound Attenuation (BUA) and the density of the porous medium. However, the existence of a second wave in cancellous bone has been reported, which is an unequivocal signature of poroelastic media, as predicted by Biot’s poroelastic wave propagation theory. In this paper the governing equations for wave motion in the linear theory of anisotropic poroelastic materials are developed and extended to include the dependence of the constitutive relations upon fabric - a quantitative stereological measure of the degree of structural anisotropy in the pore architecture of a porous medium. This fabric-dependent anisotropic poroelastic approach is a theoretical framework to describe the microarchitectural-dependent relationship between measurable wave properties and the elastic constants of trabecular bone, and thus represents an alternative for bone quality assessment beyond BMD alone. PMID:20461539

  5. Fabrication of oriented hydroxyapatite film by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami

    2017-08-01

    Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.

  6. Determination of replicate composite bone material properties using modal analysis.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modification of the structure and composition of Ca10(PO4)6(OH)2 ceramic coatings by changing the deposition conditions in O2 and Ar

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Zykova, A.; Safonov, V.; Kolesnikov, D.; Goncharov, I.; Yakovin, S.; Georgieva, V.

    2014-05-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material considered to be used to form structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials and coatings are widely applied in medicine and dentistry because of their ability to increase the tissue response to the implant surface and promote bone ingrowth and osseoconduction processes. The deposition conditions affect considerably the structure and bio-functionality of the HAp coatings. We focused our research on developing deposition methods allowing a precise control of the structure and stoichiometric composition of HAp thin films. We found that the use of O2 as a reactive gas improves the quality of the sputtered hydroxyapatite coatings by resulting in the formation of films of better stoichiometry with a fine crystalline structure.

  8. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications.

    PubMed

    Lee, Jung Heon; Yi, Gyu Sung; Lee, Jin Woong; Kim, Deug Joong

    2017-12-01

    The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; 69.9 m 2 /g), with high surface roughness (10-point average roughness, 4.47 µm) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of 0.5 m 2 /g. Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcine-derived grafting material possesses most of the key physiochemical characteristics required for its application as a highly efficient xenograft material for bone replacement.

  9. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    PubMed

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  10. Development of candidate reference materials for the measurement of lead in bone

    PubMed Central

    Hetter, Katherine M.; Bellis, David J.; Geraghty, Ciaran; Todd, Andrew C.; Parsons, Patrick J.

    2010-01-01

    The production of modest quantities of candidate bone lead (Pb) reference materials is described, and an optimized production procedure is presented. The reference materials were developed to enable an assessment of the interlaboratory agreement of laboratories measuring Pb in bone; method validation; and for calibration of solid sampling techniques such as laser ablation ICP-MS. Long bones obtained from Pb-dosed and undosed animals were selected to produce four different pools of a candidate powdered bone reference material. The Pb concentrations of these pools reflect both environmental and occupational exposure levels in humans. The animal bones were harvested post mortem, cleaned, defatted, and broken into pieces using the brittle fracture technique at liquid nitrogen temperature. The bone pieces were then ground in a knife mill to produce fragments of 2-mm size. These were further ground in an ultra-centrifugal mill, resulting in finely powdered bone material that was homogenized and then sampled-scooped into vials. Testing for contamination and homogeneity was performed via instrumental methods of analysis. PMID:18421443

  11. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review

    PubMed Central

    Liu, Chen; Ren, Zheng; Xu, Yongdong; Pang, Song; Zhao, Xinbing

    2018-01-01

    Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg) alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed. PMID:29725492

  12. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method.

    PubMed

    Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj; Ghai, Aman

    2016-09-01

    Orthopaedic surgery involves drilling of bones to get them fixed at their original position. The drilling process used in orthopaedic surgery is most likely to the mechanical drilling process and there is all likelihood that it may harm the already damaged bone, the surrounding bone tissue and nerves, and the peril is not limited at that. It is very much feared that the recovery of that part may be impeded so that it may not be able to sustain life long. To achieve sustainable orthopaedic surgery, a surgeon must try to control the drilling damage at the time of bone drilling. The area around the holes decides the life of bone joint and so, the contiguous area of drilled hole must be intact and retain its properties even after drilling. This study mainly focuses on optimization of drilling parameters like rotational speed, feed rate and the type of tool at three levels each used by Taguchi optimization for surface roughness and material removal rate. The confirmation experiments were also carried out and results found with the confidence interval. Scanning electrode microscopy (SEM) images assisted in getting the micro level information of bone damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model.

    PubMed

    Lei, Pengfei; Sun, Rongxin; Wang, Long; Zhou, Jialin; Wan, Lifei; Zhou, Tianjian; Hu, Yihe

    2015-01-01

    Deproteinization is an indispensable process for the elimination of antigenicity in xenograft bones. However, the hydrogen peroxide (H2O2) deproteinized xenograft, which is commonly used to repair bone defect, exhibits limited osteoinduction activity. The present study was designed to develop a new method for deproteinization and compare the osteogenic capacities of new pepsin deproteinized xenograft bones with those of conventional H2O2 deproteinized ones. Bones were deproteinized in H2O2 or pepsin for 8 hours. The morphologies were compared by HE staining. The content of protein and collagen I were measured by the Kjeldahl method and HPLC-MS, respectively. The physical properties were evaluated by SEM and mechanical tests. For in vivo study, X-ray, micro-CT and HE staining were employed to monitor the healing processes of radius defects in rabbit models transplanted with different graft materials. Compared with H2O2 deproteinized bones, no distinct morphological and physical changes were observed. However, pepsin deproteinized bones showed a lower protein content, and a higher collagen content were preserved. In vivo studies showed that pepsin deproteinized bones exhibited better osteogenic performance than H2O2 deproteinized bones, moreover, the quantity and quality of the newly formed bones were improved as indicated by micro-CT analysis. From the results of histological examination, the newly formed bones in the pepsin group were mature bones. Pepsin deproteinized xenograft bones show advantages over conventional H2O2 deproteinized bones with respect to osteogenic capacity; this new method may hold potential clinical value in the development of new biomaterials for bone grafting.

  15. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model

    PubMed Central

    Lei, Pengfei; Sun, Rongxin; Wang, Long; Zhou, Jialin; Wan, Lifei; Zhou, Tianjian; Hu, Yihe

    2015-01-01

    Background and Objectives Deproteinization is an indispensable process for the elimination of antigenicity in xenograft bones. However, the hydrogen peroxide (H2O2) deproteinized xenograft, which is commonly used to repair bone defect, exhibits limited osteoinduction activity. The present study was designed to develop a new method for deproteinization and compare the osteogenic capacities of new pepsin deproteinized xenograft bones with those of conventional H2O2 deproteinized ones. Methods Bones were deproteinized in H2O2 or pepsin for 8 hours. The morphologies were compared by HE staining. The content of protein and collagen I were measured by the Kjeldahl method and HPLC-MS, respectively. The physical properties were evaluated by SEM and mechanical tests. For in vivo study, X-ray, micro-CT and HE staining were employed to monitor the healing processes of radius defects in rabbit models transplanted with different graft materials. Results Compared with H2O2 deproteinized bones, no distinct morphological and physical changes were observed. However, pepsin deproteinized bones showed a lower protein content, and a higher collagen content were preserved. In vivo studies showed that pepsin deproteinized bones exhibited better osteogenic performance than H2O2 deproteinized bones, moreover, the quantity and quality of the newly formed bones were improved as indicated by micro-CT analysis. From the results of histological examination, the newly formed bones in the pepsin group were mature bones. Conclusions Pepsin deproteinized xenograft bones show advantages over conventional H2O2 deproteinized bones with respect to osteogenic capacity; this new method may hold potential clinical value in the development of new biomaterials for bone grafting. PMID:26719896

  16. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    NASA Astrophysics Data System (ADS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Miller, Mark; Fedder, Gary K.

    2009-08-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa.

  17. The influence of local bone quality on fracture pattern in proximal humerus fractures.

    PubMed

    Mazzucchelli, Ruben A; Jenny, Katharina; Zdravkovic, Vilijam; Erhardt, Johannes B; Jost, Bernhard; Spross, Christian

    2018-02-01

    Bone mineral density and fracture morphology are widely discussed and relevant factors when considering the different treatment options for proximal humerus fractures. It was the aim of this study to investigate the influence of local bone quality on fracture patterns of the Neer classification as well as on fracture impaction angle in these injuries. All acute, isolated and non-pathological proximal humerus fractures admitted to our emergency department were included. The fractures were classified according to Neer and the humeral head impaction angle was measured. Local bone quality was assessed using the Deltoid Tuberosity Index (DTI). The distribution between DTI and fracture pattern was analysed. 191 proximal humerus fractures were included (61 men, mean age 59 years; 130 women, mean age 69.5). 77 fractures (40%) were classified as one-part, 72 (38%) were two-part, 24 (13%) were three- and four-part and 18 (9%) were fracture dislocations. 30 fractures (16%) were varus impacted, whereas 45 fractures (24%) were classified as valgus impacted. The mean DTI was 1.48. Valgus impaction significantly correlated with good bone quality (DTI ≥ 1.4; p = 0.047) whereas no such statistical significance was found for the Neer fracture types. We found that valgus impaction significantly depended on good bone quality. However, neither varus impaction nor any of the Neer fracture types correlated with bone quality. We conclude that the better bone quality of valgus impacted fractures may be a reason for their historically benign amenability to ORIF. On the other hand, good local bone quality does not prevent fracture comminution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    PubMed

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p < 0.001). Dual-energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p < 0.001). All dual-energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface. These findings support the use of dual-energy CT as a solid imaging base for clinical decision-making and the use of full-titanium or ceramic prostheses to allow for better CT visualization of the bone-prosthesis interface.

  19. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender.

    PubMed

    Schwartz, Z; Somers, A; Mellonig, J T; Carnes, D L; Dean, D D; Cochran, D L; Boyan, B D

    1998-04-01

    Demineralized freeze-dried bone allografts (DFDBA) have been used extensively in periodontal therapy. DFDBA is used because it contains bone morphogenetic protein (BMP), which induces new bone formation during the healing process. Most commercial bone banks do not verify the presence or activity of BMP in DFDBA nor the ability of DFDBA to induce new bone. Recently, we showed that different bone bank preparations of DFDBA, even from the same bank, varied considerably in their ability to induce new bone, suggesting inherent differences in the quality of the material. Therefore, we examined whether donor age or gender contributed to the variability seen with these preparations. Twenty-seven batches of DFDBA from different donors were donated by one bone bank which had been shown previously to supply DFDBA that was consistently able to induce new bone formation. Each batch was implanted bilaterally in the thigh muscle of nude mice. After 56 days, the implants were excised and examined by light microscopy and histomorphometry. Seventy percent of the preparations tested induced new bone formation. Most of these preparations produced ossicles containing cortical bone surrounding bone marrow-like tissue. The ability to induce bone appears to be age-dependent, with DFDBA from older donors being less likely to have strong bone-inducing activity. By contrast, no difference in ability to induce new bone was noticed between male or female donors. The results of this study confirm that commercial preparations of DFDBA differ in their ability to induce new bone formation. In fact, some of the batches had no activity at all. The ability of DFDBA to induce new bone formation is suggested to be age-dependent, but not gender-dependent by our study. These results indicate that commercial bone banks need to verify the ability of DFDBA to induce new bone formation and should reconsider the advisability of using bone from older donors.

  20. Detection of changes in bone quality of osteoporotic model induced by sciatic nerve resection by using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishimaru, Yasumitsu; Oshima, Yusuke; Imai, Yuuki; Iimura, Tadahiro; Takanezawa, Sota; Hino, Kazunori; Miura, Hiromasa

    2018-02-01

    To detect the bone quality loss in osteoporosis, we performed Raman spectroscopic analysis of sciatic nerve resection (NX) mice. Eight months after surgery, lower limbs were collected from the mice and fixed with 70% ethanol. Raman spectra of anterior cortical surface of the proximal tibia at 5 points in each bone were measured by RENISHAW inVia Raman Microscope. Excitation wave length was 785 nm. We also performed DXA and micro CT measurement to confirm the bone mineral density and bone microstructure in the osteoporotic model induced by sciatic nerve resection. In the result of Raman spectroscopy, we detected changes of Raman peak intensity ratio in carbonate/phosphate, mineral/combined proline and hydroxyproline and mineral/phenylalanine. In addition, in the result of micro CT, we found significant changes in VOX BV/TV, Trabecular number, thickness, cancellous bone mineral density, cortical thickness and cortical bone mineral density. The results suggest that not only the bone mineral density but also bone quality reduced in the NX mice. We conclude that Raman spectroscopy is a useful for bone quality assessment as a complementary technique for conventional diagnostics.

  1. Quality of online pediatric orthopaedic education materials.

    PubMed

    Feghhi, Daniel P; Komlos, Daniel; Agarwal, Nitin; Sabharwal, Sanjeev

    2014-12-03

    Increased availability of medical information on the Internet empowers patients to look up answers to questions about their medical conditions. However, the quality of medical information available on the Internet is highly variable. Various tools for the assessment of online medical information have been developed and used to assess the quality and accuracy of medical web sites. In this study we used the LIDA tool (Minervation) to assess the quality of pediatric patient information on the AAOS (American Academy of Orthopaedic Surgeons) and POSNA (Pediatric Orthopaedic Society of North America) web sites. The accessibility, usability, and reliability of online medical information in the "Children" section of the AAOS web site and on the POSNA web site were assessed with use of the LIDA tool. Flesch-Kincaid (FK) and Flesch Reading Ease (FRE) values were also calculated to assess the readability of the pediatric education material. Patient education materials on each web site scored in the moderate range in assessments of accessibility, usability, and reliability. FK and FRE values indicated that the readability of each web site remained at a somewhat higher (more difficult) level than the recommended benchmark. The quality and readability of online information for children on the AAOS and POSNA web sites are acceptable but can be improved further. The quality of online pediatric orthopaedic patient education materials may affect communication with patients and their caregivers, and further investigation and modification of quality are needed. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  2. Strontium Ranelate Reduces the Fracture Incidence in a Growing Mouse Model of Osteogenesis Imperfecta.

    PubMed

    Shi, Changgui; Hu, Bo; Guo, Lei; Cao, Peng; Tian, Ye; Ma, Jun; Chen, Yuanyuan; Wu, Huiqiao; Hu, Jinquan; Deng, Lianfu; Zhang, Ying; Yuan, Wen

    2016-05-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  3. Comparison of conventional and synchrotron-radiation-based microtomography of bone around dental implants

    NASA Astrophysics Data System (ADS)

    Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte

    2004-10-01

    This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants

  4. Random field assessment of nanoscopic inhomogeneity of bone.

    PubMed

    Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu

    2010-12-01

    Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Time of flight secondary ion mass spectrometry of bone-Impact of sample preparation and measurement conditions.

    PubMed

    Henss, Anja; Hild, Anne; Rohnke, Marcus; Wenisch, Sabine; Janek, Juergen

    2015-06-07

    Time of flight secondary ion mass spectrometry (ToF-SIMS) enables the simultaneous detection of organic and inorganic ions and fragments with high mass and spatial resolution. Due to recent technical developments, ToF-SIMS has been increasingly applied in the life sciences where sample preparation plays an eminent role for the quality of the analytical results. This paper focusses on sample preparation of bone tissue and its impact on ToF-SIMS analysis. The analysis of bone is important for the understanding of bone diseases and the development of replacement materials and new drugs for the cure of diseased bone. The main purpose of this paper is to find out which preparation process is best suited for ToF-SIMS analysis of bone tissue in order to obtain reliable and reproducible analytical results. The influence of the embedding process on the different components of bone is evaluated using principal component analysis. It is shown that epoxy resin as well as methacrylate based plastics (Epon and Technovit) as embedding materials do not infiltrate the mineralized tissue and that cut sections are better suited for the ToF-SIMS analysis than ground sections. In case of ground samples, a resin layer is smeared over the sample surface due to the polishing step and overlap of peaks is found. Beside some signals of fatty acids in the negative ion mode, the analysis of native, not embedded samples does not provide any advantage. The influence of bismuth bombardment and O2 flooding on the signal intensity of organic and inorganic fragments due to the variation of the ionization probability is additionally discussed. As C60 sputtering has to be applied to remove the smeared resin layer, its effect especially on the organic fragments of the bone is analyzed and described herein.

  6. Mechanical-chemical analyses and sub-chronic systemic toxicity of chemical treated organic bovine bone.

    PubMed

    Lee, Kwang-il; Lee, Jung-soo; Lee, Keun-soo; Jung, Hong-hee; Ahn, Chan-min; Kim, Young-sik; Shim, Young-bock; Jang, Ju-woong

    2015-12-01

    Sequentially chemical-treated bovine bone was not only evaluated by mechanical and chemical analyses but also implanted into the gluteal muscles of rats for 12 weeks to investigate potential local pathological effects and systemic toxicities. The test (chemical treated bone) and control (heat treated bone) materials were compared using scanning electron microscope (SEM), x-ray diffraction pattern, inductively coupled plasma analysis, and bending strength test. In the SEM images, the micro-porous structure of heat-treated bone was changed to sintered ceramic-like structure. The structure of bone mineral from test and control materials was analyzed as100% hydroxyapatite. The ratio of calcium (Ca) to potassium (P), the main inorganic elements, was same even though the Ca and P percentages of the control material was relatively higher than the test material. No death or critical symptoms arose from implantation of the test (chemical treated bone) and control (physiological saline) materials during 12 weeks. The implanted sites were macroscopically examined, with all the groups showing non-irritant results. Our results indicate that chemical processed bovine bone has a better mechanical property than the heat treated bone and the implantation of this material does not produce systemic or pathological toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration

    PubMed Central

    Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki

    2009-01-01

    Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015

  8. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia)

    PubMed Central

    Fujiwara, Saeko; Hamaya, Etsuro; Sato, Masayo; Graham-Clarke, Peita; Flynn, Jennifer A; Burge, Russel

    2014-01-01

    Purpose To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia). Materials and methods Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood–lipid profile; occurrence of adverse events; and change in quality of life or pain). Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis. Results Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies) were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications), but not the hip region (eight publications), a low incidence of vertebral fracture (three publications), decreases in markers of bone turnover (eleven publications), improved hip structural geometry (two publications), improved blood–lipid profiles (five publications), a low incidence of hot flushes, leg cramps, venous thromboembolism, and stroke (12 publications), and improved quality of life and pain relief (one publication). Conclusion Findings support raloxifene for reducing vertebral fracture risk by improving BMD and reducing bone turnover in postmenopausal Japanese women with osteoporosis or osteopenia. Careful consideration of fracture risk and the risk–benefit profile of antiosteoporosis medications is required when managing patients with osteoporosis. PMID:25395843

  9. Correlation between bone quality and microvascular damage in systemic sclerosis patients.

    PubMed

    Ruaro, Barbara; Casabella, Andrea; Paolino, Sabrina; Pizzorni, Carmen; Alessandri, Elisa; Seriolo, Chiara; Botticella, Giulia; Molfetta, Luigi; Odetti, Patrizio; Smith, Vanessa; Cutolo, Maurizio

    2018-05-18

    SSc patients are recognized as presenting an increased risk of altered bone mass. The aim of this study was to assess the bone quality, by trabecular bone score (TBS), in SSc patients in correlation with different levels of microvascular damage, as evaluated by nailfold videocapillaroscopy (NVC), and to compare the results regarding bone quality with RA patients and healthy subjects (CNT). Eighty-four SSc patients, 98 RA patients and 60 CNT, were studied. BMD (g/cm2) of the lumbar spine (L1-L4) was analysed by DXA scan. Lumbar spine bone quality was derived from each spine DXA examination using the TBS analysis. NVC patterns were analysed. A total of 56/84 SSc patients (66%) as well as 78/98 RA patients (80%) showed bone loss at DXA and BMD was found to be significantly lower than in the CNT (P < 0.001). Similarly, lumbar spine TBS was found to be significantly lower in SSc and RA patients than in CNT (P < 0.001). TBS values were found to be lower in SSc with a late NVC pattern, compared with the active or early pattern (late vs active and early pattern, P < 0.001). There was no statistically significant difference in the mean lumbar spine TBS between SSc and RA patients (P = 0.238). The data obtained showed significantly lower bone quality (lower TBS and BMD) in SSc and RA patients compared with CNT. The bone quality seemed lower in SSc patients with more altered microvasculature (late NVC pattern).

  10. Effects of 25-hydroxycholecalciferol supplementation in maternal diets on milk quality and serum bone status markers of sows and bone quality of piglets.

    PubMed

    Zhou, Hui; Chen, Yuling; Zhuo, Yong; Lv, Gang; Lin, Yan; Feng, Bin; Fang, Zhengfeng; Che, Lianqiang; Li, Jian; Xu, Shengyu; Wu, De

    2017-03-01

    Twenty primiparous sows were allocated to two treatments to evaluate the effects of maternal 25-hydroxycholecalciferol (25OHD 3 ) supplementation during gestation and lactation on milk quality and serum bone status markers of sows and bone quality of piglets. Immediately after mating, sows were randomly allotted to one of two diets supplemented with 50 µg/kg 25OHD 3 or basal diets without 25OHD 3 . Blood and milk samples were obtained. At birth and weaning, 10 piglets from each treatment were killed for bone quality analysis. 25OHD 3 -fed sows provided one more piglet at farrowing and 1.17 more piglets at weaning than sows fed basal diets. The contents of solids not-fat, protein, fat or lactose were increased in milk from days 7 and 14 of lactation in 25OHD 3 -supplemented sows and 25OHD 3 concentrations in milk were increased by dietary 25OHD 3 supplementation. Dietary 25OHD 3 supplementation increased serum alkaline phosphatase activity but had no effect on serum tartrate-resistant acid phosphatase activity of sows. Maternal 25OHD 3 supplementation improved bone strength, density and ash content of newborn piglets rather than those of weaning piglets. In conclusion, 25OHD 3 supplementation in maternal diets improved reproductive performance, milk quality and bone status of sows as well as bone quality of newborn piglets. © 2016 Japanese Society of Animal Science.

  11. Biomaterials and their applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anu; Sharma, Gayatri

    2018-05-01

    There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.

  12. Effects of mechanical repetitive load on bone quality around implants in rat maxillae

    PubMed Central

    Uto, Yusuke; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi

    2017-01-01

    Greater understanding and acceptance of the new concept “bone quality”, which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones. PMID:29244883

  13. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    PubMed

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers. Copyright © 2018. Published by Elsevier Ltd.

  14. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    PubMed

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  15. Bone material strength index as measured by impact microindentation is altered in patients with acromegaly.

    PubMed

    Malgo, F; Hamdy, N A T; Rabelink, T J; Kroon, H M; Claessen, K M J A; Pereira, A M; Biermasz, N R; Appelman-Dijkstra, N M

    2017-03-01

    Acromegaly is a rare disease caused by excess growth hormone (GH) production by the pituitary adenoma. The skeletal complications of GH and IGF-1 excess include increased bone turnover, increased cortical bone mass and deteriorated microarchitecture of trabecular bone, associated with a high risk of vertebral fractures in the presence of relatively normal bone mineral density (BMD). We aimed to evaluate tissue-level properties of bone using impact microindentation (IMI) in well-controlled patients with acromegaly aged ≥18 years compared to 44 controls from the outpatient clinic of the Centre for Bone Quality. In this cross-sectional study, bone material strength index (BMSi) was measured in 48 acromegaly patients and 44 controls with impact microindentation using the osteoprobe. Mean age of acromegaly patients (54% male) was 60.2 years (range 37.9-76.5), and 60.5 years (range 39.8-78.6) in controls (50% male). Patients with acromegaly and control patients had comparable BMI (28.2 kg/m 2  ± 4.7 vs 26.6 kg/m 2  ± 4.3, P = 0.087) and comparable BMD at the lumbar spine (1.04 g/cm 2  ± 0.21 vs 1.03 g/cm 2  ± 0.13, P = 0.850) and at the femoral neck (0.84 g/cm 2  ± 0.16 vs 0.80 g/cm 2  ± 0.09, P = 0.246). BMSi was significantly lower in acromegaly patients than that in controls (79.4 ± 0.7 vs 83.2 ± 0.7; P < 0.001). Our data indicates that tissue-level properties of cortical bone are significantly altered in patients with controlled acromegaly after reversal of long-term exposure to pathologically high GH and IGF-1 levels. Our findings also suggest that methods other than DXA should be considered to evaluate bone fragility in patients with acromegaly. © 2017 European Society of Endocrinology.

  16. Multiscale Homogenization Theory: An Analysis Tool for Revealing Mechanical Design Principles in Bone and Bone Replacement Materials

    NASA Astrophysics Data System (ADS)

    Hellmich, Christian; Fritsch, Andreas; Dormieux, Luc

    Biomimetics deals with the application of nature-made "design solutions" to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand "building plans" inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties reveals the following design principles: The elementary component "collagen" induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100-nm scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nanocomposite, unless the "collagen reinforcement" breaks. Bone replacement materials should mimic these "microstructural mechanics" features as closely as possible if an imitation of the natural form of bone is desired (Gebeshuber et al., Adv Mater Res 74:265-268, 2009).

  17. Inorganic materials for bone repair or replacement applications.

    PubMed

    Hertz, Audrey; Bruce, Ian J

    2007-12-01

    In recent years, excipient systems have been used increasingly in biomedicine in reconstructive and replacement surgery, as bone cements, drug-delivery vehicles and contrast agents. Particularly, interest has been growing in the development and application of controlled pore inorganic ceramic materials for use in bone-replacement and bone-repair roles and, in this context, attention has been focused on calcium-phosphate, bioactive glasses and SiO2- and TiO2-based materials. It has been shown that inorganic materials that most closely mimic bone structure and surface chemistry most closely function best in bone replacement/repair and, in particular, if a substance possesses a macroporous structure (pores and interconnections >100 microm diameter), then cell infiltration, bone growth and vascularization can all be promoted. The surface roughness and micro/mesoporosity of a material have also been observed to significantly influence its ability to promote apatite nucleation and cell attachment significantly. Pores (where present) can also be packed with pharmaceuticals and biomolecules (e.g., bone morphogenetic proteins [BMPs], which can stimulate bone formation). Finally, the most bio-efficient - in terms of collagen formation and apatite nucleation - materials are those that are able to provide soluble mineralizing species (Si, Ca, PO(4)) at their implant sites and/or are doped or have been surface-activated with specific functional groups. This article presents the context and latest advances in the field of bone-repair materials, especially with respect to the development of bioactive glasses and micro/mesoporous and macroporous inorganic scaffolds. It deals with the possible methods of preparing porous pure/doped or functionalized silicas or their composites, the studies that have been undertaken to evaluate their abilities to act as bone repair scaffolds and also presents future directions for work in that context.

  18. [Total hip replacement with isoelastic prosthesis in animals (author's transl)].

    PubMed

    Muhr, O; Stockhusen, H; Müller, O

    1976-10-08

    Uncemented fixation and low-fraction materials are the basis of this experiment. Plastics with an elasticity similar to the bone ("isoelasticity") show very propitious material qualities. The direct cementless incorporation of test bodies must be checked. In 63 sheep isoelastic total hip joints were implanted. After 2 till 51 weeks the animals were sacrificed and 44 specimen of hips and organs were explored macroscopically, radiologically, spherimetrically and histologically. The result was: 1. Plastic hip prosthesis are incorporated in the bone, but the boundary layer is built by a collagenous fiber tissue. 2. Loosening brings resoption of the bone and expansion of the structural changed soft tissue. 3. The transformation of the femoral cortex to osteoporosis is considered possibly as the consequence of an insufficient biological transfer of the weight. 4. Fractures of the femoral prosthesis-stem could not be observed. 5. The radiology allows at the pelvis prosthesis a concret statement concerning stability, on the femoral part a probable one. 6. The abrasion is minimal, the tissue reaction to abrasion products is unessential. 7. Small abrasion particles are carried of by the lymph tract and stored in the first regional gland. A more distant spreading is not demonstrable.

  19. [Children, Collect Bones! : Teaching Aids and Propaganda Material on Bone-Collections and Bone-Utilisation Used in German Schools During the "Third Reich"].

    PubMed

    Vaupel, Elisabeth; Preiß, Florian

    2018-06-05

    In the nineteenth and early twentieth centuries bones were an essential raw material for the German chemical industry, vital to the production of fertilizer, glue, gelatine, soap and other products. As most of this material was imported, the German school system during the "Third Reich" took the utilisation of bones as an example to illustrate the relevance of the four-year plan of 1936 and its policy of economic self-sufficiency. The school children were encouraged to collect bones from domestic sources and bring them to the collecting points in the schools. Several NS-institutions developed a variety of teaching aids and materials to support school education on this economically and politically important topic. Focussing on the example of bone-utilisation, this paper examines the messages and intentions of these educational materials. It also demonstrates how even apparently ideologically unbiased school subjects, such as chemistry, were instrumentalised for the political indoctrination of the pupils.

  20. Influence of physical activity on tibial bone material properties in laying hens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.

    Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less

  1. Influence of physical activity on tibial bone material properties in laying hens

    DOE PAGES

    Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.; ...

    2017-11-03

    Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less

  2. Calcium from salmon and cod bone is well absorbed in young healthy men: a double-blinded randomised crossover design.

    PubMed

    Malde, Marian K; Bügel, Susanne; Kristensen, Mette; Malde, Ketil; Graff, Ingvild E; Pedersen, Jan I

    2010-07-20

    Calcium (Ca) - fortified foods are likely to play an important role in helping the consumer achieve an adequate Ca intake, especially for persons with a low intake of dairy products. Fish bones have a high Ca content, and huge quantities of this raw material are available as a by-product from the fish industry. Previously, emphasis has been on producing high quality products from fish by-products by use of bacterial proteases. However, documentation of the nutritional value of the enzymatically rinsed Ca-rich bone fraction remains unexplored. The objective of the present study was to assess the bioavailability of calcium in bones of Atlantic salmon (oily fish) and Atlantic cod (lean fish) in a double-blinded randomised crossover design. Ca absorption was measured in 10 healthy young men using 47Ca whole body counting after ingestion of a test meal extrinsically labelled with the 47Ca isotope. The three test meals contained 800 mg of Ca from three different calcium sources: cod bones, salmon bones and control (CaCO3). Mean Ca absorption (+/- SEE) from the three different Ca sources were 21.9 +/- 1.7%, 22.5 +/- 1.7% and 27.4 +/- 1.8% for cod bones, salmon bones, and control (CaCO3), respectively. We conclude that bones from Atlantic salmon and Atlantic cod are suitable as natural Ca sources in e.g. functional foods or as supplements.

  3. Calcium from salmon and cod bone is well absorbed in young healthy men: a double-blinded randomised crossover design

    PubMed Central

    2010-01-01

    Background Calcium (Ca) - fortified foods are likely to play an important role in helping the consumer achieve an adequate Ca intake, especially for persons with a low intake of dairy products. Fish bones have a high Ca content, and huge quantities of this raw material are available as a by-product from the fish industry. Previously, emphasis has been on producing high quality products from fish by-products by use of bacterial proteases. However, documentation of the nutritional value of the enzymatically rinsed Ca-rich bone fraction remains unexplored. The objective of the present study was to assess the bioavailability of calcium in bones of Atlantic salmon (oily fish) and Atlantic cod (lean fish) in a double-blinded randomised crossover design. Methods Ca absorption was measured in 10 healthy young men using 47Ca whole body counting after ingestion of a test meal extrinsically labelled with the 47Ca isotope. The three test meals contained 800 mg of Ca from three different calcium sources: cod bones, salmon bones and control (CaCO3). Results Mean Ca absorption (± SEE) from the three different Ca sources were 21.9 ± 1.7%, 22.5 ± 1.7% and 27.4 ± 1.8% for cod bones, salmon bones, and control (CaCO3), respectively. Conclusion We conclude that bones from Atlantic salmon and Atlantic cod are suitable as natural Ca sources in e.g. functional foods or as supplements. PMID:20646299

  4. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    PubMed

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.

  5. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    NASA Astrophysics Data System (ADS)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  6. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    PubMed Central

    2013-01-01

    Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting. PMID:23286366

  7. Effects of Physical Activity and Muscle Quality on Bone Development in Girls

    PubMed Central

    Farr, Joshua N.; Laddu, Deepika R.; Blew, Robert M.; Lee, Vinson R.; Going, Scott B.

    2013-01-01

    Poor muscle quality and sedentary behavior are risk factors for metabolic dysfunction in children and adolescents. However, because longitudinal data are scarce, relatively little is known about how changes in muscle quality and physical activity influence bone development. Purpose In a 2-year longitudinal study, we examined the effects of physical activity and changes in muscle quality on bone parameters in young girls. Methods The sample included 248 healthy girls aged 9–12 years at baseline. Peripheral quantitative computed tomography was used to measure calf and thigh muscle density, an indicator of skeletal muscle fat content or muscle quality, as well as bone parameters at diaphyseal and metaphyseal sites of the femur and tibia. Physical activity was assessed using a validated questionnaire specific for youth. Results After controlling for covariates in multiple regression models, increased calf muscle density was independently associated with greater gains in cortical (β = 0.13, P < 0.01) and trabecular (β = 0.25, P < 0.001) volumetric bone mineral density (vBMD) and the bone strength index (BSI; β = 0.25, P < 0.001) of the tibia. Importantly, these relationships were generalized, as similar changes were present at the femur. Associations between physical activity and changes in bone parameters were weaker than those observed for muscle density. Nevertheless, physical activity was significantly (all P < 0.05) associated with greater gains in trabecular vBMD and the BSI of the distal femur. Conclusions These findings suggest that poor muscle quality may put girls at risk for suboptimal bone development. Physical activity is associated with more optimal gains in weight-bearing bone density and strength in girls, but to a lesser extent than changes in muscle quality. PMID:23698240

  8. Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits

    NASA Astrophysics Data System (ADS)

    Pavan Mateus, Christiano; Orivaldo Chierice, Gilberto; Okamoto, Tetuo

    2011-09-01

    Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.

  9. Applicability of strain measurements on a contra angle handpiece for the determination of alveolar bone quality during dental implant surgery.

    PubMed

    Krafft, Tim; Winter, Werner; Wichmann, Manfred; Karl, Matthias

    2012-07-01

    Alveolar bone quality is considered to be an important prognostic factor in dental implant stability. Although numerous methods have been described, no technique allows for reliable diagnostics. The purpose of this study was to determine if strain measurements on the shaft of a contra angle handpiece during implant bed preparation could be used for the determination of bone quality. Experiments in polyurethane foam and human cadaver bone were conducted to investigate whether strain measurements could be correlated with other diagnostic parameters, such as the surgeon's tactile sensation during drilling, implant insertion torque, implant stability, elastic modulus of bone and bone quality as assessed radiographically. Tests were also performed to determine if strain measurements could be used to distinguish various types of bone. As axial feed and contact pressure during the drilling process could not be standardized under simulated clinical conditions, substantial deviations in the time needed to complete the drilling occurred. Under controlled circumstances using polyurethane foam, this problem could be addressed by a normalization procedure, but great variations occurred in human cadaver bone. As bone quality could not be reliably determined, especially when a cortical layer was present, strain measurements on a contra angle handpiece appears to be inappropriate for this purpose. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.

    PubMed

    Aydin, Halil Murat; Hu, Bin; Suso, Josep Sulé; El Haj, Alicia; Yang, Ying

    2011-02-21

    The key criteria for assessing the success of bone tissue engineering are the quality and quantity of the produced minerals within the cultured constructs. The accumulation of calcium ions and inorganic phosphates in culture medium serves as nucleating agents for the formation of hydroxyapatite, which is the main inorganic component of bone. Bone nodule formation is one of the hallmarks of mineralization in such cell cultures. In this study, we developed a new two-step procedure to accelerate bone formation in which mouse bone cell aggregates were produced first on various chemically treated non-adhesive substrates. After this step, the bone cells' growth and mineralization were followed in conventional culture plates. The number and size of cell aggregates were studied with light microscopy. The minerals' formation in the form of nodules produced by the cell aggregates and the bone crystal quality were studied with Fourier Transform Infrared (FTIR) spectroscopy. The FTIR spectra of the ash specimens (mineral phase only) from thermal gravimetric analysis (TGA) provided valuable information of the quality of the minerals. The υ(4) PO(4) region (550-650 cm(-1)), which reveals apatitic and non-apatitic HPO(4) or PO(4) environments, and phosphate region (910-1180 cm(-1)) were examined for the minerals produced in the form of nodules. The peak position and intensity of the spectra demonstrate that the quality of the bone produced by cell aggregates, especially from the bigger ones, which were formed on Plunoric treated substrates, exhibit a composition more similar to that of native bone. This work establishes a new protocol for high quality bone formation and characterization, with the potential to be applied to bone tissue engineering.

  12. Influence of trabecular bone quality and implantation direction on press-fit mechanics.

    PubMed

    Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E

    2017-02-01

    Achieving primary stability of uncemented press-fit prostheses in patients with poor quality bone can involve axial implantation forces large enough to cause bone fracture. Radial implantation eliminates intraoperative impaction forces and could prevent this damage. Platens of two commercial implant surfaces ("Beaded" and "Flaked") were implanted onto trabecular bone specimens of varying quality in a press-fit simulator. Samples were implanted with varying interference, either axially (shear) or radially (normal). Push-in and pull-out forces were measured to assess stability. Microstructural changes in the bone were determined from μCT analysis. For force-defined implantation analysis, push-in and pull-out forces both increased proportionally with increasing radial force, independent of implantation direction, bone quality or implant surface. For position-defined implantation analysis, pull-out forces were generally found to increase with interference and to be greater for radial than axial implantation direction, and to be lower for poor quality bone. Bone density increased locally at the tested interface due to implantation, in particular for the Beaded surface under axial implantation. If a safe radial stress can be determined for cortical bone in a particular patient, the associated implantation force, and pull-out force which represents primary stability, can be directly derived, regardless of implantation direction, bone quality or implant surface. Radial implantation delivers primary stability that is no worse than that for axial implantation and may eliminate potentially damaging impaction forces. Development of implant designs based on this principal might improve implant fixation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:224-233, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results

    PubMed Central

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F.; Kirkpatrick, Charles J.; Sader, Robert A.

    2013-01-01

    Background: The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Materials and Methods: Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Results: Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Conclusions: Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer. PMID:24205471

  14. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    PubMed Central

    Gedrange, Tomasz

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965

  15. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats.

    PubMed

    Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  16. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    PubMed

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  17. TU-A-12A-08: Computing Longitudinal Material Changes in Bone Metastases Using Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidtlein, CR; Hwang, S; Veeraraghavan, H

    Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less

  18. Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience.

    PubMed

    Zaccaria, Laura; Tharakan, Sasha Job; Altermatt, Stefan

    2017-02-01

    The use of hydroxyapatite ceramic (HAC) implants for the treatment of skull defects in pediatric patients started 2010 at our institution. Ceramic implants facilitate osteoblast migration and therefore optimize osteointegration with the host bone. The purpose of this study is to report a single-center experience with this treatment modality. A retrospective review of all patients from July 2010 through June 2014 undergoing a cranioplasty using hydroxyapatite ceramic implant and managed at a single institution was performed. Indication for cranioplasty, the hospital course, and follow-up were reviewed. Bone density was measured in Hounsfield Units (HU) and osteointegration was calculated using Mimics Software® (Mimics Innovation Suite v17.0 Medical, Materialize, Leuven, Belgium). Over the 4-year period, six patients met criteria for the study. Five patients had an osteointegration of nearly 100%. One patient had an incomplete osteointegration with a total bone-implant contact area of 69%. The mean bone density was 2800 HU (2300-3000 HU). Bone density alone is estimated to have a Hounsfield value between 400 and 2000 HU depending on the body region and bone quality. There were no major complications, and the patients were highly satisfied with the esthetical result. Hydroxyapatite ceramic implants for cranioplasty in pediatric patients are a good choice for different indications. The implants show excellent osteointegration and esthetical results.

  19. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.

    PubMed

    Nyberg, Ethan; Rindone, Alexandra; Dorafshar, Amir; Grayson, Warren L

    2017-06-01

    Three-dimensional (3D)-printing facilitates rapid, custom manufacturing of bone scaffolds with a wide range of material choices. Recent studies have demonstrated the potential for 3D-printing bioactive (i.e., osteo-inductive) scaffolds for use in bone regeneration applications. In this study, we 3D-printed porous poly-ɛ-caprolactone (PCL) scaffolds using a fused deposition modeling (FDM) process and functionalized them with mineral additives that have been widely used commercially and clinically: tricalcium phosphate (TCP), hydroxyapatite (HA), Bio-Oss (BO), or decellularized bone matrix (DCB). We assessed the "print quality" of the composite scaffolds and found that the print quality of PCL-TCP, PCL-BO, and PCL-DCB measured ∼0.7 and was statistically lower than PCL and PCL-HA scaffolds (∼0.8). We found that the incorporation of mineral particles did not significantly decrease the compressive modulus of the graft, which was on the order of 260 MPa for solid blocks and ranged from 32 to 83 MPa for porous scaffolds. Raman spectroscopy revealed the surfaces of the scaffolds maintained the chemical profile of their dopants following the printing process. We evaluated the osteo-inductive properties of each scaffold composite by culturing adipose-derived stromal/stem cells in vitro and assessing their differentiation into osteoblasts. The calcium content (normalized to DNA) increased significantly in PCL-TCP (p < 0.05), PCL-BO (p < 0.001), and PCL-DCB (p < 0.0001) groups relative to PCL only. The calcium content also increased in PCL-HA but was not statistically significant (p > 0.05). Collagen 1 expression was 10-fold greater than PCL in PCL-BO and PCL-DCB (p < 0.05) and osteocalcin expression was 10-fold greater in PCL-BO and PCL-DCB (p < 0.05) as measured by quantitative-real time-polymerase chain reaction. This study suggests that PCL-BO and PCL-DCB hybrid material may be advantageous for bone healing applications over PCL-HA or PCL-TCP blends.

  20. Bone Healing in Extraction Sockets Covered With Collagen Membrane Alone or Associated With Porcine-Derived Bone Graft: a Comparative Histological and Histomorphometric Analysis.

    PubMed

    Guarnieri, Renzo; Testarelli, Luca; Stefanelli, Luigi; De Angelis, Francesca; Mencio, Francesca; Pompa, Giorgio; Di Carlo, Stefano

    2017-01-01

    The present paper reports data of a randomized study aimed to analyse and compare the histologic and histomorphometric aspects of bone healing in extraction sites covered with collagen membrane alone or associated with porcine-derived bone graft. Thirty patients, with single extraction sockets without severe bone wall defects in the premolar/molar region, were included. Ten extraction sockets were grafted with porcine-derived bone and covered with collagen membrane (group 1), 10 sites were covered with collagen membrane alone (group 2), and 10 sites healed spontaneously (group 3). After 4 months of healing, 26 (8 in group 1, 9 in group 2, and 9 in group 3) bone core specimens were harvested for histologic evaluation, then dental implants were placed. Sites in the group 1 and in the group 2 showed similar histologic and histomorphometric results without significantly differences in the percentage of vital bone (57.43% [SD 4.8] vs. 60.01% [SD 3.2]), and non-mineralized connective tissue 22.99% (SD 5.3) vs. 18.53% (SD 6.2). In group 1 a 16.57% (SD 3.8) of residual material was found. Results showed that the use of collagen membrane alone or associated to porcine-derived bone improves the healing bone process compared to that of extraction sites spontaneously healed. Moreover, histomorphometric data related to bone quality, indicated that extraction sites without severe walls defects and with a vestibular bone thickness > 1.5 mm, treated with a low resorbtion rate collagen membrane alone, do not need more than 4 months for dental implant insertion.

  1. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    PubMed Central

    Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2016-01-01

    The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material. PMID:28787903

  2. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model.

    PubMed

    Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2016-02-06

    The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material.

  3. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    PubMed

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  4. Biodegradable Materials for Bone Repair and Tissue Engineering Applications

    PubMed Central

    Sheikh, Zeeshan; Najeeb, Shariq; Khurshid, Zohaib; Verma, Vivek; Rashid, Haroon; Glogauer, Michael

    2015-01-01

    This review discusses and summarizes the recent developments and advances in the use of biodegradable materials for bone repair purposes. The choice between using degradable and non-degradable devices for orthopedic and maxillofacial applications must be carefully weighed. Traditional biodegradable devices for osteosynthesis have been successful in low or mild load bearing applications. However, continuing research and recent developments in the field of material science has resulted in development of biomaterials with improved strength and mechanical properties. For this purpose, biodegradable materials, including polymers, ceramics and magnesium alloys have attracted much attention for osteologic repair and applications. The next generation of biodegradable materials would benefit from recent knowledge gained regarding cell material interactions, with better control of interfacing between the material and the surrounding bone tissue. The next generations of biodegradable materials for bone repair and regeneration applications require better control of interfacing between the material and the surrounding bone tissue. Also, the mechanical properties and degradation/resorption profiles of these materials require further improvement to broaden their use and achieve better clinical results. PMID:28793533

  5. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    PubMed

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.

  6. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.

    PubMed

    Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren

    2017-11-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p < 0.05). In conclusion, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.

  7. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    PubMed

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  8. Biological effectiveness of nuclear fragments produced by high-energy protons interacting in tissues near the bone- soft tissue interface

    NASA Astrophysics Data System (ADS)

    Shavers, Mark Randall

    1999-12-01

    High-energy protons in the galactic cosmic rays (GCR)-or generated by nuclear interactions of GCR heavy-ions with material-are capable of penetrating great thicknesses of shielding to irradiate humans in spacecraft or in lunar or Martian habitats. As protons interact with the nuclei of the elemental constituents of soft tissue and bone, low energy nuclei-target fragments-are emitted into the cells responsible for bone development and maintenance and for hematopoiesis. Leukemogenesis is the principal endpoint of concern because it is the most likely deleterious effect, and it has a short latency period and comparatively low survival rate, although other myelo- proliferative disorders and osteosarcoma also may be induced. A one-dimensional proton-target fragment transport model was used to calculate the energy spectra of fragments produced in bone and soft tissue, and present in marrow cavities at distances from a bone interface. In terms of dose equivalent, the target fragments are as significant as the incident protons. An average radiation quality factor was found to be between 1.8 and 2.6. Biological response to the highly non- uniform energy deposition of the target fragments is such that an alternative approach to conventional predictive risk assessment is needed. Alternative procedures are presented. In vitro cell response and relative biological effectiveness were calculated from the radial dose distribution of each fragment produced by 1-GeV protons using parameters of a modified Ion-Gamma- Kill (IGK) model of radiation action. The modelled endpoints were survival of C3H10t 1/2 and V79 cells, neoplastic transformation of C3H10t1/2 cells, and mutation of the X-linked hypoxanthine phosphoribosyltransferase (HPRT) locus in V79 cells. The dose equivalent and cell responses increased by 10% or less near the interface. Since RBE increases with decreasing dose in the IGK model, comparisons with quality factors were made at dose levels 0.01 <= D [Gy] <= 2. Applying average quality factors derived herein to GCR exposures results in a <= 5% increase of in average quality. Calculated RBEs indicate that accepted quality factors for high-energy protons may be too low due to the relatively high effectiveness of the low-charged target fragments. Derived RBEs for target fragments increase the calculated biological effectiveness of GCR by 20% to 180%.

  9. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review.

    PubMed

    Chavda, Suraj; Levin, Liran

    2018-02-01

    Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.

  10. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    PubMed Central

    Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann

    2015-01-01

    The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855

  11. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation.

    PubMed

    Ghanaati, Shahram; Udeabor, Samuel E; Barbeck, Mike; Willershausen, Ines; Kuenzel, Oliver; Sader, Robert A; Kirkpatrick, C James

    2013-01-04

    Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  12. Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice

    PubMed Central

    Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.

    2010-01-01

    Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775

  13. Time of flight secondary ion mass spectrometry of bone—Impact of sample preparation and measurement conditions

    PubMed Central

    Henss, Anja; Hild, Anne; Rohnke, Marcus; Wenisch, Sabine; Janek, Juergen

    2015-01-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) enables the simultaneous detection of organic and inorganic ions and fragments with high mass and spatial resolution. Due to recent technical developments, ToF-SIMS has been increasingly applied in the life sciences where sample preparation plays an eminent role for the quality of the analytical results. This paper focusses on sample preparation of bone tissue and its impact on ToF-SIMS analysis. The analysis of bone is important for the understanding of bone diseases and the development of replacement materials and new drugs for the cure of diseased bone. The main purpose of this paper is to find out which preparation process is best suited for ToF-SIMS analysis of bone tissue in order to obtain reliable and reproducible analytical results. The influence of the embedding process on the different components of bone is evaluated using principal component analysis. It is shown that epoxy resin as well as methacrylate based plastics (Epon and Technovit) as embedding materials do not infiltrate the mineralized tissue and that cut sections are better suited for the ToF-SIMS analysis than ground sections. In case of ground samples, a resin layer is smeared over the sample surface due to the polishing step and overlap of peaks is found. Beside some signals of fatty acids in the negative ion mode, the analysis of native, not embedded samples does not provide any advantage. The influence of bismuth bombardment and O2 flooding on the signal intensity of organic and inorganic fragments due to the variation of the ionization probability is additionally discussed. As C60 sputtering has to be applied to remove the smeared resin layer, its effect especially on the organic fragments of the bone is analyzed and described herein. PMID:26253108

  14. Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration

    PubMed Central

    Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin

    2017-01-01

    The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K0.5Na0.5NbO3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials. PMID:28900517

  15. Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis.

    PubMed

    Burch, Shane; Feldstein, Michael; Hoffmann, Paul F; Keaveny, Tony M

    2016-02-01

    Retrospective, cross-sectional analysis of vertebral bone quality in spine-fusion patients at a single medical center. To characterize the prevalence of osteoporosis and fragile bone strength in a spine-fusion population of women with an age range of 50 years to 70 years. Fragile bone strength is defined as the level of vertebral strength below which a patient is at as high a risk of future vertebral fracture as a patient having bone density-defined osteoporosis. Poor bone quality--defined here as the presence of either osteoporosis or fragile bone strength--is a risk factor for spine-fusion patients that often goes undetected but can now be assessed preoperatively by additional postprocessing of computed tomography (CT) scans originally ordered for perioperative clinical assessment. Utilizing such perioperative CT scans for a cohort of 98 women (age range: 51-70 yr) about to undergo spine fusion, we retrospectively used a phantomless calibration technique and biomechanical-CT postprocessing analysis to measure vertebral trabecular bone mineral density (BMD) (in mg/cm³) and by nonlinear finite element analysis, vertebral compressive strength (in Newtons, N) in the L1 or L2 vertebra. Preestablished validated threshold values were used to define the presence of osteoporosis (trabecular BMD of 80 mg/cm³ or lower) and fragile bone strength (vertebral strength of 4500 N or lower). Fourteen percent of the women tested positive for osteoporosis, 27% tested positive for fragile bone strength, and 29% were classified as having poor bone quality (either osteoporosis or fragile bone strength). Over this narrow age range, neither BMD nor vertebral strength were significantly correlated with age, weight, height, or body mass index (P values 0.14-0.97 for BMD; 0.13-0.51 for strength). Poor bone quality appears to be common in women between ages 50 years and 70 years undergoing spinal fusion surgery. 3.

  16. Ultrasonic longitudinal waves to monitor the integration of titanium rods with host bone

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Lynch, Jerome P.

    2017-04-01

    Osseointegrated prostheses which integrate the prosthesis directly to the limb bone are being developed for patients that are unable to wear traditional socket prostheses. While osseointegration of the prosthesis offers amputees improvement in their quality of life, there remains a need to better understand the integration process that occurs between the bone and the prosthesis. Quantification of the degree of integration is important to track the recuperation process of the amputee, guide physical therapy regimes, and to identify when the state of integration may change (due to damage to the bone). This study explores the development of an assessment strategy for quantitatively assessing the degree of integration between an osseointegrated prosthesis and host bone. Specifically, the strategy utilizes a titanium rod prosthesis as a waveguide with guided waves used to assess the degree of integration. By controlling waveforms launched by piezoelectric wafers bonded on the percutaneous tip of the prosthesis, body waves are introduced into the waveguide with wave reflections at the boneprosthesis interface recorded by the same array. Changes in wave energy are correlated to changes at the contact interface between the titanium rod and the bone material. Both simulation and experimental tests are presented in this paper. Experimental testing is performed using a high-density polyethylene (HDPE) host because the elastic modulus and density of HDPE are close to that of human and animal bone. Results indicate high sensitivity of the longitudinal wave energy to rod penetration depth and confinement stress issued by the host bone.

  17. Collagen fibril organization within rat vertebral bone modified with metastatic involvement.

    PubMed

    Burke, Mikhail; Golaraei, Ahmad; Atkins, Ayelet; Akens, Margarete; Barzda, Virginijus; Whyne, Cari

    2017-08-01

    Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach.

    PubMed

    Lei, Shuangyan; Frank, Matthew C; Anderson, Donald D; Brown, Thomas D

    The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones. Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are "stacked" inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone. The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing. This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate.

  19. CBCT-based bone quality assessment: are Hounsfield units applicable?

    PubMed Central

    Jacobs, R; Singer, S R; Mupparapu, M

    2015-01-01

    CBCT is a widely applied imaging modality in dentistry. It enables the visualization of high-contrast structures of the oral region (bone, teeth, air cavities) at a high resolution. CBCT is now commonly used for the assessment of bone quality, primarily for pre-operative implant planning. Traditionally, bone quality parameters and classifications were primarily based on bone density, which could be estimated through the use of Hounsfield units derived from multidetector CT (MDCT) data sets. However, there are crucial differences between MDCT and CBCT, which complicates the use of quantitative gray values (GVs) for the latter. From experimental as well as clinical research, it can be seen that great variability of GVs can exist on CBCT images owing to various reasons that are inherently associated with this technique (i.e. the limited field size, relatively high amount of scattered radiation and limitations of currently applied reconstruction algorithms). Although attempts have been made to correct for GV variability, it can be postulated that the quantitative use of GVs in CBCT should be generally avoided at this time. In addition, recent research and clinical findings have shifted the paradigm of bone quality from a density-based analysis to a structural evaluation of the bone. The ever-improving image quality of CBCT allows it to display trabecular bone patterns, indicating that it may be possible to apply structural analysis methods that are commonly used in micro-CT and histology. PMID:25315442

  20. Image quality improvement in three-dimensional time-of-flight magnetic resonance angiography using the subtraction method for brain and temporal bone diseases.

    PubMed

    Peng, Shu-Hui; Shen, Chao-Yu; Wu, Ming-Chi; Lin, Yue-Der; Huang, Chun-Huang; Kang, Ruei-Jin; Tyan, Yeu-Sheng; Tsao, Teng-Fu

    2013-08-01

    Time-of-flight (TOF) magnetic resonance (MR) angiography is based on flow-related enhancement using the T1-weighted spoiled gradient echo, or the fast low-angle shot gradient echo sequence. However, materials with short T1 relaxation times may show hyperintensity signals and contaminate the TOF images. The objective of our study was to determine whether subtraction three-dimensional (3D) TOF MR angiography improves image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. During the 12-month study period, patients who had masses with short T1 relaxation times noted on precontrast T1-weighted brain MR images and 24 healthy volunteers were scanned using conventional and subtraction 3D TOF MR angiography. The qualitative evaluation of each MR angiogram was based on signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and scores in three categories, namely, (1) presence of misregistration artifacts, (2) ability to display arterial anatomy selectively (without contamination by materials with short T1 relaxation times), and (3) arterial flow-related enhancement. We included 12 patients with intracranial hematomas, brain tumors, or middle-ear cholesterol granulomas. Subtraction 3D TOF MR angiography yielded higher CNRs between the area of the basilar artery (BA) and normal-appearing parenchyma of the brain and lower SNRs in the area of the BA compared with the conventional technique (147.7 ± 77.6 vs. 130.6 ± 54.2, p < 0.003 and 162.5 ± 79.9 vs. 194.3 ± 62.3, p < 0.001, respectively) in all 36 cases. The 3D subtraction angiography did not deteriorate image quality with misregistration artifacts and showed a better selective display of arteries (p < 0.0001) and arterial flow-related enhancement (p < 0.044) than the conventional method. Subtraction 3D TOF MR angiography is more appropriate than the conventional method in improving the image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. Copyright © 2013. Published by Elsevier B.V.

  1. [Comparative studies on the material performances of natural bone-like apatite from different bone sources].

    PubMed

    Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang

    2014-04-01

    The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.

  2. Cellular Therapy to Obtain Rapid Endochondral Bone Formation

    DTIC Science & Technology

    2012-03-01

    biological information and involves the development of a novel biomaterial that can safely house the cells expressing the bone inductive factor to... produce the new bone at which time the material is then selectively eliminated. Ultimately this system has significant applicability. Often bone graft must...hypothesis will provide a safe and efficacious material for the production of bone leading to reliable fracture healing, circumventing the need for

  3. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly induced due to the osteoinductive process.

  4. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM.

    PubMed

    Hautamäki, Mikko P; Aho, Allan J; Alander, Pasi; Rekola, Jami; Gunn, Jarmo; Strandberg, Niko; Vallittu, Pekka K

    2008-08-01

    Polymer technology has provided solutions for filling of bone defects in situations where there may be technical or biological complications with autografts, allografts, and metal prostheses. We present an experimental study on segmental bone defect reconstruction using a polymethylmethacrylate-(PMMA-) based bulk polymer implant prosthesis. We concentrated on osteoconductivity and surface characteristics. A critical size segment defect of the rabbit tibia in 19 animals aged 18-24 weeks was reconstructed with a surface porous glass fiber-reinforced (SPF) prosthesis made of polymethylmethacrylate (PMMA). The biomechanical properties of SPF implant material were previously adjusted technically to mimic the properties of normal cortical bone. A plain PMMA implant with no porosity or fiber reinforcement was used as a control. Radiology, histomorphometry, and scanning electron microscopy (SEM) were used for analysis of bone growth into the prosthesis during incorporation. The radiographic and histological incorporation model showed good host bone contact, and strong formation of new bone as double cortex. Histomorphometric evaluation showed that the bone contact index (BCI) at the posterior surface interface was higher with the SPF implant than for the control. The total appositional bone growth over the posterior surface (area %) was also stronger for the SPF implant than for controls. Both bone growth into the porous surface and the BCI results were related to the quality, coverage, and regularity of the microstructure of the porous surface. Porous surface structure enhanced appositional bone growth onto the SPF implant. Under load-bearing conditions the implant appears to function like an osteoconductive prosthesis, which enables direct mobilization and rapid return to full weight bearing.

  5. Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice.

    PubMed

    Kyle, Kimberly A; Willett, Thomas L; Baggio, Laurie L; Drucker, Daniel J; Grynpas, Marc D

    2011-02-01

    Patients with type 2 diabetes mellitus have an increased risk of fracture that can be further exacerbated by thiazolidinediones. A new class of antidiabetic agents control glucose through reduction of dipeptidyl peptidase-4 (DPP-4) activity; however the importance of DPP-4 for the control of bone quality has not been extensively characterized. We compared the effects of the thiazolidinedione pioglitazone and the DPP-4 inhibitor sitagliptin on bone quality in high-fat diet (HFD)-fed wild-type mice. In complementary studies, we examined bone quality in Dpp4(+/+) vs. Dpp4(-/-) mice. Pioglitazone produced yellow bones with greater bone marrow adiposity and significantly reduced vertebral bone mechanics in male, female, and ovariectomized (OVX) HFD fed female mice. Pioglitazone negatively affected vertebral volumetric bone mineral density, trabecular architecture, and mineral apposition rate in male mice. Sitagliptin treatment of HFD-fed wild-type mice significantly improved vertebral volumetric bone mineral density and trabecular architecture in female mice, but these improvements were lost in females after OVX. Genetic inactivation of Dpp4 did not produce a major bone phenotype in male and female Dpp4(-/-) mice; however, OVX Dpp4(-/-) mice exhibited significantly reduced femoral size and mechanics. These findings delineate the skeletal consequences of pharmacological and genetic reduction of DPP-4 activity and reveal significant differences in the effects of pioglitazone vs. sitagliptin vs. genetic Dpp4 inactivation on bone mechanics in mice.

  6. Polymer ceramic composite that follows the rules of bone growth

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.; Warner, Carrie

    1998-07-01

    Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.

  7. Correlation Between Resonance Frequency Analysis and Bone Quality Assessments at Dental Implant Recipient Sites.

    PubMed

    Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin

    To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively). The ISQ value was weakly associated with the bone type when assessed by stereomicroscopy or micro-CT in the maxilla. Caution is necessary if RFA is used as a tool to evaluate bone quality at the implant site, especially in the mandible.

  8. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration.

    PubMed

    Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike

    2018-04-01

    Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.

  9. Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).

    PubMed

    Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2014-11-01

    The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Nano-material aspects of shock absorption in bone joints.

    PubMed

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  11. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system.

    PubMed

    Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.

  12. Finite element analysis of functionally graded bone plate at femur bone fracture site

    NASA Astrophysics Data System (ADS)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  13. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    NASA Astrophysics Data System (ADS)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  14. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    PubMed

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  15. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES

    PubMed Central

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-01-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512

  16. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids

    NASA Astrophysics Data System (ADS)

    Giorgio, Ivan; Andreaus, Ugo; Madeo, Angela

    2016-03-01

    A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.

  17. TRAP-Positive Multinucleated Giant Cells Are Foreign Body Giant Cells Rather Than Osteoclasts: Results From a Split-Mouth Study in Humans.

    PubMed

    Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram

    2015-12-01

    This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.

  18. Utilizing two-photon fluorescence and second harmonic generation microscopy to study human bone marrow mesenchymal stem cell morphogenesis in chitosan scaffold

    NASA Astrophysics Data System (ADS)

    Su, Ping-Jung; Huang, Chi-Hsiu; Huang, Yi-You; Lee, Hsuan-Sue; Dong, Chen-Yuan

    2008-02-01

    A major goal of tissue engineering is to cultivate the cartilage in vitro. One approach is to implant the human bone marrow mesenchymal stem cells into the three dimensional biocompatible and biodegradable material. Through the action of the chondrogenic factor TGF-β3, the stem cells can be induced to secrete collagen. In this study, mesenchymal stem cells are implanted on the chitosan scaffold and TGF-β3 was added to produce the cartilage tissue and TP autofluorescence and SHG microscopy was used to image the process of chondrogenesis. With additional development, multiphoton microscopy can be developed into an effective tool for evaluating the quality of tissue engineering products.

  19. Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    PubMed Central

    Kim, Hak-Jun; Park, Kyeongsoon; Kim, Sung Eun; Song, Hae-Ryong

    2014-01-01

    The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects. PMID:24804202

  20. The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758).

    PubMed

    Budis, Halina; Kalisinska, Elzbieta; Lanocha, Natalia; Kosik-Bogacka, Danuta I

    2013-12-01

    The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r > 0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.

  1. A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation

    PubMed Central

    Smeets, Ralf; Kolk, Andreas; Gerressen, Marcus; Driemel, Oliver; Maciejewski, Oliver; Hermanns-Sachweh, Benita; Riediger, Dieter; Stein, Jamal M

    2009-01-01

    The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants. PMID:19523239

  2. Histological and radiological evaluation of sintered and non-sintered deproteinized bovine bone substitute materials in sinus augmentation procedures. A prospective, randomized-controlled, clinical multicenter study.

    PubMed

    Fienitz, Tim; Moses, Ofer; Klemm, Christoph; Happe, Arndt; Ferrari, Daniel; Kreppel, Matthias; Ormianer, Zeev; Gal, Moti; Rothamel, Daniel

    2017-04-01

    The objective of this study is to histologically and radiologically compare a sintered and a non-sintered bovine bone substitute material in sinus augmentation procedures. Thirty-three patients were included in the clinically controlled randomized multicentre study resulting in a total of 44 treated sinuses. After lateral approach, sinuses were filled with either a sintered (SBM, Alpha Bio's Graft ® ) or a non-sintered (NSBM, Bio Oss ® ) deproteinized bovine bone substitute material. The augmentation sites were radiologically assessed before and immediately after the augmentation procedure as well as prior to implant placement. Bone trephine biopsies for histological analysis were harvested 6 months after augmentation whilst preparing the osteotomies for implant placement. Healing was uneventful in all patients. After 6 months, radiological evaluation of 43 sinuses revealed a residual augmentation height of 94.65 % (±2.74) for SBM and 95.76 % (±2.15) for NSBM. One patient left the study for personal reasons. Histological analysis revealed a percentage of new bone of 29.71 % (±13.67) for SBM and 30.57 % (±16.07) for NSBM. Residual bone substitute material averaged at 40.68 % (±16.32) for SBM compared to 43.43 % (±19.07) for NSBM. All differences between the groups were not statistically significant (p > 0.05, Student's t test). Both xenogeneic bone substitute materials showed comparable results regarding new bone formation and radiological height changes in external sinus grafting procedures. Both bone substitute materials allow for a predictable new bone formation following sinus augmentation procedures.

  3. Advanced engineering and biomimetic materials for bone repair and regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhong, Chao

    2013-12-01

    Over the past decade, there has been tremendous progress in developing advanced biomaterials for tissue repair and regeneration. This article reviews the frontiers of this field from two closely related areas, new engineering materials for bone substitution and biomimetic mineralization for bone-like nanocomposites. Rather than providing an exhaustive overview of the literature, we focus on several representative directions. We also discuss likely future trends in these areas, including synthetic biology-enabled biomaterials design and multifunctional implant materials for bone repair and regeneration.

  4. Anabolic agents and bone quality.

    PubMed

    Sibai, Tarek; Morgan, Elise F; Einhorn, Thomas A

    2011-08-01

    The definition of bone quality is evolving particularly from the perspective of anabolic agents that can enhance not only bone mineral density but also bone microarchitecture, composition, morphology, amount of microdamage, and remodeling dynamics. This review summarizes the molecular pathways and physiologic effects of current and potential anabolic drugs. From a MEDLINE search (1996-2010), articles were identified by the search terms "bone quality" (1851 articles), "anabolic agent" (5044 articles), "PTH or parathyroid hormone" (32,229 articles), "strontium" or "strontium ranelate" (283 articles), "prostaglandin" (77,539 articles), and "statin" or "statins" (14,233 articles). The search strategy included combining each with the phrase "bone quality." Another more limited search aimed at finding more novel potential agents. Parathyroid hormone is the only US Food and Drug Administration-approved bone anabolic agent in the United States and has been the most extensively studied in in vitro animal and human trials. Strontium ranelate is approved in Europe but has not undergone Food and Drug Administration trials in the United States. All the studies on prostaglandin agonists have used in vivo animal models and there are no human trials examining prostaglandin agonist effects. The advantages of statins include the long-established advantages and safety profile, but they are limited by their bioavailability in bone. Other potential pathways include proline-rich tyrosine kinase 2 (PYK2) and sclerostin (SOST) inhibition, among others. The ongoing research to enhance the anabolic potential of current agents, identify new agents, and develop better delivery systems will greatly enhance the management of bone quality-related injuries and diseases in the future.

  5. [Osteoconductive behaviour of beta-tricalcium phosphate ceramics in osteoporotic, metaphyseal bone defects of the distal radius].

    PubMed

    Hainich, J; von Rechenberg, B; Jakubietz, R G; Jakubietz, M G; Giovanoli, P; Grünert, J G

    2014-02-01

    Surgical treatment of osteoporotic distal radius fractures with locking plates does not completely prevent loss of reduction. Additional bone deficit stabilisation with the use of bone substitute materials is receiving increased attention. Most knowledge on the in vivo behavior of bone substitutes originates from a small number of animal models after its implantation in young, good vascularized bone. This paper investigates the osteoconductivity, resorption and biocompatibility of beta-tricalcium phosphate as a temporary bone replacement in osteoporotic type distal radius fractures. 15 bone samples taken from the augmented area of the distal radius of elderly people during metal removal were examined. The material was found to be osteoconductive, good degradable, and biocompatible. Degrading process and remodelling to woven bone seem to require more time than in available comparative bioassays. The material is suitable for temporary replacement of lost, distal radius bone from the histological point of view. © Georg Thieme Verlag KG Stuttgart · New York.

  6. A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach

    PubMed Central

    Lei, Shuangyan; Frank, Matthew C.; Anderson, Donald D.; Brown, Thomas D.

    2015-01-01

    Purpose The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones. Design/methodology/approach Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are “stacked” inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone. Findings The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing. Originality/Value This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate. PMID:26120277

  7. Effects of Mixed Bone and Brisket Meat on Physico-Chemical Characteristics of Shank Bone and Rib Extracts from Hanwoo

    PubMed Central

    Jung, Myung-Ok; Choi, Jung-Seok

    2016-01-01

    This study was conducted to investigate the effects of mixed bone and brisket meat on the quality characteristics and nutritional components of shank bone extract and rib extract from Hanwoo. The pH values were influenced by the raw bones, mixed bone, brisket meat and their interactions (p<0.05). The salinity, sugar content, turbidity, and essential amino acid values increased significantly with addition of mixed bone and brisket meat. All attributes of sensory evaluation score were the highest in T6 (Rib 500 g + Mixed bone 500 g + Brisket meat 400 g) (p<0.05). The mixed bone significantly increased the saturated fatty acids of shank bone extract (p<0.001). Thus, the addition of mixed bone and brisket meat had a positive effect on the quality and nutritional components in shank and rib extracts of Hanwoo cattle. PMID:27499665

  8. Bone formation in sinus augmentation procedures using autologous bone, porcine bone, and a 50 : 50 mixture: a human clinical and histological evaluation at 2 months.

    PubMed

    Cassetta, Michele; Perrotti, Vittoria; Calasso, Sabrina; Piattelli, Adriano; Sinjari, Bruna; Iezzi, Giovanna

    2015-10-01

    The aim of this study was to perform a 2 months clinical and histological comparison of autologous bone, porcine bone, and a 50 : 50 mixture in maxillary sinus augmentation procedures. A total of 10 consecutive patients, undergoing two-stage sinus augmentation procedures using 100% autologous bone (Group A), 100% porcine bone (Group B), and a 50 : 50 mixture of autologous and porcine bone (Group C) were included in this study. After a 2-month healing period, at the time of implant insertion, clinical evaluation was performed and bone core biopsies were harvested and processed for histological analysis. The postoperative healing was uneventful regardless of the materials used for the sinus augmentation procedures. The histomorphometrical analysis revealed comparable percentages of newly formed bone, marrow spaces, and residual grafted material in the three groups. The clinical and histological results of this study indicated that porcine bone alone or in combination with autologous bone are biocompatible and osteoconductive materials and can be successfully used in sinus augmentation procedures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  10. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus.

    PubMed

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2016-06-01

    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog

    PubMed Central

    Kawamoto, Kohei; Miyaji, Hirofumi; Nishida, Erika; Miyata, Saori; Kato, Akihito; Tateyama, Akito; Furihata, Tomokazu; Shitomi, Kanako; Iwanaga, Toshihiko; Sugaya, Tsutomu

    2018-01-01

    Introduction The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog. Materials and methods GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery. Results GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold. Conclusion The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy. PMID:29713167

  12. Monitoring changes in quality of life in patients with lung cancer under treatment with chemotherapy and co administration of zoledronic acid by using specialized questionnaires.

    PubMed

    Tremmas, Ioannis; Petsatodis, George; Potoupnis, Michael; Laskou, Stella; Giannakidis, Dimitrios; Mantalovas, Stylianos; Koulouris, Charilaos; Katsaounis, Athanasios; Pavlidis, Efstathios; Amaniti, Aikaterini; Huang, Haidong; Bai, Chong; Shi, Dongchen; Dardas, Athanasios; Zarogoulidis, Paul; Sardeli, Chrisanthi; Konstantinou, Fotis; Katsikogiannis, Nikolaos; Zarogoulidis, Konstantinos; Karapantzos, Ilias; Karapantzou, Chrysanthi; Shen, Xiaping; Kesisoglou, Isaak; Sapalidis, Konstantinos

    2018-01-01

    Background: Due to the severity of the primary disease in patients with lung cancer, quality of life (QoL) is often overlooked. Factors that form QoL should be taken in consideration when planning the appropriate treatment and determining therapy targets, because of the increasing frequency of bone metastasis leading to high levels of pain. Purpose of this study is to assess quality of life in patients with lung cancer, before and after treatment combined with zoledronic acid. Methods and materials: QoL was assessed in 80 patients (49 males-31 females), of which 45 developed bone metastasis. Prior and post treatment (with co administration of zoledronic acid) seven reliable scales: Pittsburgh Sleep Quality index (PSQI), Epworth Sleeping Scale (ess), Dyspnea Scale (ds), Fatigue Severity Scale (FSS), Brief Pain Inventory (BPI), Fact-G scale for sleep quality and EQ-5D for general health condition. Results: Statistically positive correlations were verified between PSQI-DS, PSQI-FSS, BPI-ESS, DS-FSS, DS-BPI and BPI-FSS (p<0,005) prior and post treatment. Patients sleep quality was improved, pain levels decreased and betterment in quality of life was marked (p<0,001). Although significant decrease in fatigue levels was observed (p<0,001) there has been an increase in dyspnea symptoms (p<0,001). Conclusions: Significant improvement was apparent when zoledronic acid was co administered in any treatment in patients with lung cancer. Sleep quality, fatigue and pain parameters also improved, with no positive impact on the symptoms of dyspnea.

  13. Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review

    PubMed Central

    2013-01-01

    Background Several bone implants are applied in clinical practice, but none meets the requirements of an ideal implant. Platelet-rich plasma (PRP) is an easy and inexpensive way to obtain growth factors in physiologic proportions that might favour the regenerative process. The aim of this review is to analyse clinical studies in order to investigate the role of PRP in favouring bone integration of graft, graft substitutes, or implants, and to identify the materials for which the additional use of PRP might be associated with superior osseo- and soft tissues integration. Methods A search on PubMed database was performed considering the literature from 2000 to 2012, using the following string: ("Bone Substitutes"[Mesh] OR "Bone Transplantation"[Mesh] OR "Bone Regeneration"[Mesh] OR "Osseointegration"[Mesh]) AND ("Blood Platelets"[Mesh] OR "Platelet-Rich Plasma"[Mesh]). After abstracts screening, the full-texts of selected papers were analyzed and the papers found from the reference lists were also considered. The search focused on clinical applications documented in studies in the English language: levels of evidence included in the literature analysis were I, II and III. Results Literature analysis showed 83 papers that fulfilled the inclusion criteria: 26 randomized controlled trials (RCT), 14 comparative studies, 29 case series, and 14 case reports. Several implant materials were identified: 24 papers on autologous bone, 6 on freeze-dried bone allograft (FDBA), 16 on bovine porous bone mineral (BPBM), 9 on β-tricalcium phosphate (β-TCP), 4 on hydroxyapatite (HA), 2 on titanium (Ti), 1 on natural coral, 1 on collagen sponge, 1 on medical-grade calcium sulphate hemihydrate (MGCSH), 1 on bioactive glass (BG) and 18 on a combination of biomaterials. Only 4 papers were related to the orthopaedic field, whereas the majority belonged to clinical applications in oral/maxillofacial surgery. Conclusions The systematic research showed a growing interest in this approach for bone implant integration, with an increasing number of studies published over time. However, knowledge on this topic is still preliminary, with the presence mainly of low quality studies. Many aspects still have to be understood, such as the biomaterials that can benefit most from PRP and the best protocol for PRP both for production and application. PMID:24261343

  14. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration

    PubMed Central

    Short, Aaron R.; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O.

    2015-01-01

    Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current “gold standard” treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects. PMID:26693013

  15. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration.

    PubMed

    Short, Aaron R; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O

    2015-10-28

    Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current "gold standard" treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects.

  16. Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial.

    PubMed

    Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A

    2016-01-01

    In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.

  17. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  18. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    PubMed

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    PubMed

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Systemic Treatment with Strontium Ranelate Accelerates the Filling of a Bone Defect and Improves the Material Level Properties of the Healing Bone

    PubMed Central

    Zacchetti, Giovanna; Rizzoli, René

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively. PMID:25243150

  1. Using laser-induced breakdown spectroscopy to assess preservation quality of archaeological bones by measurement of calcium-to-fluorine ratios.

    PubMed

    Rusak, David Alexander; Marsico, Ryan Matthew; Taroli, Brett Louis

    2011-10-01

    We determined calcium-to-fluorine (Ca/F) signal ratios at the surface and in the depth dimension in approximately 6000-year-old sheep and cattle bones using Ca I 671.8 and F I 685.6 emission lines. Because the bones had been previously analyzed for collagen preservation quality by measurement of C/N ratios at the Oxford Radiocarbon Accelerator Unit, we were able to examine the correlation between our ratios and quality of preservation. In the bones analyzed in this experiment, the Ca I 671.8/F I 685.6 ratio was generally lower and decreased with successive laser pulses into poorly preserved bones while the ratio was generally higher and increased with successive laser pulses into well-preserved bones. After 210 successive pulses, a discriminator value for this ratio (5.70) could be used to distinguish well-preserved and poorly preserved bones regardless of species. © 2011 Society for Applied Spectroscopy

  2. Bone Quest - A Space-Based Science and Health Education Unit

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; David-Street, Janis E.; Abrams, Steve A.

    2000-01-01

    This proposal addresses the need for effective and innovative science and health education materials that focus on space bone biology and its implications for bone health on Earth. The focus of these materials, bone biology and health, will increase science knowledge as well as health awareness. Current investigations of the bone loss observed after long-duration space missions provide a link between studies of bone health in space, and studies of osteoporosis, a disease characterized by bone loss and progressive skeletal weakness. The overall goal of this project is to design and develop web-based and print-based materials for high school science students, that will address the following: a) knowledge of normal bone biology and bone biology in a microgravity environment; b) knowledge of osteoporosis; c) knowledge of treatment modalities for space- and Earth-based bone loss; and d} bone-related nutrition knowledge and behavior. To this end, we propose to design and develop a Bone Biology Tutorial which will instruct students about normal bone biology, bone biology in a microgravity environment, osteoporosis - its definition, detection, risk factors, and prevention, treatment modalities for space- and Earth-based bone loss, and the importance of nutrition in bone health. Particular emphasis will be placed on current trends in . adolescent nutrition, and their relationships to bone health. Additionally, we propose to design and develop two interactive nutrition/health ' education activities that will allow students to apply the information provided in the Bone Biology Tutorial. In the first, students will apply constructs provided in the Bone Biology Tutorial to design "Bone Health Plans" for space travelers.

  3. Nano-Material Aspects of Shock Absorption in Bone Joints

    PubMed Central

    Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375

  4. Type 2 Diabetes Mellitus Is Associated With Better Bone Microarchitecture But Lower Bone Material Strength and Poorer Physical Function in Elderly Women: A Population-Based Study.

    PubMed

    Nilsson, Anna G; Sundh, Daniel; Johansson, Lisa; Nilsson, Martin; Mellström, Dan; Rudäng, Robert; Zoulakis, Michail; Wallander, Märit; Darelid, Anna; Lorentzon, Mattias

    2017-05-01

    Type 2 diabetes mellitus (T2DM) is associated with an increased risk of fractures according to several studies. The underlying mechanisms remain unclear, although small case-control studies indicate poor quality of the cortical bone. We have studied a population-based sample of women aged 75 to 80 years in Gothenburg, randomly invited from the population register. Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (Hologic Discovery A), bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT; ExtremeCT from Scanco Medical AG), and reference point indentation was performed with Osteoprobe (Active Life Scientific). Women with T2DM (n = 99) had higher aBMD compared to controls (n = 954). Ultradistal tibial and radial trabecular bone volume fraction (+11% and +15%, respectively), distal cortical volumetric BMD (+1.6% and +1.7%), cortical area (+11.5% and +9.3%), and failure load (+7.7% and +12.9%) were higher in diabetics than in controls. Cortical porosity was lower (mean ± SD: 1.5% ± 1.1% versus 2.0% ± 1.7%, p = 0.001) in T2DM in the distal radius but not in the ultradistal radius or the tibia. Adjustment for covariates (age, body mass index, glucocorticoid treatment, smoking, physical activity, calcium intake, bone-active drugs) eliminated the differences in aBMD but not in HR-pQCT bone variables. However, bone material strength index (BMSi) by reference point indentation was lower in T2DM (74.6 ± 7.6 versus 78.2 ± 7.5, p < 0.01), also after adjustment, and women with T2DM performed clearly worse in measures of physical function (one leg standing: -26%, 30-s chair-stand test: -7%, timed up and go: +12%, walking speed: +8%; p < 0.05-0.001) compared to controls. In conclusion, we observed a more favorable bone microarchitecture but no difference in adjusted aBMD in elderly women with T2DM in the population compared to nondiabetics. Reduced BMSi and impaired physical function may explain the increased fracture risk in T2DM. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  5. Evidence for the adverse effect of starvation on bone quality: a review of the literature.

    PubMed

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200-800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality.

  6. Matrix change of bone grafting substitute after implantation into guinea pig bulla.

    PubMed

    Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W

    2012-05-01

    Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.

  7. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.

    PubMed

    Hart, N H; Nimphius, S; Rantalainen, T; Ireland, A; Siafarikas, A; Newton, R U

    2017-09-01

    This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.

  8. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.

    PubMed

    Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer

    2009-10-01

    Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.

  9. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    PubMed

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  10. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    PubMed Central

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. PMID:23976848

  11. New operational techniques of implantation of biomaterials and titanium implants in the jaw with the atrophy of the bone and soft tissues

    NASA Astrophysics Data System (ADS)

    Nikityuk, D. B.; Urakov, A. L.; Reshetnikov, A. P.; Kopylov, M. V.; Baimurzin, D. Yu.

    2015-11-01

    The research into dynamics of quality of clinical use in 2003 - 2012 of autologous and xenogeneic biomaterials at dental transplantation and implantation among 1,100 of adult patients was made. The analysis results show that at autologous bone transplantation implant survival is observed only in 72% of cases, and the "necessary" result of bone repair occurred only in 6 - 9 months. Transplantation of biomaterials of OsteoBiol® (materials "mp3", "Genos" and "Evolution") provided engraftment and bone regeneration in 100 % of cases and allowed the use of dental implantation immediately after transplantation even in case of reduction in the patient's alveolar crest down to 2.0 mm. Replace Select implants of Nobel Biocare® were used at plantation. In order to exclude Schneiderian membrane's perforation lighting of Highmore's sinus with the cold blue-violet light from inside at sinus elevation is recommended as well as deepening of dental instruments into the bone only until the blue-violet light appears under them. To exclude deficiency of soft tissue under the cervical part of the ceramic crown application of special anti-fissure technology involving biomaterial flap dissection and its laying around the implant is suggested.

  12. Bioglass: A novel biocompatible innovation.

    PubMed

    Krishnan, Vidya; Lakshmi, T

    2013-04-01

    Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.

  13. High Density Polyetherurethane Foam as a Fragmentation and Radiographic Surrogate for Cortical Bone

    PubMed Central

    Beardsley, Christina L; Heiner, Anneliese D; Brandser, Eric A; Marsh, J Lawrence; Brown, Thomas D

    2000-01-01

    Background Although one of the most important factors in predicting outcome of articular fracture, the comminution of the fracture is only subjectively assessed. To facilitate development of objective, quantitative measures of comminution phenomena, there is need for a bone fragmentation surrogate. Methods Laboratory investigation was undertaken to develop and characterize a novel synthetic material capable of emulating the fragmentation and radiographic behavior of human cortical bone. Result Screening tests performed with a drop tower apparatus identified high-density polyetherurethane foam as having suitable fragmentation properties. The material's impact behavior and its quasi-static mechanical properties are here described. Dispersal of barium sulfate (BaSO4) in the resin achieved radio-density closely resembling that of bone, without detectably altering mechanical behavior. The surrogate material's ultimate strength, elastic modulus, and quasi-static toughness are within an order of magnitude of those of mammalian cortical bone. The spectrum of comminution patterns produced by this material when impacted with varying amounts of energy is very comparable to the spectrum of bone fragment comminution seen clinically. Conclusions A novel high-density polyetherurethane foam, when subjected to impact loading, sustains comminuted fracture in a manner strikingly similar to cortical bone. Moreover, since the material also can be doped with radio-opacifier so as to closely emulate bone's radiographic signature, it opens many new possibilities for CT-based systematic study of comminution phenomena. PMID:10934621

  14. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration

    PubMed Central

    Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio

    2016-01-01

    Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035

  15. Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL

    NASA Astrophysics Data System (ADS)

    Andrews, Joy C.; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C. H.; Alwood, Joshua S.; Lee, Cathy; Zhu, Jia; Cui, Yi

    2010-06-01

    A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.

  16. Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL.

    PubMed

    Andrews, Joy C; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C H; Alwood, Joshua S; Lee, Cathy; Zhu, Jia; Cui, Yi

    2010-06-23

    A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.

  17. Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants.

    PubMed

    Payer, Michael; Lohberger, Birgit; Strunk, Dirk; Reich, Karoline M; Acham, Stephan; Jakse, Norbert

    2014-04-01

    Aim of the pilot trial was to evaluate applicability and effects of directly autotransplanted tibial bone marrow (BM) aspirates on the incorporation of porous bovine bone mineral in a sinus lift model and on the osseointegration of dental implants. Six edentulous patients with bilaterally severely resorbed maxillae requiring sinus augmentation and implant treatment were included. During surgery, tibial BM was harvested and added to bone substitute material (Bio-Oss(®) ) at the randomly selected test site. At control sites, augmentation was performed with Bio-Oss(®) alone. The cellular content of each BM aspirate was checked for multipotency and surface antigen expression as quality control. Histomorphometric analysis of biopsies from the augmented sites after 3 and 6 months (during implantation) was used to evaluate effects on bone regeneration. Osseointegration of implants was evaluated with Periotest(®) and radiographic means. Multipotent cellular content in tibial BM aspirates was comparable to that in punctures from the iliac crest. No significant difference in amount of new bone formation and the integration of bone substitute particles was detected histomorphometrically. Periotest(®) values and radiographs showed successful osseointegration of inserted implants at all sites. Directly autotransplanted tibial BM aspirates did not show beneficial regenerative effects in the small study population (N = 6) of the present pilot trial. However, the proximal tibia proved to be a potential donor site for small quantities of BM. Future trials should clarify whether concentration of tibial BM aspirates could effect higher regenerative potency. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws

    PubMed Central

    2014-01-01

    PURPOSE To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. MATERIALS AND METHODS Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. RESULTS Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. CONCLUSION In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results. PMID:25177466

  19. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  20. Bone quality assessment for total hip arthroplasty with intraoperative trabecular torque measurements.

    PubMed

    Klotz, Matthias C M; Beckmann, Nicholas A; Bitsch, Rudi G; Seebach, Elisabeth; Reiner, Tobias; Jäger, Sebastian

    2014-11-13

    In cases of poor bone quality, intraoperative torque measurement might be an alternative to preoperative dual-energy X-ray absorptiometry (DXA) to assess bone quality in total hip arthroplasty (THA). Trabecular peak torque measurement was applied in 14 paired fresh frozen human femurs. Here, a 6.5 × 23 mm wingblade was inserted into the proximal femur without harming the lateral cortical bone. Further tests of the proximal femur also evaluated bone strength (DXA, micro-computed tomography (μCT), monoaxial compression test), and the results were compared to the trabecular torque measurement. Student's t-test was used to compare the values of the groups. Pearson product-moment was applied to correlate the values of the peak torque measurement with the bone strength measured by DXA, μCT, and monoaxial compression test. In the femoral head, the mean trabecular peak torque was 4.38 ± 1.86 Nm. These values showed a strong correlation with the values of the DXA, the μCT, and the biomechanical load test (Pearson's product-moment: DXA: 0.86, μCT-BMD: 0.80, load test: 0.85). Furthermore, the torque measurement showed a more pronounced correlation with the biomechanical load test compared to the DXA. The use of this method provides highly diagnostic information about bone quality. Since the approach was adjusted for THA, no harm of the lateral bone stock will result from this measurement during surgery. The results of this initial study employing small sample sizes indicate that this new method is as sensitive as DXA in predicting bone quality and may function as an intraoperative alternative to DXA in THA. Nevertheless, before this method will turn into clinical use, more research and clinical trials are necessary.

  1. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials.

    PubMed

    Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H

    2000-11-01

    Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. Copyright 2000 Kluwer Academic Publishers

  2. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    PubMed Central

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  3. Polymeric scaffolds as stem cell carriers in bone repair.

    PubMed

    Rossi, Filippo; Santoro, Marco; Perale, Giuseppe

    2015-10-01

    Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  4. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    PubMed

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical bone. The multicompartment anthropomorphic head phantom was successfully produced and able to simulate realistic air cavities, bony anatomy, and soft tissue. Image quality assessment in the tibia phantom using the PETRA sequence showed the suitability of the resin to mimic human anatomy with high SNR and contrast making it suitable for tissue segmentation. A solid resin material, which can be 3D printed, has been found to have similar magnetic resonance signal properties to human cortical bone. Phantoms replicating skeletal anatomy were successfully produced using this resin and demonstrated their use for image quality and segmentation assessment of ultrashort echo time sequences. © 2017 American Association of Physicists in Medicine.

  5. Quantitative ultrasound measurements of bone quality in female adolescents with idiopathic scoliosis compared to normal controls.

    PubMed

    Du, Qing; Zhou, Xuan; Li, Jian A; He, Xiao H; Liang, Ju P; Zhao, Li; Yang, Xiao Y; Chen, Nan; Zhang, Shu X; Chen, Pei J

    2015-01-01

    The aims of this study were to compare the speed-of-sound (SOS) between adolescent idiopathic scoliosis (AIS) patients and controls using quantitative ultrasound examination and to further analyze the relationship between the SOS and curve type, curve magnitude, maturation status and Risser's sign in AIS patients compared to controls. Seventy-eight female AIS patients and 58 healthy female controls 10 to 16 years of age were recruited to participate. Quantitative ultrasound measurements were performed at the non-dominant distal end of the radius. The standard method for estimating the SOS and z-score was used. Comparisons were made between the SOS values and z-score in AIS patients and age-matched Asian adolescents. The SOS values of the patients were significantly lower than the controls (P < .01). The percentage of cases with low bone quality was 25% in the entire AIS sample. The prevalence of low bone quality in AIS patients was 20.5%. However, there were no correlations between the SOS and types of scoliosis (P > .05). The SOS values among different severity groups were significant, particularly between the 10° to 19° and 20° to 39° groups as well as between 10° to 19° and ≥40° groups. However, there was no significant correlation between the SOS and Cobb angles. Significant correlations were also found between the pre- and post-menarchy status in patients. There was a significant difference in the SOS values for different Rissers' signs (P < .05). Compared to nonscoliotic controls, subjects with AIS had a generally lower SOS, indicating lower bone quality. The age, Risser's sign, or maturation status, may have an effect on the bone quality; however, the curve type and magnitude do not affect the bone quality. The results of this study indicate that slower bone maturation may affect the bone quality in adolescents with AIS. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  6. Differences in the developmental origins of the periosteum may influence bone healing.

    PubMed

    Ichikawa, Y; Watahiki, J; Nampo, T; Nose, K; Yamamoto, G; Irie, T; Mishima, K; Maki, K

    2015-08-01

    The jaw bone, unlike most other bones, is derived from neural crest stem cells, so we hypothesized that it may have different characteristics to bones from other parts of the body, especially in the nature of its periosteum. The periosteum exhibits osteogenic potential and has received considerable attention as a grafting material for the repair of bone and joint defects. Gene expression profiles of jaw bone and periosteum were evaluated by DNA microarray and real-time polymerase chain reaction. Furthermore, we perforated an area 2 mm in diameter on mouse frontal and parietal bones. Bone regeneration of these calvarial defects was evaluated using microcomputed tomography and histological analysis. The DNA microarray data revealed close homology between the gene expression profiles within the ilium and femur. The gene expression of Wnt-1, SOX10, nestin, and musashi-1 were significantly higher in the jaw bone than in other locations. Microcomputed tomography and histological analysis revealed that the jaw bone had superior bone regenerative abilities than other bones. Jaw bone periosteum exhibits a unique gene expression profile that is associated with neural crest cells and has a positive influence on bone regeneration when used as a graft material to repair bone defects. A full investigation of the biological and mechanical properties of jaw bone as an alternative graft material for jaw reconstructive surgery is recommended. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Comparison of Bovine Bone-Autogenic Bone Mixture Versus Platelet-Rich Fibrin for Maxillary Sinus Grafting: Histologic and Histomorphologic Study.

    PubMed

    Ocak, Hakan; Kutuk, Nukhet; Demetoglu, Umut; Balcıoglu, Esra; Ozdamar, Saim; Alkan, Alper

    2017-06-01

    Numerous grafting materials have been used to augment the maxillary sinus floor for long-term stability and success for implant-supported prosthesis. To enhance bone formation, adjunctive blood-born growth factor sources have gained popularity during the recent years. The present study compared the use of platelet-rich fibrin (PRF) and bovine-autogenous bone mixture for maxillary sinus floor elevation. A split-face model was used to apply 2 different filling materials for maxillary sinus floor elevation in 22 healthy adult sheep. In group 1, bovine and autogenous bone mixture; and in group 2, PRF was used. The animals were killed at 3, 6, and 9 months. Histologic and histomorphologic examinations revealed new bone formation in group 1 at the third and sixth months. In group 2, new bone formation was observed only at the sixth month, and residual PRF remnants were identified. At the ninth month, host bone and new bone could not be distinguished from each other in group 1, and bone formation was found to be proceeding in group 2. PRF remnants still existed at the ninth month. In conclusion, bovine bone and autogenous bone mixture is superior to PRF as a grafting material in sinus-lifting procedures.

  8. The effectiveness of the bone bridge transtibial amputation technique: A systematic review of high-quality evidence.

    PubMed

    Kahle, Jason T; Highsmith, M Jason; Kenney, John; Ruth, Tim; Lunseth, Paul A; Ertl, Janos

    2017-06-01

    This literature review was undertaken to determine if commonly held views about the benefits of a bone bridge technique are supported by the literature. Four databases were searched for articles pertaining to surgical strategies specific to a bone bridge technique of the transtibial amputee. A total of 35 articles were identified as potential articles. Authors included methodology that was applied to separate topics. Following identification, articles were excluded if they were determined to be low quality evidence or not pertinent. Nine articles were identified to be pertinent to one of the topics: Perioperative Care, Acute Care, Subjective Analysis and Function. Two articles sorted into multiple topics. Two articles were sorted into the Perioperative Care topic, 4 articles sorted into the Acute Care topic, 2 articles into the Subjective Analysis topic and 5 articles into the Function topic. There are no high quality (level one or two) clinical trials reporting comparisons of the bone bridge technique to traditional methods. There is limited evidence supporting the clinical outcomes of the bone bridge technique. There is no agreement supporting or discouraging the perioperative and acute care aspects of the bone bridge technique. There is no evidence defining an interventional comparison of the bone bridge technique. Current level III evidence supports a bone bridge technique as an equivalent option to the non-bone bridge transtibial amputation technique. Formal level I and II clinical trials will need to be considered in the future to guide clinical practice. Clinical relevance Clinical Practice Guidelines are evidence based. This systematic literature review identifies the highest quality evidence to date which reports a consensus of outcomes agreeing bone bridge is as safe and effective as alternatives. The clinical relevance is understanding bone bridge could additionally provide a mechanistic advantage for the transtibial amputee.

  9. Navigating Survival: Quality of Life Following Bone Marrow Transplantation.

    DTIC Science & Technology

    1991-01-01

    This study explored the quality of life of adult Bone Marrow Transplantation (BMT) survivors and processes involved in maintaining or enhancing life...quality were identified. Ground theory methodology was used to explore quality of life from the survivor’s perspective. Five adults, 87 to 578 days...processes employed by BMT survivors to manage quality of life disruptions. BMT survivors identified disruptions in quality of life during the rapid

  10. Distribution of Type I Collagen Morphologies in Bone: Relation to Estrogen Depletion

    PubMed Central

    Wallace, Joseph M.; Erickson, Blake; Les, Clifford M.; Orr, Bradford G.; Holl, Mark M. Banaszak

    2009-01-01

    Bone is an amazing material evolved by nature to elegantly balance structural and metabolic needs in the body. Bone health is an integral part of overall health, but our lack of understanding of the ultrastructure of healthy bone precludes us from knowing how disease may impact nanoscale properties in this biological material. Here, we show that quantitative assessments of a distribution of Type I collagen fibril morphologies can be made using atomic force microscopy (AFM). We demonstrate that normal bone contains a distribution of collagen fibril morphologies and that changes in this distribution can be directly related to disease state. Specifically, by monitoring changes in the collagen fibril distribution of sham-operated and estrogen-depleted sheep, we have shown the ability to detect estrogen-deficiency-induced changes in Type I collagen in bone. This discovery provides new insight into the ultrastructure of bone as a tissue and the role of material structure in bone disease. The observation offers the possibility of a much-needed in vitro procedure to complement the current methods used to diagnose osteoporosis and other bone disease. PMID:19932773

  11. Efficacy of bone substitute material in preserving volume when placing a maxillary immediate complete denture: study protocol for the PANORAMIX randomized controlled trial.

    PubMed

    Rignon-Bret, Christophe; Hadida, Alain; Aidan, Alexis; Nguyen, Thien-Huong; Pasquet, Gerard; Fron-Chabouis, Helene; Wulfman, Claudine

    2016-05-20

    Bone preservation is an essential issue in the context of last teeth extraction and complete edentulism. The intended treatment, whether a complete denture or an implant placement, is facilitated with a voluminous residual ridge. Bone resorption after multiple extractions has not been as well studied as the bone resorption that occurs after the extraction of a single tooth. Recent advances in bone substitute materials have revived this issue. The purpose of this study is to evaluate the interest in using bone substitute material to fill the socket after last teeth extraction in a maxillary immediate complete denture procedure compared with the conventional protocol without socket filling. A randomized, controlled, clinical trial was designed. The 34 participants eligible for maxillary immediate complete denture were divided into two groups. Complete dentures were prepared despite persistence of the last anterior teeth. The control group received a conventional treatment including denture placement immediately after extractions. In the experimental group, in addition to the immediate denture placement, a xenograft bone-substitute material (Bio-Oss Collagen®) was placed in the fresh sockets. The primary outcome of the study is to compare mean bone ridge height loss 1 year after maxillary immediate complete denture placement, with or without bone-substitute material, in incisor and canine sockets. The secondary outcomes are to compare the average bone ridge height and width loss for each extraction site. An original quantitative evaluation method using cone beam computed tomography was designed for reproducible measurements, with a radio-opaque denture duplicate. Two independent operators perform the radiologic measurements. The immediate complete denture technique limits bone resorption in multiple extraction situations and thus allows better denture retention and better options for implant placement. To compare the benefit of using any bone socket-filling material, we proposed a quantitative evaluation protocol of resorption in the specific case of the last anterior maxillary teeth extraction with immediate denture placement. ClinicalTrials.gov, NCT02120053 . Registered on 18 April 2014.

  12. Use of platelet lysate for bone regeneration - are we ready for clinical translation?

    PubMed Central

    Altaie, Ala; Owston, Heather; Jones, Elena

    2016-01-01

    Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells (MSCs). Although MSCs are most commonly grown in media containing fetal calf serum, human platelet lysate (PL) offers an effective alternative. Bone marrow - derived MSCs grown in PL-containing media display faster proliferation whilst maintaining good osteogenic differentiation capacity. Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo. In an alternative approach, nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices. Even though methods to coat scaffolds with PL vary, in vitro studies suggest that PL allows for MSC adhesion, migration and differentiation inside these scaffolds. Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo. This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration. To minimise inconsistency between the studies, further work is required towards standardisation of PL preparation in terms of the starting material, platelet concentration, leukocyte depletion, and the method of platelet lysis. PL quality control procedures and its “potency” assessment are urgently needed, which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation. Furthermore, different PL formulations could be tailor-made for specific bone repair indications. Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration. PMID:26981170

  13. Use of platelet lysate for bone regeneration - are we ready for clinical translation?

    PubMed

    Altaie, Ala; Owston, Heather; Jones, Elena

    2016-02-26

    Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells (MSCs). Although MSCs are most commonly grown in media containing fetal calf serum, human platelet lysate (PL) offers an effective alternative. Bone marrow - derived MSCs grown in PL-containing media display faster proliferation whilst maintaining good osteogenic differentiation capacity. Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo. In an alternative approach, nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices. Even though methods to coat scaffolds with PL vary, in vitro studies suggest that PL allows for MSC adhesion, migration and differentiation inside these scaffolds. Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo. This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration. To minimise inconsistency between the studies, further work is required towards standardisation of PL preparation in terms of the starting material, platelet concentration, leukocyte depletion, and the method of platelet lysis. PL quality control procedures and its "potency" assessment are urgently needed, which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation. Furthermore, different PL formulations could be tailor-made for specific bone repair indications. Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.

  14. Enhanced bone formation in the vicinity of porous β-TCP scaffolds exhibiting slow release of collagen-derived tripeptides.

    PubMed

    Kamikura, Keita; Minatoya, Tsutomu; Terada-Nakaishi, Michiko; Yamamoto, Shoko; Sakai, Yasuo; Furusawa, Toshitake; Matsushima, Yuta; Unuma, Hidero

    2017-09-01

    It has been experimentally proven that orally ingested collagen-derived tripeptides (Ctp) are quickly absorbed in the body and effectively promote the regeneration of connective tissues including bone and skin. Ctp are capable to activate osteoblasts and fibroblasts, which eventually promotes tissue regeneration. Based on these findings, a hypothesis was formulated in this study that direct delivery of Ctp to bone defect would also facilitate tissue regeneration as well as oral administration. To test the hypothesis, we prepared a bone augmentation material with the ability to slowly release Ctp, and investigated its in vivo bone regeneration efficacy. The implant material was porous β-tricalcium phosphate (β-TCP) scaffold which was coated with a co-precipitated layer of bone-like hydroxyapatite and Ctp. The β-TCP was impregnated with approximately 0.8%(w/w) Ctp. Then, the Ctp-modified β-TCP was implanted into bone defects of Wistar rats to evaluate in vivo efficacy of Ctp directly delivered from the material to the bone defects. The control was pristine porous β-TCP. In vitro tests showed that Ctp were steadily released from the co-precipitated layer for approximately two weeks. The Ctp-modified scaffolds significantly promoted new bone formation in vivo in their vicinity as compared with pristine β-TCP scaffolds; 6 weeks after the implantation, Ctp-modified scaffolds promoted twice as much bone formation as the control implants. Consequently, we achieved the slow and steady release of Ctp, and found that direct delivery of Ctp from implant materials was effective for bone regeneration as well as oral administration. A β-TCP scaffold capable of slowly releasing bone-enhancing substances significantly promoted bone formation.

  15. External bone marrow cytological examination quality assurance (EQAhem)--summary after 6 years in Poland.

    PubMed

    Lewandowski, Krzysztof; Kurpierz, Katarzyna; Sledzinska, Anna

    2015-10-01

    Bone marrow macroscopic examination remains one of the most difficult and subjective laboratory assessments in hematology. Only a few external quality assurance programs in the field are present worldwide. We have developed an external quality assurance program EQAhem that allows assessment of the whole process of bone marrow examination. The program participants assess blood and bone marrow smears from the patient, identify selected cells from photographs provided to them, and interpret the microscopic results. In this article, the results of the EQAhem program in Poland from 6 years are summarized. During this time, 62 labs were assessed in total, and positive results were achieved by 89.25 % labs, taking into account all tests. Correct responses with respect to the percentage of cell count were provided by ca. 77.5 % labs. Slightly worse results were obtained when megakaryocyte count and cell identification from photographs were tested. The worst results were obtained in case of dysplasia assessment and clinical interpretation of microscopic examination (54.1 and 58.6 % correct responses, respectively). EQAhem delivers precise information about the quality of bone marrow examinations performed in Poland and has a substantial educational value. We believe that after 6 years, EQAhem has significantly improved the quality of bone marrow microscopic examinations performed in Poland.

  16. Finite element analysis of stress-breaking attachments on maxillary implant-retained overdentures.

    PubMed

    Tanino, Fuminori; Hayakawa, Iwao; Hirano, Shigezo; Minakuchi, Shunsuke

    2007-01-01

    The purpose of this study was to examine the effect of stress-breaking attachments at the connections between maxillary palateless overdentures and implants. Three-dimensional finite element models were used to reproduce an edentulous human maxilla with an implant-retained overdenture. Two-implant models (in the canine tooth positions on both sides) and four-implant models (in the canine and second premolar tooth positions on both sides) were examined. Stress-breaking material connecting the implants and denture was included around each abutment. Axial loads of 100 N were applied to the occlusal surface at the left first molar tooth positions. In each model, the influence of the stress-breaking attachments was compared by changing the elastic modulus from 1 to 3,000 MPa and the thickness of the stress-breaking material from 1 to 3 mm. Maximum stress at the implant-bone interface and stress at the cortical bone surface just under the loading point were calculated. In all models, maximum stress at the implant-bone interface with implants located in the canine tooth position was generated at the peri-implant bone on the loading side. As the elastic modulus of the stress-breaking materials increased, the stress increased at the implant-bone interface and decreased at the cortical bone surface. Moreover, stress at the implant-bone interface with 3-mm-thick stress-breaking material was smaller than that with 1-mm-thick material. Within the limitations of this experiment, stress generated at the implant-bone interface could be controlled by altering the elastic modulus and thickness of the stress-breaking materials.

  17. Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial

    PubMed Central

    Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J.; Kovács, Adorján F.; Ghanaati, Shahram; Sader, Robert A.

    2016-01-01

    Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials. PMID:28299254

  18. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.

    PubMed

    Nilsson, M; Wang, J S; Wielanek, L; Tanner, K E; Lidgren, L

    2004-01-01

    An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.

  19. Supercritical carbon dioxide-processed resorbable polymer nanocomposites for bone graft substitute applications

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.

    Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable polymer nanocomposites composed of resorbable polymers and nanocaly exhibit physical, mechanical and biologic properties that make them excellent candidate materials for structural bone graft substitute applications.

  20. Vertebral osteoporosis: perfused animal cadaver model for testing new vertebroplastic agents.

    PubMed

    Hoell, Thomas; Huschak, Gerald; Beier, Andre; Holzhausen, Hans-Juergen; Meisel, Hans-Joerg; Emmrich, Frank

    2010-12-01

    Experimental study. It was aimed to establish a cadaver model to imitate osteoporotic perfused vertebral bone and to allow for transpedicular transfer of bone cement and various new materials into vertebrae. The model was perfused to simulate vertebroplasty in the presence of transvertebral blood flow. The injection of bone cement into vertebrae bears the risk of irreversible discharge of material into the venous system of the spinal canal. The bovine cadaver model studied allows visual studies of material distribution in a vertebral bone, the potential spill-out of material, and quantification of washout and disintegration phenomena. Thoracic and lumbar vertebrae from 1-year-old calves were cut transversally into 5 mm slices, macerated, and decalcified. The softened bone slices were compressed between 2 transparent plastic discs. A standard vertebroplasty cannula (outer diameter 3.5 mm, inner diameter 2.5 mm) was inserted into the vertebral body via the pedicle to transfer the different vertebroplasty materials. Arterial blood flow was simulated by means of liquid irrigation via 2 needles in the ventral part of the vertebral body slice. Metal powder was mixed with the solution to indicate the blood flow in the bone. The model was evaluated with the vertebroplasty cement polymethylmethacrylate. The model permitted visualization of the insertion and distribution of vertebroplasty materials. Liquid bone cement was effused into the spinal canal as in the clinical situation. Higher modulus cement acted in the same way as in clinical vertebroplasty. Rigid vertebroplasty agents led to trabecular fractures and stable mechanical interactions with the bone and eventually moved dorsal bone fragments into the spinal canal. Sedimentation of the metal powder indicated regions of perfusion. The model simulated the clinical behavior of liquid and higher modulus vertebroplasty agents in the presence of blood flow. It enabled safe ex vivo testing of the mechanical and physical properties of alternative vertebroplasty materials under flow conditions.

  1. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients

    PubMed Central

    Chatvaratthana, Kanthanat; Thaworanunta, Sita; Seriwatanachai, Dutmanee; Wongsirichat, Natthamet

    2017-01-01

    Background/purpose Resonance frequency analysis (RFA) is clinically used in dentistry to access the stiffness of dental implants in surrounding bone. However, the clear advantages and disadvantages of this method are still inconclusive. The aim of this study was to investigate and compare implant stability quotient (ISQ) values obtained from RFA with parameters obtained from a cone beam computed tomography (CBCT) scan of the same region. Materials and methods Nineteen implants (Conelog) were inserted in the posterior maxillary and mandibular partially edentulous regions of 16 patients. At the time of implant placement, the ISQ values were obtained using RFA (Osstell). CBCT was used to measure the thickness of the crestal, cortical, buccolingual cortical, and cancellous bone at 3, 6, and 9 mm below the crestal bone level, as indicated by radiographic markers. The ratio of the thickness of the cortical to cancellous bone at varying depths was also calculated and classified into 4 groups (Group 1–4). Results There was a strong correlation between the crestal cortical bone thickness and ISQ values (P<0.001). The thickness of the buccolingual cortical bone and ratio of the cortical to cancellous bone thickness at 3 mm were significantly related to the ISQ (P = 0.018 and P = 0.034, respectively). Furthermore, the ISQs in Group 1 were the highest compared with those in Group 2 and Group 3, whereas the CBCT parameters at 6 and 9 mm did not have any specific correlation with the ISQ values. Conclusion This study showed that the ISQ values obtained from RFA highly correlated with the quantity and quality of bone 3 mm below the crestal bone level. The correlation between the ISQ and bone surrounding the implant site was dependent on the depth of measurement. Therefore, RFA can help to predict the marginal bone level, as confirmed in this study. PMID:29281715

  2. Advances in imaging: impact on studying craniofacial bone structure.

    PubMed

    Majumdar, S

    2003-01-01

    Methods for measuring the structure of craniofacial bones are discussed in this paper. In addition to the three-dimensional macro-structure of the craniofacial skeleton, there is considerable interest in imaging the bone at a microscopic resolution in order to depict the micro-architecture of the trabecular bone itself. In addition to the density of the bone, the microarchitecture reflects bone quality. An understanding of bone quality and density changes has implications for a number of craniofacial pathologies, as well as for implant design and understanding the biomechanical function and loading of the jaw. Trabecular bone micro-architecture has been recently imaged using imaging methods such as micro-computed tomography, magnetic resonance imaging, and the images have been used in finite element models to assess bone mechanical properties. In this paper, some of the recent advances in micro-computed tomography and magnetic resonance imaging are reviewed, and their potential for imaging the trabecular bone in mandibular bones is presented. Examples of in vitro and in vivo images are presented.

  3. Prevalence of vitamin D insufficiency among adolescents and its correlation with bone parameters using high-resolution peripheral quantitative computed tomography.

    PubMed

    Cheung, T F; Cheuk, K Y; Yu, F W P; Hung, V W Y; Ho, C S; Zhu, T Y; Ng, B K W; Lee, K M; Qin, L; Ho, S S Y; Wong, G W K; Cheng, J C Y; Lam, T P

    2016-08-01

    Vitamin D deficiency and insufficiency are highly prevalent among adolescents in Hong Kong, which is a sub-tropical city with ample sunshine. Vitamin D level is significantly correlated with key bone density and bone quality parameters. Further interventional studies are warranted to define the role of vitamin D supplementation for improvement of bone health among adolescents. The relationship between bone quality parameters and vitamin D (Vit-D) status remains undefined among adolescents. The aims of this study were to evaluate Vit-D status and its association with both bone density and bone quality parameters among adolescents. Three hundred thirty-three girls and 230 boys (12-16 years old) with normal health were recruited in summer and winter separately from local schools. Serum 25(OH) Vit-D level, bone density and quality parameters by Dual Energy X-ray Absorptiometry (DXA) and High-Resolution peripheral Quantitative Computed Tomography (HR-pQCT), dietary calcium intake, and physical activity level were assessed. Sixty-four point seven percent and 11.4 % of subjects were insufficient [25 ≤ 25(OH)Vit-D ≤ 50 nmol/L] and deficient [25(OH)Vit-D < 25 nmol/L] in Vit-D, respectively. The mean level of serum 25(OH)Vit-D in summer was significantly higher than that in winter (44.7 ± 13.6 and 35.9 ± 12.6 nmol/L, respectively) without obvious gender difference. In girls, areal bone mineral density (aBMD) and bone mineral content (BMC) of bilateral femoral necks, cortical area, cortical thickness, total volumetric bone mineral density (vBMD), and trabecular thickness were significantly correlated with 25(OH)Vit-D levels. In boys, aBMD of bilateral femoral necks, BMC of the dominant femoral neck, cortical area, cortical thickness, total vBMD, trabecular vBMD, BV/TV, and trabecular separation were significantly correlated with 25(OH)Vit-D levels. Vit-D insufficiency was highly prevalent among adolescents in Hong Kong with significant correlation between Vit-D levels and key bone density and bone quality parameters being detected in this study. Given that this is a cross-sectional study and causality relationship cannot be inferred, further interventional studies investigating the role of Vit-D supplementation on improving bone health among adolescents are warranted.

  4. Evaluation of demineralized bone and bone transplants in vitro and in vivo with cone beam computed tomography imaging.

    PubMed

    Draenert, F G; Gebhart, F; Berthold, M; Gosau, M; Wagner, W

    2010-07-01

    The objective of this study was to determine the ability of two flat panel cone beam CT (CBCT) devices to identify demineralized bone and bone transplants in vivo and in vitro. Datasets from patients with autologous bone grafts (n = 9, KaVo 3DeXam (KaVo, Biberach, Germany); n = 38, Accuitomo 40 (Morita, Osaka, Japan)) were retrospectively evaluated. Demineralized and non-demineralized porcine cancellous bone blocks were examined with the two CBCT devices. A SawBone skull (Pacific Research Laboratories, Vashon, WA) was used as a positioning tool for the bone blocks. Descriptive evaluation and image quality assessment were conducted on the KaVo 3DeXam data (voxel size 0.3 mm) using the OsiriX viewer as well as on the Morita Accuitomo data (voxel size 0.25 mm) using proprietary viewer software. Both in vivo and in vitro, the descriptive analysis of the images of the two devices showed well-visualized bone transplants with clearly defined cancellous bones and well-defined single bone trabeculae in all cross-sections. In vitro, demineralized samples showed lower radiographic opacity but no significant loss of quality compared with fresh bone (P = 0.070). Single cancellous bone trabeculae were significantly better visualized with the Morita 3D Accuitomo device than with the KaVo 3DeXam device (P = 0.038). Both the KaVo 3DeXam and Morita 3D Accuitomo devices produce good-quality images of cancellous bones in in vivo remodelling as well as after in vitro demineralization.

  5. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    PubMed

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  6. [Osteostimulating effect of bone xenograft on bone tissue regeneration].

    PubMed

    Balin, V N; Balin, D V; Iordanishvili, A K; Musikin, M I

    2015-01-01

    The aim of experimental case-control study performed in 28 dogs divided in 2 groups was to assess local tissue reactions on bone xenograft transplantation; dynamics of bone remodeling and formation at the site of bone defect wall contacting with bone xenograft; dynamics and mechanisms of xenograft remodeling. Transplantation of xenograft in conventional bone defects did not cause inflammatory of destructive reactions because of high biocompatibility of the material. At transplantation site active fibrous bone trabeculae formation filling the spaces between xenograft participles was observed. On the 90th day newly formed bone showed lammelar structure. Simultaneously from the 42d day the invasion of cell elements from recipient bed into the material was seen leading to xenograft resorption. The observed dynamics may be assessed as gradual substitution of xenograft with newly formed host bone structures.

  7. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    PubMed

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  8. Trained nurses can obtain satisfactory bone marrow aspirates and trephine biopsies.

    PubMed Central

    Lawson, S; Aston, S; Baker, L; Fegan, C D; Milligan, D W

    1999-01-01

    AIMS: To assess the feasibility of training nurse practitioners to perform bone marrow aspiration and trephine biopsy, and to compare the quality of these samples with those obtained by medical staff. METHODS: A retrospective audit was undertaken of nurse practitioner and medical staff performance in bone marrow procedures in a busy haematology day unit. RESULTS: Nurse practitioners fared favourably in comparison with medical staff in performing bone marrow trephine biopsies, with mean biopsy lengths of 11 mm and 10.7 mm respectively. However, only 78% of the smears obtained by the nurses were judged technically satisfactory, compared with 91% prepared by doctors. This discrepancy was thought to be due largely to the quality of slide spreading. CONCLUSIONS: With motivated staff and a structured educational and training programme it is possible for nurse practitioners to perform the techniques of bone marrow aspiration and biopsy, and obtain specimens of satisfactory quality, thus improving efficiency of the haematology day unit and increasing quality of patient care. Images PMID:10396248

  9. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.

    PubMed

    Abraham, Adam C; Agarwalla, Avinesh; Yadavalli, Aditya; Liu, Jenny Y; Tang, Simon Y

    2016-06-01

    The assessment of fracture risk often relies primarily on measuring bone mineral density, thereby accounting for only a single pathology: the loss of bone mass. However, bone's ability to resist fracture is a result of its biphasic composition and hierarchical structure that imbue it with high strength and toughness. Reference point indentation (RPI) testing is designed to directly probe bone mechanical behavior at the microscale in situ, although it remains unclear which aspects of bone composition and structure influence the results at this scale. Therefore, our goal in this study was to investigate factors that contribute to bone mechanical behavior measured by cyclic reference point indentation, impact reference point indentation, and three-point bending. Twenty-eight female cadavers (ages 57-97) were subjected to cyclic and impact RPI in parallel at the unmodified tibia mid-diaphysis. After RPI, the middiaphyseal tibiae were removed, scanned using micro-CT to obtain cortical porosity (Ct.Po.) and tissue mineral density (TMD), then tested using three-point bending, and lastly assayed for the accumulation of advanced glycation end-products (AGEs). Both the indentation distance increase from cyclic RPI (IDI) and bone material strength index from impact RPI (BMSi) were significantly correlated with TMD (r=-0.390, p=0.006; r=0.430, p=0.002; respectively). Accumulation of AGEs was significantly correlated with IDI (r=0.281, p=0.046), creep indentation distance (CID, r=0.396, p=0.004), and BMSi (r=-0.613, p<0.001). There were no significant relationships between tissue TMD or AGEs accumulation with the quasi-static material properties. Toughness decreased with increasing tissue Ct.Po. (r=-0.621, p<0.001). Other three-point bending measures also correlated with tissue Ct.Po. including the bending modulus (r=-0.50, p<0.001) and ultimate stress (r=-0.56, p<0.001). The effects of Ct.Po. on indentation were less pronounced with IDI (r=0.290, p=0.043) and BMSi (r=-0.299, p=0.037) correlated modestly with tissue Ct.Po. These results suggest that RPI may be sensitive to bone quality changes relating to collagen. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Selective laser sintering of calcium phosphate materials for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as control of micro and macro pore structure, to maximize bone healing and provide sufficient mechanical strength. It also permits the complete removal of the polymeric binders that are resided in the SLS process. In collaboration with the University of Texas Health Science Center at San Antonio and BioMedical Enterprises, Inc., porous implants based on anatomical geometry have been successfully implanted in rabbits and dogs. These histologic animal studies reveal excellent biocompatibility and show its great potential for commercial custom-fit implant manufacture. The second research effort involves fabrication of fully dense bone for application in dental restoration and load-bearing orthopedic functions. Calcium phosphate glass melts, proven to be biocompatible in the first effort, were cast into carbon molds. Processes were developed for preparing the molds. These carbon molds of anatomic shape can be prepared from either Computer Numerical Control (CNC) milling of slab stock or SLS processing of thermoset-coated graphite powder. The CNC milling method provides accurate dimension of the molds in a short period of time, however, the capable geometries are limited; generally two pieces of molds are required for complex shapes. The SLS method provides very complex shape green molds. However, they need to go through pyrolysis of thermoset binder to provide the high temperature capability reached at calcium phosphate melt temperatures (1100°C) and noticeable shrinkage was observed during pyrolysis. The cast glass was annealed to develop polycrystalline calcium phosphate. This process also exhibits great potential.

  11. Clinical Application of Mesenchymal Stem Cells and Novel Supportive Therapies for Oral Bone Regeneration

    PubMed Central

    O'Valle, Francisco; Lanis, Alejandro; Dohan Ehrenfest, David M.; Wang, Hom-Lay; Galindo-Moreno, Pablo

    2015-01-01

    Bone regeneration is often needed prior to dental implant treatment due to the lack of adequate quantity and quality of the bone after infectious diseases, trauma, tumor, or congenital conditions. In these situations, cell transplantation technologies may help to overcome the limitations of autografts, xenografts, allografts, and alloplastic materials. A database search was conducted to include human clinical trials (randomized or controlled) and case reports/series describing the clinical use of mesenchymal stem cells (MSCs) in the oral cavity for bone regeneration only specifically excluding periodontal regeneration. Additionally, novel advances in related technologies are also described. 190 records were identified. 51 articles were selected for full-text assessment, and only 28 met the inclusion criteria: 9 case series, 10 case reports, and 9 randomized controlled clinical trials. Collectively, they evaluate the use of MSCs in a total of 290 patients in 342 interventions. The current published literature is very diverse in methodology and measurement of outcomes. Moreover, the clinical significance is limited. Therefore, the use of these techniques should be further studied in more challenging clinical scenarios with well-designed and standardized RCTs, potentially in combination with new scaffolding techniques and bioactive molecules to improve the final outcomes. PMID:26064899

  12. Amino acid and proximate composition of fish bone gelatin from different warm-water species: A comparative study

    NASA Astrophysics Data System (ADS)

    Atma, Y.

    2017-03-01

    Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.

  13. Is Graphene a Promising Nano-Material for Promoting Surface Modification of Implants or Scaffold Materials in Bone Tissue Engineering?

    PubMed Central

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang

    2014-01-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering. PMID:24447041

  14. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?

    PubMed

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang; Zhou, Yongsheng

    2014-10-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.

  15. Localized tissue mineralization regulated by bone remodelling: A computational approach

    PubMed Central

    Decco, Oscar; Adams, George; Cook, Richard B.; García Aznar, José Manuel

    2017-01-01

    Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent–material density curve. Numerical results are discussed pointing to potential clinical applications. PMID:28306746

  16. 3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration.

    PubMed

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan; Jiang, Xinquan; Wu, Chengtie

    2017-12-01

    Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root-like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration.

  17. 3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration

    PubMed Central

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan

    2017-01-01

    Abstract Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root‐like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration. PMID:29270348

  18. Evaluation of Guided Bone Regeneration around Oral Implants over Different Healing Times Using Two Different Bovine Bone Materials: A Randomized, Controlled Clinical and Histological Investigation.

    PubMed

    Kohal, Ralf Joachim; Straub, Lisa Marie; Wolkewitz, Martin; Bächle, Maria; Patzelt, Sebastian Berthold Maximilian

    2015-10-01

    To evaluate the potential of two bone substitute materials and the influence of different healing periods in guided bone regeneration therapy of osseous defects around implants. Twenty-four edentulous patients received implants in the region of the lost lower incisors. Around two standardized osseous defects were created, treated either with a 50:50 mixture of PepGen P-15® and OsteoGraf®/N-700 (test group) or with BioOss® (control group), and covered with titanium membranes. After healing periods of 2, 4, 6, or 9 months, the implants were removed together with the surrounding bone and subsequently prepared for histological evaluations. Defect depths in both groups showed a clinical reduction after intervention. The histologically measured distance from the implant shoulder to the first point of bone-implant contact (BIC) after treatment did not differ between the two groups. The healing time influenced the level of the first point of BIC, with a longer healing period producing a more coronal first point of BIC. A greater percentage BIC and a higher fraction of mineralized bone were found in the pristine bone area compared with the augmented defect area. It can be concluded that in the treatment of osseous defects around oral implants, both materials were equally effective bone substitute materials when used in combination with guided bone regeneration. © 2014 Wiley Periodicals, Inc.

  19. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement.

    PubMed

    Tsukimura, Naoki; Yamada, Masahiro; Aita, Hideki; Hori, Norio; Yoshino, Fumihiko; Chang-Il Lee, Masaichi; Kimoto, Katsuhiko; Jewett, Anahid; Ogawa, Takahiro

    2009-07-01

    Currently used poly(methyl methacrylate) (PMMA)-based bone cement lacks osteoconductivity and induces osteolysis and implant loosening due to its cellular and tissue-toxicity. A high percentage of revision surgery following the use of bone cement has become a significant universal problem. This study determined whether incorporation of the amino acid derivative N-acetyl cysteine (NAC) in bone cement reduces its cytotoxicity and adds osteoconductivity to the material. Biocompatibility and bioactivity of PMMA-based bone cement with or without 25mm NAC incorporation was examined using rat bone marrow-derived osteoblastic cells. Osteoconductive potential of NAC-incorporated bone cement was determined by microCT bone morphometry and implant biomechanical test in the rat model. Generation of free radicals within the polymerizing bone cement was examined using electron spin resonance spectroscopy. Severely compromised viability and completely suppressed phenotypes of osteoblasts on untreated bone cement were restored to the normal level by NAC incorporation. Bone volume formed around 25mm NAC-incorporated bone cement was threefold greater than that around control bone cement. The strength of bone-bone cement integration was 2.2 times greater for NAC-incorporated bone cement. For NAC-incorporated bone cement, the spike of free radical generation ended within 12h, whereas for control bone cement, a peak level lasted for 6 days and a level greater than half the level of the peak was sustained for 20 days. NAC also increased the level of antioxidant glutathione in osteoblasts. These results suggest that incorporation of NAC in PMMA bone cement detoxifies the material by immediate and effective in situ scavenging of free radicals and increasing intracellular antioxidant reserves, and consequently adds osteoconductivity to the material.

  20. Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.

    PubMed

    Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo

    2012-09-27

    The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.

  1. Foreign Body Giant Cell-Related Encapsulation of a Synthetic Material Three Years After Augmentation.

    PubMed

    Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram

    2016-06-01

    Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.

  2. Production of microscale particles from fish bone by gas flow assisted laser ablation

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-12-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.

  3. Bone bonding at natural and biomaterial surfaces.

    PubMed

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  4. Clinical and histologic outcomes of calcium sulfate in the treatment of postextraction sockets.

    PubMed

    Ruga, Emanuele; Gallesio, Cesare; Chiusa, Luigi; Boffano, Paolo

    2011-03-01

    The aim of this prospective study was to assess the clinical and histologic outcomes obtained with calcium sulfate (CS) used as a filler material in fresh premolar and molar postextraction sockets. Sixty premolar or molar postextraction sockets were filled with CS. Among the 60 grafted sockets, after 3 months, 50 underwent implant placement and clinical assessment. The removal of a sample core of newly generated intrasocket tissue was performed in 19 sockets. Collected samples were sent for histologic examination. The percentage of vital bone, nonvital bone, residual CS, amorphous material, and connective areas in every sample was calculated and recorded. Fifty postextraction regenerated sockets that underwent implant placement 3 months after tooth removal were included in this study.A partial postoperative exposition of the graft was observed in 12 of 50 sockets. At the surgical reentry, the augmented extraction sockets were completely filled by a hard material with an adequate alveolar crest in 41 cases. Histologic examination of the cores revealed that 63.16% of the intrasocket tissue was new vital bone, 2.1% was nonvital bone, 4.74% was fibrous tissue, and 30% was amorphous material. No residual CS was identified in bone cores. This study confirmed that CS is an ideal grafting material. The clinical adequacy aspect of filled sockets at surgical reentry seemed to be indicative of a qualitatively better bone regeneration. Postoperative exposition of graft material after a first intervention seemed to constitute an important risk factor for a worse bone regeneration.

  5. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    PubMed Central

    Moussa, Mira; Carrel, Jean-Pierre; Scherrer, Susanne; Cattani-Lorente, Maria; Wiskott, Anselm; Durual, Stéphane

    2015-01-01

    Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  6. Collagen Self-Assembly on Orthopedic Magnesium Biomaterials Surface and Subsequent Bone Cell Attachment

    PubMed Central

    Zhao, Nan; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459

  7. The application of porous tantalum cylinder to the repair of comminuted bone defects: a study of rabbit firearm injuries

    PubMed Central

    Ren, Bo; Zhai, Zhenbo; Guo, Kai; Liu, Yanpu; Hou, Weihuan; Zhu, Qingsheng; Zhu, Jinyu

    2015-01-01

    The aim of this study is to investigate the effect of porous tantalum material in repair tibial defects caused by firearm injuries in a rabbit model. A multifunctional biological impact machine was used to establish a rabbit tibial defect model of firearm injury. Porous tantalum rods were processed into a hollow cylinder. Kirschner wires were used for intramedullary fixation. We compared the differences of the bone ingrowth of the porous tantalum material by gross observations, X-rays and histological evaluations. The radiographic observations revealed that fibrous tissue covered the material surface after 4 weeks, and periosteal reactions and new bone callus extending materials appeared after 8 weeks. After 16 weeks, the calluses of the firearm injury group were completely wrapped around a porous tantalum material. The group with the highest Lane-Sandhu X-rays cores was the firearm injury and tantalum implant group, and the blank control group exhibited the lowest scores. The histological evaluations revealed that the presence of new bone around the biomaterial had grown into the porous tantalum. By the 16th week, the areas of bone tissue of the firearm injury group was significant higher than that of non-firearm injury group (P<0.05). The comminuted fractures treated with tantalum cylinders exhibited greater bone ingrowth in the firearm injury group. In conditions of firearm injuries, the porous tantalum biomaterial exhibited bone ingrowth that was beneficial to the treatment of bone defects. PMID:26131078

  8. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration.

    PubMed

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Ozbolat, Ibrahim T; Moncal, Kazim K; Rizk, Elias; Seitz, Hermann; Gelinsky, Michael; Schröder, Heinz C; Wang, Xiaohong H; Müller, Werner E G; Al-Nawas, Bilal

    The structural and functional repair of lost bone is still one of the biggest challenges in regenerative medicine. In many cases, autologous bone is used for the reconstruction of bone tissue; however, the availability of autologous material is limited, which always means additional stress to the patient. Due to this, more and more frequently various biocompatible materials are being used instead for bone augmentation. In this context, in order to ensure the structural function of the bone, scaffolds are implanted and fixed into the bone defect, depending on the medical indication. Nevertheless, for the surgeon, every individual clinical condition in which standardized scaffolds have to be aligned is challenging, and in many cases the alignment is not possible without limitations. Therefore, in the last decades, 3D printing (3DP) or additive manufacturing (AM) of scaffolds has become one of the most innovative approaches in surgery to individualize and improve the treatment of patients. Numerous biocompatible materials are available for 3DP, and various printing techniques can be applied, depending on the process conditions of these materials. Besides these conventional printing techniques, another promising approach in the context of medical AM is 3D bioprinting, a technique which makes it possible to print human cells embedded in special carrier substances to generate functional tissues. Even the direct printing into bone defects or lesions becomes possible. 3DP is already improving the treatment of patients, and has the potential to revolutionize regenerative medicine in future.

  9. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  10. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science. © 2016 Wiley Periodicals, Inc.

  11. Evaluation of dog bones in the indirect assessment of environmental contamination with trace elements.

    PubMed

    Lanocha, Natalia; Kalisinska, Elzbieta; Kosik-Bogacka, Danuta I; Budis, Halina

    2012-06-01

    The aim of this paper was to determine the level of five elements, two essential for life [zinc (Zn) and copper (Cu)] and three distinctly toxic [lead (Pb), cadmium (Cd), and mercury (Hg)], in four types of biological material in bones of the dog Canis lupus familiaris. The experiment was carried out on bones from the hip joints of dogs. The samples of cartilage, compact bone, spongy bone, and cartilage with adjacent compact bone came from 26 domestic dogs from northwestern Poland. Concentrations of Cu, Zn, Pb, and Cd were determined by ICP-AES (atomic absorption spectrophotometry) in inductively coupled argon plasma, using a Perkin-Elmer Optima 2000 DV. Determination of Hg concentration was performed by atomic absorption spectroscopy. In the examined bone material from the dog, the greatest concentrations (median) were observed for Zn and the lowest for Hg (98 mg Zn/kg and 0.0015 mg Hg/kg dw, respectively). In cartilage and spongy bone, metal concentrations could be arranged in the following descending order: Zn > Pb > Cu > Cd > Hg. In compact bone, the order was slightly different: Zn > Pb > Cd > Cu > Hg (from median 70 mg/kg dw to 0.002 mg/kg dw). The comparisons of metal concentrations between the examined bone materials showed distinct differences only in relation to Hg: between concentrations in spongy bone, compact bone, and in cartilage, being greater in cartilage than in compact bone, and lower again in spongy bone.

  12. Influence of lactation and pregnancy + lactation on mechanical properties and mineral content of the rat femur.

    PubMed

    Peng, T C; Kusy, R P; Garner, S C; Hirsch, P F; De Blanco, M C

    1987-06-01

    The quality of bone was assessed from femurs of rats both during lactation and after pregnancy + lactation. Mechanical properties of stiffness, strength, toughness, and ductility were measured, along with standard measurements of dry weight, ash weight, and total bone mineral. No changes occurred during the first week of lactation. During the second and third weeks of lactation all bone parameters except ductility decreased significantly. These data are consistent with bone losing mineral in order to supplement the dietary calcium intake necessary for milk production. In other experiments, femurs were collected from nulliparous rats and from rats that had previously undergone 1-3 pregnancy + lactations. The largest changes in bone mineral and mechanical properties occurred after a single pregnancy + lactation period, although significant further decreases in stiffness and strength occurred after the second pregnancy + lactation. No additional losses occurred following the third pregnancy + lactation. Even 5 months after only one pregnancy + lactation period, the bone quality was still impaired as all bone properties were lower than in nulliparous controls. Because the changes, especially stiffness and strength, were relatively larger than the changes in dry and ash weights of bone, measurements of these mechanical properties provide a more sensitive method to evaluate the quality of bone.

  13. Non-invasive assessment of bone quantity and quality in human trabeculae using scanning ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Xia, Yi

    Fractures and associated bone fragility induced by osteoporosis and osteopenia are widespread health threat to current society. Early detection of fracture risk associated with bone quantity and quality is important for both the prevention and treatment of osteoporosis and consequent complications. Quantitative ultrasound (QUS) is an engineering technology for monitoring bone quantity and quality of humans on earth and astronauts subjected to long duration microgravity. Factors currently limiting the acceptance of QUS technology involve precision, accuracy, single index and standardization. The objective of this study was to improve the accuracy and precision of an image-based QUS technique for non-invasive evaluation of trabecular bone quantity and quality by developing new techniques and understanding ultrasound/tissue interaction. Several new techniques have been developed in this dissertation study, including the automatic identification of irregular region of interest (iROI) in bone, surface topology mapping (STM) and mean scattering spacing (MSS) estimation for evaluating trabecular bone structure. In vitro results have shown that (1) the inter- and intra-observer errors in QUS measurement were reduced two to five fold by iROI compared to previous results; (2) the accuracy of QUS parameter, e.g., ultrasound velocity (UV) through bone, was improved 16% by STM; and (3) the averaged trabecular spacing can be estimated by MSS technique (r2=0.72, p<0.01). The measurement errors of BUA and UV introduced by the soft tissue and cortical shells in vivo can be quantified by developed foot model and simplified cortical-trabecular-cortical sandwich model, which were verified by the experimental results. The mechanisms of the errors induced by the cortical and soft tissues were revealed by the model. With developed new techniques and understanding of sound-tissue interaction, in vivo clinical trail and bed rest study were preformed to evaluate the performance of QUS in clinical applications. It has been demonstrated that the QUS has similar performance for in vivo bone density measurement compared to current gold-standard method, i.e., DXA, while additional information are obtained by the QUS for predicting fracture risk by monitoring of bone's quality. The developed QUS imaging technique can be used to assess bone's quantity and quality with improved accuracy and precision.

  14. [TRANSOSSEOUS OSTEOSYNTHESIS OF LOWER EXTREMITIES BONES FRACTURES AND QUALITY OF LIFE OF PATIENTS IN THE TREATMENT PERIOD].

    PubMed

    Dyusupov, A; Dyusupov, A; Manarbekov, E; Bukatov, A; Serikbaev, A

    2018-02-01

    The aim of the study is a comparative analysis of the quality of life in the treatment of fractures of the bones of the lower extremities of various localizations using transosseous and submerged osteosynthesis. We examined 397 patients with injuries of the lower segment of the lower extremity (patellar fractures - 81, multiple bones fractures of the tibia - 84 and fractures of the ankles, accompanied by a dislocation of the foot - 232). Patients were distributed in the subgroups depending on the treatment. The main group was performed using transosseous osteosynthesis, the comparison group - submerged osteosynthesis. The quality of life was examined using a general questionnaire SF-36 and specialized KOOS (with patella fractures) and FOAS (fractures of the bones of the lower leg and ankles). In patients with all localizations of fractures the quality of life was exceeded in the subgroups of the transosseous osteosynthesis group over the parameters of the comparison group. The most significant differences with the use of specialized questionnaires were revealed 6-9 months after trauma with a tendency to leveling to the end of the study (1 year). A more pronounced excess of the quality of life in the main group was seen in fractures of the shin bones. The study of the quality of life allows us to recommend the use of transosseous osteosynthesis for the treatment of lower segment of the lower limb bone fractures.

  15. Short term effects on bone quality associated with consumption of soy protein isolate and other dietary protein sources in rapidly growing female rats

    USDA-ARS?s Scientific Manuscript database

    Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth has been less well examined. The current study compared effects of feeding soy protein i...

  16. Drilling force and temperature of bone under dry and physiological drilling conditions

    NASA Astrophysics Data System (ADS)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  17. Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition

    PubMed Central

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B.; Spevak, Lyudmila; Boskey, Adele L.; Jepsen, Karl J.

    2009-01-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037

  18. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    PubMed

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  19. Obesity is a concern for bone health with aging.

    PubMed

    Shapses, Sue A; Pop, L Claudia; Wang, Yang

    2017-03-01

    Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Obesity is a concern for bone health with aging

    PubMed Central

    Shapses, Sue A.; Pop, L. Claudia; Wang, Yang

    2017-01-01

    Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284

  1. A downloadable meshed human canine tooth model with PDL and bone for finite element simulations.

    PubMed

    Boryor, Andrew; Hohmann, Ansgar; Geiger, Martin; Wolfram, Uwe; Sander, Christian; Sander, Franz Günter

    2009-09-01

    The aim of this study is to relieve scientists from the complex and time-consuming task of model generation by providing a model of a canine tooth and its periradicular tissues for Finite Element Method (FEM) simulations. This was achieved with diverse commercial software, based on a micro-computed tomography of the specimen. The Finite Element (FE) Model consists of enamel, dentin, nerve (innervation), periodontal ligament (PDL), and the surrounding cortical bone with trabecular structure. The area and volume meshes are of a very high quality in order to represent the model in a detailed form. Material properties are to be set individually by every user. The tooth model is provided for Abaqus, Ansys, HyperMesh, Nastran and as STL files, in an ASCII format for free download. This can help reduce the cost and effort of generating a tooth model for some research institutions, and may encourage other research groups to provide their high quality models for other researchers. By providing FE models, research results, especially FEM simulations, could be easily verified by others.

  2. Prevalence of low bone mineral density in female dancers.

    PubMed

    Amorim, Tânia; Wyon, Matthew; Maia, José; Machado, José Carlos; Marques, Franklim; Metsios, George S; Flouris, Andreas D; Koutedakis, Yiannis

    2015-02-01

    While some authors report that dancers have reduced bone mineral density (BMD) and increased risk of osteoporosis, others have stressed the positive effects of dance training on developing healthy BMD. Given the existing controversy, the aim of this systematic review was to examine the best evidence-based information available in relation to female dancers. Four databases (Web of Science, PubMed, EBSCO, Scopus) and two dance science journals (Journal of Dance Medicine and Science and Medical Problems of Performing Artists) were searched for relevant material using the keywords "dance", "ballet", "BMD", "bone density", "osteoporosis" and "female athlete triad syndrome". A total of 257 abstracts were screened using selected inclusion (studies involving bone measurements in dancers) and exclusion (editorials, opinion papers, chapters in books, narrative reviews and non-English language papers) criteria according to PRISMA guidelines. Following the above screening, a total of 108 abstracts were identified as potentially relevant. After the exclusion of conference proceedings, review papers, studies focusing only in male dancers and studies in which dancers' information were combined with other athletes, the eligible papers were subsequently assessed using the GRADE system and grouped according to: (1) prevalence of low BMD and associated factors, (2) incidence of low BMD and risk factors, (3) prevention/treatment of low BMD in dancers, and (4) other studies. Of the 257 abstracts that were initially screened, only 35 studies were finally considered. Only one of these 35 was of high quality, while the remaining 34 were of relatively low quality. Seven studies reported prevalence of low BMD and associated factors, 10 reported associated factors with no prevalence data, while one reported prevalence with no associated factors data. One study cited risk factors, while another one elaborated on the treatment of low BMD in dancers. The remaining 15 studies were classified as "other studies". It remains unclear whether low BMD is prevalent in female dancers. The present review highlights the need for high-quality BMD research in this area.

  3. Multifunctional materials for bone cancer treatment

    PubMed Central

    Marques, Catarina; Ferreira, José MF; Andronescu, Ecaterina; Ficai, Denisa; Sonmez, Maria; Ficai, Anton

    2014-01-01

    The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multi-functionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative), cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin), silver nanoparticles, antibiotics (anthracyclines, geldanamycin), and/or analgesics (ibuprofen, fentanyl). The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management) in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies. PMID:24920907

  4. [Experimental-morphologic study of bone tissue reaction to carbon-containing material implantation with initiated X-ray contrast property].

    PubMed

    Grigorian, A S; Nabiev, F Kh; Golovin, R V

    2005-01-01

    In experimental study on 15 rabbits (chinchilla) influence of titanium plates implanted lapped on adjacent tissues in the region of the lower jaw body (comparison group) and carbon material with added boron in the concentrations of 8 and 15% (the study group) was studied. Results of the experimental-morphological investigation show that carbon-based materials with boron addition (with its content 8 and 15%) did not impede adaptive rebuilding of bone tissues and in particular bone structure regeneration in the process of reactive rebuilding of the "maternal" bone. Moreover, as the result of reactive processes developing in osseous tissues after implantation of the tested materials their successful integration in surrounding tissue structures was detected.

  5. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.

    PubMed

    Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C

    2009-01-01

    Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  6. Effect of hot-boned pork on the keeping quality of fresh pork sausage.

    PubMed

    Guerrero Legarreta, I; Usborne, W R; Ashton, G C

    1987-01-01

    The first experiment evaluated the effect of solid carbon dioxide (dry ice) addition to hot-boned meat, in different proportions, upon the keeping quality of fresh pork sausage patties. Dry ice had some negative effects at levels of 20% to 40%, such as hardening and colour fading of samples, although it increased water-holding capacity of the sausage. In the second experiment three proportions of hot-boned meat and chilled meat were evaluated as a means to extend the retail storage time of fresh pork sausage links. Hot-boned pork was treated by three methods: freezing the meat before grinding, salting and freezing, and salting plus dry ice addition. The results favoured the use of 50% hot-boned meat and 50% chilled meat, for which the lowest hardness and oxidation values were obtained. Microbial counts and hue values showed no significant variation among the three treatments. Salting and freezing hot-boned meat before grinding was the method which produced the best overall quality. Copyright © 1987. Published by Elsevier Ltd.

  7. Evidence for the Adverse Effect of Starvation on Bone Quality: A Review of the Literature

    PubMed Central

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E.

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200–800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality. PMID:25810719

  8. [Dual energy CT angiography of the carotid arteries: quality, bone subtraction, and radiation dosage using tube voltage 80/140 kV versus 100/140 kV].

    PubMed

    Santos Armentia, E; Tardáguila de la Fuente, G; Castellón Plaza, D; Delgado Sánchez-Gracián, C; Prada González, R; Fernández Fernández, L; Tardáguila Montero, F

    2014-01-01

    To study the differences in vascular image quality, bone subtraction, and dose of radiation of dual energy CT angiography of the supraaortic trunks using different tube voltages. We reviewed the CT angiograms of the supraaortic trunks in 46 patients acquired with a 128-slice dual source CT scanner using two voltage protocols (80/140 kV and 100/140 kV). The "head bone removal" tool was used for postprocessing. We divided the arteries into 15 segments. In each segment, we evaluated the image quality of the vessels and the effectiveness of bone removal in multiplanar reconstructions (MPR) and in maximum intensity projections (MIP) with each protocol, analyzing the trabecular and cortical bones separately. We also evaluated the dose of radiation received. Of the 46 patients, 13 were studied using 80/140 kV and 33 with 100/140 kV. There were no significant differences between the two groups in age or sex. Image quality in four segments was better in the group examined with 100/140 kV. Cortical bone removal in MPR and MIP and trabecular bone removal in MIP were also better in the group examined with 100/140 kV. The dose of radiation received was significantly higher in the group examined with 100/140 kV (1.16 mSv with 80/140 kV vs. 1.59 mSv with 100/140 kV). Using 100/140 kV increases the dose of radiation but improves the quality of the study of arterial segments and bone subtraction. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  9. [Encounter of cancer cells with bone. Histological examination of bone metastasis].

    PubMed

    Kanda, Hiroaki

    2011-03-01

    Management of the cancer bone metastasis is important clinical problem. The mechanism (s) of bone metastasis has been studied mainly by animal models and in vitro system. There might be discrepancy between model systems and in vivo human clinical materials. But there is surprisingly rare study of histological examination of human skeletal metastasis, since it is hard to obtain human materials without modification by chemotherapy or irradiation. There are many surgical materials suitable for this examination in our hospital and we have been examined histological features of them. Stromal cells between metastatic cancer cells and OCs (osteoclasts) and÷or OBs (osteoblasts) might play a role in bone metastasis, since these cells are frequently accompanied with OCs÷OBs. We called these stromal cells as "fibroblast-like cells" and examined their nature and roles in bone metastasis. We hope these fibroblast-like cells might become the target of anti bone metastasis therapy, same as osteoclasts targeted by bisphosphonates.

  10. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  11. Biomechanical evaluation of different instrumentation for spinal stabilisation.

    PubMed

    Graftiaux, A G; Wattier, B; Gentil, P; Mazel, C; Skalli, W; Diop, A; Kehr, P H; Lavaste, F

    1995-12-01

    The varying problems following arthrodesis of the lumbar spine with rods or plates (too much rigidity for the first and insufficient stability for the second) have led us to conceive another type of material, flexible but with enough stability, to favorise healing of bone graft, and decrease the induced pathology on adjacent levels. An experimental study of three types of material: rigid, semi-rigid and flexible was performed on eighteen fresh cadaver spinal segments without and then with discectomy and corporectomy to find out the various types of behaviour. The flexible device seems more supple than the other materials tested: more mobility, less stiffness. Rising hysteresis is explained by plastic deformation. The semi-rigid device presents strong osseous stresses on the L3 level and a large hysteresis corresponding most likely to a mobility between the screws and plates. The rigid device has less mobility, especially in torsion, ascribed to the transverse connection. The stability is high with a small hysteresis. This is of value for bone loss or instability with displacement of the vertebral body.The second study was a modeling of the flexible device validated by comparison to the experimental study. The strains in the wire were high, decreasing with increasing diameter, but is still lower than the elastic limit. The proximity of the elastic limit may allow plastic deformation of the wire. Howewer less strains were found on the screw fixation but increase with the increase diameter of the wire. The influence of the bone quality on the behavior of the device was demonstrated.

  12. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material

    NASA Astrophysics Data System (ADS)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were implanted ectopically in a rodent animal model and histologically evaluated for biocompatibility, degradation, and bone formation in vivo. The gelatin-hydroxyapatite scaffolds retained dimensional structure over 28 days and did not elicit any undesirable systemic or local effects. Distinct areas of mineralization and osteoid/bone were noted in all the implanted scaffolds and quantitative differences were primarily dependent on the presence of hydroxyapatite.

  13. The Effect of Alendronate on Various Graft Materials Used in Maxillary Sinus Augmentation: A Rabbit Study

    PubMed Central

    Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul

    2015-01-01

    Background: Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. Objectives: The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. Materials and Methods: This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. Results: At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Conclusions: Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling. PMID:26756022

  14. Single x-ray transmission system for bone mineral density determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Espinosa-Arbelaez, Diego G.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many differentmore » applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.« less

  15. Single x-ray transmission system for bone mineral density determination

    NASA Astrophysics Data System (ADS)

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E.

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm2)], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  16. Clinical application of bone morphogenetic proteins for bone healing: a systematic review.

    PubMed

    Krishnakumar, Gopal Shankar; Roffi, Alice; Reale, Davide; Kon, Elizaveta; Filardo, Giuseppe

    2017-06-01

    This paper documents the existing evidence on bone morphogenetic proteins (BMPs) use for the treatment of bone fractures, non-union, and osteonecrosis, through a review of the clinical literature, underlying potential and limitations in terms of cost effectiveness and risk of complications. A systematic review was performed on the PubMed database using the following string: (bone morphogenetic proteins OR BMPs) and (bone repair OR bone regeneration) including papers from 2000 to 2016. The search focused on clinical trials dealing with BMPs application to favor bone regeneration in bone fractures, non-union, and osteonecrosis, in English language, with level of evidence I, II, III, and IV. Relevant data (type of study, number of patients, BMPs delivery material, dose, site, follow-up, outcome, and adverse events) were extracted and analyzed. Forty-four articles met the inclusion criteria: 10 randomized controlled trials (RCTs), 7 comparative studies, 18 case series, and 9 case reports. rhBMP-2 was documented mainly for the treatment of fractures, and rhBMP-7 mainly for non-unions and osteonecrosis. Mixed results were found among RCTs and comparative papers: 11 reported positive results for BMPs augmentation, 3 obtained no significant effects, and 2 showed negative results. The only study comparing the two BMPs showed a better outcome with rhBMP-2 for non-union treatment. Clinical evidence on BMPs use for the treatment of fractures, non-union, and osteonecrosis is still controversial, with the few available reports being mainly of low quality. While positive findings have been described in many studies, mixed results are still present in the literature in terms of efficacy and adverse events. The difficulties in drawing clear conclusions are also due to the studies heterogeneity, mainly in terms of different BMPs applied, with different concomitant treatments for each bone pathology. Therefore, further research with well-designed studies is needed in order to understand the real potential of this biological approach to favour bone healing.

  17. Microgravity

    NASA Image and Video Library

    2004-04-15

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  18. Microgravity

    NASA Image and Video Library

    2004-04-15

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  19. Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series

    PubMed Central

    Yun, Pil-Young; Um, In-Woong; Lee, Hyo-Jung; Yi, Yang-Jin; Bae, Ji-Hyun; Lee, Junho

    2014-01-01

    This case series evaluated the clinical efficacy of autogenous tooth bone graft material (AutoBT) in alveolar ridge preservation of an extraction socket. Thirteen patients who received extraction socket graft using AutoBT followed by delayed implant placements from Nov. 2008 to Aug. 2010 were evaluated. A total of fifteen implants were placed. The primary and secondary stability of the placed implants were an average of 58 ISQ and 77.9 ISQ, respectively. The average amount of crestal bone loss around the implant was 0.05 mm during an average of 22.5 months (from 12 to 34 months) of functional loading. Newly formed tissues were evident from the 3-month specimen. Within the limitations of this case, autogenous tooth bone graft material can be a favorable bone substitute for extraction socket graft due to its good bone remodeling and osteoconductivity. PMID:25551013

  20. Chitosan based nanofibers in bone tissue engineering.

    PubMed

    Balagangadharan, K; Dhivya, S; Selvamurugan, N

    2017-11-01

    Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mycobacterium tuberculosis Contaminant Risk on Bone Marrow Aspiration Material from Iliac Bone Patients with Active Tuberculous Spondylitis.

    PubMed

    Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah

    2016-01-01

    There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result.

  2. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    PubMed

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  3. Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering

    PubMed Central

    Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Jandial, Rahul

    2012-01-01

    Intervertebral disc degeneration often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone, or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells have received attention for their ability to differentiate into osteoblasts, cells that synthesize new bone. With the recent advances in scaffold and biomaterial technology as well as stem cell manipulation and transplantation, stem cells and their scaffolds are uniquely positioned to bring about significant improvements in the treatment and outcomes of spinal fusion and other injuries. PMID:22500114

  4. Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering.

    PubMed

    Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Jandial, Rahul

    2012-01-01

    Intervertebral disc degeneration often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone, or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells have received attention for their ability to differentiate into osteoblasts, cells that synthesize new bone. With the recent advances in scaffold and biomaterial technology as well as stem cell manipulation and transplantation, stem cells and their scaffolds are uniquely positioned to bring about significant improvements in the treatment and outcomes of spinal fusion and other injuries.

  5. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  6. Crestal Approach to Sinus Floor Elevation for Atrophic Maxilla Using Platelet-Rich Fibrin as the Only Grafting Material: A 1-Year Prospective Study.

    PubMed

    Kanayama, Takeo; Horii, Koichiro; Senga, Yasuko; Shibuya, Yasuyuki

    2016-02-01

    Platelet-rich fibrin (PRF) has been recently used as the sole grafting material in sinus floor elevation procedures. The aim of this prospective study was to measure the bone gain around the dental implant after using the crestal approach to sinus floor elevation using platelet-rich fibrin as the only grafting material in atrophic posterior maxillae with residual bone height <5 mm. Two different types of implants were used: hydroxyapatite (HA) and sandblasted acid-etched (SA) implants. Panoramic radiography and computed tomography were used to measure the endosinus bone gain. Twenty-seven patients with 39 implants (19 HA and 20 SA) were included in this study. The mean residual bone measurements before surgery in the SA and HA groups were 2.85 and 2.68 mm, respectively. The mean average bone gains for 1 year in the SA and HA groups were 4.38 and 4.00 mm, respectively. This prospective study showed that platelet-rich fibrin promoted endosinus bone gain when used as the grafting material in the crestal approach to sinus floor elevation.

  7. Examining the diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Elliott, T. A.; Grime, G. W.

    1993-05-01

    The inorganic analysis of archaeological bone material can potentially provide a wealth of information about the chronology, diet and palaeoenvironment of past populations: for example, strontium and uranium levels are used in palaeodietary and dating studies, respectively. However, the extent to which the chemical composition of bone is subject to diagenetic change during burial is open to controversy due, in part, to differences in analytical technique, bone types and burial conditions. To investigate this problem, archaeological human bone material from a number of different geological environments including Pompeii and a 12th century British ecclesiastical site, together with material from two seawater burials (The "Mary Rose" and a 6th century Mediterranean wreck) have been studied using the nuclear microprobe facility at the University of Oxford. Results using microbeam PIXE show that bone is subject to contamination from a wide range of trace elements depending on the burial conditions. Elemental maps are presented to demonstrate the distribution of trace element accumulation under different burial conditions, and the significance of this work to future trace element studies is discussed.

  8. PubMed

    Miranda, Geraldo Elias; Melani, Rodolfo Francisco Haltenhoff; Francisquini, Luiz; Daruge, Eduardo

    2017-01-01

    The aim of this study was to identify the combination of wavelength and filter that best detects tooth and bone, and to determine which biological materials (enamel, dental root or bone) have highest fluorescence intensity when exposed to an alternate light source (ALS). Tooth and bone samples were lighted with ALS and photographed. Adobe Photoshop™ and ImageJ™ softwares were used for image analysis. Data obtained by measuring the photograph pixels were subjected to analysis of variance. The mean values of significant effects were compared by the Tukey test. In all tests, the significance level was set at p≤0.05 and the values calculated by the SAS system. The results showed that the best combination for detecting tooth and bone is an illumination wavelength of 455 nm with an orange filter. The fluorescence of dental root is greater than that of enamel, which in turn is greater than that of bone. The biological material had markedly higher fluorescence than the inert material. This knowledge can help the forensic expert to screen and detect biological materials, for example in situations where there are fragmented teeth and small bones, both at the scene and in the laboratory.

  9. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds.

    PubMed

    Roohani-Esfahani, S I; Dunstan, C R; Davies, B; Pearce, S; Williams, R; Zreiqat, H

    2012-11-01

    This is the first reported study to prepare highly porous baghdadite (Ca₃ZrSi₂O₉) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address their brittleness) by coating their surfaces with a thin layer (∼400 nm) of polycaprolactone (PCL)/bioactive glass nanoparticles (nBGs). The β-tricalcium phosphate/hydroxyapatite (TCP/HA) scaffolds with and without modification were used as the control groups. All of the tested scaffolds had an open and interconnected porous structure with a porosity of ∼85% and average pore size of 500 μm. The scaffolds (six per scaffold type and size of 4 mm × 4 mm × 15 mm) were implanted (press-fit) into the rabbit radial segmental defects for 12 weeks. Micro-computed tomography and histological evaluations were used to determine bone ingrowth, bone quality, and implant integration after 12 weeks of healing. Extensive new bone formation with complete bridging of the radial defect was evident with the baghdadite scaffolds (modified/unmodified) at the periphery and in close proximity to the ceramics within the pores, in contrast to TCP/HA scaffolds (modified/unmodified), where bone tended to grow between the ulna adjacent to the implant edge. Although the modification of the baghdadite scaffolds significantly improved their mechanical properties, it did not show any significant effect on in vivo bone formation. Our findings suggest that baghdadite scaffolds with and without modification can serve as a potential material to repair critical sized bone defects. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls.

    PubMed

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L

    2013-01-01

    After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment-naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material. Copyright © 2013 American Society for Bone and Mineral Research.

  11. Variability of morphometric parameters of human trabecular tissue from coxo-arthritis and osteoporotic samples.

    PubMed

    Marinozzi, Franco; Marinozzi, Andrea; Bini, Fabiano; Zuppante, Francesca; Pecci, Raffaella; Bedini, Rossella

    2012-01-01

    Morphometric and architectural bone parameters change in diseases such as osteoarthritis and osteoporosis. The mechanical strength of bone is primarily influenced by bone quantity and quality. Bone quality is defined by parameters such as trabecular thickness, trabecular separation, trabecular density and degree of anisotropy that describe the micro-architectural structure of bone. Recently, many studies have validated microtomography as a valuable investigative technique to assess bone morphometry, thanks to micro-CT non-destructive, non-invasive and reliability features, in comparison to traditional techniques such as histology. The aim of this study is the analysis by micro-computed tomography of six specimens, extracted from patients affected by osteoarthritis and osteoporosis, in order to observe the tridimensional structure and calculate several morphometric parameters.

  12. Bone quality changes associated with aging and disease: a review.

    PubMed

    Boskey, Adele L; Imbert, Laurianne

    2017-12-01

    Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons. © 2017 New York Academy of Sciences.

  13. Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite.

    PubMed

    Paxton, Jennifer Z; Donnelly, Kenneth; Keatch, Robert P; Baar, Keith

    2009-06-01

    Ligaments and tendons have previously been tissue engineered. However, without the bone attachment, implantation of a tissue-engineered ligament would require it to be sutured to the remnant of the injured native tissue. Due to slow repair and remodeling, this would result in a chronically weak tissue that may never return to preinjury function. In contrast, orthopaedic autograft reconstruction of the ligament often uses a bone-to-bone technique for optimal repair. Since bone-to-bone repairs heal better than other methods, implantation of an artificial ligament should also occur from bone-to-bone. The aim of this study was to investigate the use of a poly(ethylene glycol) diacrylate (PEGDA) hydrogel incorporated with hydroxyapatite (HA) and the cell-adhesion peptide RGD (Arg-Gly-Asp) as a material for creating an in vitro tissue interface to engineer intact ligaments (i.e., bone-ligament-bone). Incorporation of HA into PEG hydrogels reduced the swelling ratio but increased mechanical strength and stiffness of the hydrogels. Further, HA addition increased the capacity for cell growth and interface formation. RGD incorporation increased the swelling ratio but decreased mechanical strength and stiffness of the material. Optimum levels of cell attachment were met using a combination of both HA and RGD, but this material had no better mechanical properties than PEG alone. Although adherence of the hydrogels containing HA was achieved, failure occurs at about 4 days with 5% HA. Increasing the proportion of HA improved interface formation; however, with high levels of HA, the PEG HA composite became brittle. This data suggests that HA, by itself or with other materials, might be well suited for engineering the ligament-bone interface.

  14. Are allogenic or xenogenic screws and plates a reasonable alternative to alloplastic material for osteosynthesis--a histomorphological analysis in a dynamic system.

    PubMed

    Jacobsen, C; Obwegeser, J A

    2010-12-01

    Despite invention of titanium and resorbable screws and plates, still, one of the main challenges in bone fixation is the search for an ideal osteosynthetic material. Biomechanical properties, biocompatibility, and also cost effectiveness and clinical practicability are factors for the selection of a particular material. A promising alternative seems to be screws and plates made of bone. Recently, xenogenic bone pins and screws have been invented for use in joint surgery. In this study, screws made of allogenic sheep and xenogenic human bone were analyzed in a vital and dynamic sheep-model and compared to conventional titanium screws over a standard period of bone healing of 56 days with a constant applied extrusion force. Biomechanical analysis and histomorphological evaluation were performed. After 56 days of insertion xenogenic screws made of human bone showed significantly larger distance of extrusion of on average 173.8 μm compared to allogenic screws made of sheep bone of on average 27.8 and 29.95 μm of the titanium control group. Severe resorption processes with connective tissue interposition were found in the histomorphological analysis of the xenogenic screws in contrast to new bone formation and centripetal vascularization of the allogenic bone screw, as well as in processes of incorporation of the titanium control group. The study showed allogenic cortical bone screws as a substantial alternative to titanium screws with good biomechanical properties. In contrast to other reports a different result was shown for the xenogenic bone screws. They showed insufficient holding strength with confirmative histomorphological signs of degradation and insufficient osseointegration. Before common clinical use of xenogenic osteosynthetic material, further evaluation should be performed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones.

    PubMed

    Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan

    2013-02-01

    Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.

  16. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

    PubMed Central

    Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan

    2012-01-01

    Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835

  17. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  18. Comparative evaluation of bovine derived hydroxyapatite and synthetic hydroxyapatite graft in bone regeneration of human maxillary cystic defects: a clinico-radiological study.

    PubMed

    Kattimani, Vivekanand S; Chakravarthi, Srinivas P; Neelima Devi, K Naga; Sridhar, Meka S; Prasad, L Krishna

    2014-01-01

    Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The aim of this study was to evaluate and compare bovine derived hydroxyapatite (BHA) and synthetic hydroxyapatite (SHA) graft material as bone graft substitute in maxillary cystic bony defects. Patients were analyzed by computerized densitometric study and digital radiography. In this study, 12 patients in each group were included randomly after clinical and radiological evaluation. The integration of hydroxyapatite was assessed with mean bone density, surgical site margin, and radiological bone formation characteristics, of the successful graft cases using computer densitometry and radio-visiograph. Statistical analysis was carried out using Mann-Whitney U-test, Wilcoxon matched pairs test and paired t-test. By the end of 24 th week, the grafted defects radiologically and statistically showed similar volumes of bone formation. However, the significant changes observed in the formation of bone and merging of material and surgical site margin at 1 st week to 1 st month. The results were significant and correlating with all the parameters showing the necessity of the grafting for early bone formation. However, the bone formation pattern is different in both BHA and SHA group at 3 rd month interval with significant P value. Both BHA and SHA graft materials are biocompatible for filling bone defects, showing less resorption and enhanced bone formation with similar efficacy. Our study showed maximum bone healing within 12 weeks of grafting of defects. The BHA is economical; however, price difference between the two is very nominal.

  19. Hardness of the subchondral bone of the patella in the normal state, in chondromalacia, and in osteoarthrosis.

    PubMed

    Björkström, S; Goldie, I F

    1982-06-01

    The hardness of bone is its property of withstanding the impact of a penetrating agent. It has been found that articular degenerative changes in, for example, the tibia (knee) are combined with a decrease in the hardness of the subchondral bone. In this investigation the hardness of subchondral bone in chondromalacia and osteoarthrosis of the patella has been analysed and compared with normal subchondral bone. Using an indentation method originally described by Brinell the hardness of the subchondral bone was evaluated in 7 normal patellae, in 20 with chondromalacia and in 33 with osteoarthrosis. A microscopic and microradiographic study of the subchondral bone was carried out simultaneously. Hardness was lowest in the normal material. The mean hardness value beneath the degenerated cartilage differed only slightly from that of the normal material, but the variation of values was increased. The hardness in bone in the chondromalacia area was lower than the hardness in bone covered by surrounding normal cartilage. The mean hardness value in bone beneath normal parts of cartilage in specimens with chondromalacia was higher than the mean hardness value of the normal material. In the microscopic and microradiographic examination it became evident that there was a relationship between trabecular structure and subchondral bone hardness; high values: coarse and solid structure; low values: slender and less regular structure.

  20. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    NASA Astrophysics Data System (ADS)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  1. [Noncollagen bone proteins use in the composition of osteoplactic material Gapkol modified by vacuum].

    PubMed

    Volozhin, A I; Grigor'ian, A S; Desiatnichenko, K S; Ozhelevskaia, S A; Doktorov, A A; Kurdiumov, S G; Fionova, E V; Gurin, A N; Karakov, K G

    2008-01-01

    In rat experiments the ability of noncollagen bone proteins (NCBP) in the composition of osteoplactic modified material Gapkol (not tanned in formalin and subjected to vacuum extraction) to increase bone reparation in comparison with traditional Gapkol was studied. Quantitative evaluation was performed on rat parietal bone and qualitative evaluation was performed on rat mandible. It was shown that Gapkol with NCBP (not tanned in formalin and subjected to vacuum extraction) increased reparative osteogenesis.

  2. How bone forms in large cancellous defects: critical analysis based on experimental work and literature.

    PubMed

    Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y

    2011-09-01

    The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Issues related to secondary osteoporosis associated with growth hormone deficiency in adulthood].

    PubMed

    Kužma, Martin; Jackuliak, Peter; Killinger, Zdenko; Vaňuga, Peter; Payer, Juraj

    Growth hormone (GH) increases linear bone growth through complex hormonal reactions, mainly mediated by insulin like growth factor 1 (IGF1) that is produced mostly by hepatocytes under influence of GH and stimulates differentiation of epiphyseal prechondrocytes. IGF1 and GH play a key role in the linear bone growth after birth and regulation of bone remodelation during the entire lifespan. It is known that adult GH deficient (GHD) patients have decreased BMD and increased risk of low-impact fractures. Most data gathered thus far on the effect of GH replacement on bone status comprise the measurement of quantitative changes of bone mass. Some animal studies with GHD showed that the bone microarchitecture, measured using computed tomography methods, is significantly compromised and improve after GH replacement. However, human studies did not show significantly decreased bone microarchitecture, but limited methodological quality does not allow firm conclusions on this subject.Key words: bone mass - bone quality - fracture - growth hormone - IGF1.

  4. Osteoporosis, Fractures, and Diabetes

    PubMed Central

    2014-01-01

    It is well established that osteoporosis and diabetes are prevalent diseases with significant associated morbidity and mortality. Patients with diabetes mellitus have an increased risk of bone fractures. In type 1 diabetes, the risk is increased by ∼6 times and is due to low bone mass. Despite increased bone mineral density (BMD), in patients with type 2 diabetes the risk is increased (which is about twice the risk in the general population) due to the inferior quality of bone. Bone fragility in type 2 diabetes, which is not reflected by bone mineral density, depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers and examination methods are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. One of these methods can be trabecular bone score. The aim of the paper is to present the present state of scientific knowledge about the osteoporosis risk in diabetic patient. The review also discusses the possibility of problematic using the study conclusions in real clinical practice. PMID:25050121

  5. Spatially offset Raman spectroscopy for photon migration investigations in long bone

    NASA Astrophysics Data System (ADS)

    Sowoidnich, Kay; Churchwell, John H.; Buckley, Kevin; Kerns, Jemma G.; Goodship, Allen E.; Parker, Anthony W.; Matousek, Pavel

    2015-07-01

    Raman Spectroscopy has become an important technique for assessing the composition of excised sections of bone, and is currently being developed as an in vivo tool for transcutaneous detection of bone disease using spatially offset Raman spectroscopy (SORS). The sampling volume of the Raman technique (and thus the amount of bone material interrogated by SORS) depends on the nature of the photon scattering in the probed tissue. Bone is a complex hierarchical material and to date little is known regarding its diffuse scattering properties which are important for the development and optimization of SORS as a diagnostic tool for characterizing bone disease in vivo. SORS measurements at 830 nm excitation wavelength are carried out on stratified samples to determine the depth from which the Raman signal originates within bone tissue. The measurements are made using a 0.38 mm thin Teflon slice, to give a pronounced and defined spectral signature, inserted in between layers of stacked 0.60 mm thin equine bone slices. Comparing the stack of bone slices with and without underlying bone section below the Teflon slice illustrated that thin sections of bone can lose appreciable number of photons through the unilluminated back surface. The results show that larger SORS offsets lead to progressively larger penetration depth into the sample; different Raman spectral signatures could be retrieved through up to 3.9 mm of overlying bone material with a 7 mm offset. These findings have direct impact on potential diagnostic medical applications; for instance on the detection of bone tumors or areas of infected bone.

  6. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine.

    PubMed

    Pugely, Andrew J; Petersen, Emily B; DeVries-Watson, Nicole; Fredericks, Douglas C

    2017-01-01

    Spinal fusion surgery is an effective but costly treatment for select spinal pathology. Historically iliac crest bone graft (ICBG) has remained the gold standard for achieving successful arthrodesis. Given well-established morbidity autograft harvest, multiple bone graft replacements, void fillers, and extenders have been developed. The objective of this study was to evaluate the in vivo efficacy and safety of two mineralized collagen bone void filler materials similar in composition. Both bone void fillers were composed of hydroxyapatite (HA), tricalcium phosphate (TCP) and bovine collagen. The first test article (Bi-Ostetic bioactive glass foam or "45S5") also contained 45S5 bioactive glass particles while the second test article (Formagraft or "FG") did not. 45S5 and FG were combined with bone marrow aspirate and iliac crest autograft and compared to ICBG in an established posterolateral spine fusion rabbit model. Sixty-nine mature New Zealand White rabbits were divided into 3 test cohorts: ICBG, 45S5, and FG. A Posterolateral fusion model previous validated was utilized to assess fusion efficacy. The test groups were evaluated for spine fusion rate, new bone formation, graft resorption and inflammatory response using radiographic, μCT, biomechanical and histological endpoints at 4, 8 and 12 weeks following implantation. There were 4 clinical complications unrelated to the graft materials and were evenly split between groups (ICBG graft harvest complications; hind limb mobility, chronic pain) and were euthanized. These omissions did not affect the overall outcome of the study. Radiographic scoring of the fusion sites indicated a normal healing response in all test groups, with no adverse reactions and similar progressions of new bone formation observed over time. All groups demonstrated significantly less range of motion in both flexion/extension and lateral bending compared to normal not-fused controls, which supports fusion results observed in the other endpoints. Fusion occurred earlier in the 45S5 group: ICBG 0%, FG 0%, and 45S5 20% at 4 weeks; ICBG 43%, FG 38%, and 45S5 50% at 8 weeks; and ICBG 50%, FG 56%, and 45S5 56% at 12 weeks. Histopathology analysis of the fusion masses, from each test article and time point, indicated an expected normal response for resorbable calcium phosphate (HA/TCP) and collagen graft material. Mild inflammation with macrophage and multinucleated giant cell response to the graft material was evident in all test groups. This study has confirmed the biocompatibility, safety, efficacy and bone healing characteristics of the HA-TCP collagen (with or without 45S5 bioactive glass) composites. The results show that the 3 test groups had equivalent long-term fusion performance and outcome at 12 weeks. However, the presence of 45S5 bioactive glass seemed to accelerate the fusion process as evidenced by the higher fusion rates at 4 and 8 weeks for the HA-TCP-collagen composite containing bioactive glass particles. The results also demonstrate that the HA-TCP-45S5 bioactive glass-collagen composite used as an extender closely mirrors the healing characteristics (i.e. amount and quality of bone) of the 100% autograft group.

  7. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    PubMed

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  8. Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts.

    PubMed

    Nguyen, Huynh; Cassady, Alan I; Bennett, Michael B; Gineyts, Evelyne; Wu, Andy; Morgan, David A F; Forwood, Mark R

    2013-11-01

    Bone allografts carry a risk of infection, so terminal sterilization by gamma irradiation at 25kGy is recommended; but is deleterious to bone quality. Contemporary bone banking significantly reduces initial allograft bioburden, questioning the need to sterilize at 25kGy. We inoculated allograft bone with Staphylococcus epidermidis and Bacillus pumilus, then exposed them to gamma irradiation at 0, 5, 10, 15, 20 and 25kGy. Mechanical and biological properties of allografts were also assessed. Our aim was to determine an optimal dose that achieves sterility assurance while minimizing deleterious effects on allograft tissue. 20-25kGy eliminated both organisms at concentrations from 10(1) to 10(3)CFU, while 10-15kGy sterilized bone samples to a bioburden concentration of 10(2)CFU. Irradiation did not generate pro-inflammatory bone surfaces, as evidenced by macrophage activation, nor did it affect attachment or proliferation of osteoblasts. At doses ≥10kGy, the toughness of cortical bone was reduced (P<0.05), and attachment and fusion of osteoclasts onto irradiated bone declined at 20 and 25kGy (P<0.05). There was no change in collagen cross-links, but a significant dose-response increase in denatured collagen (P<0.05). Our mechanical and cell biological data converge on 15kGy as a threshold for radiation sterilization of bone allografts. Between 5 and 15kGy, bone banks can undertake validation that provides allografts with an acceptable sterility assurance level, improving their strength and biocompatibility significantly. The application of radiation sterilization doses between 5 and 15kGy will improve bone allograft mechanical performance and promote integration, while retaining sterility assurance levels. Improved quality of allograft bone will promote superior clinical outcomes. © 2013.

  9. Experimental Evaluation of the Effectiveness of Demineralized Bone Matrix and Collagenated Heterologous Bone Grafts Used Alone or in Combination with Platelet-Rich Fibrin on Bone Healing in Sinus Floor Augmentation.

    PubMed

    Peker, Elif; Karaca, Inci Rana; Yildirim, Benay

    2016-01-01

    The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation than collagenated heterologous bone graft.

  10. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    PubMed

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that residual material may influence μe-pH even 9 weeks post-surgery. The pH microelectrode is suitable for in vivo μe-pH detection. Alkaline biodegradable materials generate an in vivo microenvironmental pH which is higher than the normal physiological value and show promising healing effects in the context of osteoporotic bone defects.

  11. TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model.

    PubMed

    Handschel, Jörg; Wiesmann, Hans Peter; Stratmann, Udo; Kleinheinz, Johannes; Meyer, Ulrich; Joos, Ulrich

    2002-04-01

    Tricalciumphosphate (TCP) has been used as a ceramic bone substitute material in the orthopedic field as well as in craniofacial surgery. Some controversies exist concerning the osteoconductive potential of this material in different implantation sites. This study was designed to evaluate the biological response of calvarial bone towards TCP granules under non-loading conditions to assess the potential of TCP as a biodegredable and osteoconductive bone substitue material for the cranial vault. Full-thickness non-critical size defects were made bilaterally in the calvaria of 21 adult Wistar rats. One side was filled by TCP granules, the contralateral side was left empty and used as a control. Animals were sacrified in defined time intervals up to 6 months. Bone regeneration was analyzed with special respect toward the micromorphological and microanalytical features of the material-bone interaction by electron microscopy and electron diffraction analysis. Histologic examination revealed no TCP degradation even after 6 months of implantation. In contrast, a nearly complete bone regeneration of control defects was found after 6 months. At all times TCP was surrounded by a thin fibrous layer without presence of osteoblasts and features of regular mineralization. As far as degradation and substitution are concerned, TCP is a less favourable material tinder conditions of non-loading.

  12. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials.

    PubMed

    Montalbano, Giorgia; Fiorilli, Sonia; Caneschi, Andrea; Vitale-Brovarone, Chiara

    2018-04-28

    Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.

  13. Markers of Bone Health, Bone-Specific Physical Activities, Nutritional Intake, and Quality of Life of Professional Jockeys in Hong Kong.

    PubMed

    Poon, Eric Tsz-Chun; O'Reilly, John; Sheridan, Sinead; Cai, Michelle Mingjing; Wong, Stephen Heung-Sang

    2018-04-28

    Weight-making practices, regularly engaged in by horse racing jockeys, have been suggested to impair both physiological and mental health. This study aimed to assess bone health markers, nutritional intake, bone-specific physical activity (PA) habits, and quality of life of professional jockeys in Hong Kong (n = 14), with gender-, age-, and body mass index-matched controls (n = 14). Anthropometric measurements, serum hormonal biomarkers, bone mineral density, bone-specific PA habits, nutritional intake, and quality of life were assessed in all participants. The jockey group displayed significantly lower bone mineral density at both calcanei than the control group (left: 0.50 ± 0.06 vs. 0.63 ± 0.07 g/cm 2 ; right: 0.51 ± 0.07 vs. 0.64 ± 0.10 g/cm 2 , both ps < .01). Thirteen of the 14 jockeys (93%) showed either osteopenia or osteoporosis in at least one of their calcanei. No significant difference in bone mineral density was detected for either forearm between the groups. The current bone-specific PA questionnaire score was lower in the jockey group than the control group (5.61 ± 1.82 vs. 8.27 ± 2.91, p < .05). Daily energy intake was lower in the jockeys than the controls (1,360 ± 515 vs. 1,985 ± 1,046 kcal/day, p < .01). No significant group difference was found for micronutrient intake assessed by the bone-specific food frequency questionnaire, blood hormonal markers, and quality of life scores. Our results revealed suboptimal bone conditions at calcanei and insufficient energy intake and bone-loading PAs among professional jockeys in Hong Kong compared with healthy age-, gender-, and body mass index-matched controls. Further research is warranted to examine the effect of improved bone-loading PAs and nutritional habits on the musculoskeletal health of professional jockeys.

  14. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    USDA-ARS?s Scientific Manuscript database

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  15. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  16. Carbon Nanostructures in Bone Tissue Engineering

    PubMed Central

    Perkins, Brian Lee; Naderi, Naghmeh

    2016-01-01

    Background: Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians’ reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. Methods: A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. Results: Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. Conclusion: This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration. PMID:28217212

  17. The Use of Light/Chemically Hardened Polymethylmethacrylate, Polyhydroxylethylmethacrylate, and Calcium Hydroxide Graft Material in Combination With Polyanhydride Around Implants and Extraction Sockets in Minipigs: Part II: Histologic and Micro-CT Evaluations

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J.; Abdallah, Rima; Morgan, Elise F.; Diekwisch, Thomas G.H.; Ashman, Arthur; Van Dyke, Thomas

    2015-01-01

    Background This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. Methods A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Results Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P <0.05) histologically. Stained ground sections showed complete bone formation between bone and implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. Conclusion Histologic evaluations supported the previous findings on implant stability and function and confirmed that PPCH+PA provides a greater BIC with a well-organized implant–bone interface and is useful in crestal augmentation during immediate implant placement. PMID:24502615

  18. The use of light/chemically hardened polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide graft material in combination with polyanhydride around implants and extraction sockets in minipigs: Part II: histologic and micro-CT evaluations.

    PubMed

    Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J; Abdallah, Rima; Morgan, Elise F; Diekwisch, Thomas G H; Ashman, Arthur; Van Dyke, Thomas

    2014-09-01

    This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P <0.05) histologically. Stained ground sections showed complete bone formation between bone and implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. Histologic evaluations supported the previous findings on implant stability and function and confirmed that PPCH+PA provides a greater BIC with a well-organized implant-bone interface and is useful in crestal augmentation during immediate implant placement.

  19. Correlation between gamma glutamyltransferase fractions and bone quality.

    PubMed

    Franzini, M; Nesti, A; Panetta, D; Fierabracci, V; Marchetti, S; Parchi, P D; Caponi, L; Paolicchi, A; Musetti, V; Salvadori, P; Edmin, M; Pucci, A; Bonicoli, E; Scaglione, M; Piolanti, N

    Gamma-glutamyltransferase (GGT) has been recently identified as a bone-resorbing factor. The aim of this study was to investigate the association between plasma GGT fractions levels and bone quality. Plasma GGT fractions were analysed by gel-filtration chromatography. Bone quality was established quantitatively by two micro-CT derived microarchitectural parameters: the BV/TV (mineralised bone volume/total volume), and the SMI (structure model index) that describes the rod-like (low resistant) or plate-like (high-resistant) shape of bone trabeculae. We enrolled 93 patients hospitalised for elective total hip replacement (group Arthrosis, n=46) or for proximal femoral fracture (group Fracture, n=47). Patients within the first quartile of BV/TV (Q1, osteoporotic patients, n=6) showed higher levels of b-GGT fraction [median (min-max): 3.37 (1.42–6.81)] compared to patients with normal bone density (fourth quartile Q4, n=10; 1.40 (0.83–4.36); p=0.0393]. Also, according to SMI, b-GGT value was higher in the subgroup with bone fragility [Q1, n=8: 1.36 (0.43–4.36); Q4, n=8: 5.10 (1.4 –7.60); p=0.0117]. In conclusion, patients characterised by fragile bone structure showed specifically higher levels of plasma b-GGT activity thus suggesting fractional GGT analysis as a possible biomarker in the diagnosis of osteoporosis.

  20. Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial.

    PubMed

    Kim, Ik-Jung; Shin, Soo-Yeon

    2018-06-01

    The purpose of this study was to compare the new bone formation capability of zirconia with those of other synthetic bone grafts. Twelve rabbits were used and four 6-mm diameter transcortical defects were formed on each calvaria. Each defect was filled with Osteon II (Os), Tigran PTG (Ti), and zirconia (Zi) bone grafts. For the control group, the defects were left unfilled. The rabbits were sacrificed at 2, 4, and 8 weeks. Specimens were analyzed through micro computed tomography (CT) and histomorphometric analysis. The Ti and Zi groups showed significant differences in the amount of newly formed bone between 2 and 4 weeks and between 2 and 8 weeks ( P <.05). The measurements of total bone using micro CT showed significant differences between the Os and Ti groups and between the Os and Zi groups at 2 and 8 weeks ( P <.05). Comparing by week in each group, the Ti group showed a significant difference between 4 and 8 weeks. Histomorphometric analysis also showed significant differences in new bone formation between the control group and the experimental groups at 2, 4, and 8 weeks ( P <.05). In the comparison of newly formed bone, significant differences were observed between 2 and 4 weeks and between 2 and 8 weeks ( P <.05) in all groups. Zirconia bone graft material showed satisfactory results in new bone formation and zirconia could be used as a new synthetic bone graft material.

  1. Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration

    PubMed Central

    Trachtenberg, Jordan E.; Vo, Tiffany N.; Mikos, Antonios G.

    2014-01-01

    Pre-clinical animal models play a crucial role in the translation of biomedical technologies from the bench top to the bedside. However, there is a need for improved techniques to evaluate implanted biomaterials within the host, including consideration of the care and ethics associated with animal studies, as well as the evaluation of host tissue repair in a clinically relevant manner. This review discusses non-invasive, quantitative, and real-time techniques for evaluating host-materials interactions, quality and rate of neotissue formation, and functional outcomes of implanted biomaterials for bone and cartilage tissue engineering. Specifically, a comparison will be presented for pre-clinical animal models, histological scoring systems, and non-invasive imaging modalities. Additionally, novel technologies to track delivered cells and growth factors will be discussed, including methods to directly correlate their release with tissue growth. PMID:25319726

  2. Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration.

    PubMed

    Trachtenberg, Jordan E; Vo, Tiffany N; Mikos, Antonios G

    2015-03-01

    Pre-clinical animal models play a crucial role in the translation of biomedical technologies from the bench top to the bedside. However, there is a need for improved techniques to evaluate implanted biomaterials within the host, including consideration of the care and ethics associated with animal studies, as well as the evaluation of host tissue repair in a clinically relevant manner. This review discusses non-invasive, quantitative, and real-time techniques for evaluating host-materials interactions, quality and rate of neotissue formation, and functional outcomes of implanted biomaterials for bone and cartilage tissue engineering. Specifically, a comparison will be presented for pre-clinical animal models, histological scoring systems, and non-invasive imaging modalities. Additionally, novel technologies to track delivered cells and growth factors will be discussed, including methods to directly correlate their release with tissue growth.

  3. Intrinsic qualities of primate bones as predictors of skeletal element representation in modern and fossil carnivore feeding assemblages.

    PubMed

    Carlson, Kristian J; Pickering, Travis Rayne

    2003-04-01

    Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages, we interpret the current findings as suggestive of the secondary importance of bulk bone mineral density to other intrinsic qualities of skeletal elements (e.g., size, maximum dimension, and average cross-sectional area). It is only when skeletal elements are too large for consumption (e.g., many long bones) that they are fragmented following intra-element patterns of density-mediated carnivore destruction. There appears to be a size threshold beneath which bulk bone mineral density contributes little to mediating carnivore destruction of carcasses. Thus, depending on body size of the predator, body size of the prey, and specific size of the element, bulk bone mineral density may play little or no role of primary importance in mediating the destruction of skeletal elements. We compare patterns in modern comparative assemblages to patterns in primate fossil assemblages from Swartkrans. One of the fossil assemblages, Swartkrans Member 1, Hanging Remnant, most closely approximates a hyena (possibly refuse) assemblage pattern, while the Swartkrans Member 2 assemblage most closely approximates a leopard (possibly scat) assemblage pattern. The Swartkrans Member 1, Lower Bank, assemblage does not closely approximate any of our modern comparative assemblage patterns.

  4. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.

    PubMed

    Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc

    2009-09-21

    There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.

  5. Intrinsic material properties of cortical bone.

    PubMed

    Lopez Franco, Gloria E; Blank, Robert D; Akhter, Mohammed P

    2011-01-01

    The G171V mutation (high bone mass, HBM) is autosomal dominant and is responsible for high bone mass in humans. Transgenic HBM mice in which the human LRP5 G171V gene is inserted also show a similar phenotype with greater bone mass and biomechanical performance than wild-type mice, as determined by whole bone testing. Whole bone mechanics, however, depend jointly on bone mass, architecture, and intrinsic bone tissue mechanical properties. To determine whether the HBM mutation affects tissue-level biomechanical performance, we performed nano-indentation testing of unembedded cortical bone from HBM mice and their nontransgenic (NTG) littermates. Femora from 17-week-old mice (female, 8 mice/genotype) were subjected to nano-indentation using a Triboscope (Hysitron, Minneapolis, MN, USA). For each femoral specimen, approximately 10 indentations were made on the midshaft anterior surface with a target force of either 3 or 9 mN at a constant loading rate of 400 mN/s. The load-displacement data from each test were used to calculate indentation modulus and hardness for bone tissue. The intrinsic material property that reflected the bone modulus was greater (48%) in the HBM as compared to the NTG mice. Our results of intrinsic properties are consistent with the published structural and material properties of the midshaft femur in HBM and NTG mice. The greater intrinsic modulus in HBM reflects greater bone mineral content as compared to NTG (wild-type, WT) mice. This study suggests that the greater intrinsic property of cortical bone is derived from the greater bone mineral content and BMD, resulting in greater bone strength in HBM as compared to NTG (WT) mice.

  6. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures.

    PubMed

    Röderer, Götz; Scola, Alexander; Schmölz, Werner; Gebhard, Florian; Windolf, Markus; Hofmann-Fliri, Ladina

    2013-10-01

    Proximal humerus fracture fixation can be difficult because of osteoporosis making it difficult to achieve stable implant anchorage in the weak bone stock even when using locking plates. This may cause implant failure requiring revision surgery. Cement augmentation has, in principle, been shown to improve stability. The aim of this study was to investigate whether augmentation of particular screws of a locking plate aimed at a region of low bone quality is effective in improving stability in a proximal humerus fracture model. Twelve paired human humerus specimens were included. Quantitative computed tomography was performed to determine bone mineral density (BMD). Local bone quality in the direction of the six proximal screws of a standard locking plate (PHILOS, Synthes) was assessed using mechanical means (DensiProbe™). A three-part fracture model with a metaphyseal defect was simulated and fixed with the plate. Within each pair of humeri the two screws aimed at the region of the lowest bone quality according to the DensiProbe™ were augmented in a randomised manner. For augmentation, 0.5 ml of bone cement was injected in a screw with multiple outlets at its tip under fluoroscopic control. A cyclic varus-bending test with increasing upper load magnitude was performed until failure of the screw-bone fixation. The augmented group withstood significantly more load cycles. The correlation of BMD with load cycles until failure and BMD with paired difference in load cycles to failure showed that augmentation could compensate for a low BMD. The results demonstrate that augmentation of screws in locked plating in a proximal humerus fracture model is effective in improving primary stability in a cyclic varus-bending test. The augmentation of two particular screws aimed at a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Does bone debris in anterior cruciate ligament reconstruction really matter? A cohort study of a protocol for bone debris debridement

    PubMed Central

    Imam, Mohamed A.; Abdelkafy, Ashraf; Dinah, Feroz; Adhikari, Ajeya

    2015-01-01

    Background: The purpose of the current study was to determine whether a systematic five-step protocol for debridement and evacuation of bone debris during anterior cruciate ligament reconstruction (ACLR) reduces the presence of such debris on post-operative radiographs. Methods: A five-step protocol for removal of bone debris during arthroscopic assisted ACLR was designed. It was applied to 60 patients undergoing ACLR (Group 1), and high-quality digital radiographs were taken post-operatively in each case to assess for the presence of intra-articular bone debris. A control group of 60 consecutive patients in whom no specific bone debris protocol was applied (Group 2) and their post-operative radiographs were also checked for the presence of intra-articular bone debris. Results: In Group 1, only 15% of post-operative radiographs showed residual bone debris, compared to 69% in Group 2 (p < 0.001). Conclusion: A five-step systematic protocol for bone debris removal during arthroscopic assisted ACLR resulted in a significant decrease in residual bone debris seen on high-quality post-operative radiographs. PMID:27163060

  8. Pharmacotherapy of bone metastases in breast cancer patients.

    PubMed

    Petrut, Bianca; Simmons, Christine; Broom, Reuben; Trinkaus, Mateya; Clemons, Mark

    2008-04-01

    A diagnosis of bone metastases is often a devastating occurrence in breast cancer patients. Bone metastases are associated with increased morbidity as reflected through pain, reduced quality of life and skeletal-related events. This paper reviews the role of different pharmacotherapeutic agents in the treatment of bone metastases from breast cancer. Randomised controlled trials of osteoclast-inhibiting agents, that is the bisphosphonates, have shown significant patient benefit. The aims of bisphosphonates are to prevent and delay skeletal-related events, reduce bone pain and improve quality of life. However, there are some limitations with bisphosphonate treatment. Biochemical markers of bone turnover seem to be a promising tool in guiding bisphosphonate treatment and future research directions. Hopefully, patient management will be further improved as new agents become available such as denosumab, osteoprotegerin analogues and anti-angiogenic agents.

  9. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  10. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  11. Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: a study in rat.

    PubMed

    Dewi, Anne Handrini; Ana, Ika Dewi; Wolke, Joop; Jansen, John

    2015-10-01

    Gypsum or calcium sulfate (CS) or plaster of Paris (POP) is considered as a fast degradable material that usually resorbs before the bone defect area is completely filled by new bone. In this study, the incorporation of CaCO3 hydrogel into POP in different compositions was proposed to enhance the bone biological activity of POP and to decrease its degradability. The mechanical and degradation properties of the various materials were characterized by in vitro analysis. Subsequently, the materials were inserted into cylindrically sized bone defects as created into the femoral condyle of rats and left in situ for 1, 4, and 8 weeks. Histological analysis of the retrieved specimens indicated that the addition of CaCO3 hydrogel into POP increased bone formation, angiogenesis and collagen density and resulted into faster bone formation and maturation. It was also confirmed that the degradation rate of the POP decreased by the addition of CaCO3 hydrogel. The in vivo findings did corroborate with the in vitro analysis. In conclusion, the incorporation of CaCO3 hydrogel provides a promising technology to improve the properties of POP, the oldest biomaterial used for bone grafting. © 2015 Wiley Periodicals, Inc.

  12. Applicability of cranial models in urethane resin and foam as a substitute for bone: are synthetic materials reliable?

    PubMed

    Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina

    2013-09-01

    As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times. © 2013 American Academy of Forensic Sciences.

  13. Advances in bionanomaterials for bone tissue engineering.

    PubMed

    Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit

    2013-01-01

    Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.

  14. Computer Tomograph (CT) imaging of mandibular anatomical substrate in animal model restored with nanostructured hydroxyapatite compounds

    PubMed Central

    Ciuluvică, R; Grădinaru, S; Popescu, M; Piticescu, RM; Cergan, R

    2015-01-01

    Introduction: This study was meant to test a new type of bone graft on an animal model. This material was a nanostructured hydroxyapatite. Materials and Methods: the study was conducted according to Ethic Committee Regulation on animal model (Oryctolagus cuniculus – rabbit) between August and November 2014, at “Carol Davila” University of Medicine and Pharmacy, Bucharest. The animals were tested by using a CT at the level of the mandible before and after using the nanostructured hydroxyapatite. Results: The animals were CT scanned at 1, 2 and respectively 3 months, noticing a growth of the mandibular bone density. After 3 months, a bone density equal with the density of the healthy bone was noticed. Conclusions: The use of the bone graft could be a viable alternative to available materials. The advantage was that bone recovery had a density similar to the density of the healthy bone and the cost of production was low because it was made out of Calcium azotate and monobasic ammonium phosphate. PMID:25914749

  15. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action

    PubMed Central

    Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U.

    2017-01-01

    This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone’s ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone’s complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation. PMID:28860414

  16. BONE REGENERATION AFTER DEMINERALIZED BONE MATRIX AND CASTOR OIL (RICINUS COMMUNIS) POLYURETHANE IMPLANTATION

    PubMed Central

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial. PMID:19089203

  17. Prospective randomized clinical trial of hydrophilic tapered implant placement at maxillary posterior area: 6 weeks and 12 weeks loading

    PubMed Central

    2016-01-01

    PURPOSE Early loading of implant can be determined by excellent primary stability and characteristic of implant surface. The implant system with recently improved surface can have load application 4-6 weeks after installing in maxilla and mandible. This study evaluated the effect of healing period to the stability of hydrophilic tapered-type implant at maxillary posterior area. MATERIALS AND METHODS This study included 30 patients treated by hydrophilic tapered-type implants (total 41 implants at maxilla) and classified by two groups depending on healing period. Group 1 (11 patients, 15 implants) was a control group and the healing period was 12 weeks, and Group 2 (19 patients, 26 implants) was test group and the healing period was 6 weeks. Immediately after implant placement, at the first impression taking, implant stability was measured using Osstell Mentor. The patients also took periapical radiographs after restoration delivery, 12 months after restoration and final followup period. The marginal bone loss around the implants was measured using the periapical radiographs. RESULTS All implants were survived and success rate was 97.56%. The marginal bone loss was less than 1mm after 1 year postoperatively except the one implant. The stabilities of the implants were not correlated with age, healing period until loading, insertion torque (IT), the diameter of fixture and the location of implant. Only the quality of bone in group 2 (6 week) was correlated with the stability of implant. CONCLUSION Healing period of 6 weeks can make the similar clinical prognosis of implants to that of healing period of 12 weeks if bone quality is carefully considered in case of early loading. PMID:27826390

  18. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    PubMed

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  19. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  20. Impaired rib bone mass and quality in end-stage cystic fibrosis patients.

    PubMed

    Mailhot, Geneviève; Dion, Natalie; Farlay, Delphine; Rizzo, Sébastien; Bureau, Nathalie J; Jomphe, Valérie; Sankhe, Safiétou; Boivin, Georges; Lands, Larry C; Ferraro, Pasquale; Ste-Marie, Louis-Georges

    2017-05-01

    Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm 3 ) and the heterogeneity index of the mineralization (g/cm 3 ) were calculated for trabecular and cortical bone. Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Living with cracks: Damage and repair in human bone

    NASA Astrophysics Data System (ADS)

    Taylor, David; Hazenberg, Jan G.; Lee, T. Clive

    2007-04-01

    Our bones are full of cracks, which form and grow as a result of daily loading activities. Bone is the major structural material in our bodies. Although weaker than many engineering materials, it has one trick that keeps it ahead - it can repair itself. Small cracks, which grow under cyclic stresses by the mechanism of fatigue, can be detected and removed before they become long enough to be dangerous. This article reviews the work that has been done to understand how cracks form and grow in bone, and how they can be detected and repaired in a timely manner. This is truly an interdisciplinary research field, requiring the close cooperation of materials scientists, biologists and engineers.

  2. Microgravity

    NASA Image and Video Library

    2000-12-15

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  3. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.

    PubMed

    Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald

    2017-11-07

    Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.

    PubMed

    Da Silva, Eric; Kirkham, Brian; Heyd, Darrick V; Pejović-Milić, Ana

    2013-10-01

    Plaster of Paris [poP, CaSO4·(1)/(2) H2O] is the standard phantom material used for the calibration of in vivo X-ray fluorescence (IVXRF)-based systems of bone metal quantification (i.e bone strontium and lead). Calibration of IVXRF systems of bone metal quantification employs the use of a coherent normalization procedure which requires the application of a coherent correction factor (CCF) to the data, calculated as the ratio of the relativistic form factors of the phantom material and bone mineral. Various issues have been raised as to the suitability of poP for the calibration of IVXRF systems of bone metal quantification which include its chemical purity and its chemical difference from bone mineral (a calcium phosphate). This work describes the preparation of a chemically pure hydroxyapatite phantom material, of known composition and stoichiometry, proposed for the purpose of calibrating IVXRF systems of bone strontium and lead quantification as a replacement for poP. The issue with contamination by the analyte was resolved by preparing pure Ca(OH)2 by hydroxide precipitation, which was found to bring strontium and lead levels to <0.7 and <0.3 μg/g Ca, respectively. HAp phantoms were prepared from known quantities of chemically pure Ca(OH)2, CaHPO4·2H2O prepared from pure Ca(OH)2, the analyte, and a HPO4(2-) containing setting solution. The final crystal structure of the material was found to be similar to that of the bone mineral component of NIST SRM 1486 (bone meal), as determined by powder X-ray diffraction spectrometry.

  5. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.

    PubMed

    Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael

    2013-04-01

    Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.

  6. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding.

    PubMed

    Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P

    2018-01-01

    Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.

  7. Synthetic octacalcium phosphate: a possible carrier for mesenchymal stem cells in bone regeneration.

    PubMed

    Suzuki, Osamu; Anada, Takahisa

    2013-01-01

    The present paper reviews biomaterial studies of synthetic octacalcium phosphate (OCP) as a scaffold of osteoblastic cells. OCP crystals have been suggested to be one of precursor phases in hydroxyapatite (HA) crystal formation in bone and tooth. The recent intensive biomaterials and tissue engineering studies using synthetic OCP disclosed the potential function of OCP as a bioactive material as well as synthetic HA materials due to its highly osteoconductive and biodegradable properties. In vitro studies showed that OCP crystals exhibit a positive effect on osteoblastic cell differentiation. In vivo studies confirmed that the materials of OCP in a granule forms and OCP-based composite materials with natural polymers, such as gelatin and collagen, enhance bone regeneration if implanted in various model bone defects with critical-sized diameters, defined as a defect which does not heal spontaneously throughout the lifetime of the animals. One of particular characteristics of OCP, found as a mechanism to enhance bone regeneration in vivo, is a process of progressive conversion from OCP to HA at physiological conditions. The OCP-HA conversion is accompanied by progressive physicochemical changes of the material properties, which affects the tissue reaction around the crystals where osteoblastic cells are encountered. Mesenchymal stem cells (MSCs) seeded in an OCP-based material enhanced bone regeneration in the rat critical-sized calvaria defect more than that by the material alone. The overall results reveal that OCP crystals have an effect on osteoblastic cell differentiation including the differentiation of MSCs in vivo. The evidence collected experimentally in the laboratory was presented.

  8. Nanomechanical properties of hybrid coatings for bone tissue engineering.

    PubMed

    Skarmoutsou, Amalia; Lolas, Georgios; Charitidis, Costas A; Chatzinikolaidou, Maria; Vamvakaki, Maria; Farsari, Maria

    2013-09-01

    Bone tissue engineering has emerged as a promising alternative approach in the treatment of bone injuries and defects arising from malformation, osteoporosis, and tumours. In this approach, a temporary scaffold possessing mechanical properties resembling those of natural bone is needed to serve as a substrate enhancing cell adhesion and growth, and a physical support to guide the formation of the new bone. In this regard, the scaffold should be biocompatible, biodegradable, malleable and mechanically strong. Herein, we investigate the mechanical properties of three coatings of different chemical compositions onto silanized glass substrates; a hybrid material consisting of methacryloxypropyl trimethoxysilane and zirconium propoxide, a type of a hybrid organic-inorganic material of the above containing also 50 mol% 2-(dimethylamino)ethyl methacrylate (DMAEMA) moieties and a pure organic material, based on PDMAEMA. This study investigates the variations in the measured hardness and reduced modulus values, wear resistance and plastic behaviour before and after samples' submersion in cell culture medium. Through this analysis we aim to explain how hybrid materials behave under applied stresses (pile-up formations), how water uptake changes this behaviour, and estimate how these materials will react while interaction with cells in tissue engineering applications. Finally, we report on the pre-osteoblastic cell adhesion and proliferation on three-dimensional structures of the hybrid materials within the first hour and up to 7 days in culture. It was evident that hybrid structure, consisting of 50 mol% organic-inorganic material, reveals good mechanical behaviour, wear resistance and cell adhesion and proliferation, suggesting a possible candidate in bone tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    PubMed

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    PubMed

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  11. Synthesis and characterization of an injectable allograft bone/polymer composite bone void filler with tunable mechanical properties.

    PubMed

    Dumas, Jerald E; Zienkiewicz, Katarzyna; Tanner, Shaun A; Prieto, Edna M; Bhattacharyya, Subha; Guelcher, Scott A

    2010-08-01

    In recent years, considerable effort has been expended toward the development of synthetic bone graft materials. Injectable biomaterials offer several advantages relative to implants due to their ability to cure in situ, thus conforming to irregularly shaped defects. While Food and Drug Administration-approved injectable calcium phosphate cements have excellent osteoconductivity and compressive strengths, these materials have small pore sizes (e.g., 1 mum) and are thus relatively impermeable to cellular infiltration. To overcome this limitation, we aimed to develop injectable allograft bone/polyurethane (PUR) composite bone void fillers with tunable properties that support rapid cellular infiltration and remodeling. The materials comprised particulated (e.g., >100 microm) allograft bone particles and a biodegradable two-component PUR, and had variable (e.g., 30%-70%) porosities. The injectable void fillers exhibited an initial dynamic viscosity of 220 Pa.s at clinically relevant shear rates (40 s(-1)), wet compressive strengths ranging from < 1 to 13 MPa, working times from 3 to 8 min, and setting times from 10 to 20 min, which are comparable to the properties of calcium phosphate bone cements. When injected in femoral plug defects in athymic rats, the composites supported extensive cellular infiltration, allograft resorption, collagen deposition, and new bone formation at 3 weeks. The combination of both initial mechanical properties suitable for weight-bearing applications as well as the ability of the materials to undergo rapid cellular infiltration and remodeling may present potentially compelling opportunities for injectable allograft/PUR composites as biomedical devices for bone regeneration.

  12. [Ultrasound monitoring of consolidation processes in fractures of long tubular bones in osteosynthesis using bioactive implants].

    PubMed

    Zavadovskaia, V D; Popov, V P; Akbasheva, O E; Grigor'ev, E G; Druzhinina, T V

    2014-01-01

    To show the capabilities of ultrasound monitoring to assess consolidation processes in fractures of long tubular bones in the use of bioactive material-containing implants. Eighty-two (45.1%) patients whose bone fragments had been fixed with bioactive material-coated plates and 100 (54.9%) patients with bioinert material-coated ones were examined. Consolidation changes were estimated by ultrasound and X-ray studies 2, 4, 6, and 12 months after surgery. Bone metabolic changes were determined by US osteometry 2 months following surgery. Ultrasound data were compared with the biochemical markers: C-terminal telopeptide (CrossLaps) and osteocalcin. Ultrasound monitoring of the rates of consolidation and the time course of changes in bone strength versus the biochemical markers established the positive effect of bioactiveplates on the process of consolidation in fractures of tubular bones and made it possible to consider local osteopenic syndrome to be a prognostically favorable sign of timely callus formation.

  13. Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration.

    PubMed

    Giannitelli, S M; Basoli, F; Mozetic, P; Piva, P; Bartuli, F N; Luciani, F; Arcuri, C; Trombetta, M; Rainer, A; Licoccia, S

    2015-06-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material-characterized by a dense shell and a porous core-for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Characteristics of Bone Tissue and Composite Materials on the Basis of Natural Hydroxyapatite and Endodontic Cement for Replacement of the Tissue

    NASA Astrophysics Data System (ADS)

    Filipenkov, V. V.; Rupeks, L. E.; Vitins, V. M.; Knets, I. V.; Kasyanov, V. A.

    2017-07-01

    New biocomposites and the cattle bone tissue were investigated. The composites were made from an endodontic cement (EC) and natural hydroxyapatite (NHAp.) The results of experiments performed by the method of infrared spectroscopy showed that protein was removed from the heat-treated specimens of bone tissue practically completely. The structure of bone tissue before and after deproteinization and the structure of the composite materials based on NHAp and EC (with different percentage) were investigated by the method of optical microscopy. The characteristics of mechanical properties (the initial elastic modulus, breaking tensile and compressive stresses, and breaking strain) and the density and porosity of these materials were determined. The new composite materials were implanted in the live tissue of rat. Biocompatibility between the live tissue and the new biocomposites was estimated.

  15. [Effect of milk product with soy isoflavones on quality of life and bone metabolism in postmenopausal Spanish women: randomized trial].

    PubMed

    García-Martín, Antonia; Quesada Charneco, Miguel; Alvárez Guisado, Alejandro; Jiménez Moleón, José Juan; Fonollá Joya, Juristo; Muñoz-Torres, Manuel

    2012-02-04

    To analyze the effects of nutritional intervention with a milk product enriched with soy isoflavones on quality of life and bone metabolism in postmenopausal Spanish women. We performed a double-blind controlled randomized trial in ninety-nine postmenopausal women. Group S women (n=48) were randomized to consume milk product enriched with soy isoflavone (50 mg/day) while group C (n=51) consumed product control for 12 months. Parameters of quality of life (Cervantes scale), markers of bone metabolism and bone mass estimated by ultrasound of the calcaneus (QUS) were evaluated. Overall, there was an improvement in the domains menopause (P=.015) and vasomotor symptoms (P<.001). S group emphasized the assessment of vasomotor symptoms (P=.001) and differed positively from group C in health (P=.019), sex (P=.021) and partner (P=.002). Serum levels TRAP (P<.001) and OPG (P=.007) decreased and concentrations of 25-OH-vitamin D increased (P<.001) without differences between groups. In the assessment of QUS, there was an increase in estimated bone mineral density in group S (P=.040), whereas in group C there were no significant differences. Daily consumption of these milk products increases levels of 25-OH-vitamin D and decreases bone metabolism markers. Additional supplementation with soy isoflavones seems to improve quality of life and bone mass in Spanish postmenopausal women. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  16. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans

    PubMed Central

    Knabe, Christine; Adel Khattab, Doaa; Kluk, Esther; Struck, Rainer; Stiller, Michael

    2017-01-01

    This study examines the effect of a hyaluronic acid (HyAc) containing tricalcium phosphate putty scaffold material (TCP-P) and of a particulate tricalcium phosphate (TCP-G) graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA) in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1) for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I), alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein (BSP). Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc. PMID:28758916

  17. Bone regeneration: in vitro evaluation of the behaviour of osteoblast-like MG63 cells placed in contact with polylactic-co-glycolic acid, deproteinized bovine bone and demineralized freeze-dried bone allograft.

    PubMed

    Pappalardo, S; Mastrangelo, F; Reale Marroccia, D; Cappello, V; Ciampoli, C; Carlino, V; Tanteri, L; Costanzo, M; Sinatra, F; Tetè, S

    2008-01-01

    Insufficient bone density of the alveolar crests, caused by loss of the dental elements, sometimes impedes the primary stability of an integrated bone implant. The techniques of bone regeneration allow to obtain a sufficient quantity of alveolar bone to permit the implant rehabilitation of the edentulous crests. Today several grafting materials are available and they have different characteristics, according to their structure, which influence the different behaviour of the grafting materials to the bone and the implant surface. The aim of this study is to evaluate the interaction between a human osteosarcoma MG63 cell line and three different biomaterials: polylactic-co-glycolic acid (PLAGA), deproteinized bovine bone and demineralised freeze-dried bone allograft (DFDBA). From this study a different behaviour emerges of the osteoblast-like MG63 cells in relation to the sublayer on which these cells were placed in culture. The results of the study, in fact, demonstrate that the most osteoconductive material of the three analysed is the DFDBA, followed by DPBB. On the contrary, the PLGA, because of its roughness, does not seem to represent a valid support for cell growth, and does not encourage any morphologic modification in tumor cells. Furthermore, deproteinized bovine bone shows a differentiating effect which could lead to hypothesise an osteoconductive capacity of this biomaterial. Further studies should be carried out with the aim of explaining the results obtained.

  18. Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration.

    PubMed

    Gawlitta, Debby; Benders, Kim E M; Visser, Jetze; van der Sar, Anja S; Kempen, Diederik H R; Theyse, Lars F H; Malda, Jos; Dhert, Wouter J A

    2015-02-01

    Following an endochondral approach to bone regeneration, multipotent stromal cells (MSCs) can be cultured on a scaffold to create a cartilaginous callus that is subsequently remodeled into bone. An attractive scaffold material for cartilage regeneration that has recently regained attention is decellularized cartilage-derived matrix (CDM). Since this material has shown potential for cartilage regeneration, we hypothesized that CDM could be a potent material for endochondral bone regeneration. In addition, since decellularized matrices are known to harbor bioactive cues for tissue formation, we evaluated the need for seeded MSCs in CDM scaffolds. In this study, ectopic bone formation in rats was evaluated for CDM scaffolds seeded with human MSCs and compared with unseeded controls. The MSC-seeded samples were preconditioned in chondrogenic medium for 37 days. After 8 weeks of subcutaneous implantation, the extent of mineralization was significantly higher in the MSC-seeded constructs versus unseeded controls. The mineralized areas corresponded to bone formation with bone marrow cavities. In addition, rat-specific bone formation was confirmed by collagen type I immunohistochemistry. Finally, fluorochrome incorporation at 3 and 6 weeks revealed that the bone formation had an inwardly directed progression. Taken together, our results show that decellularized CDM is a promising biomaterial for endochondral bone regeneration when combined with MSCs at ectopic locations. Modification of current decellularization protocols may lead to enhanced functionality of CDM scaffolds, potentially offering the prospect of generation of cell-free off-the-shelf bone regenerative substitutes.

  19. Assessment of bone quality within the tuberosities of the osteoporotic humeral head: relevance for anchor positioning in rotator cuff repair.

    PubMed

    Kirchhoff, Chlodwig; Braunstein, Volker; Milz, Stefan; Sprecher, Christoph M; Fischer, Florian; Tami, Andrea; Ahrens, Philipp; Imhoff, Andreas B; Hinterwimmer, Stefan

    2010-03-01

    Tears of the rotator cuff are highly prevalent in patients older than 60 years, thereby presenting a population also suffering from osteopenia or osteoporosis. Suture fixation in the bone depends on the holding strength of the anchoring technique, whether a bone tunnel or suture anchor is selected. Because of osteopenic or osteoporotic bone changes, suture anchors in the older patient might pull out, resulting in failure of repair. The aim of our study was to analyze the bone quality within the tuberosities of the osteoporotic humeral head using high-resolution quantitative computed tomography (HR-pQCT). Descriptive laboratory study. Thirty-six human cadaveric shoulders were analyzed using HR-pQCT. The mean bone volume to total volume (BV/TV) as well as trabecular bone mineral densities (trabBMDs) of the greater tuberosity (GT) and the lesser tuberosity (LT) were determined. Within the GT, 6 volumes of interest (VOIs) within the LT, and 2 VOIs and 1 control volume within the subchondral area beyond the articular surface were set. Comparing BV/TV of the medial and the lateral row, significantly higher values were found medially (P < .001). The highest BV/TV, 0.030% + or - 0.027%, was found in the posteromedial portion of the GT (P < .05). Regarding the analysis of the LT, no difference was found comparing the superior (BV/TV: 0.024% + or - 0.022%) and the inferior (BV/TV: 0.019% + or - 0.016%) portion. Analyzing trabBMD, equal proportions were found. An inverse correlation with a correlation coefficient of -0.68 was found regarding BV/TV of the posterior portion of the GT and age (P < .05). Significant regional differences of trabecular microarchitecture were found in our HR-pQCT study. The volume of highest bone quality resulted for the posteromedial aspect of the GT. Moreover, a significant correlation of bone quality within the GT and age was found, while the bone quality within the LT seems to be independent from it. The shape of the rotator cuff tear largely determines the bony site of tendon reattachment, although the surgeon has distinct options to modify anchor positioning. According to our results, placement of suture anchors in a medialized way at the border to the articular surface might guarantee a better structural bone stock.

  20. The in vivo performance of a sol-gel glass and a glass-ceramic in the treatment of limited bone defects.

    PubMed

    Gil-Albarova, Jorge; Garrido-Lahiguera, Ruth; Salinas, Antonio J; Román, Jesús; Bueno-Lozano, Antonio L; Gil-Albarova, Raúl; Vallet-Regí, María

    2004-08-01

    The in vivo evaluation, in New Zealand rabbits, of a SiO(2)-P(2)O(5)-CaO sol-gel glass and a SiO(2)-P(2)O(5)-CaO-MgO glass-ceramic, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Bone defects, performed in the lateral aspect of distal right femoral epiphysis, 5mm in diameter and 4mm in depth, were filled with (i) sol-gel glass disks, (ii) glass-ceramic disks, or (iii) no material (control group). Each group included 8 mature and 8 immature rabbits. A 4-month radiographic study showed good implant stability without axial deviation of extremities in immature animals and periosteal growth and remodelling around and over the bone defect. After sacrifice, the macroscopic study showed healing of bone defects, with bone coating over the implants. The morphometric study showed a more generous bone formation in animals receiving sol-gel glass or glass-ceramic disks than in control group. Histomorphometric study showed an intimate union of the new-formed bone to the implants. This study allows considering both materials as eligible for bone substitution or repair. Their indications could include cavities filling and the coating of implant surfaces. The minimum degradation of glass-ceramic disks suggests its application in locations of load or transmission forces. As specific indication in growth plate surgery, both materials could be used as material of interposition after bony bridges resection.

  1. The influence of bone substitute materials on the bone volume after maxillary sinus augmentation: a microcomputerized tomography study.

    PubMed

    Kühl, Sebastian; Brochhausen, Christoph; Götz, Hermann; Filippi, Andreas; Payer, Michael; d'Hoedt, Bernd; Kreisler, Matthias

    2013-03-01

    This study aims to evaluate the effect of adding bone substitute materials (BSM) to particulated autogenous bone (PAB) on the volume fraction (Vf) of newly formed bone after maxillary sinus augmentation. Thirty healthy patients undergoing maxillary sinus augmentation were included. PAB (N = 10), mixtures of PAB and beta-tricalciumphosphate (PAB/β-TCP) (N = 10), as well as PAB and β-TCP and hydroxyapatite (PAB/HA/β-TCP) (N = 10) were randomly used for sinus augmentation. A sample of the graft material was maintained from each patient at time of maxillary sinus augmentation, and Vfs of the PAB and/or BSM in the samples were determined by means of microcomputerized tomography (μ-CT). Five months later, samples of the grafted areas were harvested during implantation using a trephine bur. μ-CT analysis of these samples was performed, and the Vf of bone and BSM were compared with the data obtained 5 months earlier from the original material. The mean Vf of the bone showed a statistically significant increase (p < 0.05) in all groups after a healing period of 5 months without statistically significant difference between the groups. With regard to the increase of bone volume, it is not relevant if PAB is used alone or combined with β-TCP or HA/β-TCP. The amount of PAB and associated donor site morbidity may be reduced by adding BSM for maxillary sinus augmentation.

  2. Quality of Life After Palliative Radiation Therapy for Patients With Painful Bone Metastases: Results of an International Study Validating the EORTC QLQ-BM22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng Liang; Chow, Edward, E-mail: edward.chow@sunnybrook.ca; Bedard, Gillian

    2012-11-01

    Purpose: Radiation therapy (RT) is an effective method of palliating painful bone metastases and can improve function and reduce analgesic requirements. In advanced cancer patients, quality of life (QOL) is the primary outcome of interest over traditional endpoints such as survival. The purpose of our study was to compare bone metastasis-specific QOL scores among patients who responded differently to palliative RT. Methods and Materials: Patients receiving RT for bone metastases across 6 countries were prospectively enrolled from March 2010-January 2011 in a trial validating the QLQ-BM22 and completed the QLQ-BM22 and the core measure (QLQ-C30) at baseline and after 1more » month. Pain scores and analgesic intake were recorded, and response to RT was determined according to the latest published guidelines. The Kruskal-Wallis nonparametric and Wilcoxon rank sum tests compared changes in QOL among response groups. A Bonferroni-adjusted P<.003 indicated statistical significance. Results: Of 79 patients who received palliative RT, 59 were assessable. Partial response, pain progression, and indeterminate response were observed in 22, 8, and 29 patients, respectively; there were no patients with a complete response. Patients across all groups had similar baseline QOL scores apart from physical functioning (patients who progressed had better initial functioning). One month after RT, patients who responded had significant improvements in 3 of 4 QLQ-BM22 domains (painful site, P<.0001; painful characteristic, P<.0001; and functional interference, P<.0001) and 3 QLQ-C30 domains (physical functioning, P=.0006; role functioning, P=.0026; and pain, P<.0001). Patients with progression in pain had significantly worse functional interference (P=.0007) and pain (P=.0019). Conclusions: Patients who report pain relief after palliative RT also have better QOL with respect to bone metastasis-specific issues. The QLQ-BM22 and QLQ-C30 are able to discriminate among patients with varying responses and are recommended for use in future bone metastasis clinical trials.« less

  3. Effect Of Gravity On Porous Tricalcium Phosphate And Nonstoichiometric Titanium Carbide Produced Via Combustion Synthesis

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Novel processing techniques, such as self-propagating high temperature synthesis (SHS), have the capability to rapidly produce advanced porous materials that are difficult to fabricate by other methods. This processing technique is also capable of near net shape synthesis, while variable gravity allows the manipulation of the structure and composition of the material. The creation of porous tricalcium phosphate (TCP) is advantageous in the biomaterials field, since it is both a biocompatible material and an osteoconductive material. Porous tricalcium phosphate produced via SHS is an excellent candidate for bone scaffold material in the bone regeneration process. The porosity allows for great vascularization and ingrowth of tissue. Titanium Carbide is a nonstoichiometric biocompatible material that can be incorporated into a TiC-Ti composite system using combustion synthesis. The TiC-Ti composite exhibits a wide range of mechanical and chemical properties. Both of these material systems (TCP and TiC-Ti) can be used to advantage in designing novel bone replacement materials. Gravity plays an important role in both the pore structure and the chemical uniformity of these composite systems and offers considerable potential in advanced bone engineering.

  4. Socket augmentation using a commercial collagen-based product--an animal study in pigs.

    PubMed

    Kunert-Keil, Christiane; Gredes, Tomasz; Heinemann, Friedhelm; Dominiak, Marzena; Botzenhart, Ute; Gedrange, Tomasz

    2015-01-01

    The aim of the present study was to identify properties of pure collagen for augmentation techniques and compare to a proved xenogenic material and natural bone regeneration. For that the osteogenesis of extraction alveoli after augmentation with a collagen cone covered with an absorbable collagen membrane in a single product (PARASORB Sombrero®, Resorba) was evaluated in a pig model. Extraction alveoli were treated with the collagen cone and the collagen membrane in a single product (test group; n=7) or demineralized bovine bone mineral and a collagen membrane (two separate products; positive control; n=7). Untreated alveoli were used (n=6) as negative controls.(1) Bone specimens were extracted 1 and 3 months after teeth extraction. Serial longitudinal sections were stained with Masson Goldner trichrome. Furthermore, bone specimens were examined using X-ray analyses. Significant differences of bone atrophy were detected 12 weeks after material insertion using X-ray analyses. The bone atrophy was reduced by approximately 32% after insertion of the positive control (P=0.046). Bone atrophy reached 37.6% of those from untreated alveoli (P=0.002) using the test group. After 4 weeks, bone formation was noticeable in most sites, whereas after 12 weeks of healing, specimens of all groups exhibited nearly complete osseous organization of the former defected area. The mandibulary bone texture showed typical spongious bone structures. Histomorphometric analyses revealed after 4 and 12 weeks significant higher levels of bone marrow in test and negative control than in positive control. Quantification of bone tissue and osteoid does not show any significant difference. The present study confirms reduced bone resorption following socket augmentation with an absorbable collagen membrane with collagen cone while the resulting bone structure is similar to natural bone regeneration. Pure collagen can be used for bone augmentation, and shows over other xenogenic materials, a clear advantage with respect to the bone density and structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Topical combined application of dexamethasone, vitamin C, and β-sodium glycerophosphate for healing the extraction socket in rabbits.

    PubMed

    Chen, J; He, Y; Shan, C; Pan, Q; Li, M; Xia, D

    2015-10-01

    An osteogenic inducer (OI) consisting of dexamethasone, vitamin C, and β-sodium glycerophosphate has the capacity to induce bone formation in vitro. The aim of this study was to assess the efficacy of the application of this OI on extraction socket healing. The bilateral first mandibular premolars were extracted from 75 New Zealand rabbits. Gelatin sponges carrying OI were implanted into the sockets. Sockets undergoing implantation of gelatin sponges alone were also evaluated, as well as non-implantation sockets. Specimens from each group were evaluated radiographically, histologically, and histomorphometrically using haematoxylin-eosin staining. Results showed earlier new bone formation and higher bone quality and quantity in the OI group compared to the other groups, and the differences were significant at 2, 4, 8, and 12 weeks postoperative. The OI significantly reduced the absorption of alveolar bone in terms of height; however, changes in the width were not significantly different between the three groups (P>0.05). The OI was shown to have a positive effect on healing of the tooth extraction sockets, was inexpensive, and was convenient to use during the operational procedure; therefore this could represent a promising implant material for human clinical application. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Contributions of Raman spectroscopy to the understanding of bone strength.

    PubMed

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  7. The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting

    PubMed Central

    Heidrich, G.; Bruening, T.; Krefft, S.; Buchhorn, G.; Klinger, H.M.

    2006-01-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium, carbon or cobalt-chrome, which can affect the post-fusion MRI scans. Implant-related susceptibility artifacts can decrease the quality of MRI scans, thwarting proper evaluation. This cadaver study aimed to demonstrate the extent that implant-related MRI artifacting affects the post-fusion evaluation of intervertebral spacers. In a cadaveric porcine spine, we evaluated the post-implantation MRI scans of three intervertebral spacers that differed in shape, material, surface qualities and implantation technique. A spacer made of human cortical bone was used as a control. The median sagittal MRI slice was divided into 12 regions of interest (ROI). No significant differences were found on 15 different MRI sequences read independently by an interobserver-validated team of specialists (P>0.05). Artifact-affected image quality was rated on a score of 0-1-2. A maximum score of 24 points (100%) was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. The carbon, titanium and cobalt-chrome spacers scored 83.3, 62.5 and 50%, respectively. Our scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the control that was independent of artifact dimensions. The carbon spacer had the lowest percentage of susceptibility artifacts. Even with turbo spin echo sequences, the susceptibility artifacts produced by the metallic spacers showed a high degree of variability. Despite optimum sequencing, implant design and material are relevant factors in MRI artifacting. PMID:16463200

  8. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    PubMed

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A forensic application of the model is explained in which impacts to the arm have been reconstructed using the finite element model of THUMS. The advantage of the numerical method is that a wide range of impact conditions can be easily reconstructed. Impact velocity has been changed as a parameter to find the tolerance levels of injuries to the lower arm. The method can be further developed to study the assaults and the injury mechanism which can lead to severe traumatic injuries in forensic cases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Implant detectibility of intervertebral disc spacers in post fusion MRI: evaluation of the MRI scan quality by using a scoring system--an in vitro study.

    PubMed

    Ernstberger, Thorsten; Heidrich, Gabert; Schultz, Wolfgang; Grabbe, Eckhardt

    2007-02-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium and cobalt chromium alloys and carbon fiber-reinforced polymers. Implant-related susceptibility artifacts can decrease the quality of MRI scans. The aim of this cadaveric study was to demonstrate the extent that implant-related MRI artifacting affects the postfusion differentiation of determined regions of interest (ROIs). In six cadaveric porcine spines, we evaluated the postimplantation MRI scans of a titanium, cobalt-chromium and carbon spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into ROIs to characterize the spinal canal as well as the intervertebral disc space. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists the artifact-affected image quality of the median MRI slice was rated on a score of 0-3. A maximum score of 18 points (100%) for the determined ROIs was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. For the determined ROI maximum scores for the cobalt-chromium, titanium and carbon spacers were 24%, 32% and 84%, respectively. By using favored T1 TSE sequences the carbon spacer showed a clear advantage in postfusion spinal imaging. Independent of artifact dimensions, the scoring system used allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.

  10. A modified cementing technique using BoneSource to augment fixation of the acetabulum in a sheep model.

    PubMed

    Timperley, A John; Nusem, Iulian; Wilson, Kathy; Whitehouse, Sarah L; Buma, Pieter; Crawford, Ross W

    2010-08-01

    Our aim was to assess in an animal model whether the use of HA paste at the cement-bone interface in the acetabulum improves fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylmethacrylate (PMMA). We performed a randomized study involving 22 sheep that had BoneSource hydroxyapatite material applied to the surface of the acetabulum before cementing a polyethylene cup at arthroplasty. We studied the gross radiographic appearance of the implant-bone interface and the histological appearance at the interface. There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not give any detrimental effects. In some cases, the material appeared to have been fully resorbed. When the material was evident in histological sections, it was incorporated into an osseointegrated interface. There was no giant cell reaction present. There was no evidence of migration of BoneSource to the articulation. The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in humans, to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris.

  11. Application of fracture mechanics to failure in manatee rib bone.

    PubMed

    Yan, Jiahau; Clifton, Kari B; Reep, Roger L; Mecholsky, John J

    2006-06-01

    The Florida manatee (Trichechus manatus latirostris) is listed as endangered by the U.S. Department of the Interior. Manatee ribs have different microstructure from the compact bone of other mammals. Biomechanical properties of the manatee ribs need to be better understood. Fracture toughness (K(C)) has been shown to be a good index to assess the mechanical performance of bone. Quantitative fractography can be used in concert with fracture mechanics equations to identify fracture initiating defects/cracks and to calculate the fracture toughness of bone materials. Fractography is a standard technique for analyzing fracture behavior of brittle and quasi-brittle materials. Manatee ribs are highly mineralized and fracture in a manner similar to quasi-brittle materials. Therefore, quantitative fractography was applied to determine the fracture toughness of manatee ribs. Average fracture toughness values of small flexure specimens from six different sizes of manatees ranged from 1.3 to 2.6 MPa(m)(12). Scanning electron microscope (SEM) images show most of the fracture origins were at openings for blood vessels and interlayer spaces. Quantitative fractography and fracture mechanics can be combined to estimate the fracture toughness of the material in manatee rib bone. Fracture toughness of subadult and calf manatees appears to increase as the size of the manatee increases. Average fracture toughness of the manatee rib bone materials is less than the transverse fracture toughness of human and bovine tibia and femur.

  12. Quantitative computed tomography and cranial burr holes: a model to evaluate the quality of cranial reconstruction in humans.

    PubMed

    Worm, Paulo Valdeci; Ferreira, Nelson Pires; Ferreira, Marcelo Paglioli; Kraemer, Jorge Luiz; Lenhardt, Rene; Alves, Ronnie Peterson Marcondes; Wunderlich, Ricardo Castilho; Collares, Marcus Vinicius Martins

    2012-05-01

    Current methods to evaluate the biologic development of bone grafts in human beings do not quantify results accurately. Cranial burr holes are standardized critical bone defects, and the differences between bone powder and bone grafts have been determined in numerous experimental studies. This study evaluated quantitative computed tomography (QCT) as a method to objectively measure cranial bone density after cranial reconstruction with autografts. In each of 8 patients, 2 of 4 surgical burr holes were reconstructed with autogenous wet bone powder collected during skull trephination, and the other 2 holes, with a circular cortical bone fragment removed from the inner table of the cranial bone flap. After 12 months, the reconstructed areas and a sample of normal bone were studied using three-dimensional QCT; bone density was measured in Hounsfield units (HU). Mean (SD) bone density was 1535.89 (141) HU for normal bone (P < 0.0001), 964 (176) HU for bone fragments, and 453 (241) HU for bone powder (P < 0.001). As expected, the density of the bone fragment graft was consistently greater than that of bone powder. Results confirm the accuracy and reproducibility of QCT, already demonstrated for bone in other locations, and suggest that it is an adequate tool to evaluate cranial reconstructions. The combination of QCT and cranial burr holes is an excellent model to accurately measure the quality of new bone in cranial reconstructions and also seems to be an appropriate choice of experimental model to clinically test any cranial bone or bone substitute reconstruction.

  13. Biomaterial shell bending with 3D-printed templates in vertical and alveolar ridge augmentation: a technical note.

    PubMed

    Draenert, Florian G; Gebhart, Florian; Mitov, Gergo; Neff, Andreas

    2017-06-01

    Alveolar ridge and vertical augmentations are challenging procedures in dental implantology. Even material blocks with an interconnecting porous system are never completely resorbed. Shell techniques combined with autologous bone chips are therefore the gold standard. Using biopolymers for these techniques is well documented. We applied three-dimensional (3-D) techniques to create an individualized bending model for the adjustment of a plane biopolymer membrane made of polylactide. Two cases with a vertical alveolar ridge defect in the maxilla were chosen. The cone beam computed tomography data were processed with a 3-D slicer and the Autodesk Meshmixer to generate data about the desired augmentation result. STL data were used to print a bending model. A 0.2-mm poly-D, L-lactic acid membrane (KLS Matin Inc., Tuttlingen, Germany) was bended accordingly and placed into the defect via a tunnel approach in both cases. A mesh graft of autologous bone chips and hydroxylapatite material was augmented beneath the shell, which was fixed with osteosynthesis screws. The operative procedure was fast and without peri- or postoperative complications or complaints. The panoramic x-ray showed correct fitting of the material in the location. Bone quality at the time of implant placement was type II, resulting in good primary stability. A custom-made 3-D model for bending confectioned biomaterial pieces is an appropriate method for individualized adjustment in shell techniques. The advantages over direct printing of the biomaterial shell and products on the market, such as the Xyoss shell (Reoss Inc., Germany), include cost-efficiency and avoidance of regulatory issues. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    PubMed

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  15. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis

    PubMed Central

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.

    2016-01-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353

  16. Effect on Bone Architecture of Marginal Grooves in Dental Implants Under Occlusal Loaded Conditions in Beagle Dogs.

    PubMed

    Kato, Hatsumi; Kuroshima, Shinichiro; Inaba, Nao; Uto, Yusuke; Sawase, Takashi

    2018-02-01

    The aim of this study was to clarify whether marginal grooves on dental implants affect osseointegration, bone structure, and the alignment of collagen fibers to determine bone quality under loaded conditions. Anodized Ti-6Al-4V alloy dental implants, with and without marginal grooves (test and control implants, respectively), were used (3.7 × 8.0 mm). Fourth premolars and first molars of 6 beagle mandibles were extracted. Two control and test implants were placed in randomly selected healed sites at 12 weeks after tooth extraction. Screw-retained single crowns for first molars were fabricated. Euthanasia was performed at 8 weeks after the application of occlusal forces. Implant marginal bone level, bone to implant contact (BIC), bone structure around dental implants, and the alignment of collagen fibers determining bone quality were analyzed. The marginal bone level in test implants was significantly higher than that in control implants. Occlusal forces significantly increased BIC in test implants ( P = .007), whereas BIC did not change in control implants, irrespective of occlusal forces ( P = .303). Moreover, occlusal forces significantly increased BIC in test implants compared with control implants ( P = .032). Additionally, occlusal forces preferentially aligned collagen fibers in test implants, but not control implants. Hence, marginal grooves on dental implants have positive effects on increased osseointegration and adapted bone quality based on the preferential alignment of collagen fibers around dental implants under loaded conditions.

  17. Clinical efficacy of stem cell mediated osteogenesis and bioceramics for bone tissue engineering.

    PubMed

    Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Goodarzi, Amir; Youssefzadeh, Jonathan; Chen, Mike Y; Jandial, Rahul

    2012-01-01

    Lower back pain is a common disorder that often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells (MSCs) have received attention for their ability to differentiate into osteoblasts, cells that synthesize the extracellular matrix and regulate matrix mineralization. Successful bone regeneration requires three elements: MSCs that serve as osteoblastic progenitors, osteoinductive growth factors and their pathways that promote development and differentiation of the cells as well as an osteoconductive scaffold that allows for the formation of a vascular network. Future treatments should strive to combine mesenchymal stem cells, cell-seeded scaffolds and gene therapy to optimize the efficiency and safety of tissue repair and bone regeneration.

  18. New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption

    NASA Astrophysics Data System (ADS)

    Lu, Yanfei; Lekszycki, Tomasz

    2018-03-01

    A new description of graft substitution by bone tissue is proposed in this work. The studied domain is considered as a continuum model consisting of a mixture of the bone tissue and the graft material. Densities of both components evolve in time as a result of cellular activity and biodegradation. The proposed model focuses on the interaction between the bone cell activity, mechanical stimuli, nutrients supply and scaffold microstructure. Different combinations of degradation rate and stiffness of the graft material were examined by numerical simulation. It follows from the calculations that the degradation rate of the scaffold should be tuned to the synthesis/resorption rate of the tissue, which are dependent among the others on scaffold porosity changes. Simulation results imply potential criteria to choose proper bone substitute material in consideration of degradation rate, initial porosity and mechanical characteristics.

  19. Management of segmental bony defects: the role of osteoconductive orthobiologics.

    PubMed

    McKee, Michael D

    2006-01-01

    Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.

  20. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    PubMed

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gelatine modified monetite as a bone substitute material: An in vitro assessment of bone biocompatibility.

    PubMed

    Kruppke, Benjamin; Farack, Jana; Wagner, Alena-Svenja; Beckmann, Sarah; Heinemann, Christiane; Glenske, Kristina; Rößler, Sina; Wiesmann, Hans-Peter; Wenisch, Sabine; Hanke, Thomas

    2016-03-01

    Calcium phosphate phases are increasingly used for bone tissue substitution, and the load bearing properties of these inherently brittle biomaterials are increased by inclusion of organic components. Monetite prepared using mineralization of gelatine pre-structured through phosphate leads to a significantly increased biaxial strength and indirect tensile strength compared to gelatine-free monetite. Besides the mechanical properties, degradation in physiological solutions and osteoblast and osteoclast cell response were investigated. Human bone marrow stromal cells (hBMSCs) showed considerably higher proliferation rates on the gelatine modified monetite than on polystyrene reference material in calcium-free as well as standard cell culture medium (α-MEM). Osteogenic differentiation on the material was comparable to polystyrene in both medium types. Osteoclast-like cells derived from monocytes were able to actively resorb the biomaterial. Osteoblastic differentiation and perhaps even more important the cellular resorption of the biomaterial indicate that it can be actively involved in the bone remodeling process. Thus the behavior of osteoblasts and osteoclasts as well as the adequate degradation and mechanical properties are strong indicators for bone biocompatibility, although in vivo studies are still required to prove this. New and unique? A low temperature precipitationprocessforcalcium anhydrous hydrogen phosphateallows for the first time to produce monolithic compact composites of monetite and gelatine. The composite is degradable and resorbable. To prove that, the question arises: what is bone biocompatibility? The reaction of both mayor cell types of bone represents this biocompatibility. Therefore, human bone marrow stromal cells were seeded revealing the materials pro-osteogenic properties. Monocyte cultivation, becoming recently focus of interest, revealed the capability of the biomaterial to be actively resorbed by derived osteoclast-like cells. Not new but necessary ismechanical characterization, which is often only investigated as uniaxial property. Here, a biaxial method is applied, to characterize the materials properties closer to its application loads. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Effect of dexamethasone on mandibular bone biomechanics in rats during the growth phase as assessed by bending test and peripheral quantitative computerized tomography.

    PubMed

    Bozzini, Clarisa; Champin, Graciela; Alippi, Rosa M; Bozzini, Carlos E

    2015-04-01

    Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500μg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species.

  3. Interventions for treating simple bone cysts in the long bones of children.

    PubMed

    Zhao, Jia-Guo; Wang, Jia; Huang, Wan-Jie; Zhang, Peng; Ding, Ning; Shang, Jian

    2017-02-04

    Simple bone cysts, also known as a unicameral bone cysts or solitary bone cysts, are the most common type of benign bone lesion in growing children. Cysts may lead to repeated pathological fracture (fracture that occurs in an area of bone weakened by a disease process). Occasionally, these fractures may result in symptomatic malunion. The main goals of treatment are to decrease the risk of pathological fracture, enhance cyst healing and resolve pain. Despite the numerous treatment methods that have been used for simple bone cysts in long bones of children, there is no consensus on the best procedure. This is an update of a Cochrane review first published in 2014. To assess the effects (benefits and harms) of interventions for treating simple bone cysts in the long bones of children, including adolescents.We intended the following main comparisons: invasive (e.g. injections, curettage, surgical fixation) versus non-invasive interventions (e.g. observation, plaster cast, restricted activity); different categories of invasive interventions (i.e. injections, curettage, drilling holes and decompression, surgical fixation and continued decompression); different variations of each category of invasive intervention (e.g. different injection substances: autologous bone marrow versus steroid). We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, the China National Knowledge Infrastructure Platform, trial registers, conference proceedings and reference lists. Date of last search: April 2016. Randomised and quasi-randomised controlled trials evaluating methods for treating simple bone cysts in the long bones of children. Two review authors independently screened search results and performed study selection. We resolved differences in opinion between review authors by discussion and by consulting a third review author. Two review authors independently assessed risk of bias and data extraction. We summarised data using risk ratios (RRs) or mean differences (MDs), as appropriate, and 95% confidence intervals (CIs). We used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the overall quality of the evidence. In this update in 2017, we did not identify any new randomised controlled trials (RCT) for inclusion. We identified one ongoing trial that we are likely to include in a future update. Accordingly, our results are unchanged. The only included trial is a multicentre RCT conducted at 24 locations in North America and India that compared bone marrow injection with steroid (methylprednisolone acetate) injection for treating simple bone cysts. Up to three injections were planned for participants in each group. The trial involved 90 children (mean age 9.5 years) and presented results for 77 children at two-year follow-up. Although the trial had secure allocation concealment, it was at high risk of performance bias and from major imbalances in baseline characteristics. Reflecting these study limitations, we downgraded the quality of evidence by two levels to 'low' for most outcomes, meaning that we are unsure about the estimates of effect. For outcomes where there was serious imprecision, we downgraded the quality of evidence by a further level to 'very low'.The trial provided very low quality evidence that fewer children in the bone marrow injection group had radiographically assessed healing of bone cysts at two years than in the steroid injection group (9/39 versus 16/38; RR 0.55 favouring steroid injection, 95% CI 0.28 to 1.09). However, the result was uncertain and may be compatible with no difference or small benefit favouring bone marrow injection. Based on an illustrative success rate of 421 children with healed bone cysts per 1000 children treated with steroid injections, this equates to 189 fewer (95% CI 303 fewer to 38 more) children with healed bone cysts per 1000 children treated with bone marrow injections. There was low quality evidence of a lack of difference between the two interventions at two years in functional outcome, based on the Activity Scale for Kids function score (0 to 100; higher scores equate to better outcome: MD -0.90; 95% CI -4.26 to 2.46) or in pain assessed using the Oucher pain score. There was very low quality evidence of a lack of differences between the two interventions for adverse events: subsequent pathological fracture (9/39 versus 11/38; RR 0.80, 95% CI 0.37 to 1.70) or superficial infection (two cases in the bone marrow group). Recurrence of bone cyst, unacceptable malunion, return to normal activities, and participant satisfaction were not reported. The available evidence is insufficient to determine the relative effects of bone marrow versus steroid injections, although the bone marrow injections are more invasive. Noteably, the rate of radiographically assessed healing of the bone cyst at two years was well under 50% for both interventions. Overall, there is a lack of evidence to determine the best method for treating simple bone cysts in the long bones of children. Further RCTs of sufficient size and quality are needed to guide clinical practice.

  4. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with Osteogenesis Imperfecta

    PubMed Central

    Jameson, John; Smith, Peter; Harris, Gerald

    2015-01-01

    Osteogenesis Imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3–42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (p≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight towards understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. PMID:24928496

  5. [Experimental study of canine bone marrow mesenchymal stem cells combined with calcium phosphate cement for repair of mandibular bone defects in Beagle dogs].

    PubMed

    Hu, Yi-cheng; Liu, Xin; Shen, Ji-jia; He, Jia-cai; Chen, Qiao-er

    2014-08-01

    To evaluate the effects of bone marrow mesenchymal stem cells (BMSCs) combined with calcium phosphate cement (CPC) scaffold for repair of mandibular defect in Beagle dogs. BMSCs were isolated from Beagle dogs and cultured in DMEM plus 10% FBS. The induction effect was determined using alizarin red staining or alkaline phosphate staining at 14-day of culture. BMSCs were added to the CPC scaffold for animal experiments. In vivo, three critical size bone defects were surgically created in each side of the mandible. The bone defects were repaired with BMSCs-CPC (scaffolds with composite seeding cells), CPC (scaffold alone) or no materials (blank group). Two dogs were sacrificed at 4-week and 8-week after operation. Gross observation, X-ray imaging, histologic and histometric analyses were performed to evaluate the level of bone formation. Newly formed bones were detected within all defect sites after operation. The BMSCs-CPC group and CPC group showed increased bone formation compared with the blank group. The BMSCs-CPC group exhibited more bone formation and degradation of the material than the CPC group. The percentage of new bone in the BMSCs-CPC and CPC treated group were significantly higher than that in the control group (P<0.05), while the percentage of new bone in the BMSCs-CPC sites was higher than that in the CPC sites (P<0.01); the percentage of residual material in the BMSCs-CPC sites was lower than that in the CPC sites (P<0.01) 4 weeks and 8 weeks after operation. Using the theory of tissue engineering, BMSCs composite CPC compound is an effective method in promoting new bone regeneration, which has a positive influence on the bone space preservation.

  6. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta.

    PubMed

    Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald

    2014-09-01

    Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3 and 42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (P≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Properties of the "Orgamax" osteoplastic material made of a demineralized allograft bone

    NASA Astrophysics Data System (ADS)

    Podorognaya, V. T.; Kirilova, I. A.; Sharkeev, Yu. P.; Uvarkin, P. V.; Zhelezny, P. A.; Zheleznaya, A. P.; Akimova, S. E.; Novoselov, V. P.; Tupikova, L. N.

    2016-08-01

    We investigated properties of the "Orgamax" osteoplastic material, which was produced from a demineralized bone, in the treatment of extensive caries, in particular chronic pulpitis of the permanent teeth with unformed roots in children. The "Orgamax" osteoplastic material consists of demineralized bone chips, a collagen additive, and antibiotics. The surface morphology of the "Orgamax" osteoplastic material is macroporous, with the maximum pore size of 250 µm, whereas the surface morphology of the major component of "Orgamax", demineralized bone chips, is microporous, with a pore size of 10-20 µm. Material "Orgamax" is used in the treatment of complicated caries, particularly chronic pulpitis of permanent teeth with unformed roots in children. "Orgamax" filling a formed cavity exhibits antimicrobial properties, eliminates inflammation in the dental pulp, and, due to its osteoconductive and osteoinductive properties, undergoes gradual resorption, stimulates regeneration, and provides replacement of the defect with newly formed tissue. The dental pulp viability is completely restored, which ensures the complete formation of tooth roots with root apex closure in the long-term period.

  8. Gene Therapy for Bone Defects in Oral and Maxillofacial Surgery: A Systematic Review and Meta-Analysis of Animal Studies.

    PubMed

    Fliefel, Riham; Kühnisch, Jan; Ehrenfeld, Michael; Otto, Sven

    2017-02-15

    Craniofacial bone defects are challenging problems for maxillofacial surgeons over the years. With the development of cell and molecular biology, gene therapy is a breaking new technology with the aim of regenerating tissues by acting as a delivery system for therapeutic genes in the craniofacial region rather than treating genetic disorders. A systematic review was conducted summarizing the articles reporting gene therapy in maxillofacial surgery to answer the question: Was gene therapy successfully applied to regenerate bone in the maxillofacial region? Electronic searching of online databases was performed in addition to hand searching of the references of included articles. No language or time restrictions were enforced. Meta-analysis was done to assess significant bone formation after delivery of gene material in the surgically induced maxillofacial defects. The search identified 2081 articles, of which 57 were included with 1726 animals. Bone morphogenetic proteins were commonly used proteins for gene therapy. Viral vectors were the universally used vectors. Sprague-Dawley rats were the frequently used animal model in experimental studies. The quality of the articles ranged from excellent to average. Meta-analysis results performed on 21 articles showed that defects favored bone formation by gene therapy. Funnel plot showed symmetry with the absence of publication bias. Gene therapy is on the top list of innovative strategies that developed in the last 10 years with the hope of developing a simple chair-side protocol in the near future, combining improvement of gene delivery as well as knowledge of the molecular basis of oral and maxillofacial structures.

  9. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.

  10. Evaluation of the Parietal Bones in the Rat as a Specific Site for the Testing of Osteogenic Materials. A Simple Animal Model to Study Bone Implant Material.

    DTIC Science & Technology

    1981-10-01

    Intraosseous Appliance in the Treatment of Mandibular Fractures . J Oral Surg 30:344-348, 1977. 6. MELCHER, A.H. and IRVING, J.T.: The Healing...on the observed results. Investigators have prepared osseous defects in monkeys, sheep, and dogs in an attempt to study the effects of bone inducing...occur in the control animals. Sufficient bone must also be available so that the risk of fracture is mitigated. 3. The animal should allow for

  11. Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma.

    PubMed

    Nair, Manitha B; Varma, H K; Menon, K V; Shenoy, Sachin J; John, Annie

    2009-06-01

    Segmental bone defects resulting from trauma or pathology represent a common and significant clinical problem. In this study, a triphasic ceramic (calcium silicate, hydroxyapatite and tricalcium phosphate)-coated hydroxyapatite (HASi) having the benefits of both HA (osteointegration, osteoconduction) and silica (degradation) was used as a bone substitute for the repair of segmental defect (2 cm) created in a goat femur model. Three experimental goat femur implant groups--(a) bare HASi, (b) osteogenic-induced goat bone marrow-derived mesenchymal stem cells cultured HASi (HASi+C) and (c) osteogenic-induced goat bone marrow-derived mesenchymal stem cells cultured HASi+platelet-rich plasma (HASi+CP)--were designed and efficacy performance in the healing of the defect was evaluated. In all the groups, the material united with host bone without any inflammation and an osseous callus formed around the implant. This reflects the osteoconductivity of HASi where the cells have migrated from the cut ends of host bone. The most observable difference between the groups appeared in the mid region of the defect. In bare HASi groups, numerous osteoblast-like cells could be seen together with a portion of material. However, in HASi+C and HASi+CP, about 60-70% of that area was occupied by woven bone, in line with material degradation. The interconnected porous nature (50-500 microm), together with the chemical composition of the HASi, facilitated the degradation of HASi, thereby opening up void spaces for cellular ingrowth and bone regeneration. The combination of HASi with cells and PRP was an added advantage that could promote the expression of many osteoinductive proteins, leading to faster bone regeneration and material degradation. Based on these results, we conclude that bare HASi can aid in bone regeneration but, with the combination of cells and PRP, the sequence of healing events are much faster in large segmental bone defects in weight-bearing areas in goats.

  12. Nandrolone decanoate appears to increase bone callus formation in young adult rats after a complete femoral fracture.

    PubMed

    Guimarães, Ana Paula Franttini Garcia Moreno; Butezloff, Mariana Maloste; Zamarioli, Ariane; Issa, João Paulo Mardegan; Volpon, José Batista

    2017-11-01

    To evaluate the influence of nandrolone decanoate on fracture healing and bone quality in normal rats. Male rats were assigned to four groups (n=28/group): Control group consisting of animals without any intervention, Nandrolone decanoate (DN) group consisting of animals that received intramuscular injection of nandrolone decanoate, Fracture group consisting of animals with a fracture at the mid-diaphysis of the femur, and Fracture and nandrolone decanoate group consisting of animals with a femur fracture and treatment with nandrolone decanoate. Fractures were created at the mid-diaphysis of the right femur by a blunt trauma and internally fixed using an intramedullary steel wire. The DN was injected intramuscularly twice per week (10 mg/kg of body mass). The femurs were measured and evaluated by densitometry and mechanical resistance after animal euthanasia. The newly formed bone and collagen type I levels were quantified in the callus. The treated animals had longer femurs after 28 days. The quality of the intact bone was not significantly different between groups. The bone callus did show a larger mass in the treated rats. The administration of nandrolone decanoate did not affect the quality of the intact bone, but might have enhanced the bone callus formation.

  13. The Effect of Alendronate on Various Graft Materials Used in Maxillary Sinus Augmentation: A Rabbit Study.

    PubMed

    Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul

    2015-12-01

    Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling.

  14. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    PubMed Central

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  15. Increased physical activity ameliorates high fat diet-induced bone resorption in mice

    USDA-ARS?s Scientific Manuscript database

    It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...

  16. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious anabolic and anticatabolic effects. This study not only enriches our basic knowledge about bone quality and bone turnover mechanisms in leptin receptor-deficient animals, but also advances our understanding of the skeletal sensitivity of leptin-resistant db/db mice in response to external mechanical stimulation. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  17. Poly(trimethylene carbonate)-based composite materials for reconstruction of critical-sized cranial bone defects in sheep.

    PubMed

    Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel

    2017-02-01

    The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Bone Morphogenetic Protein-2 Promotes Human Mesenchymal Stem Cell Survival and Resultant Bone Formation When Entrapped in Photocrosslinked Alginate Hydrogels.

    PubMed

    Ho, Steve S; Vollmer, Nina L; Refaat, Motasem I; Jeon, Oju; Alsberg, Eben; Lee, Mark A; Leach, J Kent

    2016-10-01

    There is a substantial need to prolong cell persistence and enhance functionality in situ to enhance cell-based tissue repair. Bone morphogenetic protein-2 (BMP-2) is often used at high concentrations for osteogenic differentiation of mesenchymal stem cells (MSCs) but can induce apoptosis. Biomaterials facilitate the delivery of lower doses of BMP-2, reducing side effects and localizing materials at target sites. Photocrosslinked alginate hydrogels (PAHs) can deliver osteogenic materials to irregular-sized bone defects, providing improved control over material degradation compared to ionically cross-linked hydrogels. It is hypothesized that the delivery of MSCs and BMP-2 from a PAH increases cell persistence by reducing apoptosis, while promoting osteogenic differentiation and enhancing bone formation compared to MSCs in PAHs without BMP-2. BMP-2 significantly decreases apoptosis and enhances survival of photoencapsulated MSCs, while simultaneously promoting osteogenic differentiation in vitro. Bioluminescence imaging reveals increased MSC survival when implanted in BMP-2 PAHs. Bone defects treated with MSCs in BMP-2 PAHs demonstrate 100% union as early as 8 weeks and significantly higher bone volumes at 12 weeks, while defects with MSC-entrapped PAHs alone do not fully bridge. This study demonstrates that transplantation of MSCs with BMP-2 in PAHs achieves robust bone healing, providing a promising platform for bone repair. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  20. [Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor].

    PubMed

    Zhang, Minglei; Wang, Dapeng; Yin, Ruofeng

    2015-10-06

    To explorec Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor transinfected. Rat bone marrow mesenchymal stem cells (BMSCs) was separated, using BMSCs as target cells, and then vascular endothelial growth factor (VEGF) gene was transfected. Composite bone marrow mesenchymal stem cells and cells transfected with nano-hydroxyapatite (HA)/polylactic-co-glycolic acid (PLGA). The composition of cell and scaffold was observed. The blank plasmid transfection was 39.1%, 40.1% in VEGF group. The cell adhesion and growth was found on the scaffold pore wall after 5 days, and the number of adherent cells in the nano-HA/PLGA composite scaffold material basically had no significant difference in both. Although the nano-HA/PLGA scaffold material is still not fully meet the requirements of the matrix material for bone tissue engineering, but good biocompatibility, structure is its rich microporous satisfaction in material mechanics, toughening, enhanced obviously. Composition scaffold with BMSCs transfected by VEGF plasmid, the ability of angiogenesis is promoted.

Top