Sample records for bone matrix material

  1. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    PubMed Central

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  2. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  3. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  4. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    PubMed

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.

  5. Experimental Evaluation of the Effectiveness of Demineralized Bone Matrix and Collagenated Heterologous Bone Grafts Used Alone or in Combination with Platelet-Rich Fibrin on Bone Healing in Sinus Floor Augmentation.

    PubMed

    Peker, Elif; Karaca, Inci Rana; Yildirim, Benay

    2016-01-01

    The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation than collagenated heterologous bone graft.

  6. Matrix change of bone grafting substitute after implantation into guinea pig bulla.

    PubMed

    Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W

    2012-05-01

    Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.

  7. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  8. Biomimetic materials for controlling bone cell responses.

    PubMed

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  9. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  10. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  11. Study of a novel three-dimensional scaffold to repair bone defect in rabbit.

    PubMed

    Chen, Yushu; Bai, Bo; Zhang, Shujiang; Ye, Jing; Zhai, Haohan; Chen, Yi; Zhang, Linlin; Zeng, Yanjun

    2014-05-01

    Both decalcified bone matrix (DBM) and fibrin gel possess good biocompatibility, so they are used as scaffolds to culture bone marrow mesenchymal stem cells (BMSCs). The feasibility and efficacy of using compound material being made of decalcified bone matrix and fibrin gel as a three-dimensional scaffold for bone growth were investigated. BMSCs were isolated from the femur of rabbit, then seeded in prepared scaffolds after incubation for 28 days in vitro. In vivo: 30 New Zealand White Rabbits received bone defect in left radius and divided three treatment groups randomly: (1) BMSCs/decalcified bone matrix/fibrin glue as experimental group; (2) decalcified bone matrix/fibrin glue without cells as control group; (3) nothing was implanted into the bone defects as blank group. The observation period of specimens was 12 weeks, and were analyzed bone formation in terms of serum proteomics (2D-PAGE and MALDI-TOF-TOF-MS), hematoxylin-eosin (HE) staining, ALP staining, and Osteopontin immunofluorescence detection. The experimental group present in three peculiar kinds of proteins, whose Geninfo identifier (GI) number were 136466, 126722803, and 126723746, respectively, correspond to TTR protein, ALB protein, RBP4 protein, and the histological inspections were superior to the other group. The content of osteopontin in experimental group was significantly higher than control group (p <  0.05). The overall results indicated that a combined material being made of BMSCs/decalcified bone matrix/fibrin glue can result in successful bone formation and decalcified bone matrix/fibrin glue admixtures can be used as a scaffold for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  12. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials.

    PubMed

    Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf

    2012-12-01

    An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Bone bonding at natural and biomaterial surfaces.

    PubMed

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  14. Contributions of Raman spectroscopy to the understanding of bone strength.

    PubMed

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  15. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    PubMed

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  16. BONE REGENERATION AFTER DEMINERALIZED BONE MATRIX AND CASTOR OIL (RICINUS COMMUNIS) POLYURETHANE IMPLANTATION

    PubMed Central

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial. PMID:19089203

  17. Polymer ceramic composite that follows the rules of bone growth

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.; Warner, Carrie

    1998-07-01

    Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.

  18. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model.

    PubMed

    Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi

    2018-02-01

    Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  19. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials.

    PubMed

    Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo

    2011-02-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  20. Histomorphologic findings on human bone samples six months after bone augmentation of the maxillary sinus with Algipore.

    PubMed

    Schopper, C; Moser, D; Wanschitz, F; Watzinger, F; Lagogiannis, G; Spassova, E; Ewers, R

    1999-01-01

    Sinus grafting, a popular and standard treatment for maxillary atrophy, uses a variety of grafting materials. In this study, specimens obtained 6 months after sinus grafting with Algipore were evaluated under light microscopy and showed osseoformation, xenograft degradation, and bone ingrowth into particles. Osteoblastic cells were embedded in the intracorpuscular bone matrix, which indicated that xenograft particles are an osseoconductive scaffold and stimulate matrix deposition. Acute inflammatory responses after insertion of Algipore did not occur. Particles were degraded during physiologic bone remodeling, and newly formed bone gradually replaced resorbed biomaterial.

  1. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    PubMed Central

    2013-01-01

    Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting. PMID:23286366

  2. Clinical efficacy of stem cell mediated osteogenesis and bioceramics for bone tissue engineering.

    PubMed

    Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Goodarzi, Amir; Youssefzadeh, Jonathan; Chen, Mike Y; Jandial, Rahul

    2012-01-01

    Lower back pain is a common disorder that often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells (MSCs) have received attention for their ability to differentiate into osteoblasts, cells that synthesize the extracellular matrix and regulate matrix mineralization. Successful bone regeneration requires three elements: MSCs that serve as osteoblastic progenitors, osteoinductive growth factors and their pathways that promote development and differentiation of the cells as well as an osteoconductive scaffold that allows for the formation of a vascular network. Future treatments should strive to combine mesenchymal stem cells, cell-seeded scaffolds and gene therapy to optimize the efficiency and safety of tissue repair and bone regeneration.

  3. Effect of Anti-Sclerostin Therapy and Osteogenesis Imperfecta on Tissue-level Properties in Growing and Adult Mice While Controlling for Tissue Age

    PubMed Central

    Sinder, Benjamin P.; Lloyd, William R.; Salemi, Joseph D.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2016-01-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as Osteogenesis Imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly→Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5 weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2–4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages >3wk) and rapidly growing Brtl/+ (at tissue ages > 4wk) mice compared to WT. At identical tissue ages defined by fluorescent labels adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. PMID:26769006

  4. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    PubMed

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation.

    PubMed

    Ghanaati, Shahram; Udeabor, Samuel E; Barbeck, Mike; Willershausen, Ines; Kuenzel, Oliver; Sader, Robert A; Kirkpatrick, C James

    2013-01-04

    Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  6. Altered bone material properties in HLA-B27 rats include reduced mineral to matrix ratio and altered collagen cross-links.

    PubMed

    Gamsjaeger, Sonja; Srivastava, Apurva K; Wergedal, Jon E; Zwerina, Jochen; Klaushofer, Klaus; Paschalis, Eleftherios P; Tatakis, Dimitris N

    2014-11-01

    Spondyloarthropathy and inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, are often associated with severe osteopenia/osteoporosis in both children and adults. HLA-B27 transgenic rats present a phenotype that includes severe colitis and severely accelerated alveolar bone loss. The purpose of this study was to evaluate long bone density status, systemic bone metabolic markers, and intrinsic bone material properties in HLA-B27 transgenic (TG) rats, and compare them with those of age- and sex-matched wild-type (WT) animals. The results indicate that in the HLA-B27 rat, an animal susceptible to both alveolar bone loss (ABL) and long bone osteopenia, there is a statistically significant negative correlation between ABL and long bone bone mineral density (BMD), as well as mineral/matrix ratio at active bone-forming trabecular surfaces. The TG animals had a lower mineral/matrix ratio and higher relative proteoglycan and advanced glycation end product (ϵ-N-Carboxymethyl-L-lysine) content and pyridinoline/divalent collagen cross-link ratio compared with WT. These results may provide better understanding of the interrelationship between osteoporosis and oral bone loss, the underlying causes of the inferior bone strength in the HLA-B27 transgenic animals, and could prove to be a useful model in the elucidation of the pathophysiology of spondyloarthropathy and IBD-associated osteopenia/osteoporosis and in the evaluation of pharmacological intervention(s) against such conditions. © 2014 American Society for Bone and Mineral Research.

  7. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  8. Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery.

    PubMed

    Dinopoulos, Haralampos T H; Giannoudis, Peter V

    2006-11-01

    Demineralised bone matrix (DBM) acts as an osteoconductive, and possibly as an osteoinductive, material. It is widely used in orthopaedic, neurosurgical, plastic and dental areas. More than 500,000 bone grafting procedures with DBM are performed annually in the US. It does not offer structural support, but it is well suited for filling bone defects and cavities. The osteoinductive nature of DBM is presumably attributed to the presence of matrix-associated bone morphogenetic proteins (BMPs) and growth factors, which are made available to the host environment by the demineralisation process. Clinical results have not been uniformly favourable; however, a variable clinical response is attributed partly to nonuniform processing methods found among numerous bone banks and commercial suppliers. DBMs remain reasonably safe and effective products. The ultimate safe bone-graft substitute, one that is osteoconductive, osteoinductive, osteogenic and mechanically strong, remains elusive.

  9. A Comparative Analysis of Recombinant Human Bone Morphogenetic Protein-2 with a Demineralized Bone Matrix versus Iliac Crest Bone Graft for Secondary Alveolar Bone Grafts in Patients with Cleft Lip and Palate: Review of 501 Cases.

    PubMed

    Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M

    2017-08-01

    Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.

  10. Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix.

    PubMed

    Burke, Mikhail V; Atkins, Ayelet; Akens, Margarete; Willett, Thomas L; Whyne, Cari M

    2016-12-01

    Metastatic involvement in vertebral bone diminishes the mechanical integrity of the spine; however minimal data exist on the potential impact of metastases on the intrinsic material characteristics of the bone matrix. Thirty-four (34) female athymic rats were inoculated with HeLa (N = 17) or Ace-1 (N = 17) cancer cells lines producing osteolytic or mixed (osteolytic and osteoblastic) metastases, respectively. A maximum of 21 days was allowed between inoculation and rat sacrifice for vertebrae extraction. High performance liquid chromatography (HPLC) was utilized to determine modifications in collagen-I parameters such as proline hydroxylation and the formation of specific enzymatic and non-enzymatic (pentosidine) cross-links. Raman spectroscopy was used to determine relative changes in mineral crystallinity, mineral carbonation, mineral/collagen matrix ratio, collagen quality ratio, and proline hydroxylation. HPLC results showed significant increase in the formation of pentosidine and decrease in the formation of the enzymatic cross-link deoxy-pryridinoline within osteolytic bone compared to mixed bone. Raman results showed decreased crystallinity, increased carbonation, and collagen quality (aka 1660/1690 sub-band) ratio with osteolytic bone compared to mixed bone and healthy controls along with an observed increase in proline hydroxylation with metastatic involvement. The mineral/matrix ratio decreased in both osteolytic and mixed bone compared to healthy controls. Quantifying modifications within the intrinsic characteristics of bone tissue will provide a foundation to assess the impact of current therapies on the material behavior of bone tissue in the metastatic spine and highlight targets for the development of new therapeutics and approaches for treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2126-2136, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Quantification of various growth factors in different demineralized bone matrix preparations.

    PubMed

    Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G

    2007-05-01

    Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.

  12. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    PubMed

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  13. [Investigation of a new highly porous hydroxyapatite matrix for obliterating open mastoid cavities - application in guinea pigs bulla].

    PubMed

    Punke, C; Zehlicke, T; Boltze, C; Pau, H W

    2009-04-01

    Many different techniques for obliterating open mastoid cavity have been described. The results after the application of alloplastic materials like Hydroxyapatite and Tricalciumphosphate were poor due to long-lasting resorption. Extrusion of those materials has been described. We investigated the applicability of a new high-porosity ceramic for obliterating large open mastoid cavities and tested it in an animal model (bulla of guinea pig). A highly porous matrix (NanoBone) bone-inductor fabricated in a sol-gel-technique was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histological evaluations were performed 1, 2, 3, 4, 5 and 12 weeks after the implantation. After the initial phase with an inflammatory reaction creating a loose granulation tissue, we observed the formation of trabeculare bone within the fourth week in both groups. From the fifth week on we found osteoclasts on the surface of NanoBone and Bio-Oss with consecutive degradation of both materials. In our animal model study we found beneficial properties of the used bone-inductors NanoBone and Bio-Oss for obliterating open mastoid cavities.

  14. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hock, J.M.; Centrella, M.; Canalis, E.

    1988-01-01

    The effects of insulin-like growth factor-I (IGF-I) and insulin on bone matrix synthesis and bone cell replication were studied in cultured 21-day-old fetal rat calvariae. Histomorphometry techniques were developed to measure the incorporation of (2,3-/sup 3/H)proline and (methyl-/sup 3/H)thymidine into bone matrix and bone cell nuclei, respectively, using autoradiographs of sagittal sections of calvariae cultured with IGF-I, insulin, or vehicle for up to 96 h. To confirm an effect on bone formation, IGF-I was also studied for its effects on (/sup 3/H)proline incorporation into collagenase-digestible protein (CDP) and noncollagen protein and on (/sup 3/H)thymidine incorporation into acid-precipitable material (DNA). IGF-Imore » at 10(-9)-10(-7) M significantly increased the rate of bone matrix apposition and CDP after 24 h by 45-50% and increased cell labeling by 8-fold in the osteoprogenitor cell zone, by 4-fold in the osteoblast cell zone, and by 2-fold in the periosteal fibroblast zone. Insulin at 10(-9)-10(-6) M also increased matrix apposition rate and CDP by 40-50%, but increased cell labeling by 2-fold only at a concentration of 10(-7) M or higher and then only in the osteoprogenitor cell zone. When hydroxyurea was added to IGF-I-treated bones, the effects of IGF-I on DNA synthesis were abolished, but the increase in bone matrix apposition induced by IGF-I was only partly diminished. In conclusion, IGF-I stimulates matrix synthesis in calvariae, an effect that is partly, although not completely, dependent on its stimulatory effect on DNA synthesis.« less

  15. Different matrix evaluation for the bone regeneration of rats' femours using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Zaharia, Cristian; Ardelean, Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The osteoconductive materials are important in bone regeneration procedures. Three dimensional (3D) reconstructions were obtained from the analysis. The aim of this study is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on two artificial matrixes inserted in previously artificially induced defects. For this study, under strict supervision 20 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were IngeniOss (for ten samples) and 4Bone(for the other ten samples). These materials were inserted into the induced defects. The femurs were investigated at 1 month, after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly created due to the osteoinductive process. The TD-OCT has proven a valuable tool for the non-invasive evaluation of the matrix bone interfaces.

  16. Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration.

    PubMed

    Gawlitta, Debby; Benders, Kim E M; Visser, Jetze; van der Sar, Anja S; Kempen, Diederik H R; Theyse, Lars F H; Malda, Jos; Dhert, Wouter J A

    2015-02-01

    Following an endochondral approach to bone regeneration, multipotent stromal cells (MSCs) can be cultured on a scaffold to create a cartilaginous callus that is subsequently remodeled into bone. An attractive scaffold material for cartilage regeneration that has recently regained attention is decellularized cartilage-derived matrix (CDM). Since this material has shown potential for cartilage regeneration, we hypothesized that CDM could be a potent material for endochondral bone regeneration. In addition, since decellularized matrices are known to harbor bioactive cues for tissue formation, we evaluated the need for seeded MSCs in CDM scaffolds. In this study, ectopic bone formation in rats was evaluated for CDM scaffolds seeded with human MSCs and compared with unseeded controls. The MSC-seeded samples were preconditioned in chondrogenic medium for 37 days. After 8 weeks of subcutaneous implantation, the extent of mineralization was significantly higher in the MSC-seeded constructs versus unseeded controls. The mineralized areas corresponded to bone formation with bone marrow cavities. In addition, rat-specific bone formation was confirmed by collagen type I immunohistochemistry. Finally, fluorochrome incorporation at 3 and 6 weeks revealed that the bone formation had an inwardly directed progression. Taken together, our results show that decellularized CDM is a promising biomaterial for endochondral bone regeneration when combined with MSCs at ectopic locations. Modification of current decellularization protocols may lead to enhanced functionality of CDM scaffolds, potentially offering the prospect of generation of cell-free off-the-shelf bone regenerative substitutes.

  17. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    PubMed

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  18. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  19. Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing.

    PubMed

    Aravamudhan, Aja; Ramos, Daisy M; Nip, Jonathan; Kalajzic, Ivo; Kumbar, Sangamesh G

    2018-02-01

    Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fragility Fracture Incidence in Chronic Obstructive Pulmonary Disease (COPD) Patients Associates With Nanoporosity, Mineral/Matrix Ratio, and Pyridinoline Content at Actively Bone-Forming Trabecular Surfaces.

    PubMed

    Paschalis, Eleftherios P; Gamsjaeger, Sonja; Dempster, David; Jorgetti, Vanda; Borba, Victoria; Boguszewski, Cesar L; Klaushofer, Klaus; Moreira, Carolina A

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with low areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and altered microstructure by bone histomorphometry and micro-computed tomography. Nevertheless, not all COPD patients sustain fragility fractures. In the present study, we used Raman microspectroscopic analysis to determine bone compositional properties at actively forming trabecular surfaces (based on double fluorescent labels) in iliac crest biopsies from 19 postmenopausal COPD patients (aged 62.1 ± 7.3 years). Additionally, we analyzed trabecular geometrical centers, representing tissue much older than the forming surfaces. Eight of the patients had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. None of the patients had taken oral glucocorticoids. The monitored parameters were mineral/matrix ratio (MM), nanoporosity, and relative glycosaminoglycan (GAG), lipid, and pyridinoline contents (PYD). There were no significant differences between the glucocorticoid-treated patients and those who did not receive any. On the other hand, COPD patients sustaining fragility fractures had significantly lower nanoporosity and higher MM and PYD values compared with COPD patients without fragility fractures. To the best of our knowledge, this is the first study to discriminate between fracture and non-fracture COPD patients based on differences in the material properties of bone matrix. Given that these bone material compositional differences are evident close to the cement line (a major bone interface), they may contribute to the inferior bone toughness and coupled with the lower lumbar spine bone mineral density values result in the fragility fractures prevalent in these patients. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  1. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    PubMed

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  2. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    PubMed

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Colonization of bone matrices by cellular components

    NASA Astrophysics Data System (ADS)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  4. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.

  5. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats.

    PubMed

    Reis-Filho, Cláudio R; Silva, Elisângela R; Martins, Adalberto B; Pessoa, Fernanda F; Gomes, Paula V N; de Araújo, Mariana S C; Miziara, Melissa N; Alves, José B

    2012-05-01

    In this study we investigated the possible use of human demineralised dentine matrix (DHDM), obtained from the extracted teeth, as bone graft material and evaluated the expression of vascular endothelial growth factor (VEGF) induced by this material in the healing process of tooth sockets of rats. To evaluate bone regeneration and expression of VEGF induced by DHDM, thirty-two male Wistar rats weighing approximately 200 g were used. After maxillary second molar extraction, the left sockets were filled with DHDM and the right sockets were naturally filled by blood clot (control). The animals were sacrificed at 3, 7, 14 and 21 days after surgery and upper maxillaries were processed for histological, morphometric and immunohistochemical analyses. DHDM was used to evaluate the mechanical effect of bone graft material into sockets. Expression of VEGF was determined by immunohistochemistry in all groups. Our results demonstrated a significant increase in the newly formed bone tissue in sockets of 7, 14 and 21 days and a significant increase in VEGF expression at days 7 and 14 on treated sockets. Our results showed that DHDM increases the expression of VEGF and accelerates the healing process in rats tooth sockets, by stimulating bone deposition and also vessels formation. These results suggest that DHDM has osteoinductive/osteoconductive potential and may represent an efficient grafting material on guided bone regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.

    PubMed

    Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael

    2013-04-01

    Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.

  7. Ex Vivo Growth of Bioengineered Ligaments and Other Tissues

    NASA Technical Reports Server (NTRS)

    Altman, Gregory; Kaplan, David L.; Martin, Ivan; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues for use in surgical replacement of damaged anterior cruciate ligaments has been invented. An anterior cruciate ligament is one of two ligaments (the other being the posterior cruciate ligament) that cross in the middle of a knee joint and act to prevent the bones in the knee from sliding forward and backward relative to each other. Anterior cruciate ligaments are frequently torn in sports injuries and traffic accidents, resulting in pain and severe limitations on mobility. By making it possible to grow replacement anterior cruciate ligaments that structurally and functionally resemble natural ones more closely than do totally synthetic replacements, the method could create new opportunities for full or nearly full restoration of functionality in injured knees. The method is also adaptable to the growth of bioengineered replacements for other ligaments (e.g., other knee ligaments as well as those in the hands, wrists, and elbows) and to the production of tissues other than ligaments, including cartilage, bones, muscles, and blood vessels. The method is based on the finding that the histomorphological properties of a bioengineered tissue grown in vitro from pluripotent cells within a matrix are affected by the direct application of mechanical force to the matrix during growth generation. This finding provides important new insights into the relationships among mechanical stress, biochemical and cell-immobilization methods, and cell differentiation, and is applicable to the production of the variety of tissues mentioned above. Moreover, this finding can be generalized to nonmechanical (e.g., chemical and electromagnetic) stimuli that are experienced in vivo by tissues of interest and, hence, the method can be modified to incorporate such stimuli in the ex vivo growth of replacements for the various tissues mentioned above. In this method, a three-dimensional matrix made of a suitable material is seeded with pluripotent stem cells. The patient s bone-marrow stromal cells are preferably used as the pluripotent cells in this method. Suitable matrix materials are materials to which cells can adhere for example, collagen type I. The seeded matrix is attached to anchors at opposite ends and then the cells in the matrix are cultured under conditions appropriate for the growth and regeneration of cells. Suitable anchor materials are materials to which the matrix can attach; examples include demineralized bone and Goinopra coral that has been treated to convert its calcium carbonate to calcium phosphate.

  8. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  9. Development of an Injectable Salmon Fibrinogen-Thrombin Matrix to Enhance Healing of Compound Fractures of Extremities

    DTIC Science & Technology

    2011-10-01

    of bone regeneration in animals treated with different implantable matrix. The material to be tested in this project is a salmon fibrin matrix... Buprenorphine and metacam (Meloxicam) are also administered at the time of surgery for short term pain relief. Fluoroscopy is performed before and after injury

  10. Bioengineered anterior cruciate ligament

    NASA Technical Reports Server (NTRS)

    Martin, Ivan (Inventor); Altman, Gregory (Inventor); Kaplan, David (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2001-01-01

    The present invention provides a method for producing an anterior cruciate ligament ex vivo. The method comprises seeding pluripotent stem cells in a three dimensional matrix, anchoring the seeded matrix by attachment to two anchors, and culturing the cells within the matrix under conditions appropriate for cell growth and regeneration, while subjecting the matrix to one or more mechanical forces via movement of one or both of the attached anchors. Bone marrow stromal cells are preferably used as the pluripotent cells in the method. Suitable matrix materials are materials to which cells can adhere, such as a gel made from collagen type I. Suitable anchor materials are materials to which the matrix can attach, such as Goinopra coral and also demineralized bone. Optimally, the mechanical forces to which the matrix is subjected mimic mechanical stimuli experienced by an anterior cruciate ligament in vivo. This is accomplished by delivering the appropriate combination of tension, compression, torsion, and shear, to the matrix. The bioengineered ligament which is produced by this method is characterized by a cellular orientation and/or matrix crimp pattern in the direction of the applied mechanical forces, and also by the production of collagen type I, collagen type III, and fibronectin proteins along the axis of mechanical load produced by the mechanical forces. Optimally, the ligament produced has fiber bundles which are arranged into a helical organization. The method for producing an anterior cruciate ligament can be adapted to produce a wide range of tissue types ex vivo by adapting the anchor size and attachment sites to reflect the size of the specific type of tissue to be produced, and also adapting the specific combination of forces applied, to mimic the mechanical stimuli experienced in vivo by the specific type of tissue to be produced. The methods of the present invention can be further modified to incorporate other stimuli experienced in vivo by the particular developing tissue, some examples of the stimuli being chemical stimuli, and electro-magnetic stimuli. Some examples of tissue which can be produced include other ligaments in the body (hand, wrist, elbow, knee), tendon, cartilage, bone, muscle, and blood vessels.

  11. A micromechanical model to explain the mechanical properties of bovine cortical bone in tension: In vitro fluoride ion effects

    NASA Astrophysics Data System (ADS)

    Kotha, Shiva Prasad

    Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.

  12. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria

    2015-02-10

    Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.

  13. Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration

    PubMed Central

    Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin

    2017-01-01

    The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K0.5Na0.5NbO3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials. PMID:28900517

  14. Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1

    PubMed Central

    Kühnisch, Jirko; Seto, Jong; Lange, Claudia; Schrof, Susanne; Stumpp, Sabine; Kobus, Karolina; Grohmann, Julia; Kossler, Nadine; Varga, Peter; Osswald, Monika; Emmerich, Denise; Tinschert, Sigrid; Thielemann, Falk; Duda, Georg; Seifert, Wenke; el Khassawna, Thaqif; Stevenson, David A.; Elefteriou, Florent; Kornak, Uwe; Raum, Kay; Fratzl, Peter; Mundlos, Stefan; Kolanczyk, Mateusz

    2014-01-01

    Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions. PMID:24465906

  15. Matrix Vesicle Enzyme Activity and Phospholipid Content in Endosteal Bone Following Implantation of Osseointegrating and Non-Osseointegrating Implant Materials.

    DTIC Science & Technology

    1992-01-01

    limb. The collected hemopoietic material was a combination of cells, fractured cell debris, and matrix vesicles. This material was utilized for the... dogs and rabbits (Deutscher et al., 1978; Fuchs et al., 1981), and the mandibles of humans (Bunte et al., 1977). Following surgical implantation, there...associated with mineralization in a number of additional normal and pathologic conditions, including cementum (Hayashi, 1985), fracture callus (Boskey et al

  16. Chitosan based nanofibers in bone tissue engineering.

    PubMed

    Balagangadharan, K; Dhivya, S; Selvamurugan, N

    2017-11-01

    Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Developing better artificial bones.

    PubMed

    Flinn, Edward D

    2003-01-01

    Researchers at the Center for Commercial Applications of Combustion in Space at the Colorado School of Mines are preparing the Space-DRUMS (Dynamically Responding Ultrasonic Matrix Systems) materials processing facility for transport to the International Space Station. The Space-DRUMS uses acoustic pressure beams to maintain the position of a suspended liquid or solid. Space-DRUMS will be used to extend experiments with tricalcium phosphate in the development of artificial bone material.

  18. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage

    PubMed Central

    Gupta, Vineet; Tenny, Kevin M; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-01-01

    Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro. PMID:27358376

  19. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration

    PubMed Central

    Short, Aaron R.; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O.

    2015-01-01

    Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current “gold standard” treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects. PMID:26693013

  20. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration.

    PubMed

    Short, Aaron R; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O

    2015-10-28

    Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current "gold standard" treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects.

  1. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  2. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    PubMed

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  3. Socket Preservation using Enzyme-treated Equine Bone Granules and an Equine Collagen Matrix: A Case Report with Histological and Histomorphometrical Assessment.

    PubMed

    Leonida, Alessandro; Todeschini, Giovanni; Lomartire, Giovanni; Cinci, Lorenzo; Pieri, Laura

    2016-11-01

    To histologically assess the effectiveness of a socket-preservation technique using enzyme-treated equine bone granules as a bone-graft material in combination with an equine collagen matrix as a scaffold for soft-tissue regeneration. Enzyme-treated equine bone granules and equine collagen matrix recently have been developed to help overcome alveolar bone deficiencies that develop in the wake of edentulism. The patient had one mandibular molar extracted and the socket grafted with equine bone granules. The graft was covered with the equine collagen matrix, placed in a double layer. No flap was prepared, and the gingival margins were stabilized with a single stitch, leaving the matrix partially exposed and the site to heal by secondary intention. The adjacent molar was extracted 1 month later, and that socket was left to heal by secondary intention without any further treatment. Three months after each surgery, an implant was placed and a biopsy was collected. The two biopsies underwent histological processing and qualitative evaluation. Histomorphometric analysis was also performed to calculate the percentage of newly formed bone (NFB) in the two cores. Healing at both sites was uneventful, and no inflammation or other adverse reactions were observed in the samples. Soft-tissue healing by secondary intention appeared to occur faster at the grafted site. The corresponding core showed a marked separation between soft and hard tissue that was not observed in the core from the nongrafted site, where soft-tissue hypertrophy could be observed. Newly formed bone at the grafted and nongrafted sites was not significantly different (27.2 ± 7.1 and 29.4 ± 6.2% respectively, p = 0.45). The surgical technique employed in this case appeared to facilitate postextraction soft-tissue healing by second intention and simplify soft-tissue management. Using a collagen-based matrix to cover a postextraction grafted site may facilitate second intention soft-tissue healing and proper soft-tissue growth.

  4. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    PubMed

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  5. The Role of Water Compartments in the Material Properties of Cortical Bone

    PubMed Central

    Granke, Mathilde; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in 2 general compartments: within pores and bound to the matrix. The amount of pore water – residing in vascular-lacunar-canalicular space – primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites), and as such, is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using 1H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). NMR/MRI-derived bound water concentration is positively correlated with both strength and toughness of hydrated bone, and may become a useful clinical marker of fracture risk. PMID:25783011

  6. The Role of Water Compartments in the Material Properties of Cortical Bone.

    PubMed

    Granke, Mathilde; Does, Mark D; Nyman, Jeffry S

    2015-09-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.

  7. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.

    PubMed

    Götz, Werner; Gerber, Thomas; Michel, Barbara; Lossdörfer, Stefan; Henkel, Kai-Olaf; Heinemann, Friedhelm

    2008-10-01

    Bone substitute biomaterials may be osteogenic, osteoconductive or osteoinductive. To test for these probable characteristics in a new nanoporous grafting material consisting of nanocrystalline hydroxyapatite embedded in a porous silica gel matrix (NanoBone(s)), applied in humans, we studied biopsies from 12 patients before dental implantation following various orofacial augmentation techniques with healing times of between 3.5 and 12 months. Sections from decalcified specimens were investigated using histology, histochemistry [periodic acid Schiff, alcian blue staining and tartrate-resistant acid phosphatase (TRAP)] and immunohistochemistry, with markers for osteogenesis, bone remodelling, resorption and vessel walls (alkaline phosphatase, bone morphogenetic protein-2, collagen type I, ED1, osteocalcin, osteopontin, runx2 and Von-Willebrand factor). Histologically, four specific stages of graft transformation into lamellar bone could be characterized. During early stages of healing, bone matrix proteins were absorbed by NanoBone(s) granules, forming a proteinaceous matrix, which was invaded by small vessels and cells. We assume that the deposition of these molecules promotes early osteogenesis in and around NanoBone(s) and supports the concomitant degradation probably by osteoclast-like cells. TRAP-positive osteoclast-like cells were localized directly on the granular surfaces. Runx2-immunoreactive pre-osteoblasts, which are probably involved in direct osteogenesis forming woven bone that is later transformed into lamellar bone, were attracted. Graft resorption and bone apposition around the graft granules appear concomitantly. We postulate that NanoBone(s) has osteoconductive and biomimetic properties and is integrated into the host's physiological bone turnover at a very early stage.

  8. In-vitro and in-vivo design and validation of an injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation.

    PubMed

    Fricain, J C; Aid, R; Lanouar, S; Maurel, D B; Le Nihouannen, D; Delmond, S; Letourneur, D; Amedee Vilamitjana, J; Catros, S

    2018-04-07

    Polysaccharide-based composite matrices consisting of natural polysaccharides, pullulan and dextran supplemented with hydroxyapatite (Matrix-HA) have recently been developed. The principal objective of this study was to evaluate the capacities of this composite material to promote new bone formation in a sinus lift model in the sheep. Secondary objectives were to evaluate in vitro properties of the material regarding cell adhesion and proliferation. In this report, once such composite matrix was prepared as injectable beads after dispersion in a physiological buffer, and evaluated using a large animal model (sheep) for a sinus lift procedure. In vitro studies revealed that these microbeads (250-550μm in diameter) allow vascular cell adhesion and proliferation of Endothelial Cells (EC) after 1 and 7 days of culture. In vivo studies were performed in 12 adult sheep, and newly formed tissue was analyzed by Cone Beam Computed Tomography (CBCT scanning electron microscopy (SEM) and by histology 3 and 6 months post-implantation. CBCT analyses at the implantation time revealed the radiolucent properties of these matrices. Quantitative analysis showed an increase of a dense mineralized tissue in the Matrix-HA group up to 3 months of implantation. The mineralized volume over total volume after 6 months reached comparable values to those obtained for Bio-Oss ® used as positive control. Histological examination confirmed that the Matrix-HA did not induce any long term inflammatory events, and promoted direct contact between the osteoid tissue and lamellar bone structures and beads. After 6 months, we observed a dense network of osteocytes surrounding both biomaterials as well as a newly vascularized formed tissue in close contact to the biomaterials. In conclusion, the absence of animal components in Matrix-HA, the osteoconductive property of Matrix-HA in sheep, resulting in a dense bone and vascularized tissue, and the initial radiolucent property to follow graft integration offer great promises of this composite material for clinical use. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  9. Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model?

    PubMed

    Walsh, William R; Pelletier, Matthew H; Bertollo, Nicky; Christou, Chris; Tan, Chris

    2016-11-01

    Polyetheretherketone (PEEK) has a wide range of clinical applications but does not directly bond to bone. Bulk incorporation of osteoconductive materials including hydroxyapatite (HA) into the PEEK matrix is a potential solution to address the formation of a fibrous tissue layer between PEEK and bone and has not been tested. Using in vivo ovine animal models, we asked: (1) Does PEEK-HA improve cortical and cancellous bone ongrowth compared with PEEK? (2) Does PEEK-HA improve bone ongrowth and fusion outcome in a more challenging functional ovine cervical fusion model? The in vivo responses of PEEK-HA Enhanced and PEEK-OPTIMA ® Natural were evaluated for bone ongrowth in the form of dowels implanted in the cancellous and cortical bone of adult sheep and examined at 4 and 12 weeks as well as interbody cervical fusion at 6, 12, and 26 weeks. The bone-implant interface was evaluated with radiographic and histologic endpoints for a qualitative assessment of direct bone contact of an intervening fibrous tissue later. Gamma-irradiated cortical allograft cages were evaluated as well. Incorporating HA into the PEEK matrix resulted in more direct bone apposition as opposed to the fibrous tissue interface with PEEK alone in the bone ongrowth as well as interbody cervical fusions. No adverse reactions were found at the implant-bone interface for either material. Radiography and histology revealed resorption and fracture of the allograft devices in vivo. Incorporating HA into PEEK provides a more favorable environment than PEEK alone for bone ongrowth. Cervical fusion was improved with PEEK-HA compared with PEEK alone as well as allograft bone interbody devices. Improving the bone-implant interface with a PEEK device by incorporating HA may improve interbody fusion results and requires further clinical studies.

  10. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties.

    PubMed

    Hassler, N; Gamsjaeger, S; Hofstetter, B; Brozek, W; Klaushofer, K; Paschalis, E P

    2015-01-01

    Raman microspectroscopic analysis of iliac crest from patients that were treated with alendronate (ALN) for 10 years revealed minimal, transient alterations in bone material properties confined to actively forming bone surfaces compared to patients that were on ALN for 5 years. These changes were not encountered in the bulk tissue. Alendronate (ALN) and other bisphosphonates (BPs) are the most widely prescribed therapy for postmenopausal osteoporosis. Despite their overall excellent safety record and efficacy in reducing fractures, questions have been raised regarding potential detrimental effects that may be related to prolonged bone turnover reduction, although no definite cause-effect relationship has been established to date. The purpose of the present study was to evaluate bone material properties in patients that were receiving ALN for 5 or 10 years. Raman microspectroscopic analysis was used to analyze iliac crest biopsies from postmenopausal women with osteoporosis who had been treated with ALN for 5 years and were then re-randomized to placebo (PBO, N = 14), 5 mg/day ALN (N = 10), or 10 mg/day ALN (N = 6) for another 5 years. The parameters monitored and expressed as a function of tissue age were (i) the mineral/matrix ratio (MM), (ii) the relative proteoglycan content (PG), (iii) the relative lipid content (LPD), (iv) the mineral maturity/crystallinity (MMC), and (v) the relative pyridinoline content (PYD). The obtained data indicate that 10-year ALN use results in minimal, transient bone tissue composition changes compared to use for 5 years, confined to actively forming trabecular surfaces, implying potential differences in bone matrix maturation that nevertheless did not result in differences of these values in bulk tissue. The data suggest that prolonged reduction in bone turnover during 10 years of therapy with ALN by itself is unlikely to be associated with adverse effects on bone material properties.

  11. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results

    PubMed Central

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F.; Kirkpatrick, Charles J.; Sader, Robert A.

    2013-01-01

    Background: The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Materials and Methods: Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Results: Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Conclusions: Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer. PMID:24205471

  12. Management of segmental bony defects: the role of osteoconductive orthobiologics.

    PubMed

    McKee, Michael D

    2006-01-01

    Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.

  13. In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives

    PubMed Central

    2009-01-01

    Background Cellular reactions to alloplastic bone substitute materials (BSM) are a subject of interest in basic research. In regenerative dentistry, these bone grafting materials are routinely combined with enamel matrix derivatives (EMD) in order to additionally enhance tissue regeneration. Materials and methods The aim of this study was to evaluate the proliferative activity of human osteogenic cells after incubation over a period of seven days with commercial BSM of various origin and chemical composition. Special focus was placed on the potential additional benefit of EMD on cellular proliferation. Results Except for PerioGlas®, osteogenic cell proliferation was significantly promoted by the investigated BSM. The application of EMD alone also resulted in significantly increased cellular proliferation. However, a combination of BSM and EMD resulted in only a moderate additional enhancement of osteogenic cell proliferation. Conclusion The application of most BSM, as well as the exclusive application of EMD demonstrated a positive impact on the proliferation of human osteogenic cells in vitro. In order to increase the benefit from substrate combination (BSM + EMD), further studies on the interactions between BSM and EMD are needed. PMID:19909545

  14. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids

    NASA Astrophysics Data System (ADS)

    Giorgio, Ivan; Andreaus, Ugo; Madeo, Angela

    2016-03-01

    A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.

  15. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice☆

    PubMed Central

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-01-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. PMID:22449447

  16. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice.

    PubMed

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-06-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone

    NASA Astrophysics Data System (ADS)

    Roschger, Andreas; Gamsjaeger, Sonja; Hofstetter, Birgit; Masic, Admir; Blouin, Stéphane; Messmer, Phaedra; Berzlanovich, Andrea; Paschalis, Eleftherios P.; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter

    2014-06-01

    Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone are powerful tools to investigate bone material properties. Both methods provide information on the degree of bone matrix mineralization. However, a head-to-head comparison of these outcomes from identical bone areas has not been performed to date. In femoral midshaft cross sections of three women, 99 regions (20×20 μ) were selected inside osteons and interstitial bone covering a wide range of matrix mineralization. As the focus of this study was only on regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral content close to the mineralization front were excluded. The same regions were measured by both methods. We found a linear correlation (R2=0.75) between mineral/matrix as measured by Raman spectroscopy and the wt. %Mineral/(100-wt. %Mineral) as obtained by qBEI, in good agreement with theoretical estimations. The observed deviations of single values from the linear regression line were determined to reflect biological heterogeneities. The data of this study demonstrate the good correspondence between Raman and qBEI outcomes in describing tissue mineralization. The obtained correlation is likely sensitive to changes in bone tissue composition, providing an approach to detect potential deviations from normal bone.

  18. Preparation of Emulsifying Wax/GMO Nanoparticles and Evaluation as a Delivery System for Repurposing Simvastatin in Bone Regeneration.

    PubMed

    Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O

    2018-05-30

    Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.

  19. Polymer-ceramic nanocomposites for applications in the bone surgery

    NASA Astrophysics Data System (ADS)

    Stodolak, E.; Gadomska, K.; Lacz, A.; Bogun, M.

    2009-01-01

    The subject of this work was preparation and investigation of properties of a nanocomposite material based on polymer matrix modified with nanometric silica particles (SiO2). The composite matrix consisted of resorbable P(L/DL)LA polymer with certified biocompatibility. Nanometric silica was introduced into the matrix by means of ultrasonic homogenisation and/or mechanical stirring. The silica was introduced directly e.g. as nanoparticles or inside calcium alginate fibres which contained 3 wt.% of amorphous SiO2. Proper dispersion of nano-filliers was confirmed by means of thermal analysis (TG/DTA, DSC). It was observed, that the presence of inorganic nanoparticles influenced several surface parameters of the nanocomposites i.e. hydrophility (a decrease of surface energy) and topography (both in micro- and nano-scale). Additionally, the nanocomposites exhibited enhanced mechanical properties (Young's modulus, tensile strength) compared to the pure polymer. The nanocomposites were bioactive materials (SBF/3 days/37oC). Biological tests (MTT test) showed a good viability of human osteoblasts (hFOB 1.19) in contact with the nanocomposites surface. Results of preliminary biological tests carried out with the use of mother cells extracted from human bone marrow showed that the nanocomposites may provide differenation of bone cells.

  20. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications.

    PubMed

    Godara, A; Raabe, D; Green, S

    2007-03-01

    The effect of sterilization on the structural integrity of the thermoplastic matrix composite polyetheretherketone (PEEK) reinforced with carbon fibers (CF) is investigated by nanoindentation and nanoscratch tests. The use of the material as a medical implant grade requires a detailed understanding of the micromechanical properties which primarily define its in vivo behavior. Sterilization is a mandatory process for such materials used in medical applications like bone implants. The steam and gamma radiation sterilization processes employed in this study are at sufficient levels to affect the micromechanical properties of some polymer materials, particularly in the interphase region between the polymer matrix and the reinforcing fibers. Nanoindentation and nanoscratch tests are used in this work to reveal local gradients in the hardness and the elastic properties of the interphase regions. Both methods help to explore microscopic changes in the hardness, reduced stiffness and scratch resistance in the interphase region and in the bulk polymer matrix due to the different sterilization processes employed. The results reveal that neither steam nor gamma radiation sterilization entails significant changes of the reduced elastic modulus, hardness or coefficient of friction in the bulk polymer matrix. However, minor material changes of the PEEK matrix were observed in the interphase region. Of the two sterilization methods used, the steam treatment has a more significant influence on these small changes in this region and appears to increase slightly the thickness of the interphase zone.

  1. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    NASA Astrophysics Data System (ADS)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were characterized for miscibility, mechanical properties, degradation kinetics, and in vitro osteocompatibility. Primary rat osteoblasts (PRO) isolated from rat calvaria were used to evaluate their in vitro osteocompatibility. The blends were also characterized for in vivo biodegradability and biocompatibility using a rat subcutaneous implantation model. Successful in vivo scaffold-based tissue regeneration greatly depends on the scaffold material biocompatibility, mechanical stability, and scaffold architecture to promote tissue in-growth. The other part of the work in the dissertation is focused on the development of mechanically competent bioresorbable nano-structured three-dimensional (3D) hiomimetic scaffolds for bone tissue engineering applications. Scaffold material selection was based on achieving improved mechanical stability, in vitro osteoblast performance, and in vivo biocompatibility. A miscible PNGEGPhPh-PLAGA blend system developed and characterized in the first part of the thesis work was chosen to fabricate a nanofiber-based mechanically competent biomimetic scaffold via electrospinning. Due to its versatility, controllability and reproducibility, the technique of electrospinning was adopted to produce blend nanofibers. The polymer solution concentration and electrospinning parameters were optimized to produce blend fibers in the range of 50-500 nm to mimic dimensions of collagen fibrils present in the natural extracellular matrix of native bone. These blend nanofiber matrices supported PRO adhesion, proliferation and showed an elevated phenotype expression compared to PLAGA nanofibers. Orienting electrospun nanofibers in a concentric manner with an open central cavity created a mechanically competent 3D scaffold mimicking the bone marrow cavity, as well as, the lamellar structure of bone. The 3D biomimetic scaffold exhibited a similar characteristic mechanical behavior to that of native bone. Compressive modulus of the scaffold was found to be within the range of human trabecular bone. To our knowledge this is the first mechanically competent 3D electrospun nanofiber scaffold with mechanical properties in the middle range of human trabecular bone. The potential of this scaffold for bone repair was further investigated by monitoring the cellular activity and mechanical performance over time using in vitro culture. This biomimetic scaffold supported the robust PRO growth throughout the scaffold architecture and maintained osteoblast phenotype expression in vitro, which resulted in a similar cell-matrix organization to that of native bone and maintenance of structure integrity. (Abstract shortened by UMI.)

  2. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.

    PubMed

    Abdalrahman, T; Scheiner, S; Hellmich, C

    2015-01-21

    It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD)

    PubMed Central

    Frank, Matthias J.; Walter, Martin S.; Rubert, Marina; Thiede, Bernd; Monjo, Marta; Reseland, Janne E.; Haugen, Håvard J.; Lyngstadaas, Ståle Petter

    2014-01-01

    The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity. PMID:28788564

  4. Development of electrospun bone-mimetic matrices for bone regenerative applications

    NASA Astrophysics Data System (ADS)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater quantities of PDGF-BB, compared to PCL scaffolds, over an 8-week interval. The released PDGF-BB retained its bioactivity, stimulating MSC chemotaxis in two separate assays. Collectively, these re-sults suggest that electrospun matrices incorporating the bone matrix molecules collagen I and HA, with sacrificial fibers, provide a favorable scaffold for MSC survival and infil-tration as well as the ability to sequester PDGF-BB from solution, leading to sustained local delivery and MSC chemotaxis.

  5. Tissue level material composition and mechanical properties in Brtl/+ mouse model of Osteogenesis Imperfecta after sclerostin antibody treatment

    NASA Astrophysics Data System (ADS)

    Lloyd, William R.; Sinder, Benjamin P.; Salemi, Joseph; Ominsky, Michael S.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2015-02-01

    Osteogenesis imperfecta (OI) is a genetic disorder resulting in defective collagen or collagen-associated proteins and fragile, brittle bones. To date, therapies to improve OI bone mass, such as bisphosphonates, have increased bone mass in the axial skeleton of OI patients, but have shown limited effects at reducing long bone fragility. Sclerostin antibody (Scl- Ab), currently in clinical trials for osteoporosis, stimulates bone formation and may have the potential to reduce long bone fracture rates in OI patients. Scl-Ab has been investigated as an anabolic therapy for OI in the Brtl/+ mouse model of moderately severe Type IV OI. While Scl-Ab increases long bone mass in the Brtl/+ mouse, it is not known whether material properties and composition changes also occur. Here, we report on the effects of Scl-Ab on wild type and Brtl/+ young (3 week) and adult (6 month) male mice. Scl-Ab was administered over 5 weeks (25mg/kg, 2x/week). Raman microspectroscopy and nanoindentation are used for bone composition and biomechanical bone property measurements in excised bone. Fluorescent labels (calcein and alizarin) at 4 time points over the entire treatment period are used to enable measurements at specific tissue age. Differences between wild type and Brtl/+ groups included variations in the mineral and matrix lattices, particularly the phosphate v1, carbonate v1, and the v(CC) proline and hydroxyproline stretch vibrations. Results of Raman spectroscopy corresponded to nanoindentation findings which indicated that old bone (near midcortex) is stiffer (higher elastic modulus) than new bone. We compare and contrast mineral to matrix and carbonate to phosphate ratios in young and adult mice with and without treatment.

  6. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization.

    PubMed

    Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H

    1998-04-01

    Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.

  7. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less

  8. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlin, Maria, E-mail: maria.herlin@ki.se; Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi; Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serummore » levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone and softer cortical bone. • TCDD does not affect the bones of Ahr{sup –/–} mice.« less

  9. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls.

    PubMed

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L

    2013-01-01

    After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment-naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material. Copyright © 2013 American Society for Bone and Mineral Research.

  10. Comparison of collagen matrix treatment impregnated with platelet rich plasma vs bone marrow.

    PubMed

    Minamimura, Ai; Ichioka, Shigeru; Sano, Hitomi; Sekiya, Naomi

    2014-02-01

    This study has reported the efficacy of an autologous bone marrow-impregnated collagen matrix experimentally and clinically. Then, it reflected that platelet rich plasma (PRP) was as good a source of growth factors as bone marrow and available in a less invasive procedure. This study aimed to compare the efficacy of a PRP-impregnated collagen matrix with that of a bone marrow-impregnated collagen matrix by quantifying wound size and capillary density using genetically diabetic db/db mice. Bone marrow cells were obtained from femurs of ddy mice. Then, a small amount of collagen matrix was immersed in bone marrow suspension. This is called a bone marrow-impregnated collagen matrix. PRP was obtained from healthy human blood and a small amount of collagen matrix was immersed in PRP. This is called a PRP-impregnated collagen matrix. A bone marrow-impregnated collagen matrix and PRP-impregnated collagen matrix were applied to excisional skin wounds on a genetically healing-impaired mouse (n = 6) and wounds were evaluated 6 days after the procedure. Wounds were divided into two groups: PRP (n = 6), in which a PRP-impregnated collagen matrix was applied; and bone marrow (n = 6), in which collagen immersed in a bone marrow suspension was applied. There was no significant difference between the PRP and bone-marrow groups in the rate of vascular density increase or wound size decrease. The present study suggested that the PRP-impregnated collagen matrix promotes repair processes at least as strongly as the bone marrow-impregnated collagen matrix. Given lower invasiveness, the PRP-impregnated collagen matrix would have advantages in clinical use.

  11. Silk scaffolds in bone tissue engineering: An overview.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide applications as cell scaffolding matrices to micro-nano carriers for delivering bone growth factors and therapeutic molecules to diseased or damaged sites to facilitate bone regeneration, is emphasized here. The review rationalizes that the choice of silk protein as a biomaterial is not only because of its natural polymeric nature, mechanical robustness, flexibility and wide range of cell compatibility but also because of its ability to template the growth of hydroxyapatite, the chief inorganic component of bone mineral matrix, resulting in improved osteointegration. The discussion extends to the role of inorganic ions such as Si and Ca as matrix components in combination with silk to influence bone regrowth. The effect of ions or growth factor-loaded vehicle incorporation into regenerative matrix, nanotopography is also considered. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Experimental studies on a new highly porous hydroxyapatite matrix for obliterating open mastoid cavities.

    PubMed

    Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm

    2008-09-01

    In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.

  13. Matrix Vesicle Enzyme Activity and Phospholipid Content in Endosteal Bone Following Implantation of Osseointegrating and Non-Osseointegrating Implant Materials.

    DTIC Science & Technology

    1991-11-01

    formation of dental calculus by colonies of organized dental plaque (Boyan et al., 1982; Ennever et al., 1978b; and Sidaway, 1980). Although first thought...chamber was achieved by frontal 17 penetration of the antero-medial aspect of the exposed bone with a saline-cooled, round dental burr (#4) and a...penetration of the antero- 24 25 medial aspect of the exposed bone with a saline-cooled, round dental burr (#4) and a 20,000 RPM motor. The bone marrow

  14. Effect of nickel-titanium shape memory metal alloy on bone formation.

    PubMed

    Kapanen, A; Ryhänen, J; Danilov, A; Tuukkanen, J

    2001-09-01

    The aim of this study was to determine the biocompatibility of NiTi alloy on bone formation in vivo. For this purpose we used ectopic bone formation assay which goes through all the events of bone formation and calcification. Comparisons were made between Nitinol (NiTi), stainless steel (Stst) and titanium-aluminium (6%)-vanadium (4%) alloy (Ti-6Al-4V), which were implanted for 8 weeks under the fascia of the latissimus dorsi muscle in 3-month-old rats. A light-microscopic examination showed no chronic inflammatory or other pathological findings in the induced ossicle or its capsule. New bone replaced part of the decalcified matrix with mineralized new cartilage and bone. The mineral density was measured with peripheral quantitative computed tomography (pQCT). The total bone mineral density (BMD) values were nearly equal between the control and the NiTi samples, the Stst samples and the Ti-6Al-4V samples had lower BMDs. Digital image analysis was used to measure the combined area of new fibrotic tissue and original implanted bone matrix powder around the implants. There were no significant differences between the implanted materials, although Ti-6Al-4V showed the largest matrix powder areas. The same method was used for measurements of proportional cartilage and new bone areas in the ossicles. NiTi showed the largest cartilage area (p < or = 0.05). Between implant groups the new bone area was largest in NiTi. We conclude that NiTi has good biocompatibility, as its effects on ectopic bone formation are similar to those of Stst, and that the ectopic bone formation assay developed here can be used for biocompatibility studies.

  15. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality.

    PubMed

    Paschalis, E P; Gamsjaeger, S; Hassler, N; Fahrleitner-Pammer, A; Dobnig, H; Stepan, J J; Pavo, I; Eriksen, E F; Klaushofer, K

    2017-02-01

    Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    PubMed

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  17. Short-term implantation effects of a DCPD-based calcium phosphate cement.

    PubMed

    Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N

    1998-06-01

    Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.

  18. Bioglass incorporation improves mechanical properties and enhances cell-mediated mineralization on electrochemically aligned collagen threads.

    PubMed

    Nijsure, Madhura P; Pastakia, Meet; Spano, Joseph; Fenn, Michael B; Kishore, Vipuil

    2017-09-01

    Bone tissue engineering mandates the development of a functional scaffold that mimics the physicochemical properties of native bone. Bioglass 45S5 (BG) is a highly bioactive material known to augment bone formation and restoration. Hybrid scaffolds fabricated using collagen type I and BG resemble the organic and inorganic composition of the bone extracellular matrix and hence have been extensively investigated for bone tissue engineering applications. However, collagen-BG scaffolds developed thus far do not recapitulate the aligned structure of collagen found in native bone. In this study, an electrochemical fabrication method was employed to synthesize BG-incorporated electrochemically aligned collagen (BG-ELAC) threads that are compositionally similar to native bone. Further, aligned collagen fibrils within BG-ELAC threads mimic the anisotropic arrangement of collagen fibrils in native bone. The effect of BG incorporation on the mechanical properties and cell-mediated mineralization on ELAC threads was investigated. The results indicated that BG can be successfully incorporated within ELAC threads, without disturbing collagen fibril alignment. Further, BG incorporation significantly increased the ultimate tensile stress (UTS) and modulus of ELAC threads (p < 0.05). SBF conditioning showed extensive mineralization on BG-ELAC threads that increased over time demonstrating the bone bioactivity of BG-ELAC threads. Additionally, BG incorporation into ELAC threads resulted in increased cell proliferation (p < 0.05) and deposition of a highly dense and continuous mineralized matrix. In conclusion, incorporation of BG into ELAC threads is a viable strategy for the development of an osteoconductive material for bone tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2429-2440, 2017. © 2017 Wiley Periodicals, Inc.

  19. [Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor].

    PubMed

    Zhang, Minglei; Wang, Dapeng; Yin, Ruofeng

    2015-10-06

    To explorec Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor transinfected. Rat bone marrow mesenchymal stem cells (BMSCs) was separated, using BMSCs as target cells, and then vascular endothelial growth factor (VEGF) gene was transfected. Composite bone marrow mesenchymal stem cells and cells transfected with nano-hydroxyapatite (HA)/polylactic-co-glycolic acid (PLGA). The composition of cell and scaffold was observed. The blank plasmid transfection was 39.1%, 40.1% in VEGF group. The cell adhesion and growth was found on the scaffold pore wall after 5 days, and the number of adherent cells in the nano-HA/PLGA composite scaffold material basically had no significant difference in both. Although the nano-HA/PLGA scaffold material is still not fully meet the requirements of the matrix material for bone tissue engineering, but good biocompatibility, structure is its rich microporous satisfaction in material mechanics, toughening, enhanced obviously. Composition scaffold with BMSCs transfected by VEGF plasmid, the ability of angiogenesis is promoted.

  20. Human fetal bone cells in delivery systems for bone engineering.

    PubMed

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Radiographic and histological evaluation of ectopic application of deproteinized bovine bone matrix.

    PubMed

    da Silva, Rodrigo Carlos; Crivellaro, Viviane Rozeira; Giovanini, Allan Fernando; Scariot, Rafaela; Gonzaga, Carla Castiglia; Zielak, João César

    2016-01-01

    To evaluate, through radiographic and histological analysis, the tissue reaction induced by a biomaterial based on deproteinized bovine bone matrix (DBBM) in the muscle of sheep. Sixteen sheep were used. The animals underwent surgery to insert polyethylene tubes containing the biomaterial in the muscle of the lower back (ectopic site) and were euthanized after 3 and 6 months. Each sheep received three tubes: Group 1 - sham group (negative control - tube without biomaterial), Group 2 - particulate autogenous bone (positive control), and Group 3 - DBBM biomaterial (GenOx Inorg). The material removed was evaluated by radiographic, macroscopic, and microscopic analysis, descriptively. Macroscopic analysis showed that Group 3 had a greater tissue volume maintenance. Microscopic analysis indicated that Group 1 had a higher concentration of dense, thin collagen fibers (3 and 6 months); in Group 2, there was a decrease in the inflammatory process and the deposition of dense, thin collagen fibers (3 and 6 months); in Group 3, the presence of a dense connective tissue was noted, in which the DBBM particles (3 months) were found. On the periphery of these particles, a deposition of basophilic material was found, indicating the formation of mineral particles and the formation of tissues with osteoid characteristics (6 months). Based on the results obtained, it can be concluded that the biomaterial based on DBBM led to the formation of tissue with similar characteristics to an osteoid matrix in a postoperative period of 6 months. However, none of the groups evaluated showed ectopic bone neoformation.

  2. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    PubMed

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-05

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    PubMed Central

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  4. Localized tissue mineralization regulated by bone remodelling: A computational approach

    PubMed Central

    Decco, Oscar; Adams, George; Cook, Richard B.; García Aznar, José Manuel

    2017-01-01

    Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent–material density curve. Numerical results are discussed pointing to potential clinical applications. PMID:28306746

  5. Active multilayered capsules for in vivo bone formation

    PubMed Central

    Facca, S.; Cortez, C.; Mendoza-Palomares, C.; Messadeq, N.; Dierich, A.; Johnston, A. P. R.; Mainard, D.; Voegel, J.-C.; Caruso, F.; Benkirane-Jessel, N.

    2010-01-01

    Interest in the development of new sources of transplantable materials for the treatment of injury or disease has led to the convergence of tissue engineering with stem cell technology. Bone and joint disorders are expected to benefit from this new technology because of the low self-regenerating capacity of bone matrix secreting cells. Herein, the differentiation of stem cells to bone cells using active multilayered capsules is presented. The capsules are composed of poly-L-glutamic acid and poly-L-lysine with active growth factors embedded into the multilayered film. The bone induction from these active capsules incubated with embryonic stem cells was demonstrated in vitro. Herein, we report the unique demonstration of a multilayered capsule-based delivery system for inducing bone formation in vivo. This strategy is an alternative approach for in vivo bone formation. Strategies using simple chemistry to control complex biological processes would be particularly powerful, as they make production of therapeutic materials simpler and more easily controlled. PMID:20160118

  6. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.

    PubMed

    Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C

    2009-01-01

    Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  7. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  8. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  9. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    PubMed Central

    Lee, Dong Joon; Padilla, Ricardo; Zhang, He; Hu, Wei-Shou; Ko, Ching-Chang

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration. PMID:25054149

  10. Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration

    PubMed Central

    Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

    2012-01-01

    Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

  11. Elastic interactions between single microcrack and single osteon microstructure of human femur cortical bone

    NASA Astrophysics Data System (ADS)

    Mansor, N. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, Y.; Ariffin, A. K.

    2017-09-01

    Inmultiscale Haversian system of cortical bone fracture, a homogenous bone modeling consideration is limited to only one Young modulus was significant for each cortex without having any constituents in that bone. A two dimension model of human femur cortical bone is presented by considering the anatomical positions of four cortices, e.g anterior, posterior, medial and lateral. The Haversian system is modeled under tensile loading by considering the interstitial matrix, osteon and cement line mechanical properties. The interaction between single microcrack and single osteon is evaluated using linear elastic fracture mechanics theory, and was determined using of stress intensity factor, strain energy release rate, and the critical stress intensity factor and critical strain energy release rate parameter. The results indicate that the medial cortex has the highest SIFs while the lowest was posterior cortex. The Young modulus of material was greatly influence the fracture parameters. More stiff the material, the SIF was reduced.

  12. Growth factors--BMPs, DBMs, and buffy coat products: are there any proven differences amongst them?

    PubMed

    Veillette, Christian J H; McKee, Michael D

    2007-03-01

    Advances in the understanding of bone repair and improved biotechnology have led to the introduction of new strategies for orthopedic surgeons to control and modulate bone healing using growth factors. However, many orthopedic surgeons are uncertain about the current levels of evidence supporting the use of materials that possess these properties and their therapeutic role in the management of skeletal problems such as fracture, long-bone nonunion, and spine fusion. In particular, the differences amongst osteoinductive factors synthesized by recombinant gene technology, or derived from demineralized bone matrix or platelet rich plasma requires clarification.

  13. Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix.

    PubMed

    Del Buffa, Stefano; Bonini, Massimo; Ridi, Francesca; Severi, Mirko; Losi, Paola; Volpi, Silvia; Al Kayal, Tamer; Soldani, Giorgio; Baglioni, Piero

    2015-06-15

    This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. New bioactive bone-like microspheres with intrinsic magnetic properties obtained by bio-inspired mineralisation process.

    PubMed

    Fernandes Patrício, Tatiana Marisa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Sprio, Simone

    2017-08-01

    A bio-inspired mineralisation process was investigated and applied to develop novel hybrid magnetic materials by heterogeneous nucleation of Fe 2+ /Fe 3+ -doped hydroxyapatite nanocrystals onto a biopolymeric matrix made of a Type I collagen-based recombinant peptide (RCP). The effect of the synthesis temperature on the phase composition, crystallinity and magnetic properties of the nucleated inorganic phase was studied. The as-obtained magnetic materials were then engineered, by using a water-in-oil emulsification process, into hybrid magnetic microspheres, which were stabilized by de-hydrothermal treatment yielding cross-linking of the macromolecular matrix. Thorough investigation of the physicochemical, morphological and biological properties of the new hybrid microspheres, as induced by the presence of the inorganic nanophase and controlled iron substitution into hydroxyapatite lattice, revealed bone-like composition, good cytocompatibility, designed shape and size, and tailored magnetization. Such features are interesting and promising for application as new biomaterials with ability of remote activation and control by using external magnetic fields, for smart and personalized applications in medicine, particularly in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Collagen Self-Assembly on Orthopedic Magnesium Biomaterials Surface and Subsequent Bone Cell Attachment

    PubMed Central

    Zhao, Nan; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459

  16. The rocker bone: a new kind of mineralised tissue?

    PubMed

    Parmentier, E; Compère, P; Casadevall, M; Fontenelle, N; Cloots, R; Henrist, C

    2008-10-01

    In some Ophidiiform fishes, the anterior part of the swimbladder is thickened into a hard structure called the "rocker bone", which is thought to play a role in sound production. Although this structure has been described as cartilage or bone, its nature is still unknown. We have made a thorough analysis of the rocker bone in Ophidion barbatum and compared it with both classical bone and cartilage. The rocker bone appears to be a new example of mineralisation. It consists of (1) a ground substance mainly composed of proteoglycans (mucopolysaccharide acid) and fibres and (2) a matrix containing small mineralised spherules composed of a bioapatite and fibrils. These spherules are embedded in mineralised cement of a similar composition to the spherules themselves. The rocker bone grows via the apposition of new apatite spherules at its periphery. These spherules are first secreted by the innermost fibroblast layer of the capsule contained in the rocker bone and then grow extracellularly. Blood vessels, which represent the only means of transport for matrix and mineral material, are numerous. They enter the rocker bone via the hyle and ramify towards the capsule. We propose to call this new kind of mineralised tissue constituting the rocker bone "frigolite" (the Belgian name for styrofoam) in reference to the presence of spherules of different sizes and the peculiarity of the rocker bone in presenting a smooth surface when fractured.

  17. Operculum bone carp (cyprinus carprio sp.) scaffold is a new potential xenograft material: a preliminary study

    NASA Astrophysics Data System (ADS)

    Kartiwa, A.; Abbas, B.; Pandansari, P.; Prahasta, A.; Nandini, M.; Fadhlillah, M.; Subroto, T.; Panigoro, R.

    2017-02-01

    Orbital floor fracture with extensive bone loss, would cause herniation of the orbital tissue into the maxillary sinus. Graft implantation should be done on the orbital fracture with extensive bone loss. Different types of grafts have their own characteristics and advantages. Xenograft has been widely studied for use in bone defects. This study was to investigate cyprinus carprio sp. opercula bone as a potential xenograft. The aim of this study was to investigate based on EDS chemical analysis using a ZAF Standardless Method of Quantitative Analysis (Oxide) and SEM examination conducted in the laboratory of Mathematics, Institute of Technology Bandung. Particularly the mass ratio of Ca and P (5.8/3:47), the result is 1.67. This is equivalent to the stoichiometric Hydroxyapatite (HA) (Aoki H, 1991, Science and medical applications of hydroxyapatite, Tokyo: Institute for Medical and Engineering, Tokyo Medical and Dental University). C N O that there is an element of protein/amino acid collagen compound, serves as a matrix together with HA. As shown in the SEM analysis that the matrix is a porous sheet-shaped (oval) that interconnect with each other, which is good scaffold. The pore is composed of large pores >200 microns and smaller pores between the large pores with a size smaller or equal to 10 microns that can serve for the attachment of osteoblast cell. In conclusion, Opercula bone carp (cyprinus carprio sp.) scaffold could be a new potential xenograft material.

  18. Characterizing the inorganic/organic interface in cancer bone metastasis

    NASA Astrophysics Data System (ADS)

    Wu, Fei

    Bone metastasis frequently occurs in patients with advanced breast cancer and remains a major source of mortality. At the molecular level, bone is a nanocomposite composed of inorganic bone mineral deposited within an organic extracellular matrix (ECM). Although the exact mechanisms of bone metastasis remain unclear, the nanoscale materials properties of bone mineral have been implicated in this process. Bone apatite is closely related to synthetic hydroxyapatite (HAP, Ca10(PO4)6(OH)2) in terms of structural and mechanical properties. Additionally, although the primary protein content of bone is collagen I, the glycoprotein fibronectin (Fn) is essential in maintaining the overall integrity of the bone matrix. Importantly, in vivo, neither breast cancer cells nor normal bone cells interact directly with the bone mineral but rather with the protein film adsorbed onto the mineral surface. Therefore, we hypothesized that breast cancer cell functions were regulated by differential fibronectin adsorption onto hydroxyapatite, which led to pathological remodeling of the bone matrix and sustained bone metastasis. Three model systems containing HAP and Fn were developed for this thesis. In model system I, a library of synthetic HAP nanoparticles were utilized to investigate the effect of mineral size, shape, and crystallinity on Fn conformation, using Forster resonance energy transfer (FRET) spectroscopy. In model system II, Fn-functionalized large geologic HAP crystals were used instead of HAP nanoparticles to avoid cellular uptake when investigating subsequent cell functions. Overall our FRET analysis (models I and II) revealed that Fn conformation depended on size, surface chemistry, and roughness of underlying HAP. When breast cancer cells were seeded on the Fn-coated HAP crystal facets (model II), our data indicated high secretion levels of proangiogenic and proinflammatory factors associated with the presence of unfolded Fn conformations, likely caused by differential engagement of cell receptors integrins with the underlying Fn. Finally, in model system III, Fn fibrillar structures (mimicking the bone matrix) were fabricated and characterized in presence of HAP nanoparticles, suggesting that the presence of microcalcifications found in tumorous/inflammed tissues affects both the structural and mechanical properties of the surrounding ECM. Collectively, our study of cellular behavior regulated by mineral/ECM interactions provides insights into the pathogenesis of breast cancer bone metastasis as well as other HAP-related inflammation.

  19. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    PubMed

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  20. Geometry of torn boudin-An indicator of relative viscosity

    NASA Astrophysics Data System (ADS)

    Samanta, Susanta Kumar; Basu Majumder, Debojyoti; Sarkar, Goutam

    2017-11-01

    The present study determines the role of viscosity on the development of rectangular torn boudin and its various types, defined by the curvature of their exterior and face margins. Numerical modeling was performed with the help of Finite Element Method considering Maxwell visco-elastic materials in commercial code ANSYS. Seven different viscosities were used and interchanged among the boudin, inter-boudin and matrix materials to understand the effect of viscosity ratios, specifically of relative viscosity of inter-boudin material. Results show that the viscosity of inter-boudin material has significant control on the shape of torn boudins apart from the viscosity ratio of boudin to matrix material. Bone-shaped boudin develops only when the inter-boudin is more competent than boudin and it becomes more prominent when matrix is also competent than boudin, but incompetent than inter-boudin. When boudins are stiffer than inter-boudin, barrel-shaped and fish-head boudins with concave faces develop. Exterior or face margins remain almost straight when boudin is relatively rigid compared to its surrounding matrix materials, or when there is no or very little viscosity contrast between boudin and inter-boudin material even in case of large boudin-matrix viscosity contrast. Therefore, the relative viscosity among the boudin, inter-boudin and matrix materials can be estimated qualitatively by studying the shape of boudin in the field.

  1. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly induced due to the osteoinductive process.

  2. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.

    PubMed

    Ghanbari, J; Naghdabadi, R

    2009-07-22

    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  3. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    PubMed

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.

  4. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro

    PubMed Central

    Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.

    2017-01-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781

  5. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    PubMed

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  6. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats.

    PubMed

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  7. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Bhattacharya, Debasis; Maiti, T K; Kundu, S C

    2016-02-01

    The current study deals with the fabrication and characterization of blended nanofibrous scaffolds of tropical tasar silk fibroin of Antheraea mylitta and poly (Є-caprolactone) to act as an ideal scaffold for bone regeneration. The use of poly (Є-caprolactone) in osteogenesis is well-recognized. At the same time, the osteoconductive nature of the non-mulberry tasar fibroin is also established due to its internal integrin binding peptide RGD (Arg-Gly-Asp) sequences, which enhance cellular interaction and proliferation. Considering that the materials have the required and favorable properties, the blends are formed using an equal volume ratio of fibroin (2 and 4 wt%) and poly (Є-caprolactone) solution (10 wt%) to fabricate nanofibers. The nanofibers possess an average diameter of 152 ± 18 nm (2 % fibroin/PCL) and 175 ± 15 nm (4% fibroin/PCL). The results of Fourier transform infrared spectroscopy substantiates the preservation of the secondary structure of the fibroin in the blends indicating the structural stability of the neo-matrix. With an increase in the fibroin percentage, the hydrophobicity and thermal stability of the matrices as measured from melting temperature Tm (using DSC) decrease, while the mechanical strength is improved. The blended nanofibrous scaffolds are biodegradable, and support the viability and proliferation of human osteoblast-like cells as observed through scanning electron and confocal microscopes. Alkaline phosphatase assay indicates the cell proliferation and the generation of the neo-bone matrix. Taken together, these findings illustrate that the silk-poly (Є-caprolactone) blended nanofibrous scaffolds have an excellent prospect as scaffolding material in bone tissue engineering.

  8. Bone augmentation at peri-implant dehiscence defects comparing a synthetic polyethylene glycol hydrogel matrix vs. standard guided bone regeneration techniques.

    PubMed

    Thoma, Daniel S; Jung, Ui-Won; Park, Jin-Young; Bienz, Stefan P; Hüsler, Jürg; Jung, Ronald E

    2017-07-01

    The aim of the study was to test whether or not the use of a polyethylene glycol (PEG) hydrogel with or without the addition of an arginylglycylaspartic acid (RGD) sequence applied as a matrix in combination with hydroxyapatite/tricalciumphosphate (HA/TCP) results in similar peri-implant bone regeneration as traditional guided bone regeneration procedures. In 12 beagle dogs, implant placement and peri-implant bone regeneration were performed 2 months after tooth extraction in the maxilla. Two standardized box-shaped defects were bilaterally created, and dental implants were placed in the center of the defects with a dehiscence of 4 mm. Four treatment modalities were randomly applied: i)HA/TCP mixed with a synthetic PEG hydrogel, ii)HA/TCP mixed with a synthetic PEG hydrogel supplemented with an RGD sequence, iii)HA/TCP covered with a native collagen membrane (CM), iv)and no bone augmentation (empty). After a healing period of 8 or 16 weeks, micro-CT and histological analyses were performed. Histomorphometric analysis revealed a greater relative augmented area for groups with bone augmentation (43.3%-53.9% at 8 weeks, 31.2%-42.8% at 16 weeks) compared to empty controls (22.9% at 8 weeks, 1.1% at 16 weeks). The median amount of newly formed bone was greatest in group CM at both time-points. Regarding the first bone-to-implant contact, CM was statistically significantly superior to all other groups at 8 weeks. Bone can partially be regenerated at peri-implant buccal dehiscence defects using traditional guided bone regeneration techniques. The use of a PEG hydrogel applied as a matrix mixed with a synthetic bone substitute material might lack a sufficient stability over time for this kind of defect. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    PubMed Central

    2012-01-01

    Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of osteogenic extracellular matrix. The coated nanosprings enhance normal human osteoblasts cellular behaviors needed for improving osseointegration of orthopedic materials. Thus, metal-coated nanosprings represent a novel biomaterial that could be exploited for improving success rates of orthopedic implant procedures. PMID:22284364

  10. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.

    PubMed

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong; Li, Hongmin; Chen, Fulin

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  12. The formation conditions of the burial site of Late Cretaceous dinosaurs and plants in the Kakanaut River basin (Koryak Highlands, Northeastern Asia)

    NASA Astrophysics Data System (ADS)

    Shczepetov, S. V.; Herman, A. B.

    2017-07-01

    The stratigraphic position of layers containing plant and animal remains in the Koryak Highlands (Northeast Asia) is under discussion. Their age is defined as late Campanian-early Maastrichtian. Plant-bearing and bone-bearing rocks represent cemented basaltic tephra. The former contain a small amount of xenogenic material and slightly rounded volcaniclastic material, which indicates its insignificant transportation. Ash particles in bone-bearing rocks are even less rounded. Among them, there are no rock fragments of other composition. Large bones and their fragments, as xenoliths, are chaotically distributed in the rock matrix as if floating in mass of ash material. This burial site was probably formed in a continental environment as a result of the gravitational and eolian transportation of the terrigenous material. The burial of small dinosaur bones and teeth occurred during the deposition of a small stream of a semiliquid water-ash mixture. This work presents a possible mechanism of the formation of burial sites, taking into consideration proposed conditions of the life and reproduction of dinosaurs in the Late Mesozoic Arctic.

  13. Nanostructured thick 3D nanofibrous scaffold can induce bone.

    PubMed

    Eap, Sandy; Morand, David; Clauss, François; Huck, Olivier; Stoltz, Jean-François; Lutz, Jean-Christophe; Gottenberg, Jacques-Eric; Benkirane-Jessel, Nadia; Keller, Laetitia; Fioretti, Florence

    2015-01-01

    Designing unique nanostructured biomimetic materials is a new challenge in modern regenerative medicine. In order to develop functional substitutes for damaged organs or tissues, several methods have been used to create implants able to regenerate robust and durable bone. Electrospinning produces nonwoven scaffolds based on polymer nanofibers mimicking the fibrillar organization of bone extracellular matrix. Here, we describe a biomimetic 3D thick nanofibrous scaffold obtained by electrospinning of the biodegradable, bioresorbable and FDA-approved polymer, poly(ε-caprolactone). Such scaffold presents a thickness reaching one centimeter. We report here the demonstration that the designed nanostructured implant is able to induce in vivo bone regeneration.

  14. Poly(trimethylene carbonate)-based composite materials for reconstruction of critical-sized cranial bone defects in sheep.

    PubMed

    Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel

    2017-02-01

    The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Guided Bone Regeneration Using Collagen Scaffolds, Growth Factors, and Periodontal Ligament Stem Cells for Treatment of Peri-Implant Bone Defects In Vivo

    PubMed Central

    Scholz, Malte; Baudisch, Maria; Liese, Jan; Frerich, Bernhard; Lang, Hermann

    2017-01-01

    Introduction The aim of the study was an evaluation of different approaches for guided bone regeneration (GBR) of peri-implant defects in an in vivo animal model. Materials and Methods In minipigs (n = 15), peri-implant defects around calcium phosphate- (CaP-; n = 46) coated implants were created and randomly filled with (1) blank, (2) collagen/hydroxylapatite/β-tricalcium phosphate scaffold (CHT), (3) CHT + growth factor cocktail (GFC), (4) jellyfish collagen matrix, (5) jellyfish collagen matrix + GFC, (6) collagen powder, and (7) collagen powder + periodontal ligament stem cells (PDLSC). Additional collagen membranes were used for coverage of the defects. After 120 days of healing, bone growth was evaluated histologically (bone to implant contact (BIC;%)), vertical bone apposition (VBA; mm), and new bone height (NBH; %). Results In all groups, new bone formation was seen. Though, when compared to the blank group, no significant differences were detected for all parameters. BIC and NBH in the group with collagen matrix as well as the group with the collagen matrix + GFC were significantly less when compared to the collagen powder group (all: p < 0.003). Conclusion GBR procedures, in combination with CaP-coated implants, will lead to an enhancement of peri-implant bone growth. There was no additional significant enhancement of osseous regeneration when using GFC or PDLSC. PMID:28951742

  16. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series.

    PubMed

    Cho, Hwan Seong; Seo, Sung Hwa; Park, So Hyun; Park, Jong Hoon; Shin, Duk Seop; Park, Il Hyung

    2012-07-29

    Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1  years (range, 3-19 years). The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15-36 months). Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3-12 months). Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts.

  17. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    PubMed

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our results justify further investigations to potentially use local application of zoledronic acid in future clinical studies.

  18. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    USDA-ARS?s Scientific Manuscript database

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  19. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone. © 2014 American Society for Bone and Mineral Research.

  20. Simulation of bone resorption-repair coupling in vitro.

    PubMed

    Jones, S J; Gray, C; Boyde, A

    1994-10-01

    In the normal adult human skeleton, new bone formation by osteoblasts restores the contours of bone surfaces following osteoclastic bone resorption, but the evidence for resorption-repair coupling remains circumstantial. To investigate whether sites of prior resorption, more than the surrounding unresorbed surface, attract osteoblasts or stimulate them to proliferate or make new matrix, we developed a simple in vitro system in which resorption-repair coupling occurs. Resorption pits were produced in mammalian dentine or bone slabs by culturing chick bone-derived cells on them for 2-3 days. The chick cells were swept off and the substrata reseeded with rat calvarial osteoblastic cells, which make bone nodules in vitro, for periods of up to 8 weeks. Cell positions and new bone formation were investigated by ordinary light microscopy, fluorescence and reflection confocal laser microscopy, and SEM, in stained and unstained samples. There was no evidence that the osteoblasts were especially attracted to, or influenced by, the sites of resorption in dentine or bone before cell confluence was reached. Bone formation was identified by light microscopy by the accumulation of matrix, staining with alizarin and calcein and by von Kossa's method, and confirmed by scanning electron microscopy (SEM) by using backscattered electron (BSE) and transmitted electron imaging of unembedded samples and BSE imaging of micro-milled embedded material. These new bone patches were located initially in the resorption pits. The model in vitro system may throw new light on the factors that control resorption-repair coupling in the mineralised tissues in vivo.

  1. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  2. The materials used in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  3. Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy.

    PubMed

    Hess, Ulrike; Shahabi, Shakiba; Treccani, Laura; Streckbein, Philipp; Heiss, Christian; Rezwan, Kurosch

    2017-08-01

    Bone substitute materials with a controlled drug release ability can fill cavities caused by the resection of bone tumours and thereby combat any leftover bone cancer cells. The combined release of different cytostatics seems to enhance their toxicity. In this study, calcium phosphate beads and matrix scaffolds are combined for a long-term co-delivery of cis-diamminedichloroplatinum (cisplatin, CDDP) and doxorubicin hydrochloride (DOX) as clinical relevant model drugs. Tricalcium phosphate/alginate beads as additional drug carrier are produced by droplet extrusion with ionotropic gelation and incorporated in scaffold matrix by freeze gelation without sintering. CDDP shows a short burst release while DOX has a continuous release measurable over the entire study period of 40days. Drug release from matrix is decreased by ~30% compared to release from beads. Nevertheless, all formulations follow the Korsmeyer-Peppas release kinetic model and show Fickian diffusion. Cytotoxic activity was conducted on MG-63 osteosarcoma cells after 1, 4, and 7days with WST-1 cell viability assay. Co-loaded composites enhance activity towards MG-63 cells up to ~75% toxicity while reducing the released drug quantity. The results suggest that co-loaded beads/matrix scaffolds are highly promising for osteosarcoma therapy due to synergistic effects over a long period of more than a month. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Environmental Impact on Fossil Record for Palaecological Reconstruction Studies

    NASA Astrophysics Data System (ADS)

    Paraskevi, Chantzi; Elissavet, Dotsika; Brunella, Raco; Konstadinos, Albanakis; Anastasia, Poutouki; Eleni, Samarztidou

    2016-10-01

    Paleoecological studies have an important role in understanding past environmental, dietary and/or societal changes however require the authentic signature of fossil materials. Therefore, a significant part of these studies concerns the isolation of the material authentic matrix. Bone hydroxyapatite from different animal species from the archaeological site of Dispilio in Kastoria Lake basin in northern Greece has been subjected to mineral analysis in order to detect if there are suitable for palaoecological studies. Calcium, phosphorus, oxygen and hydrogen are the main components of bones resulting rigidity, hardness and compressive strength of their structure. However different bone structure resulting different calcium- phosphate phases and different compositions, including Ca/P ratios. These disparities may be attributable to different physiological characteristic, conditions under which the bones were formed or burial environment. Trace element analysis (Ca/P, Sr/P, Fe/Mn) concluded that treated fossil bones retained their biochemical signal without any strong influence by soil remains however without suggesting that no chemical alteration have been occurred.

  5. Decreased Bone Mineral Density in Prader-Willi Syndrome: Comparison With Obese Subjects

    PubMed Central

    Butler, Merlin G.; Haber, Lawrence; Mernaugh, Ray; Carlson, Michael G.; Price, Ron; Feurer, Irene D.

    2016-01-01

    Bone density, anthropometric data, and markers of bone turnover were collected on 21 subjects diagnosed with Prader-Willi syndrome (PWS) and compared with 9 subjects with obesity of unknown cause. In addition, urinary N-telopeptide levels were obtained in all subjects. N-telopeptides are the peptide fragments of type I collagen, the major bone matrix material. During periods of active bone degradation or high bone turnover, high levels of N-telopeptides are excreted in the urine. However, no significant difference was detected in the urinary N-telopeptide levels when corrected for creatinine excretion (raw or transformed data) between our subjects with obesity or PWS and the observed effect size of the between-group difference was small. Although N-telopeptide levels were higher but not significantly different in the subjects with PWS compared with obese controls, the subjects with PWS had significantly decreased total bone and spine mineral density and total bone mineral content (all P < 0.001). No differences in N- telopeptide levels or bone mineral density were observed between subjects with PWS and chromosome 15q deletion or maternal disomy. Thus, decreased bone mineral density in subjects with PWS may relate to the lack of depositing bone mineral during growth when bones are becoming more dense (e.g., during adolescence), possibly because of decreased production of sex or growth hormones and/or long-standing hypotonia. It may not be caused by loss, or active degradation, of bone matrix measurable by the methods described in this study further supporting the possible need for hormone therapy during adolescence. PMID:11745993

  6. LIBS analysis of artificial calcified tissues matrices.

    PubMed

    Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A

    2013-04-15

    In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Supercritical carbon dioxide-processed resorbable polymer nanocomposites for bone graft substitute applications

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.

    Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable polymer nanocomposites composed of resorbable polymers and nanocaly exhibit physical, mechanical and biologic properties that make them excellent candidate materials for structural bone graft substitute applications.

  8. Dilatational band formation in bone

    PubMed Central

    Poundarik, Atharva A.; Diab, Tamim; Sroga, Grazyna E.; Ural, Ani; Boskey, Adele L.; Gundberg, Caren M.; Vashishth, Deepak

    2012-01-01

    Toughening in hierarchically structured materials like bone arises from the arrangement of constituent material elements and their interactions. Unlike microcracking, which entails micrometer-level separation, there is no known evidence of fracture at the level of bone’s nanostructure. Here, we show that the initiation of fracture occurs in bone at the nanometer scale by dilatational bands. Through fatigue and indentation tests and laser confocal, scanning electron, and atomic force microscopies on human and bovine bone specimens, we established that dilatational bands of the order of 100 nm form as ellipsoidal voids in between fused mineral aggregates and two adjacent proteins, osteocalcin (OC) and osteopontin (OPN). Laser microdissection and ELISA of bone microdamage support our claim that OC and OPN colocalize with dilatational bands. Fracture tests on bones from OC and/or OPN knockout mice (OC−/−, OPN−/−, OC-OPN−/−;−/−) confirm that these two proteins regulate dilatational band formation and bone matrix toughness. On the basis of these observations, we propose molecular deformation and fracture mechanics models, illustrating the role of OC and OPN in dilatational band formation, and predict that the nanometer scale of tissue organization, associated with dilatational bands, affects fracture at higher scales and determines fracture toughness of bone. PMID:23129653

  9. An effective delivery vehicle of demineralized bone matrix incorporated with engineered collagen-binding human bone morphogenetic protein-2 to accelerate spinal fusion at low dose.

    PubMed

    Zhu, Weiguo; Qiu, Yong; Sheng, Fei; Yuan, Xinxin; Xu, Leilei; Bao, Hongda; Dai, Jianwu; Zhu, Zezhang

    2017-12-01

    The aim of this study was to investigate the feasibility and efficacy of a new delivery matrix using demineralized bone matrix (DBM) incorporated with collagen-binding bone morphogenetic protein-2 (CBD-BMP-2) in the rat inter-transverse spinal fusion model. Sixty rats undergoing posterolateral (inter-transverse) spinal fusion were divided into 3 groups according to the fusion materials containing different components (n = 20 per group). Group A were implanted with DBM, Group B with combination of DBM and BMP-2 and Group C with combination of DBM and CBD-BMP-2. After surgery, the spinal fusion of all the rats was assessed by plain radiography, CT + 3D reconstruction, manual palpation and histological evaluation. Significant difference was found in terms of solid fusion rate among the three groups, with 95% in Group C, 65% in Group B and 0% in Group A (P < 0.001). Compared with Groups B and A, new bone formation was observed earlier and was obvious larger, trabecular bone microarchitecture assessment was better and bone mineral density was statistically larger in Group C. In addition, more newly woven bone and osteocytes were shown by histological evaluation in Group C at 4 weeks post-operation. The present study showed CBD domain could help BMP-2 to improve the efficiency of posterolateral spinal fusion. DBM scaffold activated by collagen-binding BMP-2 was a feasible and promising bone repair vehicle. The present study showed better results in terms of plain radiography, CT + 3D reconstruction, manual palpation and histological evaluation in the rat inter-transverse spinal fusion model using DBM+CBD-BMP-2, compared with DBM+BMP-2 and DBM alone, indicating DBM scaffold activated by collagen-binding BMP-2 was a feasible and promising bone repair vehicle.

  10. Bone scintiscanning updated.

    PubMed

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I

    1976-03-01

    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  11. Fourier Transformed Infra-Red Imaging of Femoral Neck Bone: Reduced Heterogeneity of Mineral-to-Matrix and Carbonate-to-Phosphate and more Variable Crystallinity in Treatment-Naïve Fracture Cases compared to Fracture-Free Controls

    PubMed Central

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L.

    2012-01-01

    After age 60 hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier Transform Infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and non-fractured bones. Whole femoral neck cross sections, divided into quadrants along the neck’s axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed Tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared to controls. While our treatment-naïve patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone’s toughness as a material. PMID:22865771

  12. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    PubMed Central

    Sutherland, Amanda J.; Beck, Emily C.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-β), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration. PMID:25965981

  13. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  14. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  15. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells.

    PubMed

    Thangarajah, Tanujan; Shahbazi, Shirin; Pendegrass, Catherine J; Lambert, Simon; Alexander, Susan; Blunn, Gordon W

    2016-01-01

    Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.

  16. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.

    PubMed

    Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A

    2017-09-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

  17. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    PubMed Central

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  18. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications.

    PubMed

    González-Sánchez, M Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina

    2015-05-01

    Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. Copyright © 2015. Published by Elsevier B.V.

  19. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications

    PubMed Central

    González-Sánchez, M. Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina

    2015-01-01

    Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. PMID:25746278

  20. Novel PLS3 variants in X-linked osteoporosis: Exploring bone material properties.

    PubMed

    Balasubramanian, Meena; Fratzl-Zelman, Nadja; O'Sullivan, Rory; Bull, Mary; Fa Peel, Nicola; Pollitt, Rebecca C; Jones, Rebecca; Milne, Elizabeth; Smith, Kath; Roschger, Paul; Klaushofer, Klaus; Bishop, Nicholas J

    2018-05-07

    Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation. © 2018 Wiley Periodicals, Inc.

  1. Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties

    PubMed Central

    Gallant, Maxime A.; Brown, Drew M.; Hammond, Max; Wallace, Joseph M.; Du, Jiang; Deymier-Black, Alix C.; Almer, Jonathan D.; Stock, Stuart R.; Allen, Matthew R.; Burr, David B.

    2014-01-01

    Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (−OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength. PMID:24468719

  2. Role of Adrenomedullin in Breast Cancer Bone Metastasis and Chemoresistance

    DTIC Science & Technology

    2008-05-01

    osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I collagen, osteocalcin, and osteopontin) mRNA expression...are incompletely understood. AM treatment stimulates osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I

  3. A combined method for DNA analysis and radiocarbon dating from a single sample.

    PubMed

    Korlević, Petra; Talamo, Sahra; Meyer, Matthias

    2018-03-07

    Current protocols for ancient DNA and radiocarbon analysis of ancient bones and teeth call for multiple destructive samplings of a given specimen, thereby increasing the extent of undesirable damage to precious archaeological material. Here we present a method that makes it possible to obtain both ancient DNA sequences and radiocarbon dates from the same sample material. This is achieved by releasing DNA from the bone matrix through incubation with either EDTA or phosphate buffer prior to complete demineralization and collagen extraction utilizing the acid-base-acid-gelatinization and ultrafiltration procedure established in most radiocarbon dating laboratories. Using a set of 12 bones of different ages and preservation conditions we demonstrate that on average 89% of the DNA can be released from sample powder with minimal, or 38% without any, detectable collagen loss. We also detect no skews in radiocarbon dates compared to untreated samples. Given the different material demands for radiocarbon dating (500 mg of bone/dentine) and DNA analysis (10-100 mg), combined DNA and collagen extraction not only streamlines the sampling process but also drastically increases the amount of DNA that can be recovered from limited sample material.

  4. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This indicates that alterations from normal crystal size, composition, and structure will reduce the mechanical integrity of bone. PMID:25418329

  5. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    NASA Astrophysics Data System (ADS)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  6. Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption.

    PubMed

    Limmer, Andreas; Wirtz, Dieter C

    2017-06-01

    Background Stimulating bone regeneration is a central aim in orthopaedic and trauma surgery. Although the replacement of bone with artificial materials like cement or apatite helps to keep up bone stability, new bone often cannot be regenerated. Increasing research efforts have led to the clinical application of growth factors stimulating bone growth (e.g. bone morphogenic protein, BMP) and inhibitors preventing bone consumption (e.g. RANKL blocking antibodies). These factors mostly concentrate on stimulating osteoblast or preventing osteoclast activity. Current Situation It is widely accepted that osteoblasts and osteoclasts are central players in bone regeneration. This concept assumes that osteoblasts are responsible for bone growth while osteoclasts cause bone consumption by secreting matrix-degrading enzymes such as cathepsin K and matrix metalloproteinases (MMP). However, according to new research results, bone growth or consumption are not regulated by single cell types. It is rather the interaction of various cell types that regulates bone metabolism. While factors secreted by osteoblasts are essential for osteoclast differentiation and activation, factors secreted by activated osteoclasts are essential for osteoblast activity. In addition, recent research results imply that the influence of the immune system on bone metabolism has long been neglected. Factors secreted by macrophages or T cells strongly influence bone growth or degradation, depending on the bone microenvironment. Infections, sterile inflammation or tumour metastases not only affect bone cells directly, but also influence immune cells such as T cells indirectly. Furthermore, immune cells and bone are mechanistically regulated by similar factors such as cytokines, chemokines and transcription factors, suggesting that the definition of bone and immune cells has to be thought over. Outlook Bone and the immune system are regulated by similar mechanisms. These newly identified similarities between bone and the immune system imply that medication developed for tumour and autoimmune patients could also be applied in bone diseases. Georg Thieme Verlag KG Stuttgart · New York.

  7. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.

    PubMed

    Wientroub, S; Reddi, A H

    1988-04-01

    Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed.

  8. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    PubMed

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The materials used in bone tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers aremore » the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.« less

  10. Regulation of Extracellular Matrix Remodeling Proteins by Osteoblasts in Titanium Nanoparticle-Induced Aseptic Loosening Model.

    PubMed

    Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng

    2015-10-01

    Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones.

  11. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo.

    PubMed

    Rentsch, Barbe; Bernhardt, Anne; Henß, Anja; Ray, Seemun; Rentsch, Claudia; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael; Rammelt, Stefan; Lode, Anja

    2018-03-15

    Remodeling of calcium phosphate bone cements is a crucial prerequisite for their application in the treatment of large bone defects. In the present study trivalent chromium ions were incorporated into a brushite forming calcium phosphate cement in two concentrations (10 and 50 mmol/mol β-tricalcium phosphate) and implanted into a femoral defect in rats for 3 and 6 month, non-modified brushite was used as reference. Based on our previous in vitro findings indicating both an enhanced osteoclastic activity and cytocompatibility towards osteoprogenitor cells we hypothesized a higher in vivo remodeling rate of the Cr 3+ doped cements compared to the reference. A significantly enhanced degradation of the modified cements was evidenced by micro computed tomography, X-ray and histological examinations. Furthermore the formation of new bone tissue after 6 month of implantation was significantly increased from 29% to 46% during remodeling of cements, doped with the higher Cr 3+ amount. Time of flight secondary ion mass spectrometry (ToF-SIMS) of histological sections was applied to investigate the release of Cr 3+ ions from the cement after implantation and to image their distribution in the implant region and the surrounding bone tissue. The relatively weak incorporation of chromium into the newly formed bone tissue is in agreement to the low chromium concentrations which were released from the cements in vitro. The faster degradation of the Cr 3+ doped cements was also verified by ToF-SIMS. The positive effect of Cr 3+ doping on both degradation and new bone formation is discussed as a synergistic effect of Cr 3+ bioactivity on osteoclastic resorption on one hand and improvement of cytocompatibility and solubility by structural changes in the calcium phosphate matrix on the other hand. While biologically active metal ions like strontium, magnesium and zinc are increasingly applied for the modification of ceramic bone graft materials, the present study is the first report on the incorporation of low doses of trivalent chromium ions into a calcium phosphate based biomaterial and testing of its performance in bone defect regeneration in vivo. Chromium(III)-doped calcium phosphate bone cements show improved cytocompatibility and both degradation rate and new bone formation in vivo are significantly increased compared to the reference cement. This important discovery might be the starting point for the application of trivalent chromium salts for the modification of bone graft materials to increase their remodelling rate. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Histologic Evaluation of a Polylactic Acid Confluent Sheet in the Treatment of Osseous Defects,

    DTIC Science & Technology

    1992-01-01

    Cobb, DDS, PhD * John C. Reed, DDS + Caesar E. Solano, DMD + W. Robert Hiatt, DDS + • Departments of Periodontics and Oral Biology, University of...may be employed as a matrix for osseous grafting, for the occlusion of large bony defects, for soft tissue contour defects, and also as a bone plating...trabecular bone. Further, the periosteum regenerated as a confluent layer of fibrous connective tissue covering the superior aspect of the implant material

  13. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering

    PubMed Central

    Tonelli, Fernanda MP; Santos, Anderson K; Gomes, Katia N; Lorençon, Eudes; Guatimosim, Silvia; Ladeira, Luiz O; Resende, Rodrigo R

    2012-01-01

    In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. PMID:22923989

  14. Biomimetic soluble collagen purified from bones.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.

    PubMed

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda; Melsen, Birte; Varma, Harikrishna; Nair, Prabha D; Kjems, Jorgen; Kassem, Moustapha

    2018-03-01

    There has been a growing demand for bone grafts for correction of bone defects in complicated fractures or tumours in the craniofacial region. Soft flexible membrane like material that could be inserted into defect by less invasive approaches; promote osteoconductivity and act as a barrier to soft tissue in growth while promoting bone formation is an attractive option for this region. Electrospinning has recently emerged as one of the most promising techniques for fabrication of extracellular matrix such as nano-fibrous scaffolds that can serve as a template for bone formation. To overcome the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA)-poly (ε) caprolactone (PCL)-Hydroxyapatite based bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic PCL by combination with a hydrophilic PVA and the HAB can contribute to enhance osteoconductivity. We characterized the physicochemical and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; [human bone marrow skeletal (mesenchymal) stem cells and dental pulp stem cells]. In addition, the scaffold supported in vitro osteogenic differentiation and in vivo vascularized bone formation. Thus, PVA-PCL-HAB scaffold is a suitable potential material for therapeutic bone regeneration in dentistry and orthopaedics. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  17. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.

    PubMed

    Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna

    2011-08-01

    The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  19. Bone material elasticity in a murine model of osteogenesis imperfecta.

    PubMed

    Mehta, S S; Antich, P P; Landis, W J

    1999-01-01

    To investigate the source of bone brittleness in the disease osteogenesis imperfecta (OI), biomechanical properties have been measured in the femurs from a homozygous (oim/oim) mutant mouse model of OI, its heterozygous littermates, and wild-type animals. The novel technique of ultrasound critical-angle reflectometry (UCR) was used to determine bone material elasticity matrix from measurements of the pressure and shear wave velocity at different orientations about selected points of the bone specimens. This nondestructive method is the only available means for obtaining measurements of this nature from a single surface. The ultrasound pressure wave velocity showed an increased isotropy in the homozygous compared to the wild-type specimens. This was reflected in a significant decrease in the principal elastic modulus measured along the length of the oim/oim bones (E33) while the modulus along the width (E11) did not change significantly, compared to wild-type specimens. The Poisson's ratio, v12, also had a significantly increased value in oim/oim bones. Measurements of these parameters in heterozygous animals generally fell between those from homozygous and control mice. The differences in the elasticity components in oim/oim bones indicate an altered stress distribution and a modified elastic response to loads, compared to normal bone.

  20. Extracorporeal human bone-like tissue generation

    PubMed Central

    Rosenberg, N.; Rosenberg, O.

    2012-01-01

    Objectives The need for bone tissue supplementation exists in a wide range of clinical conditions involving surgical reconstruction in limbs, the spine and skull. The bone supplementation materials currently used include autografts, allografts and inorganic matrix components; but these pose potentially serious side-effects. In particular the availability of the autografts is usually limited and their harvesting causes surgical morbidity. Therefore for the purpose of supplementation of autologous bone graft, we have developed a method for autologous extracorporeal bone generation. Methods Human osteoblast-like cells were seeded on porous granules of tricalcium phosphate and incubated in osteogenic media while exposed to mechanical stimulation by vibration in the infrasonic range of frequencies. The generated tissue was examined microscopically following haematoxylin eosin, trichrome and immunohistochemical staining. Results Following 14 days of incubation the generated tissue showed histological characteristics of bone-like material due to the characteristic eosinophilic staining, a positive staining for collagen trichrome and a positive specific staining for osteocalcin and collagen 1. Macroscopically, this tissue appeared in aggregates of between 0.5 cm and 2 cm. Conclusions We present evidence that the interaction of the cellular, inorganic and mechanical components in vitro can rapidly generate three-dimensional bone-like tissue that might be used as an autologous bone graft. PMID:23610651

  1. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc.

  2. Clinical evaluation of the efficacy of a GTR membrane (HEALIGUIDE®) and demineralised bone matrix (OSSEOGRAFT®) as a space maintainer in the treatment of Miller's Class I gingival recession

    PubMed Central

    Nanditha, S.; Priya, M. S.; Sabitha, S.; Arun, K. V.; Avaneendra, T.

    2011-01-01

    Background: Periodontal plastic surgical procedures aimed at coverage of exposed root surface have evolved into routine treatment modalities. The present study was designed to evaluate the effectiveness and predictability of using a collagen barrier along with a demineralized bone matrix in the treatment of recession defects in a single surgical procedure. Materials and Methods: Seventeen patients with Miller's class I recession were treated with a combination of a collagen barrier used along with a bone graft and coronally advanced flap technique. Clinical parameters were recorded at baseline, 3 months, 6 months, and 9 months. Results: The study showed a highly significant reduction in the recession depth (70.29 ± 21.96%) at the end of the study. This study showed that the use of this technique for recession coverage is highly predictable and highly esthetic root coverage can be obtained. PMID:21976841

  3. [Mastoid obliteration with a highly porous bone grafting material in combination with cartilage].

    PubMed

    Punke, C; Goetz, W; Just, T; Pau, H-W

    2012-09-01

    An open mastoid cavity might lead to various problems for the patient. Chronic inflammation of the cavity with secretion, changes in the acoustic behavior, vertigo in restricted situations and an impaired self-cleaning function might affect the patient. For surgical treatment reducing of the size of such cavities have been described. Besides autologous materials such as hydroxyapatite or alloplastic substances as tricalcium phosphate have been previously used. A very slow resorption of these materials with rejection has been described. The new ceramic NanoBone® was fabricated in a sol-gel process at 700 °C depositing unsintered hydroxylapatite in a SiO2 structure. This method provides a nano/microstructure of high porosity of the resulting matrix. 20 patients were reexamined after an average of 2 years and 5 months after obliteration of the open mastoid cavity with NanoBone®. We compared pre- and postoperative findings in terms of otorrhea, frequency of medical consultation, vertigo and otoscopic findings. In 5 patients, in addition, a postoperative CT scan of the temporal bones was used for evaluation of osteoinduction and osteointegration. After obliteration of the open mastoid cavity with NanoBone ® we observed an uneventfully healing. After surgery we achieved a reduction of vertigo, otorrhea and frequency of medical consultations for the single patient. The obliteration of an open mastoid cavity with NanoBone ® is a safe alternative method relative to the surgical techniques with autologous materials. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series

    PubMed Central

    2012-01-01

    Background Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Methods Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1 years (range, 3–19 years). The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15–36 months). Results Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3–12 months). Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. Conclusions A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts. PMID:22839754

  5. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin

    PubMed Central

    Dutra, Eliane H.; O’ Brien, Mara H.; Lima, Alexandro; Kalajzic, Zana; Tadinada, Aditya; Nanda, Ravindra; Yadav, Sumit

    2016-01-01

    Objectives To evaluate the cellular and matrix effects of botulinum toxin type A (Botox) on mandibular condylar cartilage (MCC) and subchondral bone. Materials and Methods Botox (0.3 unit) was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry) at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP), EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF. Results Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected) when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side. Conclusion Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the MCC and subchondral bone. PMID:27723812

  6. Block Copolymer Directed Biomimetic Mineral Formation for Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gleeson, Sarah; Yu, Tony; Chen, Xi; Marcolongo, Michele; Li, Christopher

    Bone is a hierarchically structured biocomposite comprised of mineralized collagen fibrils. The mechanical properties of bone can be precisely tuned by the structure and morphology of the mineral nanocrystals as well as the organic collagen fibrils. Synthetic materials that can mimic the nanostructure of natural bone show promise to replicate bone's structural function, yet little is known about the mechanism of mineral formation. We previously have shown that hierarchically ordered polymer fibers control the distribution and orientation of hydroxyapatite, enhancing mechanical properties and biocompatibility. We demonstrate a new method for mineralization by forming block copolymer single crystal films of polycaprolactone-block-poly(acrylic acid) (PCL- b-PAA) so that lamellar anionic PAA nanodomains recruit mineral ions and provide one-dimensional confinement to induce orientation. The effect of the anionic domain dimensions on mineral content, orientation, and structure within the polymer matrix is shown. The mechanical properties of the nanocomposite are evaluated to determine the role of mineral orientation and crystallinity in composite strength. These results can be used to tailor the physical mineralization environment to create a more biomimetic bone material.

  7. Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications.

    PubMed

    Diaz-Rodriguez, P; Garcia-Triñanes, P; Echezarreta López, M M; Santoveña, A; Landin, M

    2018-09-01

    The search for an ideal bone tissue replacement has led to the development of new composite materials designed to simulate the complex inorganic/organic structure of bone. The present work is focused on the development of mineralized calcium alginate hydrogels by the addition of marine derived calcium carbonate biomineral particles. Following a novel approach, we were able to obtain calcium carbonate particles of high purity and complex micro and nanostructure dependent on the source material. Three different types of alginates were selected to develop inorganic/organic scaffolds in order to correlate alginate composition with scaffold properties and cell behavior. The incorporation of calcium carbonates into alginate networks was able to promote extracellular matrix mineralization and osteoblastic differentiation of mesenchymal stem cells when added at 7 mg/ml. We demonstrated that the selection of the alginate type and calcium carbonate origin is crucial to obtain adequate systems for bone tissue engineering as they modulate the mechanical properties and cell differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. An improved interfacial bonding model for material interface modeling

    PubMed Central

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  9. Supplying osteogenesis to dead bone using an osteogenic matrix cell sheet.

    PubMed

    Uchihara, Yoshinobu; Akahane, Manabu; Okuda, Akinori; Shimizu, Takamasa; Masuda, Keisuke; Kira, Tsutomu; Kawate, Kenji; Tanaka, Yasuhito

    2018-02-22

    To evaluate whether osteogenic matrix cell sheets can supply osteogenesis to dead bone. Femur bone fragments (5 mm in length) were obtained from Fisher 344 rats and irradiated by a single exposure of 60 Gy to produce bones that were no longer viable. Osteogenic matrix cell sheets were created from rat bone marrow-derived stromal cells (BMSCs). After wrapping the dead bone with an osteogenic matrix cell sheet, it was subcutaneously transplanted into the back of a rat and harvested after 4 weeks. Bone formation around the dead bone was evaluated by X-ray imaging and histology. Alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression levels were measured to confirm osteogenesis of the transplanted bone. The contribution of donor cells to bone formation was assessed using the Sry gene and PKH26. After the cell sheet was transplanted together with dead bone, X-ray images showed abundant calcification around the dead bone. In contrast, no newly formed bone was seen in samples that were transplanted without the cell sheet. Histological sections also showed newly formed bone around dead bone in samples transplanted with the cell sheet, whereas many empty lacunae and no newly formed bone were observed in samples transplanted without the cell sheet. ALP and OC mRNA expression levels were significantly higher in dead bones transplanted with cell sheets than in those without a cell sheet (P < 0.01). Sry gene expression and cells derived from cell sheets labeled with PKH26 were detected in samples transplanted with a cell sheet, indicating survival of donor cells after transplantation. Our study indicates that osteogenic matrix cell sheet transplantation can supply osteogenesis to dead bone. Copyright © 2018. Published by Elsevier B.V.

  10. Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review

    PubMed Central

    Arifvianto, Budi; Zhou, Jie

    2014-01-01

    Bone tissue engineering has been increasingly studied as an alternative approach to bone defect reconstruction. In this approach, new bone cells are stimulated to grow and heal the defect with the aid of a scaffold that serves as a medium for bone cell formation and growth. Scaffolds made of metallic materials have preferably been chosen for bone tissue engineering applications where load-bearing capacities are required, considering the superior mechanical properties possessed by this type of materials to those of polymeric and ceramic materials. The space holder method has been recognized as one of the viable methods for the fabrication of metallic biomedical scaffolds. In this method, temporary powder particles, namely space holder, are devised as a pore former for scaffolds. In general, the whole scaffold fabrication process with the space holder method can be divided into four main steps: (i) mixing of metal matrix powder and space-holding particles; (ii) compaction of granular materials; (iii) removal of space-holding particles; (iv) sintering of porous scaffold preform. In this review, detailed procedures in each of these steps are presented. Technical challenges encountered during scaffold fabrication with this specific method are addressed. In conclusion, strategies are yet to be developed to address problematic issues raised, such as powder segregation, pore inhomogeneity, distortion of pore sizes and shape, uncontrolled shrinkage and contamination. PMID:28788638

  11. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    PubMed Central

    Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David

    2014-01-01

    While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165

  12. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones.

    PubMed

    Pieske, Oliver; Wittmann, Alexandra; Zaspel, Johannes; Löffler, Thomas; Rubenbauer, Bianka; Trentzsch, Heiko; Piltz, Stefan

    2009-12-15

    Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF) as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG) or demineralized-bone-matrix (DBM). From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10) or DBM-augmentation (n = 10). At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014). Mean duration of follow-up was 56.6 months (ICABG-group) and 41.2 months (DBM-group). All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20%) whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146). No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20%) (p = 0.146). Pain intensity were comparable in both groups (p = 0.326). However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031). With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160 euro/case). Nevertheless, this study demonstrated that the application of DBM compared to ICABG led to an advanced outcome in the treatment of non-unions and simultaneously to a decreased quantity of adverse effects. Therefore we conclude that DBM should be offered as an alternative to ICABG, in particular to patients with elevated comorbidity and those with limited availability or reduced quality of autologous-bone graft material.

  13. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    PubMed Central

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  14. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    PubMed

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  15. Skeletal maturation substantially affects elastic tissue properties in the endosteal and periosteal regions of loaded mice tibiae.

    PubMed

    Checa, Sara; Hesse, Bernhard; Roschger, Paul; Aido, Marta; Duda, Georg N; Raum, Kay; Willie, Bettina M

    2015-07-01

    Although it is well known that the bone adapts to changes in the mechanical environment by forming and resorbing the bone matrix, little is known about the influence of mechanical loading on tissue material properties of the pre-existing and newly formed bone. In this study, we analyzed the newly formed and pre-existing tissue after two weeks of controlled in vivo axial compressive loading in tibia of young (10 week-old) and adult (26 week-old) female mice and compared to the control contralateral limb, by means of scanning acoustic microscopy. Additionally, we used quantitative backscattered electron imaging to determine the bone mineral density distribution within the newly formed and pre-existing bone of young mice. No significant differences were found in tissue stiffness or mineral density in the pre-existing bone tissue as a result of external loading. In the endosteal region, 10 and 26 week loaded animals showed a 9% reduction in bone tissue stiffness compared to control animals. An increase of 200% in the mineral apposition rate in this region was observed in both age groups. In the periosteal region, the reduction in bone tissue stiffness and the increase in bone mineral apposition rate as a result of loading were two times higher in the 10 compared to the 26 week old animals. These data suggest that, during growth and skeletal maturation, the response of bone to mechanical loading is a deposition of new bone matrix, where the tissue amount but not its mineral or elastic properties are influenced by animal age. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: in vivo study in a nonloaded goat model.

    PubMed

    Walschot, Lucas H B; Aquarius, René; Schreurs, Barend W; Verdonschot, Nico; Buma, Pieter

    2012-08-01

    Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium particles (TiP). In this in vivo study, bone ingrowth and bone volume in coated and noncoated TiP were compared to porous biphasic calcium-phospate CeP and allograft BoP. Coatings consisted of silicated calcium-phosphate and carbonated apatite. Materials were implanted in goats and impacted in cylindrical defects (diameter 8 mm) in the cancellous bone of the femur. On the basis of fluorochrome labeling and histology, bone ingrowth distance was measured at 4, 8, and 12 weeks. Cross-sectional bone area was measured at 12 weeks. TiP created a coherent matrix of entangled particles. CeP pulverized and were noncoherent. Bone ingrowth in TiP improved significantly by the coatings to levels comparable to BoP and CeP. Cross-sectional bone area was smaller in CeP and TiP compared to BoP. The osteoconductive properties of impacted TiP with a calcium-phosphate coating are comparable to impacted allograft bone and impacted biphasic ceramics. A more realistic loaded in vivo study should prove that coated TiP is an attractive alternative to allograft bone. Copyright © 2012 Wiley Periodicals, Inc.

  17. Effects of strontium ranelate treatment on osteoblasts cultivated onto scaffolds of trabeculae bovine bone.

    PubMed

    Silva, Gerluza Aparecida Borges; Bertassoli, Bruno Machado; Sousa, Cristiane Aparecida; Albergaria, Juliano Douglas; de Paula, Rayan Silva; Jorge, Erika Cristina

    2018-01-01

    Blocks of Bovine bone have shown promising results as implantable scaffolds to promote bone regeneration. Strontium ranelate (SrR) is both an antiresorptive and an anabolic drug that has been indicated for oral administration to treat osteoporosis. Few studies, however, have investigated the local effects of SrR and its use in association with biomaterials thus far. In this work, we investigated SrR effects in cultures of primary osteoblasts (PO, from Wistar rats calvaria) and immortalized osteoblasts (IO, from MC3T3-E1 cell line) cultivated as a monolayer or in association with scaffolds of bovine bone in mineralized (MBB) and demineralized (DBB) forms. The optimum dose to induce SrR effects on cell viability was established as 0.1 mM. Our results suggested that the local administration of SrR is biocompatible and non-cytotoxic. In addition, SrR appeared to accelerate primary osteoblast cell differentiation by enhancing alkaline phosphatase activity, the expression of osteogenic differentiation markers, the synthesis of the organic matrix, and a decrease of Ca 2+ ions in mineralized nodules. DBB was found to be a better scaffold material to promote PO and IO cell proliferation. Exposing the proteins of the demineralized bone matrix might improve scaffold osteoconductive properties. Our results indicated the importance of further investigation of the administration of SrR at sites of bone repair. The association of SrR and bone grafts suggests the possibility of using SrR as a co-adjuvant for bone tissue bioengineering and in bone regeneration therapies.

  18. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    NASA Technical Reports Server (NTRS)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  19. Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic acid scaffolds for ligament tissue engineering.

    PubMed

    Jenner, J M G Th; van Eijk, F; Saris, D B F; Willems, W J; Dhert, W J A; Creemers, Laura B

    2007-07-01

    Tissue engineering of ligaments based on biomechanically suitable biomaterials combined with autologous cells may provide a solution for the drawbacks associated with conventional graft material. The aim of the present study was to investigate the contribution of recombinant human transforming growth factor beta 1 (rhTGF-beta1) and growth differentiation factor (GDF)-5, known for their role in connective tissue regeneration, to proliferation and matrix production by human bone marrow stromal cells (BMSCs) cultured onto woven, bioabsorbable, 3-dimensional (3D) poly(lactic-co-glycolic acid) scaffolds. Cells were cultured for 12 days in the presence or absence of these growth factors at different concentrations. Human BMSCs attached to the suture material, proliferated, and synthesized extracellular matrix rich in collagen type I and collagen III. No differentiation was demonstrated toward cartilage or bone tissue. The addition of rhTGF-beta1 (1-10 ng/mL) and GDF-5 (10-100 ng/mL) increased cell content (p < 0.05), but only TGF-beta1 also increased total collagen production (p < 0.05) and collagen production per cell, which is a parameter indicating differentiation. In conclusion, stimulation with rhTGF-beta1, and to a lesser extent with GDF-5, can modulate human BMSCs toward collagenous soft tissue when applied to a 3D hybrid construct. The use of growth factors could play an important role in the improvement of ligament tissue engineering.

  20. An update on the Application of Nanotechnology in Bone Tissue Engineering.

    PubMed

    Griffin, M F; Kalaskar, D M; Seifalian, A; Butler, P E

    2016-01-01

    Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. Future studies to improve the application of nanomaterials for bone tissue engineering are needed.

  1. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.

    PubMed

    Pallela, Ramjee; Venkatesan, Jayachandran; Janapala, Venkateswara Rao; Kim, Se-Kwon

    2012-02-01

    Tricomponent scaffold systems prepared by natural materials especially of marine origin are gaining much attention nowadays for the application in bone tissue engineering. A novel scaffold (Chi-HAp-MSCol) containing chitosan (Chi), hydroxyapatite (HAp) derived from Thunnus obesus bone and marine sponge (Ircinia fusca) collagen (MSCol) was prepared using freeze-drying and lyophilization method. This biomimetic scaffold, along with the Chi and Chi-HAp scaffolds were characterized biophysicochemically for their comparative significance in bone grafting applications. The structural composition of the chitosan, Chi-Hap, and Chi-HAp-MSCol scaffolds were characterized by Fourier Transform Infrared spectroscopy. The porosity, water uptake, and retention abilities of the composite scaffolds decreased, whereas Thermogravimetric and Differential Thermal Analyses results revealed the increase in thermal stability in the scaffold because of the highly stable HAp and MSCol. Homogeneous dispersion of HAp and MSCol in chitosan matrix with interconnected porosity of 60-180 μm (Chi-HAp) and 50-170 μm (Chi-HAp-MSCol) was observed by Scanning Electron Microscopy, X-ray diffraction, and optical microscopy. Cell proliferation in composite scaffolds was relatively higher than pure chitosan when observed by MTT assay and Hoechst staining in vitro using MG-63 cell line. These observations suggest that the novel Chi-HAp-MSCol composite scaffolds are promising biomaterials for matrix-based bone repair and bone augmentation. Copyright © 2011 Wiley Periodicals, Inc.

  2. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    PubMed Central

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  3. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    PubMed

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  4. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Histological evaluation of an impacted bone graft substitute composed of a combination of mineralized and demineralized allograft in a sheep vertebral bone defect.

    PubMed

    Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon

    2007-09-01

    Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model.

  6. A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: A preliminary study.

    PubMed

    Fredericks, Jamie D; Ringrose, Trevor J; Dicken, Anthony; Williams, Anna; Bennett, Phil

    2015-03-01

    Extracting viable DNA from many forensic sample types can be very challenging, as environmental conditions may be far from optimal with regard to DNA preservation. Consequently, skeletal tissue can often be an invaluable source of DNA. The bone matrix provides a hardened material that encapsulates DNA, acting as a barrier to environmental insults that would otherwise be detrimental to its integrity. However, like all forensic samples, DNA in bone can still become degraded in extreme conditions, such as intense heat. Extracting DNA from bone can be laborious and time-consuming. Thus, a lot of time and money can be wasted processing samples that do not ultimately yield viable DNA. We describe the use of colorimetry as a novel diagnostic tool that can assist DNA analysis from heat-treated bone. This study focuses on characterizing changes in the material and physical properties of heated bone, and their correlation with digitally measured color variation. The results demonstrate that the color of bone, which serves as an indicator of the chemical processes that have occurred, can be correlated with the success or failure of subsequent DNA amplification. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans

    PubMed Central

    Knabe, Christine; Adel Khattab, Doaa; Kluk, Esther; Struck, Rainer; Stiller, Michael

    2017-01-01

    This study examines the effect of a hyaluronic acid (HyAc) containing tricalcium phosphate putty scaffold material (TCP-P) and of a particulate tricalcium phosphate (TCP-G) graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA) in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1) for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I), alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein (BSP). Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc. PMID:28758916

  8. Dental Pulp Stem Cell-Derived, Scaffold-Free Constructs for Bone Regeneration.

    PubMed

    Tatsuhiro, Fukushima; Seiko, Tatehara; Yusuke, Takebe; Reiko, Tokuyama-Toda; Kazuhito, Satomura

    2018-06-22

    In the present study, a scaffold-free tissue construct was developed as an approach for the regeneration of tissue defects, which produced good outcomes. We fabricated a scaffold-free tissue construct from human dental pulp stem cells (hDPSCs construct), and examined the characteristics of the construct. For its fabrication, basal sheets prepared by 4-week hDPSCs culturing were subjected to 1-week three-dimensional culture, with or without osteogenic induction, whereas hDPSC sheets (control) were fabricated by 1-week culturing of basal sheets on monolayer culture. The hDPSC constructs formed a spherical structure and calcified matrix that are absent in the control. The expression levels for bone-related genes in the hDPSC constructs were significantly upregulated compared with those in the control. Moreover, the hDPSC constructs with osteogenic induction had a higher degree of calcified matrix formation, and higher expression levels for bone-related genes, than those for the hDPSC constructs without osteogenic induction. These results suggest that the hDPSC constructs with osteogenic induction are composed of cells and extracellular and calcified matrices, and that they can be a possible scaffold-free material for bone regeneration.

  9. Bioinspired Collagen Scaffolds in Cranial Bone Regeneration: From Bedside to Bench

    PubMed Central

    Volpicelli, Elizabeth J.

    2018-01-01

    Calvarial defects are common reconstructive dilemmas secondary to a variety of etiologies including traumatic brain injury, cerebrovascular disease, oncologic resection, and congenital anomalies. Reconstruction of the calvarium is generally undertaken for the purposes of cerebral protection, contour restoration for psychosocial well-being, and normalization of neurological dysfunction frequently found in patients with massive cranial defects. Current methods for reconstruction using autologous grafts, allogeneic grafts, or allo-plastic materials have significant drawbacks that are unique to each material. The combination of wide medical relevance and the need for a better clinical solution render defects of the cranial skeleton an ideal target for development of regenerative strategies focused on calvarial bone. With the improved understanding of the instructive properties of tissue-specific extracellular matrices and the advent of precise nanoscale modulation in materials science, strategies in regenerative medicine have shifted in paradigm. Previously considered to be simple carriers of stem cells and growth factors, increasing evidence exists for differential materials directing lineage specific differentiation of progenitor cells and tissue regeneration. In this work, we review the clinical challenges for calvarial reconstruction, the anatomy and physiology of bone, and extracellular matrix-inspired, collagen-based materials that have been tested for in vivo cranial defect healing. PMID:28585295

  10. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  11. Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation.

    PubMed

    Miron, Richard J; Bosshardt, Dieter D; Hedbom, Erik; Zhang, Yufeng; Haenni, Beat; Buser, Daniel; Sculean, Anton

    2012-07-01

    The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells. NBM particles were precoated in various settings with EMD or human blood and analyzed for protein adsorption patterns via fluorescent imaging and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using fluorescent double-stranded DNA-binding dye. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding runt-related transcription factor 2, alkaline phosphatase (ALP), osteocalcin (OC), and collagen1α1 (COL1A1), and mineralization was assessed using red dye staining. Analysis of cell attachment and cell proliferation revealed significantly higher osteoblast and PDL cell attachment on EMD-coated surfaces when compared with control and blood-coated surfaces. EMD also stimulated release of growth factors and cytokines, including bone morphogenetic protein 2 and transforming growth factor β1. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers, including COL1A1, ALP, and OC, in osteoblasts and PDL cells cultured on EMD-coated NBM particles. The present results suggest that 1) EMD enhances osteoblast and PDL cell attachment, proliferation, and differentiation on NBM particles, and 2) blood contamination of the grafting material before mixing with EMD may inhibit EMD adsorption.

  12. In vivo response to starch-based scaffolds designed for bone tissue engineering applications.

    PubMed

    Salgado, A J; Coutinho, O P; Reis, R L; Davies, J E

    2007-03-15

    Our purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n = 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue. The extracellular matrix of the latter was continuous with the extracellular bone matrix itself, labeled positively for osteocalcin and appeared mineralized by back-scattered electron imaging. All three scaffolds showed a similar tissue response, with the soft tissue interface diminishing with time. No bone contact was observed with SEVA-C at any time point, only transitory bone contact was observed with SEVA-C/CaP at 3 weeks, but SCA exhibited direct bone contact at 6 weeks where 56.23 +/- 6.46% of the scaffold surface was occupied by bone. We conclude that all materials exhibited a favorable bony response and that the rapidly forming initial "connective tissue" seen around all scaffolds was a very early form of bone formation.

  13. Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells.

    PubMed

    Vater, Corina; Lode, Anja; Bernhardt, Anne; Reinstorf, Antje; Heinemann, Christiane; Gelinsky, Michael

    2010-03-15

    Collagen and noncollagenous proteins of the extracellular bone matrix are able to stimulate bone cell activities and bone healing. The modification of calcium phosphate bone cements used as temporary bone replacement materials with these proteins seems to be a promising approach to accelerate new bone formation. In this study, we investigated adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells (hBMSC) on Biocement D/collagen composites which have been modified with osteocalcin and O-phospho-L-serine. Modification with osteocalcin was carried out by its addition to the cement precursor before setting as well as by functionalization of the cement samples after setting and sterilization. hBMSC were cultured on these samples for 28 days with and without osteogenic supplements. We found a positive impact especially of the phosphoserine-modifications but also of both osteocalcin-modifications on differentiation of hBMSC indicated by higher expression of the osteoblastic markers matrix metalloproteinase-13 and bone sialo protein II. For hBMSC cultured on phosphoserine-containing composites, an increased proliferation has been observed. However, in case of the osteocalcin-modified samples, only osteocalcin adsorbed after setting and sterilization of the cement samples was able to promote initial adhesion and proliferation of hBMSC. The addition of osteocalcin before setting results in a finer microstructure but the biological activity of osteocalcin might be impaired due to the sterilization process. Thus, our data indicate that the initial adhesion and proliferation of hBMSC is enhanced rather by the biological activity of osteocalcin than by the finer microstructure. (c) 2009 Wiley Periodicals, Inc.

  14. Phenotypic Spectrum in Osteogenesis Imperfecta Due to Mutations in TMEM38B: Unraveling a Complex Cellular Defect.

    PubMed

    Webb, Emma A; Balasubramanian, Meena; Fratzl-Zelman, Nadja; Cabral, Wayne A; Titheradge, Hannah; Alsaedi, Atif; Saraff, Vrinda; Vogt, Julie; Cole, Trevor; Stewart, Susan; Crabtree, Nicola J; Sargent, Brandi M; Gamsjaeger, Sonja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus; Shaw, Nick J; Marini, Joan C; Högler, Wolfgang

    2017-06-01

    Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Clinical and bone material phenotype description and osteoblast differentiation studies. Natural history study in pediatric research centers. Eight patients with type XIV OI. Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities. Copyright © 2017 Endocrine Society

  15. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present

    PubMed Central

    Schweitzer, Mary Higby; Wittmeyer, Jennifer L; Horner, John R

    2006-01-01

    Soft tissues and cell-like microstructures derived from skeletal elements of a well-preserved Tyrannosaurus rex (MOR 1125) were represented by four components in fragments of demineralized cortical and/or medullary bone: flexible and fibrous bone matrix; transparent, hollow and pliable blood vessels; intravascular material, including in some cases, structures morphologically reminiscent of vertebrate red blood cells; and osteocytes with intracellular contents and flexible filipodia. The present study attempts to trace the occurrence of these four components in bone from specimens spanning multiple geological time periods and varied depositional environments. At least three of the four components persist in some skeletal elements of specimens dating to the Campanian. Fibrous bone matrix is more altered over time in morphology and less likely to persist than vessels and/or osteocytes. Vessels vary greatly in preservation, even within the same specimen, with some regions retaining pliability and other regions almost crystalline. Osteocytes also vary, with some retaining long filipodia and transparency, while others present with short and stubby filipodia and deeply pigmented nuclei, or are pigmented throughout with no nucleus visible. Alternative hypotheses are considered to explain the origin/source of observed materials. Finally, a two-part mechanism, involving first cross-linking of molecular components and subsequent mineralization, is proposed to explain the surprising presence of still-soft elements in fossil bone. These results suggest that present models of fossilization processes may be incomplete and that soft tissue elements may be more commonly preserved, even in older specimens, than previously thought. Additionally, in many cases, osteocytes with defined nuclei are preserved, and may represent an important source for informative molecular data. PMID:17148248

  16. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present.

    PubMed

    Schweitzer, Mary Higby; Wittmeyer, Jennifer L; Horner, John R

    2007-01-22

    Soft tissues and cell-like microstructures derived from skeletal elements of a well-preserved Tyrannosaurus rex (MOR 1125) were represented by four components in fragments of demineralized cortical and/or medullary bone: flexible and fibrous bone matrix; transparent, hollow and pliable blood vessels; intravascular material, including in some cases, structures morphologically reminiscent of vertebrate red blood cells; and osteocytes with intracellular contents and flexible filipodia. The present study attempts to trace the occurrence of these four components in bone from specimens spanning multiple geological time periods and varied depositional environments. At least three of the four components persist in some skeletal elements of specimens dating to the Campanian. Fibrous bone matrix is more altered over time in morphology and less likely to persist than vessels and/or osteocytes. Vessels vary greatly in preservation, even within the same specimen, with some regions retaining pliability and other regions almost crystalline. Osteocytes also vary, with some retaining long filipodia and transparency, while others present with short and stubby filipodia and deeply pigmented nuclei, or are pigmented throughout with no nucleus visible. Alternative hypotheses are considered to explain the origin/source of observed materials. Finally, a two-part mechanism, involving first cross-linking of molecular components and subsequent mineralization, is proposed to explain the surprising presence of still-soft elements in fossil bone. These results suggest that present models of fossilization processes may be incomplete and that soft tissue elements may be more commonly preserved, even in older specimens, than previously thought. Additionally, in many cases, osteocytes with defined nuclei are preserved, and may represent an important source for informative molecular data.

  17. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium.

    PubMed

    Sargeant, Timothy D; Guler, Mustafa O; Oppenheimer, Scott M; Mata, Alvaro; Satcher, Robert L; Dunand, David C; Stupp, Samuel I

    2008-01-01

    Over the past few decades there has been great interest in the use of orthopedic and dental implants that integrate into tissue by promoting bone ingrowth or bone adhesion, thereby eliminating the need for cement fixation. However, strategies to create bioactive implant surfaces to direct cellular activity and mineralization leading to osteointegration are lacking. We report here on a method to prepare a hybrid bone implant material consisting of a Ti-6Al-4V foam, whose 52% porosity is filled with a peptide amphiphile (PA) nanofiber matrix. These PA nanofibers can be highly bioactive by molecular design, and are used here as a strategy to transform an inert titanium foam into a potentially bioactive implant. Using scanning electron microscopy (SEM) and confocal microscopy, we show that PA molecules self-assemble into a nanofiber matrix within the pores of the metallic foam, fully occupying the foam's interconnected porosity. Furthermore, the method allows the encapsulation of cells within the bioactive matrix, and under appropriate conditions the nanofibers can nucleate mineralization of calcium phosphate phases with a Ca:P ratio that corresponds to that of hydroxyapatite. Cell encapsulation was quantified using a DNA measuring assay and qualitatively verified by SEM and confocal microscopy. An in vivo experiment was performed using a bone plug model in the diaphysis of the hind femurs of a Sprague Dawley rat and examined by histology to evaluate the performance of these hybrid systems after 4 weeks of implantation. Preliminary results demonstrate de novo bone formation around and inside the implant, vascularization around the implant, as well as the absence of a cytotoxic response. The PA-Ti hybrid strategy could be potentially tailored to initiate mineralization and direct a cellular response from the host tissue into porous implants to form new bone and thereby improve fixation, osteointegration, and long term stability of implants.

  18. Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies.

    PubMed

    Leszczak, Victoria; Place, Laura W; Franz, Natalee; Popat, Ketul C; Kipper, Matt J

    2014-06-25

    In the design of scaffolds for tissue engineering biochemical function and nanoscale features are of particular interest. Natural polymers provide a wealth of biochemical function, but do not have the processability of synthetic polymers, limiting their ability to mimic the hierarchy of structures in the natural extracellular matrix. Thus, they are often combined with synthetic carrier polymers to enable processing. Demineralized bone matrix (DBM), a natural polymer, is allograft bone with inorganic material removed. DBM contains the protein components of bone, which includes adhesion ligands and osteoinductive signals, such as important growth factors. Herein we describe a novel method for tuning the nanostructure of DBM through electrospinning without the use of a carrier polymer. This work surveys solvents and solvent blends for electrospinning DBM. Blends of hexafluoroisopropanol and trifluoroacetic acid are studied in detail. The effects of DBM concentration and dissolution time on solution viscosity are also reported and correlated to observed differences in electrospun fiber morphology. We also present a survey of techniques to stabilize the resultant fibers with respect to aqueous environments. Glutaraldehyde vapor treatment is successful at maintaining both macroscopic and microscopic structure of the electrospun DBM fibers. Finally, we report results from tensile testing of stabilized DBM nanofiber mats, and preliminary evaluation of their cytocompatibility. The DBM nanofiber mats exhibit good cytocompatibility toward human dermal fibroblasts (HDF) in a 4-day culture; neither the electrospun solvents nor the cross-linking results in any measurable residual cytotoxicity toward HDF.

  19. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    NASA Astrophysics Data System (ADS)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility of various HA/bioresorbable polymer composites are described through the use of cell cultures run in collaboration with a research group specializing in immunology.

  20. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    PubMed

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pathologic fracture through a unicameral bone cyst of the pelvis: CT-guided percutaneous curettage, biopsy, and bone matrix injection.

    PubMed

    Tynan, Jennifer R; Schachar, Norman S; Marshall, Geoffrey B; Gray, Robin R

    2005-02-01

    Unicameral bone cysts of the pelvis are extremely rare. A 19-year old man presented with a pathologic fracture through a pelvic unicameral bone cyst. He was treated with computed tomography-guided percutaneous curettage, biopsy, and demineralized bone matrix injection. Treatment has proven successful in short-term follow-up.

  2. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization

    PubMed Central

    Fan, Guangyi; Jiao, Yu; Zhang, He; Huang, Ronglian; Zheng, Zhe; Bian, Chao; Deng, Yuewen; Wang, Qingheng; Wang, Zhongduo; Liang, Xinming; Liang, Haiying; Shi, Chengcheng; Zhao, Xiaoxia; Sun, Fengming; Hao, Ruijuan; Bai, Jie; Liu, Jialiang; Chen, Wenbin; Liang, Jinlian; Liu, Weiqing; Xu, Zhe; Shi, Qiong; Xu, Xun

    2017-01-01

    Abstract Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie its production of shells and pearls are not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins, chondroitin sulfotransferases, and regulatory elements. Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre suggests that elements of chitin- and collagen-based matrices have deep roots and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems. PMID:28873964

  3. Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments

    PubMed Central

    Zhang, Yanshuai; McNerny, Erin Gatenby; Terajima, Masahiko; Raghavan, Mekhala; Romanowicz, Genevieve; Zhang, Zhanpeng; Zhang, Honghao; Kamiya, Nobuhiro; Tantillo, Margaret; Zhu, Peizhi; Scott, Gregory J.; Ray, Manas K.; Lynch, Michelle; Ma, Peter X.; Morris, Michael D.; Yamauchi, Mitsuo; Kohn, David H.; Mishina, Yuji

    2016-01-01

    Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments. PMID:27113526

  4. [Use of porous permeable titanium nickelide implants in surgery of the frontal and maxillary sinuses (a clinical-experimental study)].

    PubMed

    Starokha, A V; Itin, V I; Kovrizhnykh, V V; Ryzhov, A I; Monasevich, L A

    1990-01-01

    The purpose of the investigation was to study the efficacy of closing the bone defect in facial walls of the frontal and maxillary sinuses, formed as a result of their purulent inflammation, by porous permeable titanium nickelide. Analysis of the experimental data (18 dogs) and clinical observations (20 patients in whom the anatomic structure and function of frontal and maxillary sinuses with osteomyelitis were restored by an antibiotic pooling implantation material) gives evidence that the material can be well used to reconstruct an organ with an infected wound. The porous structure of the bioinert graft facilitates the ingrowth of osteogenic tissues, which becomes packed in the bone matrix without any intermediate connective tissue layer.

  5. Hard tissue remodeling using biofabricated coralline biomaterials.

    PubMed

    Vago, Razi; Plotquin, Daniel; Bunin, Alex; Sinelnikov, Igor; Atar, Dan; Itzhak, David

    2002-01-04

    Biotechnical and biomedical approaches were combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as biomatrices for remodeling bone and cartilage tissue. After grafting, it is desirable for bone ingrowth to proceed as quickly as possible because the strength of the implanted region depends on a good mechanical bond forming between the implant and surrounding regions in the body. Ingrowth can take place as a result of growth of tissue and cells into the implanted porous material, or it may be promoted by transplanting cells seeded onto such a material. The rate at which ingrowth occurs is dependent on many factors, including pore size and the interconnectivity of the implanted structure. In vivo graftings into osteochondral defects demonstrated that our biofabricated porous material is highly biocompatible with cartilage and bone tissue. The biofabricated matrix was well incorporated into the biphasic osteochondral area. Resorption was followed by bone and cartilage formation, and after 4 months, the biomaterial had been replaced by new tissue. Ossification was induced and enhanced without introduction of additional factors. We believe that this is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bioengineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling.

  6. Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition

    PubMed Central

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B.; Spevak, Lyudmila; Boskey, Adele L.; Jepsen, Karl J.

    2009-01-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037

  7. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    PubMed

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  8. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less

  9. Investigation into mechanical properties of bone and its main constituents

    NASA Astrophysics Data System (ADS)

    Evdokimenko, Ekaterina

    Bone is a hierarchically structured natural composite material, consisting of organic phase (type-I collagen), inorganic phase (hydroxyapatite), and water. Studies of the two main bone constituents, utilizing controlled demineralization and deproteinization, can shed light on mineral-collagen interaction which makes bone such a unique biological material. This knowledge is necessary for computational analysis of bone structure to identify preferential sites in the collagen matrix and mineral network that degrade more easily. The main goal of this work is to develop a comprehensive picture of mechanical properties of bone and its main constituents. Following the Introduction, Chapter 2 presents an investigation of microstructure and compressive mechanical properties of bovine femur cortical bone carried out on completely demineralized, completely deproteinized, and untreated bone samples in three anatomical directions. Anisotropic nature of bone was clearly identified in all cases. Extra levels of porosity along with microstructural differences for the three directions were found to be the main sources of the anisotropy. In Chapter 3, a new theoretical model of cortical and trabecular bone as composite materials with hierarchical structure spanning from nanometer (collagen-mineral) level to millimeter (bone) level was developed. Compression testing was performed on untreated, demineralized, and deproteinized cortical and trabecular bovine femur bone samples to verify the model. The experimental data were compared with theoretical predictions; excellent agreement was found between the theory and experiments for all bone phases. Optical microscopy, scanning electron microscopy, and micro-computed tomography techniques were applied to characterize the structure of the samples at multiple length scales and provide further inputs for the modeling. Chapter 4 presents a comparative study of mechanical properties, microstructure, and porosity of mature and young bovine femur cortical bone. It was found that the amount of porosity decreases, while the microhardness increases with maturation. Osteoporotic degradation of trabecular bone elasticity, described in Chapter 5, was modeled using a cellular mechanics approach. Evolution equations for elastic modulus of bone in terms of those of mineral and protein trabeculae and in terms of demineralized and deproteinized bones were formulated and verified by the analysis of compressive properties of bovine femur trabecular bone.

  10. Polylactide-based bionanocomposites: a promising class of hybrid materials.

    PubMed

    Sinha Ray, Suprakas

    2012-10-16

    Polylactide (PLA) is the oldest and potentially one of the most interesting and useful biodegradable man-made polymers because of its renewable origin, controlled synthesis, good mechanical properties, and inherent biocompatibility. The blending of PLA with functional nanoparticles can yield a new class of hybrid materials, commonly known as bionanocomposites, where 1-5% nanoparticles by volume are molecularly dispersed within the PLA matrix. The dispersed nanoparticles with their large surface areas and low percolation thresholds both can improve the properties significantly in comparison with neat PLA and can introduce new value-added properties. Recently, researchers have made extraordinary progress in the practical processing and development of products from PLA bionanocomposites. The variation of the nanofillers with different functionalities can lead to many bionanocomposite applications including environmentally friendly packaging, materials for construction, automobiles, and tissue regeneration, and load-bearing scaffolds for bone reconstruction. This Account focuses on these recent research efforts, processing techniques, and key research challenges in the development of PLA-based bionanocomposites for use in applications from green plastics to biomedical applications. Growing concerns over environmental issues and high demand for advanced polymeric materials with balanced properties have led to the development of bionanocomposites of PLA and natural origin fillers, such as nanoclays. The combination of nanoclays with the PLA matrix allows us to develop green nanocomposites that possess several superior properties. For example, adding ∼5 vol % clay to PLA improved the storage modulus, tensile strength, break elongation, crystallization rate, and other mechanical properties. More importantly, the addition of clay decreases the gas and water vapor permeation, increases the heat distortion temperature and scratch resistance, and controls the biodegradation of the PLA matrix. In biomedicine, researchers have employed the design rules found in nature to fabricate PLA-based bionanocomposites. The incorporation of functional nanoparticles in the PLA matrix has improved the physical properties and changed the surface characteristics of the matrix that are important for tissue engineering and artificial bone reconstruction, such as its thermal and electrical conductivity, surface roughness, and wettability. Finally, of the introduction of bionanocomposite biocompatible surfaces on drugs, such as antibiotics, could produce delivery systems that act locally.

  11. Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular matrix.

    PubMed

    Tuzlakoglu, Kadriye; Santos, Marina I; Neves, Nuno; Reis, Rui L

    2011-02-01

    Mimicking the structural organization and biologic function of natural extracellular matrix has been one of the main goals of tissue engineering. Nevertheless, the majority of scaffolding materials for bone regeneration highlights biochemical functionality in detriment of mechanical properties. In this work we present a rather innovative construct that combines in the same structure electrospun type I collagen nanofibers with starch-based microfibers. These combined structures were obtained by a two-step methodology and structurally consist in a type I collagen nano-network incorporated on a macro starch-based support. The morphology of the developed structures was assessed by several microscopy techniques and the collagenous nature of the nano-network was confirmed by immunohistochemistry. In addition, and especially regarding the requirements of large bone defects, we also successfully introduced the concept of layer by layer, as a way to produce thicker structures. In an attempt to recreate bone microenvironment, the design and biochemical composition of the combined structures also envisioned bone-forming cells and endothelial cells (ECs). The inclusion of a type I collagen nano-network induced a stretched morphology and improved the metabolic activity of osteoblasts. Regarding ECs, the presence of type I collagen on the combined structures provided adhesive support and obviated the need of precoating with fibronectin. It was also importantly observed that ECs on the nano-network organized into circular structures, a three-dimensional arrangement distinct from that observed for osteoblasts and resembling the microcappillary-like organizations formed during angiogenesis. By providing simultaneously physical and chemical cues for cells, the herein-proposed combined structures hold a great potential in bone regeneration as a man-made equivalent of extracellular matrix.

  12. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing.

    PubMed

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Tom; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBN(Δ5-6) truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  13. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    PubMed

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li

    2015-10-21

    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  14. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.

    PubMed

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I; Davison, Noel L; de Vries, Teun J; Everts, Vincent

    2015-01-01

    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K.

  15. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts

    PubMed Central

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent

    2015-01-01

    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K. PMID:26426806

  16. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia.

    PubMed

    Nakamura, Hiroaki; Sato, Ginga; Hirata, Azumi; Yamamoto, Toshio

    2004-01-01

    Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.

  17. Absorbable Suture as an Apical Matrix in Single Visit Apexification with Mineral Trioxide Aggregate.

    PubMed

    Goyal, Ayush; Nikhil, Vineeta; Jha, Padmanabh

    2016-01-01

    Several procedures have been recommended to induce the root end barrier formation in teeth with open apices. Conventional treatment for such cases will require many appointments with an average duration of 12.9 months. During this period, the root canal is susceptible to reinfection from around the provisional restoration, which may promote apical periodontitis and arrest of apical repair. Mineral trioxide aggregate (MTA) has been successfully used for one visit apexification wherein the root canal can be obturated within 24 hours after placement of MTA. Using a matrix prior to the placement of MTA avoids its extrusion, reduces leakage in the sealing material, and allows favorable response of the periapical tissues. This report presents a case of apexification where an absorbable suture was used as an apical matrix. Use of an absorbable suture circumvents all the problems associated with other conventional materials. Conclusion . Placement of the matrix made from the suture material is predictable and is easily positioned at the apex and the length can be adjusted as required. 10-month follow-up of the case shows resorbed matrix and bone healing in the periapical region. The patient was asymptomatic during the whole follow-up period and tooth exhibited mobility within physiologic limits and was functioning normally.

  18. The dynamics of adult haematopoiesis in the bone and bone marrow environment.

    PubMed

    Ho, Miriel S H; Medcalf, Robert L; Livesey, Stephen A; Traianedes, Kathy

    2015-08-01

    This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system. © 2015 John Wiley & Sons Ltd.

  19. Tissue reaction of deproteinized bovine bone matrix grafting in ectopic site: histological study on sheep.

    PubMed

    Grossi, João Ricardo Almeida; Bonacin, Rodrigo; Crivelaro, Viviane Rozeira; Giovanini, Allan Fernando; Zielak, João César; Deliberador, Tatiana Miranda

    2016-12-01

    The aim of this paper was to evaluate through histological analysis of the tissue reaction of deproteinized bovine bone matrix (DBBM) when inserted into the site of intramuscular ectopic sheep. In this study, 16 sheep received 3 groups and these were divided into 2 experimental times: Group 1-sham group, Group 2-particulate autogenous bone and Group 3-DBBM granules. All animals underwent surgical procedures for insertion of materials in an ectopic site (muscles of the lower back and after 3 and 6 months postoperatively, the samples were evaluated by histological analysis. The results indicated that the Sham group showed dense collagen fibers and thin, characterizing fibrosis at 3 and 6 months. In the autograft group there was a significant amount of collagen deposition and decreased inflammation at 6 months postoperatively. Group of DBBM, it was noted the presence of dense connective tissue and surrounding remaining particles was observed the formation of with osteoid characteristic tissue. The DBBM demonstrated biocompatibility, osteoconductivity and small osteogenesis capacity on ectopic site.

  20. Injectable CMC/PEI gel as an in vivo scaffold for demineralized bone matrix.

    PubMed

    Kim, Kyung Sook; Kang, Yun Mi; Lee, Ju Young; Kim, E Sle; Kim, Chun Ho; Min, Byoung Hyun; Lee, Hai Bang; Kim, Jae Ho; Kim, Moon Suk

    2009-01-01

    A number of materials have been considered as sources of grafts to repair bone defects. Here, we examined the possibility of creating in situ-forming gels from sodium carboxymethylcellulose (CMC) and poly(ethyleneimine) (PEI) for use as an in vivo carrier of demineralized bone matrix (DBM). The interaction between anionic CMC and cationic PEI was examined by evaluating phase transition behavior and viscosity of CMC solutions containing 0-30 wt% PEI. CMC solutions containing 10 wt% PEI exhibited a sol-to-gel phase transition at temperatures greater than 35 degrees C. The phase transition is caused by electrostatic crosslinking of the CMC/PEI solution to form a gel with a three-dimensional network structure. In situ-formed gel implants were successfully fabricated in vivo by simple subcutaneous injection of the CMC/PEI (90/10) solution (with and without DBM) into Fisher rats. The resulting in situ-formed implant maintained its shape for 28 days in vitro and in vivo. Our results show that in situ-forming CMC/PEI gels can serve as a DBM carrier that can be delivered with a minimally invasive procedure.

  1. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering.

    PubMed

    Tajbakhsh, Saeid; Hajiali, Faezeh

    2017-01-01

    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites containing ceramic reinforcements, including various methods of production and the evaluation of the scaffolds in terms of porosity, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone tissue engineering applications. The production routes range from traditional approaches such as the use of porogens to provide porosity in the scaffolds to novel methods such as solid free-form techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  3. Comparison of fibrinogen- and collagen-based treatments for penetrating wounds with comminuted femur fractures in a Swine model.

    PubMed

    Rothwell, Stephen W; Sawyer, Evelyn; Lombardini, Eric; Royal, Joseph; Tang, Haiyin; Selwyn, Reed; Bodo, Michael; Settle, Timothy L

    2013-01-01

    Military servicemembers in combat operations often sustain injuries to the extremities from highspeed projectiles, resulting in bleeding and comminuted open fractures. Severe injury with bone fragmentation can result in limb amputation. Surgical treatment options include materials that promote osteogenesis and bone proliferation, such as growth hormones, stem cells, or mineralized matrix adjuncts. However, none of these are amenable to use by the first responder, nor do they address the question of hemorrhage control, which is a common problem in traumatic injuries. Our hypothesis was that treatment with a fibrinogen-based protein mixture at the time of the bone injury will provide both hemostasis and a supportive environment for preservation of injured bone. A comminuted femur fracture was produced in 28 female Yorkshire swine, and one of four treatments was instilled into the wound immediately after injury. Each animal was evaluated for the following parameters: inflammation, new bone growth, osteoclast proliferation, callus formation, and femur wound cavity fill, using post-mortem computed tomography and analysis of histological sections. Overall, salmon fibrinogen?thrombin and porcine fibrinogen?thrombin showed a trend for improved healing based on bone filling and calcification. However, statistically significant differences could not be established between treatment groups. These findings indicate that a fibrinogen?thrombin matrix may be a useful as an immediate response product to enhance fracture healing. Salmon fibrinogen?thrombin has the advantages of cost and a pathogen profile compared to mammalian fibrinogens. 2013.

  4. Chest wall reconstruction in a canine model using polydioxanone mesh, demineralized bone matrix and bone marrow stromal cells.

    PubMed

    Tang, Hua; Xu, Zhifei; Qin, Xiong; Wu, Bin; Wu, Lihui; Zhao, XueWei; Li, Yulin

    2009-07-01

    Extensive chest wall defect reconstruction remains a challenging problem for surgeons. In the past several years, little progress has been made in this area. In this study, a biodegradable polydioxanone (PDO) mesh and demineralized bone matrix (DBM) seeded with osteogenically induced bone marrow stromal cells (BMSCs) were used to reconstruct a 6 cm x 5.5 cm chest wall defect. Four experimental groups were evaluated (n=6 per group): polydioxanone (PDO) mesh/DBMs/BMSCs group, polydioxanone (PDO) mesh/DBMs group, polydioxanone (PDO) mesh group, and a blank group (no materials) in a canine model. All the animals survived except those in the blank group. In all groups receiving biomaterial implants, the polydioxanone (PDO) mesh completely degraded at 24 weeks and was replaced by fibrous tissue with thickness close to that of the normal intercostal tissue (P>0.05). In the polydioxanone (PDO) mesh/DBMs/BMSCs group, new bone formation and bone-union were observed by radiographic and histological examination. More importantly, the reconstructed rib could maintain its original radian and achieve satisfactory biomechanics close to normal ribs in terms of bending stress (P>0.05). However, in the other two groups, fibrous tissue was observed in the defect and junctions, and the reconstructed ribs were easily distorted under an outer force. Based on these results, a surgical approach utilizing biodegradable polydioxanone (PDO) mesh in combination with DBMs and BMSCs could repair the chest wall defect not only in function but also in structure.

  5. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    PubMed

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.

  6. [Effects of astragalus polysaccharides-chitosan/polylactic acid composite material on biological behavior of canine bone marrow stromal cells cultured in vitro].

    PubMed

    Xu, Chun-Jiao; Jian, Xin-Chun; Peng, Jie-Ying; Guo, Feng; Huang, Bai-Ying; Xiong, Cheng-Dong; Pan, Gao-Feng

    2005-06-01

    To observe the biological behavior of canine bone marrow stromal cells (BMSCs) cultured in vitro with the astragalus polysaccharides-chitosan/polylactic acid (AP-C/PLA) and with the chitosan/polylactic acid (C/PLA) and to find a suitable compound material for periodontal tissue engineering. BMSCs (induced 14 days by 50 mg/L vitamine C, 10(-8) mol/L dexamethasone, 10 mmol/L beta-sodium glycerylphosphate) were cultured on AP-C/PLA or C/PLA for 5 days respectively. The BMSCs attachment and the morphology were observed with scanning electronic microscope and the combining rates were counted. Type I collagen synthesis was examined with immunohistochemistry staining and the content of osteocalin was determined with radio-immunological method. Combining rates, type I collagen synthesis, and the content of osteocalin of BMSCs on AP-C/PLA were significantly higher than those on C/PLA. AP-C/PLA may promote the BMSC proliferation, differentiation and extracellular matrix synthesis, and it can be used as a good scaffold material for bone tissue engineering.

  7. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study.

    PubMed

    Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo

    2017-12-16

    In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.

  8. In Vitro and In Vivo Dentinogenic Efficacy of Human Dental Pulp-Derived Cells Induced by Demineralized Dentin Matrix and HA-TCP

    PubMed Central

    Kang, Kyung-Jung; Lee, Min Suk; Moon, Chan-Woong; Lee, Jae-Hoon

    2017-01-01

    Human dental pulp cells have been known to have the stem cell features such as self-renewal and multipotency. These cells are differentiated into hard tissue by addition of proper cytokines and biomaterials. Hydroxyapatite-tricalcium phosphates (HA-TCPs) are essential components of hard tissue and generally used as a biocompatible material in tissue engineering of bone. Demineralized dentin matrix (DDM) has been reported to increase efficiency of bone induction. We compared the efficiencies of osteogenic differentiation and in vivo bone formation of HA-TCP and DDM on human dental pulp stem cells (hDPSCs). DDM contains inorganic components as with HA-TCP, and organic components such as collagen type-1. Due to these components, osteoinduction potential of DDM on hDPSCs was remarkably higher than that of HA-TCP. However, the efficiencies of in vivo bone formation are similar in HA-TCP and DDM. Although osteogenic gene expression and bone formation in immunocompromised nude mice were similar levels in both cases, dentinogenic gene expression level was slightly higher in DDM transplantation than in HA-TCP. All these results suggested that in vivo osteogenic potentials in hDPSCs are induced with both HA-TCP and DDM by osteoconduction and osteoinduction, respectively. In addition, transplantation of hDPSCs/DDM might be more effective for differentiation into dentin. PMID:28761445

  9. In Vitro and In Vivo Dentinogenic Efficacy of Human Dental Pulp-Derived Cells Induced by Demineralized Dentin Matrix and HA-TCP.

    PubMed

    Kang, Kyung-Jung; Lee, Min Suk; Moon, Chan-Woong; Lee, Jae-Hoon; Yang, Hee Seok; Jang, Young-Joo

    2017-01-01

    Human dental pulp cells have been known to have the stem cell features such as self-renewal and multipotency. These cells are differentiated into hard tissue by addition of proper cytokines and biomaterials. Hydroxyapatite-tricalcium phosphates (HA-TCPs) are essential components of hard tissue and generally used as a biocompatible material in tissue engineering of bone. Demineralized dentin matrix (DDM) has been reported to increase efficiency of bone induction. We compared the efficiencies of osteogenic differentiation and in vivo bone formation of HA-TCP and DDM on human dental pulp stem cells (hDPSCs). DDM contains inorganic components as with HA-TCP, and organic components such as collagen type-1. Due to these components, osteoinduction potential of DDM on hDPSCs was remarkably higher than that of HA-TCP. However, the efficiencies of in vivo bone formation are similar in HA-TCP and DDM. Although osteogenic gene expression and bone formation in immunocompromised nude mice were similar levels in both cases, dentinogenic gene expression level was slightly higher in DDM transplantation than in HA-TCP. All these results suggested that in vivo osteogenic potentials in hDPSCs are induced with both HA-TCP and DDM by osteoconduction and osteoinduction, respectively. In addition, transplantation of hDPSCs/DDM might be more effective for differentiation into dentin.

  10. Effects of losartan treatment on the physicochemical properties of diabetic rat bone.

    PubMed

    Donmez, Baris Ozgur; Unal, Mustafa; Ozdemir, Semir; Ozturk, Nihal; Oguz, Nurettin; Akkus, Ozan

    2017-03-01

    Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.

  11. Development and in vitro examination of materials for osseointegration

    NASA Astrophysics Data System (ADS)

    Jalota, Sahil

    Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes. This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-beta-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn 2+ ion doping and development of beta-TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.

  12. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae

    PubMed Central

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-01-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475

  13. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae.

    PubMed

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-11-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  14. Expression of CD44v6 as matrix-associated ectodomain in the bone development.

    PubMed

    Nakajima, Kosei; Taniguchi, Kazumi; Mutoh, Ken-ichiro

    2010-08-01

    This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.

  15. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.

    PubMed

    Paiva, Katiucia B S; Granjeiro, José M

    2017-01-01

    Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering. © 2017 Elsevier Inc. All rights reserved.

  16. The effect of cationically-modified phosphorylcholine polymers on human osteoblasts in vitro and their effect on bone formation in vivo.

    PubMed

    Lawton, Jonathan M; Habib, Mariam; Ma, Bingkui; Brooks, Roger A; Best, Serena M; Lewis, Andrew L; Rushton, Neil; Bonfield, William

    2017-08-17

    The effect of introducing cationic charge into phosphorylcholine (PC)-based polymers has been investigated in this study with a view to using these materials as coatings to improve bone formation and osseointegration at the bone-implant interface. PC-based polymers, which have been used in a variety of medical devices to improve biocompatibility, are associated with low protein adsorption resulting in reduced complement activation, inflammatory response and cell adhesion. However, in some applications, such as orthopaedics, good integration between the implant and bone is needed to allow the distribution of loading stresses and a bioactive response is required. It has previously been shown that the incorporation of cationic charge into PC-based polymers may increase protein adsorption that stimulates subsequent cell adhesion. In this paper, the effect of cationic charge in PC-based polymers on human osteoblasts (HObs) in vitro and the effect of these polymers on bone formation in the rat tibia was assessed. Increasing PC positive surface charge increased HOb cell adhesion and stimulated increased cell differentiation and the production of calcium phosphate deposits. However, when implanted in bone these materials were at best biotolerant, stimulating the production of fibrous tissue and areas of loosely associated matrix (LAM) around the implant. Their development, as formulated in this study, as bone interfacing implant coatings is therefore not warranted.

  17. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years.

    PubMed

    Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus

    2016-02-01

    Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor. © 2015 American Society for Bone and Mineral Research.

  18. A review of fibrin and fibrin composites for bone tissue engineering

    PubMed Central

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient’s own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications. PMID:28761338

  19. A review of fibrin and fibrin composites for bone tissue engineering.

    PubMed

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.

  20. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.

    PubMed

    Jansen, Edwin J P; Sladek, Raymond E J; Bahar, Hila; Yaffe, Avinoam; Gijbels, Marion J; Kuijer, Roel; Bulstra, Sjoerd K; Guldemond, Nick A; Binderman, Itzhak; Koole, Leo H

    2005-07-01

    Porous polymeric scaffolds play a key role in most tissue-engineering strategies. A series of non-degrading porous scaffolds was prepared, based on bulk-copolymerisation of 1-vinyl-2-pyrrolidinone (NVP) and n-butyl methacrylate (BMA), followed by a particulate-leaching step to generate porosity. Biocompatibility of these scaffolds was evaluated in vitro and in vivo. Furthermore, the scaffold materials were studied using the so-called demineralised bone matrix (DBM) as an evaluation system in vivo. The DBM, which is essentially a part of a rat femoral bone after processing with mineral acid, provides a suitable environment for ectopic bone formation, provided that the cavity of the DBM is filled with bone marrow prior to subcutaneous implantation in the thoracic region of rats. Various scaffold materials, differing with respect to composition and, hence, hydrophilicity, were introduced into the centre of DBMs. The ends were closed with rat bone marrow, and ectopic bone formation was monitored after 4, 6, and 8 weeks, both through X-ray microradiography and histology. The 50:50 scaffold particles were found to readily accommodate formation of bone tissue within their pores, whereas this was much less the case for the more hydrophilic 70:30 counterpart scaffolds. New healthy bone tissue was encountered inside the pores of the 50:50 scaffold material, not only at the periphery of the constructs but also in the center. Active osteoblast cells were found at the bone-biomaterial interfaces. These data indicate that the hydrophobicity of the biomaterial is, most likely, an important design criterion for polymeric scaffolds which should promote the healing of bone defects. Furthermore, it is argued that stable, non-degrading porous biomaterials, like those used in this study, provide an important tool to expand our comprehension of the role of biomaterials in scaffold-based tissue engineering approaches.

  1. Microcomputed tomographic and histologic analysis of anorganic bone matrix coupled with cell-binding peptide suspended in sodium hyaluronate carrier after sinus augmentation: a clinical study.

    PubMed

    Emam, Hany; Beheiri, Galal; Elsalanty, Mohammed; Sharawy, Mohamed

    2011-01-01

    Anorganic bovine hydroxyapatite matrix (ABM), when coupled with synthetic cell-binding peptide (P15), mimics the cell-binding region of type 1 collagen and is commercially available suspended in a sodium hyaluronate carrier. The aim of the present study, therefore, was to test the efficacy of ABM/P-15 Putty (DENTSPLY Friadent CeraMed) as a sole graft material for sinus augmentation in patients with severely resorbed posterior maxillae. Sinus augmentation was performed in 10 patients using ABM/P-15 Putty and two provisional dental implants (3.0 mm in diameter). The graft and implants were placed simultaneously with the aid of a surgical stent. After 8 or 16 weeks, the implants were removed using a 4.25-mm trephine bur; this was followed by immediate placement of wider-diameter (5.5-mm) implants. All 20 implants were scanned by microcomputed tomography to determine bone mineral density (BMD), percent bone volume (PBV), and percent bone contact (PBC). There was a significant increase in the BMD of bone around the implants at 8 weeks and 16 weeks compared to native residual (control) bone. There was no significant difference in PBV or PBC between 8 weeks and 16 weeks. The average increase in bone height at 16 weeks was 9.63 ± 1 mm. Microcomputed tomographic images and histologic sections showed dense graft particles surrounded by vital trabecular bone. BMD increases as early as 8 weeks and does not show an additional increase after 16 weeks. PepGen P-15 Putty was found to be a promising osteoconductive graft for sinus augmentation, supporting immediate placement of implants.

  2. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling

    DOE PAGES

    Dole, Neha S.; Mazur, Courtney M.; Acevedo, Claire; ...

    2017-11-28

    Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRII ocy-/-), wemore » show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility. Resistance to fracture requires healthy bone mass and quality. However, the cellular mechanisms regulating bone quality are unclear. Dole et al. show that osteocyte-intrinsic TGF-β signaling maintains bone quality through perilacunar/canalicular remodeling. Thus, osteocytes mediate perilacunar/canalicular remodeling and osteoclast-directed remodeling to cooperatively maintain bone quality and mass and prevent fragility.« less

  3. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dole, Neha S.; Mazur, Courtney M.; Acevedo, Claire

    Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRII ocy-/-), wemore » show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility. Resistance to fracture requires healthy bone mass and quality. However, the cellular mechanisms regulating bone quality are unclear. Dole et al. show that osteocyte-intrinsic TGF-β signaling maintains bone quality through perilacunar/canalicular remodeling. Thus, osteocytes mediate perilacunar/canalicular remodeling and osteoclast-directed remodeling to cooperatively maintain bone quality and mass and prevent fragility.« less

  4. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology.

    PubMed

    Zeng, Shuguang; Liu, Lei; Shi, Yong; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfeng

    2015-01-01

    Bone tissue engineering is a powerful tool to treat bone defects caused by trauma, infection, tumors and other factors. Both silk fibroin (SF) and chitosan (CS) are non-toxic and have good biocompatibility, but are poor biological scaffolds when used alone. In this study, the microscopic structure and related properties of SF/CS composite scaffolds with different component ratios were examined. The scaffold material most suitable for osteoblast growth was determined, and these results offer an experimental basis for the future reconstruction of bone defects. First, via freeze-drying and chemical crosslinking methods, SF/CS composites with different component ratios were prepared and their structure was characterized. Changes in the internal structure of the SF and CS mixture were observed, confirming that the mutual modification between the two components was complete and stable. The internal structure of the composite material was porous and three-dimensional with a porosity above 90%. We next studied the pore size, swelling ratio, water absorption ratio, degradation and in vitro cell proliferation. For the 40% SF-60% CS group, the pore size of the scaffold was suitable for the growth of osteoblasts, and the rate of degradation was steady. This favors the early adhesion, growth and proliferation of MG-63 cells. In addition to good biocompatibility and satisfactory cell affinity, this material promotes the secretion of extracellular matrix materials by osteoblasts. Thus, 40% SF-60% CS is a good material for bone tissue engineering.

  5. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.

    PubMed

    Rougraff, Bruce T; Kling, Thomas J

    2002-06-01

    The treatment of unicameral bone cysts varies from open bone-grafting procedures to percutaneous injection of corticosteroids or bone marrow. The purpose of this study was to evaluate the feasibility and effectiveness of percutaneous injection of a mixture of demineralized bone matrix and autogenous bone marrow for the treatment of simple bone cysts. Twenty-three patients with an active unicameral bone cyst were treated with trephination and injection of allogeneic demineralized bone matrix and autogenous bone marrow. The patients were followed for an average of fifty months (range, thirty to eighty-one months), at which time pain, function, and radiographic signs of resolution of the cyst were assessed. The average time until the patients had pain relief was five weeks, and the average time until the patients returned to full, unrestricted activities was six weeks. Bone-healing at the site of the injection was first seen radiographically at three to six months. No patient had a pathologic fracture during this early bone-healing stage. Cortical remodeling was seen radiographically by six to nine months, and after one year the response was usually complete, changing very little from then on. Five patients required a second injection because of recurrence of the cyst, and all five had a clinically and radiographically quiescent cyst after an average of thirty-six additional months of follow-up. Seven of the twenty-three patients had incomplete healing manifested by small, persistent radiolucent areas within the original cyst. None of these cysts increased in size or resulted in pain or fracture. Percutaneous injection of allogeneic demineralized bone matrix and autogenous bone marrow is an effective treatment for unicameral bone cysts.

  6. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring.

    PubMed

    Garnero, Patrick

    2008-01-01

    Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increased risk of fracture. While the level of bone mass can be estimated by measuring bone mineral density (BMD) using dual X-ray absorptiometry (DXA), its measurement does not capture all the risk factors for fracture. Quantitative changes in skeletal turnover can be assessed easily and non-invasively by the measurement of serum and urinary biochemical markers; the most sensitive markers include serum osteocalcin, bone specific alkaline phosphatase, the N-terminal propeptide of type I collagen for bone formation, and the crosslinked C- (CTX) and N- (NTX) telopeptides of type I collagen for bone resorption. Advances in our knowledge of bone matrix biochemistry, most notably of post-translational modifications in type I collagen, are likely to lead to the development of new biochemical markers that reflect changes in the material property of bone, an important determinant of bone strength. Among those, the measurement of the urinary ratio of native (alpha) to isomerized (beta) CTX - an index of bone matrix maturation - has been shown to be predictive of fracture risk independently of BMD and bone turnover. In postmenopausal osteoporosis, levels of bone resorption markers above the upper limit of the premenopausal range are associated with an increased risk of hip, vertebral, and nonvertebral fracture, independent of BMD. Therefore, the combined use of BMD measurement and biochemical markers is helpful in risk assessment, especially in those women who are not identified as at risk by BMD measurement alone. Levels of bone markers decrease rapidly with antiresorptive therapies, and the levels reached after 3-6 months of therapy have been shown to be more strongly associated with fracture outcome than changes in BMD. Preliminary studies indicate that monitoring changes of bone formation markers could also be useful to monitor anabolic therapies, including intermittent parathyroid hormone administration and, possibly, to improve adherence to treatment. Thus, repeated measurements of bone markers during therapy may help improve the management of osteoporosis in patients.

  7. [Development, physiology, and cell activity of bone].

    PubMed

    de Baat, P; Heijboer, M P; de Baat, C

    2005-07-01

    Bones are of crucial importance for the human body, providing skeletal support, serving as a home for the formation of haematopoietic cells, and reservoiring calcium and phosphate. Long bones develop by endochondral ossification. Flat bones develop by intramembranous ossification. Bone tissue contains hydroxyapatite and various extracellular proteins, producing bone matrix. Two biological mechanisms, determining the strength of bone, are modelling and remodelling. Modelling can change bone shape and size through bone formation by osteoblasts at some sites and through bone destruction by osteoclasts at other sites. Remodelling is bone turnover, also performed by osteoclasts and osteoblasts. The processes of modelling and remodelling are induced by mechanical loads, predominantly muscle loads. Osteoblasts develop from mesenchymal stem cells. Many stimulating factors are known to activate the differentiation. Mature osteoblasts synthesize bone matrix and may further differentiate into osteocytes. Osteocytes maintain structural bone integrity and allow bone to adapt to any mechanical and chemical stimulus. Osteoclasts derive from haematopoietic stem cells. A number of transcription and growth factors have been identified essential for osteoclast differentiation and function. Finally, there is a complex interaction between osteoblasts and osteoclasts. Bone destruction starts by attachment of osteoclasts to the bone surface. Following this, osteoclasts undergo specific morphological changes. The process of bone destruction starts by acid dissolution of hydroxyapatite. After that osteoclasts start to destruct the organic matrix.

  8. Freeze Casting for Assembling Bioinspired Structural Materials.

    PubMed

    Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P

    2017-12-01

    Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].

    PubMed

    Zhang, Yumin; Li, Baoxing; Li, Ji

    2007-02-01

    To fabricate a novel porous bioactive composite biomaterial consisting of poly lactic acid (PLA)-bone matrix gelatin (BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3 : 1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100-200 microm in diameter for the porosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblast-like MC3T3-E1 cells were cultured in the dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 microl of the MC3T3-E1 cell suspensions containing 2 X 10(6) cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 microg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 microg of the crushed PLA material was contained in each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis on the calcification area was performed by the staining of the alizarin red S. The co-cultured cells were harvested and lysated in 1 ml of 0. 2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. The porous PLA-BMG composite material showed a good homological porosity with a pore diameter of 50-150 microm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in the PLA-BMG group than in the PLA group and the control group (325.59 +/- 70.40 U/gprot, 3.51+/- 1.64 mmol/gprot, 42.98 +/- 4.44% vs. 63. 62 +/- 30.01 U/gprot, 1.04+/-0.21 mmol/gprot, 9.55+/-1.94%, and 2.40+/-1.47 U/gprot, 0.70+/-0.24 mmol/gprot, 0.86+/-0.41%; P<0.05). Meanwhile, there was a statistically significant difference between the PLA group and the control group in the ALP activity and the calcification area (P< 0.05). The porous PLA-BMG composite material prepared by the use of SC-CO2 has a good osteoinductive activity and can be used as a promising bone biomaterial and a bone tissue engineered scaffold.

  10. MIA-Clustering: a novel method for segmentation of paleontological material.

    PubMed

    Dunmore, Christopher J; Wollny, Gert; Skinner, Matthew M

    2018-01-01

    Paleontological research increasingly uses high-resolution micro-computed tomography (μCT) to study the inner architecture of modern and fossil bone material to answer important questions regarding vertebrate evolution. This non-destructive method allows for the measurement of otherwise inaccessible morphology. Digital measurement is predicated on the accurate segmentation of modern or fossilized bone from other structures imaged in μCT scans, as errors in segmentation can result in inaccurate calculations of structural parameters. Several approaches to image segmentation have been proposed with varying degrees of automation, ranging from completely manual segmentation, to the selection of input parameters required for computational algorithms. Many of these segmentation algorithms provide speed and reproducibility at the cost of flexibility that manual segmentation provides. In particular, the segmentation of modern and fossil bone in the presence of materials such as desiccated soft tissue, soil matrix or precipitated crystalline material can be difficult. Here we present a free open-source segmentation algorithm application capable of segmenting modern and fossil bone, which also reduces subjective user decisions to a minimum. We compare the effectiveness of this algorithm with another leading method by using both to measure the parameters of a known dimension reference object, as well as to segment an example problematic fossil scan. The results demonstrate that the medical image analysis-clustering method produces accurate segmentations and offers more flexibility than those of equivalent precision. Its free availability, flexibility to deal with non-bone inclusions and limited need for user input give it broad applicability in anthropological, anatomical, and paleontological contexts.

  11. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  12. Correlative microscopy of the constituents of a dinosaur rib fossil and hosting mudstone: Implications on diagenesis and fossil preservation.

    PubMed

    Kim, Jung-Kyun; Kwon, Yong-Eun; Lee, Sang-Gil; Kim, Chang-Yeon; Kim, Jin-Gyu; Huh, Min; Lee, Eunji; Kim, Youn-Joong

    2017-01-01

    We have applied correlative microscopy to identify the key constituents of a dorsal rib fossil from Koreanosaurus boseongensis and its hosting mudstone discovered at the rich fossil site in Boseong, South Korea, to investigate the factors that likely contributed to diagenesis and the preservation of fossil bone. Calcite and illite were the commonly occurring phases in the rib bone, hosting mudstone, and the boundary region in-between. The boundary region may have contributed to bone preservation once it fully formed by acting as a protective shell. Fluorapatite crystals in the rib bone matrix signified diagenetic alteration of the original bioapatite crystals. While calcite predominantly occupied vascular channels and cracks, platy illite crystals widely occupied miniscule pores throughout the bone matrix. Thorough transmission electron microscopy (TEM) study of illite within the bone matrix indicated the solid-state transformation of 1M to 2M without composition change, which was more evident from the lateral variation of 1M to 2M within the same layer. The high level of lattice disordering of 2M illite suggested an early stage of 1M to 2M transformation. Thus, the diagenetic alteration of both apatite and illite crystals within the bone matrix may have increased its overall density, as the preferred orientation of apatite crystals from moderate to strong degrees was evident despite the poor preservation of osteohistological features. The combined effects of rapid burial, formation of a boundary region, and diagenesis of illite and apatite within the bone matrix may have contributed to the rib bone preservation.

  13. Tenascin-C mimetic Peptide nanofibers direct stem cell differentiation to osteogenic lineage.

    PubMed

    Sever, Melike; Mammadov, Busra; Guler, Mustafa O; Tekinay, Ayse B

    2014-12-08

    Extracellular matrix contains various signals for cell surface receptors that regulate cell fate through modulation of cellular activities such as proliferation and differentiation. Cues from extracellular matrix components can be used for development of new materials to control the stem cell fate. In this study, we achieved control of stem cell fate toward osteogenic commitment by using a single extracellular matrix element despite the contradictory effect of mechanical stiffness. For this purpose, we mimicked bone extracellular matrix by incorporating functional sequence of fibronectin type III domain from native tenascin-C on self-assembled peptide nanofibers. When rat mesenchymal stem cells (rMSCs) were cultured on these peptide nanofibers, alkaline phosphatase (ALP) activity and alizarin red staining indicated osteogenic differentiation even in the absence of osteogenic supplements. Moreover, expression levels of osteogenic marker genes were significantly enhanced revealed by quantitative real-time polymerase chain reaction (qRT-PCR), which showed the remarkable bioactive role of this nanofiber system on osteogenic differentiation. Overall, these results showed that tenascin-C mimetic peptides significantly enhanced the attachment, proliferation, and osteogenic differentiation of rMSCs even in the absence of any external bioactive factors and regardless of the suitable stiff mechanical properties normally required for osteogenic differentiation. Thus, these peptide nanofibers provide a promising new platform for bone regeneration.

  14. Comparison of two kinds of bovine bone in maxillary sinus augmentation: a histomorphometric study.

    PubMed

    Moon, Jee-Won; Sohn, Dong-Seok; Heo, Jeung-Uk; Kim, Jin Sun

    2015-02-01

    The purpose of this study was to compare the histomorphometric from sinus augmentation with calcium-phosphate nanocrystal-coated bovine bone (Biocera) and anorganic bovine bone matrix (Bio-Oss). Bilateral maxillary sinus augmentations were performed on 5 patients with delayed placement of implants. The lateral bony window was created using a piezoelectric saw, and the sinus membrane was elevated to make a new compartment. Bio-Oss was grafted in one sinus as the control group and Biocera was grafted in the opposite sinus as the test group. The bony window was repositioned over the bone graft. In all cases, samples were taken for biopsy at the time of implant placement, 6 to 8 months after the grafting procedure. Independent t tests were used to examine between-group differences. None of the 5 patients had complications during healing period. Histomorphometrically, the Bio-Oss group showed 28.46% (±5.28%) of newly formed bone. Biocera group showed 29.94% (±8.72%) of newly formed bone. Newly formed bone along inner surface of repositioned bony window area showed more mature and dense bone structure than new bone formed along bone graft. This study revealed that both bovine bone grafts were considered as suitable bone graft materials for maxillary sinus augmentation.

  15. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.

    PubMed

    Wang, Yaohui; Ural, Ani

    2018-06-01

    A key length scale of interest in assessing the fracture resistance of bone is the submicroscale which is composed of mineralized collagen fibrils (MCF) and extra-fibrillar matrix (EFM). Although the processes through which the submicroscale constituents of bone contribute to the fracture resistance in bone have been identified, the extent of the modifications in submicroscale mechanical response due to the changes in individual properties of MCFs and EFM has not been determined. As a result, this study aims to quantify the influence of individual MCF and EFM material property modifications on the mechanical behavior (elastic modulus, ultimate strength, and resistance to failure) of bone at the submicroscale using a novel finite element modeling approach that incorporate 3D networks of MCFs with three different orientations as well as explicit representation of EFM. The models were evaluated under tensile loading in transverse (representing MCF separation) and longitudinal (representing MCF rupture) directions. The results showed that the apparent elastic modulus at the submicroscale under both loading directions for all orientations was only affected by the change in the elastic modulus of MCFs. MCF separation and rupture strengths were mainly dependent on the ultimate strength of EFM and MCFs, respectively, with minimal influence of other material properties. The extent of damage during MCF separation increased with increasing ultimate strength of EFM and decreased with increasing fracture energy of EFM with minimal contribution from elastic modulus of MCFs. For MCF rupture, there was an almost one-to-one linear relationship between the percent change in fracture energy of MCFs and the percent change in the apparent submicroscale fracture energy. The ultimate strength and elastic modulus of MCFs had moderate to limited influence on the MCF rupture fracture energy. The results of this study quantified the extent of changes that may be seen in the energy dissipation processes during MCF rupture and separation relative to the changes in the individual constituents of the tissue. This new knowledge significantly contributes to improving the understanding of how the material property alterations at the submicroscale that can occur due to diseases, age-related changes, and treatments affect the fracture processes at larger length scales. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  17. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone

    PubMed Central

    Tang, S.Y.; Vashishth, D.

    2010-01-01

    The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk. PMID:21056419

  18. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration.

    PubMed

    Ramírez-Rodríguez, Gloria Belén; Delgado-López, José Manuel; Iafisco, Michele; Montesi, Monica; Sandri, Monica; Sprio, Simone; Tampieri, Anna

    2016-11-01

    Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions.

    PubMed

    He, Xiao-Tao; Wu, Rui-Xin; Xu, Xin-Yue; Wang, Jia; Yin, Yuan; Chen, Fa-Ming

    2018-04-15

    Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. The substrate stiffness of a scaffold plays critical roles in modulating both reparative cells, such as mesenchymal stem cells (MSCs), and immune cells, such as macrophages (Mφs). Although the influences of material stiffness on either Mφs or MSCs, have been extensively described, how the two cell types respond to matrix cues to dynamically affect each other in a three-dimensional (3D) biosystem remains largely unknown. Here, we report our findings that, in a platform wherein Mφs and bone marrow-derived MSCs coexist, matrix stiffness can influence stem cell fate through both direct matrix-associated regulation and indirect Mφ-based modulation. Our data support future studies of the MSC-Mφ-matrix interplay in the 3D context to optimize matrix parameters for the development of the next biomaterial. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    PubMed

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Aging and Bone

    PubMed Central

    Boskey, A.L.; Coleman, R.

    2010-01-01

    Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes. PMID:20924069

  2. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.

    PubMed

    Borden, Mark; Attawia, Mohamed; Laurencin, Cato T

    2002-09-05

    A tissue engineering approach has been used to design three-dimensional synthetic matrices for bone repair. The osteoconductivity and degradation profile of a novel polymeric bone-graft substitute was evaluated in an in vitro setting. Using the copolymer poly(lactide-co-glycolide) [PLAGA], a sintering technique based on microsphere technology was used to fabricate three-dimensional porous scaffolds for bone regeneration. Osteoblasts and fibroblasts were seeded onto a 50:50 PLAGA scaffold. Morphologic evaluation through scanning electron microscopy demonstrated that both cell types attached and spread over the scaffold. Cells migrated through the matrix using cytoplasmic extensions to bridge the structure. Cross-sectional images indicated that cellular proliferation had penetrated into the matrix approximately 700 microm from the surface. Examination of the surfaces of cell/matrix constructs demonstrated that cellular proliferation had encompassed the pores of the matrix by 14 days of cell culture. With the aim of optimizing polymer composition and polymer molecular weight, a degradation study was conducted utilizing the matrix. The results demonstrate that degradation of the sintered matrix is dependent on molecular weight, copolymer ratio, and pore volume. From this data, it was determined that 75:25 PLAGA with an initial molecular weight of 100,000 has an optimal degradation profile. These studies show that the sintered microsphere matrix has an osteoconductive structure capable of functioning as a cellular scaffold with a degradation profile suitable for bone regeneration. Copyright 2002 Wiley Periodicals, Inc.

  3. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: Effects of fibril dimensions and failure energy in protein matrix.

    PubMed

    Lai, Zheng Bo; Yan, Cheng

    2017-01-01

    Many biological composite materials such as bone have demonstrated unique mechanical performance, i.e., a combination of superior stiffness and toughness. It has become increasingly clear that the constituents at the nano- and micro-length scales play a critical role in determining the mechanical performance of these biological composites. In this study, the underlying mechanisms governing the mechanical behaviour of the staggered array of mineralised collagen fibrils (MCF) embedded in extra-fibrillar protein matrix were numerically investigated. The evolution of damage zone in protein was estimated using cohesive zone models (CZM). The results indicate that the mechanisms and mechanical behaviour of MCF array are largely dependent on the MCF dimensions and the intrinsic failure energy in extra-fibrillar protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    PubMed Central

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  5. A 3-year clinical and radiographic study of implants placed simultaneously with maxillary sinus floor augmentations using a new nanocrystalline hydroxyapatite.

    PubMed

    Heinemann, F; Mundt, T; Biffar, R; Gedrange, T; Goetz, W

    2009-12-01

    The aims of this case series was to evaluate the success rate of implants and their restorations, the sinus bone graft resorption, and the marginal bone loss around the implants when nanocristalline HA embedded in a silica matrix was exclusively used as grafting material. In 13 partially edentulous patients of a private practice having missing teeth in the posterior maxilla and a subantral bone height between 3 and 7 mm, 19 sinus augmentations (100% Nanobone, Artoss, Rostock, Germany) by the lateral lift technique were performed. The implants (Tiolox/Tiologic Implants, Dentaurum, Ispringen, Germany) were simultaneously placed. After 6 to 9 months 37 implants were restored with fixed dental prostheses. The clinical evaluation included peri-implant parameters, periotest measurements and the restorations. The radiographic bone heights over time were estimated with linear mixed models. The implant success rate was 100% after three years. The periotest values (between -7 and -6) after implant abutment connection indicated a solid osseointegration. The mean rates of the marginal bone loss over the first year were higher (mesial: -0.55, distal: -0.51 mm) than the annual rates thereafter (mesial: -0.09 mm, distal: -0.08 mm). The mean rates of changes in the total bone height were neglectable (<0.2 mm) and not significant. The prosthodontic and esthetic evaluation revealed a successful outcome. Within the limits of this clinical report it may be concluded that maxillary sinus augmentation using 100% nanocristalline HA embedded in a silica matrix to support implants is a reliable procedure.

  6. The Ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing

    PubMed Central

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla; Diekwisch, Thomas G.H.; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBNΔ5-6 truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. PMID:26899203

  7. Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement.

    PubMed

    Oortgiesen, Daniël A W; Meijer, Gert J; Bronckers, Antonius L J J; Walboomers, X Frank; Jansen, John A

    2013-03-01

    Enamel matrix derivative (EMD) has proven to enhance periodontal regeneration; however, its effect is mainly restricted to the soft periodontal tissues. Therefore, to stimulate not only the soft tissues, but also the hard tissues, in this study EMD is combined with an injectable calcium phosphate cement (CaP; bone graft material). The aim was to evaluate histologically the healing of a macroporous CaP in combination with EMD. Intrabony, three-wall periodontal defects (2 × 2 × 1.7 mm) were created mesial of the first upper molar in 15 rats (30 defects). Defects were randomly treated according to one of the three following strategies: EMD, calcium phosphate cement and EMD, or left empty. The animals were killed after 12 weeks, and retrieved samples were processed for histology and histomorphometry. Empty defects showed a reparative type of healing without periodontal ligament or bone regeneration. As measured with on a histological grading scale for periodontal regeneration, the experimental groups (EMD and CaP/EMD) scored equally, both threefold higher compared with empty defects. However, most bone formation was measured in the CaP/EMD group; addition of CAP to EMD significantly enhanced bone formation with 50 % compared with EMD alone. Within the limits of this animal study, the adjunctive use of EMD in combination with an injectable cement, although it did not affect epithelial downgrowth, appeared to be a promising treatment modality for regeneration of bone and ligament tissues in the periodontium. The adjunctive use of EMD in combination with an injectable cement appears to be a promising treatment modality for regeneration of the bone and ligament tissues in the periodontium.

  8. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis.

    PubMed

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone(®) (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone(®), while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone(®) showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone(®) appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone(®) also in humans.

  9. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis

    PubMed Central

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone® (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone®, while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone® showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone® appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone® also in humans. PMID:22745551

  10. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms.

    PubMed

    Mukherjee, Kaushik; Gupta, Sanjay

    2017-03-01

    Several mechanobiology algorithms have been employed to simulate bone ingrowth around porous coated implants. However, there is a scarcity of quantitative comparison between the efficacies of commonly used mechanoregulatory algorithms. The objectives of this study are: (1) to predict peri-acetabular bone ingrowth using cell-phenotype specific algorithm and to compare these predictions with those obtained using phenomenological algorithm and (2) to investigate the influences of cellular parameters on bone ingrowth. The variation in host bone material property and interfacial micromotion of the implanted pelvis were mapped onto the microscale model of implant-bone interface. An overall variation of 17-88 % in peri-acetabular bone ingrowth was observed. Despite differences in predicted tissue differentiation patterns during the initial period, both the algorithms predicted similar spatial distribution of neo-tissue layer, after attainment of equilibrium. Results indicated that phenomenological algorithm, being computationally faster than the cell-phenotype specific algorithm, might be used to predict peri-prosthetic bone ingrowth. The cell-phenotype specific algorithm, however, was found to be useful in numerically investigating the influence of alterations in cellular activities on bone ingrowth, owing to biologically related factors. Amongst the host of cellular activities, matrix production rate of bone tissue was found to have predominant influence on peri-acetabular bone ingrowth.

  11. Robust Bonding of Tough Double Network Hydrogel to Bone

    NASA Astrophysics Data System (ADS)

    Nonoyama, Takayuki; Wada, Susumu; Kiyama, Ryuji; Kitamura, Nobuto; Kurokawa, Takayuki; Nakajima, Tasuku; Yasuda, Kazunori; Gong, Jian Ping

    Tough Double Network (DN) hydrogels are one of candidates as next-generation artificial cartilage from the viewpoints of low friction, water storage capability and toughness. For practical use, the hydrogel must be strongly fixed at the joint. However, strong fixation of such hydrogel to other materials (tissues) has not been achieved yet because the surface property of hydrogel is almost equal to water due to its high water content. Therefore, robust adhesion for fixation and low friction for lithe motion are trade-off relation. Here, we report robust fixation of hydroxyapatite (HAp) mineralized DN hydrogel to the bone without any toxicity. HAp is main inorganic component of bone tissues and has osteoconductive capability. After 4 weeks implantation of HAp/DN gel into rabbit femoral groove, The robust fixation between bone and HAp/DN gel, more than strength of gel matrix, was achieved. The methodology is universal for new biomaterials, which should be fixed on bone, such as ligament and tendon systems.

  12. Surface and interface investigation of aluminosilicate biomaterial by the “in vivo” experiments

    NASA Astrophysics Data System (ADS)

    Oudadesse, H.; Derrien, A. C.; Martin, S.; Chaair, H.; Cathelineau, G.

    2008-11-01

    Porous mixtures of aluminosilicate/calcium phosphate have been studied for biomaterials applications. Aluminosilicates formed with an inorganic polymeric constitution present amorphous zeolites because of their 3D network structure and present the ability to link to bone matrix. Amorphous geopolymers of the potassium-poly(sialate)-nanopolymer type were synthesised at low temperature and studied for their use as potential biomaterials. They were mixed with 13% weight of calcium phosphate like biphasic hydroxyapatite and β-tricalcium phosphate. In this study, " in vivo" experiments were monitored to evaluate the biocompatibility, the surface and the interface behaviour of these composites when used as bone implants. Moreover, it has been demonstrated using histological and physicochemical studies that the developed materials exhibited a remarkable bone bonding when implanted in a rabbit's thighbone for a period of 1 month. The easy synthesis conditions (low temperature) of this composite and the fast intimate links with bone constitute an improvement of synthetic bone graft biomaterial.

  13. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices.

    PubMed

    Lu, Helen H; Kofron, Michelle D; El-Amin, Saadiq F; Attawia, Mohammed A; Laurencin, Cato T

    2003-06-13

    Over 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue. Results confirmed that muscle-derived cells attached and proliferated on the PLAGA substrates. BMP-7 released from PLAGA induced the muscle-derived cells to increase bone marker expression and form mineralized cultures. These results demonstrate the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype by muscle-derived cells and present a new paradigm for bone tissue engineering.

  14. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair.

    PubMed

    Kovacevic, David; Fox, Alice J; Bedi, Asheesh; Ying, Liang; Deng, Xiang-Hua; Warren, Russell F; Rodeo, Scott A

    2011-04-01

    Rotator cuff tendon heals by formation of an interposed zone of fibrovascular scar tissue. Recent studies demonstrate that transforming growth factor-beta 3 (TGF-β(3)) is associated with tissue regeneration and "scarless" healing, in contrast to scar-mediated healing that occurs with TGF-β(1). Delivery of TGF-β(3) in an injectable calcium-phosphate matrix to the healing tendon-bone interface after rotator cuff repair will result in increased attachment strength secondary to improved bone formation and collagen organization and reduced scar formation of the healing enthesis. Controlled laboratory study. Ninety-six male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon followed by acute repair using transosseous suture fixation. Animals were allocated into 1 of 3 groups: (1) repair alone (controls, n = 32), (2) repair augmented by application of an osteoconductive calcium-phosphate (Ca-P) matrix only (n = 32), or (3) repair augmented with Ca-P matrix + TGF-β(3) (2.75 µg) at the tendon-bone interface (n = 32). Animals were euthanized at either 2 weeks or 4 weeks postoperatively. Biomechanical testing of the supraspinatus tendon-bone complex was performed at 2 and 4 weeks (n = 8 per group). Microcomputed tomography was utilized to quantitate bone microstructure at the repair site. The healing tendon-bone interface was evaluated with histomorphometry and immunohistochemical localization of collagen types I (COLI) and III (COLIII). Statistical analysis was performed using 2-way analysis of variance with significance set at P < .05. There was significantly greater load to failure of the Ca-P matrix + TGF-β(3) group compared with matrix alone or untreated controls at 4 weeks postoperatively (P = .04). At 2 weeks, microcomputed tomography revealed a larger volume of newly formed bone present at the healing enthesis in both experimental groups compared with the control group. By 4 weeks, this newly formed, woven bone had matured into calcified, lamellar bone. Histomorphometric analysis demonstrated significantly greater fibrocartilage and increased collagen organization at the healing tendon-bone insertion site in both experimental groups compared with the control group at 2 weeks (P = .04). Over time, TGF-β(3) delivery led to greater COLI expression compared with COLIII at the healing enthesis, indicating a more favorable COLI to COLIII ratio with administration of TGF-β(3). Augmentation with an osteoconductive Ca-P matrix at the tendon-bone repair site is associated with new bone formation, increased fibrocartilage, and improved collagen organization at the healing tendon-bone interface in the early postoperative period after rotator cuff repair. The addition of TGF-β(3) significantly improved strength of the repair at 4 weeks postoperatively and resulted in a more favorable COLI/COLIII ratio. The delivery of TGF-β(3) with an injectable Ca-P matrix at the supraspinatus tendon footprint has promise to improve healing after soft tissue repair.

  15. Development of an injectable pseudo-bone thermo-gel for application in small bone fractures.

    PubMed

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Kumar, Pradeep; Marimuthu, Thashree; du Toit, Lisa C; Pillay, Viness

    2017-03-30

    A pseudo-bone thermo-gel was synthesized and evaluated for its physicochemical, mechanical and rheological properties, with its application to treat small bone fractures. The pseudo-bone thermo-gel was proven to have thermo-responsive properties, behaving as a solution in temperatures below 25°C, and forming a gelling technology when maintained at physiological conditions. Poly propylene fumerate (PPF), Pluronic F127 and PEG-PCL-PEG were strategically blended, obtaining a thermo-responsive delivery system, to mimic the mechanical properties of bone with sufficient matrix hardness and resilience. A Biopharmaceutics Classification System (BCS) class II drug, simvastatin, was loaded in the pseudo-bone thermo-gel, selected for its bone healing properties. In vitro release analysis was undertaken on a series of experimental formulations, with the ideal formulations obtaining its maximum controlled drug release profile up to 14days. Ex vivo studies were undertaken on an induced 4mm diameter butterfly-fractured osteoporotic human clavicle bone samples. X-ray, ultrasound as well as textural analysis, undertaken on the fractured bones before and after treatment displayed significant bone filling, matrix hardening and matrix resilience properties. These characteristics of the pseudo-bone thermo-gel thus proved significant potential for application in small bone fractures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Synthesis and characteristics of porous hydroxyapatite bioceramics].

    PubMed

    Niu, Jinlong; Zhang, Zhenxi; Jiang, Dazong

    2002-06-01

    The macroporous structure of human bone allows the ingrowth of the soft tissues and organic cells into the bone matrix, profits the development and metabolism of bone tissue, and adapts the bone to the change of load. There is great requirement for artificial biomimic porous bioactive ceramics with the similar structure of bone tissue that can be used clinically for repairing lost bone. Fine hydroxyapatite (HAp) powder produced by wet chemical reaction was mixed with hydrogen peroxide (H2O2), polyvinyl alcohol, methyl cellulose or other pores-making materials to form green cake. After drying at low temperature (below 100 degrees C) and decarbonizing at about 300 degrees C-400 degrees C, the spongy ceramic block was sintered at high temperature, thus, macroporous HAp bioceramic with interconnected pores and reasonable porosity and pore-diameter was manufactured. This kind of porous HAp bioceramics were intrinsically osteoinductive to a certain degree, but its outstanding property was that they can absorb human bone morphogenetic proteins and other bone growth factors to form composites, so that the macroporous HAp bioactive ceramic has appropriate feasibility for clinical application. From the point of biomedical application, the recent developments in synthesis and characteristics investigation of macroporous HAp are reviewed in this paper.

  17. Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.

    2015-09-01

    Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.

  18. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability.

    PubMed

    Krawczak, David A; Westendorf, Jennifer J; Carlson, Cathy S; Lewis, Jack L

    2009-06-01

    The aim of this study was to determine the effects of bone morphogenetic protein-2 (BMP-2) on articular chondrocyte tissues grown as monolayers in vitro for up to 8 weeks. Articular chondrocytes were isolated from New Zealand White rabbits and plated in monolayer cultures. The cultures were supplemented with 100 ng/mL of BMP-2 for up to 8 weeks and the extracellular matrix (ECM) composition, material properties, and messenger RNA (mRNA) expression were analyzed. mRNA expression of cartilage-specific genes, type II collagen, and aggrecan showed that BMP-2 enhanced chondrocyte stability for up to 3 weeks. After 3 weeks in culture, there was substantially more type I collagen expression and more osteopontin and runt-related transcription factor 2 expression in 5- and 8-week cultures treated with BMP-2 than in controls. Additionally, matrix metalloproteinase-13 and ADAMTS-5 (A disintegrin-like and metalloproteinase with thrombospondin 5) were upregulated in 5- and 8-week cultures treated with BMP-2, coinciding with a loss of ECM density, collagen, and proteoglycan. Eight-week tissue stimulated with BMP-2 was more fragile and tore more easily when removed from the culture dish as compared to controls, suggesting temporal limitations to the effectiveness of BMP-2 in monolayer systems and perhaps other models to enhance the generation of a cartilage-like tissue for tissue engineering purposes.

  19. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.

    PubMed

    Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming

    2013-12-01

    Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  20. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  1. Bone matrix, cellularity, and structural changes in a rat model with high-turnover osteoporosis induced by combined ovariectomy and a multiple-deficient diet.

    PubMed

    Govindarajan, Parameswari; Böcker, Wolfgang; El Khassawna, Thaqif; Kampschulte, Marian; Schlewitz, Gudrun; Huerter, Britta; Sommer, Ursula; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Szalay, Gabor; Wenisch, Sabine; Lips, Katrin S; Schnettler, Reinhard; Langheinrich, Alexander; Heiss, Christian

    2014-03-01

    In estrogen-deficient, postmenopausal women, vitamin D and calcium deficiency increase osteoporotic fracture risk. Therefore, a new rat model of combined ovariectomy and multiple-deficient diet was established to mimic human postmenopausal osteoporotic conditions under nutrient deficiency. Sprague-Dawley rats were untreated (control), laparatomized (sham), or ovariectomized and received a deficient diet (OVX-Diet). Multiple analyses involving structure (micro-computed tomography and biomechanics), cellularity (osteoblasts and osteoclasts), bone matrix (mRNA expression and IHC), and mineralization were investigated for a detailed characterization of osteoporosis. The study involved long-term observation up to 14 months (M14) after laparotomy or after OVX-Diet, with intermediate time points at M3 and M12. OVX-Diet rats showed enhanced osteoblastogenesis and osteoclastogenesis. Bone matrix markers (biglycan, COL1A1, tenascin C, and fibronectin) and low-density lipoprotein-5 (bone mass marker) were down-regulated at M12 in OVX-Diet rats. However, up-regulation of matrix markers and existence of unmineralized osteoid were seen at M3 and M14. Osteoclast markers (matrix metallopeptidase 9 and cathepsin K) were up-regulated at M14. Micro-computed tomography and biomechanics confirmed bone fragility of OVX-Diet rats, and quantitative RT-PCR revealed a higher turnover rate in the humerus than in lumbar vertebrae, suggesting enhanced bone formation and resorption in OVX-Diet rats. Such bone remodeling caused disturbed bone mineralization and severe bone loss, as reported in patients with high-turnover, postmenopausal osteoporosis. Therefore, this rat model may serve as a suitable tool to evaluate osteoporotic drugs and new biomaterials or fracture implants. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE PAGES

    Huang, Lu; Tian, Mengkun; Wu, Dong; ...

    2017-11-24

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  3. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lu; Tian, Mengkun; Wu, Dong

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  4. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.

    PubMed

    Ren, Li; Yang, Pengfei; Wang, Zhe; Zhang, Jian; Ding, Chong; Shang, Peng

    2015-10-01

    Bones with complicated hierarchical configuration and microstructures constitute the load-bearing system. Mechanical loading plays an essential role in maintaining bone health and regulating bone mechanical adaptation (modeling and remodeling). The whole-bone or sub-region (macroscopic) mechanical signals, including locomotion-induced loading and external actuator-generated vibration, ultrasound, oscillatory skeletal muscle stimulation, etc., give rise to sophisticated and distinct biomechanical and biophysical environments at the pericellular (microscopic) and collagen/mineral molecular (nanoscopic) levels, which are the direct stimulations that positively influence bone adaptation. While under microgravity, the stimulations decrease or even disappear, which exerts a negative influence on bone adaptation. A full understanding of the biomechanical and biophysical environment at different levels is necessary for exploring bone biomechanical properties and mechanical adaptation. In this review, the mechanical transferring theories from the macroscopic to the microscopic and nanoscopic levels are elucidated. First, detailed information of the hierarchical structures and biochemical composition of bone, which are the foundations for mechanical signal propagation, are presented. Second, the deformation feature of load-bearing bone during locomotion is clarified as a combination of bending and torsion rather than simplex bending. The bone matrix strains at microscopic and nanoscopic levels directly induced by bone deformation are critically discussed, and the strain concentration mechanism due to the complicated microstructures is highlighted. Third, the biomechanical and biophysical environments at microscopic and nanoscopic levels positively generated during bone matrix deformation or by dynamic mechanical loadings induced by external actuators, as well as those negatively affected under microgravity, are systematically discussed, including the interstitial fluid flow (IFF) within the lacunar-canalicular system and at the endosteum, the piezoelectricity at the deformed bone surface, and the streaming potential accompanying the IFF. Their generation mechanisms and the regulation effect on bone adaptation are presented. The IFF-induced chemotransport effect, shear stress, and fluid drag on the pericellular matrix are meaningful and noteworthy. Furthermore, we firmly believe that bone adaptation is regulated by the combination of bone biomechanical and biophysical environment, not only the commonly considered matrix strain, fluid shear stress, and hydrostatic pressure, but also the piezoelectricity and streaming potential. Especially, it is necessary to incorporate bone matrix piezoelectricity and streaming potential to explain how osteoblasts (bone formation cells) and osteoclasts (bone resorption cells) can differentiate among different types of loads. Specifically, the regulation effects and the related mechanisms of the biomechanical and biophysical environments on bone need further exploration, and the incorporation of experimental research with theoretical simulations is essential. Copyright © 2015. Published by Elsevier Ltd.

  5. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis.

    PubMed

    Schweitzer, Mary H; Zheng, Wenxia; Organ, Chris L; Avci, Recep; Suo, Zhiyong; Freimark, Lisa M; Lebleu, Valerie S; Duncan, Michael B; Vander Heiden, Matthew G; Neveu, John M; Lane, William S; Cottrell, John S; Horner, John R; Cantley, Lewis C; Kalluri, Raghu; Asara, John M

    2009-05-01

    Molecular preservation in non-avian dinosaurs is controversial. We present multiple lines of evidence that endogenous proteinaceous material is preserved in bone fragments and soft tissues from an 80-million-year-old Campanian hadrosaur, Brachylophosaurus canadensis [Museum of the Rockies (MOR) 2598]. Microstructural and immunological data are consistent with preservation of multiple bone matrix and vessel proteins, and phylogenetic analyses of Brachylophosaurus collagen sequenced by mass spectrometry robustly support the bird-dinosaur clade, consistent with an endogenous source for these collagen peptides. These data complement earlier results from Tyrannosaurus rex (MOR 1125) and confirm that molecular preservation in Cretaceous dinosaurs is not a unique event.

  6. Identification of osteocalcin as a permanent aging constituent of the bone matrix: basis for an accurate age at death determination.

    PubMed

    Ritz, S; Turzynski, A; Schütz, H W; Hollmann, A; Rochholz, G

    1996-01-12

    Age at death determination based on aspartic acid racemization in dentin has been applied successfully in forensic odontology for several years now. An age-dependent accumulation of D-aspartic acid has also recently been demonstrated in bone osteocalcin, one of the most abundant noncollagenous proteins of the organic bone matrix. Evaluation of these initial data on in vivo racemization of aspartic acid in bone osteocalcin was taken a step further. After purification of osteocalcin from 53 skull bone specimens, the extent of aspartic acid racemization in this peptide was determined. The D-aspartic acid content of purified bone osteocalcin exhibited a very close relationship to age at death. This confirmed identification of bone osteocalcin as a permanent, 'aging' peptide of the organic bone matrix. Its D-aspartic acid content may be used as a measure of its age and hence that of the entire organism. The new biochemical approach to determination of age at death by analyzing bone is complex and demanding from a methodologic point of view, but appears to be superior in precision and reproducibility to most other methods applicable to bone.

  7. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    PubMed

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  8. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    PubMed Central

    Xu, Weiguo; Ganz, Cornelia; Weber, Ulf; Adam, Martin; Holzhüter, Gerd; Wolter, Daniel; Frerich, Bernhard; Vollmar, Brigitte; Gerber, Thomas

    2011-01-01

    In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising. PMID:21845044

  9. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management

    PubMed Central

    Fernandez de Grado, Gabriel; Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Bornert, Fabien; Offner, Damien

    2018-01-01

    Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research. PMID:29899969

  10. Identification of proteinaceous material in the bone of the dinosaur Iguanodon.

    PubMed

    Embery, Graham; Milner, Angela C; Waddington, Rachel J; Hall, Rachel C; Langley, Martin S; Milan, Anna M

    2003-01-01

    This study has directed attention at the search for bone-related proteins in an extract of demineralized rib bone of the 120 mya Iguanodon. The inner compact bone was demineralized and the GuCl extract resolved into 11 fractions using anion exchange chromatography, which all contained silver-reactive proteins with various amino acid profiles. Two specific fractions, iv and xi, revealed characteristics typical of contemporary phosphoproteins and proteoglycans, respectively. Fraction iv, 43-57 kDa, contained a high ratio of aspartate and serine, although no phosphate was discernable. Fraction xi contained a band of 41-47 kDa and was rich in chondroitin sulphate and hyaluronan. In addition an early eluting fraction was immunoreactive with an antibody against osteocalcin. A cancellous bone fraction from the same bone sample was also analyzed using N-terminal sequencing and revealed potential similarities with cystatin. While we do not claim to have identified the presence of intact proteins, this study has value in demonstrating that extruded extracellular matrix is protected by its capacity to induce mineralization, which subsequently is important in conserving detectable protein products in ancient skeletal tissues.

  11. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    PubMed

    Götz, Werner; Lenz, Solvig; Reichert, Christoph; Henkel, Kai-Olaf; Bienengräber, Volker; Pernicka, Laura; Gundlach, Karsten K H; Gredes, Tomasz; Gerber, Thomas; Gedrange, Tomasz; Heinemann, Friedhelm

    2010-12-01

    To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  12. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties.

    PubMed

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Simon, Yannick; Audran, Maurice; Flatt, Peter R; Chappard, Daniel

    2014-06-01

    Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  14. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size

    NASA Astrophysics Data System (ADS)

    Barthelat, Francois

    2014-12-01

    Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.

  15. Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo

    PubMed Central

    Dennis, S. Connor; Berkland, Cory J.; Bonewald, Lynda F.

    2015-01-01

    Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's “ideal” osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the “hard” or “bony” callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., “pro-” or “soft” callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native “raw” materials and ECM-based designs that provide necessary osteo- and chondro-conductive and inductive features for enhancing EC ossification. In addition, critical perspectives on existing stem cell-based therapeutic strategies will be discussed with a focus on their use as an extension of the acellular ECM-based designs for specific clinical indications. Within this framework, a novel realm of unexplored design strategies for bone tissue engineering will be introduced into the collective consciousness of the regenerative medicine field. PMID:25336144

  16. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    PubMed

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  17. Visfatin alters the cytokine and matrix-degrading enzyme profile during osteogenic and adipogenic MSC differentiation.

    PubMed

    Tsiklauri, Lali; Werner, Janina; Kampschulte, Marian; Frommer, Klaus W; Berninger, Lucija; Irrgang, Martina; Glenske, Kristina; Hose, Dirk; El Khassawna, Thaqif; Pons-Kühnemann, Jörn; Rehart, Stefan; Wenisch, Sabine; Müller-Ladner, Ulf; Neumann, Elena

    2018-06-13

    Age-related bone loss is associated with bone marrow adiposity. Adipokines (e.g. visfatin, resistin, leptin) are adipocyte-derived factors with immunomodulatory properties and might influence differentiation of bone marrow-derived mesenchymal stem cells (MSC) in osteoarthritis (OA) and osteoporosis. Thus, the presence of adipokines and MMPs in bone marrow and their effects on MSC differentiation were analyzed. MSC and RNA were isolated from femoral heads after hip replacement surgery of OA or osteoporotic femoral neck fracture (FF) patients. Bone structural parameters were evaluated by μCT. MSC were differentiated towards adipocytes or osteoblasts with/without adipokines. Gene expression (adipokines, bone marker genes, MMPs, TIMPs) and cytokine production was evaluated by realtime-PCR and ELISA. Matrix mineralization was quantified using Alizarin red S staining. μCT showed an osteoporotic phenotype of FF compared to OA bone (reduced trabecular thickness and increased ratio of bone surface vs. volume of solid bone). Visfatin and leptin were increased in FF vs OA. Visfatin induced the secretion of IL-6, IL-8, and MCP-1 during osteogenic and adipogenic differentiation. In contrast to resistin and leptin, visfatin increased MMP2 and MMP13 during Adipognesis. In osteogenically differentiated cells, MMPs and TIMPs were reduced by visfatin. Visfatin significantly increased matrix mineralization during osteogenesis, whereas collagen type I expression was reduced. Visfatin-mediated increase of matrix mineralization and reduced collagen type I expression could contribute to bone fragility. Visfatin is involved in impaired bone remodeling at the adipose tissue/bone interface through induction of proinflammatory factors and dysregulated MMP/TIMP balance during MSC differentiation. Copyright © 2018. Published by Elsevier Ltd.

  18. Brucella and Osteoarticular Cell Activation: Partners in Crime

    PubMed Central

    Giambartolomei, Guillermo H.; Arriola Benitez, Paula C.; Delpino, M. Victoria

    2017-01-01

    Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4+ T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the interaction between B. abortus and immune and osteoarticular cells may play an important role in producing damage in joint and bone. PMID:28265268

  19. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    PubMed

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P < 0.01, R 2  = 0.966; Raman ν 1 PO 4 /Amide I: P < 0.01, R 2  = 0.919; Raman ν 1 PO 4 /Proline + Hydroxyproline: P < 0.01, R 2  = 0.976; Raman ν 1 PO 4 /Phenylalanine: P < 0.01, R 2  = 0.911; Raman ν 1 PO 4 /δ CH 2 : P < 0.01, R 2  = 0.894; IR P < 0.01, R 2  = 0.91). Fourier transform infrared mineral:matrix ratio values from native bone tissue were also similar to theoretical mineral:matrix ratio values for a given ash fraction. Raman and IR mineral:matrix ratio values were strongly correlated ( P < 0.01, R 2  = 0.82). These results were confirmed by calculating the mineral:matrix ratio for theoretical IR spectra, developed by applying the Beer-Lambert law to calculate the relative extinction coefficients of HA and collagen over the same range of wavenumbers (800-1800 cm -1 ). The results confirm that the Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  20. The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts.

    PubMed

    López-Álvarez, M; Pérez-Davila, S; Rodríguez-Valencia, C; González, P; Serra, J

    2016-06-07

    Autologous bone is considered to be the gold standard for bone tissue regeneration, providing more highly efficient functional responses compared to synthetic materials, and avoiding the rejection risks of allogenic grafts. However, it presents limitations for certain types of surgery due to its high resorption levels and donor site morbidity. Different biphasic synthetic composites, based onnon-apatitic calcium phosphates enriched with apatitic phases-such as hydroxyapatite, and bioderived bone grafts of bovine and porcine origin-are proposed as lower resorption materials due to their higher crystalline structure. The present work proposes two new sources of bioapatites for bone filler applications obtained from the dentine and enameloid of shark teeth, respectively. These bioapatites each present a characteristic apatite-based composition and additional enrichments of specific trace elements, such as magnesium and fluorine, with proven roles in bone metabolism. Their processing and physicochemical characterization (SEM, FT-Raman and XRD) is presented, together with an in vitro evaluation of osteogenic activity compared to a commercial bovine mineralized matrix and synthetic HA/β TCP grafts. The results proved the globular morphology (0.5-1.5 μm) and porosity (~50 μm and ~0.5-1 μm) of shark dentine bioapatites with biphasic composition: apatitic (hydroxyapatite and apatite-(CaF)), non-apatitic (whitlockite), and an apatitic phase (fluorapatite), organized in oriented crystals in enameloid bioapatites. An evaluation of the pre-osteoblast MC3T3-E1 morphology revealed the colonization of pores in dentine bioapatites and an aligned cell growth in the oriented enameloid crystals. A higher proliferation (p  <  0.01) was detected at up to 21 d in both the shark bioapatites and synthetic biphasic graft with respect to the bovine mineralized matrix. Finally, the great potential of porous biphasic dentine bioapatites enriched with Mg and the aligned fluorapatite crystals of enameloid bioapatites in promoting greater osteogenic activity was confirmed with a significantly increased ALP synthesis (p  <  0.01) compared to the commercial grafts.

  1. Lipids and collagen matrix restrict the hydraulic permeability within the porous compartment of adult cortical bone

    PubMed Central

    Wen, Demin; Androjna, Caroline; Vasanji, Amit; Belovich, Joanne; Midura, Ronald J.

    2010-01-01

    In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10−17 m2, a value consistent with prior knowledge. After extracting lipids, permeability increased to a median value of 8.6 × 10−16 m2. After further digesting with collagenase, permeability increased to a median value of 1.4 × 10−14 m2. We conclude that the presence of both lipids and collagen matrix within the porous compartment of cortical bone restricts its radial permeability. These novel findings suggest that the chemical composition of the tissue matrix within the porous compartment of cortical bone influences the transport and exchange of nutrients and waste products, and possibly influences the metabolic functions of osteocytes and osteoblasts. PMID:19967451

  2. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.

    2015-10-01

    Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.

  3. Bone sialoprotein and its transcriptional regulatory mechanism.

    PubMed

    Ogata, Y

    2008-04-01

    Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.

  4. Alterations in mineral properties of zebrafish skeletal bone induced by liliput dtc232 gene mutation

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Mei; Cui, Fu-Zhai; Ge, Jun; Ma, Chen

    2003-11-01

    The alterations of mineral properties of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone diseases, were reported for the first time in this paper. Transmission electron microscope (TEM), Fourier transform infrared microspectroscopy (FTIRM) and thermogravimetric analysis (TGA) were used to investigate the changes in the mineral. Significant variations of the morphologies of the minerals and the mineral/matrix ratio after liliputdtc232(lil) gene mutation have been observed. The morphologies of the minerals, examined by TEM, revealed that the mutated mineral was in bigger size and the shape was block shaped but not plate shaped. The results of FTIRM indicated that the lil mutant zebrafish skeleton exhibited a greater mineral/matrix ratio (phosphate/matrix=4.86±0.28) than that of wild-type zebrafish bone (phosphate/matrix=4.17±0.67), which was confirmed by TGA analysis. Furthermore, the mineral of lil bone became less mature and crystalline with more ion substitutions. And the selected areas electron diffraction (SAED) patterns showed that the main crystal phases of the two type fishes were both hydroxyapatite. In addition, we have discussed the relationship among the mineral properties, nanomechanical properties and biomineralization process.

  5. Modifications in Bone Matrix of Estrogen-Deficient Rats Treated with Intermittent PTH

    PubMed Central

    Campos, Jenifer Freitas; Katchburian, Eduardo; de Medeiros, Valquíria Pereira; Nader, Helena Bonciani; Nonaka, Keico Okino; Plotkin, Lilian Irene; Reginato, Rejane Daniele

    2015-01-01

    Bone matrix dictates strength, elasticity, and stiffness to the bone. Intermittent parathyroid hormone (iPTH), a bone-forming treatment, is widely used as a therapy for osteoporosis. We investigate whether low doses of intermittent PTH (1-34) change the profile of organic components in the bone matrix after 30 days of treatment. Forty 6-month-old female Wistar rats underwent ovariectomy and after 3 months received low doses of iPTH administered for 30 days: daily at 0.3 µg/kg/day (PTH03) or 5 µg/kg/day (PTH5); or 3 times per week at 0.25 µg/kg/day (PTH025). After euthanasia, distal femora were processed for bone histomorphometry, histochemistry for collagen and glycosaminoglycans, biochemical quantification of sulfated glycosaminoglycans, and hyaluronan by ELISA and TUNEL staining. Whole tibiae were used to estimate the bone mineral density (BMD). Histomorphometric analysis showed that PTH5 increased cancellous bone volume by 6% over vehicle-treated rats. In addition, PTH5 and PTH03 increased cortical thickness by 21% and 20%, respectively. Tibial BMD increased in PTH5-treated rats and this group exhibited lower levels of chondroitin sulfate; on the other hand, hyaluronan expression was increased. Hormonal administration in the PTH5 group led to decreased collagen maturity. Further, TUNEL-positive osteocytes were decreased in the cortical compartment of PTH5 whereas administration of PTH025 increased the osteocyte death. Our findings suggest that daily injections of PTH at low doses alter the pattern of organic components from the bone matrix, favoring the increase of bone mass. PMID:25695082

  6. Osteograft, plastic material for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Zaidman, A. M.; Korel, A. V.; Shevchenko, A. I.; Shchelkunova, E. I.; Sherman, K. M.; Predein, Yu. A.; Kosareva, O. S.

    2016-08-01

    Creating tissue-engineering constructs based on the mechanism of cartilage-bone evolution is promising for traumatology and orthopedics. Such a graft was obtained from a chondrograft by transdifferentiation. The hondrograft placed in osteogenic medium is undergoing osteogenic differentiation for 14-30 days. Tissue specificity of the osteograft was studied by morphology, immunohistochemistry, electron microscopy, and the expression of the corresponding genes was estimated. The expression of osteonectin, fibronectin, collagen of type I, izolektin and CD 44 is determined. Alkaline phosphatase and matrix vesicles are determined in osteoblasts. Calcificates are observed in the matrix. Chondrogenic proteins expression is absent. These findings evidence the tissue specificity of the developed osteograft.

  7. Scavenging free radicals and soaring osteoinduction by extra cellular matrix protein-based nanocomposites on degenerative bone treatments.

    PubMed

    Kandiah, Kavitha; Duraisamy, Navaneethan; Amirthalingam, Vinoth; Ramasamy, Balagurunathan

    2017-08-01

    A number of materials are now available to alleviate the ever-growing bone disruption. However, these are inadequate and inappropriate for addressing issues associated natural process of aging and degeneration of bone due to diseases. This study advances the existing material and offers more privileged and synergistically active remedy for these conditions. Here, they are three different nano-composites prepared such as nano-TiO 2 with chitosan (TC), nano-TiO 2 with chondroitin 4-sulfate (TG), and nano-TiO 2 with chitosan and chondroitin 4-sulfate (TCG), whereas nano-TiO 2 act as a control. The prepared nanocomposite was studied for determining its bactericidal and fungicidal activity by using disk diffusion method. In addition, the osteoinductive, free radical forming, and scavenging abilities of the nanocomposite treated MG-63 cell lines were analyzed using gene expression and biochemical analysis respectively. The augmented fungicidal (~16mm) activities of TCG against bone-infecting pathogens can be effectively used in bone transplantation application. The expression of osteoblast-inducing genes in MG-63 cell line and their up-regulation in nanocomposite treatment, especially in TCG, made this material more desirable. The formation of free radicals such as thiobarbituric acid reactive substance and nitric oxide gradually reduced with the treatment of nanocomposites than control and nano-TiO 2 . Contrarily, it was found that MG-63 along with nanocomposites statistically increases the production of ALP, antioxidant enzymes (super oxide mutase) and total antioxidant activity (ferric reducing antioxidant power) in several folds compare with the control and nano-TiO 2 . All the results with statistical scale suggest TCG as an effectual and affordable biomaterial in bone regeneration therapy among the prepared samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.

    2010-01-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909

  9. Enhancement of healing in osteochondral defects by collagen sponge implants.

    PubMed

    Speer, D P; Chvapil, M; Volz, R G; Holmes, M D

    1979-10-01

    Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.

  10. Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition.

    PubMed

    Zhang, Shen; Zhang, Xin; Cai, Qing; Wang, Bo; Deng, Xuliang; Yang, Xiaoping

    2010-12-01

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  11. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats.

    PubMed

    Hiraga, Toru; Ninomiya, Tadashi; Hosoya, Akihiro; Takahashi, Masafumi; Nakamura, Hiroaki

    2009-01-01

    Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.

  12. The Design of Mechanically Compatible Fasteners for Human Mandible Reconstruction

    NASA Technical Reports Server (NTRS)

    Roberts, Jack C.; Ecker, John A.; Biermann, Paul J.

    1993-01-01

    Mechanically compatible fasteners for use with thin or weakened bone sections in the human mandible are being developed to help reduce large strain discontinuities across the bone/implant interface. Materials being considered for these fasteners are a polyetherertherketone (PEEK) resin with continuous quartz or carbon fiber for the screw. The screws were designed to have a shear strength equivalent to that of compact/trabecular bone and to be used with a conventional nut, nut plate, or an expandable shank/blind nut made of a ceramic filled polymer. Physical and finite element models of the mandible were developed in order to help select the best material fastener design. The models replicate the softer inner core of trabecular bone and the hard outer shell of compact bone. The inner core of the physical model consisted of an expanding foam and the hard outer shell consisted of ceramic particles in an epoxy matrix. This model has some of the cutting and drilling attributes of bone and may be appropriate as an educational tool for surgeons and medical students. The finite element model was exercised to establish boundary conditions consistent with the stress profiles associated with mandible bite forces and muscle loads. Work is continuing to compare stress/strain profiles of a reconstructed mandible with the results from the finite element model. When optimized, these design and fastening techniques may be applicable, not only to other skeletal structures, but to any composite structure.

  13. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  14. Osteoconductive carriers for integrated bone repair

    PubMed Central

    Ganey, Timothy; Hutton, William; Meisel, Hans Jörg

    2009-01-01

    Successful bone repair is judged in achieving restitution of space and mechanical integrity, and in regaining function. When the biology or anatomy are insufficient to attain a full repair, therapeutic use of graft material has been used to omit compliance features such as strain tolerance, reduced stiffness, and attenuated strength, and instead promote primary or membranous-type bone formation within the physical approximation of a graft material. The challenge of most conductive materials is that they emerge from a static platform and in placement force the living system to adapt to placement, dimension, different properties, and eventually are only successful in degradation and replacement, or in integration. The synergy and interdependency between adhesion, ECM, and proteolysis are important concepts that must be understood to engineer scaffolds capable of holding up to standards which are more than cell decoration. Moreover, the reactive specificity to loading, degradation, therapeutic delivery during absorption remains a key aim of both academic and industrial designs. Achieving conductivity comes with challenges of best fit integration, delivery, and in integrated modeling. The more liquid is the delivery, the more modular the components, and adaptive the matrix to meeting the intended application, the more likely that the conductivity will not be excluded by the morphology of the injury site. Considerations for osteoconductive materials for bone repair and replacement have developed conceptually and advanced parallel with a better understanding of not only bone biology but of materials science. First models of material replacements utilized a reductionist-constructionist logic; define the constituents of the material in terms of its morphology and chemical composition, and then engineer material with similar content and properties as a means of accommodating a replacement. Unfortunately for biologic systems, empiric formulation is insufficient to promote adequate integration in a timely fashion. Future matrices will need to translate their biological surfaces as more than a scaffold to be decorated with cells. Conductivity will be improved by formulations that enhance function, further extended from understanding what composition best suits cell attachment, and be adopted by conveniences of delivery that meet those criteria. PMID:25802634

  15. Osteoconductive carriers for integrated bone repair.

    PubMed

    Ganey, Timothy; Hutton, William; Meisel, Hans Jörg

    2009-01-01

    Successful bone repair is judged in achieving restitution of space and mechanical integrity, and in regaining function. When the biology or anatomy are insufficient to attain a full repair, therapeutic use of graft material has been used to omit compliance features such as strain tolerance, reduced stiffness, and attenuated strength, and instead promote primary or membranous-type bone formation within the physical approximation of a graft material. The challenge of most conductive materials is that they emerge from a static platform and in placement force the living system to adapt to placement, dimension, different properties, and eventually are only successful in degradation and replacement, or in integration. The synergy and interdependency between adhesion, ECM, and proteolysis are important concepts that must be understood to engineer scaffolds capable of holding up to standards which are more than cell decoration. Moreover, the reactive specificity to loading, degradation, therapeutic delivery during absorption remains a key aim of both academic and industrial designs. Achieving conductivity comes with challenges of best fit integration, delivery, and in integrated modeling. The more liquid is the delivery, the more modular the components, and adaptive the matrix to meeting the intended application, the more likely that the conductivity will not be excluded by the morphology of the injury site. Considerations for osteoconductive materials for bone repair and replacement have developed conceptually and advanced parallel with a better understanding of not only bone biology but of materials science. First models of material replacements utilized a reductionist-constructionist logic; define the constituents of the material in terms of its morphology and chemical composition, and then engineer material with similar content and properties as a means of accommodating a replacement. Unfortunately for biologic systems, empiric formulation is insufficient to promote adequate integration in a timely fashion. Future matrices will need to translate their biological surfaces as more than a scaffold to be decorated with cells. Conductivity will be improved by formulations that enhance function, further extended from understanding what composition best suits cell attachment, and be adopted by conveniences of delivery that meet those criteria.

  16. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-linked Glycoprotein) Levels

    DTIC Science & Technology

    2006-10-01

    members include bone sialoprotein (BSP), osteopontin (OPN), dentin matrix protein-1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix extracellular...quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). In addition we have a...panels e and f). 6 Figure 1. Serum levels of SIBLINGs in prostate cancer sera. Serum levels of (a) bone sialoprotein (BSP), (c) dentin

  17. The Role of Polydimethylsiloxane in the Molecular Structure of Silica Xerogels Intended for Drug Carriers

    PubMed Central

    Czarnobaj, Katarzyna

    2015-01-01

    The aim of this study was to prepare and examine polymer/oxide xerogels with metronidazole (MT) as delivery systems for the local application of a drug to a bone. The nanoporous SiO2-CaO and PDMS-modified SiO2-CaO xerogel materials with different amounts of the polymer, polydimethylsiloxane (PDMS), were prepared by the sol-gel method. Characterization assays comprised the analysis of the composite materials by using Fourier transform infrared spectroscopy (FTIR), determining the specific surface area of solids (BET), using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) techniques, and further monitoring in the ultraviolet and visible light regions (UV-Vis) of the in vitro release of the drug (metronidazole) over time. According to these results, the bioactive character and chemical stability of PDMS-modified silica xerogels have been proven. The release of MT from xerogels was strongly correlated with the composition of the matrix. In comparison with the pure oxide matrix, PDMS-modified matrices accelerated the release of the drug through its bigger pores, and additionally, on account of weaker interactions with the drug. The obtained results for the xerogel composites suggest that the metronidazole-loaded xerogels could be promising candidates for formulations in local delivery systems particularly to bone. PMID:26839836

  18. Magneto-mechanical bone growth stimulation by actuation of highly porous ferromagnetic fiber arrays

    NASA Astrophysics Data System (ADS)

    Markaki, Athina E.; Clyne, Trevor W.

    2005-02-01

    This work relates to porous material made by bonding together fibres of a magnetic material. When subjected to a magnetic field, the array deforms, with individual fibres becoming magnetised along their length and then tending to line up locally with the direction of the field. An investigation is presented into the concept that this deformation could induce beneficial strains in bone tissue network in the early stages of growth as it grows into the porous fibre array. An analytical model has been developed, based on the deflection of individual fibre segments (between joints) experiencing bending moments as a result of the induced magnetic dipole. The model has been validated via measurements made on simple fibre assemblies and random fibre arrays. Work has also been done on the deformation characteristics of random fibre arrays with a matrix filling the inter-fibre space. This has the effect of reducing the fibre deflections. The extent of this reduction, and an estimate of the maximum strains induced in the space-filling material, can be obtained using a simple force balance approach. Predictions indicate that in-growing bone tissue, with a stiffness of around 0.01-0.1 GPa, could be strained to beneficial levels (~1 millistrain), using magnetic field strengths in current diagnostic use (~1 Tesla), provided the fibre segment aspect ratio is at least about 10. Such material has a low Young"s modulus, but the overall stiffness of a prosthesis could be matched to that of cortical bone by using an integrated design involving a porous magneto-active layer bonded to a dense non-magnetic core.

  19. Graphene oxide and hydroxyapatite as fillers of polylactic acid nanocomposites: preparation and characterization.

    PubMed

    Marques, Paula A A P; Gonçalves, Gil; Singh, Manoj K; Grácio, José

    2012-08-01

    Graphene and its derivatives have attracted great research interest for their potential applications in electronics, energy, materials and biomedical areas. When incorporated appropriately, these atomically thin carbon sheets are expected to improve physical properties of host polymers at extremely small loading. Herein, we report a novel two-step method for the preparation of PLLA/Hap/graphene oxide nanocomposites with augmented mechanical properties when compared to PLLA/Hap and neat PLLA. The presence of graphene oxide (GO) had a positive effect on the dispersion of hydroxyapatite particles on the polymeric matrix contributing for a good homogeneity of the final nanocomposite. PLLA nanocomposites prepared with 30% (w/w) of Hap and 1% (w/w) of GO showed the highest hardness and storage modulus values indicating an efficient load transfer between the fillers and the PLLA matrix. These materials may find interesting biomedical applications as for example bone screws. The following step on the study of these materials will be in vitro tests to access the biocompatibility of these new nanocomposites.

  20. T Lymphocytes Influence the Mineralization Process of Bone

    PubMed Central

    El Khassawna, Thaqif; Serra, Alessandro; Bucher, Christian H.; Petersen, Ansgar; Schlundt, Claudia; Könnecke, Ireen; Malhan, Deeksha; Wendler, Sebastian; Schell, Hanna; Volk, Hans-Dieter; Schmidt-Bleek, Katharina; Duda, Georg N.

    2017-01-01

    Bone is a unique organ able to regenerate itself after injuries. This regeneration requires the local interplay between different biological systems such as inflammation and matrix formation. Structural reconstitution is initiated by an inflammatory response orchestrated by the host immune system. However, the individual role of T cells and B cells in regeneration and their relationship to bone tissue reconstitution remain unknown. Comparing bone and fracture healing in animals with and without mature T and B cells revealed the essential role of these immune cells in determining the tissue mineralization and thus the bone quality. Bone without mature T and B cells is stiffer when compared to wild-type bone thus lacking the elasticity that helps to absorb forces, thus preventing fractures. In-depth analysis showed dysregulations in collagen deposition and osteoblast distribution upon lack of mature T and B cells. These changes in matrix deposition have been correlated with T cells rather than B cells within this study. This work presents, for the first time, a direct link between immune cells and matrix formation during bone healing after fracture. It illustrates specifically the role of T cells in the collagen organization process and the lack thereof in the absence of T cells. PMID:28596766

  1. Evaluation of different rotary devices on bone repair in rabbits.

    PubMed

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I--pneumatic low-speed rotation engine, II--pneumatic high-speed rotation engine, and III--electric low-speed rotation engine. The anatomic pieces were surgically obtained after 2, 7 and 30 days and submitted to histological and morphometric analysis. The morphometric results were expressed as the total area of bone remodeling matrix using an image analysis system. Increases in the bone remodeling matrix were noticed with time along the course of the experiment. No statistically significant differences (p>0.05) were observed among the groups at the three sacrificing time points considering the total area of bone mineralized matrix, although the histological analysis showed a slightly advanced bone repair in group III compared to the other two groups. The findings of the present study suggest that the type of rotary device used in oral and maxillofacial surgery does not interfere with the bone repair process.

  2. Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.

    PubMed

    Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid

    2015-11-07

    Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. CMT for materials science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, J.

    This session is comprised of two articles by John Kinney describing biomedical and other uses for computerized tomography. In the first article, Kinney describes the use of a three-dimensional x-ray tomographic microscope to image the trabecular bone architecture of the proximal tibias of rats in vivo. Research in this field may help to detect the earliest stages of hypoestrogenemic bone loss and may help to more rapidly test the effectiveness of new clinical treatments for this major public health problem. The second article describes recent advances in X-ray tomography using synchrotron radiation to evaluate microstructures in ceramic matrix composites, bonemore » loss in osteoporosis, and the development of carries lesions in teeth.« less

  4. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    PubMed Central

    Boos, Anja M; Weigand, Annika; Deschler, Gloria; Gerber, Thomas; Arkudas, Andreas; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2014-01-01

    New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA) bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2), and different carrier materials (fibrin, cell culture medium, autologous serum) was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 μg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin). Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly in the group with autologous serum and after 12 weeks in every experimental group. This study clearly demonstrates the positive effects of autologous serum in combination with mesenchymal stem cells and rhBMP-2 on bone formation in a primary stable silica-embedded nano-HA bone grafting material in the sheep model. In further experiments, the results will be transferred to the sheep arteriovenous loop model in order to engineer an axially vascularized primary stable bone replacement in clinically relevant size for free transplantation. PMID:25429218

  5. Synthetic Bone Substitute Engineered with Amniotic Epithelial Cells Enhances Bone Regeneration after Maxillary Sinus Augmentation

    PubMed Central

    Barboni, Barbara; Mangano, Carlo; Valbonetti, Luca; Marruchella, Giuseppe; Berardinelli, Paolo; Martelli, Alessandra; Muttini, Aurelio; Mauro, Annunziata; Bedini, Rossella; Turriani, Maura; Pecci, Raffaella; Nardinocchi, Delia; Zizzari, Vincenzo Luca; Tetè, Stefano; Piattelli, Adriano; Mattioli, Mauro

    2013-01-01

    Background Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. Aim In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC), loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT) technique, was evaluated in an animal study. Material And Methods Two blocks of synthetic bone substitute (∼0.14 cm3), alone or engineered with 1×106 ovine AEC (oAEC), were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.). Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT), morphological, morphometric and biochemical analyses. Results And Conclusions The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation), data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their ability to switch-on the expression of a specific bone-related protein (osteocalcin, OCN) when transplanted into host tissues. PMID:23696804

  6. A clinical investigation of demineralized bone matrix putty for treatment of periodontal bony defects in humans.

    PubMed

    Banjar, Arwa Ahmed; Mealey, Brian L

    2013-01-01

    The goal of this study was to evaluate the effectiveness of demineralized bone matrix (DBM) putty, consisting of demineralized human bone allograft matrix in a carrier of bovine collagen and alginate, for the treatment of periodontal defects in humans. Twenty subjects with at least one site having a probing depth ≥ 6 mm and radiographic evidence of bony defect depth > 3 mm were included. The infrabony defects were grafted with DBM putty bone graft. The following clinical parameters were assessed at baseline and 6 months posttreatment: probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). Bone fill was evaluated using transgingival probing and standardized radiographs taken at baseline and 6 months posttreatment. The 6-month evaluation showed a significant PD reduction of 3.27 ± 1.67 mm and clinical attachment gain of 2.27 ± 1.74 mm. Bone sounding measurements showed a mean clinical bone defect fill of 2.93 ± 1.87 mm and a mean radiographic bone fill of 2.55 ± 2.31 mm. The use of DBM putty was effective for treatment of periodontal bony defects in humans. Significant improvement in CAL, PD, and bone fill was observed at 6 months compared to baseline.

  7. Preparation and Characterization of a Chitosan/Gelatin/Extracellular Matrix Scaffold and Its Application in Tissue Engineering.

    PubMed

    Wang, Xiaoyan; Yu, Tailong; Chen, Guanghua; Zou, Jilong; Li, Jianzhong; Yan, Jinglong

    2017-03-01

    Previous studies have demonstrated that extracellular matrix (ECM) can be used in tissue engineering due to its bioactivity. However, adipose-derived ECM (A-dECM) has never been applied in bone tissue engineering, and it is unknown whether it would be beneficial to the growth of bone marrow mesenchymal stem cells (BMSCs). In this study, we produced chitosan/gelatin/A-dECM (C/G/A-dECM) scaffolds via lyophilization and crosslinking; chitosan/gelatin (C/G) scaffolds were used as controls. For the C/G/A-dECM scaffolds, the average pore size was 285.93 ± 85.39 μm; the average porosity was 90.62 ± 3.65%; the average compressive modulus was 0.87 ± 0.05 kPa; and the average water uptake ratio was 13.73 ± 1.16. In vitro, A-dECM scaffolds could promote the attachment and proliferation of BMSCs. In the same osteogenic-inducing reagent, better osteogenic differentiation could be observed for the C/G/A-dECM scaffolds than for the C/G scaffolds. Thus, we conclude that A-dECM is a promising material and that C/G/A-dECM scaffolds are a candidate for bone tissue engineering.

  8. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  9. Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats

    PubMed Central

    2012-01-01

    Background Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. Methods 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. Results Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. Conclusions A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling. PMID:22443362

  10. Function of Matrix IGF-1 in Coupling Bone Resorption and Formation

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2013-01-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256

  11. Function of matrix IGF-1 in coupling bone resorption and formation.

    PubMed

    Crane, Janet L; Cao, Xu

    2014-02-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.

  12. Synthesis and characterization of inorganic materials precipitated into polymeric and novel liquid crystalline systems

    NASA Astrophysics Data System (ADS)

    Lubeck, Christopher Ryan

    The use of nanostructured, hybrid materials possesses great future potential. Many examples of nanostructured materials exist within nature, such as animal bone, animal teeth, and seashells. This research, inspired by nature, strove to mimic salient properties of natural materials, utilizing methods observed within nature to produce materials. Further, this research increased the functionality of the templates from "mere" template to functional participant. Different chemical methods to produce hybrid materials were employed within this research to achieve these goals. First, electro-osmosis was utilized to drive ions into a polymeric matrix to form hybrid inorganic polymer material, creating a material inspired by naturally occurring bone or seashell in which the inorganic component provides strength and the polymeric material decreases the brittleness of the combined hybrid material. Second, self-assembled amphiphiles, forming higher ordered structures, acted as a template for inorganic cadmium sulfide. Electronically active molecules based on ethylene oxide and aniline segments were synthesized to create interaction between the templating material and the resulting inorganic cadmium sulfide. The templating process utilized self-assembly to create the inorganic structure through the interaction of the amphiphiles with water. The use of self-assembly is itself inspired by nature. Self-assembled structures are observed within living cells as cell walls and cell membranes are created through hydrophilic and hydrophobic interactions. Finally, the mesostructured inorganic cadmium sulfide was itself utilized as a template to form mesostructured copper sulfide.

  13. Development of a Three-Dimensional Bone-Like Construct in a Soft Self-Assembling Peptide Matrix

    PubMed Central

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel

    2013-01-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell–cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell–cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix. PMID:23157379

  14. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and ismore » therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.« less

  15. Bone response to collagenized xenografts of porcine origin (mp3(®) ) and a bovine bone mineral grafting (4BONE(™) XBM) grafts in tibia defects: experimental study in rabbits.

    PubMed

    Calvo-Guirado, José Luis; Aguilar-Salvatierra, Antonio; Ramírez-Fernández, Maria P; Maté Sánchez de Val, José E; Delgado-Ruiz, Rafael Arcesio; Gómez-Moreno, Gerardo

    2016-08-01

    This study aimed to carry out the evaluation of bone response of new bone formation to two different xenografts (bovine and porcine) biomaterials inserted in rabbit tibiae. The study used a total of 20 male New Zealand albino rabbits. They received a total of 40 grafts in the proximal metaphyseal areas of both tibiae. Two biomaterials were evaluated: 20 porcine xenografts, as a bone granulate (OsteoBiol(®) MP3(®) ; Tecnoss srl, Giaveno, Italy), were placed in the proximal metaphyseal area of the right tibia, 20 anorganic bovine bone mineral grafting (4BONE(™) XBM, MIS Implants Inc., BARLEV, Israel) were placed in the left tibia. Following graft insertion, the animals were sacrificed in two groups of 10 animals, after 1 and 4 months, respectively. For each group, biomaterials were analyzed: newly formed bone, residual graft materials and the connective tissue. Histomorphometric, EDX analysis and element mapping were performed at 1 and 4 months after graft insertion. At 4 months after treatment, the bone defects displayed radiological images that showed complete repair of osseous defects. Histomorphometric evaluation showed that for the porcine xenograft, the study averages for newly formed bone represented 84.23 ± 2.9%, while bovine matrix was 79.34 ± 2.1%. For residual graft material, the porcine biomaterial had 11.23 ± 1.7% and the bovine graft 31.56 ± 2.3%. Finally, the connective tissue for MP3 was 10.33 ± 1.8%, while for the 4BONE(™) XBM we obtained 14.34 ± 2.9%. Element analysis revealed higher percentages of Ca (54 ± 9%) and P (35 ± 6%) in the group B than group A and control group (P < 0.05). Defects of a critical size in a rabbit tibia model can be sealed using a bovine porous biphasic calcium phosphate and MP3 material; this supports new bone formation, creates a bridge between borders, and facilitates bone ingrowth in both biomaterials. Furthermore, this study observed partial dissolution of the mineral phase of four bone graft and complete resorption of porcine MP3 biomaterial and its incorporation into the surrounding bone. Depending on clinical needs, each biomaterial could be useful in daily clinical practice. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. FOR WHOM THE BELL TOLLS: DISTRESS SIGNALS FROM LONG-LIVED OSTEOCYTES AND THE PATHOGENESIS OF METABOLIC BONE DISEASES

    PubMed Central

    Manolagas, Stavros C.; Parfitt, A. Michael

    2012-01-01

    Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. PMID:23010104

  17. Cryopreservation of tissue engineered constructs for bone.

    PubMed

    Kofron, Michelle D; Opsitnick, Natalie C; Attawia, Mohamed A; Laurencin, Cato T

    2003-11-01

    The large-scale clinical use of tissue engineered constructs will require provisions for its mass availability and accessibility. Therefore, it is imperative to understand the effects of low temperature (-196 degrees C) on the tissue engineered biological system. Initial studies used samples of the osteoblast-like cell line (SaOS-2) adhered to a two-dimensional poly(lactide-co-glycolide) thin film (2D-PLAGA) or a three-dimensional poly(lactide-co-glycolide) sintered microsphere matrix (3D-PLAGA) designed for bone tissue engineering. Experimental samples were tested for their ability to maintain cell viability, following low temperature banking for one week, in solutions of the penetrating cryoprotective agents, dimethylsulfoxide (DMSO), ethylene glycol, and glycerol. Results indicated the DMSO solution yielded the greatest percent cell survival for SaOS-2 cells adhered to both the 2D- and 3D-PLAGA scaffolds; therefore, DMSO was used to cryopreserve mineralizing primary rabbit osteoblasts cells adhered to 2D-PLAGA matrices for 35 days. Results indicated retention of the extracellular matrix architecture as no statistically significant difference in the pre- and post-thaw mineralized structures was measured. Percent cell viability of the mineralized constructs following low temperature storage was approximately 50%. These are the first studies to address the issue of preservation techniques for tissue engineered constructs. The ability to successfully cryopreserve mineralized tissue engineered matrices for bone may offer an unlimited and readily available source of bone-like materials for orthopaedic applications.

  18. Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.

    PubMed

    Osinga, Rik; Di Maggio, Nunzia; Todorov, Atanas; Allafi, Nima; Barbero, Andrea; Laurent, Frédéric; Schaefer, Dirk Johannes; Martin, Ivan; Scherberich, Arnaud

    2016-08-01

    : Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. Unlike bone marrow-derived stromal cells (also known as bone marrow-derived mesenchymal stromal/stem cells), adipose-derived stromal cells (ASC) have so far failed to form a bone organ by ECO. The goal of the present study was to assess whether priming human ASC to a defined stage of chondrogenesis in vitro allows their autonomous ECO upon ectopic implantation. ASC were cultured either as micromass pellets or into collagen sponges in chondrogenic medium containing transforming growth factor-β3 and bone morphogenetic protein-6 for 4 weeks (early hypertrophic templates) or for two additional weeks in medium supplemented with β-glycerophosphate, l-thyroxin, and interleukin1-β to induce hypertrophic maturation (late hypertrophic templates). Constructs were implanted in vivo and analyzed after 8 weeks. In vitro, ASC deposited cartilaginous matrix positive for glycosaminoglycans, type II collagen, and Indian hedgehog. Hypertrophic maturation induced upregulation of type X collagen, bone sialoprotein, and matrix metalloproteinase13 (MMP13). In vivo, both early and late hypertrophic templates underwent cartilage remodeling, as assessed by MMP13- and tartrate-resistant acid phosphatase-positive staining, and developed bone ossicles, including bone marrow elements, although to variable degrees of efficiency. In situ hybridization for human-specific sequences and staining with a human specific anti-CD146 antibody demonstrated the direct contribution of ASC to bone and stromal tissue formation. In conclusion, despite their debated skeletal progenitor nature, human ASC can generate bone organs through ECO when suitably primed in vitro. Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. This study demonstrated that expanded, human adult adipose-derived stromal cells can generate ectopic bone through ECO, as previously reported for bone marrow stromal cells. This system can be used as a model in a variety of settings for mimicking ECO during development, physiology, or pathology (e.g., to investigate the role of BMPs, their receptors, and signaling pathways). The findings have also translational relevance in the field of bone regeneration, which, despite several advances in the domains of materials and surgical techniques, still faces various limitations before being introduced in the routine clinical practice. ©AlphaMed Press.

  19. Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ

    NASA Astrophysics Data System (ADS)

    Mata, Diogo Miguel Rodrigues Marinho da

    The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.

  20. Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms

    PubMed Central

    Atkins, Ayelet; Dean, Mason N.; Habegger, Maria Laura; Motta, Phillip J.; Ofer, Lior; Repp, Felix; Shipov, Anna; Weiner, Steve; Currey, John D.; Shahar, Ron

    2014-01-01

    A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process. PMID:25331870

  1. One-stage Reconstruction of Soft Tissue Defects with the Sandwich Technique: Collagen-elastin Dermal Template and Skin Grafts

    PubMed Central

    Wollina, Uwe

    2011-01-01

    Background: A full-thickness soft tissue defect closure often needs complex procedures. The use of dermal templates can be helpful in improving the outcome. Objective: The objective was to evaluate a sandwich technique combining the dermal collagen–elastin matrix with skin grafts in a one-stage procedure. Materials and Methods: Twenty-three patients with 27 wounds were enrolled in this prospective single-centre observational study. The mean age was 74.8 ± 17.2 years. Included were full-thickness defects with exposed bone, cartilage and/ or tendons. The dermal collagen–elastin matrix was applied onto the wound bed accomplished by skin transplants, i.e. ‘sandwich’ transplantation. In six wounds, the transplants were treated with intermittent negative pressure therapy. Results: The size of defects was ≤875 cm2. The use of the dermal template resulted in a complete and stable granulation in 100% of wounds. Seventeen defects showed a complete closure and 19 achieved a complete granulation with an incomplete closure. There was a marked pain relief. No adverse events were noted due to the dermal template usage. Conclusions: Sandwich transplantation with the collagen–elastin matrix is a useful tool when dealing with full-thickness soft tissue defects with exposed bone, cartilage or tendons. PMID:22279382

  2. Osteograft, plastic material for regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidman, A. M., E-mail: AZaydman@niito.ru; Korel, A. V., E-mail: AKorel@niito.ru; Shchelkunova, E. I., E-mail: EShelkunova@niito.ru

    Creating tissue-engineering constructs based on the mechanism of cartilage-bone evolution is promising for traumatology and orthopedics. Such a graft was obtained from a chondrograft by transdifferentiation. The hondrograft placed in osteogenic medium is undergoing osteogenic differentiation for 14–30 days. Tissue specificity of the osteograft was studied by morphology, immunohistochemistry, electron microscopy, and the expression of the corresponding genes was estimated. The expression of osteonectin, fibronectin, collagen of type I, izolektin and CD 44 is determined. Alkaline phosphatase and matrix vesicles are determined in osteoblasts. Calcificates are observed in the matrix. Chondrogenic proteins expression is absent. These findings evidence the tissuemore » specificity of the developed osteograft.« less

  3. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  4. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates.

    PubMed

    Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi

    2015-02-01

    Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation. © 2014 Wiley Periodicals, Inc.

  5. Assessment of a new biomimetic scaffold and its effects on bone formation by OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Aydin, Halil M.; Piskin, Erhan; El Haj, Alicia J.

    2009-02-01

    The ultimate target of bone tissue engineering is to generate functional load bearing bone. By nature, the porous volume in the trabecular bone is occupied by osseous medulla. The natural bone matrix consists of hydroxyapatite (HA) crystals precipitated along the collagen type I fibres. The mineral phase renders bone strength while collagen provides flexibility. Without mineral component, bone is very flexible and can not bear loads, whereas it is brittle in the case of mineral phase without the collagen presence. In this study, we designed and prepared a new type of scaffold which mimics the features of natural bone. The scaffold consists of three different components, a biphasic polymeric base composed of two different biodegradable polymers prepared by using dual porogen approach and bioactive agents, i.e., collagen and HA particles which are distributed throughout the matrix only in the pore surfaces. Interaction of the bioactive scaffolds possessing very high porosity and interconnected pore structures with cells were investigated in a prolonged culture period by using an osteoblastic cell line. The mineral HA particles have a slight different refractive index from the other elements such as polymeric scaffolds and cell/matrix in a tissue engineering constructs, exhibiting brighter images in OCT. Thus, OCT renders a convenient means to assess the morphology and architecture of the blank biomimetic scaffolds. This study also takes a close observation of OCT images for the cultured cell-scaffold constructs in order to assess neo-formed minerals and matrix. The OCT assessments have been compared with the results from confocal and SEM analysis.

  6. Early matrix change of a nanostructured bone grafting substitute in the rat.

    PubMed

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  7. Clinical and radiographic evaluation of copolymerized Polylactic/polyglycolic acids as a bone filler in combination with a cellular dermal matrix graft around immediate implants

    PubMed Central

    Soliman, Mahitab M.; Zaki, Azza Abdulrahman; El Gazaerly, Hanaa Mohamed; Shemmrani, Ammar Al; Sorour, Abd El Latif

    2014-01-01

    Objective This study was conducted to evaluate clinically and radiographically the use of a cellular dermal matrix allograft (Alloderm) in combination with PLA/PGA (Fisiograft) around immediate implants. Materials and Methods Fourteen patients were included in this study, three patients received two implants, total of seventeen implants were placed. Periapical radiographs and orthopantomographs were taken. The selected teeth were extracted atraumatically after the reflection of full thickness flaps. One-piece Zimmer implants were placed immediately into the sockets. Weeks from implantation, radiographic evaluation was made at 6 Fisiograft in powder form was placed in the osseous defects around the implants. The implants were immediately restored with provisional crowns free from occlusion. Patients were clinically evaluated at 3, 6, and 14 months after loading which was done after 6 weeks from implantation. Radiographic evaluation was made at 6 and 14 months from implant placement. Results showed that immediate implantation was successful in sixteen out of seventeen implants, clinical parameters regarding plaque index, gingival index, there was a slight decrease through the follow-up periods from 3 to 14 months but it was non-significant, while there was a significant decrease in the probing depth. Radiographically there was a significant increase in the bone density from 6 to 14 months post loading, while the vertical bone defect was significantly decreased. The fisiograft functioned well as space maker and scaffolding material. The Alloderm performed well as a membrane to be used in association with immediate implants and it has a good potentiality for increasing the width of the keratinized gingiva, which is an important feature for implant esthetics. Conclusion the combination technique between the bone graft and the membrane proved to be successful to overcome dehiscence and osseous defects around immediate implants. PMID:25780357

  8. Preoperative easily misdiagnosed telangiectatic osteosarcoma: clinical–radiologic–pathologic correlations

    PubMed Central

    Gao, Zhen-Hua; Yin, Jun-Qiang; Liu, Da-Wei; Meng, Quan-Fei

    2013-01-01

    Abstract Purpose: To describe the clinical, imaging, and pathologic characteristics and diagnostic methods of telangiectatic osteosarcoma (TOS) for improving the diagnostic level. Materials and methods: The authors retrospectively reviewed patient demographics, serum alkaline phosphatase (AKP) levels, preoperative biopsy pathologic reports, pathologic materials, imaging findings, and treatment outcomes from 26 patients with TOS. Patient images from radiography (26 cases) and magnetic resonance (MR) imaging (22 cases) were evaluated by 3 authors in consensus for intrinsic characteristics. There were 15 male and 11 female patients in the study, with an age of 9–32 years (mean age 15.9 years). Results: Eighteen of 26 patients died of lung metastases within 5 years of follow-up. The distal femur was affected more commonly (14 cases, 53.8%). Regarding serum AKP, normal (8 cases) or mildly elevated (18 cases) levels were found before preoperative chemotherapy. Radiographs showed geographic bone lysis without sclerotic margin (26 cases), cortical destruction (26 cases), periosteal new bone formation (24 cases), soft-tissue mass (23 cases), and matrix mineralization (4 cases). The aggressive radiographic features of TOS simulated the appearance of conventional high-grade intramedullary osteosarcoma, though different from aneurysmal bone cyst. MR images demonstrated multiple big (16 cases) or small (6 cases) cystic spaces, fluid-fluid levels (14 cases), soft-tissue mass (22 cases), and thick peripheral and septal enhancement (22 cases). Nine of 26 cases were misdiagnosed as aneurysmal bone cysts by preoperative core-needle biopsy, owing to the absence of viable high-grade sarcomatous cells in the small tissue samples. Conclusion: The aggressive growth pattern with occasional matrix mineralization, and multiple big or small fluid-filled cavities with thick peripheral, septal, and nodular tissue surrounding the fluid-filled cavities are characteristic imaging features of TOS, and these features are helpful in making the correct preoperative diagnosis of TOS. PMID:24334494

  9. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    PubMed

    Sroga, Grażyna E; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks.

  10. Glycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose

    PubMed Central

    Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks. PMID:25679213

  11. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.

    PubMed

    Nyberg, Ethan; Rindone, Alexandra; Dorafshar, Amir; Grayson, Warren L

    2017-06-01

    Three-dimensional (3D)-printing facilitates rapid, custom manufacturing of bone scaffolds with a wide range of material choices. Recent studies have demonstrated the potential for 3D-printing bioactive (i.e., osteo-inductive) scaffolds for use in bone regeneration applications. In this study, we 3D-printed porous poly-ɛ-caprolactone (PCL) scaffolds using a fused deposition modeling (FDM) process and functionalized them with mineral additives that have been widely used commercially and clinically: tricalcium phosphate (TCP), hydroxyapatite (HA), Bio-Oss (BO), or decellularized bone matrix (DCB). We assessed the "print quality" of the composite scaffolds and found that the print quality of PCL-TCP, PCL-BO, and PCL-DCB measured ∼0.7 and was statistically lower than PCL and PCL-HA scaffolds (∼0.8). We found that the incorporation of mineral particles did not significantly decrease the compressive modulus of the graft, which was on the order of 260 MPa for solid blocks and ranged from 32 to 83 MPa for porous scaffolds. Raman spectroscopy revealed the surfaces of the scaffolds maintained the chemical profile of their dopants following the printing process. We evaluated the osteo-inductive properties of each scaffold composite by culturing adipose-derived stromal/stem cells in vitro and assessing their differentiation into osteoblasts. The calcium content (normalized to DNA) increased significantly in PCL-TCP (p < 0.05), PCL-BO (p < 0.001), and PCL-DCB (p < 0.0001) groups relative to PCL only. The calcium content also increased in PCL-HA but was not statistically significant (p > 0.05). Collagen 1 expression was 10-fold greater than PCL in PCL-BO and PCL-DCB (p < 0.05) and osteocalcin expression was 10-fold greater in PCL-BO and PCL-DCB (p < 0.05) as measured by quantitative-real time-polymerase chain reaction. This study suggests that PCL-BO and PCL-DCB hybrid material may be advantageous for bone healing applications over PCL-HA or PCL-TCP blends.

  12. Accelerated Bone Repair After Plasma Laser Corticotomies

    PubMed Central

    Leucht, Philipp; Lam, Kentson; Kim, Jae-Beom; Mackanos, Mark A.; Simanovskii, Dmitrii M.; Longaker, Michael T.; Contag, Christopher H.; Schwettman, H Alan; Helms, Jill A.

    2007-01-01

    Objective: To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal. Summary Background Data: Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing. Methods: Murine tibial corticotomies were performed using a conventional saw and a Ti:Sapphire plasma-generated laser that removes tissue with minimal thermal damage. Our analyses began 24 hours after injury and proceeded to postsurgical day 6. We investigated aspects of wound repair ranging from vascularization, inflammation, cell proliferation, differentiation, and bone remodeling. Results: Histology of mouse corticotomy sites uncovered a significant difference in the onset of bone healing; whereas laser corticotomies showed abundant bone matrix deposition at postsurgical day 6, saw corticotomies only exhibited undifferentiated tissue. Our analyses uncovered that cutting bone with a saw caused denaturation of the collagen matrix due to thermal effects. This denatured collagen represented an unfavorable scaffold for subsequent osteoblast attachment, which in turn impeded deposition of a new bony matrix. The matrix degradation induced a prolonged inflammatory reaction at the cut edge to create a surface favorable for osteochondroprogenitor cell attachment. Laser corticotomies were absent of collagen denaturation, therefore osteochondroprogenitor cell attachment was enabled shortly after surgery. Conclusion: In summary, these data demonstrate that corticotomies performed with Ti:Sapphire lasers are associated with a reduced initial inflammatory response at the injury site leading to accelerated osteochondroprogenitor cell migration, attachment, differentiation, and eventually matrix deposition. PMID:17592303

  13. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  14. A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation.

    PubMed

    Pastrama, Maria-Ioana; Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian

    2018-02-01

    While bone tissue is a hierarchically organized material, mathematical formulations of bone remodeling are often defined on the level of a millimeter-sized representative volume element (RVE), "smeared" over all types of bone microstructures seen at lower observation scales. Thus, there is no explicit consideration of the fact that the biological cells and biochemical factors driving bone remodeling are actually located in differently sized pore spaces: active osteoblasts and osteoclasts can be found in the vascular pores, whereas the lacunar pores host osteocytes - bone cells originating from former osteoblasts which were then "buried" in newly deposited extracellular bone matrix. We here propose a mathematical description which considers size and shape of the pore spaces where the biological and biochemical events take place. In particular, a previously published systems biology formulation, accounting for biochemical regulatory mechanisms such as the rank-rankl-opg pathway, is cast into a multiscale framework coupled to a poromicromechanical model. The latter gives access to the vascular and lacunar pore pressures arising from macroscopic loading. Extensive experimental data on the biological consequences of this loading strongly suggest that the aforementioned pore pressures, together with the loading frequency, are essential drivers of bone remodeling. The novel approach presented here allows for satisfactory simulation of the evolution of bone tissue under various loading conditions, and for different species; including scenarios such as mechanical dis- and overuse of murine and human bone, or in osteocyte-free bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Osteoconductive Amine-Functionalized Graphene-Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization.

    PubMed

    Sharma, Rakesh; Kapusetti, Govinda; Bhong, Sayali Yashwant; Roy, Partha; Singh, Santosh Kumar; Singh, Shikha; Balavigneswaran, Chelladurai Karthikeyan; Mahato, Kaushal Kumar; Ray, Biswajit; Maiti, Pralay; Misra, Nira

    2017-09-20

    Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all of the mentioned shortcomings of bone cement by reinforcing it with graphene (GR), graphene oxide (GO), and surface-modified amino graphene (AG) fillers. These nanocomposites have shown hypsochromic shifts, suggesting strong interactions between the filler material and the polymer matrix. AG-based nanohybrids have shown greater osteointegration and lower cytotoxicity compared to other nanohybrids as well as pristine bone cement. They have also reduced oxidative stress on cells, resulting in calcification within 20 days of the implantation of nanohybrids into the rabbits. They have significantly reduced the exothermic curing temperature to body temperature and increased the setting time to facilitate practitioners, suggesting that reaction temperature and settling time can be dynamically controlled by varying the concentration of the filler. Thermal stability and enhanced mechanical properties have been achieved in nanohybrids vis-à-vis pure bone cement. Thus, this newly developed nanocomposite can create natural bonding with bone tissues for improved bioactivity, longer sustainability, and better strength in the prosthesis.

  16. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    PubMed

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  17. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    PubMed Central

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  18. Equine-derived bone mineral matrix for maxillary sinus floor augmentation: a clinical, radiographic, histologic, and histomorphometric case series.

    PubMed

    Nevins, Myron; Heinemann, Friedhelm; Janke, Ulrich W; Lombardi, Teresa; Nisand, David; Rocchietta, Isabella; Santoro, Giacomo; Schupbach, Peter; Kim, David M

    2013-01-01

    The objective of this proof-of-principle multicenter case series was to examine the bone regenerative potential of a newly introduced equine-derived bone mineral matrix (Equimatrix) to provide human sinus augmentation for the purpose of implant placement in the posterior maxilla. There were 10 patients requiring 12 maxillary sinus augmentations enrolled in this study. Histologic results at 6 months demonstrated abundant amounts of vital new bone in intimate contact with residual graft particles. Active bridging between residual graft particles with newly regenerated bone was routinely observed in intact core specimens. A mean value of 23.4% vital bone formation was observed at 6 months. This compared favorably with previous results using xenografts to produce bone in the maxillary sinus for the purpose of dental implant placement. Both the qualitative and quantitative results of this case series suggest comparable bone regenerative results at 6 months to bovine-derived xenografts.

  19. Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior.

    PubMed

    Rumpler, M; Würger, T; Roschger, P; Zwettler, E; Sturmlechner, I; Altmann, P; Fratzl, P; Rogers, M J; Klaushofer, K

    2013-12-01

    The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.

  20. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation.

    PubMed

    Rodrigues, Bruno Vm; Leite, Nelly Cs; Cavalcanti, Bruno das Neves; da Silva, Newton S; Marciano, Fernanda R; Corat, Evaldo J; Webster, Thomas J; Lobo, Anderson O

    2016-01-01

    Nanohydroxyapatite (nHAp) is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs) have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO) at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp) with high mechanical strength (MWCNT-GO). After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1-3 wt%). We employed various techniques to characterize the nanocomposites, including transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetry, and gas adsorption (the Brunauer-Emmett-Teller method). We used simulated body fluid to evaluate their bioactivity and human osteoblasts (bone-forming cells) to evaluate cytocompatibility. We also investigated their bactericidal effect against Staphylococcus aureus and Escherichia coli. TEM analysis revealed homogeneous distributions of nHAp crystal grains along the MWCNT-GO surfaces. All nanocomposites were proved to be bioactive, since carbonated nHAp was found after 21 days in simulated body fluid. All nanocomposites showed potential for biomedical applications with no cytotoxicity toward osteoblasts and impressively demonstrated a bactericidal effect without the use of antibiotics. All of the aforementioned properties make these materials very attractive for bone tissue engineering applications, either as a matrix or as a reinforcement material for numerous polymeric nanocomposites.

  1. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation

    PubMed Central

    Rodrigues, Bruno VM; Leite, Nelly CS; Cavalcanti, Bruno das Neves; da Silva, Newton S; Marciano, Fernanda R; Corat, Evaldo J; Webster, Thomas J; Lobo, Anderson O

    2016-01-01

    Nanohydroxyapatite (nHAp) is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs) have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO) at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp) with high mechanical strength (MWCNT-GO). After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1–3 wt%). We employed various techniques to characterize the nanocomposites, including transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetry, and gas adsorption (the Brunauer–Emmett–Teller method). We used simulated body fluid to evaluate their bioactivity and human osteoblasts (bone-forming cells) to evaluate cytocompatibility. We also investigated their bactericidal effect against Staphylococcus aureus and Escherichia coli. TEM analysis revealed homogeneous distributions of nHAp crystal grains along the MWCNT-GO surfaces. All nanocomposites were proved to be bioactive, since carbonated nHAp was found after 21 days in simulated body fluid. All nanocomposites showed potential for biomedical applications with no cytotoxicity toward osteoblasts and impressively demonstrated a bactericidal effect without the use of antibiotics. All of the aforementioned properties make these materials very attractive for bone tissue engineering applications, either as a matrix or as a reinforcement material for numerous polymeric nanocomposites. PMID:27358560

  2. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis

    DOE PAGES

    Fowler, Tristan W.; Acevedo, Claire; Mazur, Courtney M.; ...

    2017-03-22

    Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. We find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causingmore » degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Therefore, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis.« less

  3. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Tristan W.; Acevedo, Claire; Mazur, Courtney M.

    Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. We find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causingmore » degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Therefore, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis.« less

  4. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

    PubMed

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T

    2010-06-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2

  5. For whom the bell tolls: distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases.

    PubMed

    Manolagas, Stavros C; Parfitt, A Michael

    2013-06-01

    Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout the bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. Published by Elsevier Inc.

  6. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    PubMed

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Bone resorption analysis of platelet-derived growth factor type BB application on collagen for bone grafts secured by titanium mesh over a pig jaw defect model

    PubMed Central

    Herford, Alan Scott; Cicciù, Marco

    2012-01-01

    Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493

  8. Engineering bioactive polymers for the next generation of bone repair

    NASA Astrophysics Data System (ADS)

    Ho, Emily Y.

    Bone disease is a serious health condition among the aged population. In some cases of bone damage it becomes necessary to replace, recontour, and assist in the healing of the bone. Many materials have been proposed as useful replacements but none have been proven to be ideal. In this thesis, two bioactive composites were investigated for bone replacements. First reported material is a hydroxyapatite (HA) particle reinforced polymethylmethacrylate (PMMA) composite treated with a co-polymer coupling agent for mandible augmentations. The influence of the coupling agent on the local mechanical properties of the system before and after simulated biological conditions was determined by applying nano-indentation at the cross-sectional HA/PMMA interface. The local interfacial results were indicative of the global quasi static compression test results. While the coupling agent improved the interfacial and global mechanical properties before and after 24 hours in vitro immersion, it did not affect the surface bioactivity of the system. However, the addition of coupling agent did not provide long term in vitro improvement of both local and global mechanical properties of the composite. An alternative approach of combining a bioactive phase into polymer matrix was developed. The second analyzed material is an injectable composite with osteoconductivity and ideal mechanical biocompatibility for vertebral fracture fixations which we formulated and fabricated. A bioactive component was engineered into the macromolecular structure to facilitate the formation of apatite nucleation sites on a thermo-sensitive polymer, poly(N-isopropylacryamide)-co-poly(ethyleneglycol) dimethacrylate (PNIPAAm-PEGDM), through incorporation of tri-methacryloxypropyltrimethoxysilane (MPS). PNIPAAm-PEGDM is capable of liquid to solid phase transformation at 32°C. In this study, the phase transformation temperature (LCSTs), the in vitro mechanical properties, swelling characteristics and bioactivity of the polymers were evaluated. The addition of NIPS to the polymer encouraged apatite formation and increased its compressive modulus while its LCST remained unchanged. The challenge of this material system is to balance the network-forming and bioactivity inducing MPS with the gain in elastic recovery induced by PEGDM addition to the PNIPAAm base, all while maintaining an injectable material system. This material platform offers a family of polymers that have a range of mechanical properties for various tissue replacements.

  9. Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon ( Columba livia ) Ulna.

    PubMed

    Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi

    2015-06-01

    Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.

  10. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.

    PubMed

    Rindone, Alexandra N; Nyberg, Ethan; Grayson, Warren L

    2017-05-11

    Millions of patients worldwide require bone grafts for treatment of large, critically sized bone defects from conditions such as trauma, cancer, and congenital defects. Tissue engineered (TE) bone grafts have the potential to provide a more effective treatment than current bone grafts since they would restore fully functional bone tissue in large defects. Most bone TE approaches involve a combination of stem cells with porous, biodegradable scaffolds that provide mechanical support and degrade gradually as bone tissue is regenerated by stem cells. 3D-printing is a key technique in bone TE that can be used to fabricate functionalized scaffolds with patient-specific geometry. Using 3D-printing, composite polycaprolactone (PCL) and decellularized bone matrix (DCB) scaffolds can be produced to have the desired mechanical properties, geometry, and osteoinductivity needed for a TE bone graft. This book chapter will describe the protocols for fabricating and characterizing 3D-printed PCL:DCB scaffolds. Moreover, procedures for culturing adipose-derived stem cells (ASCs) in these scaffolds in vitro will be described to demonstrate the osteoinductivity of the scaffolds.

  11. A Direct Role of Collagen Glycation in Bone Fracture

    PubMed Central

    Poundarik, Atharva A.; Wu, Ping-Cheng; Evis, Zafer; Sroga, Grazyna E.; Ural, Ani; Rubin, Mishaela; Vashishth, Deepak

    2015-01-01

    Non-enzymatic glycation (NEG) is an age-related process accelerated by diseases like diabetes, and causes the accumulation of advanced glycation end-products (AGEs). NEG-mediated modification of bone’s organic matrix, principally collagen type-I, has been implicated in impairing skeletal physiology and mechanics. Here, we present evidence, from in vitro and in vivo models, and establish a causal relationship between collagen glycation and alterations in bone fracture at multiple length scales. Through atomic force spectroscopy, we established that NEG impairs collagen’s ability to dissipate energy. Mechanical testing of in vitro glycated human bone specimen revealed that AGE accumulation due to NEG dramatically reduces the capacity of organic and mineralized matrix to creep and caused bone to fracture under impact at low levels of strain (3000–5000 μstrain) typically associated with fall. Fracture mechanics tests of NEG modified human cortical bone of varying ages, and their age-matched controls revealed that NEG disrupted microcracking based toughening mechanisms and reduced bone propagation and initiation fracture toughness across all age groups. A comprehensive mechanistic model, based on experimental and modeling data, was developed to explain how NEG and AGEs are causal to, and predictive of bone fragility. Furthermore, fracture mechanics and indentation testing on diabetic mice bones revealed that diabetes mediated NEG severely disrupts bone matrix quality in vivo. Finally, we show that AGEs are predictive of bone quality in aging humans and have diagnostic applications in fracture risk. PMID:26530231

  12. Influence of the intramedullary nail preparation method on nail's mechanical properties and degradation rate.

    PubMed

    Morawska-Chochół, Anna; Chłopek, Jan; Szaraniec, Barbara; Domalik-Pyzik, Patrycja; Balacha, Ewa; Boguń, Maciej; Kucharski, Rafael

    2015-06-01

    When it comes to the treatment of long bone fractures, scientists are still investigating new materials for intramedullary nails and different manufacturing methods. Some of the most promising materials used in the field are resorbable polymers and their composites, especially since there is a wide range of potential manufacturing and processing methods. The aim of this work was to select the best manufacturing method and technological parameters to obtain multiphase, and multifunctional, biodegradable intramedullary nails. All composites were based on a poly(l-lactide) matrix. Either magnesium alloy wires or carbon and alginate fibres were introduced in order to reinforce the nails. The polylactide matrix was also modified with tricalcium phosphate and gentamicin sulfate. The composite nails were manufactured using three different methods: forming from solution, injection moulding and hot pressing. The effect of each method of manufacturing on mechanical properties and degradation rate of the nails was evaluated. The study showed that injection moulding provides higher uniformity and homogeneity of the particle-modified polylactide matrix, whereas hot pressing favours applying higher volume fractions of fibres and their better impregnation with the polymer matrix. Thus, it was concluded that the fabrication method should be individually selected dependently on the nail's desired phase composition. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H

    2013-08-01

    The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.

  14. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. © The Author(s) 2015.

  15. Composition of chitosan-hydroxyapatite-collagen composite scaffold evaluation after simulated body fluid immersion as reconstruction material

    NASA Astrophysics Data System (ADS)

    Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.

    2017-08-01

    Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.

  16. Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells.

    PubMed

    Liu, Yao; Yang, Guang; Ji, Huanzhong; Xiang, Tao; Luo, En; Zhou, Shaobing

    2017-06-01

    Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice

    USDA-ARS?s Scientific Manuscript database

    Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...

  18. Comparison of Demineralized Dentin and Demineralized Freeze Dried Bone as Carriers for Enamel Matrix Proteins in a Rat Critical Size Defect

    DTIC Science & Technology

    2005-05-01

    matrix derivative or connective tissue . Part 1: comparison of clinical parameters. J Periodontol 2003;74:1110-1125. Minabe M.: A critical review of the... connective tissue , both bone and PDL can serve as sources of progenitor cells for regeneration. Surgical techniques started to evolve with the knowledge...regeneration was Prichard in 1977. This technique involved removal of overlying gingival tissue leaving interdental bone denuded (Prichard 1977). In 1983

  19. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    PubMed

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  20. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  1. Bone Proteoglycan Changes During Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Uzawa, K.; Pornprasertsuk, S.; Arnaud, S.; Grindeland, R.; Grzesik, W.

    1999-01-01

    Skeletal adaptability to mechanical loads is well known since the last century. Disuse osteopenia due to the microgravity environment is one of the major concerns for space travelers. Several studies have indicated that a retardation of the mineralization process and a delay in matrix maturation occur during the space flight. Mineralizing fibrillar type I collagen possesses distinct cross-linking chemistries and their dynamic changes during mineralization correlate well with its function as a mineral organizer. Our previous studies suggested that a certain group of matrix proteoglycans in bone play an inhibitory role in the mineralization process through their interaction with collagen. Based on these studies, we hypothesized that the altered mineralization during spaceflight is due in part to changes in matrix components secreted by cells in response to microgravity. In this study, we employed hindlimb elevation (tail suspension) rat model to study the effects of skeletal unloading on matrix proteoglycans in bone.

  2. Specialisation of extracellular matrix for function in tendons and ligaments

    PubMed Central

    Birch, Helen L.; Thorpe, Chavaunne T.; Rumian, Adam P.

    2013-01-01

    Summary Tendons and ligaments are similar structures in terms of their composition, organisation and mechanical properties. The distinction between them stems from their anatomical location; tendons form a link between muscle and bone while ligaments link bones to bones. A range of overlapping functions can be assigned to tendon and ligaments and each structure has specific mechanical properties which appear to be suited for particular in vivo function. The extracellular matrix in tendon and ligament varies in accordance with function, providing appropriate mechanical properties. The most useful framework in which to consider extracellular matrix differences therefore is that of function rather than anatomical location. In this review we discuss what is known about the relationship between functional requirements, structural properties from molecular to gross level, cellular gene expression and matrix turnover. The relevance of this information is considered by reviewing clinical aspects of tendon and ligament repair and reconstructive procedures. PMID:23885341

  3. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia.

    PubMed

    Boukpessi, Tchilalo; Hoac, Betty; Coyac, Benjamin R; Leger, Thibaut; Garcia, Camille; Wicart, Philippe; Whyte, Michael P; Glorieux, Francis H; Linglart, Agnès; Chaussain, Catherine; McKee, Marc D

    2017-02-01

    Seven young patients with X-linked hypophosphatemia (XLH, having inactivating PHEX mutations) were discovered to accumulate osteopontin (OPN) at the sites of defective bone mineralization near osteocytes - the so-called hallmark periosteocytic (lacunar) "halos" of XLH. OPN was also localized in the pericanalicular matrix extending beyond the osteocyte lacunae, as well as in the hypomineralized matrix of tooth dentin. OPN, a potent inhibitor of mineralization normally degraded by PHEX, is a member of a family of acidic, phosphorylated, calcium-binding, extracellular matrix proteins known to regulate dental, skeletal, and pathologic mineralization. Associated with the increased amount of OPN (along with inhibitory OPN peptide fragments) in XLH bone matrix, we found an enlarged, hypomineralized, lacuno-canalicular network - a defective pattern of skeletal mineralization that decreases stiffness locally at: i) the cell-matrix interface in the pericellular environment of the mechanosensing osteocyte, and ii) the osteocyte's dendritic network of cell processes extending throughout the bone. Our findings of an excess of inhibitory OPN near osteocytes and their cell processes, and in dentin, spatially correlates with the defective mineralization observed at these sites in the skeleton and teeth of XLH patients. These changes likely contribute to the dento-osseous pathobiology of XLH, and participate in the aberrant bone adaptation and remodeling seen in XLH. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Pigment epithelium-derived factor upregulates collagen I and downregulates matrix metalloproteinase 2 in osteosarcoma cells, and colocalises to collagen I and heat shock protein 47 in fetal and adult bone.

    PubMed

    Alcantara, Marice B; Nemazannikova, Natalie; Elahy, Mina; Dass, Crispin R

    2014-11-01

    Pigment epithelium-derived factor (PEDF) has proven anti-osteosarcoma activity. However, the mechanism(s) underpinning its ability to reduce primary bone tumour (osteosarcoma) metastasis is unknown. Adult and fetal murine bone were immunostained for PEDF, collagen I (major protein in bone) and its processing proteins, heat shock protein 47 (HSP47, a chaperone protein for collagen I), membrane type I matrix metalloproteinase (MT1-MMP, a collagenase), and matrix metalloproteinase 2 (MMP-2, which is activated by MT1-MMP). Immunoblotting and immunocytochemistry were used to observe levels of the above biomarkers when human osteosarcoma cells were treated with PEDF. Immunohistochemical staining in adult and fetal bone mirrors collagen I. PEDF localised to ridges of trabecular bone in tibial cortex and to megakaryocytes within bone marrow. Second, we observed that PEDF upregulates collagen I, HSP47 and MT1-MMP, while downregulating MMP-2 in osteosarcoma cells in vitro. PEDF is a promising antagonist to osteosarcoma cell metastasis via downregulation of MMP-2, and can induce tumour cells to further adopt differentiative properties, thereby possibly reducing their aggressive growth in vitro and in vivo. © 2014 Royal Pharmaceutical Society.

  5. Surface modification of implants in long bone.

    PubMed

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  6. Surface modification of implants in long bone

    PubMed Central

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C.; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized. PMID:23507866

  7. Immunohistochemical response in rats of beta-tricalcium phosphate (TCP) with or without BMP-2 in the production of collagen matrix critical defects.

    PubMed

    Luvizuto, Eloá Rodrigues; de Oliveira, Júlio César Silva; Gomes-Ferreira, Pedro Henrique Silva; Pereira, Cassiano Costa Silva; Faverani, Leonardo Perez; Antoniali, Cristina; Okamoto, Roberta

    2017-04-01

    This study aimed to assess the biological response of BMP-2 (bone morphogenetic protein-2) in supplementation with β-tricalcium phosphate (TCP) as a carrier in the bone healing of surgical defects in rats' calvaria. A critical-size defect (5mm in diameter) was filled with β-TCP alone or added with that plus 5mg of BMP-2 at 5, 15, and 30 postoperative days. Histomorphometric and immunohistochemical (osteocalcin, collagen type I, and metalloproteinase-9) analysis was performed to assess the features of bone healing. Histological behavior and collagen type I labeling showed increased formation of the collagen matrix, leading to a higher percentage of newly formed bone and biomaterial for tissue and more total mineralization of pure TCP when compared to the other groups. The supplementation with BMP-2 promoted faster TCP remodeling; however, there was no statistically significant difference for the bone formed in both groups (P>0.05). Collagen-matrix formation and new bone formation reached maximum levels when the defects were filled with pure TCP, even exceeding the levels from BMP-2 supplementation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    PubMed

    Curtis, Tyler E; Roeder, Ryan K

    2017-10-01

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. The accuracy of quantitative material decomposition in photon-counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application. © 2017 American Association of Physicists in Medicine.

  9. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model

    PubMed Central

    Mertz, E.L.; Makareeva, E.; Mirigian, L.S.; Koon, K.Y.; Perosky, J.E.; Kozloff, K.M.; Leikin, S.

    2016-01-01

    Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but it also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252

  10. Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers

    PubMed Central

    Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer

    2014-01-01

    Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329

  11. A multilevel approach to modeling of porous bioceramics

    NASA Astrophysics Data System (ADS)

    Mikushina, Valentina A.; Sidorenko, Yury N.

    2015-10-01

    The paper is devoted to discussion of multiscale models of heterogeneous materials using principles. The specificity of approach considered is the using of geometrical model of composites representative volume, which must be generated with taking the materials reinforcement structure into account. In framework of such model may be considered different physical processes which have influence on the effective mechanical properties of composite, in particular, the process of damage accumulation. It is shown that such approach can be used to prediction the value of composite macroscopic ultimate strength. As an example discussed the particular problem of the study the mechanical properties of biocomposite representing porous ceramics matrix filled with cortical bones tissue.

  12. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  13. Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells.

    PubMed

    Shokrgozar, M A; Farokhi, M; Rajaei, F; Bagheri, M H A; Azari, Sh; Ghasemi, I; Mottaghitalab, F; Azadmanesh, K; Radfar, J

    2010-12-15

    Biocompatibility of β-TCP/HDPE-UHMWPE nanocomposite as a new bone substitute material was evaluated by using highly purified human osteoblast cells. Human osteoblast cells were isolated from bone tissue and characterized by immunofluorescence Staining before and after purification using magnetic bead system. Moreover, proliferation, alkaline phosphatase production, cell attachment, calcium deposition, gene expression, and morphology of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposites were evaluated. The results have shown that the human osteoblast cells were successfully purified and were suitable for subsequent cell culturing process. The high proliferation rate of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposite confirmed the great biocompatibility of the scaffold. Expression of bone-specific genes was taken place after the cells were incubated in composite extract solutions. Furthermore, osteoblast cells were able to mineralize the matrix next to composite samples. Scanning electron microscopy demonstrated that cells had normal morphology on the scaffold. Thus, these results indicated that the nanosized β-TCP/HDPE-UHMWPE blend composites could be potential scaffold, which is used in bone tissue engineering. Copyright © 2010 Wiley Periodicals, Inc.

  14. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation

    PubMed Central

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D.; McComb, David W.; Porter, Alexandra E.; Stevens, Molly M.

    2012-01-01

    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:22879397

  15. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    PubMed

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  16. Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties.

    PubMed

    Bach-Gansmo, Fiona Linnea; Wittig, Nina Kølln; Brüel, Annemarie; Thomsen, Jesper Skovhus; Birkedal, Henrik

    2016-10-01

    The ability of osteocytes to demineralize the perilacunar matrix, osteocytic osteolysis, and thereby participate directly in bone metabolism, is an aspect of osteocyte biology that has received increasing attention during the last couple of years. The aim of the present work was to investigate whether osteocyte lacunar properties change during immobilization and subsequent recovery. A rat cortical bone model with negligible Haversian remodeling effects was used, with temporary immobilization of one hindlimb induced by botulinum toxin. Several complementary techniques covering multiple length scales enabled correlation of osteocyte lacunar properties to changes observed on the organ and tissue level of femoral bone. Bone structural parameters measured by μCT and mechanical properties were compared to sub-micrometer resolution SR μCT data mapping an unprecedented number (1.85 million) of osteocyte lacunae. Immobilization induced a significant reduction in aBMD, bone volume, tissue volume, and load to fracture, as well as the muscle mass of rectus femoris. During the subsequent recovery period, the bone structural and mechanical properties were only partly regained in spite of a long-term (28weeks) study period. No significant changes in osteocyte lacunar volume, density, oblateness, stretch, or orientation were detected upon immobilization or subsequent recovery. In conclusion, the bone architecture and not osteocyte lacunar properties or bone material characteristics dominate the immobilization response as well as the subsequent recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Yang, Yue; Deng, Yi; Sun, Yuhua; Yang, Hongtao; Wei, Shicheng

    2016-07-01

    Good bioactivity and osteogenesis of three-dimensional porous alginate scaffolds (PAS) are critical for bone tissue engineering. In this work, alginate and bone-forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7 (BMP-7), have been combined together (without carbodiimide chemistry treatment) to develop peptide-incorporated PAS (p-PAS) for promoting bone repairing ability. The mechanical properties and SEM images show no difference between pure PAS and p-PAS. The release kinetics of the labeled peptide with 6-carboxy tetramethyl rhodamine from the PAS matrix suggests that the peptide is released in a relatively sustained manner. In the cell experiment, p-PAS show higher cell adhesion, spreading, proliferation and alkaline phosphatase (ALP) activity than the pristine PAS group, indicating that the BFP-1 released from p-PAS could significantly promote the aggregation and differentiation of osteoblasts, especially at 10μg/mL of trapped peptide concentration (p-PAS-10). Furthermore, p-PAS-10 was implanted into Beagle calvarial defects and bone regeneration was analyzed after 4 weeks. New bone formation was assessed by calcein and Masson's trichrome staining. The data reveal that p-PAS group exhibits significantly enhanced oseto-regenerative capability in vivo. The peptide-modified PAS with promoted bioactivity and osteogenic differentiation in vitro as well as bone formation ability in vivo could be promising tissue engineering materials for repairing and regeneration of bone defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration.

    PubMed

    Bae, Eun-Bin; Park, Keun-Ho; Shim, Jin-Hyung; Chung, Ho-Yun; Choi, Jae-Won; Lee, Jin-Ju; Kim, Chang-Hwan; Jeon, Ho-Jun; Kang, Seong-Soo; Huh, Jung-Bo

    2018-01-01

    This study was undertaken to evaluate the effect of 3D printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP) scaffold containing bone demineralized and decellularized extracellular matrix (bdECM) and human recombinant bone morphogenetic protein-2 (rhBMP-2) on bone regeneration. Scaffolds were divided into PCL/ β -TCP, PCL/ β -TCP/bdECM, and PCL/ β -TCP/bdECM/BMP groups. In vitro release kinetics of rhBMP-2 were determined with respect to cell proliferation and osteogenic differentiation. These three reconstructive materials were implanted into 8 mm diameter calvarial bone defect in male Sprague-Dawley rats. Animals were sacrificed four weeks after implantation for micro-CT, histologic, and histomorphometric analyses. The findings obtained were used to calculate new bone volumes (mm 3 ) and new bone areas (%). Excellent cell bioactivity was observed in the PCL/ β -TCP/bdECM and PCL/ β -TCP/bdECM/BMP groups, and new bone volume and area were significantly higher in the PCL/ β -TCP/bdECM/BMP group than in the other groups ( p < .05). Within the limitations of this study, bdECM printed PCL/ β -TCP scaffolds can reproduce microenvironment for cells and promote adhering and proliferating the cells onto scaffolds. Furthermore, in the rat calvarial defect model, the scaffold which printed rhBMP-2 loaded bdECM stably carries rhBMP-2 and enhances bone regeneration confirming the possibility of bdECM as rhBMP-2 carrier.

  19. Novel porous Al2O3-SiO2-TiO2 bone grafting materials: formation and characterization.

    PubMed

    Naga, Salma M; El-Kady, Abeer M; El-Maghraby, Hesham F; Awaad, Mohamed; Detsch, Rainer; Boccaccini, Aldo R

    2014-02-01

    The present article deals with the development of 3D porous scaffolds for bone grafting. They were prepared based on rapid fluid infiltration of Al2O3-SiO2 sol into a polyethylene non-woven fabric template structure. Titanium dioxide in concentration equal to 5 wt% was added to the Al2O3-SiO2 mixture to produce Al2O3-SiO2-TiO2 composite scaffolds. The prepared scaffolds are characterized by means of X-ray diffraction, scanning electron microscopy and three-point bending test techniques. The bioactivity of the produced bodies is discussed, including the in vitro and in vivo assessments. The produced scaffolds exhibit mean total porosity of 66.0% and three-point bending strength of 7.1 MPa. In vitro studies showed that MG-63 osteoblast-like cells attach and spread on the scaffolds surfaces. Furthermore, cells grew through the scaffolds and start to produce extra-cellular matrix. Additionally, in vivo studies revealed the ability of the porous scaffolds to regenerate bone tissue in femur defects of albino rats 5 months post surgery. Histological analysis showed that the defect is almost entirely filled with new bone. The formed bone is characterized as a mature bone. The produced bone grafts are intended to be used as bone substitute or bone filler as their degradation products caused no inflammatory effects.

  20. Effects of Particle Size and Porosity on In Vivo Remodeling of Settable Allograft Bone/Polymer Composites

    PubMed Central

    Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.

    2014-01-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686

  1. Roles of Vitamins D and K, Nutrition, and Lifestyle in Low-Energy Bone Fractures in Children and Young Adults.

    PubMed

    Karpiński, Michał; Popko, Janusz; Maresz, Katarzyna; Badmaev, Vladimir; Stohs, Sidney J

    2017-07-01

    The research on skeletal system health in children and young adults, while recognizing the important role of calcium and vitamin D, goes beyond these nutritional standards. This review focuses on the role of vitamin K in combination with vitamin D and other factors in bone health. The current understanding is that maintaining bone health and prevention of low-energy fractures in any pediatric population includes nutritional factors combined with an active lifestyle. Calcium, vitamin D, and vitamin K supplementation contribute independently and collectively to bone health. The beneficial role of vitamin K, particularly vitamin K2 as menaquinone-7 (MK-7), in bone and cardiovascular health is reasonably well supported scientifically, with several preclinical, epidemiological, and clinical studies published over the last decade. Osteocalcin and matrix-Gla (glutamate-containing) protein (MGP) exemplify vitamin K-dependent proteins involved in building bone matrix and keeping calcium from accumulating in the arterial walls, respectively. An important part of the mechanism of vitamin K involves carboxylation and posttranslational activation of the family of vitamin K-dependent proteins, which prevent expression of pro-inflammatory factors and support improvement in bone mineral concentration, bone mineral density, and the quality of bone matrix. Understanding the combined approach to a healthy skeletal system in children and young adults, including the roles of vitamins D and K, calcium, healthy diet, and exercise, is particularly important in view of reports of subclinical insufficiency of vitamins D and K in otherwise healthy pediatric populations with low-energy bone fractures.

  2. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R

    2018-02-01

    The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.

  3. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.

    PubMed

    Trębacz, Hanna; Zdunek, Artur; Wlizło-Dyś, Ewa; Cybulska, Justyna; Pieczywek, Piotr

    2015-10-16

    The aim of this study was to test a hypothesis that fatigue-induced weakening of cortical bone was intensified in bone incubated in glucose and that this weakening is revealed in the microstructure and mechanical competence of the bone matrix. Cubic specimens of bovine femoral shaft were incubated in glucose solution (G) or in buffer (NG). One half of G samples and one half of NG were axially loaded in 300 cycles (30 mm/min) at constant deformation (F); the other half was a control (C). Samples from each group (GF, NGF, GC, NGC) were completely demineralized. Slices from demineralized samples were used for microscopic image analysis. A combined effect of glycation and fatigue on demineralized bone was tested in compression (10 mm/min). Damage of samples during the test was examined in terms of acoustic emission analysis (AE). During the fatigue procedure, resistance to loading in glycated samples decreased by 14.5% but only by 8.1% in nonglycated samples. In glycated samples fatigue resulted in increased porosity with pores significantly larger than in the other groups. Under compression, strain at failure in demineralized bone was significantly affected by glucose and fatigue. AE from demineralized bone matrix was considerably related to the largest pores in the tissue. The results confirm the hypothesis that the effect of fatigue on cortical bone tissue was intensified after incubation in glucose, both in the terms of the mechanical competence of bone tissue and the structural changes in the collagenous matrix of bone.

  4. Lactation-Induced Changes in the Volume of Osteocyte Lacunar-Canalicular Space Alter Mechanical Properties in Cortical Bone Tissue.

    PubMed

    Kaya, Serra; Basta-Pljakic, Jelena; Seref-Ferlengez, Zeynep; Majeska, Robert J; Cardoso, Luis; Bromage, Timothy G; Zhang, Qihong; Flach, Carol R; Mendelsohn, Richard; Yakar, Shoshana; Fritton, Susannah P; Schaffler, Mitchell B

    2017-04-01

    Osteocytes can remove and remodel small amounts of their surrounding bone matrix through osteocytic osteolysis, which results in increased volume occupied by lacunar and canalicular space (LCS). It is well established that cortical bone stiffness and strength are strongly and inversely correlated with vascular porosity, but whether changes in LCS volume caused by osteocytic osteolysis are large enough to affect bone mechanical properties is not known. In the current studies we tested the hypotheses that (1) lactation and postlactation recovery in mice alter the elastic modulus of bone tissue, and (2) such local changes in mechanical properties are related predominantly to alterations in lacunar and canalicular volume rather than bone matrix composition. Mechanical testing was performed using microindentation to measure modulus in regions containing solely osteocytes and no vascular porosity. Lactation caused a significant (∼13%) reduction in bone tissue-level elastic modulus (p < 0.001). After 1 week postweaning (recovery), bone modulus levels returned to control levels and did not change further after 4 weeks of recovery. LCS porosity tracked inversely with changes in cortical bone modulus. Lacunar and canalicular void space increased 7% and 15% with lactation, respectively (p < 0.05), then returned to control levels at 1 week after weaning. Neither bone mineralization (assessed by high-resolution backscattered scanning electron microscopy) nor mineral/matrix ratio or crystallinity (assessed by Raman microspectroscopy) changed with lactation. Thus, changes in bone mechanical properties induced by lactation and recovery appear to depend predominantly on changes in osteocyte LCS dimensions. Moreover, this study demonstrates that tissue-level cortical bone mechanical properties are rapidly and reversibly modulated by osteocytes in response to physiological challenge. These data point to a hitherto unappreciated role for osteocytes in modulating and maintaining local bone mechanical properties. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  5. Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering

    PubMed Central

    Boccaccio, A.; Ballini, A.; Pappalettere, C.; Tullo, D.; Cantore, S.; Desiate, A.

    2011-01-01

    Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014. Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance. In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated. PMID:21278921

  6. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  7. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    PubMed Central

    Liskova, Jana; Babchenko, Oleg; Varga, Marian; Kromka, Alexander; Hadraba, Daniel; Svindrych, Zdenek; Burdikova, Zuzana; Bacakova, Lucie

    2015-01-01

    Nanocrystalline diamond (NCD) films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination) or oxygen atoms (O-termination). Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix mineralization, and this is promising for better osteoconductivity of potential bone implant coatings. PMID:25670900

  8. Pre-osteoblastic MC3T3-E1 promote breast cancer cell growth in bone in a murine xenograft model

    USDA-ARS?s Scientific Manuscript database

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cance...

  9. Molecular spectroscopic identification of the water compartments in bone.

    PubMed

    Unal, Mustafa; Yang, Shan; Akkus, Ozan

    2014-10-01

    Matrix bound water is a correlate of bone's fracture resistance and assessment of bound water is emerging as a novel measure of bone's mechanical integrity. Raman spectroscopy is one of the few nondestructive modalities to assess the hydration status in bone; however, it has not been used to study the OH-band in bone. A sequential dehydration protocol was developed to replace unbound (heat drying) and bound (ethanol or deuterium) water in bone. Raman spectra were collected serially to track the OH-band during dehydration. Spectra of synthetic hydroxyapatite, demineralized bone and bulk water were collected to identify mineral and collagen contributions to the OH-band. Band assignments were supported by computational simulations of the molecular vibrations of Gly-Pro-Hyp amino acid sequence. Experimentally and theoretically obtained spectra were interpreted for band-assignments. Water loss was measured gravimetrically and correlated to Raman intensities. Four peaks were identified to be sensitive to dehydration: 3220cm(-1) (water), 3325cm(-1) (NH and water), 3453cm(-1) (hydroxyproline and water), and 3584cm(-1) (mineral and water). These peaks were differentially sensitive to deuterium treatment such that some water peaks were replaced with deuterium oxide faster than the rest. Specifically, the peaks at 3325 and 3584cm(-1) were more tightly bound to the matrix than the remaining bands. Comparison of dehydration in mineralized and demineralized bone revealed a volume of water that may be locked in the matrix by mineral crystals. The OH-range of bone was dominated by collagen and the water since the spectral profile of dehydrated demineralized bone was similar to that of the mineralized bone. Furthermore, water associates to bone mainly by collagen as findings of experimentally and theoretically spectra. The current work is among the first thorough analysis of the Raman OH stretch band in bone and such spectral information may be used to understand the involvement of water in the fragility of aging and in diseased bone. Published by Elsevier Inc.

  10. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction.

    PubMed

    Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey

    2017-10-01

    Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.

  11. Defective Endochondral Ossification-Derived Matrix and Bone Cells Alter the Lymphopoietic Niche in Collagen X Mouse Models

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert

    2013-01-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders. PMID:23656481

  12. Defective endochondral ossification-derived matrix and bone cells alter the lymphopoietic niche in collagen X mouse models.

    PubMed

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert; Jacenko, Olena

    2013-10-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders.

  13. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries.

    PubMed

    Hernandez-Hurtado, Adelina A; Borrego-Soto, Gissela; Marino-Martinez, Ivan A; Lara-Arias, Jorge; Romero-Diaz, Viktor J; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G; Espinoza-Juarez, Marcela A; Lopez-Romero, Gloria C; Robles-Zamora, Alejandro; Mendoza Lemus, Oscar F; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.

  14. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil

    2017-12-01

    A number of orthopedic disorders and bone defect issues are solved by scaffold-based therapy in tissue engineering. The biocompatibility of chitosan (polysaccharide) and its similarity with glycosaminoglycan makes it a bone-grafting material. The current work focus on the synthesis of chitosan and chitosan-gelatin scaffold for hard tissue engineering. The chitosan and chitosan-gelatin scaffold have shown improved specific surface area, density, porosity, mechanical properties, biodegradability and absorption. These scaffolds can lead to the development or artificial fabrication of hard tissue alternates. The porous scaffold samples were prepared by freeze-drying method. The microstructure, mechanical and degradable properties of chitosan and chitosan-gelatin scaffolds were analyzed and results revealed that the scaffolds prepared from chitosan-gelatin can be utilized as a useful matrix for tissue engineering.

  16. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    NASA Astrophysics Data System (ADS)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  17. Composition of Mineral Produced by Dental Mesenchymal Stem Cells

    PubMed Central

    Volponi, A.A.; Gentleman, E.; Fatscher, R.; Pang, Y.W.Y.; Gentleman, M.M.; Sharpe, P.T.

    2015-01-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. PMID:26253190

  18. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation

    PubMed Central

    Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua

    2017-01-01

    Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100–300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration. PMID:28392688

  19. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation.

    PubMed

    Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua

    2017-01-01

    Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100-300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration.

  20. Quantitative Mapping of Matrix Content and Distribution across the Ligament-to-Bone Insertion

    PubMed Central

    Spalazzi, Jeffrey P.; Boskey, Adele L.; Pleshko, Nancy; Lu, Helen H.

    2013-01-01

    The interface between bone and connective tissues such as the Anterior Cruciate Ligament (ACL) constitutes a complex transition traversing multiple tissue regions, including non-calcified and calcified fibrocartilage, which integrates and enables load transfer between otherwise structurally and functionally distinct tissue types. The objective of this study was to investigate region-dependent changes in collagen, proteoglycan and mineral distribution, as well as collagen orientation, across the ligament-to-bone insertion site using Fourier transform infrared spectroscopic imaging (FTIR-I). Insertion site-related differences in matrix content were also evaluated by comparing tibial and femoral entheses. Both region- and site-related changes were observed. Collagen content was higher in the ligament and bone regions, while decreasing across the fibrocartilage interface. Moreover, interfacial collagen fibrils were aligned parallel to the ligament-bone interface near the ligament region, assuming a more random orientation through the bulk of the interface. Proteoglycan content was uniform on average across the insertion, while its distribution was relatively less variable at the tibial compared to the femoral insertion. Mineral was only detected in the calcified interface region, and its content increased exponentially across the mineralized fibrocartilage region toward bone. In addition to new insights into matrix composition and organization across the complex multi-tissue junction, findings from this study provide critical benchmarks for the regeneration of soft tissue-to-bone interfaces and integrative soft tissue repair. PMID:24019964

  1. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    PubMed

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  2. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    PubMed

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.

  3. The small world of osteocytes: connectomics of the lacuno-canalicular network in bone

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Kerschnitzki, Michael; Repp, Felix; Wagermaier, Wolfgang; Weinkamer, Richard; Fratzl, Peter

    2017-07-01

    Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization.

  4. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

    PubMed Central

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T; Darnell, Max C; Desai, Rajiv; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N; Mooney, David J.

    2015-01-01

    The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate1. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype2–4. Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials5–7, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. PMID:26366848

  5. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    NASA Astrophysics Data System (ADS)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  6. Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives.

    PubMed

    Chu, Chenyu; Deng, Jia; Sun, Xianchang; Qu, Yili; Man, Yi

    2017-10-01

    Collagen is one of the important components of collagen membranes as well as the extracellular matrix (ECM). Most previous studies have focused on combining collagen membranes with various cross-linking agents, grafting materials, and cytokines to enhance their mechanical properties and bioactivities. Moreover, collagen membranes are often designed to minimize foreign body reactions involving macrophages. However, macrophages were recently found to play a pivotal role during bone regeneration based on their polarization into both proinflammatory and anti-inflammatory phenotypes. Because of the abilities to modulate macrophage polarization and mediate the balance of proinflammatory and anti-inflammatory microenvironments, immune-responsive collagen membranes may be an innovative strategy for promoting bone regeneration. Herein, following a brief review of collagen membranes and the background of macrophages, recent modulations and studies of immune-responsive collagen are described to express the potential of collagen interacting with macrophages and the necessity of further studies in the field of immune-responsive collagen membranes.

  7. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.

    PubMed

    Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe

    2017-02-10

    Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x  SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering.

    PubMed

    Babitha, S; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai

    2018-04-01

    A biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization, and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell-biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Collagen fibril organization within rat vertebral bone modified with metastatic involvement.

    PubMed

    Burke, Mikhail; Golaraei, Ahmad; Atkins, Ayelet; Akens, Margarete; Barzda, Virginijus; Whyne, Cari

    2017-08-01

    Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone

    PubMed Central

    Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland

    2013-01-01

    Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465

  11. Student Award for Outstanding Research Winner in the Ph.D. Category for the 9th World Biomaterials Congress, Chengdu, China, June 1-5, 2012: The interplay of bone-like extracellular matrix and TNF-α signaling on in vitro osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Mountziaris, Paschalia M; Tzouanas, Stephanie N; Mikos, Antonios G

    2012-05-01

    As an initial step in the development of a bone tissue engineering strategy to rationally control inflammation, we investigated the interplay of bone-like extracellular matrix (ECM) and varying doses of the inflammatory cytokine tumor necrosis factor alpha (TNF-α) on osteogenically differentiating mesenchymal stem cells (MSCs) cultured in vitro on 3D poly(ε-caprolactone) (PCL) microfiber scaffolds containing pregenerated bone-like ECM. To generate the ECM, PCL scaffolds were seeded with MSCs and cultured in medium containing the typically required osteogenic supplement dexamethasone. However, since dexamethasone antagonizes TNF-α, the interplay of ECM and TNF-α was investigated by culturing naïve MSCs on the decellularized scaffolds in the absence of dexamethasone. MSCs cultured on ECM-coated scaffolds continued to deposit mineralized matrix, a late stage marker of osteogenic differentiation. Mineralized matrix deposition was not adversely affected by exposure to TNF-α for 4-8 days, but was significantly reduced after continuous exposure to TNF-α over 16 days, which simulates the in vivo response, where brief TNF-α signaling stimulates bone regeneration, while prolonged exposure has damaging effects. This underscores the exciting potential of PCL/ECM constructs as a more clinically realistic in vitro culture model to facilitate the design of new bone tissue engineering strategies that rationally control inflammation to promote regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  12. Low temperature setting polymer-ceramic composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sethuraman, Swaminathan

    Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo study of these novel bone cements in a 5mm unicortical defect in New Zealand white rabbits showed that the implants were osteoconductive, and osteointegrative. In conclusion, the various studies that have been carried out in this thesis to study the feasibility of a bone cement system have shown that these materials are promising candidates for various orthopaedic applications. Overall I believe that these next generation bone cements are promising bone graft substitutes in the armamentarium to treat bone defects.

  13. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    PubMed

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment.

  14. DYSAPOPTOSIS OF OSTEOBLASTS AND OSTEOCYTES INCREASES CANCELLOUS BONE FORMATION BUT EXAGGERATES BONE POROSITY WITH AGE

    PubMed Central

    Jilka, Robert L.; O’Brien, Charles A.; Roberson, Paula K.; Bonewald, Lynda F.; Weinstein, Robert S.; Manolagas, Stavros C.

    2013-01-01

    Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in non-vertebral fractures after age 65 in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short-lived osteoblasts that elaborate the bone matrix, and the long-lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long-lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor-κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short-lived osteoblasts, while exaggerating the adverse effects of aging on long-lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. PMID:23761243

  15. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    PubMed

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  16. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES

    PubMed Central

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-01-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512

  17. A combined approach of enamel matrix derivative gel and autogenous bone grafts in treatment of intrabony periodontal defects. A case report.

    PubMed

    Leung, George; Jin, Lijian

    2003-04-01

    Enamel matrix derivative (EMD) has recently been introduced as a new modality in regenerative periodontal therapy. This case report demonstrates a combined approach in topical application of EMD gel (Emdogain) and autogenous bone grafts for treatment of intrabony defects and furcation involvement defects in a patient with chronic periodontitis. The seven-month post-surgery clinical and radiographic results were presented. The combined application of EMD gel with autogenous bone grafts in intrabony osseous defects resulted in clinically significant gain of attachment on diseased root surfaces and bone fill on radiographs. Further controlled clinical studies are required to confirm the long-term effectiveness of the combination of EMD gel and autogenous bone grafts in treatment of various osseous defects in subjects with chronic periodontitis.

  18. The role of polyelectrolytes in the stabilization of calcium phosphate nanoparticles for the production of biomimetic materials

    NASA Astrophysics Data System (ADS)

    Krogstad, Daniel; Wang, Dongbo; Lin-Gibson, Sheng

    2014-03-01

    The exceptional mechanical properties of bone are a result of the hierarchical assembly of hydroxyapatite and the bone matrix, which is primarily composed of collagen. However, it has been shown that without highly acidic, non-collagenous proteins (NCP), which comprise only a few percent of the total organic material, collagen cannot be mineralized correctly. Although the exact roles of these NCP are unknown, it is believed that they are responsible for the stabilization and transportation of the apatite precursor, amorphous calcium phosphate (ACP). In this work, polyaspartic acid was used as a synthetic analog for NCP and the structure and kinetics of calcium phosphate nanoparticle formation were determined at various concentrations using cryo-TEM and scattering. From this investigation, it was determined that the size and stability of the ACP nanoparticles could be directly controlled by the relative ion and polymer concentrations. Interestingly, at high polymer concentrations, the particles remained suspended in solution even after they transformed from ACP to apatite indicating that the polymers have a strong ability to prevent particle aggregation. Through these results, control over the particle size and stability has been increased which will help in the design and development of biomimetic materials.

  19. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls.

    PubMed

    Milovanovic, Petar; Rakocevic, Zlatko; Djonic, Danijela; Zivkovic, Vladimir; Hahn, Michael; Nikolic, Slobodan; Amling, Michael; Busse, Bjoern; Djuric, Marija

    2014-07-01

    To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A Comparative Analysis of the In Vitro Effects of Pulsed Electromagnetic Field Treatment on Osteogenic Differentiation of Two Different Mesenchymal Cell Lineages

    PubMed Central

    Ceccarelli, Gabriele; Bloise, Nora; Mantelli, Melissa; Gastaldi, Giulia; Fassina, Lorenzo; De Angelis, Maria Gabriella Cusella; Ferrari, Davide; Imbriani, Marcello

    2013-01-01

    Abstract Human mesenchymal stem cells (MSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications. Exposure of MSCs to physical stimuli favors early and rapid activation of the tissue repair process. In this study we investigated the in vitro effects of pulsed electromagnetic field (PEMF) treatment on the proliferation and osteogenic differentiation of bone marrow MSCs (BM-MSCs) and adipose-tissue MSCs (ASCs), to assess if both types of MSCs could be indifferently used in combination with PEMF exposure for bone tissue healing. We compared the cell viability, cell matrix distribution, and calcified matrix production in unstimulated and PEMF-stimulated (magnetic field: 2 mT, amplitude: 5 mV) mesenchymal cell lineages. After PEMF exposure, in comparison with ASCs, BM-MSCs showed an increase in cell proliferation (p<0.05) and an enhanced deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p<0.05). Calcium deposition was 1.5-fold greater in BM-MSC–derived osteoblasts (p<0.05). The immunofluorescence related to the deposition of bone matrix proteins and calcium showed their colocalization to the cell-rich areas for both types of MSC-derived osteoblast. Alkaline phosphatase activity increased nearly 2-fold (p<0.001) and its protein content was 1.2-fold higher in osteoblasts derived from BM-MSCs. The quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis revealed up-regulated transcription specific for bone sialoprotein, osteopontin, osteonectin, and Runx2, but at a higher level for cells differentiated from BM-MSCs. All together these results suggest that PEMF promotion of bone extracellular matrix deposition is more efficient in osteoblasts differentiated from BM-MSCs. PMID:23914335

  1. Fatigue failure of osteocyte cellular processes: implications for the repair of bone.

    PubMed

    Dooley, C; Cafferky, D; Lee, T C; Taylor, D

    2014-01-25

    The physical effects of fatigue failure caused by cyclic strain are important and for most materials well understood. However, nothing is known about this mode of failure in living cells. We developed a novel method that allowed us to apply controlled levels of cyclic displacement to networks of osteocytes in bone. We showed that under cyclic loading, fatigue failure takes place in the dendritic processes of osteocytes at cyclic strain levels as low as one tenth of the strain needed for instantaneous rupture. The number of cycles to failure was inversely correlated with the strain level. Further experiments demonstrated that these failures were not artefacts of our methods of sample preparation and testing, and that fatigue failure of cell processes also occurs in vivo. This work is significant as it is the first time it has been possible to conduct fatigue testing on cellular material of any kind. Many types of cells experience repetitive loading which may cause failure or damage requiring repair. It is clinically important to determine how cyclic strain affects cells and how they respond in order to gain a deeper understanding of the physiological processes stimulated in this manner. The more we understand about the natural repair process in bone the more targeted the intervention methods may become if disruption of the repair process occurred. Our results will help to understand how the osteocyte cell network is disrupted in the vicinity of matrix damage, a crucial step in bone remodelling.

  2. THE EFFECT OF ANTISERUM, ALONE AND WITH HYDROCORTISONE, ON FOETAL MOUSE BONES IN CULTURE

    PubMed Central

    Fell, Honor B.; Weiss, L.

    1965-01-01

    1. The effects of normal rabbit serum and of rabbit antiserum to whole foetal mouse tissues, on the isolated limb bones of late foetal mice were studied in organ culture, and the influence of hydrocortisone on these effects was investigated. 2. Unheated normal serum caused slight loss of metachromatic material from the cartilage matrix, and some resorption of both cartilage and bone. 3. In unheated antiserum to foetal mouse tissues, the terminal cartilage was smaller and less metachromatic than in paired controls in normal serum, while osteoclasis was so intense that in many explants the bone had almost disappeared. The amount of necrosis varied with different batches of antiserum. 4. The changes produced by normal serum and antiserum could be largely prevented by heating the sera to 57°C for 45 minutes. 5. The effects could also be inhibited by the addition of hydrocortisone to the unheated sera; as little as 0.1 µg hydrocortisone per ml of medium had a well marked protective action. 6. It is suggested that (a) unheated antiserum causes a release of lysosomal enzymes with consequent breakdown of intercellular material, (b) this release is due to an indirect action on the lysosome via an increased permeability of the cell membrane, (c) hydrocortisone does not affect the antigen-antibody reaction, but inhibits the autolytic changes that normally follow this reaction, possibly by stabilising both the lysosomal and cell membranes. PMID:14276776

  3. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.

    PubMed

    Leach, J Kent; Kaigler, Darnell; Wang, Zhuo; Krebsbach, Paul H; Mooney, David J

    2006-06-01

    Bioactive glasses are potentially useful as bone defect fillers, and vascular endothelial growth factor (VEGF) has demonstrated benefit in bone regeneration as well. We hypothesized that the specific combination of prolonged localized VEGF presentation from a matrix coated with a bioactive glass may enhance bone regeneration. To test this hypothesis, the capacity of VEGF-releasing polymeric scaffolds with a bioactive glass coating was examined in vitro and in vivo using a rat critical-sized defect model. In the presence of a bioactive glass coating, we did not detect pronounced differences in the differentiation of human mesenchymal stem cells in vitro. However, we observed significantly enhanced mitogenic stimulation of endothelial cells in the presence of the bioactive glass coating, with an additive effect with VEGF release. This trend was maintained in vivo, where coated VEGF-releasing scaffolds demonstrated significant improvements in blood vessel density at 2 weeks versus coated control scaffolds. At 12 weeks, bone mineral density was significantly increased in coated VEGF-releasing scaffolds versus coated controls, while only a slight increase in bone volume fraction was observed. The results of this study suggest that a bioactive glass coating on a polymeric substrate participates in bone healing through indirect processes which enhance angiogenesis and bone maturation and not directly on osteoprogenitor differentiation and bone formation. The mass of bioactive glass used in this study provides a comparable and potentially additive, response to localized VEGF delivery over early time points. These studies demonstrate a materials approach to achieve an angiogenic response formerly limited to the delivery of inductive growth factors.

  4. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution.

    PubMed

    He, Gen; Gajjeraman, Sivakumar; Schultz, David; Cookson, David; Qin, Chunlin; Butler, William T; Hao, Jianjun; George, Anne

    2005-12-13

    Bone and dentin biomineralization are well-regulated processes mediated by extracellular matrix proteins. It is widely believed that specific matrix proteins in these tissues modulate nucleation of apatite nanoparticles and their growth into micrometer-sized crystals via molecular recognition at the protein-mineral interface. However, this assumption has been supported only circumstantially, and the exact mechanism remains unknown. Dentin matrix protein 1 (DMP1) is an acidic matrix protein, present in the mineralized matrix of bone and dentin. In this study, we have demonstrated using synchrotron small-angle X-ray scattering that DMP1 in solution can undergo oligomerization and temporarily stabilize the newly formed calcium phosphate nanoparticle precursors by sequestering them and preventing their further aggregation and precipitation. The solution structure represents the first low-resolution structural information for DMP1. Atomic force microscopy and transmission electron microscopy studies further confirmed that the nascent calcium phosphate nuclei formed in solution were assembled into ordered protein-mineral complexes with the aid of oligomerized DMP1, recombinant and native. This study reveals a novel mechanism by which DMP1 might facilitate initiation of mineral nucleation at specific sites during bone and dentin mineralization and prevent spontaneous calcium phosphate precipitation in areas in which mineralization is not desirable.

  5. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies.

    PubMed

    Prodanov, L; Semeins, C M; van Loon, J J W A; te Riet, J; Jansen, J A; Klein-Nulend, J; Walboomers, X F

    2013-05-01

    Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Preoperative easily misdiagnosed telangiectatic osteosarcoma: clinical-radiologic-pathologic correlations.

    PubMed

    Gao, Zhen-Hua; Yin, Jun-Qiang; Liu, Da-Wei; Meng, Quan-Fei; Li, Jia-Ping

    2013-12-11

    To describe the clinical, imaging, and pathologic characteristics and diagnostic methods of telangiectatic osteosarcoma (TOS) for improving the diagnostic level. The authors retrospectively reviewed patient demographics, serum alkaline phosphatase (AKP) levels, preoperative biopsy pathologic reports, pathologic materials, imaging findings, and treatment outcomes from 26 patients with TOS. Patient images from radiography (26 cases) and magnetic resonance (MR) imaging (22 cases) were evaluated by 3 authors in consensus for intrinsic characteristics. There were 15 male and 11 female patients in the study, with an age of 9-32 years (mean age 15.9 years). Eighteen of 26 patients died of lung metastases within 5 years of follow-up. The distal femur was affected more commonly (14 cases, 53.8%). Regarding serum AKP, normal (8 cases) or mildly elevated (18 cases) levels were found before preoperative chemotherapy. Radiographs showed geographic bone lysis without sclerotic margin (26 cases), cortical destruction (26 cases), periosteal new bone formation (24 cases), soft-tissue mass (23 cases), and matrix mineralization (4 cases). The aggressive radiographic features of TOS simulated the appearance of conventional high-grade intramedullary osteosarcoma, though different from aneurysmal bone cyst. MR images demonstrated multiple big (16 cases) or small (6 cases) cystic spaces, fluid-fluid levels (14 cases), soft-tissue mass (22 cases), and thick peripheral and septal enhancement (22 cases). Nine of 26 cases were misdiagnosed as aneurysmal bone cysts by preoperative core-needle biopsy, owing to the absence of viable high-grade sarcomatous cells in the small tissue samples. The aggressive growth pattern with occasional matrix mineralization, and multiple big or small fluid-filled cavities with thick peripheral, septal, and nodular tissue surrounding the fluid-filled cavities are characteristic imaging features of TOS, and these features are helpful in making the correct preoperative diagnosis of TOS.

  7. Strontium-rich injectable hybrid system for bone regeneration.

    PubMed

    Neves, Nuno; Campos, Bruno B; Almeida, Isabel F; Costa, Paulo C; Cabral, Abel Trigo; Barbosa, Mário A; Ribeiro, Cristina C

    2016-02-01

    Current challenges in the development of scaffolds for bone regeneration include the engineering of materials that can withstand normal dynamic physiological mechanical stresses exerted on the bone and provide a matrix capable of supporting cell migration and tissue ingrowth. The objective of the present work was to develop and characterize a hybrid polymer–ceramic injectable system that consists of an alginate matrix crosslinked in situ in the presence of strontium(Sr), incorporating a ceramic reinforcement in the form of Sr-rich microspheres. The incorporation of Sr in the microspheres and in the vehicle relies on the growing evidence that Sr has beneficial effects in bone remodeling and in the treatment of osteopenic disorders and osteoporosis. Sr-rich porous hydroxyapatite microspheres with a uniform size and a mean diameter of 555 μm were prepared, and their compression strength and friability tested. A 3.5% (w/v) ultrapure sodium alginate solution was used as the vehicle and its in situ gelation was promoted by the addition of calcium (Ca) or Sr carbonate and Glucone-δ-lactone. Gelation times varied with temperature and crosslinking agent, being slower for Sr than for Ca, but adequate for injection in both cases. Injectability was evaluated using a device employed in vertebroplasty surgical procedures, coupled to a texture analyzer in compression mode. Compositions with 35%w of microspheres presented the best compromise between injectability and compression strength of the system, the force required to extrude it being lower than 100 N.Micro CT analysis revealed a homogeneous distribution of the microspheres inside the vehicle, and a mean inter-microspheres space of 220 μm. DMA results showed that elastic behavior of the hybrid is over the viscous one and that the higher storage modulus was obtained for the 3.5%Alg–35%Sr-HAp-Sr formulation.

  8. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    PubMed

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation.

    PubMed

    Wieland, D C F; Krywka, C; Mick, E; Willumeit-Römer, R; Bader, R; Kluess, D

    2015-10-01

    In the present paper we have investigated the impact of electro stimulation on microstructural parameters of the major constituents of bone, hydroxyapatite and collagen. Therapeutic approaches exhibit an improved healing rate under electric fields. However, the underlying mechanism is not fully understood so far. In this context one possible effect which could be responsible is the inverse piezo electric effect at bone structures. Therefore, we have carried out scanning X-ray microdiffraction experiments, i.e. we recorded X-ray diffraction data with micrometer resolution using synchrotron radiation from trabecular bone samples in order to investigate how the bone matrix reacts to an applied electric field. Different samples were investigated, where the orientation of the collagen matrix differed with respect to the applied electric field. Our experiments aimed to determine whether the inverse piezo electric effect could have a significant impact on the improved bone regeneration owing to electrostimulative therapy. Our data suggest that strain is in fact induced in bone by the collagen matrix via the inverse piezo electric effect which occurs in the presence of an adequately oriented electric field. The magnitude of the underlying strain is in a range where bone cells are able to detect it. In our study we report on the piezoelectric effect in bone which was already discovered and explored on a macro scale in the 1950. Clinical approaches utilize successfully electro stimulation to enhance bone healing but the exact mechanisms taking place are still a matter of debate. We have measured the stress distribution with micron resolution in trabecular bone to determine the piezo electric induced stress. Our results show that the magnitude of the induced stress is big enough to be sensed by cells and therefore, could be a trigger for bone remodeling and growth. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Realization and testing of multi-material 3D printer for bone scaffold fabrication

    NASA Astrophysics Data System (ADS)

    Whulanza, Yudan; Hidayaturrahmi, Pretty; Kurniawati, Tri; AJ, Rahyussalim

    2017-02-01

    This research realized 3D constructs by integrating more than one material with multi fabrication system within a single session. A commercial rapid prototyping system, RepRap MendelTM, is modified so that it enables us to realize microenvironment composed of multi materials namely gelatin hydrogel and polylactic acid. Firstly, the session is preceded by realization of 3D scaffold using polylactic acid (PLA) with porosity and modulus elasticity as characterized. Later, the gelatin extrusion took place to seed the cellular in determined spatial arrangement. The results show that our apparatus able to realized scaffold that using PLA as matrix filled with gelatin that act as cell carrier in future application. The scaffolds have porous around 0.25 mm2 porosity with a modulus of elasticity around 160 MPa.

  11. Imunohistological aspects of the tissue around dental implants

    NASA Astrophysics Data System (ADS)

    Nimigean, Victor; Nimigean, Vanda R.; Sǎlǎvǎstru, Dan I.; Moraru, Simona; BuÅ£incu, Lavinia; Ivaşcu, Roxana V.; Poll, Alexandru

    2016-03-01

    Objectives: study of soft and hard tissues around implants. Material and methods: For the immunohistochemical and histological study of the implant/soft tissue interface, we examined pieces of peri-implant mucosa harvested from 35 patients. The implant/bone interface was assessed using histologic and histomorphometric examination of hard tissues around unloaded, early loaded or delayed loaded dental implants with pre-established design, with a sandblasted and acid-etched surface, placed both in extraction sockets, or after bone healing following tooth removal. This study was performed on 9 common race dogs. Results: The histological study of the implant/soft tissue interface showed regenerative modifications and moderate chronic subepithelial inflammatory reactions. Immunohistochemical evaluation of the soft tissue biopsies revealed the presence of specific immunocompetent cells and proteins of the matrix metalloproteinase (MMP) expression. Bone-implants contacts were more obvious in the apical half of the implants and at the edges of the threads, than between them. A mature, lamelliform bone containing lacunae with osteocytes and lack of connective tissue were noticed around implants that were late placed and loaded. The new-formed bone was also abundant in the crestal zone, not only in the apical part of the implants. Conclusions: A thorough understanding of the microstructure of dental implant/soft and hard tissue interface will improve the longevity of osseointegrated implants.

  12. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties.

    PubMed

    Changotade, S Igondjo Tchen; Korb, G; Bassil, J; Barroukh, B; Willig, C; Colliec-Jouault, S; Durand, P; Godeau, G; Senni, K

    2008-12-01

    In this work, we first tested the influence of low-molecular-weight (LMW) fucoidan extracted from pheophicae cell wall on bidimensional cultured normal human osteoblasts' behaviors. Second, by impregnation procedure with LMW fucoidan of bone biomaterial (Lubboc), we explored in this bone extracellular matrix context its capabilities to support human osteoblastic behavior in 3D culture. In bidimensionnal cultures, we evidenced that LMW fucoidan promotes human osteoblast proliferation and collagen type I expression and favors precocious alkaline phosphatase activity. Furthermore, with LMW fucoidan, von Kossa's staining was positive at 30 days and positive only at 45 days in the absence of LMW fucoidan. In our three-dimensional culture models with the biomaterial pretreated with LMW fucoidan, osteoblasts promptly overgrew the pretreated biomaterial. We also evidenced that osteoblasts increased proliferation with pretreated biomaterial when compared with untreated biomaterial. Osteoblasts secreted osteocalcin and expressed BMP2 receptor on control material as well as with LMW fucoidan impregnated biomaterial. In conclusion, in our experimental conditions, LMW fucoidan stimulated expression of osteoblastic markers differentiation such as alkaline phosphatase activity, collagen type I expression, and mineral deposition; furthermore, cell proliferation was favored. These findings suggest that fucoidan could be clinically useful for bone regeneration and bone substitute design. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  13. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering.

    PubMed

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-06-21

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.

  14. Vascular Spaces in Compact Bone: A Technique to Correct a Common Misinterpretation of Structure

    ERIC Educational Resources Information Center

    Locke, M.; Dean, Rob L.

    2003-01-01

    Old bones are often discolored by the grime that infiltrates spaces in the matrix once occupied by blood vessels. This suggested that allowing dry bone to absorb colorants might be a useful way to show the three dimensional complexity of bone vascularization. The authors have developed a simple way to show blood vessels spaces in bone at a glance…

  15. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  16. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model.

    PubMed

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo . The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  17. An Immunohistochemical Study of Matrix Proteins in the Craniofacial Cartilage in Midterm Human Fetuses

    PubMed Central

    Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.

    2013-01-01

    Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192

  18. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis

    PubMed Central

    Lorenz-Depiereux, Bettina; Bastepe, Murat; Benet-Pagès, Anna; Amyere, Mustapha; Wagenstaller, Janine; Müller-Barth, Ursula; Badenhoop, Klaus; Kaiser, Stephanie M; Rittmaster, Roger S; Shlossberg, Alan H; Olivares, José L; Loris, César; Ramos, Feliciano J; Glorieux, Francis; Vikkula, Miikka; Jüppner, Harald; Strom, Tim M

    2018-01-01

    Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression. PMID:17033625

  19. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis.

    PubMed

    Lorenz-Depiereux, Bettina; Bastepe, Murat; Benet-Pagès, Anna; Amyere, Mustapha; Wagenstaller, Janine; Müller-Barth, Ursula; Badenhoop, Klaus; Kaiser, Stephanie M; Rittmaster, Roger S; Shlossberg, Alan H; Olivares, José L; Loris, César; Ramos, Feliciano J; Glorieux, Francis; Vikkula, Miikka; Jüppner, Harald; Strom, Tim M

    2006-11-01

    Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression.

  20. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on β-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro.

    PubMed

    An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin

    2015-05-01

    The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.

  1. The Isolation and Characterization of Glycosylated Phosphoproteins from Herring Fish Bones*

    PubMed Central

    Zhou, Hai-Yan; Salih, Erdjan; Glimcher, Melvin J.

    2010-01-01

    Past studies of bone extracellular matrix phosphoproteins such as osteopontin and bone sialoprotein have yielded important biological information regarding their role in calcification and the regulation of cellular activity. Most of these studies have been limited to proteins extracted from mammalian and avian vertebrates and nonvertebrates. The present work describes the isolation and purification of two major highly glycosylated and phosphorylated extracellular matrix proteins of 70 and 22 kDa from herring fish bones. The 70-kDa phosphoprotein has some characteristics of osteopontin with respect to amino acid composition and susceptibility to thrombin cleavage. Unlike osteopontin, however, it was found to contain high levels of sialic acid similar to bone sialoprotein. The 22-kDa protein has very different properties such as very high content of phosphoserine (∼270 Ser(P) residues/1000 amino acid residues), Ala, and Asx residues. The N-terminal amino acid sequence analysis of both the 70-kDa (NPIMA(M)ETTS(M)DSKVNPLL) and the 22-kDa (NQDMAMEASSDPEAA) fish phosphoproteins indicate that these unique amino acid sequences are unlike any published in protein databases. An enzyme-linked immunosorbent assay revealed that the 70-kDa phosphoprotein was present principally in bone and in calcified scales, whereas the 22-kDa phosphoprotein was detected only in bone. Immunohistological analysis revealed diffusely positive immunostaining for both the 70- and 22-kDa phosphoproteins throughout the matrix of the bone. Overall, this work adds additional support to the concept that the mechanism of biological calcification has common evolutionary and fundamental bases throughout vertebrate species. PMID:20833721

  2. Postextraction socket preservation using epithelial connective tissue graft vs porcine collagen matrix. 1-year results of a randomised controlled trial.

    PubMed

    Meloni, Silvio Mario; Tallarico, Marco; Lolli, Francesco Maria; Deledda, Alessandro; Pisano, Milena; Jovanovic, Sascha A

    2015-01-01

    To compare epithelial connective tissue graft vs porcine collagen matrix for sealing postextraction sockets grafted with deproteinised bovine bone. A total of 30 patients, who needed a maxillary tooth to be extracted between their premolars and required a delayed, fixed, single implant-supported restoration, had their teeth atraumatically extracted and their sockets grafted with deproteinised bovine bone. Patients were randomised according to a parallel group design into two arms: socket sealing with epithelial connective tissue graft (group A) vs porcine collagen matrix (group B). Outcome measures were: implant success and survival rate, complications, horizontal and vertical alveolar bone dimensional changes measured on Cone Beam computed tomography (CBCT) scans at three levels localised 1, 3, and 5 mm below the most coronal aspect of the bone crest (levels A, B, and C); and between the palatal and buccal wall peaks (level D); and peri-implant marginal bone level changes measured on periapical radiographs. 15 patients were randomised to group A and 15 to group B. No patients dropped out. No failed implants or complications were reported 1 year after implant placement. Five months after tooth extraction there were no statistically significant differences between the 2 groups for both horizontal and vertical alveolar bone dimensional changes. At level A the difference was 0.13 ± 0.18; 95% CI 0.04 to 0.26 mm (P = 0.34), at level B it was 0.08 ± 0.23; 95% CI -0.14 to 0.14 (P = 0.61), at level C it was 0.05 ± 0.25; 95% CI -0.01 to 0.31 mm (P = 0.55) and at level D it was 0.13 ± 0.27; 95% CI -0.02 to 0.32 mm (P = 0.67). One year after implant placement there were no statistically significant differences between the 2 groups for peri-implant marginal bone level changes (difference: 0.07 ± 0.11 mm; 95% CI -0.02 to 0.16; P = 0.41). When teeth extractions were performed atraumatically and sockets were filled with deproteinised bovine bone, sealing the socket with a porcine collagen matrix or a epithelial connective tissue graft showed similar outcomes. The use of porcine collagen matrix allowed simplification of treatment because no palatal donor site was involved.

  3. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions.

    PubMed

    Kang, James; An, Howard; Hilibrand, Alan; Yoon, S Tim; Kavanagh, Eoin; Boden, Scott

    2012-05-20

    Prospective multicenter randomized clinical trail. The goal of our 2-year prospective study was to perform a randomized clinical trial comparing the outcomes of Grafton demineralized bone matrix (DBM) Matrix with local bone with that of iliac crest bone graft (ICBG) in a single-level instrumented posterior lumbar fusion. There has been extensive research and development in identifying a suitable substitute to replace autologous ICBG that is associated with known morbidities. DBMs are a class of commercially available grafting agents that are prepared from allograft bone. Many such products have been commercially available for clinical use; however, their efficacy for spine fusion has been mostly based on anecdotal evidence rather than randomized controlled clinical trials. Forty-six patients were randomly assigned (2:1) to receive Grafton DBM Matrix with local bone (30 patients) or autologous ICBG (16 patients). The mean age was 64 (females [F] = 21, males [M] = 9) in the DBM group and 65 (F = 9, M = 5) in the ICBG group. An independent radiologist evaluated plain radiographs and computed tomographic scans at 6-month, 1-year, and 2-year time points. Clinical outcomes were measured using Oswestry Disability Index (ODI) and Medical Outcomes Study 36-Item Short Form Health Survey. Forty-one patients (DBM = 28 and ICBG = 13) completed the 2-year follow-up. Final fusion rates were 86% (Grafton Matrix) versus 92% (ICBG) (P = 1.0 not significant). The Grafton group showed slightly better improvement in ODI score than the ICBG group at the final 2-year follow-up (Grafton [16.2] and ICBG [22.7]); however, the difference was not statistically significant (P = 0.2346 at 24 mo). Grafton showed consistently higher physical function scores at 24 months; however, differences were not statistically significant (P = 0.0823). Similar improvements in the physical component summary scores were seen in both the Grafton and ICBG groups. There was a statistically significant greater mean intraoperative blood loss in the ICBG group than in the Grafton group (P < 0.0031). At 2-year follow-up, subjects who were randomized to Grafton Matrix and local bone achieved an 86% overall fusion rate and improvements in clinical outcomes that were comparable with those in the ICBG group.

  4. Uncarboxylated Osteocalcin and Gprc6a Axis Produce Intratumoral Androgens in Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2015-03-01

    interacts with bone extracellular matrix associated calcium and hydroxyapatite and deposited in the bone matrix. Some Osteocalcin is released into...fluorescence protein as control) Osteocalcin and mutant Osteocalcin using lentivirus mediated stable infections. 2. Determined the gene expression of Gprc61... used a lentiviral system for expressing Osteocalcin and mutated Osteocalcin. Osteocalcin is mutated at three positions where glutamic acid residue at

  5. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  6. The NH2-terminal and COOH-terminal fragments of dentin matrix protein 1 (DMP1) localize differently in the compartments of dentin and growth plate of bone.

    PubMed

    Maciejewska, Izabela; Cowan, Cameron; Svoboda, Kathy; Butler, William T; D'Souza, Rena; Qin, Chunlin

    2009-02-01

    Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.

  7. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  8. Influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a bovine bone biomaterial and provisions for guided tissue regeneration: an experimental study in the dog.

    PubMed

    Stavropoulos, Andreas; Wikesjö, Ulf M E

    2010-06-01

    To evaluate the influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a deproteinized bovine bone/collagen matrix under provisions for guided tissue regeneration. Contra-lateral one-wall intrabony [6 x 6 mm (wide/deep) versus 4 x 4 mm (narrow/shallow)] periodontal defects were surgically created at the edentulated mesial aspect of the mandibular first molars in three Labradors, i.e., three defects in each category. The defects were implanted with the bovine bone/collagen matrix and covered with a collagen membrane. Histologic/histometric analysis followed an 18-month healing interval. New cementum encompassed the entire intrabony component in both wide/deep (5.6 +/- 0.5 mm) and narrow/shallow (4.2 +/- 0.1 mm) defects; bone formation amounted to 5.6 +/- 0.6 and 4.0 +/- 0.8 mm, respectively. Mineralized bone encompassed 57.5%versus 65% and the bone biomaterial 11.6%versus 13.1% of the defect space. A periodontal ligament with a width and composition similar to that of the resident periodontal ligament encompassing the entire aspect of the defects was observed. Root resorption/ankylosis was rare. Both wide/deep and narrow/shallow intrabony defects showed a substantial potential for periodontal regeneration in this pre-clinical model. The contribution of the bovine bone/collagen matrix and guided tissue regeneration to this regenerative potential is not clear.

  9. Release of zirconia nanoparticles at the metal stem-bone cement interface in implant loosening of total hip replacements.

    PubMed

    Schunck, Antje; Kronz, Andreas; Fischer, Cornelius; Buchhorn, Gottfried Hans

    2016-02-01

    In a previous failure analysis performed on femoral components of cemented total hip replacements, we determined high volumes of abraded bone cement. Here, we describe the topography of the polished surface of polymethyl methacrylate (PMMA) bone cement containing zirconia radiopacifier, analyzed by scanning electron microscopy and vertical scanning interferometry. Zirconia spikes protruded about 300nm from the PMMA matrix, with pits of former crystal deposition measuring about 400nm in depth. We deduced that the characteristically mulberry-shaped agglomerates of zirconia crystals are ground and truncated into flat surfaces and finally torn out of the PMMA matrix. Additionally, evaluation of in vitro PMMA-on-PMMA articulation confirmed that crystal agglomerations of zirconia were exposed to grain pullout, fatigue, and abrasion. In great quantities, micron-sized PMMA wear and zirconia nanoparticles accumulate in the cement-bone interface and capsular tissues, thereby contributing to osteolysis. Dissemination of nanoparticles to distant lymph nodes and organs of storage has been reported. As sufficient information is lacking, foreign body reactions to accumulated nanosized zirconia in places of long-term storage should be investigated. The production of wear particles of PMMA bone cement in the interface to joint replacement devices, presents a local challenge. The presence of zirconia particles results in frustrated digestion attempts by macrophages, liberation of inflammatory mediators, and necrosis leading to aseptic inflammation and osteolyses. Attempts to minimize wear of articulating joints reduced the attention to the deterioration of cement cuffs. We therefore investigated polished surfaces of retrieved cuffs to demonstrate their morphology and to measure surface roughness. Industrially admixed agglomerates of the radiopacifier are abraded to micron and nano-meter sized particles. The dissemination of zirconia particles in the reticulo-endothelial system to storage organs is a possible burden. Research to replace the actual contrast media by non-particulate material deserves more attention. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

    PubMed

    Martins, Ana M; Pham, Quynh P; Malafaya, Patrícia B; Raphael, Robert M; Kasper, F Kurtis; Reis, Rui L; Mikos, Antonios G

    2009-08-01

    This work proposes the use of nonporous, smart, and stimulus responsive chitosan-based scaffolds for bone tissue engineering applications. The overall vision is to use biodegradable scaffolds based on chitosan and starch that present properties that will be regulated by bone regeneration, with the capability of gradual in situ pore formation. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan-based materials with the main objective of controlling and tailoring their degradation profile as a function of immersion time. To confirm the concept, degradation tests with a lysozyme concentration similar to that incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as a function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity ( approximately 5-55% up to 21 days) resulting in porous three-dimensional structures with interconnected pores. Additional studies investigated the influence of a CaP biomimetic coating on osteogenic differentiation of rat marrow stromal cells (MSCs) and showed enhanced differentiation of rat MSCs seeded on the CaP-coated chitosan-based scaffolds with lysozyme incorporated. At all culture times, CaP-coated chitosan-based scaffolds with incorporated lysozyme demonstrated greater osteogenic differentiation of MSCs, bone matrix production, and mineralization as demonstrated by calcium deposition measurements, compared with controls (uncoated scaffolds). The ability of these CaP-coated chitosan-based scaffolds with incorporated lysozyme to create an interconnected pore network in situ coupled with the demonstrated positive effect of these scaffolds upon osteogenic differentiation of MSCs and mineralized matrix production illustrates the strong potential of these scaffolds for application in bone tissue engineering strategies.

  11. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  12. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing.

    PubMed

    Schrier, J A; Fink, B F; Rodgers, J B; Vasconez, H C; DeLuca, P P

    2001-10-07

    The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization, matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well, allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days, with the unembedded microspheres releasing faster than those embedded in CMC. In vivo, the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2/PLGA microspheres in CMC was an effective implantable protein-delivery system for use in bone repair.

  13. Comparative Analysis of Mouse-Induced Pluripotent Stem Cells and Mesenchymal Stem Cells During Osteogenic Differentiation In Vitro

    PubMed Central

    Kayashima, Hiroki; Miura, Jiro; Uraguchi, Shinya; Wang, Fangfang; Okawa, Hiroko; Sasaki, Jun-Ichi; Saeki, Makio; Matsumoto, Takuya; Yatani, Hirofumi

    2014-01-01

    Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and are, therefore, expected to be useful for bone regenerative medicine; however, the characteristics of iPSC-derived osteogenic cells remain unclear. Here, we provide a direct in vitro comparison of the osteogenic differentiation process in mesenchymal stem cells (MSCs) and iPSCs from adult C57BL/6J mice. After 30 days of culture in osteogenic medium, both MSCs and iPSCs produced robustly mineralized bone nodules that contained abundant calcium phosphate with hydroxyapatite crystal formation. Mineral deposition was significantly higher in iPSC cultures than in MSC cultures. Scanning electron microscopy revealed budding matrix vesicles in early osteogenic iPSCs; subsequently, the vesicles propagated to exhibit robust mineralization without rich fibrous structures. Early osteogenic MSCs showed deposition of many matrix vesicles in abundant collagen fibrils that became solid mineralized structures. Both cell types demonstrated increased expression of osteogenic marker genes, such as runx2, osterix, dlx5, bone sialoprotein (BSP), and osteocalcin, during osteogenesis; however, real-time reverse transcription–polymerase chain reaction array analysis revealed that osteogenesis-related genes encoding mineralization-associated molecules, bone morphogenetic proteins, and extracellular matrix collagens were differentially expressed between iPSCs and MSCs. These data suggest that iPSCs are capable of differentiation into mature osteoblasts whose associated hydroxyapatite has a crystal structure similar to that of MSC-associated hydroxyapatite; however, the transcriptional differences between iPSCs and MSCs could result in differences in the mineral and matrix environments of the bone nodules. Determining the biological mechanisms underlying cell-specific differences in mineralization during in vitro iPSC osteogenesis may facilitate the development of clinically effective engineered bone. PMID:24625139

  14. Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.

    2011-04-01

    As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.

  15. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries

    PubMed Central

    Hernandez-Hurtado, Adelina A.; Lara-Arias, Jorge; Romero-Diaz, Viktor J.; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F.; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G.; Espinoza-Juarez, Marcela A.; Mendoza Lemus, Oscar F.

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology. PMID:27818692

  16. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    PubMed

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.

  17. Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis

    PubMed Central

    Vollmer, N.; King, K.B.; Ayers, R.

    2015-01-01

    The aim of this research was to evaluate the biologic potential of calcium phosphate (CaP) biopowders produced with a novel reaction synthesis system. Decomposition combustion synthesis (DCS) is a modified combustion synthesis method capable of producing CaP powders for use in bone tissue engineering applications. During DCS, the stoichiometric ratio of reactant salt to fuel was adjusted to alter product chemistry and morphology. In vitro testing methods were utilized to determine the effects of controlling product composition on cytotoxicity, proliferation, biocompatibility and biomineralization. In vitro, human fetal osteoblasts (ATCC, CRL-11372) cultured with CaP powder displayed a flattened morphology, and uniformly encompassed the CaP particulates. Matrix vesicles containing calcium and phosphorous budded from the osteoblast cells. CaP powders produced via DCS are a source of biologically active, synthetic, bone graft substitute materials PMID:26034341

  18. The Effects of GATA-1 and NF-E2 Deficiency on Bone Biomechanical, Biochemical, and Mineral Properties

    PubMed Central

    Kacena, Melissa A.; Gundberg, Caren M.; Kacena, William J.; Landis, William J.; Boskey, Adele L.; Bouxsein, Mary L.; Horowitz, Mark C.

    2014-01-01

    Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone. PMID:23359245

  19. ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES

    PubMed Central

    Karim, Lamya; Diab, Tamim; Vashishth, Deepak

    2015-01-01

    Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375

  20. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone.

    PubMed

    Chappard, D; Bizot, P; Mabilleau, G; Hubert, L

    2016-06-01

    Several decades ago, aluminum encephalopathy associated with osteomalacia has been recognized as the major complication of chronic renal failure in dialyzed patients. Removal of aluminum from the dialysate has led to a disappearance of the disease. However, aluminum deposit occurs in the hydroxyapatite of the bone matrix in some clinical circumstances that are presented in this review. We have encountered aluminum in bone in patients with an increased intestinal permeability (coeliac disease), or in the case of prolonged administration of aluminum anti-acid drugs. A colocalisation of aluminum with iron was also noted in cases of hemochromatosis and sickle cell anemia. Aluminium was also identified in a series of patients with exostosis, a frequent benign bone tumor. Corrosion of prosthetic implants composed of grade V titanium (TA6V is an alloy containing 6% aluminum and 4% vanadium) was also observed in a series of hip or knee revisions. Aluminum can be identified in undecalcified bone matrix stained by solochrome azurine, a highly specific stain allowing the detection of 0.03 atomic %. Colocalization of aluminum and iron does not seem to be the fruit of chance but the cellular and molecular mechanisms are still poorly understood. Histochemistry is superior to spectroscopic analyses (EDS and WDS in scanning electron microscopy). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

Top