Sample records for bone matrix properties

  1. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    PubMed

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  2. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  3. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  4. Contributions of Raman spectroscopy to the understanding of bone strength.

    PubMed

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  5. Development of an injectable pseudo-bone thermo-gel for application in small bone fractures.

    PubMed

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Kumar, Pradeep; Marimuthu, Thashree; du Toit, Lisa C; Pillay, Viness

    2017-03-30

    A pseudo-bone thermo-gel was synthesized and evaluated for its physicochemical, mechanical and rheological properties, with its application to treat small bone fractures. The pseudo-bone thermo-gel was proven to have thermo-responsive properties, behaving as a solution in temperatures below 25°C, and forming a gelling technology when maintained at physiological conditions. Poly propylene fumerate (PPF), Pluronic F127 and PEG-PCL-PEG were strategically blended, obtaining a thermo-responsive delivery system, to mimic the mechanical properties of bone with sufficient matrix hardness and resilience. A Biopharmaceutics Classification System (BCS) class II drug, simvastatin, was loaded in the pseudo-bone thermo-gel, selected for its bone healing properties. In vitro release analysis was undertaken on a series of experimental formulations, with the ideal formulations obtaining its maximum controlled drug release profile up to 14days. Ex vivo studies were undertaken on an induced 4mm diameter butterfly-fractured osteoporotic human clavicle bone samples. X-ray, ultrasound as well as textural analysis, undertaken on the fractured bones before and after treatment displayed significant bone filling, matrix hardening and matrix resilience properties. These characteristics of the pseudo-bone thermo-gel thus proved significant potential for application in small bone fractures. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials.

    PubMed

    Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo

    2011-02-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  7. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    PubMed

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li

    2015-10-21

    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  8. Alterations in mineral properties of zebrafish skeletal bone induced by liliput dtc232 gene mutation

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Mei; Cui, Fu-Zhai; Ge, Jun; Ma, Chen

    2003-11-01

    The alterations of mineral properties of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone diseases, were reported for the first time in this paper. Transmission electron microscope (TEM), Fourier transform infrared microspectroscopy (FTIRM) and thermogravimetric analysis (TGA) were used to investigate the changes in the mineral. Significant variations of the morphologies of the minerals and the mineral/matrix ratio after liliputdtc232(lil) gene mutation have been observed. The morphologies of the minerals, examined by TEM, revealed that the mutated mineral was in bigger size and the shape was block shaped but not plate shaped. The results of FTIRM indicated that the lil mutant zebrafish skeleton exhibited a greater mineral/matrix ratio (phosphate/matrix=4.86±0.28) than that of wild-type zebrafish bone (phosphate/matrix=4.17±0.67), which was confirmed by TGA analysis. Furthermore, the mineral of lil bone became less mature and crystalline with more ion substitutions. And the selected areas electron diffraction (SAED) patterns showed that the main crystal phases of the two type fishes were both hydroxyapatite. In addition, we have discussed the relationship among the mineral properties, nanomechanical properties and biomineralization process.

  9. Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition

    PubMed Central

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B.; Spevak, Lyudmila; Boskey, Adele L.; Jepsen, Karl J.

    2009-01-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037

  10. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    PubMed

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  11. Specialisation of extracellular matrix for function in tendons and ligaments

    PubMed Central

    Birch, Helen L.; Thorpe, Chavaunne T.; Rumian, Adam P.

    2013-01-01

    Summary Tendons and ligaments are similar structures in terms of their composition, organisation and mechanical properties. The distinction between them stems from their anatomical location; tendons form a link between muscle and bone while ligaments link bones to bones. A range of overlapping functions can be assigned to tendon and ligaments and each structure has specific mechanical properties which appear to be suited for particular in vivo function. The extracellular matrix in tendon and ligament varies in accordance with function, providing appropriate mechanical properties. The most useful framework in which to consider extracellular matrix differences therefore is that of function rather than anatomical location. In this review we discuss what is known about the relationship between functional requirements, structural properties from molecular to gross level, cellular gene expression and matrix turnover. The relevance of this information is considered by reviewing clinical aspects of tendon and ligament repair and reconstructive procedures. PMID:23885341

  12. Lactation-Induced Changes in the Volume of Osteocyte Lacunar-Canalicular Space Alter Mechanical Properties in Cortical Bone Tissue.

    PubMed

    Kaya, Serra; Basta-Pljakic, Jelena; Seref-Ferlengez, Zeynep; Majeska, Robert J; Cardoso, Luis; Bromage, Timothy G; Zhang, Qihong; Flach, Carol R; Mendelsohn, Richard; Yakar, Shoshana; Fritton, Susannah P; Schaffler, Mitchell B

    2017-04-01

    Osteocytes can remove and remodel small amounts of their surrounding bone matrix through osteocytic osteolysis, which results in increased volume occupied by lacunar and canalicular space (LCS). It is well established that cortical bone stiffness and strength are strongly and inversely correlated with vascular porosity, but whether changes in LCS volume caused by osteocytic osteolysis are large enough to affect bone mechanical properties is not known. In the current studies we tested the hypotheses that (1) lactation and postlactation recovery in mice alter the elastic modulus of bone tissue, and (2) such local changes in mechanical properties are related predominantly to alterations in lacunar and canalicular volume rather than bone matrix composition. Mechanical testing was performed using microindentation to measure modulus in regions containing solely osteocytes and no vascular porosity. Lactation caused a significant (∼13%) reduction in bone tissue-level elastic modulus (p < 0.001). After 1 week postweaning (recovery), bone modulus levels returned to control levels and did not change further after 4 weeks of recovery. LCS porosity tracked inversely with changes in cortical bone modulus. Lacunar and canalicular void space increased 7% and 15% with lactation, respectively (p < 0.05), then returned to control levels at 1 week after weaning. Neither bone mineralization (assessed by high-resolution backscattered scanning electron microscopy) nor mineral/matrix ratio or crystallinity (assessed by Raman microspectroscopy) changed with lactation. Thus, changes in bone mechanical properties induced by lactation and recovery appear to depend predominantly on changes in osteocyte LCS dimensions. Moreover, this study demonstrates that tissue-level cortical bone mechanical properties are rapidly and reversibly modulated by osteocytes in response to physiological challenge. These data point to a hitherto unappreciated role for osteocytes in modulating and maintaining local bone mechanical properties. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  13. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    PubMed

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  14. Effect of Anti-Sclerostin Therapy and Osteogenesis Imperfecta on Tissue-level Properties in Growing and Adult Mice While Controlling for Tissue Age

    PubMed Central

    Sinder, Benjamin P.; Lloyd, William R.; Salemi, Joseph D.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2016-01-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as Osteogenesis Imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly→Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5 weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2–4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages >3wk) and rapidly growing Brtl/+ (at tissue ages > 4wk) mice compared to WT. At identical tissue ages defined by fluorescent labels adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. PMID:26769006

  15. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    PubMed

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    PubMed

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Aging and Bone

    PubMed Central

    Boskey, A.L.; Coleman, R.

    2010-01-01

    Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes. PMID:20924069

  18. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.

  19. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    PubMed

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.

  20. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.

    PubMed

    Wientroub, S; Reddi, A H

    1988-04-01

    Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed.

  1. An update on the Application of Nanotechnology in Bone Tissue Engineering.

    PubMed

    Griffin, M F; Kalaskar, D M; Seifalian, A; Butler, P E

    2016-01-01

    Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. Future studies to improve the application of nanomaterials for bone tissue engineering are needed.

  2. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    PubMed

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  3. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES

    PubMed Central

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-01-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512

  4. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific.

    PubMed

    Wallace, Joseph M; Rajachar, Rupak M; Chen, Xiao-Dong; Shi, Songtao; Allen, Matthew R; Bloomfield, Susan A; Les, Clifford M; Robey, Pamela G; Young, Marian F; Kohn, David H

    2006-07-01

    Biglycan (bgn) is a small leucine-rich proteoglycan (SLRP) enriched in the extracellular matrix of skeletal tissues. While bgn is known to be involved in the growth and differentiation of osteoblast precursor cells and regulation of collagen fibril formation, it is unclear how these functions impact bone's geometric and mechanical properties, properties which are integral to the structural function of bone. Because the genetic control of bone structure and function is both local- and gender-specific and because there is evidence of gender-specific effects associated with genetic deficiencies, it was hypothesized that the engineered deletion of the gene encoding bgn would result in a cortical bone mechanical phenotype that was bone- and gender-specific. In 11-week-old C57BL6/129 mice, the cortical bone in the mid-diaphyses of the femora and tibiae of both genders was examined. Phenotypic changes in bgn-deficient mice relative to wild type controls were assayed by four-point bending tests to determine mechanical properties at the whole bone (structural) and tissue levels, as well as analyses of bone geometry and bone formation using histomorphometry. Of the bones examined, bgn deficiency most strongly affected the male tibiae, where enhanced cross-sectional geometric properties and bone mineral density were accompanied by decreased tissue-level yield strength and pre-yield structural deformation and energy dissipation. Because pre-yield properties alone were impacted, this implies that the gene deletion causes important alterations in mineral and/or the matrix/mineral ultrastructure and suggests a new understanding of the functional role of bgn in regulating bone mineralization in vivo.

  5. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    PubMed

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  6. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  7. Altered bone material properties in HLA-B27 rats include reduced mineral to matrix ratio and altered collagen cross-links.

    PubMed

    Gamsjaeger, Sonja; Srivastava, Apurva K; Wergedal, Jon E; Zwerina, Jochen; Klaushofer, Klaus; Paschalis, Eleftherios P; Tatakis, Dimitris N

    2014-11-01

    Spondyloarthropathy and inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, are often associated with severe osteopenia/osteoporosis in both children and adults. HLA-B27 transgenic rats present a phenotype that includes severe colitis and severely accelerated alveolar bone loss. The purpose of this study was to evaluate long bone density status, systemic bone metabolic markers, and intrinsic bone material properties in HLA-B27 transgenic (TG) rats, and compare them with those of age- and sex-matched wild-type (WT) animals. The results indicate that in the HLA-B27 rat, an animal susceptible to both alveolar bone loss (ABL) and long bone osteopenia, there is a statistically significant negative correlation between ABL and long bone bone mineral density (BMD), as well as mineral/matrix ratio at active bone-forming trabecular surfaces. The TG animals had a lower mineral/matrix ratio and higher relative proteoglycan and advanced glycation end product (ϵ-N-Carboxymethyl-L-lysine) content and pyridinoline/divalent collagen cross-link ratio compared with WT. These results may provide better understanding of the interrelationship between osteoporosis and oral bone loss, the underlying causes of the inferior bone strength in the HLA-B27 transgenic animals, and could prove to be a useful model in the elucidation of the pathophysiology of spondyloarthropathy and IBD-associated osteopenia/osteoporosis and in the evaluation of pharmacological intervention(s) against such conditions. © 2014 American Society for Bone and Mineral Research.

  8. The Role of Water Compartments in the Material Properties of Cortical Bone

    PubMed Central

    Granke, Mathilde; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in 2 general compartments: within pores and bound to the matrix. The amount of pore water – residing in vascular-lacunar-canalicular space – primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites), and as such, is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using 1H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). NMR/MRI-derived bound water concentration is positively correlated with both strength and toughness of hydrated bone, and may become a useful clinical marker of fracture risk. PMID:25783011

  9. The Role of Water Compartments in the Material Properties of Cortical Bone.

    PubMed

    Granke, Mathilde; Does, Mark D; Nyman, Jeffry S

    2015-09-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.

  10. Experimental Evaluation of the Effectiveness of Demineralized Bone Matrix and Collagenated Heterologous Bone Grafts Used Alone or in Combination with Platelet-Rich Fibrin on Bone Healing in Sinus Floor Augmentation.

    PubMed

    Peker, Elif; Karaca, Inci Rana; Yildirim, Benay

    2016-01-01

    The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation than collagenated heterologous bone graft.

  11. Biomimetic soluble collagen purified from bones.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterizing the inorganic/organic interface in cancer bone metastasis

    NASA Astrophysics Data System (ADS)

    Wu, Fei

    Bone metastasis frequently occurs in patients with advanced breast cancer and remains a major source of mortality. At the molecular level, bone is a nanocomposite composed of inorganic bone mineral deposited within an organic extracellular matrix (ECM). Although the exact mechanisms of bone metastasis remain unclear, the nanoscale materials properties of bone mineral have been implicated in this process. Bone apatite is closely related to synthetic hydroxyapatite (HAP, Ca10(PO4)6(OH)2) in terms of structural and mechanical properties. Additionally, although the primary protein content of bone is collagen I, the glycoprotein fibronectin (Fn) is essential in maintaining the overall integrity of the bone matrix. Importantly, in vivo, neither breast cancer cells nor normal bone cells interact directly with the bone mineral but rather with the protein film adsorbed onto the mineral surface. Therefore, we hypothesized that breast cancer cell functions were regulated by differential fibronectin adsorption onto hydroxyapatite, which led to pathological remodeling of the bone matrix and sustained bone metastasis. Three model systems containing HAP and Fn were developed for this thesis. In model system I, a library of synthetic HAP nanoparticles were utilized to investigate the effect of mineral size, shape, and crystallinity on Fn conformation, using Forster resonance energy transfer (FRET) spectroscopy. In model system II, Fn-functionalized large geologic HAP crystals were used instead of HAP nanoparticles to avoid cellular uptake when investigating subsequent cell functions. Overall our FRET analysis (models I and II) revealed that Fn conformation depended on size, surface chemistry, and roughness of underlying HAP. When breast cancer cells were seeded on the Fn-coated HAP crystal facets (model II), our data indicated high secretion levels of proangiogenic and proinflammatory factors associated with the presence of unfolded Fn conformations, likely caused by differential engagement of cell receptors integrins with the underlying Fn. Finally, in model system III, Fn fibrillar structures (mimicking the bone matrix) were fabricated and characterized in presence of HAP nanoparticles, suggesting that the presence of microcalcifications found in tumorous/inflammed tissues affects both the structural and mechanical properties of the surrounding ECM. Collectively, our study of cellular behavior regulated by mineral/ECM interactions provides insights into the pathogenesis of breast cancer bone metastasis as well as other HAP-related inflammation.

  13. Design, fabrication and structural optimization of tubular carbon/Kevlar®/PMMA/graphene nanoplate composite for bone fixation prosthesis.

    PubMed

    Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R

    2018-05-02

    The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.

  14. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    PubMed Central

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  15. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls.

    PubMed

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L

    2013-01-01

    After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment-naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material. Copyright © 2013 American Society for Bone and Mineral Research.

  16. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Assessment of bone mineral status in children with Marfan syndrome

    USDA-ARS?s Scientific Manuscript database

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-ßeta, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone minerali...

  18. Effects of losartan treatment on the physicochemical properties of diabetic rat bone.

    PubMed

    Donmez, Baris Ozgur; Unal, Mustafa; Ozdemir, Semir; Ozturk, Nihal; Oguz, Nurettin; Akkus, Ozan

    2017-03-01

    Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.

  19. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality.

    PubMed

    Paschalis, E P; Gamsjaeger, S; Hassler, N; Fahrleitner-Pammer, A; Dobnig, H; Stepan, J J; Pavo, I; Eriksen, E F; Klaushofer, K

    2017-02-01

    Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of HIP/Ribosomal Protein L29 Deficiency on Mineral Properties of Murine Bones and Teeth

    PubMed Central

    Sloofman, Laura G.; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M.; Farach-Carson, Mary C.; Boskey, Adele L.; Kirn-Safran, Catherine B.

    2010-01-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. PMID:20362701

  1. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  2. Fragility Fracture Incidence in Chronic Obstructive Pulmonary Disease (COPD) Patients Associates With Nanoporosity, Mineral/Matrix Ratio, and Pyridinoline Content at Actively Bone-Forming Trabecular Surfaces.

    PubMed

    Paschalis, Eleftherios P; Gamsjaeger, Sonja; Dempster, David; Jorgetti, Vanda; Borba, Victoria; Boguszewski, Cesar L; Klaushofer, Klaus; Moreira, Carolina A

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with low areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and altered microstructure by bone histomorphometry and micro-computed tomography. Nevertheless, not all COPD patients sustain fragility fractures. In the present study, we used Raman microspectroscopic analysis to determine bone compositional properties at actively forming trabecular surfaces (based on double fluorescent labels) in iliac crest biopsies from 19 postmenopausal COPD patients (aged 62.1 ± 7.3 years). Additionally, we analyzed trabecular geometrical centers, representing tissue much older than the forming surfaces. Eight of the patients had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. None of the patients had taken oral glucocorticoids. The monitored parameters were mineral/matrix ratio (MM), nanoporosity, and relative glycosaminoglycan (GAG), lipid, and pyridinoline contents (PYD). There were no significant differences between the glucocorticoid-treated patients and those who did not receive any. On the other hand, COPD patients sustaining fragility fractures had significantly lower nanoporosity and higher MM and PYD values compared with COPD patients without fragility fractures. To the best of our knowledge, this is the first study to discriminate between fracture and non-fracture COPD patients based on differences in the material properties of bone matrix. Given that these bone material compositional differences are evident close to the cement line (a major bone interface), they may contribute to the inferior bone toughness and coupled with the lower lumbar spine bone mineral density values result in the fragility fractures prevalent in these patients. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  3. The small world of osteocytes: connectomics of the lacuno-canalicular network in bone

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Kerschnitzki, Michael; Repp, Felix; Wagermaier, Wolfgang; Weinkamer, Richard; Fratzl, Peter

    2017-07-01

    Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization.

  4. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    PubMed

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Surface modification of implants in long bone.

    PubMed

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  6. Surface modification of implants in long bone

    PubMed Central

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C.; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized. PMID:23507866

  7. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials.

    PubMed

    Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf

    2012-12-01

    An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  9. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    PubMed

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as the replacement of wide bone tissue defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.

    2015-10-01

    Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.

  11. Tissue level material composition and mechanical properties in Brtl/+ mouse model of Osteogenesis Imperfecta after sclerostin antibody treatment

    NASA Astrophysics Data System (ADS)

    Lloyd, William R.; Sinder, Benjamin P.; Salemi, Joseph; Ominsky, Michael S.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2015-02-01

    Osteogenesis imperfecta (OI) is a genetic disorder resulting in defective collagen or collagen-associated proteins and fragile, brittle bones. To date, therapies to improve OI bone mass, such as bisphosphonates, have increased bone mass in the axial skeleton of OI patients, but have shown limited effects at reducing long bone fragility. Sclerostin antibody (Scl- Ab), currently in clinical trials for osteoporosis, stimulates bone formation and may have the potential to reduce long bone fracture rates in OI patients. Scl-Ab has been investigated as an anabolic therapy for OI in the Brtl/+ mouse model of moderately severe Type IV OI. While Scl-Ab increases long bone mass in the Brtl/+ mouse, it is not known whether material properties and composition changes also occur. Here, we report on the effects of Scl-Ab on wild type and Brtl/+ young (3 week) and adult (6 month) male mice. Scl-Ab was administered over 5 weeks (25mg/kg, 2x/week). Raman microspectroscopy and nanoindentation are used for bone composition and biomechanical bone property measurements in excised bone. Fluorescent labels (calcein and alizarin) at 4 time points over the entire treatment period are used to enable measurements at specific tissue age. Differences between wild type and Brtl/+ groups included variations in the mineral and matrix lattices, particularly the phosphate v1, carbonate v1, and the v(CC) proline and hydroxyproline stretch vibrations. Results of Raman spectroscopy corresponded to nanoindentation findings which indicated that old bone (near midcortex) is stiffer (higher elastic modulus) than new bone. We compare and contrast mineral to matrix and carbonate to phosphate ratios in young and adult mice with and without treatment.

  12. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.

    PubMed

    Ghanbari, J; Naghdabadi, R

    2009-07-22

    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  13. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility

    PubMed Central

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery. PMID:24669191

  14. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.

    PubMed

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery.

  15. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.

    PubMed

    Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna

    2011-08-01

    The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. A micromechanical model to explain the mechanical properties of bovine cortical bone in tension: In vitro fluoride ion effects

    NASA Astrophysics Data System (ADS)

    Kotha, Shiva Prasad

    Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.

  17. Skeletal maturation substantially affects elastic tissue properties in the endosteal and periosteal regions of loaded mice tibiae.

    PubMed

    Checa, Sara; Hesse, Bernhard; Roschger, Paul; Aido, Marta; Duda, Georg N; Raum, Kay; Willie, Bettina M

    2015-07-01

    Although it is well known that the bone adapts to changes in the mechanical environment by forming and resorbing the bone matrix, little is known about the influence of mechanical loading on tissue material properties of the pre-existing and newly formed bone. In this study, we analyzed the newly formed and pre-existing tissue after two weeks of controlled in vivo axial compressive loading in tibia of young (10 week-old) and adult (26 week-old) female mice and compared to the control contralateral limb, by means of scanning acoustic microscopy. Additionally, we used quantitative backscattered electron imaging to determine the bone mineral density distribution within the newly formed and pre-existing bone of young mice. No significant differences were found in tissue stiffness or mineral density in the pre-existing bone tissue as a result of external loading. In the endosteal region, 10 and 26 week loaded animals showed a 9% reduction in bone tissue stiffness compared to control animals. An increase of 200% in the mineral apposition rate in this region was observed in both age groups. In the periosteal region, the reduction in bone tissue stiffness and the increase in bone mineral apposition rate as a result of loading were two times higher in the 10 compared to the 26 week old animals. These data suggest that, during growth and skeletal maturation, the response of bone to mechanical loading is a deposition of new bone matrix, where the tissue amount but not its mineral or elastic properties are influenced by animal age. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.

    PubMed

    Rindone, Alexandra N; Nyberg, Ethan; Grayson, Warren L

    2017-05-11

    Millions of patients worldwide require bone grafts for treatment of large, critically sized bone defects from conditions such as trauma, cancer, and congenital defects. Tissue engineered (TE) bone grafts have the potential to provide a more effective treatment than current bone grafts since they would restore fully functional bone tissue in large defects. Most bone TE approaches involve a combination of stem cells with porous, biodegradable scaffolds that provide mechanical support and degrade gradually as bone tissue is regenerated by stem cells. 3D-printing is a key technique in bone TE that can be used to fabricate functionalized scaffolds with patient-specific geometry. Using 3D-printing, composite polycaprolactone (PCL) and decellularized bone matrix (DCB) scaffolds can be produced to have the desired mechanical properties, geometry, and osteoinductivity needed for a TE bone graft. This book chapter will describe the protocols for fabricating and characterizing 3D-printed PCL:DCB scaffolds. Moreover, procedures for culturing adipose-derived stem cells (ASCs) in these scaffolds in vitro will be described to demonstrate the osteoinductivity of the scaffolds.

  19. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells

    PubMed Central

    Di Maggio, Nunzia; Martella, Elisa; Frismantiene, Agne; Resink, Therese J.; Schreiner, Simone; Lucarelli, Enrico; Jaquiery, Claude; Schaefer, Dirk J.; Martin, Ivan; Scherberich, Arnaud

    2017-01-01

    Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potential in vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptor α5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion. PMID:28290502

  20. Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1

    PubMed Central

    Kühnisch, Jirko; Seto, Jong; Lange, Claudia; Schrof, Susanne; Stumpp, Sabine; Kobus, Karolina; Grohmann, Julia; Kossler, Nadine; Varga, Peter; Osswald, Monika; Emmerich, Denise; Tinschert, Sigrid; Thielemann, Falk; Duda, Georg; Seifert, Wenke; el Khassawna, Thaqif; Stevenson, David A.; Elefteriou, Florent; Kornak, Uwe; Raum, Kay; Fratzl, Peter; Mundlos, Stefan; Kolanczyk, Mateusz

    2014-01-01

    Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions. PMID:24465906

  1. Visfatin alters the cytokine and matrix-degrading enzyme profile during osteogenic and adipogenic MSC differentiation.

    PubMed

    Tsiklauri, Lali; Werner, Janina; Kampschulte, Marian; Frommer, Klaus W; Berninger, Lucija; Irrgang, Martina; Glenske, Kristina; Hose, Dirk; El Khassawna, Thaqif; Pons-Kühnemann, Jörn; Rehart, Stefan; Wenisch, Sabine; Müller-Ladner, Ulf; Neumann, Elena

    2018-06-13

    Age-related bone loss is associated with bone marrow adiposity. Adipokines (e.g. visfatin, resistin, leptin) are adipocyte-derived factors with immunomodulatory properties and might influence differentiation of bone marrow-derived mesenchymal stem cells (MSC) in osteoarthritis (OA) and osteoporosis. Thus, the presence of adipokines and MMPs in bone marrow and their effects on MSC differentiation were analyzed. MSC and RNA were isolated from femoral heads after hip replacement surgery of OA or osteoporotic femoral neck fracture (FF) patients. Bone structural parameters were evaluated by μCT. MSC were differentiated towards adipocytes or osteoblasts with/without adipokines. Gene expression (adipokines, bone marker genes, MMPs, TIMPs) and cytokine production was evaluated by realtime-PCR and ELISA. Matrix mineralization was quantified using Alizarin red S staining. μCT showed an osteoporotic phenotype of FF compared to OA bone (reduced trabecular thickness and increased ratio of bone surface vs. volume of solid bone). Visfatin and leptin were increased in FF vs OA. Visfatin induced the secretion of IL-6, IL-8, and MCP-1 during osteogenic and adipogenic differentiation. In contrast to resistin and leptin, visfatin increased MMP2 and MMP13 during Adipognesis. In osteogenically differentiated cells, MMPs and TIMPs were reduced by visfatin. Visfatin significantly increased matrix mineralization during osteogenesis, whereas collagen type I expression was reduced. Visfatin-mediated increase of matrix mineralization and reduced collagen type I expression could contribute to bone fragility. Visfatin is involved in impaired bone remodeling at the adipose tissue/bone interface through induction of proinflammatory factors and dysregulated MMP/TIMP balance during MSC differentiation. Copyright © 2018. Published by Elsevier Ltd.

  2. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  3. [A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].

    PubMed

    Wu, Wenjin; Yang, Weizhong; Zhou, Dali; Ma, Jiang; Xiao, Bin

    2006-06-01

    In order to improve the mechanical properties of alpha-tricalcium phosphate (alpha-TCP), we prepared surface-modified carbon fibers (CF) reinforced alpha-TCP composite bone cement. Bone cement was soaked in Ringer's body solution to test its capacity of fast formation of hydroxyapatite crystals and self-solidification. Scan electronic microscope (SEM) observation and compressive strength measurement were taken to analyze the mechanical properties and the micro- morphological structure of CF reinforced alpha-TCP bone cement. The results showed that the bone cement was transferred into hydroxyapatite plates after being soaked in Ringer's simulated body fluid for 5 days. Suitable amount of carbon fibers could well spread in and bond with the matrix of the bone cement. The mechanical properties of the bone cement have been improved by CF reinforcing; the compressive strength reaches 46.7 MPa when the amount of carbon fibers is 0.5% in weight percent, which is 22% higher than that of the non-reinforced alpha-TCP bone cement.

  4. Bioglass incorporation improves mechanical properties and enhances cell-mediated mineralization on electrochemically aligned collagen threads.

    PubMed

    Nijsure, Madhura P; Pastakia, Meet; Spano, Joseph; Fenn, Michael B; Kishore, Vipuil

    2017-09-01

    Bone tissue engineering mandates the development of a functional scaffold that mimics the physicochemical properties of native bone. Bioglass 45S5 (BG) is a highly bioactive material known to augment bone formation and restoration. Hybrid scaffolds fabricated using collagen type I and BG resemble the organic and inorganic composition of the bone extracellular matrix and hence have been extensively investigated for bone tissue engineering applications. However, collagen-BG scaffolds developed thus far do not recapitulate the aligned structure of collagen found in native bone. In this study, an electrochemical fabrication method was employed to synthesize BG-incorporated electrochemically aligned collagen (BG-ELAC) threads that are compositionally similar to native bone. Further, aligned collagen fibrils within BG-ELAC threads mimic the anisotropic arrangement of collagen fibrils in native bone. The effect of BG incorporation on the mechanical properties and cell-mediated mineralization on ELAC threads was investigated. The results indicated that BG can be successfully incorporated within ELAC threads, without disturbing collagen fibril alignment. Further, BG incorporation significantly increased the ultimate tensile stress (UTS) and modulus of ELAC threads (p < 0.05). SBF conditioning showed extensive mineralization on BG-ELAC threads that increased over time demonstrating the bone bioactivity of BG-ELAC threads. Additionally, BG incorporation into ELAC threads resulted in increased cell proliferation (p < 0.05) and deposition of a highly dense and continuous mineralized matrix. In conclusion, incorporation of BG into ELAC threads is a viable strategy for the development of an osteoconductive material for bone tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2429-2440, 2017. © 2017 Wiley Periodicals, Inc.

  5. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture.

    PubMed

    Dai, Linghui; He, Zhenming; Zhang, Xin; Hu, Xiaoqing; Yuan, Lan; Qiang, Ming; Zhu, Jingxian; Shao, Zhenxing; Zhou, Chunyan; Ao, Yingfang

    2014-03-01

    Cartilage repair still presents a challenge to clinicians and researchers alike. A more effective, simpler procedure that can produce hyaline-like cartilage is needed for articular cartilage repair. A technique combining microfracture with a biomaterial scaffold of perforated decalcified cortical-cancellous bone matrix (DCCBM; composed of cortical and cancellous parts) would create a 1-step procedure for hyaline-like cartilage repair. Controlled laboratory study. For the in vitro portion of this study, mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates of New Zealand White rabbits. Scanning electron microscopy (SEM), confocal microscopy, and 1,9-dimethylmethylene blue assay were used to assess the attachment, proliferation, and cartilage matrix production of MSCs grown on a DCCBM scaffold. For the in vivo experiment, full-thickness defects were produced in the articular cartilage of the trochlear groove of 45 New Zealand White rabbits, and the rabbits were then assigned to 1 of 3 treatment groups: perforated DCCBM combined with microfracture (DCCBM+M group), perforated DCCBM alone (DCCBM group), and microfracture alone (M group). Five rabbits in each group were sacrificed at 6, 12, or 24 weeks after the operation, and the repair tissues were analyzed by histological examination, assessment of matrix staining, SEM, and nanoindentation of biomechanical properties. The DCCBM+M group showed hyaline-like articular cartilage repair, and the repair tissues appeared to have better matrix staining and revealed biomechanical properties close to those of the normal cartilage. Compared with the DCCBM+M group, there was unsatisfactory repair tissues with less matrix staining in the DCCBM group and no matrix staining in the M group, as well as poor integration with normal cartilage and poor biomechanical properties. The DCCBM scaffold is suitable for MSC growth and hyaline-like cartilage repair induction when combined with microfracture. Microfracture combined with a DCCBM scaffold is a promising method that can be performed and adopted into clinical treatment for articular cartilage injuries.

  6. Fourier Transformed Infra-Red Imaging of Femoral Neck Bone: Reduced Heterogeneity of Mineral-to-Matrix and Carbonate-to-Phosphate and more Variable Crystallinity in Treatment-Naïve Fracture Cases compared to Fracture-Free Controls

    PubMed Central

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L.

    2012-01-01

    After age 60 hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier Transform Infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and non-fractured bones. Whole femoral neck cross sections, divided into quadrants along the neck’s axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed Tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared to controls. While our treatment-naïve patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone’s toughness as a material. PMID:22865771

  7. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.

    PubMed

    Götz, Werner; Gerber, Thomas; Michel, Barbara; Lossdörfer, Stefan; Henkel, Kai-Olaf; Heinemann, Friedhelm

    2008-10-01

    Bone substitute biomaterials may be osteogenic, osteoconductive or osteoinductive. To test for these probable characteristics in a new nanoporous grafting material consisting of nanocrystalline hydroxyapatite embedded in a porous silica gel matrix (NanoBone(s)), applied in humans, we studied biopsies from 12 patients before dental implantation following various orofacial augmentation techniques with healing times of between 3.5 and 12 months. Sections from decalcified specimens were investigated using histology, histochemistry [periodic acid Schiff, alcian blue staining and tartrate-resistant acid phosphatase (TRAP)] and immunohistochemistry, with markers for osteogenesis, bone remodelling, resorption and vessel walls (alkaline phosphatase, bone morphogenetic protein-2, collagen type I, ED1, osteocalcin, osteopontin, runx2 and Von-Willebrand factor). Histologically, four specific stages of graft transformation into lamellar bone could be characterized. During early stages of healing, bone matrix proteins were absorbed by NanoBone(s) granules, forming a proteinaceous matrix, which was invaded by small vessels and cells. We assume that the deposition of these molecules promotes early osteogenesis in and around NanoBone(s) and supports the concomitant degradation probably by osteoclast-like cells. TRAP-positive osteoclast-like cells were localized directly on the granular surfaces. Runx2-immunoreactive pre-osteoblasts, which are probably involved in direct osteogenesis forming woven bone that is later transformed into lamellar bone, were attracted. Graft resorption and bone apposition around the graft granules appear concomitantly. We postulate that NanoBone(s) has osteoconductive and biomimetic properties and is integrated into the host's physiological bone turnover at a very early stage.

  8. Matrix change of bone grafting substitute after implantation into guinea pig bulla.

    PubMed

    Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W

    2012-05-01

    Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.

  9. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties.

    PubMed

    Hassler, N; Gamsjaeger, S; Hofstetter, B; Brozek, W; Klaushofer, K; Paschalis, E P

    2015-01-01

    Raman microspectroscopic analysis of iliac crest from patients that were treated with alendronate (ALN) for 10 years revealed minimal, transient alterations in bone material properties confined to actively forming bone surfaces compared to patients that were on ALN for 5 years. These changes were not encountered in the bulk tissue. Alendronate (ALN) and other bisphosphonates (BPs) are the most widely prescribed therapy for postmenopausal osteoporosis. Despite their overall excellent safety record and efficacy in reducing fractures, questions have been raised regarding potential detrimental effects that may be related to prolonged bone turnover reduction, although no definite cause-effect relationship has been established to date. The purpose of the present study was to evaluate bone material properties in patients that were receiving ALN for 5 or 10 years. Raman microspectroscopic analysis was used to analyze iliac crest biopsies from postmenopausal women with osteoporosis who had been treated with ALN for 5 years and were then re-randomized to placebo (PBO, N = 14), 5 mg/day ALN (N = 10), or 10 mg/day ALN (N = 6) for another 5 years. The parameters monitored and expressed as a function of tissue age were (i) the mineral/matrix ratio (MM), (ii) the relative proteoglycan content (PG), (iii) the relative lipid content (LPD), (iv) the mineral maturity/crystallinity (MMC), and (v) the relative pyridinoline content (PYD). The obtained data indicate that 10-year ALN use results in minimal, transient bone tissue composition changes compared to use for 5 years, confined to actively forming trabecular surfaces, implying potential differences in bone matrix maturation that nevertheless did not result in differences of these values in bulk tissue. The data suggest that prolonged reduction in bone turnover during 10 years of therapy with ALN by itself is unlikely to be associated with adverse effects on bone material properties.

  10. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and uncover a role for adhesion, and the degree of traction force exerted on the substrate in guiding these lineage outcomes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Pigment epithelium-derived factor upregulates collagen I and downregulates matrix metalloproteinase 2 in osteosarcoma cells, and colocalises to collagen I and heat shock protein 47 in fetal and adult bone.

    PubMed

    Alcantara, Marice B; Nemazannikova, Natalie; Elahy, Mina; Dass, Crispin R

    2014-11-01

    Pigment epithelium-derived factor (PEDF) has proven anti-osteosarcoma activity. However, the mechanism(s) underpinning its ability to reduce primary bone tumour (osteosarcoma) metastasis is unknown. Adult and fetal murine bone were immunostained for PEDF, collagen I (major protein in bone) and its processing proteins, heat shock protein 47 (HSP47, a chaperone protein for collagen I), membrane type I matrix metalloproteinase (MT1-MMP, a collagenase), and matrix metalloproteinase 2 (MMP-2, which is activated by MT1-MMP). Immunoblotting and immunocytochemistry were used to observe levels of the above biomarkers when human osteosarcoma cells were treated with PEDF. Immunohistochemical staining in adult and fetal bone mirrors collagen I. PEDF localised to ridges of trabecular bone in tibial cortex and to megakaryocytes within bone marrow. Second, we observed that PEDF upregulates collagen I, HSP47 and MT1-MMP, while downregulating MMP-2 in osteosarcoma cells in vitro. PEDF is a promising antagonist to osteosarcoma cell metastasis via downregulation of MMP-2, and can induce tumour cells to further adopt differentiative properties, thereby possibly reducing their aggressive growth in vitro and in vivo. © 2014 Royal Pharmaceutical Society.

  12. Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties

    PubMed Central

    Gallant, Maxime A.; Brown, Drew M.; Hammond, Max; Wallace, Joseph M.; Du, Jiang; Deymier-Black, Alix C.; Almer, Jonathan D.; Stock, Stuart R.; Allen, Matthew R.; Burr, David B.

    2014-01-01

    Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (−OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength. PMID:24468719

  13. New bioactive bone-like microspheres with intrinsic magnetic properties obtained by bio-inspired mineralisation process.

    PubMed

    Fernandes Patrício, Tatiana Marisa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Sprio, Simone

    2017-08-01

    A bio-inspired mineralisation process was investigated and applied to develop novel hybrid magnetic materials by heterogeneous nucleation of Fe 2+ /Fe 3+ -doped hydroxyapatite nanocrystals onto a biopolymeric matrix made of a Type I collagen-based recombinant peptide (RCP). The effect of the synthesis temperature on the phase composition, crystallinity and magnetic properties of the nucleated inorganic phase was studied. The as-obtained magnetic materials were then engineered, by using a water-in-oil emulsification process, into hybrid magnetic microspheres, which were stabilized by de-hydrothermal treatment yielding cross-linking of the macromolecular matrix. Thorough investigation of the physicochemical, morphological and biological properties of the new hybrid microspheres, as induced by the presence of the inorganic nanophase and controlled iron substitution into hydroxyapatite lattice, revealed bone-like composition, good cytocompatibility, designed shape and size, and tailored magnetization. Such features are interesting and promising for application as new biomaterials with ability of remote activation and control by using external magnetic fields, for smart and personalized applications in medicine, particularly in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications.

    PubMed

    Godara, A; Raabe, D; Green, S

    2007-03-01

    The effect of sterilization on the structural integrity of the thermoplastic matrix composite polyetheretherketone (PEEK) reinforced with carbon fibers (CF) is investigated by nanoindentation and nanoscratch tests. The use of the material as a medical implant grade requires a detailed understanding of the micromechanical properties which primarily define its in vivo behavior. Sterilization is a mandatory process for such materials used in medical applications like bone implants. The steam and gamma radiation sterilization processes employed in this study are at sufficient levels to affect the micromechanical properties of some polymer materials, particularly in the interphase region between the polymer matrix and the reinforcing fibers. Nanoindentation and nanoscratch tests are used in this work to reveal local gradients in the hardness and the elastic properties of the interphase regions. Both methods help to explore microscopic changes in the hardness, reduced stiffness and scratch resistance in the interphase region and in the bulk polymer matrix due to the different sterilization processes employed. The results reveal that neither steam nor gamma radiation sterilization entails significant changes of the reduced elastic modulus, hardness or coefficient of friction in the bulk polymer matrix. However, minor material changes of the PEEK matrix were observed in the interphase region. Of the two sterilization methods used, the steam treatment has a more significant influence on these small changes in this region and appears to increase slightly the thickness of the interphase zone.

  15. Polymer-ceramic nanocomposites for applications in the bone surgery

    NASA Astrophysics Data System (ADS)

    Stodolak, E.; Gadomska, K.; Lacz, A.; Bogun, M.

    2009-01-01

    The subject of this work was preparation and investigation of properties of a nanocomposite material based on polymer matrix modified with nanometric silica particles (SiO2). The composite matrix consisted of resorbable P(L/DL)LA polymer with certified biocompatibility. Nanometric silica was introduced into the matrix by means of ultrasonic homogenisation and/or mechanical stirring. The silica was introduced directly e.g. as nanoparticles or inside calcium alginate fibres which contained 3 wt.% of amorphous SiO2. Proper dispersion of nano-filliers was confirmed by means of thermal analysis (TG/DTA, DSC). It was observed, that the presence of inorganic nanoparticles influenced several surface parameters of the nanocomposites i.e. hydrophility (a decrease of surface energy) and topography (both in micro- and nano-scale). Additionally, the nanocomposites exhibited enhanced mechanical properties (Young's modulus, tensile strength) compared to the pure polymer. The nanocomposites were bioactive materials (SBF/3 days/37oC). Biological tests (MTT test) showed a good viability of human osteoblasts (hFOB 1.19) in contact with the nanocomposites surface. Results of preliminary biological tests carried out with the use of mother cells extracted from human bone marrow showed that the nanocomposites may provide differenation of bone cells.

  16. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice☆

    PubMed Central

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-01-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. PMID:22449447

  17. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice.

    PubMed

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-06-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone

    NASA Astrophysics Data System (ADS)

    Roschger, Andreas; Gamsjaeger, Sonja; Hofstetter, Birgit; Masic, Admir; Blouin, Stéphane; Messmer, Phaedra; Berzlanovich, Andrea; Paschalis, Eleftherios P.; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter

    2014-06-01

    Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone are powerful tools to investigate bone material properties. Both methods provide information on the degree of bone matrix mineralization. However, a head-to-head comparison of these outcomes from identical bone areas has not been performed to date. In femoral midshaft cross sections of three women, 99 regions (20×20 μ) were selected inside osteons and interstitial bone covering a wide range of matrix mineralization. As the focus of this study was only on regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral content close to the mineralization front were excluded. The same regions were measured by both methods. We found a linear correlation (R2=0.75) between mineral/matrix as measured by Raman spectroscopy and the wt. %Mineral/(100-wt. %Mineral) as obtained by qBEI, in good agreement with theoretical estimations. The observed deviations of single values from the linear regression line were determined to reflect biological heterogeneities. The data of this study demonstrate the good correspondence between Raman and qBEI outcomes in describing tissue mineralization. The obtained correlation is likely sensitive to changes in bone tissue composition, providing an approach to detect potential deviations from normal bone.

  19. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    PubMed

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P < 0.01, R 2  = 0.966; Raman ν 1 PO 4 /Amide I: P < 0.01, R 2  = 0.919; Raman ν 1 PO 4 /Proline + Hydroxyproline: P < 0.01, R 2  = 0.976; Raman ν 1 PO 4 /Phenylalanine: P < 0.01, R 2  = 0.911; Raman ν 1 PO 4 /δ CH 2 : P < 0.01, R 2  = 0.894; IR P < 0.01, R 2  = 0.91). Fourier transform infrared mineral:matrix ratio values from native bone tissue were also similar to theoretical mineral:matrix ratio values for a given ash fraction. Raman and IR mineral:matrix ratio values were strongly correlated ( P < 0.01, R 2  = 0.82). These results were confirmed by calculating the mineral:matrix ratio for theoretical IR spectra, developed by applying the Beer-Lambert law to calculate the relative extinction coefficients of HA and collagen over the same range of wavenumbers (800-1800 cm -1 ). The results confirm that the Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  20. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.

    PubMed

    Ren, Li; Yang, Pengfei; Wang, Zhe; Zhang, Jian; Ding, Chong; Shang, Peng

    2015-10-01

    Bones with complicated hierarchical configuration and microstructures constitute the load-bearing system. Mechanical loading plays an essential role in maintaining bone health and regulating bone mechanical adaptation (modeling and remodeling). The whole-bone or sub-region (macroscopic) mechanical signals, including locomotion-induced loading and external actuator-generated vibration, ultrasound, oscillatory skeletal muscle stimulation, etc., give rise to sophisticated and distinct biomechanical and biophysical environments at the pericellular (microscopic) and collagen/mineral molecular (nanoscopic) levels, which are the direct stimulations that positively influence bone adaptation. While under microgravity, the stimulations decrease or even disappear, which exerts a negative influence on bone adaptation. A full understanding of the biomechanical and biophysical environment at different levels is necessary for exploring bone biomechanical properties and mechanical adaptation. In this review, the mechanical transferring theories from the macroscopic to the microscopic and nanoscopic levels are elucidated. First, detailed information of the hierarchical structures and biochemical composition of bone, which are the foundations for mechanical signal propagation, are presented. Second, the deformation feature of load-bearing bone during locomotion is clarified as a combination of bending and torsion rather than simplex bending. The bone matrix strains at microscopic and nanoscopic levels directly induced by bone deformation are critically discussed, and the strain concentration mechanism due to the complicated microstructures is highlighted. Third, the biomechanical and biophysical environments at microscopic and nanoscopic levels positively generated during bone matrix deformation or by dynamic mechanical loadings induced by external actuators, as well as those negatively affected under microgravity, are systematically discussed, including the interstitial fluid flow (IFF) within the lacunar-canalicular system and at the endosteum, the piezoelectricity at the deformed bone surface, and the streaming potential accompanying the IFF. Their generation mechanisms and the regulation effect on bone adaptation are presented. The IFF-induced chemotransport effect, shear stress, and fluid drag on the pericellular matrix are meaningful and noteworthy. Furthermore, we firmly believe that bone adaptation is regulated by the combination of bone biomechanical and biophysical environment, not only the commonly considered matrix strain, fluid shear stress, and hydrostatic pressure, but also the piezoelectricity and streaming potential. Especially, it is necessary to incorporate bone matrix piezoelectricity and streaming potential to explain how osteoblasts (bone formation cells) and osteoclasts (bone resorption cells) can differentiate among different types of loads. Specifically, the regulation effects and the related mechanisms of the biomechanical and biophysical environments on bone need further exploration, and the incorporation of experimental research with theoretical simulations is essential. Copyright © 2015. Published by Elsevier Ltd.

  1. Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties.

    PubMed

    Bach-Gansmo, Fiona Linnea; Wittig, Nina Kølln; Brüel, Annemarie; Thomsen, Jesper Skovhus; Birkedal, Henrik

    2016-10-01

    The ability of osteocytes to demineralize the perilacunar matrix, osteocytic osteolysis, and thereby participate directly in bone metabolism, is an aspect of osteocyte biology that has received increasing attention during the last couple of years. The aim of the present work was to investigate whether osteocyte lacunar properties change during immobilization and subsequent recovery. A rat cortical bone model with negligible Haversian remodeling effects was used, with temporary immobilization of one hindlimb induced by botulinum toxin. Several complementary techniques covering multiple length scales enabled correlation of osteocyte lacunar properties to changes observed on the organ and tissue level of femoral bone. Bone structural parameters measured by μCT and mechanical properties were compared to sub-micrometer resolution SR μCT data mapping an unprecedented number (1.85 million) of osteocyte lacunae. Immobilization induced a significant reduction in aBMD, bone volume, tissue volume, and load to fracture, as well as the muscle mass of rectus femoris. During the subsequent recovery period, the bone structural and mechanical properties were only partly regained in spite of a long-term (28weeks) study period. No significant changes in osteocyte lacunar volume, density, oblateness, stretch, or orientation were detected upon immobilization or subsequent recovery. In conclusion, the bone architecture and not osteocyte lacunar properties or bone material characteristics dominate the immobilization response as well as the subsequent recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlin, Maria, E-mail: maria.herlin@ki.se; Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi; Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serummore » levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone and softer cortical bone. • TCDD does not affect the bones of Ahr{sup –/–} mice.« less

  3. In-vitro and in-vivo design and validation of an injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation.

    PubMed

    Fricain, J C; Aid, R; Lanouar, S; Maurel, D B; Le Nihouannen, D; Delmond, S; Letourneur, D; Amedee Vilamitjana, J; Catros, S

    2018-04-07

    Polysaccharide-based composite matrices consisting of natural polysaccharides, pullulan and dextran supplemented with hydroxyapatite (Matrix-HA) have recently been developed. The principal objective of this study was to evaluate the capacities of this composite material to promote new bone formation in a sinus lift model in the sheep. Secondary objectives were to evaluate in vitro properties of the material regarding cell adhesion and proliferation. In this report, once such composite matrix was prepared as injectable beads after dispersion in a physiological buffer, and evaluated using a large animal model (sheep) for a sinus lift procedure. In vitro studies revealed that these microbeads (250-550μm in diameter) allow vascular cell adhesion and proliferation of Endothelial Cells (EC) after 1 and 7 days of culture. In vivo studies were performed in 12 adult sheep, and newly formed tissue was analyzed by Cone Beam Computed Tomography (CBCT scanning electron microscopy (SEM) and by histology 3 and 6 months post-implantation. CBCT analyses at the implantation time revealed the radiolucent properties of these matrices. Quantitative analysis showed an increase of a dense mineralized tissue in the Matrix-HA group up to 3 months of implantation. The mineralized volume over total volume after 6 months reached comparable values to those obtained for Bio-Oss ® used as positive control. Histological examination confirmed that the Matrix-HA did not induce any long term inflammatory events, and promoted direct contact between the osteoid tissue and lamellar bone structures and beads. After 6 months, we observed a dense network of osteocytes surrounding both biomaterials as well as a newly vascularized formed tissue in close contact to the biomaterials. In conclusion, the absence of animal components in Matrix-HA, the osteoconductive property of Matrix-HA in sheep, resulting in a dense bone and vascularized tissue, and the initial radiolucent property to follow graft integration offer great promises of this composite material for clinical use. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  4. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    PubMed

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  5. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model.

    PubMed

    Yao, Xiaomei; Carleton, Stephanie M; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L; Wang, Yong

    2013-06-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

  6. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model

    PubMed Central

    Yao, Xiaomei; Carleton, Stephanie M.; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L.; Wang, Yong

    2013-01-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition, hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI. PMID:23536112

  7. Advanced Glycation End-products and Bone Fractures.

    PubMed

    Vashishth, Deepak

    2009-08-01

    Bone does not turn over uniformly, and becomes susceptible to post-translational modification by non-enzymatic glycation (NEG). NEG of bone causes the formation of advanced glycation end-products (AGEs) and this process is accelerated with aging, diabetes and antiresorptive postmenopausal osteoporosis therapy. Due to the elevated incidence of fracture associated with aging and diabetes, several studies have attempted to measure and evaluate AGEs as biomarkers for fracture risk. Here current methods of estimating AGEs in bone by liquid chromatography and fluorometric assay are summarized and the relationships between AGEs and fracture properties at whole bone, apparent tissue and matrix levels are discussed.

  8. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization.

    PubMed

    Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H

    1998-04-01

    Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.

  9. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    PubMed

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  10. Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice

    PubMed Central

    Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.

    2010-01-01

    Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775

  11. Chitosan based nanofibers in bone tissue engineering.

    PubMed

    Balagangadharan, K; Dhivya, S; Selvamurugan, N

    2017-11-01

    Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparison of collagen matrix treatment impregnated with platelet rich plasma vs bone marrow.

    PubMed

    Minamimura, Ai; Ichioka, Shigeru; Sano, Hitomi; Sekiya, Naomi

    2014-02-01

    This study has reported the efficacy of an autologous bone marrow-impregnated collagen matrix experimentally and clinically. Then, it reflected that platelet rich plasma (PRP) was as good a source of growth factors as bone marrow and available in a less invasive procedure. This study aimed to compare the efficacy of a PRP-impregnated collagen matrix with that of a bone marrow-impregnated collagen matrix by quantifying wound size and capillary density using genetically diabetic db/db mice. Bone marrow cells were obtained from femurs of ddy mice. Then, a small amount of collagen matrix was immersed in bone marrow suspension. This is called a bone marrow-impregnated collagen matrix. PRP was obtained from healthy human blood and a small amount of collagen matrix was immersed in PRP. This is called a PRP-impregnated collagen matrix. A bone marrow-impregnated collagen matrix and PRP-impregnated collagen matrix were applied to excisional skin wounds on a genetically healing-impaired mouse (n = 6) and wounds were evaluated 6 days after the procedure. Wounds were divided into two groups: PRP (n = 6), in which a PRP-impregnated collagen matrix was applied; and bone marrow (n = 6), in which collagen immersed in a bone marrow suspension was applied. There was no significant difference between the PRP and bone-marrow groups in the rate of vascular density increase or wound size decrease. The present study suggested that the PRP-impregnated collagen matrix promotes repair processes at least as strongly as the bone marrow-impregnated collagen matrix. Given lower invasiveness, the PRP-impregnated collagen matrix would have advantages in clinical use.

  13. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.

    PubMed

    Trębacz, Hanna; Zdunek, Artur; Wlizło-Dyś, Ewa; Cybulska, Justyna; Pieczywek, Piotr

    2015-10-16

    The aim of this study was to test a hypothesis that fatigue-induced weakening of cortical bone was intensified in bone incubated in glucose and that this weakening is revealed in the microstructure and mechanical competence of the bone matrix. Cubic specimens of bovine femoral shaft were incubated in glucose solution (G) or in buffer (NG). One half of G samples and one half of NG were axially loaded in 300 cycles (30 mm/min) at constant deformation (F); the other half was a control (C). Samples from each group (GF, NGF, GC, NGC) were completely demineralized. Slices from demineralized samples were used for microscopic image analysis. A combined effect of glycation and fatigue on demineralized bone was tested in compression (10 mm/min). Damage of samples during the test was examined in terms of acoustic emission analysis (AE). During the fatigue procedure, resistance to loading in glycated samples decreased by 14.5% but only by 8.1% in nonglycated samples. In glycated samples fatigue resulted in increased porosity with pores significantly larger than in the other groups. Under compression, strain at failure in demineralized bone was significantly affected by glucose and fatigue. AE from demineralized bone matrix was considerably related to the largest pores in the tissue. The results confirm the hypothesis that the effect of fatigue on cortical bone tissue was intensified after incubation in glucose, both in the terms of the mechanical competence of bone tissue and the structural changes in the collagenous matrix of bone.

  14. RAMAN SPECTRAL CLASSIFICATION OF MINERAL- AND COLLAGEN-BOUND WATER’S ASSOCIATIONS TO ELASTIC AND POST-YIELD MECHANICAL PROPERTIES OF CORTICAL BONE

    PubMed Central

    Unal, Mustafa; Akkus, Ozan

    2015-01-01

    Water that is bound to bone’s matrix is implied as a predictor of fracture resistance; however, bound water is an elusive variable to be measured nondestructively. To date, the only nondestructive method used for studying bone hydration status is magnetic resonance variants (NMR or MRI). For the first time, bone hydration status was studied by short-wave infrared (SWIR) Raman spectroscopy to investigate associations of mineral-bound and collagen-bound water compartments with mechanical properties. Thirty cortical bone samples were used for quantitative Raman-based water analysis, gravimetric analysis, porosity measurement, and biomechanical testing. A sequential dehydration protocol was developed to replace unbound (heat drying) and bound (ethanol treatment) water in bone. Raman spectra were collected serially to track the OH-stretch band during dehydration. Four previously identified peaks were investigated: I3220/I2949, I3325/I2949 and I3453/I2949 reflect status of organic-matrix related water (mostly collagen-related water) compartments and collagen portion of bone while I3584/I2949 reflects status of mineral-related water compartments and mineral portion of bone. These spectroscopic biomarkers were correlated with elastic and post-yield mechanical properties of bone. Collagen-water related biomarkers (I3220/I2949 and I3325/I2949) correlated significantly and positively with toughness (R2=0.81 and R2=0.79; p<0.001) and post-yield toughness (R2=0.65 and R2=0.73; p<0.001). Mineral-water related biomarker correlated significantly and negatively with elastic modulus (R2=0.78; p<0.001) and positively with strength (R2=0.46; p < 0.001). While MR-based techniques have been useful in measuring unbound and bound water, this is the first study which probed bound-water compartments differentially for collagen and mineral-bound water. For the first time, we showed an evidence for contributions of different bound-water compartments to mechanical properties of wet bone and the reported correlations of Raman-based water measurements to mechanical properties underline the necessity for enabling approaches to assess these new biomarkers noninvasively in vivo to improve the current diagnosis of those who may be at risk of bone fracture due to aging and diseases. PMID:26211992

  15. Early Alterations in Bone Characteristics of Type I Diabetic Rat Femur: A Fourier Transform Infrared (FT-IR) Imaging Study.

    PubMed

    Bozkurt, Ozlem; Bilgin, Mehmet Dincer; Evis, Zafer; Pleshko, Nancy; Severcan, Feride

    2016-12-01

    Alterations in microstructure and mineral features can affect the mechanical and chemical properties of bones and their capacity to resist mechanical forces. Controversial results on diabetic bone mineral content have been reported and little is known about the structural alterations in collagen, maturation of apatite crystals, and carbonate content in diabetic bone. This current study is the first to report the mineral and organic properties of cortical, trabecular, and growth plate regions of diabetic rat femurs using Fourier transform infrared (FT-IR) microspectroscopy and the Vickers microhardness test. Femurs of type I diabetic rats were embedded into polymethylmethacrylate blocks, which were used for FT-IR imaging and microhardness studies. A lower mineral content and microhardness, a higher carbonate content especially labile type carbonate content, and an increase in size and maturation of hydroxyapatite crystals were observed in diabetic femurs, which indicate that diabetes has detrimental effects on bone just like osteoporosis. There was a decrease in the level of collagen maturity in diabetic femurs, implying a decrease in bone collagen quality that may contribute to the decrease in tensile strength and bone fragility. Taken together, the findings revealed alterations in structure and composition of mineral and matrix components, and an altered quality and mechanical strength of rat femurs in an early stage of type I diabetes. The results contribute to the knowledge of structure-function relationship of mineral and matrix components in diabetic bone disorder and can further be used for diagnostic or therapeutic purposes. © The Author(s) 2016.

  16. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    PubMed

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  17. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    PubMed

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-05

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Polymer ceramic composite that follows the rules of bone growth

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.; Warner, Carrie

    1998-07-01

    Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.

  19. Management of segmental bony defects: the role of osteoconductive orthobiologics.

    PubMed

    McKee, Michael D

    2006-01-01

    Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.

  20. Growth factors--BMPs, DBMs, and buffy coat products: are there any proven differences amongst them?

    PubMed

    Veillette, Christian J H; McKee, Michael D

    2007-03-01

    Advances in the understanding of bone repair and improved biotechnology have led to the introduction of new strategies for orthopedic surgeons to control and modulate bone healing using growth factors. However, many orthopedic surgeons are uncertain about the current levels of evidence supporting the use of materials that possess these properties and their therapeutic role in the management of skeletal problems such as fracture, long-bone nonunion, and spine fusion. In particular, the differences amongst osteoinductive factors synthesized by recombinant gene technology, or derived from demineralized bone matrix or platelet rich plasma requires clarification.

  1. Biomaterials and bone mechanotransduction

    NASA Technical Reports Server (NTRS)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  2. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity.

    PubMed

    Poldervaart, Michelle T; Goversen, Birgit; de Ruijter, Mylene; Abbadessa, Anna; Melchels, Ferry P W; Öner, F Cumhur; Dhert, Wouter J A; Vermonden, Tina; Alblas, Jacqueline

    2017-01-01

    In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration.

  3. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity

    PubMed Central

    Poldervaart, Michelle T.; Goversen, Birgit; de Ruijter, Mylene; Abbadessa, Anna; Melchels, Ferry P. W.; Öner, F. Cumhur; Dhert, Wouter J. A.; Vermonden, Tina

    2017-01-01

    In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration. PMID:28586346

  4. The Isolation and Characterization of Glycosylated Phosphoproteins from Herring Fish Bones*

    PubMed Central

    Zhou, Hai-Yan; Salih, Erdjan; Glimcher, Melvin J.

    2010-01-01

    Past studies of bone extracellular matrix phosphoproteins such as osteopontin and bone sialoprotein have yielded important biological information regarding their role in calcification and the regulation of cellular activity. Most of these studies have been limited to proteins extracted from mammalian and avian vertebrates and nonvertebrates. The present work describes the isolation and purification of two major highly glycosylated and phosphorylated extracellular matrix proteins of 70 and 22 kDa from herring fish bones. The 70-kDa phosphoprotein has some characteristics of osteopontin with respect to amino acid composition and susceptibility to thrombin cleavage. Unlike osteopontin, however, it was found to contain high levels of sialic acid similar to bone sialoprotein. The 22-kDa protein has very different properties such as very high content of phosphoserine (∼270 Ser(P) residues/1000 amino acid residues), Ala, and Asx residues. The N-terminal amino acid sequence analysis of both the 70-kDa (NPIMA(M)ETTS(M)DSKVNPLL) and the 22-kDa (NQDMAMEASSDPEAA) fish phosphoproteins indicate that these unique amino acid sequences are unlike any published in protein databases. An enzyme-linked immunosorbent assay revealed that the 70-kDa phosphoprotein was present principally in bone and in calcified scales, whereas the 22-kDa phosphoprotein was detected only in bone. Immunohistological analysis revealed diffusely positive immunostaining for both the 70- and 22-kDa phosphoproteins throughout the matrix of the bone. Overall, this work adds additional support to the concept that the mechanism of biological calcification has common evolutionary and fundamental bases throughout vertebrate species. PMID:20833721

  5. Impaired extracellular matrix structure resulting from malnutrition in ovariectomized mature rats.

    PubMed

    El Khassawna, Thaqif; Böcker, Wolfgang; Brodsky, Katharina; Weisweiler, David; Govindarajan, Parameswari; Kampschulte, Marian; Thormann, Ulrich; Henss, Anja; Rohnke, Marcus; Bauer, Natali; Müller, Robert; Deutsch, Andreas; Ignatius, Anita; Dürselen, Lutz; Langheinrich, Alexander; Lips, Katrin S; Schnettler, Reinhard; Heiss, Christian

    2015-11-01

    Bone loss is a symptom related to disease and age, which reflects on bone cells and ECM. Discrepant regulation affects cell proliferation and ECM localization. Rat model of osteoporosis (OVX) was investigated against control rats (Sham) at young and old ages. Biophysical, histological and molecular techniques were implemented to examine the underlying cellular and extracellular matrix changes and to assess the mechanisms contributing to bone loss in the context of aging and the widely used osteoporotic models in rats. Bone loss exhibited a compromised function of bone cells and infiltration of adipocytes into bone marrow. However, the expression of genes regulating collagen catabolic process and adipogenesis was chronologically shifted in diseased bone in comparison with aged bone. The data showed the involvement of Wnt signaling inhibition in adipogenesis and bone loss due to over-expression of SOST in both diseased and aged bone. Further, in the OVX animals, an integrin-mediated ERK activation indicated the role of MAPK in osteoblastogenesis and adipogenesis. The increased PTH levels due to calcium and estrogen deficiency activated osteoblastogenesis. Thusly, RANKL-mediated osteoclastogenesis was initiated. Interestingly, the data show the role of MEPE regulating osteoclast-mediated resorption at late stages in osteoporotic bone. The interplay between ECM and bone cells change tissue microstructure and properties. The involvement of Wnt and MAPK pathways in activating cell proliferation has intriguing similarities to oncogenesis and myeloma. The study indicates the importance of targeting both pathways simultaneously to remedy metabolic bone diseases and age-related bone loss.

  6. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    PubMed

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals and immature crosslinks, as well as moderately mature tissue, is an important characteristic of healthy, fracture-resistant bone. Finally, the larger mean and low-tail values of mineral:matrix ratio and collagen maturity noted in our -Fx+HRT vs. -Fx-HRT biopsies are consistent with greater tissue age and greater BMD arising from decreased osteoclastic resorption in HRT-treated patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Investigation of a new highly porous hydroxyapatite matrix for obliterating open mastoid cavities - application in guinea pigs bulla].

    PubMed

    Punke, C; Zehlicke, T; Boltze, C; Pau, H W

    2009-04-01

    Many different techniques for obliterating open mastoid cavity have been described. The results after the application of alloplastic materials like Hydroxyapatite and Tricalciumphosphate were poor due to long-lasting resorption. Extrusion of those materials has been described. We investigated the applicability of a new high-porosity ceramic for obliterating large open mastoid cavities and tested it in an animal model (bulla of guinea pig). A highly porous matrix (NanoBone) bone-inductor fabricated in a sol-gel-technique was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histological evaluations were performed 1, 2, 3, 4, 5 and 12 weeks after the implantation. After the initial phase with an inflammatory reaction creating a loose granulation tissue, we observed the formation of trabeculare bone within the fourth week in both groups. From the fifth week on we found osteoclasts on the surface of NanoBone and Bio-Oss with consecutive degradation of both materials. In our animal model study we found beneficial properties of the used bone-inductors NanoBone and Bio-Oss for obliterating open mastoid cavities.

  8. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.

    PubMed

    Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U

    2014-11-01

    Polyurethane (PU) is a promising polymer to support bone-matrix producing cells due to its durability and mechanical resistance. In this study two types of medical grade poly-ether urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU-HA) composites were investigated for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were electrospun to attain scaffolds with randomly orientated non-woven fibres. Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30 DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1 respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical properties of the resulting composites were evaluated by FTIR and physical properties by SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5 osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs were seeded on the scaffolds to test their biocompatibility and ability to support mineralised matrix production over a 28 day culture period. Cell viability was assayed by MTT and calcium and collagen deposition by Sirius red and alizarin red respectively. SEM images of both electrospun PU scaffolds and PU-HA composite scaffolds showed differences in fibre morphology with changes in solvent combinations and size of HA particles. Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and thicker diameters. Mechanical testing demonstrated that the Young׳s Modulus and yield strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in PU-HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR characterisation confirmed the presence of HA in all composite scaffolds. Although all scaffolds supported proliferation of both cell types and deposition of calcified matrix, PU-HA composite fibres containing nano-HA enabled the highest cell viability and collagen deposition. These scaffolds have the potential to support bone matrix formation for bone tissue engineering. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Block Copolymer Directed Biomimetic Mineral Formation for Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gleeson, Sarah; Yu, Tony; Chen, Xi; Marcolongo, Michele; Li, Christopher

    Bone is a hierarchically structured biocomposite comprised of mineralized collagen fibrils. The mechanical properties of bone can be precisely tuned by the structure and morphology of the mineral nanocrystals as well as the organic collagen fibrils. Synthetic materials that can mimic the nanostructure of natural bone show promise to replicate bone's structural function, yet little is known about the mechanism of mineral formation. We previously have shown that hierarchically ordered polymer fibers control the distribution and orientation of hydroxyapatite, enhancing mechanical properties and biocompatibility. We demonstrate a new method for mineralization by forming block copolymer single crystal films of polycaprolactone-block-poly(acrylic acid) (PCL- b-PAA) so that lamellar anionic PAA nanodomains recruit mineral ions and provide one-dimensional confinement to induce orientation. The effect of the anionic domain dimensions on mineral content, orientation, and structure within the polymer matrix is shown. The mechanical properties of the nanocomposite are evaluated to determine the role of mineral orientation and crystallinity in composite strength. These results can be used to tailor the physical mineralization environment to create a more biomimetic bone material.

  10. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration.

    PubMed

    Li, Limei; Zuo, Yi; Zou, Qin; Yang, Boyuan; Lin, Lili; Li, Jidong; Li, Yubao

    2015-10-14

    To improve the mechanical properties of bone tissue and achieve the desired bone tissue regeneration for orthopedic surgery, newly designed hydroxyapatite/polyurethane (HA/PU) porous scaffolds were developed via in situ polymerization. The results showed that the molecular modification of PU soft segments by glyceride of castor oil (GCO) can increase the scaffold compressive strength by 48% and the elastic modulus by 96%. When nano-HA (n-HA) particles were incorporated into the GCO-PU matrix, the compressive strength and elastic modulus further increased by 49 and 74%, from 2.91 to 4.34 MPa and from 95 to 165.36 MPa, respectively. The n-HA particles with fine dispersity not only improved the interface bonding with the GCO-PU matrix but also provided effective bioactivity for bonding with bone tissue. The hierarchical structure and mechanical quality of the n-HA/GCO-PU composite scaffold were determined to be appropriate for the growth of cells and the regeneration of bony tissues, demonstrating promising prospects for bone repair and regeneration.

  11. The Effects of GATA-1 and NF-E2 Deficiency on Bone Biomechanical, Biochemical, and Mineral Properties

    PubMed Central

    Kacena, Melissa A.; Gundberg, Caren M.; Kacena, William J.; Landis, William J.; Boskey, Adele L.; Bouxsein, Mary L.; Horowitz, Mark C.

    2014-01-01

    Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone. PMID:23359245

  12. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering.

    PubMed

    Tajbakhsh, Saeid; Hajiali, Faezeh

    2017-01-01

    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites containing ceramic reinforcements, including various methods of production and the evaluation of the scaffolds in terms of porosity, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone tissue engineering applications. The production routes range from traditional approaches such as the use of porogens to provide porosity in the scaffolds to novel methods such as solid free-form techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    PubMed

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.

  14. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro

    PubMed Central

    Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.

    2017-01-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781

  15. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    PubMed

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered bone tissue. In cases of large bone voids (such as bone cancer), tissue-engineered constructs may provide alternatives to traditional bone grafts by culturing patients' own MSCs with PLAGA/n-HA scaffolds in a HARV culture system.

  16. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less

  17. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  18. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties.

    PubMed

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Simon, Yannick; Audran, Maurice; Flatt, Peter R; Chappard, Daniel

    2014-06-01

    Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The materials used in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  20. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone. © 2014 American Society for Bone and Mineral Research.

  1. Enhanced Soft Tissue Attachment and Fixation Using a Mechanically-Stimulated Cytoselective Tissue-Specific ECM Coating

    DTIC Science & Technology

    2012-08-01

    currently used for surgical reinforcement for tendon rotator cuff repair . All scaffolds in this study were seeded using this protocol. PLA fabric...extracellular matrix scaffolds for rotator cuff tendon repair . Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am 2006;88(12):2665-72...mechanical stimulation of a co-cultured biomaterial scaffold can improve/expedite healing of a tendon-to-bone interface for soft tissue repair . There

  2. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  3. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    PubMed

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our results justify further investigations to potentially use local application of zoledronic acid in future clinical studies.

  4. Investigation into mechanical properties of bone and its main constituents

    NASA Astrophysics Data System (ADS)

    Evdokimenko, Ekaterina

    Bone is a hierarchically structured natural composite material, consisting of organic phase (type-I collagen), inorganic phase (hydroxyapatite), and water. Studies of the two main bone constituents, utilizing controlled demineralization and deproteinization, can shed light on mineral-collagen interaction which makes bone such a unique biological material. This knowledge is necessary for computational analysis of bone structure to identify preferential sites in the collagen matrix and mineral network that degrade more easily. The main goal of this work is to develop a comprehensive picture of mechanical properties of bone and its main constituents. Following the Introduction, Chapter 2 presents an investigation of microstructure and compressive mechanical properties of bovine femur cortical bone carried out on completely demineralized, completely deproteinized, and untreated bone samples in three anatomical directions. Anisotropic nature of bone was clearly identified in all cases. Extra levels of porosity along with microstructural differences for the three directions were found to be the main sources of the anisotropy. In Chapter 3, a new theoretical model of cortical and trabecular bone as composite materials with hierarchical structure spanning from nanometer (collagen-mineral) level to millimeter (bone) level was developed. Compression testing was performed on untreated, demineralized, and deproteinized cortical and trabecular bovine femur bone samples to verify the model. The experimental data were compared with theoretical predictions; excellent agreement was found between the theory and experiments for all bone phases. Optical microscopy, scanning electron microscopy, and micro-computed tomography techniques were applied to characterize the structure of the samples at multiple length scales and provide further inputs for the modeling. Chapter 4 presents a comparative study of mechanical properties, microstructure, and porosity of mature and young bovine femur cortical bone. It was found that the amount of porosity decreases, while the microhardness increases with maturation. Osteoporotic degradation of trabecular bone elasticity, described in Chapter 5, was modeled using a cellular mechanics approach. Evolution equations for elastic modulus of bone in terms of those of mineral and protein trabeculae and in terms of demineralized and deproteinized bones were formulated and verified by the analysis of compressive properties of bovine femur trabecular bone.

  5. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    USDA-ARS?s Scientific Manuscript database

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  6. Polylactide-based bionanocomposites: a promising class of hybrid materials.

    PubMed

    Sinha Ray, Suprakas

    2012-10-16

    Polylactide (PLA) is the oldest and potentially one of the most interesting and useful biodegradable man-made polymers because of its renewable origin, controlled synthesis, good mechanical properties, and inherent biocompatibility. The blending of PLA with functional nanoparticles can yield a new class of hybrid materials, commonly known as bionanocomposites, where 1-5% nanoparticles by volume are molecularly dispersed within the PLA matrix. The dispersed nanoparticles with their large surface areas and low percolation thresholds both can improve the properties significantly in comparison with neat PLA and can introduce new value-added properties. Recently, researchers have made extraordinary progress in the practical processing and development of products from PLA bionanocomposites. The variation of the nanofillers with different functionalities can lead to many bionanocomposite applications including environmentally friendly packaging, materials for construction, automobiles, and tissue regeneration, and load-bearing scaffolds for bone reconstruction. This Account focuses on these recent research efforts, processing techniques, and key research challenges in the development of PLA-based bionanocomposites for use in applications from green plastics to biomedical applications. Growing concerns over environmental issues and high demand for advanced polymeric materials with balanced properties have led to the development of bionanocomposites of PLA and natural origin fillers, such as nanoclays. The combination of nanoclays with the PLA matrix allows us to develop green nanocomposites that possess several superior properties. For example, adding ∼5 vol % clay to PLA improved the storage modulus, tensile strength, break elongation, crystallization rate, and other mechanical properties. More importantly, the addition of clay decreases the gas and water vapor permeation, increases the heat distortion temperature and scratch resistance, and controls the biodegradation of the PLA matrix. In biomedicine, researchers have employed the design rules found in nature to fabricate PLA-based bionanocomposites. The incorporation of functional nanoparticles in the PLA matrix has improved the physical properties and changed the surface characteristics of the matrix that are important for tissue engineering and artificial bone reconstruction, such as its thermal and electrical conductivity, surface roughness, and wettability. Finally, of the introduction of bionanocomposite biocompatible surfaces on drugs, such as antibiotics, could produce delivery systems that act locally.

  7. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  8. Silk scaffolds in bone tissue engineering: An overview.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide applications as cell scaffolding matrices to micro-nano carriers for delivering bone growth factors and therapeutic molecules to diseased or damaged sites to facilitate bone regeneration, is emphasized here. The review rationalizes that the choice of silk protein as a biomaterial is not only because of its natural polymeric nature, mechanical robustness, flexibility and wide range of cell compatibility but also because of its ability to template the growth of hydroxyapatite, the chief inorganic component of bone mineral matrix, resulting in improved osteointegration. The discussion extends to the role of inorganic ions such as Si and Ca as matrix components in combination with silk to influence bone regrowth. The effect of ions or growth factor-loaded vehicle incorporation into regenerative matrix, nanotopography is also considered. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. The incorporation of fluoride and strontium in hydroxyapatite affects the composition, structure, and mechanical properties of human cortical bone.

    PubMed

    Riedel, Christoph; Zimmermann, Elizabeth A; Zustin, Jozef; Niecke, Manfred; Amling, Michael; Grynpas, Marc; Busse, Björn

    2017-02-01

    Strontium ranelate and fluoride salts are therapeutic options to reduce fracture risk in osteoporosis. Incorporation of these elements in the physiological hydroxyapatite matrix of bone is accompanied by changes in bone remodeling, composition, and structure. However, a direct comparison of the effectiveness of strontium and fluoride treatment in human cortical bone with a focus on the resulting mechanical properties remains to be established. Study groups are composed of undecalcified specimens from healthy controls, treatment-naïve osteoporosis cases, and strontium ranelate or fluoride-treated osteoporosis cases. Concentrations of both elements were determined using instrumental neutron activation analysis (INAA). Backscattered electron imaging was carried out to investigate the calcium content and the cortical microstructure. In comparison to osteoporotic patients, fluoride and strontium-treated patients have a lower cortical porosity indicating an improvement in bone microstructure. Mechanical properties were assessed via reference point indentation as a measure of bone's resistance to deformation. The strontium-incorporation led to significantly lower total indentation distance values compared to osteoporotic cases; controls have the highest resistance to indentation. In conclusion, osteoporosis treatment with strontium and fluoride showed positive effects on the microstructure and the mechanical characteristics of bone in comparison to treatment-naïve osteoporotic bone. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 433-442, 2017. © 2016 Wiley Periodicals, Inc.

  10. Injectable hydrogels for cartilage and bone tissue engineering

    PubMed Central

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  11. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  12. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  13. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  14. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization.

    PubMed

    Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter

    2009-10-01

    The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.

  15. A Comparative Analysis of Recombinant Human Bone Morphogenetic Protein-2 with a Demineralized Bone Matrix versus Iliac Crest Bone Graft for Secondary Alveolar Bone Grafts in Patients with Cleft Lip and Palate: Review of 501 Cases.

    PubMed

    Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M

    2017-08-01

    Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.

  16. Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density.

    PubMed

    Nanci, A

    1999-06-30

    The organic matrix of collagen-based calcified tissues consists of a supporting collagen meshwork and various noncollagenous matrix proteins (NCPs). Together, they contribute to determining the structure and biomechanical properties of the tissue. Their respective organization and interrelation can advantageously be examined by immunocytochemistry, an approach which allows correlation of composition with structure. The aim of this article is to review postembedding immuno- and lectin-gold-labeling data on the characterization of the noncollagenous compartment in rat and human bone and cementum, and on its relationship to collagen. The two major NCPs, bone sialoprotein and osteopontin, generally codistribute and accumulate in cement lines and in the spaces among the mineralized collagen fibrils. However, there are variations in their distribution and density of labeling throughout the tissue. Indeed, bone and cementum can form in environments that are either poor or enriched in NCPs. The amount of NCPs generally correlates with bone and cementum types and with speed of formation of the tissue and packing density of collagen fibrils. Taken together, the data suggest that production of both collagenous and noncollagenous constituents can be "modulated" during formation of collagen-based calcified tissues. It is concluded that, in addition to structural and compositional parameters, tissue dynamics must be taken into consideration in order to understand the significance of the apparent accumulation of NCPs at some sites and to determine the mechanisms of normal and pathological calcified tissue formation. Copyright 1999 Academic Press.

  17. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.

    PubMed

    Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Wally, Zena; Sreenivasa Rao, Parcha; Reilly, Gwendolen C

    2018-05-01

    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018. © 2018 Wiley Periodicals, Inc.

  18. Effect of water on nanomechanics of bone is different between tension and compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuel, Jitin; Park, Jun-Sang; Almer, Jonathan

    Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated).more » The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix.« less

  19. The extraction and measurement of bone morphogenetic protein 7 from bovine cortical bone as a function of particle size.

    PubMed

    Pietrzak, William S; Ali, Saba N

    2015-01-01

    Bone morphogenetic proteins (BMPs), present in parts per billion in bone, endow demineralized bone matrix (DBM) with osteoinductive properties suitable for clinical use. Although BMPs are mainly associated with bone matrix, they also associate with other bone compartments as well, including the mineral phase. The purpose of this study was to gain a more complete understanding of the distribution of BMPs in undemineralized bone. Eleven discrete particle size ranges of bovine cortical bone were prepared, ranging between less than 25 μm and 600 to 710 μm for the smallest and largest sizes, respectively. The bone was extracted with 4-M guanidine-HCl/0.05-M Tris-HCl, and the amount of BMP-7 released was measured with enzyme-linked immunosorbant assay. In addition, 106- to 710-μm bone particles were demineralized and similarly extracted for comparison. The measured BMP-7 content of the DBM was 24.6 ± 1.56 ng/g. The values for bone increased nonlinearly with decreasing particle size, ranging from 1.13 ± 0.50 ng/g for the 600- to 710-μm particles to 4.18 ± 1.14 ng/g for the less than 25-μm particles (P < 0.001). However, modeling the bone particles as solid spheres to estimate total surface area showed that the extracted BMP-7 per unit area was greater for larger particle sizes. These seemingly opposing results suggest that BMPs may become proportionally damaged or altered in response to the increased forces required to generate smaller particles and, as such, may not be detectable with enzyme-linked immunosorbant assay. In addition, minimization of bone particle size is not an effective strategy to approach the BMP availability of DBM.

  20. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells.

    PubMed

    Thangarajah, Tanujan; Shahbazi, Shirin; Pendegrass, Catherine J; Lambert, Simon; Alexander, Susan; Blunn, Gordon W

    2016-01-01

    Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.

  1. The materials used in bone tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers aremore » the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.« less

  2. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This indicates that alterations from normal crystal size, composition, and structure will reduce the mechanical integrity of bone. PMID:25418329

  3. Combination of Collagen Barrier Membrane with Enamel Matrix Derivative-Liquid Improves Osteoblast Adhesion and Differentiation.

    PubMed

    Miron, Richard J; Fujioka-Kobayashi, Masako; Buser, Daniel; Zhang, Yufeng; Bosshardt, Dieter D; Sculean, Anton

    Collagen barrier membranes were first introduced to regenerative periodontal and oral surgery to prevent fast ingrowing soft tissues (ie, epithelium and connective tissue) into the defect space. More recent attempts have aimed at combining collagen membranes with various biologics/growth factors to speed up the healing process and improve the quality of regenerated tissues. Recently, a new formulation of enamel matrix derivative in a liquid carrier system (Osteogain) has demonstrated improved physico-chemical properties for the adsorption of enamel matrix derivative to facilitate protein adsorption to biomaterials. The aim of this pioneering study was to investigate the use of enamel matrix derivative in a liquid carrier system in combination with collagen barrier membranes for its ability to promote osteoblast cell behavior in vitro. Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto porcine-derived collagen membranes alone (control) or porcine membranes + enamel matrix derivative in a liquid carrier system. Control and enamel matrix derivative-coated membranes were compared for cell recruitment and cell adhesion at 8 hours; cell proliferation at 1, 3, and 5 days; and real-time polymerase chain reaction (PCR) at 3 and 14 days for genes encoding Runx2, collagen1alpha2, alkaline phosphatase, and bone sialoprotein. Furthermore, alizarin red staining was used to investigate mineralization. A significant increase in cell adhesion was observed at 8 hours for barrier membranes coated with enamel matrix derivative in a liquid carrier system, whereas no significant difference could be observed for cell proliferation or cell recruitment. Enamel matrix derivative in a liquid carrier system significantly increased alkaline phosphatase mRNA levels 2.5-fold and collagen1alpha2 levels 1.7-fold at 3 days, as well as bone sialoprotein levels twofold at 14 days postseeding. Furthermore, collagen membranes coated with enamel matrix derivative in a liquid carrier system demonstrated a sixfold increase in alizarin red staining at 14 days when compared with collagen membrane alone. The combination of enamel matrix derivative in a liquid carrier system with a barrier membrane significantly increased cell attachment, differentiation, and mineralization of osteoblasts in vitro. Future animal testing is required to fully characterize the additional benefits of combining enamel matrix derivative in a liquid carrier system with a barrier membrane for guided bone or tissue regeneration.

  4. Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments

    PubMed Central

    Zhang, Yanshuai; McNerny, Erin Gatenby; Terajima, Masahiko; Raghavan, Mekhala; Romanowicz, Genevieve; Zhang, Zhanpeng; Zhang, Honghao; Kamiya, Nobuhiro; Tantillo, Margaret; Zhu, Peizhi; Scott, Gregory J.; Ray, Manas K.; Lynch, Michelle; Ma, Peter X.; Morris, Michael D.; Yamauchi, Mitsuo; Kohn, David H.; Mishina, Yuji

    2016-01-01

    Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments. PMID:27113526

  5. Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes.

    PubMed

    Demir Oğuz, Öznur; Ege, Duygu

    2018-04-14

    In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications.

  6. Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes

    PubMed Central

    2018-01-01

    In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications. PMID:29662018

  7. Textural versus electrostatic exclusion-enrichment effects in the effective chemical transport within the cortical bone: a numerical investigation.

    PubMed

    Lemaire, T; Kaiser, J; Naili, S; Sansalone, V

    2013-11-01

    Interstitial fluid within bone tissue is known to govern the remodelling signals' expression. Bone fluid flow is generated by skeleton deformation during the daily activities. Due to the presence of charged surfaces in the bone porous matrix, the electrochemical phenomena occurring in the vicinity of mechanosensitive bone cells, the osteocytes, are key elements in the cellular communication. In this study, a multiscale model of interstitial fluid transport within bone tissues is proposed. Based on an asymptotic homogenization method, our modelling takes into account the physicochemical properties of bone tissue. Thanks to this multiphysical approach, the transport of nutrients and waste between the blood vessels and the bone cells can be quantified to better understand the mechanotransduction of bone remodelling. In particular, it is shown that the electrochemical tortuosity may have stronger implications in the mass transport within the bone than the purely morphological one. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Role of Adrenomedullin in Breast Cancer Bone Metastasis and Chemoresistance

    DTIC Science & Technology

    2008-05-01

    osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I collagen, osteocalcin, and osteopontin) mRNA expression...are incompletely understood. AM treatment stimulates osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I

  9. Study of a novel three-dimensional scaffold to repair bone defect in rabbit.

    PubMed

    Chen, Yushu; Bai, Bo; Zhang, Shujiang; Ye, Jing; Zhai, Haohan; Chen, Yi; Zhang, Linlin; Zeng, Yanjun

    2014-05-01

    Both decalcified bone matrix (DBM) and fibrin gel possess good biocompatibility, so they are used as scaffolds to culture bone marrow mesenchymal stem cells (BMSCs). The feasibility and efficacy of using compound material being made of decalcified bone matrix and fibrin gel as a three-dimensional scaffold for bone growth were investigated. BMSCs were isolated from the femur of rabbit, then seeded in prepared scaffolds after incubation for 28 days in vitro. In vivo: 30 New Zealand White Rabbits received bone defect in left radius and divided three treatment groups randomly: (1) BMSCs/decalcified bone matrix/fibrin glue as experimental group; (2) decalcified bone matrix/fibrin glue without cells as control group; (3) nothing was implanted into the bone defects as blank group. The observation period of specimens was 12 weeks, and were analyzed bone formation in terms of serum proteomics (2D-PAGE and MALDI-TOF-TOF-MS), hematoxylin-eosin (HE) staining, ALP staining, and Osteopontin immunofluorescence detection. The experimental group present in three peculiar kinds of proteins, whose Geninfo identifier (GI) number were 136466, 126722803, and 126723746, respectively, correspond to TTR protein, ALB protein, RBP4 protein, and the histological inspections were superior to the other group. The content of osteopontin in experimental group was significantly higher than control group (p <  0.05). The overall results indicated that a combined material being made of BMSCs/decalcified bone matrix/fibrin glue can result in successful bone formation and decalcified bone matrix/fibrin glue admixtures can be used as a scaffold for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  10. Morphological and mechanical characterization of composite bone cement containing polymethylmethacrylate matrix functionalized with trimethoxysilyl and bioactive glass.

    PubMed

    Puska, Mervi; Moritz, Niko; Aho, Allan J; Vallittu, Pekka K

    2016-06-01

    Medical polymers of biostable nature (e.g. polymethylmetacrylate, PMMA) are widely used in various clinical applications. In this study, novel PMMA-based composite bone cement was prepared. Bioactive glass (BAG) particulate filler (30wt%) was added to enhance potentially the integration of bone to the cement. The polymer matrix was functionalized with trimethoxysilyl to achieve an interfacial bond between the matrix and the fillers of BAG. The amount of trimethoxysilyl in the monomer system varied from 0 to 75wt%. The effects of dry and wet (simulated body fluid, SBF at +37°C for 5 weeks) conditions were investigated. In total, 20 groups of specimens were prepared. The specimens were subjected to a destructive mechanical test in compression. Scanning electron microscopy (SEM) and micro-computed tomography (micro-CT) were used to study the surface and the three-dimensional morphology of the specimens. The results of the study indicated that the addition of trimethoxysilyl groups led to the formation of a hybrid polymer matrix which, in lower amounts (<10wt% of total weight), did not significantly affect the compression properties. However, when the specimens stored in dry and wet conditions were compared, the water sorption increased the compression strength (~5-10MPa per test group). At the same time, the water sorption also caused an evident porous structure formation for the specimens containing BAG and siloxane formation in the hybrid polymer matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    NASA Astrophysics Data System (ADS)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2-/- bones had significantly lower hardness and elastic modulus compared to Fbn2+/+ bones, but the crystallinity was higher. Type-B carbonate substitution decreased significantly in OC-/- and Fbn2-/- bones compared to their wild-type controls. The thesis has provided new insight into how non-collagenous proteins affect the nanomechanics and chemistry of bone tissue. This information will assist in the development of new treatments for osteopenia/osteoporosis.

  12. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    PubMed

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Antibiotic-loaded bone void filler accelerates healing in a femoral condylar rat model.

    PubMed

    Shiels, S M; Cobb, R R; Bedigrew, K M; Ritter, G; Kirk, J F; Kimbler, A; Finger Baker, I; Wenke, J C

    2016-08-01

    Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection. Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing. We found that tobramycin loaded into a graft composed of bioglass and DBM eluted antibiotic above the minimum inhibitory concentration for three days in vitro. It was also found that the antibiotic loaded into the graft produced no adverse effects on the bone healing properties of the DBM at a lower level of antibiotic. This antibiotic-loaded bone void filler may represent a promising option for the delivery of local antibiotics in orthopaedic surgery. Cite this article: Bone Joint J 2016;98-B:1126-31. ©2016 The British Editorial Society of Bone & Joint Surgery.

  14. Three-dimensional plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation.

    PubMed

    Lin, Hsin-Yi; Chang, Tsang-Wen; Peng, Tie-Kun

    2018-06-01

    Alginate hydrogel fibers embedded with bone cells and diclofenac were coated with a layer of chitosan hydrogel and made into a porous scaffold by three-dimensional (3D) printing for drug release and bone regeneration. It was hypothesized that the chitosan coating could improve the scaffold's drug retention and release properties and biocompatibility. Macrophage cells were stimulated and cocultured with the scaffold. Tests were conducted to show how the chitosan coating affected the scaffold's drug release efficacy and how the release efficacy affected the cellular activities of stimulated macrophages and bone cells. The bone cells encapsulated in the coated scaffold demonstrated good viability after the acidic/basic coating process. The coating improved the retention and release efficacy of diclofenac and hence significantly inhibited interleukin-6 and tumor necrosis factor-α secretion from macrophages (p < 0.05). The bone cells in the coated sample mineralized more extensively than the control (p < 0.01). They also more actively expressed genes that produce proteins for extracellular matrix remodeling, MMP13, and interacting with the mineral matrix, OPN (both p < 0.01). It is believed that on days 7 and 10, when diclofenac was depleted and the concentrations of inflammatory compounds surged, the coating effectively blocked the harmful compounds and protected the bone cells within the fibers. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1511-1521, 2018. © 2018 Wiley Periodicals, Inc.

  15. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.

    PubMed

    Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong

    2018-02-01

    Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.

    PubMed

    García-Rodríguez, J; Martínez-Reina, J

    2017-02-01

    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

  17. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  18. Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications.

    PubMed

    Diaz-Rodriguez, P; Garcia-Triñanes, P; Echezarreta López, M M; Santoveña, A; Landin, M

    2018-09-01

    The search for an ideal bone tissue replacement has led to the development of new composite materials designed to simulate the complex inorganic/organic structure of bone. The present work is focused on the development of mineralized calcium alginate hydrogels by the addition of marine derived calcium carbonate biomineral particles. Following a novel approach, we were able to obtain calcium carbonate particles of high purity and complex micro and nanostructure dependent on the source material. Three different types of alginates were selected to develop inorganic/organic scaffolds in order to correlate alginate composition with scaffold properties and cell behavior. The incorporation of calcium carbonates into alginate networks was able to promote extracellular matrix mineralization and osteoblastic differentiation of mesenchymal stem cells when added at 7 mg/ml. We demonstrated that the selection of the alginate type and calcium carbonate origin is crucial to obtain adequate systems for bone tissue engineering as they modulate the mechanical properties and cell differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering.

    PubMed

    Fan, Tiantang; Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Hu, Yimin; Liu, Xiaocui; Shi, Xuetao; Zhang, Qiqing

    2016-11-01

    The fabrication of bone scaffolds with interconnected porous structure, adequate mechanical properties and excellent biocompatibility presents a great challenge. Herein, a hybrid nanostructured chitosan/chondroitin sulfate/hydroxyapatite (ChS/CSA/HAP) in situ composite scaffold was prepared by in situ fabrication and freeze-drying technique. The composition and morphology of scaffold were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It proved that the low crystallinity of HAP crystals were uniformly distributed in ChS/CSA organic matrix and the nanostructured hybrid scaffold exhibited good mechanical property. The biocompatibility and in vitro bioactivity were detected by MTT-assay, maturation (alkaline phosphatase (ALP) activity), Hoechst 33258 and PI fluorescence staining. In vitro tests indicated that the hybrid scaffold not only promoted the adhesion and proliferation of osteoblasts, but also improved the growth of the osteoblasts. Therefore, it is promising for bone repair application in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  1. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.

    PubMed

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP-PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP-PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering.

  2. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds

    PubMed Central

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite–polyetheretherketone (HAP–PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP–PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP–PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering. PMID:27555770

  3. Enhancement of healing in osteochondral defects by collagen sponge implants.

    PubMed

    Speer, D P; Chvapil, M; Volz, R G; Holmes, M D

    1979-10-01

    Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.

  4. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone.

    PubMed

    Garnero, Patrick; Borel, Olivier; Gineyts, Evelyne; Duboeuf, Francois; Solberg, Helene; Bouxsein, Mary L; Christiansen, Claus; Delmas, Pierre D

    2006-03-01

    Mechanical behavior of bone depends on its mass and architecture, and on the material properties of the matrix, which is composed of a mineral phase and an organic component mainly constituted of type I collagen. Mineral accounts largely for the stiffness of bone, whereas type I collagen provides bone its ductility and toughness, i.e., its ability to undergo deformation and absorb energy after it begins to yield. The molecular mechanisms underlying the effect of alterations in type I collagen on bone mechanical properties are unclear. We used an in vitro model of fetal bovine cortical bone specimens (n = 44), where the extent of type I collagen cross-linking was modified by incubation at 37 degrees C for 0, 60, 90 and 120 days, keeping constant the architecture and the mineral content. At each incubation time, the following parameters were determined: (1) the bone concentration of enzymatic (pyridinoline; PYD and deoxypyridinoline, DPD) and non-enzymatic (pentosidine) crosslinks by HPLC, (2) the extent of aspartic acid isomerization of the type I collagen C-telopeptide (CTX) by ELISA of native (alpha CTX) and isomerized (beta CTX) forms, (3) the mineral density by DXA, (4) the porosity by micro-computed tomography and (5) the bending and compressive mechanical properties. Incubation of bone specimens at 37 degrees C for 60 days increased the level (per molecule of collagen) of PYD (+98%, P = 0.005), DPD (+42%, P = 0.013), pentosidine (+55-fold, P = 0.005), and the degree of type I collagen C-telopeptide isomerization (+4.9-fold, P = 0.005). These biochemical changes of collagen were associated with a 30% decrease in bending and compressive yield stress and a 2.5-fold increase in compressive post-yield energy absorption (P < 0.02 for all), with no significant change of bone stiffness. In multivariate analyses, the level of collagen cross-linking was associated with yield stress and post-yield energy absorption independently of bone mineral density, explaining up to 25% of their variance. We conclude that the extent and nature of collagen cross-linking contribute to the mechanical properties of fetal bovine cortical bone independently of bone mineral density.

  5. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    PubMed Central

    Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David

    2014-01-01

    While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165

  6. Composition and functionality of bone affected by dietary glycated compounds.

    PubMed

    Delgado-Andrade, Cristina; Roncero-Ramos, Irene; Carballo, José; Rufián-Henares, Joséángel; Seiquer, Isabel; Navarro, María Pilar

    2013-04-25

    Our aim was to investigate the effects of Maillard reaction products (MRPs) from bread crust (BC) on bone composition and its mechanical properties, determining whether any such effects are related to the molecular weight of different MRPs. For 88 days after weaning rats were fed a control diet or diets containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. Animals' food consumption and body weights were monitored. After sacrifice, the femur, pelvic bone and tibia were removed for composition, physical and biomechanical properties analysis. It was found that body and femur weights, density, volume and organic matrix decreased, whereas pentosidine increased after consumption of experimental diets, especially in the HMW and insoluble groups (104.7 and 102.9 mmol mol(-1) collagen) vs. the control group (41.7 mmol mol(-1) collagen). Bone stiffness fell by 50% in the LMW, HMW and insoluble groups and failure load and energy to failure tended to decrease in the same animals after MRPs intake. Consumption of diets containing assayed MRPs during growth leads to lower bone size and introduces some changes in its mechanical behavior which appear to be related to an increase in the pentosidine level of bone.

  7. Ex vivo culture platform for assessment of cartilage repair treatment strategies.

    PubMed

    Schwab, Andrea; Meeuwsen, Annick; Ehlicke, Franziska; Hansmann, Jan; Mulder, Lars; Smits, Anthal; Walles, Heike; Kock, Linda

    2017-01-01

    There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.

  8. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: in vivo study in a nonloaded goat model.

    PubMed

    Walschot, Lucas H B; Aquarius, René; Schreurs, Barend W; Verdonschot, Nico; Buma, Pieter

    2012-08-01

    Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium particles (TiP). In this in vivo study, bone ingrowth and bone volume in coated and noncoated TiP were compared to porous biphasic calcium-phospate CeP and allograft BoP. Coatings consisted of silicated calcium-phosphate and carbonated apatite. Materials were implanted in goats and impacted in cylindrical defects (diameter 8 mm) in the cancellous bone of the femur. On the basis of fluorochrome labeling and histology, bone ingrowth distance was measured at 4, 8, and 12 weeks. Cross-sectional bone area was measured at 12 weeks. TiP created a coherent matrix of entangled particles. CeP pulverized and were noncoherent. Bone ingrowth in TiP improved significantly by the coatings to levels comparable to BoP and CeP. Cross-sectional bone area was smaller in CeP and TiP compared to BoP. The osteoconductive properties of impacted TiP with a calcium-phosphate coating are comparable to impacted allograft bone and impacted biphasic ceramics. A more realistic loaded in vivo study should prove that coated TiP is an attractive alternative to allograft bone. Copyright © 2012 Wiley Periodicals, Inc.

  9. Physicochemical composition of osteoporotic bone in the trichothiodystrophy premature aging mouse determined by confocal Raman microscopy.

    PubMed

    van Apeldoorn, Aart A; de Boer, Jan; van Steeg, Harry; Hoeijmakers, Jan H J; Otto, Cees; van Blitterswijk, Clemens A

    2007-01-01

    Although it has been established that premature aging trichothiodystrophy (TTD) mice display typical signs of osteoporosis, exact changes in physicochemical properties of these mice have not been elucidated. We used confocal Raman microscopy and histology to study femora of TTD mice. We measured femora isolated from xeroderma pigmentosum group A (XPA)/TTD double mutant mice to establish that Raman microscopy can be applied to measure differences in bone composition. Raman data from XPA/TTD mice showed remarkable changes in bone mineral composition. Moreover, we observed a severe form of osteoporosis, with strongly reduced cortical bone thickness. We used Raman microscopy to analyze bone composition in eight wild-type and eight TTD animals, and observed decreased levels of phosphate and carbonate in the cortex of femora isolated from TTD mice. In contrast, the bands representing the bone protein matrix were not affected in these mice.

  10. Mineral to matrix ratio determines biomaterial and biomechanical properties of rat femur--application of Fourier transform infrared spectroscopy.

    PubMed

    Takata, Shinjiro; Yonezu, Hiroshi; Shibata, Akira; Enishi, Tetsuya; Sato, Nori; Takahashi, Mitsuhiko; Nakao, Shigetaka; Komatsu, Koji; Yasui, Natsuo

    2011-08-01

    We studied the changes of biomaterial and biomechanical properties of the rat femur during development. Thirty male Wistar rats were allocated to 6 groups: aged 6 weeks (n=5), 9 weeks (n=5), 12 weeks (n=5), 15 weeks (n=5), 24 weeks (n=5), and 36 weeks (n=5). The mineral to matrix ratio (M/M ratio) of rat femur by Fourier transform infrared spectroscopy was 0.97 ± 0.10 at the age of 6 weeks, and reached the maximum of 1.52 ± 0.17 at the age of 36 weeks. Total bone mineral density (BMD) by peripheral quantitative computed tomography of the femoral shaft aged 6 weeks was 479.1 ± 58.7 mg/cm(3), and reached the maximum of 1022.2 ± 42.3 mg/cm(3) at the age of 36 weeks. The ultimate load to failure of the femur of the rat aged 6 weeks by the three-point bending test was 29.6 ± 6.1 N. At the age of 36 weeks, the ultimate load to failure of the rat femur increased to the maximum of 283.5 ± 14.7 N. The results showed that the M/M ratio increased with development as total BMD and bone strength increased. The results suggest that the M/M ratio is one of the determinants of the biomaterial and biomechanical properties of bone.

  11. Effects of strontium ranelate treatment on osteoblasts cultivated onto scaffolds of trabeculae bovine bone.

    PubMed

    Silva, Gerluza Aparecida Borges; Bertassoli, Bruno Machado; Sousa, Cristiane Aparecida; Albergaria, Juliano Douglas; de Paula, Rayan Silva; Jorge, Erika Cristina

    2018-01-01

    Blocks of Bovine bone have shown promising results as implantable scaffolds to promote bone regeneration. Strontium ranelate (SrR) is both an antiresorptive and an anabolic drug that has been indicated for oral administration to treat osteoporosis. Few studies, however, have investigated the local effects of SrR and its use in association with biomaterials thus far. In this work, we investigated SrR effects in cultures of primary osteoblasts (PO, from Wistar rats calvaria) and immortalized osteoblasts (IO, from MC3T3-E1 cell line) cultivated as a monolayer or in association with scaffolds of bovine bone in mineralized (MBB) and demineralized (DBB) forms. The optimum dose to induce SrR effects on cell viability was established as 0.1 mM. Our results suggested that the local administration of SrR is biocompatible and non-cytotoxic. In addition, SrR appeared to accelerate primary osteoblast cell differentiation by enhancing alkaline phosphatase activity, the expression of osteogenic differentiation markers, the synthesis of the organic matrix, and a decrease of Ca 2+ ions in mineralized nodules. DBB was found to be a better scaffold material to promote PO and IO cell proliferation. Exposing the proteins of the demineralized bone matrix might improve scaffold osteoconductive properties. Our results indicated the importance of further investigation of the administration of SrR at sites of bone repair. The association of SrR and bone grafts suggests the possibility of using SrR as a co-adjuvant for bone tissue bioengineering and in bone regeneration therapies.

  12. Supplying osteogenesis to dead bone using an osteogenic matrix cell sheet.

    PubMed

    Uchihara, Yoshinobu; Akahane, Manabu; Okuda, Akinori; Shimizu, Takamasa; Masuda, Keisuke; Kira, Tsutomu; Kawate, Kenji; Tanaka, Yasuhito

    2018-02-22

    To evaluate whether osteogenic matrix cell sheets can supply osteogenesis to dead bone. Femur bone fragments (5 mm in length) were obtained from Fisher 344 rats and irradiated by a single exposure of 60 Gy to produce bones that were no longer viable. Osteogenic matrix cell sheets were created from rat bone marrow-derived stromal cells (BMSCs). After wrapping the dead bone with an osteogenic matrix cell sheet, it was subcutaneously transplanted into the back of a rat and harvested after 4 weeks. Bone formation around the dead bone was evaluated by X-ray imaging and histology. Alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression levels were measured to confirm osteogenesis of the transplanted bone. The contribution of donor cells to bone formation was assessed using the Sry gene and PKH26. After the cell sheet was transplanted together with dead bone, X-ray images showed abundant calcification around the dead bone. In contrast, no newly formed bone was seen in samples that were transplanted without the cell sheet. Histological sections also showed newly formed bone around dead bone in samples transplanted with the cell sheet, whereas many empty lacunae and no newly formed bone were observed in samples transplanted without the cell sheet. ALP and OC mRNA expression levels were significantly higher in dead bones transplanted with cell sheets than in those without a cell sheet (P < 0.01). Sry gene expression and cells derived from cell sheets labeled with PKH26 were detected in samples transplanted with a cell sheet, indicating survival of donor cells after transplantation. Our study indicates that osteogenic matrix cell sheet transplantation can supply osteogenesis to dead bone. Copyright © 2018. Published by Elsevier B.V.

  13. Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix.

    PubMed

    Takikawa, Satoshi; Bauer, Thomas W; Kambic, Helen; Togawa, Daisuke

    2003-04-01

    In the United States, demineralized bone matrix (DBM) is considered a transplantable tissue and therefore is regulated primarily by the American Association of Tissue Banks. Even though DBM is not subjected to the same regulations relative to performance claims as medical devices are, one would expect different processing methods might yield DBM preparations of different osteoinductive potential. The purpose of this study was to use an established athymic rat model to compare the osteoinductive properties of two commercially available human DBMs prepared using different methods but having essentially identical product claims. Sixteen female athymic rats were used to test equivalent volumes of two lots each of Grafton Putty (Osteotech, Inc., Eatontown, NJ), Osteofil (Regeneration Technologies, Inc., Alachua, FL), and rat DBM. At 28 days after implantation, qualitative and semiquantitative microscopy showed no significant differences in bone formation between the two lots from each source, but rat DBM produced significantly more bone than Grafton, which produced significantly more bone than Osteofil. Our results suggest that methods of graft processing may represent a greater source of variability than do differences among individual donors. Whether these differences relate to methods of demineralization, carrier, dose of DBM per volume, or to some other factor remains to be determined. Copyright 2003 Wiley Periodicals, Inc.

  14. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    NASA Technical Reports Server (NTRS)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  15. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.

    PubMed

    Ahmed, I; Parsons, A J; Palmer, G; Knowles, J C; Walker, G S; Rudd, C D

    2008-09-01

    Composites comprising a biodegradable polymeric matrix and a bioactive filler show considerable promise in the field of regenerative medicine, and could potentially serve as degradable bone fracture fixation devices, depending on the properties obtained. Therefore, glass fibres from a binary calcium phosphate (50P(2)O(5)+50CaO) glass were used to reinforce polycaprolactone, at two different volume fractions (V(f)). As-drawn, non-treated and heat-treated fibres were assessed. Weight loss, ion release and the initial mechanical properties of the fibres and composites produced have been investigated. Single fibre tensile testing revealed a fibre strength of 474MPa and a tensile modulus of 44GPa. Weibull analysis suggested a scale value of 524. The composites yielded flexural strength and modulus of up to 30MPa and 2.5GPa, respectively. These values are comparable with human trabecular bone. An 8% mass loss was seen for the lower V(f) composite, whereas for the two higher V(f) composites an approximate 20% mass loss was observed over the course of the 5week study. A plateau in the degradation profile at 350h indicated that fibre dissolution was complete at this interval. This assertion was further supported via ion release studies. The leaching of fibres from the composite created a porous structure, including continuous channels within the polymer matrix. This offers further scope for tailoring scaffold development, as cells from the surrounding tissue may be induced to migrate into the resulting porous matrix.

  16. Osteoconductive Amine-Functionalized Graphene-Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization.

    PubMed

    Sharma, Rakesh; Kapusetti, Govinda; Bhong, Sayali Yashwant; Roy, Partha; Singh, Santosh Kumar; Singh, Shikha; Balavigneswaran, Chelladurai Karthikeyan; Mahato, Kaushal Kumar; Ray, Biswajit; Maiti, Pralay; Misra, Nira

    2017-09-20

    Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all of the mentioned shortcomings of bone cement by reinforcing it with graphene (GR), graphene oxide (GO), and surface-modified amino graphene (AG) fillers. These nanocomposites have shown hypsochromic shifts, suggesting strong interactions between the filler material and the polymer matrix. AG-based nanohybrids have shown greater osteointegration and lower cytotoxicity compared to other nanohybrids as well as pristine bone cement. They have also reduced oxidative stress on cells, resulting in calcification within 20 days of the implantation of nanohybrids into the rabbits. They have significantly reduced the exothermic curing temperature to body temperature and increased the setting time to facilitate practitioners, suggesting that reaction temperature and settling time can be dynamically controlled by varying the concentration of the filler. Thermal stability and enhanced mechanical properties have been achieved in nanohybrids vis-à-vis pure bone cement. Thus, this newly developed nanocomposite can create natural bonding with bone tissues for improved bioactivity, longer sustainability, and better strength in the prosthesis.

  17. Heritability of Lumbar Trabecular Bone Mechanical Properties in Baboons

    PubMed Central

    Havill, L.M.; Allen, M.R.; Bredbenner, T.L.; Burr, D.B.; Nicolella, D.P.; Turner, C.H.; Warren, D.M.; Mahaney, M.C.

    2010-01-01

    Genetic effects on mechanical properties have been demonstrated in rodents, but not confirmed in primates. Our aim was to quantify the proportion of variation in vertebral trabecular bone mechanical properties that is due to the effects of genes. L3 vertebrae were collected from 110 females and 46 male baboons (6–32 years old) from a single extended pedigree. Cranio-caudally oriented trabecular bone cores were scanned with microCT then tested in monotonic compression to determine apparent ultimate stress, modulus, and toughness. Age and sex effects and heritability (h2) were assessed using maximum likelihood-based variance components methods. Additive effects of genes on residual trait variance were significant for ultimate stress (h2=0.58), toughness (h2=0.64), and BV/TV (h2=0.55). When BV/TV was accounted for, the residual variance in ultimate stress accounted for by the additive effects of genes was no longer significant. Toughness, however, showed evidence of a non-BV/TV-related genetic effect. Overall, maximum stress and modulus show strong genetic effects that are nearly entirely due to bone volume. Toughness shows strong genetic effects related to bone volume and shows additional genetic effects (accounting for 10% of the total trait variance) that are independent of bone volume. These results support continued use of bone volume as a focal trait to identify genes related to skeletal fragility, but also show that other focal traits related to toughness and variation in the organic component of bone matrix will enhance our ability to find additional genes that are particularly relevant to fatigue-related fractures. PMID:19900599

  18. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage

    PubMed Central

    Gupta, Vineet; Tenny, Kevin M; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-01-01

    Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro. PMID:27358376

  19. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    PubMed

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  1. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  2. Osteogenesis imperfecta: from diagnosis and multidisciplinary treatment to future perspectives.

    PubMed

    Bregou Bourgeois, Aline; Aubry-Rozier, Bérengère; Bonafé, Luisa; Laurent-Applegate, Lee; Pioletti, Dominique P; Zambelli, Pierre-Yves

    2016-01-01

    Osteogenesis imperfecta is an inherited connective tissue disorder with wide phenotypic and molecular heterogeneity. A common issue associated with the molecular abnormality is a disturbance in bone matrix synthesis and homeostasis inducing bone fragility. In very early life, this can lead to multiple fractures and progressive bone deformities, including long bone bowing and scoliosis. Multidisciplinary management improves quality of life for patients with osteogenesis imperfecta. It consists of physical therapy, medical treatment and orthopaedic surgery as necessary. Medical treatment consists of bone-remodelling drug therapy. Bisphosphonates are widely used in the treatment of moderate to severe osteogenesis imperfecta, from infancy to adulthood. Other more recent drug therapies include teriparatide and denosumab. All these therapies target the symptoms and have effects on the mechanical properties of bone due to modification of bone remodelling, therefore influencing skeletal outcome and orthopaedic surgery. Innovative therapies, such as progenitor and mesenchymal stem cell transplantation, targeting the specific altered pathway rather than the symptoms, are in the process of development.

  3. Prostate Cancer Metastases Alter Bone Mineral and Matrix Composition Independent of Effects on Bone Architecture in Mice A Quantitative Study Using microCT and Raman Spectroscopy

    PubMed Central

    Bi, Xiaohong; Sterling, Julie A.; Merkel, Alyssa R.; Perrien, Daniel S.; Nyman, Jeffry; Mahadevan-Jansen, Anita

    2013-01-01

    Prostate cancer is the most common primary tumor and the second leading cause of cancer-related deaths in men in the United States. Prostate cancer bone metastases are characterized by abnormal bone remodeling processes and result in a variety of skeletal morbidities. Prevention of skeletal complications is a crucial element in prostate cancer management. This study investigated prostate cancer-induced alterations in the molecular composition and morphological structure of metastasis-bearing bones in a mouse model of prostate cancer using Raman spectroscopy and micro-computed tomography (microCT). LNCaP C4-2B prostate cancer cells were injected into the right tibiae of 5-week old male SCID mice. Upon sacrifice at 8 weeks post tumor inoculation, two out of the ten tumor-bearing tibiae showed only osteoblastic lesions in the radiographs, 4 osteolytic lesions only and 4 mixed with osteoblastic and osteolytic lesions.. Carbonate substitution was significantly increased while there was a marked reduction in the level of collagen mineralization, mineral crystallinity, and carbonate:matrix ratio in the cortex of the intact tumor-bearing tibiae compared to contralateral controls. MicroCT analysis revealed a significant reduction in bone volume/total volume, trabecular number and trabecular thickness, as well as significant increase in bone surface/volume ratio in tibiae with osteolytic lesions, suggesting active bone remodeling and bone loss. None of the changes in bone compositional properties were correlated with lesion area from radiographs or the changes in bone architecture from microCT. This study indicates that LNCaP C4-2B prostate cancer metastases alter bone tissue composition independent of changes in architecture, and altered bone quality may be an important contributor to fracture risk in these patients. Raman spectroscopy may provide a new avenue of investigation into interactions between tumor and bone microenvironment. PMID:23867219

  4. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit].

    PubMed

    Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming

    2017-12-01

    To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between 2 groups at each time point ( P <0.05). Histological observation revealed that there was new-born bone in the cement with the time extending in 2 groups. Among them, bony connection was observed between the new-born bone and the host in the experimental group, which was prior to the control group. The porous composite cement has dual bioactivity of osteoinductivity and osteoconductivity, which are effective to promote bone defect healing and reconstruction.

  5. Mechanical control of tissue-engineered bone.

    PubMed

    Hung, Ben P; Hutton, Daphne L; Grayson, Warren L

    2013-01-31

    Bone is a load-bearing tissue and physical forces play key roles in the development and maintenance of its structure. Mechanical cues can stimulate the expression of an osteogenic phenotype, enhance matrix and mineral deposition, and influence tissue organization to improve the functional outcome of engineered bone grafts. In recent years, a number of studies have investigated the effects of biophysical forces on the bone formation properties of osteoprogenitor cells. The application of physiologically relevant stimuli to tissue-engineered bone may be determined through observation and understanding of forces to which osteoblasts, osteoclasts, and osteocytes are exposed in native bone. Subsequently, these cues may be parameterized and their effects studied in well-defined in vitro systems. The osteo-inductive effects of three specific mechanical cues - shear stress, substrate rigidity, and nanotopography - on cells cultured in monolayer or in three-dimensional biomaterial scaffolds in vitro are reviewed. Additionally, we address the time-dependent effects of mechanical cues on vascular infiltration and de novo bone formation in acellular scaffolds implanted into load-bearing sites in vivo. Recent studies employing cutting-edge advances in biomaterial fabrication and bioreactor design have provided key insights into the role of mechanical cues on cellular fate and tissue properties of engineered bone grafts. By providing mechanistic understanding, future studies may go beyond empirical approaches to rational design of engineering systems to control tissue development.

  6. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hock, J.M.; Centrella, M.; Canalis, E.

    1988-01-01

    The effects of insulin-like growth factor-I (IGF-I) and insulin on bone matrix synthesis and bone cell replication were studied in cultured 21-day-old fetal rat calvariae. Histomorphometry techniques were developed to measure the incorporation of (2,3-/sup 3/H)proline and (methyl-/sup 3/H)thymidine into bone matrix and bone cell nuclei, respectively, using autoradiographs of sagittal sections of calvariae cultured with IGF-I, insulin, or vehicle for up to 96 h. To confirm an effect on bone formation, IGF-I was also studied for its effects on (/sup 3/H)proline incorporation into collagenase-digestible protein (CDP) and noncollagen protein and on (/sup 3/H)thymidine incorporation into acid-precipitable material (DNA). IGF-Imore » at 10(-9)-10(-7) M significantly increased the rate of bone matrix apposition and CDP after 24 h by 45-50% and increased cell labeling by 8-fold in the osteoprogenitor cell zone, by 4-fold in the osteoblast cell zone, and by 2-fold in the periosteal fibroblast zone. Insulin at 10(-9)-10(-6) M also increased matrix apposition rate and CDP by 40-50%, but increased cell labeling by 2-fold only at a concentration of 10(-7) M or higher and then only in the osteoprogenitor cell zone. When hydroxyurea was added to IGF-I-treated bones, the effects of IGF-I on DNA synthesis were abolished, but the increase in bone matrix apposition induced by IGF-I was only partly diminished. In conclusion, IGF-I stimulates matrix synthesis in calvariae, an effect that is partly, although not completely, dependent on its stimulatory effect on DNA synthesis.« less

  7. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.

    PubMed

    Wang, Yaohui; Ural, Ani

    2018-06-01

    A key length scale of interest in assessing the fracture resistance of bone is the submicroscale which is composed of mineralized collagen fibrils (MCF) and extra-fibrillar matrix (EFM). Although the processes through which the submicroscale constituents of bone contribute to the fracture resistance in bone have been identified, the extent of the modifications in submicroscale mechanical response due to the changes in individual properties of MCFs and EFM has not been determined. As a result, this study aims to quantify the influence of individual MCF and EFM material property modifications on the mechanical behavior (elastic modulus, ultimate strength, and resistance to failure) of bone at the submicroscale using a novel finite element modeling approach that incorporate 3D networks of MCFs with three different orientations as well as explicit representation of EFM. The models were evaluated under tensile loading in transverse (representing MCF separation) and longitudinal (representing MCF rupture) directions. The results showed that the apparent elastic modulus at the submicroscale under both loading directions for all orientations was only affected by the change in the elastic modulus of MCFs. MCF separation and rupture strengths were mainly dependent on the ultimate strength of EFM and MCFs, respectively, with minimal influence of other material properties. The extent of damage during MCF separation increased with increasing ultimate strength of EFM and decreased with increasing fracture energy of EFM with minimal contribution from elastic modulus of MCFs. For MCF rupture, there was an almost one-to-one linear relationship between the percent change in fracture energy of MCFs and the percent change in the apparent submicroscale fracture energy. The ultimate strength and elastic modulus of MCFs had moderate to limited influence on the MCF rupture fracture energy. The results of this study quantified the extent of changes that may be seen in the energy dissipation processes during MCF rupture and separation relative to the changes in the individual constituents of the tissue. This new knowledge significantly contributes to improving the understanding of how the material property alterations at the submicroscale that can occur due to diseases, age-related changes, and treatments affect the fracture processes at larger length scales. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Pathologic fracture through a unicameral bone cyst of the pelvis: CT-guided percutaneous curettage, biopsy, and bone matrix injection.

    PubMed

    Tynan, Jennifer R; Schachar, Norman S; Marshall, Geoffrey B; Gray, Robin R

    2005-02-01

    Unicameral bone cysts of the pelvis are extremely rare. A 19-year old man presented with a pathologic fracture through a pelvic unicameral bone cyst. He was treated with computed tomography-guided percutaneous curettage, biopsy, and demineralized bone matrix injection. Treatment has proven successful in short-term follow-up.

  9. Evaluation of the Effect of a Gamma Irradiated DBM-Pluronic F127 Composite on Bone Regeneration in Wistar Rat

    PubMed Central

    Canciani, Barbara; Losi, Paola; Tripodi, Maria; Burchielli, Silvia; Ottoni, Priscilla; Salvadori, Piero Antonio; Soldani, Giorgio

    2015-01-01

    Demineralized bone matrix (DBM) is widely used for bone regeneration. Since DBM is prepared in powder form its handling properties are not optimal and limit the clinical use of this material. Various synthetic and biological carriers have been used to enhance the DBM handling. In this study we evaluated the effect of gamma irradiation on the physical-chemical properties of Pluronic and on bone morphogenetic proteins (BMPs) amount in DBM samples. In vivo studies were carried out to investigate the effect on bone regeneration of a gamma irradiated DBM-Pluronic F127 (DBM-PF127) composite implanted in the femur of rats. Gamma irradiation effects (25 kGy) on physical-chemical properties of Pluronic F127 were investigated by rheological and infrared analysis. The BMP-2/BMP-7 amount after DBM irradiation was evaluated by ELISA. Bone regeneration capacity of DBM-PF127 containing 40% (w/w) of DBM was investigated in transcortical holes created in the femoral diaphysis of Wistar rat. Bone porosity, repaired bone volume and tissue organization were evaluated at 15, 30 and 90 days by Micro-CT and histological analysis. The results showed that gamma irradiation did not induce significant modification on physical-chemical properties of Pluronic, while a decrease in BMP-2/BMP-7 amount was evidenced in sterilized DBM. Micro-CT and histological evaluation at day 15 post-implantation revealed an interconnected trabeculae network in medullar cavity and cellular infiltration and vascularization of DBM-PF127 residue. In contrast a large rate of not connected trabeculae was observed in Pluronic filled and unfilled defects. At 30 and 90 days the DBM-PF127 samples shown comparable results in term of density and thickness of the new formed tissue respect to unfilled defect. In conclusion a gamma irradiated DBM-PF127 composite, although it may have undergone a significant decrease in the concentration of BMPs, was able to maintains bone regeneration capability. PMID:25897753

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoproteinmore » II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.« less

  11. Elastic interactions between single microcrack and single osteon microstructure of human femur cortical bone

    NASA Astrophysics Data System (ADS)

    Mansor, N. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, Y.; Ariffin, A. K.

    2017-09-01

    Inmultiscale Haversian system of cortical bone fracture, a homogenous bone modeling consideration is limited to only one Young modulus was significant for each cortex without having any constituents in that bone. A two dimension model of human femur cortical bone is presented by considering the anatomical positions of four cortices, e.g anterior, posterior, medial and lateral. The Haversian system is modeled under tensile loading by considering the interstitial matrix, osteon and cement line mechanical properties. The interaction between single microcrack and single osteon is evaluated using linear elastic fracture mechanics theory, and was determined using of stress intensity factor, strain energy release rate, and the critical stress intensity factor and critical strain energy release rate parameter. The results indicate that the medial cortex has the highest SIFs while the lowest was posterior cortex. The Young modulus of material was greatly influence the fracture parameters. More stiff the material, the SIF was reduced.

  12. Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular matrix.

    PubMed

    Tuzlakoglu, Kadriye; Santos, Marina I; Neves, Nuno; Reis, Rui L

    2011-02-01

    Mimicking the structural organization and biologic function of natural extracellular matrix has been one of the main goals of tissue engineering. Nevertheless, the majority of scaffolding materials for bone regeneration highlights biochemical functionality in detriment of mechanical properties. In this work we present a rather innovative construct that combines in the same structure electrospun type I collagen nanofibers with starch-based microfibers. These combined structures were obtained by a two-step methodology and structurally consist in a type I collagen nano-network incorporated on a macro starch-based support. The morphology of the developed structures was assessed by several microscopy techniques and the collagenous nature of the nano-network was confirmed by immunohistochemistry. In addition, and especially regarding the requirements of large bone defects, we also successfully introduced the concept of layer by layer, as a way to produce thicker structures. In an attempt to recreate bone microenvironment, the design and biochemical composition of the combined structures also envisioned bone-forming cells and endothelial cells (ECs). The inclusion of a type I collagen nano-network induced a stretched morphology and improved the metabolic activity of osteoblasts. Regarding ECs, the presence of type I collagen on the combined structures provided adhesive support and obviated the need of precoating with fibronectin. It was also importantly observed that ECs on the nano-network organized into circular structures, a three-dimensional arrangement distinct from that observed for osteoblasts and resembling the microcappillary-like organizations formed during angiogenesis. By providing simultaneously physical and chemical cues for cells, the herein-proposed combined structures hold a great potential in bone regeneration as a man-made equivalent of extracellular matrix.

  13. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering.

    PubMed

    Ao, Chenghong; Niu, Yan; Zhang, Ximu; He, Xu; Zhang, Wei; Lu, Canhui

    2017-04-01

    Nanofibrous scaffolds from cotton cellulose and nano-hydroxyapatite (nano-HA) were electrospun for bone tissue engineering. The solution properties of cellulose/nano-HA spinning dopes and their associated electrospinnability were characterized. Morphological, thermal and mechanical properties of the electrospun cellulose/nano-HA nanocomposite nanofibers (ECHNN) were measured and the biocompatibility of ECHNN with human dental follicle cells (HDFCs) was evaluated. Scanning electron microscope (SEM) images indicated that the average diameter of ECHNN increased with a higher nano-HA loading and the fiber diameter distributions were well within the range of natural ECM (extra cellular matrix) fibers (50-500nm). The ECHNN exhibited extraordinary mechanical properties with a tensile strength and a Young's modulus up to 70.6MPa and 3.12GPa respectively. Moreover, it was discovered that the thermostability of the ECHNN could be enhanced with the incorporation of nano-HA. Cell culture experiments demonstrated that the ECHNN scaffolds were quite biocompatible for HDFCs attachment and proliferation, suggesting their great potentials as scaffold materials in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less

  15. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies

    PubMed Central

    Di Buduo, Christian A.; Wray, Lindsay S.; Tozzi, Lorenzo; Malara, Alessandro; Chen, Ying; Ghezzi, Chiara E.; Smoot, Daniel; Sfara, Carla; Antonelli, Antonella; Spedden, Elise; Bruni, Giovanna; Staii, Cristian; De Marco, Luigi; Magnani, Mauro; Kaplan, David L.

    2015-01-01

    We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production. PMID:25575540

  16. Physicochemical and osteoplastic characteristics of 3D printed bone grafts based on synthetic calcium phosphates and natural polymers

    NASA Astrophysics Data System (ADS)

    Nezhurina, E. K.; Karalkin, P. A.; Komlev, V. S.; Sviridova, I. K.; Kirsanova, V. A.; Akhmedova, S. A.; Shanskiy, Ya D.; Fedotov, A. Yu; Barinov, S. M.; Sergeeva, N. S.

    2018-04-01

    A creation of personalized implants for regeneration of bone tissue seems to be a very promising biomedical technological approach. We have studied the physicochemical characteristics, cyto- and biocompatibility of three-dimensional constructs based on sodium alginate and gelatin in combination with 2 types of calcium phosphate (tricalcium phosphate or octacalcium phosphate) obtained by inkjet 3D printing. In our experiments, we have studied the physical and chemical properties of the constructs – their porosity, chemical composition, microarchitecture of the surface and mechanical elasticity. The cytocompatibility of 3D constructs and matrix-for-cell properties were investigated in vitro on a model of human osteosarcoma MG-63 cell line by means of MTT assay. The biocompatibility of 3D constructs was studied on the model of subcutaneous implantation in mice up to 12 weeks. All types of 3D constructs were cytocompatible in vitro, demonstrated good matrix-for-cells properties, and had supported cell proliferation for 2 weeks. In results of subcutaneous in vivo test all constructs demonstrated biocompatibility with slow bioresorption of organic and inorganic components. Osteogenesis proceeded more actively in rat tibia model defects (marginal excision), substituted by 3D printed 3-component implants based on alginate, gelatin and octacalcium phosphate.

  17. Novel PLS3 variants in X-linked osteoporosis: Exploring bone material properties.

    PubMed

    Balasubramanian, Meena; Fratzl-Zelman, Nadja; O'Sullivan, Rory; Bull, Mary; Fa Peel, Nicola; Pollitt, Rebecca C; Jones, Rebecca; Milne, Elizabeth; Smith, Kath; Roschger, Paul; Klaushofer, Klaus; Bishop, Nicholas J

    2018-05-07

    Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation. © 2018 Wiley Periodicals, Inc.

  18. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing.

    PubMed

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Tom; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBN(Δ5-6) truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  19. In vitro investigation of a tissue-engineered cell-tendon complex mimicking the transitional architecture at the ligament-bone interface.

    PubMed

    Wang, Zhibing; Zhang, Yuan; Zhu, Jie; Dong, Shiwu; Jiang, Tao; Zhou, Yue; Zhang, Xia

    2015-03-01

    Restoration of the transitional ligament-bone interface is critical for graft-bone integration. We postulated that an allogenic scaffold mimicking the fibrogenic, chondrogenic, and osteogenic transition gradients could physiologically promote ligament-bone incorporation. The aim of this study was to construct and characterize a composite tendon scaffold with a continuous and heterogeneous transition region mimicking a native ligament insertion site. Genetically modified heterogeneous cell populations were seeded within specific regions of decellularized rabbit Achilles tendons to fabricate a stratified scaffold containing three biofunctional regions supporting fibrogenesis, chondrogenesis, and osteogenesis. The observed morphology, architecture, cytocompatibility, and biomechanics of the scaffolds demonstrated their improved bio-physico-chemical properties. The formation of the transitional regions was augmented via enhanced delivery of two transcription factors, sex determining region Y-box 9 and runt-related transcription factor 2, which also triggered early up-regulated expression of cartilage- and bone-relevant markers, according to quantitative PCR and immunoblot analyses. Gradient tissue-specific matrix formation was also confirmed within the predesignated regions via histological staining and immunofluorescence assays. These results suggest that a transitional interface could be replicated on an engineered tendon through stratified tissue integration. The scaffold offers the advantages of a multitissue transition involving controlled cellular interactions and matrix heterogeneity, which can be applied for the regeneration of the ligament-bone interface. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia.

    PubMed

    Nakamura, Hiroaki; Sato, Ginga; Hirata, Azumi; Yamamoto, Toshio

    2004-01-01

    Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.

  1. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.

    PubMed

    Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S

    2011-02-01

    X-ray contrast medium (BaSO(4) or ZrO(2)) used in commercially available PMMA bone cements imparts a detrimental effect on mechanical properties, particularly on flexural strength and fracture toughness. These lower properties facilitate the chance of implant loosening resulting from cement mantle failure. The present study was performed to examine the mechanical properties of a commercially available cement (CMW1) by introducing novel nanostructured titania fibers (n-TiO(2) fibers) into the cement matrix, with the fibers acting as a reinforcing phase. The hydrophilic nature of the n-TiO(2) fibers was modified by using a bifunctional monomer, methacrylic acid. The n-TiO(2) fiber content of the cement was varied from 0 to 2 wt%. Along with the mechanical properties (fracture toughness (K (IC)), flexural strength (FS), and flexural modulus (FM)) of the reinforced cements the following properties were investigated: complex viscosity-versus-time, maximum polymerization temperature (T (max)), dough time (t (dough)), setting time (t (set)), radiopacity, and in vitro biocompatibility. On the basis of the determined mechanical properties, the optimized composition was found at 1 wt% n-TiO(2) fibers, which provided a significant increase in K (IC) (63%), FS (20%), and FM (22%), while retaining the handling properties and in vitro biocompatibility compared to that exhibited by the control cement (CMW1). Moreover, compared to the control cement, there was no significant change in the radiopacity of any of the reinforced cements at p = 0.05. This study demonstrated a novel pathway to augment the mechanical properties of PMMA-based cement by providing an enhanced interfacial interaction and strong adhesion between the functionalized n-TiO( 2) fibers and PMMA matrix, which enhanced the effective load transfer within the cement.

  2. The dynamics of adult haematopoiesis in the bone and bone marrow environment.

    PubMed

    Ho, Miriel S H; Medcalf, Robert L; Livesey, Stephen A; Traianedes, Kathy

    2015-08-01

    This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system. © 2015 John Wiley & Sons Ltd.

  3. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    PubMed

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  4. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  5. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly induced due to the osteoinductive process.

  6. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years.

    PubMed

    Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus

    2016-02-01

    Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor. © 2015 American Society for Bone and Mineral Research.

  7. A review of fibrin and fibrin composites for bone tissue engineering

    PubMed Central

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient’s own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications. PMID:28761338

  8. A review of fibrin and fibrin composites for bone tissue engineering.

    PubMed

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.

  9. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.

    PubMed

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-11-21

    Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.

  10. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.

    PubMed

    Widmer, René P; Ferguson, Stephen J

    2011-05-01

    Characterization of the biomaterial flow through porous bone is crucial for the success of the bone augmentation process in vertebroplasty. The biofluid, biomaterial, and local morphological bone characteristics determine the final shape of the filling, which is important both for the post-treatment mechanical loading and the risk of intraoperative extraosseous leakage. We have developed a computational model that describes the flow of biomaterials in porous bone structures by considering the material porosity, the region-dependent intrinsic permeability of the porous structure, the rheological properties of the biomaterial, and the boundary conditions of the filling process. To simulate the process of the substitution of a biofluid (bone marrow) by a biomaterial (bone cement), we developed a hybrid formulation to describe the evolution of the fluid boundary and properties and coupled it to a modified version of Darcy's law. The apparent rheological properties are derived from a fluid-fluid interface tracking algorithm and a mixed boundary representation. The region- specific intrinsic permeability of the bone is governed by an empirical relationship resulting from a fitting process of experimental data. In a first step, we verified the model by studying the displacement process in spherical domains, where the spreading pattern is known in advance. The mixed boundary model demonstrated, as expected, that the determinants of the spreading pattern are the local intrinsic permeability of the porous matrix and the ratio of the viscosity of the fluids that are contributing to the displacement process. The simulations also illustrate the sensitivity of the mixed boundary representation to anisotropic permeability, which is related to the directional dependent microstructural properties of the porous medium. Furthermore, we compared the nonlinear finite element model to different published experimental studies and found a moderate to good agreement (R(2)=0.9895 for a one-dimensional bone core infiltration test and a 10.94-16.92% relative error for a three-dimensional spreading pattern study, respectively) between computational and experimental results.

  12. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae

    PubMed Central

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-01-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475

  13. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae.

    PubMed

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-11-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  14. Expression of CD44v6 as matrix-associated ectodomain in the bone development.

    PubMed

    Nakajima, Kosei; Taniguchi, Kazumi; Mutoh, Ken-ichiro

    2010-08-01

    This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.

  15. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.

    PubMed

    Paiva, Katiucia B S; Granjeiro, José M

    2017-01-01

    Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering. © 2017 Elsevier Inc. All rights reserved.

  16. Innovative cellular distance structures from polymeric and metallic threads

    NASA Astrophysics Data System (ADS)

    Wieczorek, F.; Trümper, W.; Cherif, C.

    2017-10-01

    Knitting allows a high individual adaptability of the geometry and properties of flat-knitted spacer fabrics. This offers advantages for the specific adjustment of the mechanical properties of innovative composites based on highly viscous matrix systems such as bone cement, elastomer or foam and cellular reinforcing structures made from e. g. polymeric monofilaments or metallic wires. The prerequisite is the availability of binding solutions for highly productive production of functional, cellular, self-stabilized spacer flat knitted fabrics as supporting and functionalized structures.

  17. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    PubMed

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring.

    PubMed

    Garnero, Patrick

    2008-01-01

    Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increased risk of fracture. While the level of bone mass can be estimated by measuring bone mineral density (BMD) using dual X-ray absorptiometry (DXA), its measurement does not capture all the risk factors for fracture. Quantitative changes in skeletal turnover can be assessed easily and non-invasively by the measurement of serum and urinary biochemical markers; the most sensitive markers include serum osteocalcin, bone specific alkaline phosphatase, the N-terminal propeptide of type I collagen for bone formation, and the crosslinked C- (CTX) and N- (NTX) telopeptides of type I collagen for bone resorption. Advances in our knowledge of bone matrix biochemistry, most notably of post-translational modifications in type I collagen, are likely to lead to the development of new biochemical markers that reflect changes in the material property of bone, an important determinant of bone strength. Among those, the measurement of the urinary ratio of native (alpha) to isomerized (beta) CTX - an index of bone matrix maturation - has been shown to be predictive of fracture risk independently of BMD and bone turnover. In postmenopausal osteoporosis, levels of bone resorption markers above the upper limit of the premenopausal range are associated with an increased risk of hip, vertebral, and nonvertebral fracture, independent of BMD. Therefore, the combined use of BMD measurement and biochemical markers is helpful in risk assessment, especially in those women who are not identified as at risk by BMD measurement alone. Levels of bone markers decrease rapidly with antiresorptive therapies, and the levels reached after 3-6 months of therapy have been shown to be more strongly associated with fracture outcome than changes in BMD. Preliminary studies indicate that monitoring changes of bone formation markers could also be useful to monitor anabolic therapies, including intermittent parathyroid hormone administration and, possibly, to improve adherence to treatment. Thus, repeated measurements of bone markers during therapy may help improve the management of osteoporosis in patients.

  19. Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil

    2017-12-01

    A number of orthopedic disorders and bone defect issues are solved by scaffold-based therapy in tissue engineering. The biocompatibility of chitosan (polysaccharide) and its similarity with glycosaminoglycan makes it a bone-grafting material. The current work focus on the synthesis of chitosan and chitosan-gelatin scaffold for hard tissue engineering. The chitosan and chitosan-gelatin scaffold have shown improved specific surface area, density, porosity, mechanical properties, biodegradability and absorption. These scaffolds can lead to the development or artificial fabrication of hard tissue alternates. The porous scaffold samples were prepared by freeze-drying method. The microstructure, mechanical and degradable properties of chitosan and chitosan-gelatin scaffolds were analyzed and results revealed that the scaffolds prepared from chitosan-gelatin can be utilized as a useful matrix for tissue engineering.

  20. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Bhattacharya, Debasis; Maiti, T K; Kundu, S C

    2016-02-01

    The current study deals with the fabrication and characterization of blended nanofibrous scaffolds of tropical tasar silk fibroin of Antheraea mylitta and poly (Є-caprolactone) to act as an ideal scaffold for bone regeneration. The use of poly (Є-caprolactone) in osteogenesis is well-recognized. At the same time, the osteoconductive nature of the non-mulberry tasar fibroin is also established due to its internal integrin binding peptide RGD (Arg-Gly-Asp) sequences, which enhance cellular interaction and proliferation. Considering that the materials have the required and favorable properties, the blends are formed using an equal volume ratio of fibroin (2 and 4 wt%) and poly (Є-caprolactone) solution (10 wt%) to fabricate nanofibers. The nanofibers possess an average diameter of 152 ± 18 nm (2 % fibroin/PCL) and 175 ± 15 nm (4% fibroin/PCL). The results of Fourier transform infrared spectroscopy substantiates the preservation of the secondary structure of the fibroin in the blends indicating the structural stability of the neo-matrix. With an increase in the fibroin percentage, the hydrophobicity and thermal stability of the matrices as measured from melting temperature Tm (using DSC) decrease, while the mechanical strength is improved. The blended nanofibrous scaffolds are biodegradable, and support the viability and proliferation of human osteoblast-like cells as observed through scanning electron and confocal microscopes. Alkaline phosphatase assay indicates the cell proliferation and the generation of the neo-bone matrix. Taken together, these findings illustrate that the silk-poly (Є-caprolactone) blended nanofibrous scaffolds have an excellent prospect as scaffolding material in bone tissue engineering.

  1. Ex Vivo Growth of Bioengineered Ligaments and Other Tissues

    NASA Technical Reports Server (NTRS)

    Altman, Gregory; Kaplan, David L.; Martin, Ivan; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues for use in surgical replacement of damaged anterior cruciate ligaments has been invented. An anterior cruciate ligament is one of two ligaments (the other being the posterior cruciate ligament) that cross in the middle of a knee joint and act to prevent the bones in the knee from sliding forward and backward relative to each other. Anterior cruciate ligaments are frequently torn in sports injuries and traffic accidents, resulting in pain and severe limitations on mobility. By making it possible to grow replacement anterior cruciate ligaments that structurally and functionally resemble natural ones more closely than do totally synthetic replacements, the method could create new opportunities for full or nearly full restoration of functionality in injured knees. The method is also adaptable to the growth of bioengineered replacements for other ligaments (e.g., other knee ligaments as well as those in the hands, wrists, and elbows) and to the production of tissues other than ligaments, including cartilage, bones, muscles, and blood vessels. The method is based on the finding that the histomorphological properties of a bioengineered tissue grown in vitro from pluripotent cells within a matrix are affected by the direct application of mechanical force to the matrix during growth generation. This finding provides important new insights into the relationships among mechanical stress, biochemical and cell-immobilization methods, and cell differentiation, and is applicable to the production of the variety of tissues mentioned above. Moreover, this finding can be generalized to nonmechanical (e.g., chemical and electromagnetic) stimuli that are experienced in vivo by tissues of interest and, hence, the method can be modified to incorporate such stimuli in the ex vivo growth of replacements for the various tissues mentioned above. In this method, a three-dimensional matrix made of a suitable material is seeded with pluripotent stem cells. The patient s bone-marrow stromal cells are preferably used as the pluripotent cells in this method. Suitable matrix materials are materials to which cells can adhere for example, collagen type I. The seeded matrix is attached to anchors at opposite ends and then the cells in the matrix are cultured under conditions appropriate for the growth and regeneration of cells. Suitable anchor materials are materials to which the matrix can attach; examples include demineralized bone and Goinopra coral that has been treated to convert its calcium carbonate to calcium phosphate.

  2. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    PubMed

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. © 2015 S. Karger AG, Basel.

  3. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.

    PubMed

    Rougraff, Bruce T; Kling, Thomas J

    2002-06-01

    The treatment of unicameral bone cysts varies from open bone-grafting procedures to percutaneous injection of corticosteroids or bone marrow. The purpose of this study was to evaluate the feasibility and effectiveness of percutaneous injection of a mixture of demineralized bone matrix and autogenous bone marrow for the treatment of simple bone cysts. Twenty-three patients with an active unicameral bone cyst were treated with trephination and injection of allogeneic demineralized bone matrix and autogenous bone marrow. The patients were followed for an average of fifty months (range, thirty to eighty-one months), at which time pain, function, and radiographic signs of resolution of the cyst were assessed. The average time until the patients had pain relief was five weeks, and the average time until the patients returned to full, unrestricted activities was six weeks. Bone-healing at the site of the injection was first seen radiographically at three to six months. No patient had a pathologic fracture during this early bone-healing stage. Cortical remodeling was seen radiographically by six to nine months, and after one year the response was usually complete, changing very little from then on. Five patients required a second injection because of recurrence of the cyst, and all five had a clinically and radiographically quiescent cyst after an average of thirty-six additional months of follow-up. Seven of the twenty-three patients had incomplete healing manifested by small, persistent radiolucent areas within the original cyst. None of these cysts increased in size or resulted in pain or fracture. Percutaneous injection of allogeneic demineralized bone matrix and autogenous bone marrow is an effective treatment for unicameral bone cysts.

  4. [Development, physiology, and cell activity of bone].

    PubMed

    de Baat, P; Heijboer, M P; de Baat, C

    2005-07-01

    Bones are of crucial importance for the human body, providing skeletal support, serving as a home for the formation of haematopoietic cells, and reservoiring calcium and phosphate. Long bones develop by endochondral ossification. Flat bones develop by intramembranous ossification. Bone tissue contains hydroxyapatite and various extracellular proteins, producing bone matrix. Two biological mechanisms, determining the strength of bone, are modelling and remodelling. Modelling can change bone shape and size through bone formation by osteoblasts at some sites and through bone destruction by osteoclasts at other sites. Remodelling is bone turnover, also performed by osteoclasts and osteoblasts. The processes of modelling and remodelling are induced by mechanical loads, predominantly muscle loads. Osteoblasts develop from mesenchymal stem cells. Many stimulating factors are known to activate the differentiation. Mature osteoblasts synthesize bone matrix and may further differentiate into osteocytes. Osteocytes maintain structural bone integrity and allow bone to adapt to any mechanical and chemical stimulus. Osteoclasts derive from haematopoietic stem cells. A number of transcription and growth factors have been identified essential for osteoclast differentiation and function. Finally, there is a complex interaction between osteoblasts and osteoclasts. Bone destruction starts by attachment of osteoclasts to the bone surface. Following this, osteoclasts undergo specific morphological changes. The process of bone destruction starts by acid dissolution of hydroxyapatite. After that osteoclasts start to destruct the organic matrix.

  5. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    PubMed

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing improved mechanical properties and osteointegrative potential compared to degradable polymers of poly(lactic acid-glycolic acid) alone. Future work will focus on the optimization of the composite scaffold for bone tissue-engineering applications and the evaluation of the 3-D composite in an in vivo model. Copyright 2003 Wiley Periodicals, Inc.

  6. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Dong, Chanjuan; Yang, Li; Lv, Yonggang

    2015-07-29

    A growing body of evidence has shown that extracellular matrix (ECM) stiffness can modulate stem cell adhesion, proliferation, migration, differentiation, and signaling. Stem cells can feel and respond sensitively to the mechanical microenvironment of the ECM. However, most studies have focused on classical two-dimensional (2D) or quasi-three-dimensional environments, which cannot represent the real situation in vivo. Furthermore, most of the current methods used to generate different mechanical properties invariably change the fundamental structural properties of the scaffolds (such as morphology, porosity, pore size, and pore interconnectivity). In this study, we have developed novel three-dimensional (3D) scaffolds with different degrees of stiffness but the same 3D microstructure that was maintained by using decellularized cancellous bone. Mixtures of collagen and hydroxyapatite [HA: Ca10(PO4)6(OH)2] with different proportions were coated on decellularized cancellous bone to vary the stiffness (local stiffness, 13.00 ± 5.55 kPa, 13.87 ± 1.51 kPa, and 37.7 ± 19.6 kPa; bulk stiffness, 6.74 ± 1.16 kPa, 8.82 ± 2.12 kPa, and 23.61 ± 8.06 kPa). Microcomputed tomography (μ-CT) assay proved that there was no statistically significant difference in the architecture of the scaffolds before or after coating. Cell viability, osteogenic differentiation, cell recruitment, and angiogenesis were determined to characterize the scaffolds and evaluate their biological responses in vitro and in vivo. The in vitro results indicate that the scaffolds developed in this study could sustain adhesion and growth of rat mesenchymal stem cells (MSCs) and promote their osteogenic differentiation. The in vivo results further demonstrated that these scaffolds could help to recruit MSCs from subcutaneous tissue, induce them to differentiate into osteoblasts, and provide the 3D environment for angiogenesis. These findings showed that the method we developed can build scaffolds with tunable mechanical properties almost without variation in 3D microstructure. These preparations not only can provide a cell-free scaffold with optimal matrix stiffness to enhance osteogenic differentiation, cell recruitment, and angiogenesis in bone tissue engineering but also have significant implications for studies on the effects of matrix stiffness on stem cell differentiation in 3D environments.

  7. Effect of spaceflight hardware on the skeletal properties of ground control mice

    NASA Astrophysics Data System (ADS)

    Bateman, Ted; Lloyd, Shane; Dunlap, Alex; Ferguson, Virginia; Simske, Steven; Stodieck, Louis; Livingston, Eric

    Introduction: Spaceflight experiments using mouse or rat models require habitats that are specifically designed for the microgravity environment. During spaceflight, rodents are housed in a specially designed stainless steel meshed cage with gravity-independent food and water delivery systems and constant airflow to push floating urine and feces towards a waste filter. Differences in the housing environment alone, not even considering the spaceflight environment itself, may lead to physiological changes in the animals contained within. It is important to characterize these cage differences so that results from spaceflight experiments can be more reliably compared to studies from other laboratories. Methods: For this study, we examined the effect of NASA's Animal Enclosure Module (AEM) spaceflight hardware on the skeletal properties of 8-week-old female C57BL/6J mice. This 13-day experiment, conducted on the ground, modeled the flight experiment profile of the CBTM-01 payload on STS-108, with standard vivarium-housed mice being compared to AEM-housed mice (n = 12/group). Functional differences were compared via mechanical testing, micro-hardness indentation, microcomputed tomography, and mineral/matrix composition. Cellular changes were examined by serum chemistry, histology, quantitative histomorphometry, and RT-PCR. A Student's t-test was utilized, with the level of Type I error set at 95 Results: There was no change in elastic, maximum, or fracture force mechanical properties at the femur mid-diaphysis, however, structural stiffness was -17.5 Conclusions: Housing mice in the AEM spaceflight hardware had minimal effects on femur cortical bone properties. However, trabecular bone at the proximal tibia in AEM mice experi-enced large increases in microarchitecture and mineral composition. Increases in bone density were accompanied by reductions in bone-forming osteoblasts and bone-resorbing osteoclasts, representing a general decline in bone turnover at this site. Serum markers suggest a systemic decline in bone formation. The increase in trabecular bone formation rate is likely a result of the reduced resorptive activity; normal levels of bone resorption in vivarium mice likely removed portions of the bone label that were not removed in the AEM housed mice. This is supported by a greater mineralizing surface in AEM mice, with no change in mineral apposition rate.

  8. Pleiotrophin Commits Human Bone Marrow Mesenchymal Stromal Cells towards Hypertrophy during Chondrogenesis

    PubMed Central

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC. PMID:24516627

  9. Tenascin-C mimetic Peptide nanofibers direct stem cell differentiation to osteogenic lineage.

    PubMed

    Sever, Melike; Mammadov, Busra; Guler, Mustafa O; Tekinay, Ayse B

    2014-12-08

    Extracellular matrix contains various signals for cell surface receptors that regulate cell fate through modulation of cellular activities such as proliferation and differentiation. Cues from extracellular matrix components can be used for development of new materials to control the stem cell fate. In this study, we achieved control of stem cell fate toward osteogenic commitment by using a single extracellular matrix element despite the contradictory effect of mechanical stiffness. For this purpose, we mimicked bone extracellular matrix by incorporating functional sequence of fibronectin type III domain from native tenascin-C on self-assembled peptide nanofibers. When rat mesenchymal stem cells (rMSCs) were cultured on these peptide nanofibers, alkaline phosphatase (ALP) activity and alizarin red staining indicated osteogenic differentiation even in the absence of osteogenic supplements. Moreover, expression levels of osteogenic marker genes were significantly enhanced revealed by quantitative real-time polymerase chain reaction (qRT-PCR), which showed the remarkable bioactive role of this nanofiber system on osteogenic differentiation. Overall, these results showed that tenascin-C mimetic peptides significantly enhanced the attachment, proliferation, and osteogenic differentiation of rMSCs even in the absence of any external bioactive factors and regardless of the suitable stiff mechanical properties normally required for osteogenic differentiation. Thus, these peptide nanofibers provide a promising new platform for bone regeneration.

  10. Osteoporosis: Are we measuring what we intend to measure? In search of the ideal bone strength study

    NASA Astrophysics Data System (ADS)

    de Riese, Cornelia

    2006-02-01

    In 1991 the World Health Organization (WHO) defined osteoporosis as a "loss of bone mass and micro architectural deterioration of the skeleton leading to increased risk of fracture." 1,2 Since microarchitecture can not be measured directly, a panel of the WHO recommended that the diagnosis be made according to a quantifiable surrogate marker, calcium mineral, in bone. Subsequently in 1994, the definition focused on the actual bone "density," giving densitometric technology a central place in establishing the diagnosis of osteoporosis. 3,4 But soon it became obvious that there was only limited correlation between bone mineral density (BMD) and actual occurrence of fractures and that decreases in bone mass account for only about 50% of the deterioration of bone strength with aging. In other words only about 60% of bone strength is related to BMD. 5 Recent developments in bone research have shown that bone mineral density in itself is not sufficient to accurately predict fracture risk. Bone is composed of inorganic calcium apatite crystals that mineralize an organic type I collagen matrix. The degree of mineralization, the properties of the collagen matrix, crystal size, trabecular orientation, special distribution of the different components and many more factors are all impacting bone strength. 6-14 Human cadaver studies have confirmed the correlation between bone density and bone. 26 strength. 5,15-20 Changes in cancellous bone morphology appear to lead to a disproportionate decrease in bone strength. 21-26 When postmenopausal women are stratified by age, obvious differences between BMD and actual fracture risk are observed. 24 Felsenberg eloquently summarizes what he calls the "Bone Quality Framework." In great detail he talks about the geometry and micro- architecture of bone and how the different components are related to functional stability. 27 Are our current testing modalities appropriately addressing these structural factors? Are we keeping in mind that in screening for osteoporosis the key variable is fragility, not bone density itself? All currently FDA approved and commercially available equipments for the evaluation of bone status claim that they - at least indirectly - assess the biological fracture risk. This review summarizes an extensive current literature research covering FDA approved as well as experimental devices for the evaluation of bone. The pros and cons of the different techniques are discussed in the context of diagnostic accuracies and practical implications.

  11. Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery.

    PubMed

    Dinopoulos, Haralampos T H; Giannoudis, Peter V

    2006-11-01

    Demineralised bone matrix (DBM) acts as an osteoconductive, and possibly as an osteoinductive, material. It is widely used in orthopaedic, neurosurgical, plastic and dental areas. More than 500,000 bone grafting procedures with DBM are performed annually in the US. It does not offer structural support, but it is well suited for filling bone defects and cavities. The osteoinductive nature of DBM is presumably attributed to the presence of matrix-associated bone morphogenetic proteins (BMPs) and growth factors, which are made available to the host environment by the demineralisation process. Clinical results have not been uniformly favourable; however, a variable clinical response is attributed partly to nonuniform processing methods found among numerous bone banks and commercial suppliers. DBMs remain reasonably safe and effective products. The ultimate safe bone-graft substitute, one that is osteoconductive, osteoinductive, osteogenic and mechanically strong, remains elusive.

  12. Development of high-viscosity, two-paste bioactive bone cements.

    PubMed

    Deb, S; Aiyathurai, L; Roether, J A; Luklinska, Z B

    2005-06-01

    Self-curing two-paste bone cements have been developed using methacrylate monomers with a view to formulate cements with low polymerization exotherm, low shrinkage, better mechanical properties, and improved adhesion to bone and implant surfaces. The monomers include bis-phenol A glycidyl dimethacrylate (bis-GMA), urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) as a viscosity modifier. Two-paste systems were formulated containing 60% by weight of a bioactive ceramic, hydroxyapatite. A methacroyloxy silane (A174) was used as a coupling agent due to its higher water stability in comparison to other aminosilanes to silanate the hydroxyapatite particles prior to composite formulation. A comparison of the FT-infrared spectrum of hydroxyapatite and silanated hydroxyapatite showed the presence of the carbonyl groups ( approximately 1720 cm(-1)), -C=C-( approximately 1630 cm(-1)) and Si-O- (1300-1250 cm(-1)) which indicated the availability of silane groups on the filler surface. Two methods of mixing were effected to form the bone cement: firstly by mixing in an open bowl and secondly by extruding the two pastes by an auto-mixing tip using a gun to dispense the pastes. Both types of cements yielded low polymerization exotherms with good mechanical properties; however, the lower viscosity of UDMA allowed better extrusion and handling properties. A biologically active apatite layer formed on the bone cement surface within a short period after its immersion in simulated body fluid, demonstrating in vitro bioactivity of the composite. This preliminary data thus suggests that UDMA is a viable alternative to bis-GMA as a polymerizable matrix in the formation of bone cements.

  13. The composition of human cortical allograft bone derived from FDA/AATB-screened donors.

    PubMed

    Pietrzak, William S; Woodell-May, Jennifer

    2005-07-01

    Allograft human bone is an integral part of the surgeons' armamentarium and will continue to be for the near future. The intraoperative handling and/or mechanical properties are critical to its function. These properties are significantly influenced by the composition and the structure of the bone, which varies from donor to donor. Published studies of human bone composition use bone derived from a population that may differ from the population of qualified donors from which allograft bone is derived and may not well represent the pool of clinical allograft bone. This study investigated the cortical bone composition from 20 donors (males and females, 17 to 65 years of age) that had passed the US Food and Drug Administration and American Association of Tissue Banks screening procedures for donor qualification. As such, this represents a subset of the general population. The analysis yielded the following composition: mineral (ash) = 67.0% +/- 1.3% (w/w); matrix (predominantly type I collagen and other proteins) = 31.9% +/- 1.1% (w/w); and lipid (hexane extractables) = 1.1% +/- 1.5% (w/w). In general, these results were well within the ranges specified in the literature, with the significance being the demonstration of low variability within the study population. No age or gender compositional dependency was evident in this series, possibly as a result of the relatively homogenous population, which may have limited the ability to observe trends. Visually, the bone powders ranged from nearly white to red-brown. The more intense colors appeared to be associated with greater lipid content, perhaps indicating the presence of residual oxidized lipids.

  14. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    PubMed

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Nanoscale Morphology of Type I Collagen is Altered in the Brtl Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Wallace, Joseph M.; Orr, Bradford G.; Marini, Joan C.; Banaszak Holl, Mark M.

    2010-01-01

    Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype-phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen-ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity. PMID:20696252

  16. Correlative microscopy of the constituents of a dinosaur rib fossil and hosting mudstone: Implications on diagenesis and fossil preservation.

    PubMed

    Kim, Jung-Kyun; Kwon, Yong-Eun; Lee, Sang-Gil; Kim, Chang-Yeon; Kim, Jin-Gyu; Huh, Min; Lee, Eunji; Kim, Youn-Joong

    2017-01-01

    We have applied correlative microscopy to identify the key constituents of a dorsal rib fossil from Koreanosaurus boseongensis and its hosting mudstone discovered at the rich fossil site in Boseong, South Korea, to investigate the factors that likely contributed to diagenesis and the preservation of fossil bone. Calcite and illite were the commonly occurring phases in the rib bone, hosting mudstone, and the boundary region in-between. The boundary region may have contributed to bone preservation once it fully formed by acting as a protective shell. Fluorapatite crystals in the rib bone matrix signified diagenetic alteration of the original bioapatite crystals. While calcite predominantly occupied vascular channels and cracks, platy illite crystals widely occupied miniscule pores throughout the bone matrix. Thorough transmission electron microscopy (TEM) study of illite within the bone matrix indicated the solid-state transformation of 1M to 2M without composition change, which was more evident from the lateral variation of 1M to 2M within the same layer. The high level of lattice disordering of 2M illite suggested an early stage of 1M to 2M transformation. Thus, the diagenetic alteration of both apatite and illite crystals within the bone matrix may have increased its overall density, as the preferred orientation of apatite crystals from moderate to strong degrees was evident despite the poor preservation of osteohistological features. The combined effects of rapid burial, formation of a boundary region, and diagenesis of illite and apatite within the bone matrix may have contributed to the rib bone preservation.

  17. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    2014-12-24

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  18. Energetic basis for the molecular-scale organization of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on singlemore » crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  19. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.

    PubMed

    Boga, João C; Miguel, Sónia P; de Melo-Diogo, Duarte; Mendonça, António G; Louro, Ricardo O; Correia, Ilídio J

    2018-05-01

    The incidence of fractures and bone-related diseases like osteoporosis has been increasing due to aging of the world's population. Up to now, grafts and titanium implants have been the principal therapeutic approaches used for bone repair/regeneration. However, these types of treatment have several shortcomings, like limited availability, risk of donor-to-recipient infection and tissue morbidity. To overcome these handicaps, new 3D templates, capable of replicating the features of the native tissue, are currently being developed by researchers from the area of tissue engineering. These 3D constructs are able to provide a temporary matrix on which host cells can adhere, proliferate and differentiate. Herein, 3D cylindrical scaffolds were designed to mimic the natural architecture of hollow bones, and to allow nutrient exchange and bone neovascularization. 3D scaffolds were produced with tricalcium phosphate (TCP)/alginic acid (AA) using a Fab@home 3D printer. Furthermore, graphene oxide (GO) was incorporated into the structure of some scaffolds to further enhance their mechanical properties. The results revealed that the scaffolds incorporating GO displayed greater porosity, without impairing their mechanical properties. These scaffolds also presented a controlled swelling profile, enhanced biomineralization capacity and were able to increase the Alkaline Phosphatase (ALP) activity. Such characteristics make TCP/AA scaffolds functionalized with GO promising 3D constructs for bone tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms.

    PubMed

    Mukherjee, Kaushik; Gupta, Sanjay

    2017-03-01

    Several mechanobiology algorithms have been employed to simulate bone ingrowth around porous coated implants. However, there is a scarcity of quantitative comparison between the efficacies of commonly used mechanoregulatory algorithms. The objectives of this study are: (1) to predict peri-acetabular bone ingrowth using cell-phenotype specific algorithm and to compare these predictions with those obtained using phenomenological algorithm and (2) to investigate the influences of cellular parameters on bone ingrowth. The variation in host bone material property and interfacial micromotion of the implanted pelvis were mapped onto the microscale model of implant-bone interface. An overall variation of 17-88 % in peri-acetabular bone ingrowth was observed. Despite differences in predicted tissue differentiation patterns during the initial period, both the algorithms predicted similar spatial distribution of neo-tissue layer, after attainment of equilibrium. Results indicated that phenomenological algorithm, being computationally faster than the cell-phenotype specific algorithm, might be used to predict peri-prosthetic bone ingrowth. The cell-phenotype specific algorithm, however, was found to be useful in numerically investigating the influence of alterations in cellular activities on bone ingrowth, owing to biologically related factors. Amongst the host of cellular activities, matrix production rate of bone tissue was found to have predominant influence on peri-acetabular bone ingrowth.

  1. Robust Bonding of Tough Double Network Hydrogel to Bone

    NASA Astrophysics Data System (ADS)

    Nonoyama, Takayuki; Wada, Susumu; Kiyama, Ryuji; Kitamura, Nobuto; Kurokawa, Takayuki; Nakajima, Tasuku; Yasuda, Kazunori; Gong, Jian Ping

    Tough Double Network (DN) hydrogels are one of candidates as next-generation artificial cartilage from the viewpoints of low friction, water storage capability and toughness. For practical use, the hydrogel must be strongly fixed at the joint. However, strong fixation of such hydrogel to other materials (tissues) has not been achieved yet because the surface property of hydrogel is almost equal to water due to its high water content. Therefore, robust adhesion for fixation and low friction for lithe motion are trade-off relation. Here, we report robust fixation of hydroxyapatite (HAp) mineralized DN hydrogel to the bone without any toxicity. HAp is main inorganic component of bone tissues and has osteoconductive capability. After 4 weeks implantation of HAp/DN gel into rabbit femoral groove, The robust fixation between bone and HAp/DN gel, more than strength of gel matrix, was achieved. The methodology is universal for new biomaterials, which should be fixed on bone, such as ligament and tendon systems.

  2. Ptychographic X-ray nanotomography quantifies mineral distributions in human dentine

    NASA Astrophysics Data System (ADS)

    Zanette, I.; Enders, B.; Dierolf, M.; Thibault, P.; Gradl, R.; Diaz, A.; Guizar-Sicairos, M.; Menzel, A.; Pfeiffer, F.; Zaslansky, P.

    2015-03-01

    Bones are bio-composites with biologically tunable mechanical properties, where a polymer matrix of nanofibrillar collagen is reinforced by apatite mineral crystals. Some bones, such as antler, form and change rapidly, while other bone tissues, such as human tooth dentine, develop slowly and maintain constant composition and architecture for entire lifetimes. When studying apatite mineral microarchitecture, mineral distributions or mineralization activity of bone-forming cells, representative samples of tissue are best studied at submicrometre resolution while minimizing sample-preparation damage. Here, we demonstrate the power of ptychographic X-ray tomography to map variations in the mineral content distribution in three dimensions and at the nanometre scale. Using this non-destructive method, we observe nanostructures surrounding hollow tracts that exist in human dentine forming dentinal tubules. We reveal unprecedented quantitative details of the ultrastructure clearly revealing the spatially varying mineralization density. Such information is essential for understanding a variety of natural and therapeutic effects for example in bone tissue healing and ageing.

  3. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy

    PubMed Central

    Lee, Jee-Wook; Han, Hyung-Seop; Han, Kyeong-Jin; Park, Jimin; Jeon, Hojeong; Ok, Myoung-Ryul; Seok, Hyun-Kwang; Ahn, Jae-Pyoung; Lee, Kyung Eun; Lee, Dong-Ho; Yang, Seok-Jo; Cho, Sung-Youn; Cha, Pil-Ryung; Kwon, Hoon; Nam, Tae-Hyun; Han, Jee Hye Lo; Rho, Hyoung-Jin; Lee, Kang-Sik; Kim, Yu-Chan; Mantovani, Diego

    2016-01-01

    There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt%Ca-1wt%Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study. PMID:26729859

  4. Regenerating Articular Tissue by Converging Technologies

    PubMed Central

    Paoluzzi, Luca; Pieper, Jeroen; de Wijn, Joost R.; van Blitterswijk, Clemens A.

    2008-01-01

    Scaffolds for osteochondral tissue engineering should provide mechanical stability, while offering specific signals for chondral and bone regeneration with a completely interconnected porous network for cell migration, attachment, and proliferation. Composites of polymers and ceramics are often considered to satisfy these requirements. As such methods largely rely on interfacial bonding between the ceramic and polymer phase, they may often compromise the use of the interface as an instrument to direct cell fate. Alternatively, here, we have designed hybrid 3D scaffolds using a novel concept based on biomaterial assembly, thereby omitting the drawbacks of interfacial bonding. Rapid prototyped ceramic particles were integrated into the pores of polymeric 3D fiber-deposited (3DF) matrices and infused with demineralized bone matrix (DBM) to obtain constructs that display the mechanical robustness of ceramics and the flexibility of polymers, mimicking bone tissue properties. Ostechondral scaffolds were then fabricated by directly depositing a 3DF structure optimized for cartilage regeneration adjacent to the bone scaffold. Stem cell seeded scaffolds regenerated both cartilage and bone in vivo. PMID:18716660

  5. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.

    PubMed

    Borden, Mark; Attawia, Mohamed; Laurencin, Cato T

    2002-09-05

    A tissue engineering approach has been used to design three-dimensional synthetic matrices for bone repair. The osteoconductivity and degradation profile of a novel polymeric bone-graft substitute was evaluated in an in vitro setting. Using the copolymer poly(lactide-co-glycolide) [PLAGA], a sintering technique based on microsphere technology was used to fabricate three-dimensional porous scaffolds for bone regeneration. Osteoblasts and fibroblasts were seeded onto a 50:50 PLAGA scaffold. Morphologic evaluation through scanning electron microscopy demonstrated that both cell types attached and spread over the scaffold. Cells migrated through the matrix using cytoplasmic extensions to bridge the structure. Cross-sectional images indicated that cellular proliferation had penetrated into the matrix approximately 700 microm from the surface. Examination of the surfaces of cell/matrix constructs demonstrated that cellular proliferation had encompassed the pores of the matrix by 14 days of cell culture. With the aim of optimizing polymer composition and polymer molecular weight, a degradation study was conducted utilizing the matrix. The results demonstrate that degradation of the sintered matrix is dependent on molecular weight, copolymer ratio, and pore volume. From this data, it was determined that 75:25 PLAGA with an initial molecular weight of 100,000 has an optimal degradation profile. These studies show that the sintered microsphere matrix has an osteoconductive structure capable of functioning as a cellular scaffold with a degradation profile suitable for bone regeneration. Copyright 2002 Wiley Periodicals, Inc.

  6. The Ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing

    PubMed Central

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla; Diekwisch, Thomas G.H.; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBNΔ5-6 truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. PMID:26899203

  7. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    NASA Astrophysics Data System (ADS)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were characterized for miscibility, mechanical properties, degradation kinetics, and in vitro osteocompatibility. Primary rat osteoblasts (PRO) isolated from rat calvaria were used to evaluate their in vitro osteocompatibility. The blends were also characterized for in vivo biodegradability and biocompatibility using a rat subcutaneous implantation model. Successful in vivo scaffold-based tissue regeneration greatly depends on the scaffold material biocompatibility, mechanical stability, and scaffold architecture to promote tissue in-growth. The other part of the work in the dissertation is focused on the development of mechanically competent bioresorbable nano-structured three-dimensional (3D) hiomimetic scaffolds for bone tissue engineering applications. Scaffold material selection was based on achieving improved mechanical stability, in vitro osteoblast performance, and in vivo biocompatibility. A miscible PNGEGPhPh-PLAGA blend system developed and characterized in the first part of the thesis work was chosen to fabricate a nanofiber-based mechanically competent biomimetic scaffold via electrospinning. Due to its versatility, controllability and reproducibility, the technique of electrospinning was adopted to produce blend nanofibers. The polymer solution concentration and electrospinning parameters were optimized to produce blend fibers in the range of 50-500 nm to mimic dimensions of collagen fibrils present in the natural extracellular matrix of native bone. These blend nanofiber matrices supported PRO adhesion, proliferation and showed an elevated phenotype expression compared to PLAGA nanofibers. Orienting electrospun nanofibers in a concentric manner with an open central cavity created a mechanically competent 3D scaffold mimicking the bone marrow cavity, as well as, the lamellar structure of bone. The 3D biomimetic scaffold exhibited a similar characteristic mechanical behavior to that of native bone. Compressive modulus of the scaffold was found to be within the range of human trabecular bone. To our knowledge this is the first mechanically competent 3D electrospun nanofiber scaffold with mechanical properties in the middle range of human trabecular bone. The potential of this scaffold for bone repair was further investigated by monitoring the cellular activity and mechanical performance over time using in vitro culture. This biomimetic scaffold supported the robust PRO growth throughout the scaffold architecture and maintained osteoblast phenotype expression in vitro, which resulted in a similar cell-matrix organization to that of native bone and maintenance of structure integrity. (Abstract shortened by UMI.)

  8. Pyridoxine deficiency affects biomechanical properties of chick tibial bone

    NASA Technical Reports Server (NTRS)

    Masse, P. G.; Rimnac, C. M.; Yamauchi, M.; Coburn, S. P.; Rucker, R. B.; Howell, D. S.; Boskey, A. L.

    1996-01-01

    The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B6-deficient and vitamin B6-replete chick bones. In this model, when B6-deficient and control animals are compared, vitamin B6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 +/- 6 vs. 58 +/- 3); mineral to matrix ratio of the FTIR spectra (4.2 +/- 0.6 vs. 4.5 +/- 0.2), line-broadening analyses of the X-ray diffraction 002 peak (beta 002 = 0.50 +/- 0.1 vs. 0.49 +/- 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B6-deficient chick bones (20 +/- 2% of total hydroxyproline extracted vs. 10 +/- 3% p < or = 0.001). The B6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 +/- 0.07 vs. 0.84 +/- 0.13 p < or = 0.001); and a nonsignificant increase in HLNL, dehydro-hydroxylysinonorleucine, (0.51 +/- 0.03 vs. 0.43 +/- 0.03, p < or = 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B6-deficient animals was decreased from 203 +/- 35 MPa to 151 +/- 23 MPa, p < or = 0.01, and offset yield load was decreased from 165 +/- 9 MPa to 125 +/- 14 MPa, p < or = 0.05. Since earlier histomorphometric studies had demonstrated that the B6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.

  9. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability.

    PubMed

    Krawczak, David A; Westendorf, Jennifer J; Carlson, Cathy S; Lewis, Jack L

    2009-06-01

    The aim of this study was to determine the effects of bone morphogenetic protein-2 (BMP-2) on articular chondrocyte tissues grown as monolayers in vitro for up to 8 weeks. Articular chondrocytes were isolated from New Zealand White rabbits and plated in monolayer cultures. The cultures were supplemented with 100 ng/mL of BMP-2 for up to 8 weeks and the extracellular matrix (ECM) composition, material properties, and messenger RNA (mRNA) expression were analyzed. mRNA expression of cartilage-specific genes, type II collagen, and aggrecan showed that BMP-2 enhanced chondrocyte stability for up to 3 weeks. After 3 weeks in culture, there was substantially more type I collagen expression and more osteopontin and runt-related transcription factor 2 expression in 5- and 8-week cultures treated with BMP-2 than in controls. Additionally, matrix metalloproteinase-13 and ADAMTS-5 (A disintegrin-like and metalloproteinase with thrombospondin 5) were upregulated in 5- and 8-week cultures treated with BMP-2, coinciding with a loss of ECM density, collagen, and proteoglycan. Eight-week tissue stimulated with BMP-2 was more fragile and tore more easily when removed from the culture dish as compared to controls, suggesting temporal limitations to the effectiveness of BMP-2 in monolayer systems and perhaps other models to enhance the generation of a cartilage-like tissue for tissue engineering purposes.

  10. [Synthesis and characteristics of porous hydroxyapatite bioceramics].

    PubMed

    Niu, Jinlong; Zhang, Zhenxi; Jiang, Dazong

    2002-06-01

    The macroporous structure of human bone allows the ingrowth of the soft tissues and organic cells into the bone matrix, profits the development and metabolism of bone tissue, and adapts the bone to the change of load. There is great requirement for artificial biomimic porous bioactive ceramics with the similar structure of bone tissue that can be used clinically for repairing lost bone. Fine hydroxyapatite (HAp) powder produced by wet chemical reaction was mixed with hydrogen peroxide (H2O2), polyvinyl alcohol, methyl cellulose or other pores-making materials to form green cake. After drying at low temperature (below 100 degrees C) and decarbonizing at about 300 degrees C-400 degrees C, the spongy ceramic block was sintered at high temperature, thus, macroporous HAp bioceramic with interconnected pores and reasonable porosity and pore-diameter was manufactured. This kind of porous HAp bioceramics were intrinsically osteoinductive to a certain degree, but its outstanding property was that they can absorb human bone morphogenetic proteins and other bone growth factors to form composites, so that the macroporous HAp bioactive ceramic has appropriate feasibility for clinical application. From the point of biomedical application, the recent developments in synthesis and characteristics investigation of macroporous HAp are reviewed in this paper.

  11. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices.

    PubMed

    Lu, Helen H; Kofron, Michelle D; El-Amin, Saadiq F; Attawia, Mohammed A; Laurencin, Cato T

    2003-06-13

    Over 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue. Results confirmed that muscle-derived cells attached and proliferated on the PLAGA substrates. BMP-7 released from PLAGA induced the muscle-derived cells to increase bone marker expression and form mineralized cultures. These results demonstrate the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype by muscle-derived cells and present a new paradigm for bone tissue engineering.

  12. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair.

    PubMed

    Kovacevic, David; Fox, Alice J; Bedi, Asheesh; Ying, Liang; Deng, Xiang-Hua; Warren, Russell F; Rodeo, Scott A

    2011-04-01

    Rotator cuff tendon heals by formation of an interposed zone of fibrovascular scar tissue. Recent studies demonstrate that transforming growth factor-beta 3 (TGF-β(3)) is associated with tissue regeneration and "scarless" healing, in contrast to scar-mediated healing that occurs with TGF-β(1). Delivery of TGF-β(3) in an injectable calcium-phosphate matrix to the healing tendon-bone interface after rotator cuff repair will result in increased attachment strength secondary to improved bone formation and collagen organization and reduced scar formation of the healing enthesis. Controlled laboratory study. Ninety-six male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon followed by acute repair using transosseous suture fixation. Animals were allocated into 1 of 3 groups: (1) repair alone (controls, n = 32), (2) repair augmented by application of an osteoconductive calcium-phosphate (Ca-P) matrix only (n = 32), or (3) repair augmented with Ca-P matrix + TGF-β(3) (2.75 µg) at the tendon-bone interface (n = 32). Animals were euthanized at either 2 weeks or 4 weeks postoperatively. Biomechanical testing of the supraspinatus tendon-bone complex was performed at 2 and 4 weeks (n = 8 per group). Microcomputed tomography was utilized to quantitate bone microstructure at the repair site. The healing tendon-bone interface was evaluated with histomorphometry and immunohistochemical localization of collagen types I (COLI) and III (COLIII). Statistical analysis was performed using 2-way analysis of variance with significance set at P < .05. There was significantly greater load to failure of the Ca-P matrix + TGF-β(3) group compared with matrix alone or untreated controls at 4 weeks postoperatively (P = .04). At 2 weeks, microcomputed tomography revealed a larger volume of newly formed bone present at the healing enthesis in both experimental groups compared with the control group. By 4 weeks, this newly formed, woven bone had matured into calcified, lamellar bone. Histomorphometric analysis demonstrated significantly greater fibrocartilage and increased collagen organization at the healing tendon-bone insertion site in both experimental groups compared with the control group at 2 weeks (P = .04). Over time, TGF-β(3) delivery led to greater COLI expression compared with COLIII at the healing enthesis, indicating a more favorable COLI to COLIII ratio with administration of TGF-β(3). Augmentation with an osteoconductive Ca-P matrix at the tendon-bone repair site is associated with new bone formation, increased fibrocartilage, and improved collagen organization at the healing tendon-bone interface in the early postoperative period after rotator cuff repair. The addition of TGF-β(3) significantly improved strength of the repair at 4 weeks postoperatively and resulted in a more favorable COLI/COLIII ratio. The delivery of TGF-β(3) with an injectable Ca-P matrix at the supraspinatus tendon footprint has promise to improve healing after soft tissue repair.

  13. Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis.

    PubMed

    He, Frank; Chiou, Aaron E; Loh, Hyun Chae; Lynch, Maureen; Seo, Bo Ri; Song, Young Hye; Lee, Min Joon; Hoerth, Rebecca; Bortel, Emely L; Willie, Bettina M; Duda, Georg N; Estroff, Lara A; Masic, Admir; Wagermaier, Wolfgang; Fratzl, Peter; Fischbach, Claudia

    2017-10-03

    Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.

  14. Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis

    PubMed Central

    Chiou, Aaron E.; Loh, Hyun Chae; Lynch, Maureen; Seo, Bo Ri; Song, Young Hye; Hoerth, Rebecca; Bortel, Emely L.; Willie, Bettina M.; Duda, Georg N.; Masic, Admir; Wagermaier, Wolfgang; Fratzl, Peter; Fischbach, Claudia

    2017-01-01

    Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis. PMID:28923958

  15. Distinct compartmentalization of dentin matrix protein 1 fragments in mineralized tissues and cells.

    PubMed

    Maciejewska, Izabela; Qin, Disheng; Huang, Bingzhen; Sun, Yao; Mues, Gabrielle; Svoboda, Kathy; Bonewald, Lynda; Butler, William T; Feng, Jerry Q; Qin, Chunlin

    2009-01-01

    Dentin matrix protein 1 (DMP1) has been shown to be critical for the formation of dentin and bone. However, the precise pathway by which DMP1 participates in dentinogenesis and osteogenesis remains to be clarified. DMP1 is present in the extracellular matrix of dentin and bone as processed NH(2)- and COOH-terminal fragments. The NH(2)-terminal fragment occurs as a proteoglycan, whereas the COOH-terminal fragment is highly phosphorylated. The differences in biochemical properties suggest that these fragments may have different tissue and cell distribution in association with distinct functions. In this study, we analyzed the distribution of the NH(2)- and COOH-terminal fragments of DMP1 in tooth, bone, osteocytes as well as MC3T3-E1 and HEK-293 cells. Immunohistochemical analyses were performed using antibodies specific to the NH(2)- or COOH-terminal region of DMP1. Clear differences in the distribution of these fragments were observed. In the teeth and bone, the NH(2)-terminal fragment was primarily located in the nonmineralized predentin and cartilage of the growth plate, while the COOH-terminal fragment accumulated in the mineralized zones. In osteocytes, the NH(2)-terminal fragment appeared more abundant along cell membrane and processes of osteocytes, while the COOH-terminal fragment was often found in the nuclei. This pattern of distribution in cellular compartments was further confirmed by analyses on MC3T3-E1 and HEK-293 cells transfected with a construct containing DMP1 cDNA. In these cell lines, the COOH-terminal fragment accumulated in cell nuclei, while the NH(2)-terminal fragment was in the cytosol. The different distribution of DMP1 fragments indicates that these DMP1 variants must perform distinct functions. Copyright 2008 S. Karger AG, Basel.

  16. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration.

    PubMed

    Tamburaci, Sedef; Tihminlioglu, Funda

    2017-11-01

    In this study, natural silica source, diatomite, incorporated novel chitosan based composite membranes were fabricated and characterized for bone tissue engineering applications as possible bone regeneration membrane. The effect of diatomite loading on the mechanical, morphological, chemical, thermal and surface properties, wettability and in vitro cytotoxicity and cell proliferation on of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination. Results showed that incorporation of diatomite to the chitosan matrix increased the surface roughness, swelling capacity and tensile modulus of membranes. An increase of about 52% in Young's modulus was achieved for 10wt% diatomite composite membranes compared with chitosan membranes. High cell viability results were obtained with indirect extraction method. Besides, in vitro cell proliferation and ALP activity results showed that diatom incorporation significantly increased the ALP activity of Saos-2 cells cultured on chitosan membranes. The novel composite membranes prepared in the present study with tunable properties can be considered as a potential candidate as a scaffold in view of its enhanced physical & chemical properties as well as biological activities for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    PubMed

    Götz, Werner; Lenz, Solvig; Reichert, Christoph; Henkel, Kai-Olaf; Bienengräber, Volker; Pernicka, Laura; Gundlach, Karsten K H; Gredes, Tomasz; Gerber, Thomas; Gedrange, Tomasz; Heinemann, Friedhelm

    2010-12-01

    To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  18. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    PubMed Central

    Xu, Weiguo; Ganz, Cornelia; Weber, Ulf; Adam, Martin; Holzhüter, Gerd; Wolter, Daniel; Frerich, Bernhard; Vollmar, Brigitte; Gerber, Thomas

    2011-01-01

    In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising. PMID:21845044

  19. Histomorphologic findings on human bone samples six months after bone augmentation of the maxillary sinus with Algipore.

    PubMed

    Schopper, C; Moser, D; Wanschitz, F; Watzinger, F; Lagogiannis, G; Spassova, E; Ewers, R

    1999-01-01

    Sinus grafting, a popular and standard treatment for maxillary atrophy, uses a variety of grafting materials. In this study, specimens obtained 6 months after sinus grafting with Algipore were evaluated under light microscopy and showed osseoformation, xenograft degradation, and bone ingrowth into particles. Osteoblastic cells were embedded in the intracorpuscular bone matrix, which indicated that xenograft particles are an osseoconductive scaffold and stimulate matrix deposition. Acute inflammatory responses after insertion of Algipore did not occur. Particles were degraded during physiologic bone remodeling, and newly formed bone gradually replaced resorbed biomaterial.

  20. Bone matrix, cellularity, and structural changes in a rat model with high-turnover osteoporosis induced by combined ovariectomy and a multiple-deficient diet.

    PubMed

    Govindarajan, Parameswari; Böcker, Wolfgang; El Khassawna, Thaqif; Kampschulte, Marian; Schlewitz, Gudrun; Huerter, Britta; Sommer, Ursula; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Szalay, Gabor; Wenisch, Sabine; Lips, Katrin S; Schnettler, Reinhard; Langheinrich, Alexander; Heiss, Christian

    2014-03-01

    In estrogen-deficient, postmenopausal women, vitamin D and calcium deficiency increase osteoporotic fracture risk. Therefore, a new rat model of combined ovariectomy and multiple-deficient diet was established to mimic human postmenopausal osteoporotic conditions under nutrient deficiency. Sprague-Dawley rats were untreated (control), laparatomized (sham), or ovariectomized and received a deficient diet (OVX-Diet). Multiple analyses involving structure (micro-computed tomography and biomechanics), cellularity (osteoblasts and osteoclasts), bone matrix (mRNA expression and IHC), and mineralization were investigated for a detailed characterization of osteoporosis. The study involved long-term observation up to 14 months (M14) after laparotomy or after OVX-Diet, with intermediate time points at M3 and M12. OVX-Diet rats showed enhanced osteoblastogenesis and osteoclastogenesis. Bone matrix markers (biglycan, COL1A1, tenascin C, and fibronectin) and low-density lipoprotein-5 (bone mass marker) were down-regulated at M12 in OVX-Diet rats. However, up-regulation of matrix markers and existence of unmineralized osteoid were seen at M3 and M14. Osteoclast markers (matrix metallopeptidase 9 and cathepsin K) were up-regulated at M14. Micro-computed tomography and biomechanics confirmed bone fragility of OVX-Diet rats, and quantitative RT-PCR revealed a higher turnover rate in the humerus than in lumbar vertebrae, suggesting enhanced bone formation and resorption in OVX-Diet rats. Such bone remodeling caused disturbed bone mineralization and severe bone loss, as reported in patients with high-turnover, postmenopausal osteoporosis. Therefore, this rat model may serve as a suitable tool to evaluate osteoporotic drugs and new biomaterials or fracture implants. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Dietary Strontium Increases Bone Mineral Density in Intact Zebrafish (Danio rerio): A Potential Model System for Bone Research

    PubMed Central

    Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.

    2010-01-01

    Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

  2. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration

    PubMed Central

    2013-01-01

    Background The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. Method The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. Results In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Conclusion Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G’ increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable properties. PMID:24059280

  3. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    PubMed

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable properties.

  4. Identification of osteocalcin as a permanent aging constituent of the bone matrix: basis for an accurate age at death determination.

    PubMed

    Ritz, S; Turzynski, A; Schütz, H W; Hollmann, A; Rochholz, G

    1996-01-12

    Age at death determination based on aspartic acid racemization in dentin has been applied successfully in forensic odontology for several years now. An age-dependent accumulation of D-aspartic acid has also recently been demonstrated in bone osteocalcin, one of the most abundant noncollagenous proteins of the organic bone matrix. Evaluation of these initial data on in vivo racemization of aspartic acid in bone osteocalcin was taken a step further. After purification of osteocalcin from 53 skull bone specimens, the extent of aspartic acid racemization in this peptide was determined. The D-aspartic acid content of purified bone osteocalcin exhibited a very close relationship to age at death. This confirmed identification of bone osteocalcin as a permanent, 'aging' peptide of the organic bone matrix. Its D-aspartic acid content may be used as a measure of its age and hence that of the entire organism. The new biochemical approach to determination of age at death by analyzing bone is complex and demanding from a methodologic point of view, but appears to be superior in precision and reproducibility to most other methods applicable to bone.

  5. Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats.

    PubMed

    Limirio, Pedro Henrique Justino Oliveira; da Rocha Junior, Huberth Alexandre; Morais, Richarlisson Borges de; Hiraki, Karen Renata Nakamura; Balbi, Ana Paula Coelho; Soares, Priscilla Barbosa Ferreira; Dechichi, Paula

    2018-01-01

    The aim of this study was to evaluate the biomechanics and structural bone matrix in diabetic rats subjected to hyperbaric oxygen therapy (HBO). Twenty-four male rats were divided into the following groups: Control; Control + HBO; Diabetic, and Diabetic + HBO. Diabetes was induced with streptozotocin (STZ) in the diabetic Groups. After 30 days, HBO was performed every 48h in HBO groups and all animals were euthanized 60 days after diabetic induction. The femur was submitted to a biomechanical (maximum strength, energy-to-failure and stiffness) and Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) analyses (crosslink ratio, crystallinity index, matrix-to-mineral ratio: Amide I + II/Hydroxyapatite (M:MI) and Amide III + Collagen/HA (M:MIII)). In biomechanical analysis, diabetic animals showed lower values of maximum strength, energy and stiffness than non-diabetic animals. However, structural strength and stiffness were increased in groups with HBO compared with non-HBO. ATR-FTIR analysis showed decreased collagen maturity in the ratio of crosslink peaks in diabetic compared with the other groups. The bone from the diabetic groups showed decreased crystallinity compared with non-diabetic groups. M:MI showed no statistical difference between groups. However, M:MIII showed an increased matrix mineral ratio in diabetic+HBO and control+HBO compared with control and diabetic groups. Correlations between mechanical and ATR-FTIR analyses showed significant positive correlation between collagen maturity and stiffness. Diabetes decreased collagen maturation and the mineral deposition process, thus reducing biomechanical properties. Moreover, the study showed that HBO improved crosslink maturation and increased maximum strength and stiffness in the femur of T1DM animals.

  6. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    PubMed

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  7. Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases.

    PubMed

    Strazic-Geljic, Ivana; Guberovic, Iva; Didak, Blanka; Schmid-Antomarchi, Heidy; Schmid-Alliana, Annie; Boukhechba, Florian; Bouler, Jean-Michel; Scimeca, Jean-Claude; Verron, Elise

    2016-09-15

    Bone metastases of breast cancer typically lead to a severe osteolysis due to an excessive osteoclastic activity. On the other hand, the semi-metallic element gallium (Ga) displays an inhibitory action on osteoclasts, and therefore on bone resorption, as well as antitumour properties. Thus, we explored in vitro Ga effects on osteoclastogenesis in an aggressive bone metastatic environment based on the culture of pre-osteoclast RAW 264.7 cells with conditioned medium from metastatic breast tumour cells, i.e. the breast tumour cell line model MDA-MB-231 and its bone-seeking clone MDA-231BO. We first observed that Ga dose-dependently inhibited the tumour cells-induced osteoclastic differentiation of RAW 264.7 cells. To mimic a more aggressive environment where pro-tumourigenic factors are released from bone matrix due to osteoclastic resorption, metastatic breast tumour cells were stimulated with TGF-β, a mayor cytokine in bone metastasis vicious cycle. In these conditions, we observed that Ga still inhibited cancer cells-driven osteoclastogenesis. Lastly, we evidenced that Ga affected directly and strongly the proliferation/viability of both cancer cell lines, as well as the expression of major osteolytic factors in MDA-231BO cells. With the exception of two small scale clinical studies from 1980s, this is the first time that antitumour properties of Ga have been specifically studied in the context of bone metastases. Our data strongly suggest that, through its action against the vicious cycle involving bone cells and tumour cells, Ga represents a relevant and promising candidate for the local treatment of bone metastases in patients with breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Brucella and Osteoarticular Cell Activation: Partners in Crime

    PubMed Central

    Giambartolomei, Guillermo H.; Arriola Benitez, Paula C.; Delpino, M. Victoria

    2017-01-01

    Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4+ T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the interaction between B. abortus and immune and osteoarticular cells may play an important role in producing damage in joint and bone. PMID:28265268

  9. Biomimetic nanoclay scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was used for preparing composites (films and scaffolds) containing in situ HAPclay. Composite films showed significantly improved nanomechanical properties. Human MSCs formed mineralized ECM on films in absence of osteogenic supplements and were able to infiltrate the scaffolds. Atomic force microscopy imaging of mineralized ECM formed on composite films showed similarities in dimensions, arrangement of collagen and apatite with their natural bone counterparts. This work indicates the potential of in situ HAPclay to impart polymeric scaffolds with osteoinductive, osteoconductive abilities and improve their mechanical properties besides emphasizing nanoclays as cell-instructive materials.

  10. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.

    PubMed

    Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C

    2009-01-01

    Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  11. Lipids and collagen matrix restrict the hydraulic permeability within the porous compartment of adult cortical bone

    PubMed Central

    Wen, Demin; Androjna, Caroline; Vasanji, Amit; Belovich, Joanne; Midura, Ronald J.

    2010-01-01

    In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10−17 m2, a value consistent with prior knowledge. After extracting lipids, permeability increased to a median value of 8.6 × 10−16 m2. After further digesting with collagenase, permeability increased to a median value of 1.4 × 10−14 m2. We conclude that the presence of both lipids and collagen matrix within the porous compartment of cortical bone restricts its radial permeability. These novel findings suggest that the chemical composition of the tissue matrix within the porous compartment of cortical bone influences the transport and exchange of nutrients and waste products, and possibly influences the metabolic functions of osteocytes and osteoblasts. PMID:19967451

  12. Bone bonding at natural and biomaterial surfaces.

    PubMed

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  13. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model.

    PubMed

    Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi

    2018-02-01

    Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  14. Identification and characterization of glycation adducts on osteocalcin

    PubMed Central

    Thomas, Corinne J.; Cleland, Timothy P.; Zhang, Sheng; Gundberg, Caren M.; Vashishth, Deepak

    2017-01-01

    Osteocalcin is an important extracellular matrix bone protein that contributes to the structural properties of bone through its interactions with hydroxyapatite mineral and with collagen I. This role may be affected by glycation, a labile modification the levels of which has been shown to correlate with bone fragility. Glycation starts with the spontaneous addition of a sugar onto a free amine group on a protein, forming an Amadori product, and then proceeds through several environment-dependent stages resulting in the formation of an advanced glycation end product. Here, we induce the first step of this modification on synthetic osteocalcin, and then use multiple mass spectrometry fragmentation techniques to determine the location of this modification. Collision-induced dissociation resulted in spectra dominated by neutral loss, and was unable to identify Amadori products. Electron-transfer dissociation showed that the Amadori product formed solely on osteocalcin’s N-terminus. This suggests that the glycation of osteocalcin is unlikely to interfere with osteocalcin’s interaction with hydroxyapatite. Instead, glycation may interfere with its interaction with collagen I or another bone protein, osteopontin. Potentially, the levels of glycated osteocalcin fragments released from bone during bone resorption could be used to assess bone quality, should the N-terminal fragments be targeted. PMID:28237256

  15. Bone sialoprotein and its transcriptional regulatory mechanism.

    PubMed

    Ogata, Y

    2008-04-01

    Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.

  16. Modifications in Bone Matrix of Estrogen-Deficient Rats Treated with Intermittent PTH

    PubMed Central

    Campos, Jenifer Freitas; Katchburian, Eduardo; de Medeiros, Valquíria Pereira; Nader, Helena Bonciani; Nonaka, Keico Okino; Plotkin, Lilian Irene; Reginato, Rejane Daniele

    2015-01-01

    Bone matrix dictates strength, elasticity, and stiffness to the bone. Intermittent parathyroid hormone (iPTH), a bone-forming treatment, is widely used as a therapy for osteoporosis. We investigate whether low doses of intermittent PTH (1-34) change the profile of organic components in the bone matrix after 30 days of treatment. Forty 6-month-old female Wistar rats underwent ovariectomy and after 3 months received low doses of iPTH administered for 30 days: daily at 0.3 µg/kg/day (PTH03) or 5 µg/kg/day (PTH5); or 3 times per week at 0.25 µg/kg/day (PTH025). After euthanasia, distal femora were processed for bone histomorphometry, histochemistry for collagen and glycosaminoglycans, biochemical quantification of sulfated glycosaminoglycans, and hyaluronan by ELISA and TUNEL staining. Whole tibiae were used to estimate the bone mineral density (BMD). Histomorphometric analysis showed that PTH5 increased cancellous bone volume by 6% over vehicle-treated rats. In addition, PTH5 and PTH03 increased cortical thickness by 21% and 20%, respectively. Tibial BMD increased in PTH5-treated rats and this group exhibited lower levels of chondroitin sulfate; on the other hand, hyaluronan expression was increased. Hormonal administration in the PTH5 group led to decreased collagen maturity. Further, TUNEL-positive osteocytes were decreased in the cortical compartment of PTH5 whereas administration of PTH025 increased the osteocyte death. Our findings suggest that daily injections of PTH at low doses alter the pattern of organic components from the bone matrix, favoring the increase of bone mass. PMID:25695082

  17. Socket Preservation using Enzyme-treated Equine Bone Granules and an Equine Collagen Matrix: A Case Report with Histological and Histomorphometrical Assessment.

    PubMed

    Leonida, Alessandro; Todeschini, Giovanni; Lomartire, Giovanni; Cinci, Lorenzo; Pieri, Laura

    2016-11-01

    To histologically assess the effectiveness of a socket-preservation technique using enzyme-treated equine bone granules as a bone-graft material in combination with an equine collagen matrix as a scaffold for soft-tissue regeneration. Enzyme-treated equine bone granules and equine collagen matrix recently have been developed to help overcome alveolar bone deficiencies that develop in the wake of edentulism. The patient had one mandibular molar extracted and the socket grafted with equine bone granules. The graft was covered with the equine collagen matrix, placed in a double layer. No flap was prepared, and the gingival margins were stabilized with a single stitch, leaving the matrix partially exposed and the site to heal by secondary intention. The adjacent molar was extracted 1 month later, and that socket was left to heal by secondary intention without any further treatment. Three months after each surgery, an implant was placed and a biopsy was collected. The two biopsies underwent histological processing and qualitative evaluation. Histomorphometric analysis was also performed to calculate the percentage of newly formed bone (NFB) in the two cores. Healing at both sites was uneventful, and no inflammation or other adverse reactions were observed in the samples. Soft-tissue healing by secondary intention appeared to occur faster at the grafted site. The corresponding core showed a marked separation between soft and hard tissue that was not observed in the core from the nongrafted site, where soft-tissue hypertrophy could be observed. Newly formed bone at the grafted and nongrafted sites was not significantly different (27.2 ± 7.1 and 29.4 ± 6.2% respectively, p = 0.45). The surgical technique employed in this case appeared to facilitate postextraction soft-tissue healing by second intention and simplify soft-tissue management. Using a collagen-based matrix to cover a postextraction grafted site may facilitate second intention soft-tissue healing and proper soft-tissue growth.

  18. Development of electrospun bone-mimetic matrices for bone regenerative applications

    NASA Astrophysics Data System (ADS)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater quantities of PDGF-BB, compared to PCL scaffolds, over an 8-week interval. The released PDGF-BB retained its bioactivity, stimulating MSC chemotaxis in two separate assays. Collectively, these re-sults suggest that electrospun matrices incorporating the bone matrix molecules collagen I and HA, with sacrificial fibers, provide a favorable scaffold for MSC survival and infil-tration as well as the ability to sequester PDGF-BB from solution, leading to sustained local delivery and MSC chemotaxis.

  19. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair.

    PubMed

    Sun, Tuan-Wei; Yu, Wei-Lin; Zhu, Ying-Jie; Chen, Feng; Zhang, Yong-Gang; Jiang, Ying-Ying; He, Yao-Hua

    2018-06-21

    Hydroxyapatite nanowires exhibit a great potential in biomedical applications owing to their high specific surface area, high flexibility, excellent mechanical properties, and similarity to mineralized collagen fibrils of natural bone. In this work, zinc-containing nanoparticle-decorated ultralong hydroxyapatite nanowires (Zn-UHANWs) with a hierarchical nanostructure have been synthesized by a one-step solvothermal method. The highly flexible Zn-UHANWs exhibit a hierarchical rough surface and enhanced specific surface area as compared with ultralong hydroxyapatite nanowires (UHANWs). To evaluate the potential application of Zn-UHANWs in bone regeneration, the biomimetic Zn-UHANWs/chitosan (CS) (Zn-UHANWs/CS) composite porous scaffold with 80 wt % Zn-UHANWs was prepared by incorporating Zn-UHANWs into the chitosan matrix by the freeze-drying process. The as-prepared Zn-UHANWs/CS composite porous scaffold exhibits enhanced mechanical properties, highly porous structure, and excellent water retention capacity. In addition, the Zn-UHANWs/CS porous scaffold has a good biodegradability with the sustainable release of Zn, Ca, and P elements in aqueous solution. More importantly, the Zn-UHANWs/CS porous scaffold can promote the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells and facilitate in vivo bone regeneration as compared with the pure CS porous scaffold or UHANWs/CS porous scaffold. Thus, both the Zn-UHANWs and Zn-UHANWs/CS porous scaffold developed in this work are promising for application in bone defect repair. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta.

    PubMed

    Berman, Alycia G; Wallace, Joseph M; Bart, Zachary R; Allen, Matthew R

    2016-01-01

    Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-associated pathways that results in brittle bone behavior characterized by fracture and reduced mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) can significantly improve bone mechanical properties through non-cellular mechanisms, we hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of fracture in this mouse model of oim. Furthermore, they suggest that raloxifene's effects may be the result of both cellular (increased bone mass) and non-cellular (presumably changes in hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a new approach for treating bone fragility associated with OI. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  1. Energetic basis for the molecular-scale organization of bone

    DOE PAGES

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua; ...

    2014-12-24

    Here, the remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption onmore » single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.« less

  2. Energetic basis for the molecular-scale organization of bone.

    PubMed

    Tao, Jinhui; Battle, Keith C; Pan, Haihua; Salter, E Alan; Chien, Yung-Ching; Wierzbicki, Andrzej; De Yoreo, James J

    2015-01-13

    The remarkable properties of bone derive from a highly organized arrangement of coaligned nanometer-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the nonmineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and atomic force microscopy (AFM) observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and transmission electron microscopy (TEM) analyses of native tissues shows that only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations, and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular-scale organization of bone.

  3. Low temperature setting polymer-ceramic composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sethuraman, Swaminathan

    Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo study of these novel bone cements in a 5mm unicortical defect in New Zealand white rabbits showed that the implants were osteoconductive, and osteointegrative. In conclusion, the various studies that have been carried out in this thesis to study the feasibility of a bone cement system have shown that these materials are promising candidates for various orthopaedic applications. Overall I believe that these next generation bone cements are promising bone graft substitutes in the armamentarium to treat bone defects.

  4. Osteogenic capacity of transgenic flax scaffolds.

    PubMed

    Gredes, Tomasz; Wróbel-Kwiatkowska, Magdalena; Dominiak, Marzena; Gedrange, Tomasz; Kunert-Keil, Christiane

    2012-01-19

    The modification of flax fibers to create biologically active dressings is of undoubted scientific and practical interest. Flax fibers, derived from transgenic flax expressing three bacterial genes for the synthesis of poly-3-hydroxybutyric acid (PHB), have better mechanical properties than unmodified flax fibers; do not show any inflammation response after subcutaneous insertion; and have a good in vitro and in vivo biocompatibility. The aim of this study was to examine the applicability of composites containing flax fibers of genetically modified (M50) or non-modified (wt-Nike) flax within a polylactide (PLA) matrix for bone regeneration. For this, the mRNA expression of genes coding for growth factors (insulin-like growth factor IGF1, IGF2, vascular endothelial growth factor), for osteogenic differentiation (alkaline phosphatase, osteocalcin, Runx2, Phex, type 1 and type 2 collagen), and for bone resorption markers [matrix metalloproteinase 8 (MMP8), acid phosphatase type 5] were analyzed using quantitative real-time polymerase chain reaction. We found a significant elevated mRNA expression of IGF1 with PLA and PLA-wt-Nike composites. The mRNA amount of MMP8 and osteocalcin was significantly decreased in all biocomposite-treated cranial tissue samples compared to controls, whereas the expression of all other tested transcripts did not show any differences. It is assumed that both flax composites are able to stimulate bone regeneration, but composites from transgenic flax plants producing PHB showed faster bone regeneration than composites of non-transgenic flax plants. The application of these linen membranes for bone tissue engineering should be proved in further studies.

  5. Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition.

    PubMed

    Zhang, Shen; Zhang, Xin; Cai, Qing; Wang, Bo; Deng, Xuliang; Yang, Xiaoping

    2010-12-01

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  6. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats.

    PubMed

    Hiraga, Toru; Ninomiya, Tadashi; Hosoya, Akihiro; Takahashi, Masafumi; Nakamura, Hiroaki

    2009-01-01

    Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.

  7. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    PubMed

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC) and elastic modulus (EM) measurements. Then in 12 rats, 4 types of membranes were randomly applied to cover the rat calvarial defects. The animals were sacrificed at 8weeks. Histologic analyses were performed using Hematoxylin-eosin (H&E) staining and Masson's Trichrome stains. For statistical analysis, analysis of variance (ANOVA) followed by Tukey's multiple comparison tests was applied. HA nanoparticles were fairly well distributed nanoparticles among the collagen fibers on the nano-HA-modified EGCG-collagen membranes, with smoother surface. Moreover, collagen membranes with modifications all maintained their collagen backbone and the mechanical properties were enhanced by EGCG and nano-HA treatments. In addition, EGCG cross-linked collagen membranes with nano-HA coatings promoted bone regeneration. Nano-HA modified EGCG-collagen membranes can be utilized as a barrier membrane to enhance the bone regeneration in GBR surgeries. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-linked Glycoprotein) Levels

    DTIC Science & Technology

    2006-10-01

    members include bone sialoprotein (BSP), osteopontin (OPN), dentin matrix protein-1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix extracellular...quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). In addition we have a...panels e and f). 6 Figure 1. Serum levels of SIBLINGs in prostate cancer sera. Serum levels of (a) bone sialoprotein (BSP), (c) dentin

  9. A space network structure constructed by tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance comprehensive properties of poly(L-lacti acid) scaffolds

    PubMed Central

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Shuai, Cijun

    2016-01-01

    In this study, the mechanical strength and modulus of poly(L-lacti acid) (PLLA) scaffolds were enhanced with the mechanical properties of boron nitride nanosheets (BNNSs) and tetraneedlelike ZnO whiskers (T-ZnOw). The adhesion and proliferation of cells were improved as well as osteogenic differentiation of stem cells was increased. Their dispersion statues in PLLA matrix were improved through a space network structure constructed by three-dimensional T-ZnOw supporting two-dimensional BNNSs. The results showed that the compressive strength, modulus and Vickers hardness of the scaffolds with incorporation of 1 wt% BNNSs and 7 wt% T-ZnOw together were about 96.15%, 32.86% and 357.19% higher than that of the PLLA scaffolds, respectively. This might be due to the effect of the pull out and bridging of BNNSs and T-ZnOw as well as the crack deflection, facilitating the formation of effective stress transfer between the reinforcement phases and the matrix. Furthermore, incorporation of BNNSs and T-ZnOw together into PLLA scaffolds was beneficial for attachment and viability of MG-63 cells. More importantly, the scaffolds significantly increased proliferation and promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The enhanced mechanical and biological properties provide the potentials of PLLA/BNNSs/T-ZnOw scaffolds for the application into bone tissue engineering. PMID:27629058

  10. Bone material elasticity in a murine model of osteogenesis imperfecta.

    PubMed

    Mehta, S S; Antich, P P; Landis, W J

    1999-01-01

    To investigate the source of bone brittleness in the disease osteogenesis imperfecta (OI), biomechanical properties have been measured in the femurs from a homozygous (oim/oim) mutant mouse model of OI, its heterozygous littermates, and wild-type animals. The novel technique of ultrasound critical-angle reflectometry (UCR) was used to determine bone material elasticity matrix from measurements of the pressure and shear wave velocity at different orientations about selected points of the bone specimens. This nondestructive method is the only available means for obtaining measurements of this nature from a single surface. The ultrasound pressure wave velocity showed an increased isotropy in the homozygous compared to the wild-type specimens. This was reflected in a significant decrease in the principal elastic modulus measured along the length of the oim/oim bones (E33) while the modulus along the width (E11) did not change significantly, compared to wild-type specimens. The Poisson's ratio, v12, also had a significantly increased value in oim/oim bones. Measurements of these parameters in heterozygous animals generally fell between those from homozygous and control mice. The differences in the elasticity components in oim/oim bones indicate an altered stress distribution and a modified elastic response to loads, compared to normal bone.

  11. Growth promoting in vitro effect of synthetic cyclic RGD-peptides on human osteoblast-like cells attached to cancellous bone.

    PubMed

    Magdolen, Ursula; Auernheimer, Jörg; Dahmen, Claudia; Schauwecker, Johannes; Gollwitzer, Hans; Tübel, Jutta; Gradinger, Reiner; Kessler, Horst; Schmitt, Manfred; Diehl, Peter

    2006-06-01

    In tissue engineering, the application of biofunctional compounds on biomaterials such as integrin binding RGD-peptides has gained growing interest. Anchorage-dependent cells like osteoblasts bind to these peptides thus ameliorating the integration of a synthetic implant. In case sterilized bone grafts are used as substitutes for reconstruction of bone defects, the ingrowth of the implanted bone is often disturbed because of severe pretreatment such as irradiation or autoclaving, impairing the biological and mechanical properties of the bone. We report for the first time on the in vitro coating of the surface of freshly resected, cleaned bone discs with synthetic, cyclic RGD-peptides. For this approach, two different RGD-peptides were used, one containing two phosphonate anchors, the other peptide four of these binding moieties to allow efficient association of these reactive RGD-peptides to the inorganic bone matrix. Human osteoblast-like cells were cultured on RGD-coated bone discs and the adherence and growth of the cells were analyzed. Coating of bone discs with RGD-peptides did not improve the adhesion rate of osteoblast-like cells to the discs but significantly (up to 40%) accelerated growth of these cells within 8 days after attachment. This effect points to pretreatment of bone implants, especially at the critical interface area between the implanted bone and the non-resected residual bone structure, before re-implantation in order to stimulate and enhance osteointegration of a bone implant.

  12. Gellan Gum-Based Hydrogels for Osteochondral Repair.

    PubMed

    Costa, Lígia; Silva-Correia, Joana; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    Gellan gum (GG) is a widely explored natural polysaccharide that has been gaining attention in tissue engineering (TE) and regenerative medicine field, and more recently in osteochondral TE approaches. Taking advantage of its inherent features such as biocompatibility, biodegradability, similarity with the extracellular matrix and easy functionalization, GG-based hydrogels have been studied for their potential for cartilage and bone tissue regeneration. Several preclinical studies describe the successful outcome of GG in cartilage tissue engineering. By its turn, GG composites have also been proposed in several strategies to guide bone formation. The big challenge in osteochondral TE approaches is still to achieve cartilage and bone regeneration simultaneously through a unique integrated bifunctional construct. The potential of GG to be used as polymeric support to reach both bone and cartilage regeneration has been demonstrated. This chapter provides an overview of GG properties and the functionalization strategies employed to tailor its behaviour to a particular application. The use of GG in soft and hard tissues regeneration approaches, as well in osteochondral integrated TE strategies is also revised.

  13. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model.

    PubMed

    van Houdt, C I A; Cardoso, D A; van Oirschot, B A J A; Ulrich, D J O; Jansen, J A; Leeuwenburgh, S C G; van den Beucken, J J J P

    2017-09-01

    Demineralized bone matrix (DBM) is an allograft bone substitute used for bone repair surgery to overcome drawbacks of autologous bone grafting, such as limited supply and donor-site comorbidities. In view of different demineralization treatments to obtain DBM, we examined the biological performance of two differently demineralized types of DBM, i.e. by acidic treatment using hydrochloric acid (HCl) or treatment with the chelating agent ethylene diamine tetra-acetate (EDTA). First, we evaluated the osteo-inductive properties of both DBMs by implanting the materials subcutaneously in rats. Second, we evaluated the effects on bone formation by incorporating DBM in a hyaluronic acid (HA) gel to fill a porous titanium scaffold for use in a critical-sized calvarial defect model in 36 male Wistar rats. These porous titanium scaffolds were implanted empty or filled with HA gel containing either DBM HCl or DBM EDTA. Ectopically implanted DBM HCl and DBM EDTA did not induce ectopic bone formation over the course of 12 weeks. For the calvarial defects, mean percentages of newly formed bone at 2 weeks were significantly higher for Ti-Empty compared to Ti-HA + DBM HCl , but not compared to Ti-HA + DBM EDTA. Significant temporal bone formation was observed for Ti-Empty and Ti-HA + DBM HCl, but not for Ti-HA + DBM EDTA. At 8 weeks there were no significant differences in values of bone formation between the three experimental constructs. In conclusion, these results showed that, under the current experimental conditions, neither DBM HCl nor DBM EDTA possess osteo-inductive properties. Additionally, in combination with an HA gel loaded in a porous titanium scaffold, DBM HCl and DBM EDTA showed similar amounts of new bone formation after 8 weeks, which were lower than using the empty porous titanium scaffold. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. T Lymphocytes Influence the Mineralization Process of Bone

    PubMed Central

    El Khassawna, Thaqif; Serra, Alessandro; Bucher, Christian H.; Petersen, Ansgar; Schlundt, Claudia; Könnecke, Ireen; Malhan, Deeksha; Wendler, Sebastian; Schell, Hanna; Volk, Hans-Dieter; Schmidt-Bleek, Katharina; Duda, Georg N.

    2017-01-01

    Bone is a unique organ able to regenerate itself after injuries. This regeneration requires the local interplay between different biological systems such as inflammation and matrix formation. Structural reconstitution is initiated by an inflammatory response orchestrated by the host immune system. However, the individual role of T cells and B cells in regeneration and their relationship to bone tissue reconstitution remain unknown. Comparing bone and fracture healing in animals with and without mature T and B cells revealed the essential role of these immune cells in determining the tissue mineralization and thus the bone quality. Bone without mature T and B cells is stiffer when compared to wild-type bone thus lacking the elasticity that helps to absorb forces, thus preventing fractures. In-depth analysis showed dysregulations in collagen deposition and osteoblast distribution upon lack of mature T and B cells. These changes in matrix deposition have been correlated with T cells rather than B cells within this study. This work presents, for the first time, a direct link between immune cells and matrix formation during bone healing after fracture. It illustrates specifically the role of T cells in the collagen organization process and the lack thereof in the absence of T cells. PMID:28596766

  15. Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix.

    PubMed

    Burke, Mikhail V; Atkins, Ayelet; Akens, Margarete; Willett, Thomas L; Whyne, Cari M

    2016-12-01

    Metastatic involvement in vertebral bone diminishes the mechanical integrity of the spine; however minimal data exist on the potential impact of metastases on the intrinsic material characteristics of the bone matrix. Thirty-four (34) female athymic rats were inoculated with HeLa (N = 17) or Ace-1 (N = 17) cancer cells lines producing osteolytic or mixed (osteolytic and osteoblastic) metastases, respectively. A maximum of 21 days was allowed between inoculation and rat sacrifice for vertebrae extraction. High performance liquid chromatography (HPLC) was utilized to determine modifications in collagen-I parameters such as proline hydroxylation and the formation of specific enzymatic and non-enzymatic (pentosidine) cross-links. Raman spectroscopy was used to determine relative changes in mineral crystallinity, mineral carbonation, mineral/collagen matrix ratio, collagen quality ratio, and proline hydroxylation. HPLC results showed significant increase in the formation of pentosidine and decrease in the formation of the enzymatic cross-link deoxy-pryridinoline within osteolytic bone compared to mixed bone. Raman results showed decreased crystallinity, increased carbonation, and collagen quality (aka 1660/1690 sub-band) ratio with osteolytic bone compared to mixed bone and healthy controls along with an observed increase in proline hydroxylation with metastatic involvement. The mineral/matrix ratio decreased in both osteolytic and mixed bone compared to healthy controls. Quantifying modifications within the intrinsic characteristics of bone tissue will provide a foundation to assess the impact of current therapies on the material behavior of bone tissue in the metastatic spine and highlight targets for the development of new therapeutics and approaches for treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2126-2136, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Evaluation of different rotary devices on bone repair in rabbits.

    PubMed

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I--pneumatic low-speed rotation engine, II--pneumatic high-speed rotation engine, and III--electric low-speed rotation engine. The anatomic pieces were surgically obtained after 2, 7 and 30 days and submitted to histological and morphometric analysis. The morphometric results were expressed as the total area of bone remodeling matrix using an image analysis system. Increases in the bone remodeling matrix were noticed with time along the course of the experiment. No statistically significant differences (p>0.05) were observed among the groups at the three sacrificing time points considering the total area of bone mineralized matrix, although the histological analysis showed a slightly advanced bone repair in group III compared to the other two groups. The findings of the present study suggest that the type of rotary device used in oral and maxillofacial surgery does not interfere with the bone repair process.

  17. Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent.

    PubMed

    Erickson, Isaac E; van Veen, Steven C; Sengupta, Swarnali; Kestle, Sydney R; Mauck, Robert L

    2011-10-01

    Cartilage degeneration is common in the aged, and aged chondrocytes are inferior to juvenile chondrocytes in producing cartilage-specific extracellular matrix. Mesenchymal stem cells (MSCs) are an alternative cell type that can differentiate toward the chondrocyte phenotype. Aging may influence MSC chondrogenesis but remains less well studied, particularly in the bovine system. The objectives of this study were (1) to confirm age-related changes in bovine articular cartilage, establish how age affects chondrogenesis in cultured pellets for (2) chondrocytes and (3) MSCs, and (4) determine age-related changes in the biochemical and biomechanical development of clinically relevant MSC-seeded hydrogels. Native bovine articular cartilage from fetal (n = 3 donors), juvenile (n = 3 donors), and adult (n = 3 donors) animals was analyzed for mechanical and biochemical properties (n = 3-5 per donor). Chondrocyte and MSC pellets (n = 3 donors per age) were cultured for 6 weeks before analysis of biochemical content (n = 3 per donor). Bone marrow-derived MSCs of each age were also cultured within hyaluronic acid hydrogels for 3 weeks and analyzed for matrix deposition and mechanical properties (n = 4 per age). Articular cartilage mechanical properties and collagen content increased with age. We observed robust matrix accumulation in three-dimensional pellet culture by fetal chondrocytes with diminished collagen-forming capacity in adult chondrocytes. Chondrogenic induction of MSCs was greater in fetal and juvenile cell pellets. Likewise, fetal and juvenile MSCs in hydrogels imparted greater matrix and mechanical properties. Donor age and biochemical microenvironment were major determinants of both bovine chondrocyte and MSC functional capacity. In vitro model systems should be evaluated in the context of age-related changes and should be benchmarked against human MSC data.

  18. BONE REGENERATION AFTER DEMINERALIZED BONE MATRIX AND CASTOR OIL (RICINUS COMMUNIS) POLYURETHANE IMPLANTATION

    PubMed Central

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial. PMID:19089203

  19. A clinical investigation of demineralized bone matrix putty for treatment of periodontal bony defects in humans.

    PubMed

    Banjar, Arwa Ahmed; Mealey, Brian L

    2013-01-01

    The goal of this study was to evaluate the effectiveness of demineralized bone matrix (DBM) putty, consisting of demineralized human bone allograft matrix in a carrier of bovine collagen and alginate, for the treatment of periodontal defects in humans. Twenty subjects with at least one site having a probing depth ≥ 6 mm and radiographic evidence of bony defect depth > 3 mm were included. The infrabony defects were grafted with DBM putty bone graft. The following clinical parameters were assessed at baseline and 6 months posttreatment: probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). Bone fill was evaluated using transgingival probing and standardized radiographs taken at baseline and 6 months posttreatment. The 6-month evaluation showed a significant PD reduction of 3.27 ± 1.67 mm and clinical attachment gain of 2.27 ± 1.74 mm. Bone sounding measurements showed a mean clinical bone defect fill of 2.93 ± 1.87 mm and a mean radiographic bone fill of 2.55 ± 2.31 mm. The use of DBM putty was effective for treatment of periodontal bony defects in humans. Significant improvement in CAL, PD, and bone fill was observed at 6 months compared to baseline.

  20. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering.

    PubMed

    Li, Mei; Gu, Qiaoqiao; Chen, Mengjie; Zhang, Chi; Chen, Songdi; Zhao, Jiyuan

    2017-02-01

    Small intestine submucosa (SIS) has been reported as an excellent biomaterial for tissue engineering because of its naturally occurring collagenous extracellular matrix property with growth factors. However, SIS from submucosal layer of intestine provides different microenvironment from bone tissue, which limits its application to bone regeneration. The object of this study was to improve osteoinductivity of SIS by controlled local delivery of icariin (Ic), a potent osteogenic compound. Sustained release of icariin from SIS scaffold was achieved for >30days and the loading of icariin on SIS scaffold was uniform as scanned by SEM. In vitro experiments revealed that expression of osteogenic differentiation markers (Alp, Bsp and Ocn) was increased after treatment of Ic-SIS scaffold, without significant cytotoxicity. In an in vivo mouse calvarial defect model, bone regeneration was enhanced by SIS implantation at 8weeks, compared to control defect. New bone formation was further improved by implantation with Ic-SIS (low and high) at both 4 and 8weeks. The results of this study suggest that SIS scaffold has the potential as an icariin delivery carrier for enhancement of bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    PubMed

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Long Bone Histology and Growth Patterns in Ankylosaurs: Implications for Life History and Evolution

    PubMed Central

    Stein, Martina; Hayashi, Shoji; Sander, P. Martin

    2013-01-01

    The ankylosaurs are one of the major dinosaur groups and are characterized by unique body armor. Previous studies on other dinosaur taxa have revealed growth patterns, life history and evolutionary mechanisms based on their long bone histology. However, to date nothing is known about long bone histology in the Ankylosauria. This study is the first description of ankylosaurian long bone histology based on several limb elements, which were sampled from different individuals from the Ankylosauridae and Nodosauridae. The histology is compared to that of other dinosaur groups, including other Thyreophora and Sauropodomorpha. Ankylosaur long bone histology is characterized by a fibrolamellar bone architecture. The bone matrix type in ankylosaurs is closest to that of Stegosaurus. A distinctive mixture of woven and parallel-fibered bone together with overall poor vascularization indicates slow growth rates compared to other dinosaurian taxa. Another peculiar characteristic of ankylosaur bone histology is the extensive remodeling in derived North American taxa. In contrast to other taxa, ankylosaurs substitute large amounts of their primary tissue early in ontogeny. This anomaly may be linked to the late ossification of the ankylosaurian body armor. Metabolically driven remodeling processes must have liberated calcium to ossify the protective osteodermal structures in juveniles to subadult stages, which led to further remodeling due to increased mechanical loading. Abundant structural fibers observed in the primary bone and even in remodeled bone may have improved the mechanical properties of the Haversian bone. PMID:23894321

  3. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.

    PubMed

    Lee, Yi-Hsuan; Wu, Hsi-Chin; Yeh, Chia-Wei; Kuan, Chen-Hsiang; Liao, Han-Tsung; Hsu, Horng-Chaung; Tsai, Jui-Che; Sun, Jui-Sheng; Wang, Tzu-Wei

    2017-11-01

    The development of osteochondral tissue engineering is an important issue for the treatment of traumatic injury or aging associated joint disease. However, the different compositions and mechanical properties of cartilage and subchondral bone show the complexity of this tissue interface, making it challenging for the design and fabrication of osteochondral graft substitute. In this study, a bilayer scaffold is developed to promote the regeneration of osteochondral tissue within a single integrated construct. It has the capacity to serve as a gene delivery platform to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. For the subchondral bone layer, the bone matrix with organic (type I collagen, Col) and inorganic (hydroxyapatite, Hap) composite scaffold has been developed through mineralization of hydroxyapatite nanocrystals oriented growth on collagen fibrils. We also prepare multi-shell nanoparticles in different layers with a calcium phosphate core and DNA/calcium phosphate shells conjugated with polyethyleneimine to act as non-viral vectors for delivery of plasmid DNA encoding BMP2 and TGF-β3, respectively. Microbial transglutaminase is used as a cross-linking agent to crosslink the bilayer scaffold. The ability of this scaffold to act as a gene-activated matrix is demonstrated with successful transfection efficiency. The results show that the sustained release of plasmids from gene-activated matrix can promote prolonged transgene expression and stimulate hMSCs differentiation into osteogenic and chondrogenic lineages by spatial and temporal control within the bilayer composite scaffold. This improved delivery method may enhance the functionalized composite graft to accelerate healing process for osteochondral tissue regeneration. In this study, a gene-activated matrix (GAM) to promote the growth of both cartilage and subchondral bone within a single integrated construct is developed. It has the capacity to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. The results show that the sustained release of plasmids including TGF-beta and BMP-2 from GAM could promote prolonged transgene expression and stimulate hMSCs differentiation into the osteogenic and chondrogenic lineages by spatial control manner. This improved delivery method should enhance the functionalized composite graft to accelerate healing process in vitro and in vivo for osteochondral tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    PubMed

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats

    PubMed Central

    2012-01-01

    Background Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. Methods 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. Results Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. Conclusions A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling. PMID:22443362

  6. Function of Matrix IGF-1 in Coupling Bone Resorption and Formation

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2013-01-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256

  7. Function of matrix IGF-1 in coupling bone resorption and formation.

    PubMed

    Crane, Janet L; Cao, Xu

    2014-02-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.

  8. Development of a Three-Dimensional Bone-Like Construct in a Soft Self-Assembling Peptide Matrix

    PubMed Central

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel

    2013-01-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell–cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell–cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix. PMID:23157379

  9. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and ismore » therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.« less

  10. Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms

    PubMed Central

    Atkins, Ayelet; Dean, Mason N.; Habegger, Maria Laura; Motta, Phillip J.; Ofer, Lior; Repp, Felix; Shipov, Anna; Weiner, Steve; Currey, John D.; Shahar, Ron

    2014-01-01

    A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process. PMID:25331870

  11. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  12. FOR WHOM THE BELL TOLLS: DISTRESS SIGNALS FROM LONG-LIVED OSTEOCYTES AND THE PATHOGENESIS OF METABOLIC BONE DISEASES

    PubMed Central

    Manolagas, Stavros C.; Parfitt, A. Michael

    2012-01-01

    Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. PMID:23010104

  13. Novel and simple alternative to create nanofibrillar matrices of interest for tissue engineering.

    PubMed

    Sohier, Jérôme; Corre, Pierre; Perret, Christophe; Pilet, Paul; Weiss, Pierre

    2014-04-01

    Synthetic analogs to natural extracellular matrix (ECM) at the nanometer level are of great potential for regenerative medicine. This study introduces a novel and simple method to produce polymer nanofibers and evaluates the properties of the resulting structures, as well as their suitability to support cells and their potential interest for bone and vascular applications. The devised approach diffracts a polymer solution by means of a spraying apparatus and of an airstream as sole driving force. The resulting nanofibers were produced in an effective fashion and a factorial design allowed isolating the processing parameters that control nanofiber size and distribution. The nanofibrillar matrices revealed to be of very high porosity and were effectively colonized by human bone marrow mesenchymal cells, while allowing ECM production and osteoblastic differentiation. In vivo, the matrices provided support for new bone formation and provided a good patency as small diameter vessel grafts.

  14. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation.

    PubMed

    Rodrigues, Bruno Vm; Leite, Nelly Cs; Cavalcanti, Bruno das Neves; da Silva, Newton S; Marciano, Fernanda R; Corat, Evaldo J; Webster, Thomas J; Lobo, Anderson O

    2016-01-01

    Nanohydroxyapatite (nHAp) is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs) have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO) at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp) with high mechanical strength (MWCNT-GO). After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1-3 wt%). We employed various techniques to characterize the nanocomposites, including transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetry, and gas adsorption (the Brunauer-Emmett-Teller method). We used simulated body fluid to evaluate their bioactivity and human osteoblasts (bone-forming cells) to evaluate cytocompatibility. We also investigated their bactericidal effect against Staphylococcus aureus and Escherichia coli. TEM analysis revealed homogeneous distributions of nHAp crystal grains along the MWCNT-GO surfaces. All nanocomposites were proved to be bioactive, since carbonated nHAp was found after 21 days in simulated body fluid. All nanocomposites showed potential for biomedical applications with no cytotoxicity toward osteoblasts and impressively demonstrated a bactericidal effect without the use of antibiotics. All of the aforementioned properties make these materials very attractive for bone tissue engineering applications, either as a matrix or as a reinforcement material for numerous polymeric nanocomposites.

  15. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation

    PubMed Central

    Rodrigues, Bruno VM; Leite, Nelly CS; Cavalcanti, Bruno das Neves; da Silva, Newton S; Marciano, Fernanda R; Corat, Evaldo J; Webster, Thomas J; Lobo, Anderson O

    2016-01-01

    Nanohydroxyapatite (nHAp) is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs) have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO) at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp) with high mechanical strength (MWCNT-GO). After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1–3 wt%). We employed various techniques to characterize the nanocomposites, including transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetry, and gas adsorption (the Brunauer–Emmett–Teller method). We used simulated body fluid to evaluate their bioactivity and human osteoblasts (bone-forming cells) to evaluate cytocompatibility. We also investigated their bactericidal effect against Staphylococcus aureus and Escherichia coli. TEM analysis revealed homogeneous distributions of nHAp crystal grains along the MWCNT-GO surfaces. All nanocomposites were proved to be bioactive, since carbonated nHAp was found after 21 days in simulated body fluid. All nanocomposites showed potential for biomedical applications with no cytotoxicity toward osteoblasts and impressively demonstrated a bactericidal effect without the use of antibiotics. All of the aforementioned properties make these materials very attractive for bone tissue engineering applications, either as a matrix or as a reinforcement material for numerous polymeric nanocomposites. PMID:27358560

  16. Biodegradable magnesium-hydroxyapatite metal matrix composites.

    PubMed

    Witte, Frank; Feyerabend, Frank; Maier, Petra; Fischer, Jens; Störmer, Michael; Blawert, Carsten; Dietzel, Wolfgang; Hort, Norbert

    2007-04-01

    Recent studies indicate that there is a high demand to design magnesium alloys with adjustable corrosion rates and suitable mechanical properties. An approach to this challenge might be the application of metal matrix composite (MMC) based on magnesium alloys. In this study, a MMC made of magnesium alloy AZ91D as a matrix and hydroxyapatite (HA) particles as reinforcements have been investigated in vitro for mechanical, corrosive and cytocompatible properties. The mechanical properties of the MMC-HA were adjustable by the choice of HA particle size and distribution. Corrosion tests revealed that HA particles stabilised the corrosion rate and exhibited more uniform corrosion attack in artificial sea water and cell solutions. The phase identification showed that all samples contained hcp-Mg, Mg(17)Al(12), and HA before and after immersion. After immersion in artificial sea water CaCO3 was found on MMC-HA surfaces, while no formation of CaCO3 was found after immersion in cell solutions with and without proteins. Co-cultivation of MMC-HA with human bone derived cells (HBDC), cells of an osteoblasts lineage (MG-63) and cells of a macrophage lineage (RAW264.7) revealed that RAW264.7, MG-63 and HBDC adhere, proliferate and survive on the corroding surfaces of MMC-HA. In summary, biodegradable MMC-HA are cytocompatible biomaterials with adjustable mechanical and corrosive properties.

  17. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  18. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates.

    PubMed

    Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi

    2015-02-01

    Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation. © 2014 Wiley Periodicals, Inc.

  19. Assessment of a new biomimetic scaffold and its effects on bone formation by OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Aydin, Halil M.; Piskin, Erhan; El Haj, Alicia J.

    2009-02-01

    The ultimate target of bone tissue engineering is to generate functional load bearing bone. By nature, the porous volume in the trabecular bone is occupied by osseous medulla. The natural bone matrix consists of hydroxyapatite (HA) crystals precipitated along the collagen type I fibres. The mineral phase renders bone strength while collagen provides flexibility. Without mineral component, bone is very flexible and can not bear loads, whereas it is brittle in the case of mineral phase without the collagen presence. In this study, we designed and prepared a new type of scaffold which mimics the features of natural bone. The scaffold consists of three different components, a biphasic polymeric base composed of two different biodegradable polymers prepared by using dual porogen approach and bioactive agents, i.e., collagen and HA particles which are distributed throughout the matrix only in the pore surfaces. Interaction of the bioactive scaffolds possessing very high porosity and interconnected pore structures with cells were investigated in a prolonged culture period by using an osteoblastic cell line. The mineral HA particles have a slight different refractive index from the other elements such as polymeric scaffolds and cell/matrix in a tissue engineering constructs, exhibiting brighter images in OCT. Thus, OCT renders a convenient means to assess the morphology and architecture of the blank biomimetic scaffolds. This study also takes a close observation of OCT images for the cultured cell-scaffold constructs in order to assess neo-formed minerals and matrix. The OCT assessments have been compared with the results from confocal and SEM analysis.

  20. Early matrix change of a nanostructured bone grafting substitute in the rat.

    PubMed

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  1. A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: A preliminary study.

    PubMed

    Fredericks, Jamie D; Ringrose, Trevor J; Dicken, Anthony; Williams, Anna; Bennett, Phil

    2015-03-01

    Extracting viable DNA from many forensic sample types can be very challenging, as environmental conditions may be far from optimal with regard to DNA preservation. Consequently, skeletal tissue can often be an invaluable source of DNA. The bone matrix provides a hardened material that encapsulates DNA, acting as a barrier to environmental insults that would otherwise be detrimental to its integrity. However, like all forensic samples, DNA in bone can still become degraded in extreme conditions, such as intense heat. Extracting DNA from bone can be laborious and time-consuming. Thus, a lot of time and money can be wasted processing samples that do not ultimately yield viable DNA. We describe the use of colorimetry as a novel diagnostic tool that can assist DNA analysis from heat-treated bone. This study focuses on characterizing changes in the material and physical properties of heated bone, and their correlation with digitally measured color variation. The results demonstrate that the color of bone, which serves as an indicator of the chemical processes that have occurred, can be correlated with the success or failure of subsequent DNA amplification. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Advanced Glycation Endproducts and Bone Material Properties in Type 1 Diabetic Mice

    PubMed Central

    Rubin, Mishaela R.; Paschalis, Eleftherios P.; Poundarik, Atharva; Sroga, Gyna E.; McMahon, Donald J.; Gamsjaeger, Sonja; Klaushofer, Klaus; Vashishth, Deepak

    2016-01-01

    Fractures, particularly at the lower extremities and hip, are a complication of diabetes. In both type 1 (T1D) and type 2 diabetes (T2D), fracture risk is disproportionately worse than that predicted from the measurement of bone mineral density. Although an explanation for this discrepancy is the presence of organic matrix abnormalities, it has not been fully elucidated how advanced glycation endproducts (AGEs) relate to bone deterioration at both the macroscopic and microscopic levels. We hypothesized that there would be a relationship between skeletal AGE levels (determined by Raman microspectroscopy at specific anatomical locations) and bone macroscopic and microscopic properties, as demonstrated by the biomechanical measures of crack growth and microindentation respectively. We found that in OVE26 mice, a transgenic model of severe early onset T1D, AGEs were increased by Raman (carboxymethyl-lysine [CML] wildtype (WT): 0.0143 ±0.0005 vs T1D: 0.0175 ±0.0002, p = 0.003) at the periosteal surface. These differences were associated with less tough bone in T1D by fracture mechanics (propagation toughness WT: 4.73 ± 0.32 vs T1D: 3.39 ± 0.24 NM/m1/2, p = 0.010) and by reference point indentation (indentation distance increase WT: 6.85 ± 0.44 vs T1D: 9.04 ± 0.77 μm; p = 0.043). Within T1D, higher AGEs by Raman correlated inversely with macroscopic bone toughness. These data add to the existing body of knowledge regarding AGEs and the relationship between skeletal AGEs with biomechanical indices. PMID:27140650

  3. Transplanted Umbilical Cord Mesenchymal Stem Cells Modify the In Vivo Microenvironment Enhancing Angiogenesis and Leading to Bone Regeneration

    PubMed Central

    Todeschi, Maria Rosa; El Backly, Rania; Capelli, Chiara; Daga, Antonio; Patrone, Eugenio; Introna, Martino; Cancedda, Ranieri

    2015-01-01

    Umbilical cord mesenchymal stem cells (UC-MSCs) show properties similar to bone marrow mesenchymal stem cells (BM-MSCs), although controversial data exist regarding their osteogenic potential. We prepared clinical-grade UC-MSCs from Wharton's Jelly and we investigated if UC-MSCs could be used as substitutes for BM-MSCs in muscoloskeletal regeneration as a more readily available and functional source of MSCs. UC-MSCs were loaded onto scaffolds and implanted subcutaneously (ectopically) and in critical-sized calvarial defects (orthotopically) in mice. For live cell-tracking experiments, UC-MSCs were first transduced with the luciferase gene. Angiogenic properties of UC-MSCs were tested using the mouse metatarsal angiogenesis assay. Cell secretomes were screened for the presence of various cytokines using an array assay. Analysis of implanted scaffolds showed that UC-MSCs, contrary to BM-MSCs, remained detectable in the implants for 3 weeks at most and did not induce bone formation in an ectopic location. Instead, they induced a significant increase of blood vessel ingrowth. In agreement with these observations, UC-MSC-conditioned medium presented a distinct and stronger proinflammatory/chemotactic cytokine profile than BM-MSCs and a significantly enhanced angiogenic activity. When UC-MSCs were orthotopically transplanted in a calvarial defect, they promoted increased bone formation as well as BM-MSCs. However, at variance with BM-MSCs, the new bone was deposited through the activity of stimulated host cells, highlighting the importance of the microenvironment on determining cell commitment and response. Therefore, we propose, as therapy for bone lesions, the use of allogeneic UC-MSCs by not depositing bone matrix directly, but acting through the activation of endogenous repair mechanisms. PMID:25685989

  4. Osteoarthritis as a disease of the cartilage pericellular matrix.

    PubMed

    Guilak, Farshid; Nims, Robert; Dicks, Amanda; Wu, Chia-Lung; Meulenbelt, Ingrid

    2018-05-22

    Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease. Copyright © 2017. Published by Elsevier B.V.

  5. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    PubMed

    Sroga, Grażyna E; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks.

  6. Glycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose

    PubMed Central

    Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks. PMID:25679213

  7. Accelerated Bone Repair After Plasma Laser Corticotomies

    PubMed Central

    Leucht, Philipp; Lam, Kentson; Kim, Jae-Beom; Mackanos, Mark A.; Simanovskii, Dmitrii M.; Longaker, Michael T.; Contag, Christopher H.; Schwettman, H Alan; Helms, Jill A.

    2007-01-01

    Objective: To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal. Summary Background Data: Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing. Methods: Murine tibial corticotomies were performed using a conventional saw and a Ti:Sapphire plasma-generated laser that removes tissue with minimal thermal damage. Our analyses began 24 hours after injury and proceeded to postsurgical day 6. We investigated aspects of wound repair ranging from vascularization, inflammation, cell proliferation, differentiation, and bone remodeling. Results: Histology of mouse corticotomy sites uncovered a significant difference in the onset of bone healing; whereas laser corticotomies showed abundant bone matrix deposition at postsurgical day 6, saw corticotomies only exhibited undifferentiated tissue. Our analyses uncovered that cutting bone with a saw caused denaturation of the collagen matrix due to thermal effects. This denatured collagen represented an unfavorable scaffold for subsequent osteoblast attachment, which in turn impeded deposition of a new bony matrix. The matrix degradation induced a prolonged inflammatory reaction at the cut edge to create a surface favorable for osteochondroprogenitor cell attachment. Laser corticotomies were absent of collagen denaturation, therefore osteochondroprogenitor cell attachment was enabled shortly after surgery. Conclusion: In summary, these data demonstrate that corticotomies performed with Ti:Sapphire lasers are associated with a reduced initial inflammatory response at the injury site leading to accelerated osteochondroprogenitor cell migration, attachment, differentiation, and eventually matrix deposition. PMID:17592303

  8. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  9. Blooming gelatin: an individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements

    PubMed Central

    Orshesh, Ziba; Hesaraki, Saeed; Khanlarkhani, Ali

    2017-01-01

    In recent years, there has been a great interest in using natural polymers in the composition of calcium phosphate bone cements to enhance their physical, mechanical, and biological performance. Gelatin is a partially hydrolyzed form of collagen, a natural component of bone matrix. In this study, the effect of blooming gelatin on the nanohydroxyapatite precipitation, physical and mechanical properties, and cellular responses of a calcium phosphate bone cement (CPC) was investigated. Various concentrations of blooming gelatin (2, 5, and 8 wt.%) were used as the cement liquid and an equimolar mixture of tetracalcium phosphate and dicalcium phosphate was used as solid phase. The CPC without any gelatin additive was also evaluated as a control group. The results showed that gelatin accelerated hydraulic reactions of the cement paste, in which the reactants were immediately converted into nanostructured apatite precipitates after hardening. Gelatin molecules induced 4%–10% macropores (10–300 μm) into the cement structure, decreased initial setting time by ~190%, and improved mechanical strength of the as-set cement. Variation in the above-mentioned properties was influenced by the gelatin concentration and progressed with increasing the gelatin content. The numbers of the G-292 osteoblastic cells on gelatin-containing CPCs were higher than the control group at entire culture times (1–14 days), meanwhile better alkaline phosphatase (ALP) activity was determined using blooming gelatin additive. The observation of cell morphologies on the cement surfaces revealed an appropriate cell attachment with extended cell membranes on the cements. Overall, adding gelatin to the composition of CPC improved the handling characteristics such as setting time and mechanical properties, enhanced nanoapatite precipitation, and augmented the early cell proliferation rate and ALP activity. PMID:28176961

  10. Blooming gelatin: an individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements.

    PubMed

    Orshesh, Ziba; Hesaraki, Saeed; Khanlarkhani, Ali

    2017-01-01

    In recent years, there has been a great interest in using natural polymers in the composition of calcium phosphate bone cements to enhance their physical, mechanical, and biological performance. Gelatin is a partially hydrolyzed form of collagen, a natural component of bone matrix. In this study, the effect of blooming gelatin on the nanohydroxyapatite precipitation, physical and mechanical properties, and cellular responses of a calcium phosphate bone cement (CPC) was investigated. Various concentrations of blooming gelatin (2, 5, and 8 wt.%) were used as the cement liquid and an equimolar mixture of tetracalcium phosphate and dicalcium phosphate was used as solid phase. The CPC without any gelatin additive was also evaluated as a control group. The results showed that gelatin accelerated hydraulic reactions of the cement paste, in which the reactants were immediately converted into nanostructured apatite precipitates after hardening. Gelatin molecules induced 4%-10% macropores (10-300 μm) into the cement structure, decreased initial setting time by ~190%, and improved mechanical strength of the as-set cement. Variation in the above-mentioned properties was influenced by the gelatin concentration and progressed with increasing the gelatin content. The numbers of the G-292 osteoblastic cells on gelatin-containing CPCs were higher than the control group at entire culture times (1-14 days), meanwhile better alkaline phosphatase (ALP) activity was determined using blooming gelatin additive. The observation of cell morphologies on the cement surfaces revealed an appropriate cell attachment with extended cell membranes on the cements. Overall, adding gelatin to the composition of CPC improved the handling characteristics such as setting time and mechanical properties, enhanced nanoapatite precipitation, and augmented the early cell proliferation rate and ALP activity.

  11. An Investigation of Siloxane Cross-linked Hydroxyapatite-Gelatin/Copolymer Composites for Potential Orthopedic Applications†

    PubMed Central

    Dyke, Jason Christopher; Knight, Kelly Jane; Zhou, Huaxing; Chiu, Chi-Kai; Ko, Ching-Chang; You, Wei

    2012-01-01

    Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N′-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, Tg, and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite. These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of HAp-Gemosil ceramics. PMID:23139457

  12. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.

    PubMed

    Maji, Kanchan; Dasgupta, Sudip; Kundu, Biswanath; Bissoyi, Akalabya

    2015-01-01

    Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate [Ca(NO3)2,4H2O] and diammonium hydrogen phosphate [(NH4)2H PO4]. Keeping solid loading constant at 30 wt% and changing the composition of the original slurry of gelatin, HA-chitosan allowed control of the pore size, its distribution, and mechanical properties of the scaffolds. Microstructural investigation by scanning electron microscopy revealed the formation of a well interconnected porous scaffold with a pore size in the range of 35-150 μm. The HA granules were uniformly dispersed in the gelatin-chitosan network. An optimal composition in terms of pore size and mechanical properties was obtained from the scaffold with an HA:Chi:Gel ratio of 21:49:30. The composite scaffold having 70% porosity with pore size distribution of 35-150 μm exhibited a compressive strength of 3.3-3.5 MPa, which is within the range of that exhibited by cancellous bone. The bioactivity of the scaffold was evaluated after conducting mesenchymal stem cell (MSC) - materials interaction and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay using MSCs. The scaffold found to be conducive to MSC's adhesion as evident from lamellipodia, filopodia extensions from cell cytoskeleton, proliferation, and differentiation up to 14 days of cell culture.

  13. Equine-derived bone mineral matrix for maxillary sinus floor augmentation: a clinical, radiographic, histologic, and histomorphometric case series.

    PubMed

    Nevins, Myron; Heinemann, Friedhelm; Janke, Ulrich W; Lombardi, Teresa; Nisand, David; Rocchietta, Isabella; Santoro, Giacomo; Schupbach, Peter; Kim, David M

    2013-01-01

    The objective of this proof-of-principle multicenter case series was to examine the bone regenerative potential of a newly introduced equine-derived bone mineral matrix (Equimatrix) to provide human sinus augmentation for the purpose of implant placement in the posterior maxilla. There were 10 patients requiring 12 maxillary sinus augmentations enrolled in this study. Histologic results at 6 months demonstrated abundant amounts of vital new bone in intimate contact with residual graft particles. Active bridging between residual graft particles with newly regenerated bone was routinely observed in intact core specimens. A mean value of 23.4% vital bone formation was observed at 6 months. This compared favorably with previous results using xenografts to produce bone in the maxillary sinus for the purpose of dental implant placement. Both the qualitative and quantitative results of this case series suggest comparable bone regenerative results at 6 months to bovine-derived xenografts.

  14. An efficient method to prepare magnetic hydroxyapatite-functionalized multi-walled carbon nanotubes nanocomposite for bone defects.

    PubMed

    Afroze, J D; Abden, M J; Islam, M A

    2018-05-01

    Hydroxyapatite-functionalized multi-walled carbon nanotube (HA-fMWCNT) magnetic nanocomposite was successfully prepared using a novel slurry-compounding method. The prepared HA-fMWCNT nanocomposite with the addition of small amount (0.5 wt%) of fMWCNT exhibited much greater improvement in mechanical properties due to strong interfacial adhesion between acid-treated MWCNTs fillers and HA matrix, thus efficient stress transfer to nanotubes from the matrix. The nanocomposite exhibited excellent haemocompatibility. Fractographic analysis was performed in order to understand the fracture behavior and toughening mechanisms. The fracture mechanisms and micro-deformation were examined by studying the microstructure of arrested crack tips using field emission scanning electron microscopy (FESEM). The origination and formation of micro-cracks are the dominant fracture mechanisms and micro-deformation in the HA-fMWCNTs nanocomposite. The developed new method enables to the fabrication of magnetic HA-fMWCNTs nanocomposite with superior mechanical performance may be potential for application as high load-bearing bone implants in the biomedical field. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Even with rehydration, preservation in ethanol influences the mechanical properties of bone and how bone responds to experimental manipulation.

    PubMed

    Vesper, Evan O; Hammond, Max A; Allen, Matthew R; Wallace, Joseph M

    2017-04-01

    Typically, bones are harvested at the time of animal euthanasia and stored until mechanical testing. However, storage methods are not standardized, and differential effects on mechanical properties are possible between methods. The goal of this study was to investigate the effects that two common preservation methods (freezing wrapped in saline-soaked gauze and refrigerating ethanol fixed samples) have on bone mechanical properties in the context of an in vitro ribosylation treatment designed to modify mechanical integrity. It was hypothesized that there would be an interactive effect between ribose treatment and preservation method. Tibiae from twenty five 11week old female C57BL/6 mice were separated into 2 preservation groups. Micro-CT scans of contralateral pairs assessed differences in geometry prior to storage. After 7weeks of storage, bones in each pair of tibiae were soaked in a solution containing either 0M or 0.6M ribose for 1week prior to 4 point bending tests. There were no differences in any cortical geometric parameters between contralateral tibiae. There was a significant main effect of ethanol fixation on displacement to yield (-16.3%), stiffness (+24.5%), strain to yield (-13.9%), and elastic modulus (+18.5%) relative to frozen specimens. There was a significant main effect of ribose treatment for yield force (+13.9%), ultimate force (+9.2%), work to yield (+22.2%), yield stress (+14.1%), and resilience (+21.9%) relative to control-soaked bones. Postyield displacement, total displacement, postyield work, total work, total strain, and toughness were analyzed separately within each preservation method due to significant interactions. For samples stored frozen, all six properties were lower in the ribose-soaked group (49%-68%) while no significant effects of ribose were observed in ethanol fixed bones. Storage in ethanol likely caused changes to the collagen matrix which prevented or masked the embrittling effects of ribosylation that were seen in samples stored frozen wrapped in saline-soaked gauze. These data illustrate the clear importance of maintaining hydration if the eventual goal is to use bones for mechanical assessments and further show that storage in ethanol can alter potential to detect effects of experimental manipulation (in this case ribosylation). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis

    DOE PAGES

    Fowler, Tristan W.; Acevedo, Claire; Mazur, Courtney M.; ...

    2017-03-22

    Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. We find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causingmore » degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Therefore, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis.« less

  17. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Tristan W.; Acevedo, Claire; Mazur, Courtney M.

    Through a process called perilacunar remodeling, bone-embedded osteocytes dynamically resorb and replace the surrounding perilacunar bone matrix to maintain mineral homeostasis. The vital canalicular networks required for osteocyte nourishment and communication, as well as the exquisitely organized bone extracellular matrix, also depend upon perilacunar remodeling. Nonetheless, many questions remain about the regulation of perilacunar remodeling and its role in skeletal disease. We find that suppression of osteocyte-driven perilacunar remodeling, a fundamental cellular mechanism, plays a critical role in the glucocorticoid-induced osteonecrosis. In glucocorticoid-treated mice, we find that glucocorticoids coordinately suppress expression of several proteases required for perilacunar remodeling while causingmore » degeneration of the osteocyte lacunocanalicular network, collagen disorganization, and matrix hypermineralization; all of which are apparent in human osteonecrotic lesions. Therefore, osteocyte-mediated perilacunar remodeling maintains bone homeostasis, is dysregulated in skeletal disease, and may represent an attractive therapeutic target for the treatment of osteonecrosis.« less

  18. Influence of the intramedullary nail preparation method on nail's mechanical properties and degradation rate.

    PubMed

    Morawska-Chochół, Anna; Chłopek, Jan; Szaraniec, Barbara; Domalik-Pyzik, Patrycja; Balacha, Ewa; Boguń, Maciej; Kucharski, Rafael

    2015-06-01

    When it comes to the treatment of long bone fractures, scientists are still investigating new materials for intramedullary nails and different manufacturing methods. Some of the most promising materials used in the field are resorbable polymers and their composites, especially since there is a wide range of potential manufacturing and processing methods. The aim of this work was to select the best manufacturing method and technological parameters to obtain multiphase, and multifunctional, biodegradable intramedullary nails. All composites were based on a poly(l-lactide) matrix. Either magnesium alloy wires or carbon and alginate fibres were introduced in order to reinforce the nails. The polylactide matrix was also modified with tricalcium phosphate and gentamicin sulfate. The composite nails were manufactured using three different methods: forming from solution, injection moulding and hot pressing. The effect of each method of manufacturing on mechanical properties and degradation rate of the nails was evaluated. The study showed that injection moulding provides higher uniformity and homogeneity of the particle-modified polylactide matrix, whereas hot pressing favours applying higher volume fractions of fibres and their better impregnation with the polymer matrix. Thus, it was concluded that the fabrication method should be individually selected dependently on the nail's desired phase composition. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. For whom the bell tolls: distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases.

    PubMed

    Manolagas, Stavros C; Parfitt, A Michael

    2013-06-01

    Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout the bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. Published by Elsevier Inc.

  20. Colonization of bone matrices by cellular components

    NASA Astrophysics Data System (ADS)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  1. Bone resorption analysis of platelet-derived growth factor type BB application on collagen for bone grafts secured by titanium mesh over a pig jaw defect model

    PubMed Central

    Herford, Alan Scott; Cicciù, Marco

    2012-01-01

    Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493

  2. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.

    PubMed

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2010-08-01

    A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. (c) 2010 Wiley Periodicals, Inc.

  3. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessmentmore » by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo, the relationship between radial SOS and cortical porosity can be utilized and a porosity based radial SOS estimate could be implemented to determine cortical thickness. This would constitute a step toward individualized quantitative ultrasound diagnostics of osteoporosis.« less

  4. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.

    PubMed

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.

  5. Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility

    PubMed Central

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage. PMID:22514706

  6. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp.

    PubMed

    Wang, Jie-Lin; Chen, Qian; Du, Bei-Bei; Cao, Lu; Lin, Hong; Fan, Zhong-Yong; Dong, Jian

    2018-06-01

    The composite polylactide PLLA/β-TCP scaffolds were fabricated by solution casting and were coated with gelatin/hydroxyapatite (Gel/HAp) to improve the biological properties of the composite scaffolds. The Gel/HAp mixture was prepared using an in situ reaction, and a grafting-coating method was used to increase the efficiency of coating the PLLA/β-TCP matrix with Gel/HAp. First, free amino groups were introduced by 1,6-hexanediamine to aminolyze the PLLA/β-TCP matrix surface. Second, glutaraldehyde was coupled to Gel/HAp as a crosslinking agent. The structure and properties of Gel/HAp-modified PLLA/β-TCP films were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and water contact angle measurements (WCA). The experimental results show that 23 wt% HAp was uniformly dispersed in the gelatin coating by in situ synthesis. The Gel/HAp composite coating was successfully immobilized on the aminolyzed PLLA/β-TCP surface via a chemical grafting method, which promoted a lower degradation rate and was more hydrophilic than a physical grafting method. The Gel/HAp composite coating adhered tightly and homogeneously to the hydrophobic PLLA/β-TCP surface. Moreover, mouse embryo osteoblast precursor (MC3T3-E1) cells grown on the scaffolds were behaviorally and morphologically characterized. The results indicated that the Gel/HAp composite coating was favorable for the attachment and proliferation of preosteoblasts and that Gel/HAp-NH-PLLA/β-TCP would be a candidate scaffold for bone repair. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A Direct Role of Collagen Glycation in Bone Fracture

    PubMed Central

    Poundarik, Atharva A.; Wu, Ping-Cheng; Evis, Zafer; Sroga, Grazyna E.; Ural, Ani; Rubin, Mishaela; Vashishth, Deepak

    2015-01-01

    Non-enzymatic glycation (NEG) is an age-related process accelerated by diseases like diabetes, and causes the accumulation of advanced glycation end-products (AGEs). NEG-mediated modification of bone’s organic matrix, principally collagen type-I, has been implicated in impairing skeletal physiology and mechanics. Here, we present evidence, from in vitro and in vivo models, and establish a causal relationship between collagen glycation and alterations in bone fracture at multiple length scales. Through atomic force spectroscopy, we established that NEG impairs collagen’s ability to dissipate energy. Mechanical testing of in vitro glycated human bone specimen revealed that AGE accumulation due to NEG dramatically reduces the capacity of organic and mineralized matrix to creep and caused bone to fracture under impact at low levels of strain (3000–5000 μstrain) typically associated with fall. Fracture mechanics tests of NEG modified human cortical bone of varying ages, and their age-matched controls revealed that NEG disrupted microcracking based toughening mechanisms and reduced bone propagation and initiation fracture toughness across all age groups. A comprehensive mechanistic model, based on experimental and modeling data, was developed to explain how NEG and AGEs are causal to, and predictive of bone fragility. Furthermore, fracture mechanics and indentation testing on diabetic mice bones revealed that diabetes mediated NEG severely disrupts bone matrix quality in vivo. Finally, we show that AGEs are predictive of bone quality in aging humans and have diagnostic applications in fracture risk. PMID:26530231

  8. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix.

    PubMed

    Wijeratne, Sithara S; Martinez, Jerahme R; Grindel, Brian J; Frey, Eric W; Li, Jingqiang; Wang, Liyun; Farach-Carson, Mary C; Kiang, Ching-Hwa

    2016-03-01

    Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170±20 nm and a diameter of 2-4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. Development and blood compatibility assessment of electrospun polyvinyl alcohol blended with metallocene polyethylene and plectranthus amboinicus (PVA/mPE/PA) for bone tissue engineering.

    PubMed

    Qi, Jie; Zhang, Huang; Wang, Yingzhou; Mani, Mohan Prasath; Jaganathan, Saravana Kumar

    2018-01-01

    Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions. In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites. The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs). The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.

  10. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE PAGES

    Huang, Lu; Tian, Mengkun; Wu, Dong; ...

    2017-11-24

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  11. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lu; Tian, Mengkun; Wu, Dong

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  12. Different matrix evaluation for the bone regeneration of rats' femours using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Rusu, Laura-Cristina; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Zaharia, Cristian; Ardelean, Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The osteoconductive materials are important in bone regeneration procedures. Three dimensional (3D) reconstructions were obtained from the analysis. The aim of this study is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on two artificial matrixes inserted in previously artificially induced defects. For this study, under strict supervision 20 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were IngeniOss (for ten samples) and 4Bone(for the other ten samples). These materials were inserted into the induced defects. The femurs were investigated at 1 month, after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly created due to the osteoinductive process. The TD-OCT has proven a valuable tool for the non-invasive evaluation of the matrix bone interfaces.

  13. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. © The Author(s) 2015.

  14. Proliferative capacity and osteogenic potential of novel dura mater stem cells on poly-lactic-co-glycolic acid.

    PubMed

    Petrie, Caren; Tholpady, Sunil; Ogle, Roy; Botchwey, Edward

    2008-04-01

    The rational design of biomimetic structures for the regeneration of damaged or missing tissue is a fundamental principle of tissue engineering. Multiple variables must be optimized, ranging from the scaffold type to the selection and properties of implanted cell(s). In this study, the osteogenic potential of a novel stem cell was analyzed on biodegradable poly(lactic-co-glycolic acid) (PLGA) biomaterials as a step toward creating new cell-materials constructs for bony regeneration. Dura mater stem cells (DSCs), isolated from rat dura mater, were evaluated and compared to bone marrow stem cells (BMSCs) for proliferative and differentiative properties in vitro. Experiments were carried out on both tissue culture plastic (TCP) and 2D planar films of PLGA. Proliferation of DSCs on both TCP and PLGA films increased over 21 days. Positive fold inductions in all five bone marker genes were observed at days 7, 14, 21 in all experimental samples compared with day 0 controls. DSCs demonstrated greater cell coverage and enhanced matrix staining on 2D PLGA films when compared with BMSCs. These cells can be isolated and expanded in culture and can subsequently attach, proliferate, and differentiate on both TCP and PLGA films to a greater extent than BMSCs. This suggests that DSCs are promising for cell-based bone tissue engineering therapies, particularly those applications involving regeneration of cranial bones. Copyright 2007 Wiley Periodicals, Inc.

  15. Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66 porous bone scaffold for drug delivery.

    PubMed

    Huang, Di; Zuo, Yi; Zou, Qin; Zhang, Li; Li, Jidong; Cheng, Lin; Shen, Juan; Li, Yubao

    2011-01-01

    This study describes a new drug-loaded coating scaffold applied in infection therapy during bone regeneration. Chitosan (CS) containing antibacterial berberine was coated on a nano-hydroxyapatite/polyamide66 (n-HA/PA66) scaffold to realize bone regeneration together with antimicrobial properties. The porous scaffold was fabricated using the phase-inversion method with a porosity of about 84% and macropore size of 400-600 μm. The morphology, mechanical properties and drug-release behavior were investigated at different ratios of chitosan to berberine. The results show that the elastic modulus and compressive strength of the coated scaffolds were improved to 35.4 MPa and 1.7 MPa, respectively, about 7 times and 3 times higher than the uncoated scaffolds. After a burst release of berberine within the first 3 h in PBS solution, a continuous berberine release can last 150 h, which is highly dependent on the coating concentration and suitable for antibacterial requirement of orthopaedic surgery. The bactericidal test confirms a strong antibiotic effect of the delivery system and the minimum inhibitory concentration of the drug is 0.02 mg/ml. Moreover, in vitro biological evaluation demonstrates that the coating scaffolds act as a good matrix for MG63 adhesion, crawl, growth and proliferation, suggesting that the antibacterial delivery system has no cytotoxicity. We expect the drug-delivery system to have a potential application in bone regeneration or defect repair.

  16. Clinical efficacy of stem cell mediated osteogenesis and bioceramics for bone tissue engineering.

    PubMed

    Neman, Josh; Hambrecht, Amanda; Cadry, Cherie; Goodarzi, Amir; Youssefzadeh, Jonathan; Chen, Mike Y; Jandial, Rahul

    2012-01-01

    Lower back pain is a common disorder that often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells (MSCs) have received attention for their ability to differentiate into osteoblasts, cells that synthesize the extracellular matrix and regulate matrix mineralization. Successful bone regeneration requires three elements: MSCs that serve as osteoblastic progenitors, osteoinductive growth factors and their pathways that promote development and differentiation of the cells as well as an osteoconductive scaffold that allows for the formation of a vascular network. Future treatments should strive to combine mesenchymal stem cells, cell-seeded scaffolds and gene therapy to optimize the efficiency and safety of tissue repair and bone regeneration.

  17. Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice

    USDA-ARS?s Scientific Manuscript database

    Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...

  18. Comparison of Demineralized Dentin and Demineralized Freeze Dried Bone as Carriers for Enamel Matrix Proteins in a Rat Critical Size Defect

    DTIC Science & Technology

    2005-05-01

    matrix derivative or connective tissue . Part 1: comparison of clinical parameters. J Periodontol 2003;74:1110-1125. Minabe M.: A critical review of the... connective tissue , both bone and PDL can serve as sources of progenitor cells for regeneration. Surgical techniques started to evolve with the knowledge...regeneration was Prichard in 1977. This technique involved removal of overlying gingival tissue leaving interdental bone denuded (Prichard 1977). In 1983

  19. Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering.

    PubMed

    Wang, Chong; Wang, Min

    2012-10-01

    Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One scaffold component was emulsion electrospun poly(D,L-lactic acid) (PDLLA) nanofibers containing recombinant human bone morphogenetic protein (rhBMP-2), and the other scaffold component was electrospun calcium phosphate (Ca-P) particle/poly(lactic-co-glycolic acid) (PLGA) nanocomposite fibers. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled in the DSDPES process by adjusting the number of syringes used to supply solutions for electrospinning. Through process optimization, both types of fibers could be evenly distributed in bicomponent scaffolds. The structure and properties of each type of fibers in the scaffolds were studied. The morphological and structural properties and wettability of scaffolds were assessed. The effects of emulsion composition for rhBMP-2/PDLLA fibers and mass ratio of fibrous components in bicomponent scaffolds on in vitro release of rhBMP-2 from scaffolds were investigated. In vitro degradation of scaffolds was also studied by monitoring their morphological changes, weight losses and decreases in average molecular weight of fiber matrix polymers.

  20. Membranes for periodontal regeneration: From commercially available to spatially designed and functionally graded materials

    NASA Astrophysics Data System (ADS)

    Bottino, Marco Cicero

    The aging of the global population will lead to a considerable increase in the number of surgical and restorative procedures related to oral rehabilitation or periodontal regeneration. Periodontitis is one of the most aggressive pathologies that concern the integrity of the periodontal system that can lead to the destruction of the periodontium. Guided tissue and guided bone regeneration (GTR/GBR) have been used for the repair and regeneration of periodontal tissues by utilizing an occlusive membrane. The goal of this dissertation is to advance the knowledge in the area of periodontal regeneration by investigating the properties of a commercially available freeze-dried collagen-based graft (AlloDermRTM) and by designing/fabricating a functionally graded membrane (FGM) via multilayer electrospinning. The effects of different rehydration times and of a simultaneous rehydration/crosslinking procedure on the biomechanical properties and matrix stability of the commercially available membrane were investigated. The results revealed that there are significant changes on the biomechanical properties of the graft as rehydration time increases. Moreover, it was demonstrated that the simultaneous rehydration/crosslinking protocol has a synergistic effect in terms of enhancing biomechanical properties. A FGM consisting of a core-layer (CL) and two functional surface-layers (SL) was fabricated via sequential electrospinning. Hydroxyapatite nanoparticles (n-HAp) were incorporated to enhance bone formation (SL facing bone defect), and metronidazole benzoate (MET) was added to prevent bacterial colonization (SL facing the epithelial tissue). Degradation studies performed on both the CL and the FGM confirmed that the design holds promise in terms of providing the required mechanical stability to avoid membrane collapse and, therefore, enhance bone regeneration. Finally, it was demonstrated that MET incorporation into the SL that would face epithelial tissue is effective in fighting periodontopathogens in an in vitro model. Further studies are necessary to evaluate the effectiveness of this FGM on new bone formation in bone defects and to provide a quantitative evaluation in terms of the in vivo antibacterial potential of the FGM. Keywords: Collagen-based Grafts, Periodontal Regeneration, Electrospinning, Graded-Structure, Periodontitis, Metronidazole.

  1. COMPARISON OF THE EFFECTS OF PAPAIN AND VITAMIN A ON CARTILAGE

    PubMed Central

    Fell, Honor B.; Thomas, Lewis

    1960-01-01

    The effects of papain protease and of vitamin A on explanted limb bone rudiments from 7- and 13-day chick embryos and fetal mice have been studied and compared. The incubation of cartilaginous rudiments from 7-day chick embryos in a solution containing papain and cysteine resulted in complete loss of the metachromasia of the cartilage matrix within 1 hour; explants treated in this fashion recovered normal metachromatic staining properties when grown in normal medium for 4 days. The incubation of 7-day chick cartilage rudiments in a solution containing papain without cysteine resulted in partial loss of metachromasia from cartilage within 1 hour; the addition of vitamin A to the solution did not enhance the effect of papain during this period. The addition of papain to the culture medium in which 7-day chick embryo cartilage rudiments were grown resulted in uniform loss of the metachromasia of the cartilage matrix; similar explants grown in the presence of excess vitamin A also showed loss of the metachromasia of cartilage, but certain regions of the cartilage were affected earlier and more severely than others. Changes in cartilage cells, including loss of glycogen, occurred when the rudiment was grown in medium containing excess vitamin A, but not when it was grown in the presence of papain. Bone rudiments from 13-day chick embryos showed changes in cartilage similar to those seen in 7-day chick embryo rudiments when grown in the presence of papain or of excess vitamin A; the existing bone was not affected under these conditions. When grown in the presence of papain or excess vitamin A, the cartilage of late fetal mouse bone underwent changes similar to those already described in chick embryo rudiments. In contrast to the chick embryo rudiments, those from the fetal mouse showed rapid resorption of bone when grown in the presence of excess vitamin A. Papain had no effect on bone from either source. The changes seen in cartilage of explants grown in the presence of vitamin A and papain together were greater than those seen with either agent alone. The changes seen in fetal mouse bone grown in the presence of vitamin A were not enhanced by the additional presence of papain. On the basis of these observations, it is suggested that the changes in cartilage seen in experimental hypervitaminosis A may be the result of activation of a proteolytic enzyme or enzymes with properties similar to papain. PMID:13698767

  2. A multilevel approach to modeling of porous bioceramics

    NASA Astrophysics Data System (ADS)

    Mikushina, Valentina A.; Sidorenko, Yury N.

    2015-10-01

    The paper is devoted to discussion of multiscale models of heterogeneous materials using principles. The specificity of approach considered is the using of geometrical model of composites representative volume, which must be generated with taking the materials reinforcement structure into account. In framework of such model may be considered different physical processes which have influence on the effective mechanical properties of composite, in particular, the process of damage accumulation. It is shown that such approach can be used to prediction the value of composite macroscopic ultimate strength. As an example discussed the particular problem of the study the mechanical properties of biocomposite representing porous ceramics matrix filled with cortical bones tissue.

  3. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    PubMed

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  4. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    PubMed Central

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  5. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    PubMed

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  6. Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23.

    PubMed

    Ren, Yinshi; Han, Xianglong; Jing, Yan; Yuan, Baozhi; Ke, Huazhu; Liu, Min; Feng, Jian Q

    2016-01-01

    Unlike treatments for most rickets, the treatment using 1,25-(OH)2 vitamin D3 has little efficacy on patients with hypophosphatemic rickets, a set of rare genetic diseases. Thus, understanding the local cause for osteomalacia in hypophosphatemic rickets and developing an effective treatment to restore mineralization in this rare disease has been a longstanding goal in medicine. Here, we used Dmp1 knockout (KO) mice (whose mutations led to the same type of autosomal recessive hypophosphatemic rickets in humans) as the model in which the monoclonal antibody of sclerostin (Scl-Ab) was tested in two age groups for 8weeks: the prevention group (starting at age 4weeks) and the treatment group (starting at age 12weeks). Applications of Scl-Ab greatly improved the osteomalacia phenotype (>15%) and the biomechanical properties (3-point bending, ~60%) in the treated long-bone group. Our studies not only showed improvement of the osteomalacia in the alveolar bone, which has the highest bone metabolism rate, as well as the long bone phenotypes in treated mice. All these improvements attributed to the use of Scl-Ab are independent of the change in serum levels of phosphorus and FGF23, since Scl-Ab had little efficacy on those parameters. Finally, we propose a model to explain how Scl-Ab can improve the Dmp1 KO osteomalacia phenotype, in which the sclerostin level is already low. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  7. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    PubMed Central

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  8. Human fibroblast-derived extracellular matrix constructs for bone tissue engineering applications.

    PubMed

    Tour, Gregory; Wendel, Mikael; Tcacencu, Ion

    2013-10-01

    We exploited the biomimetic approach to generate constructs composed of synthetic biphasic calcium phosphate ceramic and extracellular matrix (SBC-ECM) derived from adult human dermal fibroblasts in complete xeno-free culture conditions. The construct morphology and composition were assessed by scanning electron microscopy, histology, immunohistochemistry, Western blot, glycosaminoglycan, and hydroxyproline assays. Residual DNA quantification, endotoxin testing, and local inflammatory response after implantation in a rat critical-sized calvarial defect were used to access the construct biocompatibility. Moreover, in vitro interaction of human mesenchymal stem cells (hMSCs) with the constructs was studied. The bone marrow- and adipose tissue-derived mesenchymal stem cells were characterized by flow cytometry and tested for osteogenic differentiation capacity prior seeding onto SBC-ECM, followed by alkaline phosphatase, 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and real-time quantitative polymerase chain reaction to assess the osteogenic differentiation of hMSCs after seeding onto the constructs at different time intervals. The SBC-ECM constructs enhanced osteogenic differentiation of hMSCs in vitro and exhibited excellent handling properties and high biocompatibility in vivo. Our results highlight the ability to generate in vitro fibroblast-derived ECM constructs in complete xeno-free conditions as a step toward clinical translation, and the potential use of SBC-ECM in craniofacial bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  9. Bone Proteoglycan Changes During Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Uzawa, K.; Pornprasertsuk, S.; Arnaud, S.; Grindeland, R.; Grzesik, W.

    1999-01-01

    Skeletal adaptability to mechanical loads is well known since the last century. Disuse osteopenia due to the microgravity environment is one of the major concerns for space travelers. Several studies have indicated that a retardation of the mineralization process and a delay in matrix maturation occur during the space flight. Mineralizing fibrillar type I collagen possesses distinct cross-linking chemistries and their dynamic changes during mineralization correlate well with its function as a mineral organizer. Our previous studies suggested that a certain group of matrix proteoglycans in bone play an inhibitory role in the mineralization process through their interaction with collagen. Based on these studies, we hypothesized that the altered mineralization during spaceflight is due in part to changes in matrix components secreted by cells in response to microgravity. In this study, we employed hindlimb elevation (tail suspension) rat model to study the effects of skeletal unloading on matrix proteoglycans in bone.

  10. Short-term implantation effects of a DCPD-based calcium phosphate cement.

    PubMed

    Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N

    1998-06-01

    Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.

  11. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia.

    PubMed

    Boukpessi, Tchilalo; Hoac, Betty; Coyac, Benjamin R; Leger, Thibaut; Garcia, Camille; Wicart, Philippe; Whyte, Michael P; Glorieux, Francis H; Linglart, Agnès; Chaussain, Catherine; McKee, Marc D

    2017-02-01

    Seven young patients with X-linked hypophosphatemia (XLH, having inactivating PHEX mutations) were discovered to accumulate osteopontin (OPN) at the sites of defective bone mineralization near osteocytes - the so-called hallmark periosteocytic (lacunar) "halos" of XLH. OPN was also localized in the pericanalicular matrix extending beyond the osteocyte lacunae, as well as in the hypomineralized matrix of tooth dentin. OPN, a potent inhibitor of mineralization normally degraded by PHEX, is a member of a family of acidic, phosphorylated, calcium-binding, extracellular matrix proteins known to regulate dental, skeletal, and pathologic mineralization. Associated with the increased amount of OPN (along with inhibitory OPN peptide fragments) in XLH bone matrix, we found an enlarged, hypomineralized, lacuno-canalicular network - a defective pattern of skeletal mineralization that decreases stiffness locally at: i) the cell-matrix interface in the pericellular environment of the mechanosensing osteocyte, and ii) the osteocyte's dendritic network of cell processes extending throughout the bone. Our findings of an excess of inhibitory OPN near osteocytes and their cell processes, and in dentin, spatially correlates with the defective mineralization observed at these sites in the skeleton and teeth of XLH patients. These changes likely contribute to the dento-osseous pathobiology of XLH, and participate in the aberrant bone adaptation and remodeling seen in XLH. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Balancing the Rates of New Bone Formation and Polymer Degradation Enhances Healing of Weight-Bearing Allograft/Polyurethane Composites in Rabbit Femoral Defects

    PubMed Central

    Dumas, Jerald E.; Prieto, Edna M.; Zienkiewicz, Katarzyna J.; Guda, Teja; Wenke, Joseph C.; Bible, Jesse; Holt, Ginger E.

    2014-01-01

    There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling. PMID:23941405

  13. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  14. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Yang, Yue; Deng, Yi; Sun, Yuhua; Yang, Hongtao; Wei, Shicheng

    2016-07-01

    Good bioactivity and osteogenesis of three-dimensional porous alginate scaffolds (PAS) are critical for bone tissue engineering. In this work, alginate and bone-forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7 (BMP-7), have been combined together (without carbodiimide chemistry treatment) to develop peptide-incorporated PAS (p-PAS) for promoting bone repairing ability. The mechanical properties and SEM images show no difference between pure PAS and p-PAS. The release kinetics of the labeled peptide with 6-carboxy tetramethyl rhodamine from the PAS matrix suggests that the peptide is released in a relatively sustained manner. In the cell experiment, p-PAS show higher cell adhesion, spreading, proliferation and alkaline phosphatase (ALP) activity than the pristine PAS group, indicating that the BFP-1 released from p-PAS could significantly promote the aggregation and differentiation of osteoblasts, especially at 10μg/mL of trapped peptide concentration (p-PAS-10). Furthermore, p-PAS-10 was implanted into Beagle calvarial defects and bone regeneration was analyzed after 4 weeks. New bone formation was assessed by calcein and Masson's trichrome staining. The data reveal that p-PAS group exhibits significantly enhanced oseto-regenerative capability in vivo. The peptide-modified PAS with promoted bioactivity and osteogenic differentiation in vitro as well as bone formation ability in vivo could be promising tissue engineering materials for repairing and regeneration of bone defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Immunohistochemical response in rats of beta-tricalcium phosphate (TCP) with or without BMP-2 in the production of collagen matrix critical defects.

    PubMed

    Luvizuto, Eloá Rodrigues; de Oliveira, Júlio César Silva; Gomes-Ferreira, Pedro Henrique Silva; Pereira, Cassiano Costa Silva; Faverani, Leonardo Perez; Antoniali, Cristina; Okamoto, Roberta

    2017-04-01

    This study aimed to assess the biological response of BMP-2 (bone morphogenetic protein-2) in supplementation with β-tricalcium phosphate (TCP) as a carrier in the bone healing of surgical defects in rats' calvaria. A critical-size defect (5mm in diameter) was filled with β-TCP alone or added with that plus 5mg of BMP-2 at 5, 15, and 30 postoperative days. Histomorphometric and immunohistochemical (osteocalcin, collagen type I, and metalloproteinase-9) analysis was performed to assess the features of bone healing. Histological behavior and collagen type I labeling showed increased formation of the collagen matrix, leading to a higher percentage of newly formed bone and biomaterial for tissue and more total mineralization of pure TCP when compared to the other groups. The supplementation with BMP-2 promoted faster TCP remodeling; however, there was no statistically significant difference for the bone formed in both groups (P>0.05). Collagen-matrix formation and new bone formation reached maximum levels when the defects were filled with pure TCP, even exceeding the levels from BMP-2 supplementation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Engineering bioactive polymers for the next generation of bone repair

    NASA Astrophysics Data System (ADS)

    Ho, Emily Y.

    Bone disease is a serious health condition among the aged population. In some cases of bone damage it becomes necessary to replace, recontour, and assist in the healing of the bone. Many materials have been proposed as useful replacements but none have been proven to be ideal. In this thesis, two bioactive composites were investigated for bone replacements. First reported material is a hydroxyapatite (HA) particle reinforced polymethylmethacrylate (PMMA) composite treated with a co-polymer coupling agent for mandible augmentations. The influence of the coupling agent on the local mechanical properties of the system before and after simulated biological conditions was determined by applying nano-indentation at the cross-sectional HA/PMMA interface. The local interfacial results were indicative of the global quasi static compression test results. While the coupling agent improved the interfacial and global mechanical properties before and after 24 hours in vitro immersion, it did not affect the surface bioactivity of the system. However, the addition of coupling agent did not provide long term in vitro improvement of both local and global mechanical properties of the composite. An alternative approach of combining a bioactive phase into polymer matrix was developed. The second analyzed material is an injectable composite with osteoconductivity and ideal mechanical biocompatibility for vertebral fracture fixations which we formulated and fabricated. A bioactive component was engineered into the macromolecular structure to facilitate the formation of apatite nucleation sites on a thermo-sensitive polymer, poly(N-isopropylacryamide)-co-poly(ethyleneglycol) dimethacrylate (PNIPAAm-PEGDM), through incorporation of tri-methacryloxypropyltrimethoxysilane (MPS). PNIPAAm-PEGDM is capable of liquid to solid phase transformation at 32°C. In this study, the phase transformation temperature (LCSTs), the in vitro mechanical properties, swelling characteristics and bioactivity of the polymers were evaluated. The addition of NIPS to the polymer encouraged apatite formation and increased its compressive modulus while its LCST remained unchanged. The challenge of this material system is to balance the network-forming and bioactivity inducing MPS with the gain in elastic recovery induced by PEGDM addition to the PNIPAAm base, all while maintaining an injectable material system. This material platform offers a family of polymers that have a range of mechanical properties for various tissue replacements.

  17. Effect of nickel-titanium shape memory metal alloy on bone formation.

    PubMed

    Kapanen, A; Ryhänen, J; Danilov, A; Tuukkanen, J

    2001-09-01

    The aim of this study was to determine the biocompatibility of NiTi alloy on bone formation in vivo. For this purpose we used ectopic bone formation assay which goes through all the events of bone formation and calcification. Comparisons were made between Nitinol (NiTi), stainless steel (Stst) and titanium-aluminium (6%)-vanadium (4%) alloy (Ti-6Al-4V), which were implanted for 8 weeks under the fascia of the latissimus dorsi muscle in 3-month-old rats. A light-microscopic examination showed no chronic inflammatory or other pathological findings in the induced ossicle or its capsule. New bone replaced part of the decalcified matrix with mineralized new cartilage and bone. The mineral density was measured with peripheral quantitative computed tomography (pQCT). The total bone mineral density (BMD) values were nearly equal between the control and the NiTi samples, the Stst samples and the Ti-6Al-4V samples had lower BMDs. Digital image analysis was used to measure the combined area of new fibrotic tissue and original implanted bone matrix powder around the implants. There were no significant differences between the implanted materials, although Ti-6Al-4V showed the largest matrix powder areas. The same method was used for measurements of proportional cartilage and new bone areas in the ossicles. NiTi showed the largest cartilage area (p < or = 0.05). Between implant groups the new bone area was largest in NiTi. We conclude that NiTi has good biocompatibility, as its effects on ectopic bone formation are similar to those of Stst, and that the ectopic bone formation assay developed here can be used for biocompatibility studies.

  18. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model

    PubMed Central

    Mertz, E.L.; Makareeva, E.; Mirigian, L.S.; Koon, K.Y.; Perosky, J.E.; Kozloff, K.M.; Leikin, S.

    2016-01-01

    Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but it also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252

  19. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans

    PubMed Central

    Knabe, Christine; Adel Khattab, Doaa; Kluk, Esther; Struck, Rainer; Stiller, Michael

    2017-01-01

    This study examines the effect of a hyaluronic acid (HyAc) containing tricalcium phosphate putty scaffold material (TCP-P) and of a particulate tricalcium phosphate (TCP-G) graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA) in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1) for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I), alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein (BSP). Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc. PMID:28758916

  20. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    PubMed Central

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  1. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering.

    PubMed

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells' adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering.

  2. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

  3. Effects of Particle Size and Porosity on In Vivo Remodeling of Settable Allograft Bone/Polymer Composites

    PubMed Central

    Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.

    2014-01-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686

  4. Biomimetic materials for controlling bone cell responses.

    PubMed

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  5. Roles of Vitamins D and K, Nutrition, and Lifestyle in Low-Energy Bone Fractures in Children and Young Adults.

    PubMed

    Karpiński, Michał; Popko, Janusz; Maresz, Katarzyna; Badmaev, Vladimir; Stohs, Sidney J

    2017-07-01

    The research on skeletal system health in children and young adults, while recognizing the important role of calcium and vitamin D, goes beyond these nutritional standards. This review focuses on the role of vitamin K in combination with vitamin D and other factors in bone health. The current understanding is that maintaining bone health and prevention of low-energy fractures in any pediatric population includes nutritional factors combined with an active lifestyle. Calcium, vitamin D, and vitamin K supplementation contribute independently and collectively to bone health. The beneficial role of vitamin K, particularly vitamin K2 as menaquinone-7 (MK-7), in bone and cardiovascular health is reasonably well supported scientifically, with several preclinical, epidemiological, and clinical studies published over the last decade. Osteocalcin and matrix-Gla (glutamate-containing) protein (MGP) exemplify vitamin K-dependent proteins involved in building bone matrix and keeping calcium from accumulating in the arterial walls, respectively. An important part of the mechanism of vitamin K involves carboxylation and posttranslational activation of the family of vitamin K-dependent proteins, which prevent expression of pro-inflammatory factors and support improvement in bone mineral concentration, bone mineral density, and the quality of bone matrix. Understanding the combined approach to a healthy skeletal system in children and young adults, including the roles of vitamins D and K, calcium, healthy diet, and exercise, is particularly important in view of reports of subclinical insufficiency of vitamins D and K in otherwise healthy pediatric populations with low-energy bone fractures.

  6. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R

    2018-02-01

    The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.

  7. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.

    PubMed

    Jayaraman, Praveena; Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Becker, David Laurence; Ramakrishna, Seeram; Srinivasan, Dinesh Kumar

    2015-11-01

    Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Modular flow chamber for engineering bone marrow architecture and function.

    PubMed

    Di Buduo, Christian A; Soprano, Paolo M; Tozzi, Lorenzo; Marconi, Stefania; Auricchio, Ferdinando; Kaplan, David L; Balduini, Alessandra

    2017-11-01

    The bone marrow is a soft, spongy, gelatinous tissue found in the hollow cavities of flat and long bones that support hematopoiesis in order to maintain the physiologic turnover of all blood cells. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising biomaterial for bone marrow engineering, because of its tunable architecture and mechanical properties, the capacity of incorporating labile compounds without loss of bioactivity and demonstrated ability to support blood cell formation. In this study, we developed a bone marrow scaffold consisting of a modular flow chamber made of polydimethylsiloxane, holding a silk sponge, prepared with salt leaching methods and functionalized with extracellular matrix components. The silk sponge was able to support efficient platelet formation when megakaryocytes were seeded in the system. Perfusion of the chamber allowed the recovery of functional platelets based on multiple activation tests. Further, inhibition of AKT signaling molecule, which has been shown to be crucial in regulating physiologic platelet formation, significantly reduced the number of collected platelets, suggesting the applicability of this tissue model for evaluation of the effects of bone marrow exposure to compounds that may affect platelet formation. In conclusion, we have bioengineered a novel modular system that, along with multi-porous silk sponges, can provide a useful technology for reproducing a simplified bone marrow scaffold for blood cell production ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  10. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels

    PubMed Central

    Yue, Kan; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali

    2015-01-01

    Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. Three dimensional (3D) GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties which mimic the native ECM. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental single-single cell research, cell signaling, drug and gene delivery, and bio-sensing. PMID:26414409

  11. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing

    NASA Astrophysics Data System (ADS)

    Zhu, Chenyuan; Lv, Yuting; Qian, Chao; Qian, Haixin; Jiao, Ting; Wang, Liqiang; Zhang, Fuqiang

    2016-12-01

    The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration.

  12. Graphene oxide and hydroxyapatite as fillers of polylactic acid nanocomposites: preparation and characterization.

    PubMed

    Marques, Paula A A P; Gonçalves, Gil; Singh, Manoj K; Grácio, José

    2012-08-01

    Graphene and its derivatives have attracted great research interest for their potential applications in electronics, energy, materials and biomedical areas. When incorporated appropriately, these atomically thin carbon sheets are expected to improve physical properties of host polymers at extremely small loading. Herein, we report a novel two-step method for the preparation of PLLA/Hap/graphene oxide nanocomposites with augmented mechanical properties when compared to PLLA/Hap and neat PLLA. The presence of graphene oxide (GO) had a positive effect on the dispersion of hydroxyapatite particles on the polymeric matrix contributing for a good homogeneity of the final nanocomposite. PLLA nanocomposites prepared with 30% (w/w) of Hap and 1% (w/w) of GO showed the highest hardness and storage modulus values indicating an efficient load transfer between the fillers and the PLLA matrix. These materials may find interesting biomedical applications as for example bone screws. The following step on the study of these materials will be in vitro tests to access the biocompatibility of these new nanocomposites.

  13. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  14. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    NASA Astrophysics Data System (ADS)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  15. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  16. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size

    NASA Astrophysics Data System (ADS)

    Barthelat, Francois

    2014-12-01

    Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.

  17. Pre-osteoblastic MC3T3-E1 promote breast cancer cell growth in bone in a murine xenograft model

    USDA-ARS?s Scientific Manuscript database

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cance...

  18. Molecular spectroscopic identification of the water compartments in bone.

    PubMed

    Unal, Mustafa; Yang, Shan; Akkus, Ozan

    2014-10-01

    Matrix bound water is a correlate of bone's fracture resistance and assessment of bound water is emerging as a novel measure of bone's mechanical integrity. Raman spectroscopy is one of the few nondestructive modalities to assess the hydration status in bone; however, it has not been used to study the OH-band in bone. A sequential dehydration protocol was developed to replace unbound (heat drying) and bound (ethanol or deuterium) water in bone. Raman spectra were collected serially to track the OH-band during dehydration. Spectra of synthetic hydroxyapatite, demineralized bone and bulk water were collected to identify mineral and collagen contributions to the OH-band. Band assignments were supported by computational simulations of the molecular vibrations of Gly-Pro-Hyp amino acid sequence. Experimentally and theoretically obtained spectra were interpreted for band-assignments. Water loss was measured gravimetrically and correlated to Raman intensities. Four peaks were identified to be sensitive to dehydration: 3220cm(-1) (water), 3325cm(-1) (NH and water), 3453cm(-1) (hydroxyproline and water), and 3584cm(-1) (mineral and water). These peaks were differentially sensitive to deuterium treatment such that some water peaks were replaced with deuterium oxide faster than the rest. Specifically, the peaks at 3325 and 3584cm(-1) were more tightly bound to the matrix than the remaining bands. Comparison of dehydration in mineralized and demineralized bone revealed a volume of water that may be locked in the matrix by mineral crystals. The OH-range of bone was dominated by collagen and the water since the spectral profile of dehydrated demineralized bone was similar to that of the mineralized bone. Furthermore, water associates to bone mainly by collagen as findings of experimentally and theoretically spectra. The current work is among the first thorough analysis of the Raman OH stretch band in bone and such spectral information may be used to understand the involvement of water in the fragility of aging and in diseased bone. Published by Elsevier Inc.

  19. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction.

    PubMed

    Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey

    2017-10-01

    Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.

  20. Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives.

    PubMed

    Chu, Chenyu; Deng, Jia; Sun, Xianchang; Qu, Yili; Man, Yi

    2017-10-01

    Collagen is one of the important components of collagen membranes as well as the extracellular matrix (ECM). Most previous studies have focused on combining collagen membranes with various cross-linking agents, grafting materials, and cytokines to enhance their mechanical properties and bioactivities. Moreover, collagen membranes are often designed to minimize foreign body reactions involving macrophages. However, macrophages were recently found to play a pivotal role during bone regeneration based on their polarization into both proinflammatory and anti-inflammatory phenotypes. Because of the abilities to modulate macrophage polarization and mediate the balance of proinflammatory and anti-inflammatory microenvironments, immune-responsive collagen membranes may be an innovative strategy for promoting bone regeneration. Herein, following a brief review of collagen membranes and the background of macrophages, recent modulations and studies of immune-responsive collagen are described to express the potential of collagen interacting with macrophages and the necessity of further studies in the field of immune-responsive collagen membranes.

  1. Osteogenic capability of autologous rabbit adipose-derived stromal cells in repairing calvarial defects.

    PubMed

    Cheng, Shao-Wen; Lin, Zhong-Qin; Wang, Wei; Zhang, Wei; Kou, Dong-Quan; Ying, Xiao-Zhou; Chen, Qing-Yu; Shen, Yue; Cheng, Xiao-Jie; Peng, Lei; Lv, Chuan-Zhu

    2011-01-01

    To evaluate the in vitro and in vivo osteogenic capability of adipose-derived stromal cells (ASCs). ASCs were isolated from New Zealand white rabbits and determined by alkaline phosphatase (ALP) staining, von Kossa staining and alizarin red staining. Some specific markers of osteogenic differentiation, including ALP, osteocalcin (OCN), osteopontin (OPN) were examined by reverse transcription-polymerase chain reaction (RT-PCR). In vivo, demineralized bone matrix (DBM)-ASCs composites were implanted into the rabbit calvarial defects created at each side of the longitudinal midline. After 6 weeks, histologic properties of the transplants were analyzed. ASCs were successfully induced into osteogenesis. ALP staining, von Kossa staining and alizarin red staining showed positive results. The expressions of ALP, OCN and OPN were detected in ASCs after cultivation in osteogenic medium. Extensive new bone was observed in the defects transplanted with DBM-ASCs composites. ASCs have the potential to differentiate into osteogenic lineage and DBM-ASCs constructs are a promising method for regeneration in bone defects.

  2. Defective Endochondral Ossification-Derived Matrix and Bone Cells Alter the Lymphopoietic Niche in Collagen X Mouse Models

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert

    2013-01-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders. PMID:23656481

  3. Defective endochondral ossification-derived matrix and bone cells alter the lymphopoietic niche in collagen X mouse models.

    PubMed

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert; Jacenko, Olena

    2013-10-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders.

  4. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries.

    PubMed

    Hernandez-Hurtado, Adelina A; Borrego-Soto, Gissela; Marino-Martinez, Ivan A; Lara-Arias, Jorge; Romero-Diaz, Viktor J; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G; Espinoza-Juarez, Marcela A; Lopez-Romero, Gloria C; Robles-Zamora, Alejandro; Mendoza Lemus, Oscar F; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.

  5. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less

  6. Collagen fibril organization within rat vertebral bone modified with metastatic involvement.

    PubMed

    Burke, Mikhail; Golaraei, Ahmad; Atkins, Ayelet; Akens, Margarete; Barzda, Virginijus; Whyne, Cari

    2017-08-01

    Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.

    PubMed

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda; Melsen, Birte; Varma, Harikrishna; Nair, Prabha D; Kjems, Jorgen; Kassem, Moustapha

    2018-03-01

    There has been a growing demand for bone grafts for correction of bone defects in complicated fractures or tumours in the craniofacial region. Soft flexible membrane like material that could be inserted into defect by less invasive approaches; promote osteoconductivity and act as a barrier to soft tissue in growth while promoting bone formation is an attractive option for this region. Electrospinning has recently emerged as one of the most promising techniques for fabrication of extracellular matrix such as nano-fibrous scaffolds that can serve as a template for bone formation. To overcome the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA)-poly (ε) caprolactone (PCL)-Hydroxyapatite based bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic PCL by combination with a hydrophilic PVA and the HAB can contribute to enhance osteoconductivity. We characterized the physicochemical and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; [human bone marrow skeletal (mesenchymal) stem cells and dental pulp stem cells]. In addition, the scaffold supported in vitro osteogenic differentiation and in vivo vascularized bone formation. Thus, PVA-PCL-HAB scaffold is a suitable potential material for therapeutic bone regeneration in dentistry and orthopaedics. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds.

    PubMed

    Alemán-Domínguez, Maria Elena; Giusto, Elena; Ortega, Zaida; Tamaddon, Maryam; Benítez, Antonio Nizardo; Liu, Chaozong

    2018-05-02

    Microcrystalline cellulose (MCC) is proposed in this study as an additive in polycaprolactone (PCL) matrices to obtain three-dimensional (3D) printed scaffolds with improved mechanical and biological properties. Improving the mechanical behavior and the biological performance of polycaprolactone-based scaffolds allows to increase the potential of these structures for bone tissue engineering. Different groups of samples were evaluated in order to analyze the effect of the additive in the properties of the PCL matrix. The concentrations of MCC in the groups of samples were 0, 2, 5, and 10% (w/w). These combinations were subjected to a thermogravimetric analysis in order to evaluate the influence of the additive in the thermal properties of the composites. 3D printed scaffolds were manufactured with a commercial 3D printer based on fused deposition modelling. The operation conditions have been established in order to obtain scaffolds with a 0/90° pattern with pore sizes between 450 and 500 µm and porosity values between 50 and 60%. The mechanical properties of these structures were measured in the compression and flexural modes. The scaffolds containing 2 and 5% MCC have higher flexural and compression elastic modulus, although those containing 10% do not show this reinforcement effect. On the other hand, the proliferation of sheep bone marrow cells on the proposed scaffolds was evaluated over 8 days. The results show that the proliferation is significantly better (p < 0.05) on the group of samples containing 2% MCC. Therefore, these scaffolds (PCL:MCC 98:2) have suitable properties to be further evaluated for bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  9. Quantitative Mapping of Matrix Content and Distribution across the Ligament-to-Bone Insertion

    PubMed Central

    Spalazzi, Jeffrey P.; Boskey, Adele L.; Pleshko, Nancy; Lu, Helen H.

    2013-01-01

    The interface between bone and connective tissues such as the Anterior Cruciate Ligament (ACL) constitutes a complex transition traversing multiple tissue regions, including non-calcified and calcified fibrocartilage, which integrates and enables load transfer between otherwise structurally and functionally distinct tissue types. The objective of this study was to investigate region-dependent changes in collagen, proteoglycan and mineral distribution, as well as collagen orientation, across the ligament-to-bone insertion site using Fourier transform infrared spectroscopic imaging (FTIR-I). Insertion site-related differences in matrix content were also evaluated by comparing tibial and femoral entheses. Both region- and site-related changes were observed. Collagen content was higher in the ligament and bone regions, while decreasing across the fibrocartilage interface. Moreover, interfacial collagen fibrils were aligned parallel to the ligament-bone interface near the ligament region, assuming a more random orientation through the bulk of the interface. Proteoglycan content was uniform on average across the insertion, while its distribution was relatively less variable at the tibial compared to the femoral insertion. Mineral was only detected in the calcified interface region, and its content increased exponentially across the mineralized fibrocartilage region toward bone. In addition to new insights into matrix composition and organization across the complex multi-tissue junction, findings from this study provide critical benchmarks for the regeneration of soft tissue-to-bone interfaces and integrative soft tissue repair. PMID:24019964

  10. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    PubMed

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.

  11. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.

    PubMed

    Zhang, Jianhua; Zhao, Shichang; Zhu, Yufang; Huang, Yinjun; Zhu, Min; Tao, Cuilian; Zhang, Changqing

    2014-05-01

    In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the pH environment with increasing Sr substitution. Importantly, Sr-MBG scaffolds possessed good apatite-forming ability, and stimulated osteoblast cells' proliferation and differentiation. Using dexamethasone as a model drug, Sr-MBG scaffolds also showed a sustained drug delivery property for use in local drug delivery therapy, due to their mesoporous structure. Therefore, the 3-D printed Sr-MBG scaffolds combined the advantages of Sr-MBG such as good bone-forming bioactivity, controlled ion release and drug delivery and enhanced mechanical strength, and had potential application in bone regeneration. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies.

    PubMed

    Shakir, Mohammad; Jolly, Reshma; Khan, Mohd Shoeb; Iram, Noor e; Khan, Haris M

    2015-09-01

    A novel ternary nanocomposite system incorporating hydroxyapatite, chitosan and starch (n-HA/CS-ST) has been synthesized by co-precipitation method at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for bone tissue engineering. The interactions, crystallite size, surface morphology and thermal stability against n-HA/CS nanocomposite have been obtained by comparing the results of FTIR, SEM, TEM, DLS, XRD and TGA/DTA. A comparative study of bioactivity and thermal stability of n-HA/CS and n-HA/CS-ST nanocomposites revealed that the incorporation of starch as templating agent enhanced these properties in n-HA/CS-ST nanocomposite. A lower swelling rate of n-HA/CS-ST relative to n-HA/CS indicates a higher mechanical strength supportive of bone tissue ingrowths. The MTT assay on murine fibroblast L929 and human osteoblasts-like MG-63 cells and in vitro bioactivity of n-HA/CS-ST matrix referred superior non-toxic nature of n-HA/CS-ST nanocomposite and greater possibility of osteointegration in vivo respectively. Furthermore n-HA/CS-ST exhibited improved antibacterial property against both Gram-positive and Gram-negative bacteria relative to n-HA/CS. Copyright © 2015. Published by Elsevier B.V.

  13. Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.

    PubMed

    Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko

    2018-05-01

    Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.

  14. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    PubMed

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  15. Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone

    PubMed Central

    Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland

    2013-01-01

    Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465

  16. Student Award for Outstanding Research Winner in the Ph.D. Category for the 9th World Biomaterials Congress, Chengdu, China, June 1-5, 2012: The interplay of bone-like extracellular matrix and TNF-α signaling on in vitro osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Mountziaris, Paschalia M; Tzouanas, Stephanie N; Mikos, Antonios G

    2012-05-01

    As an initial step in the development of a bone tissue engineering strategy to rationally control inflammation, we investigated the interplay of bone-like extracellular matrix (ECM) and varying doses of the inflammatory cytokine tumor necrosis factor alpha (TNF-α) on osteogenically differentiating mesenchymal stem cells (MSCs) cultured in vitro on 3D poly(ε-caprolactone) (PCL) microfiber scaffolds containing pregenerated bone-like ECM. To generate the ECM, PCL scaffolds were seeded with MSCs and cultured in medium containing the typically required osteogenic supplement dexamethasone. However, since dexamethasone antagonizes TNF-α, the interplay of ECM and TNF-α was investigated by culturing naïve MSCs on the decellularized scaffolds in the absence of dexamethasone. MSCs cultured on ECM-coated scaffolds continued to deposit mineralized matrix, a late stage marker of osteogenic differentiation. Mineralized matrix deposition was not adversely affected by exposure to TNF-α for 4-8 days, but was significantly reduced after continuous exposure to TNF-α over 16 days, which simulates the in vivo response, where brief TNF-α signaling stimulates bone regeneration, while prolonged exposure has damaging effects. This underscores the exciting potential of PCL/ECM constructs as a more clinically realistic in vitro culture model to facilitate the design of new bone tissue engineering strategies that rationally control inflammation to promote regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  17. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds

    PubMed Central

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering. PMID:27144173

  18. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties.

    PubMed

    Jaidev, L R; Kumar, Sachin; Chatterjee, Kaushik

    2017-11-01

    Despite several recent advances, poor vascularization in implanted scaffolds impedes complete regeneration for clinical success of bone tissue engineering. The present study aims to develop a multi-biofunctional nanocomposite for bone tissue regeneration using copper nanoparticle decorated reduced graphene oxide (RGO_Cu) hybrid particles in polycaprolactone (PCL) matrix (PCL/RGO_Cu). X-ray photoelectron spectroscopy and X-ray diffraction confirmed the presence of copper oxides (CuO and Cu 2 O) on RGO. Thermogravimetric analysis showed that 11.8% of copper was decorated on RGO. PCL/RGO_Cu exhibited steady release of copper ions in contrast to burst release from the composite containing copper alone (PCL/Cu). PCL/RGO_Cu exhibited highest modulus due to enhanced filler exfoliation. Endothelial cells rapidly proliferated on PCL/RGO_Cu confirming cytocompatibility. The sustained release of ions from PCL/RGO_Cu composites augmented tube formation by endothelial cells evidenced enhanced angiogenic activity. Gene expression of angiogenic markers VEGF and ANG-2 was higher on PCL/RGO_Cu compared to PCL. The osteogenic activity of PCL/RGO_Cu was confirmed by the 87% increase in mineral deposition by pre-osteoblasts compared to PCL. The bactericidal activity of PCL/RGO_Cu showed 78% reduction in viability of Escherichia coli. Thus, the multi-biofunctional PCL/RGO_Cu composite exhibits angiogenic, osteogenic and bactericidal properties, a step towards addressing some of the critical challenges in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DYSAPOPTOSIS OF OSTEOBLASTS AND OSTEOCYTES INCREASES CANCELLOUS BONE FORMATION BUT EXAGGERATES BONE POROSITY WITH AGE

    PubMed Central

    Jilka, Robert L.; O’Brien, Charles A.; Roberson, Paula K.; Bonewald, Lynda F.; Weinstein, Robert S.; Manolagas, Stavros C.

    2013-01-01

    Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in non-vertebral fractures after age 65 in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short-lived osteoblasts that elaborate the bone matrix, and the long-lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long-lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor-κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short-lived osteoblasts, while exaggerating the adverse effects of aging on long-lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. PMID:23761243

  20. Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering

    PubMed Central

    Sun, Yu; Yang, Qiaoqin; Wang, Haidong

    2016-01-01

    Multifunctional tissue scaffold material nanodiamond (ND)/chitosan (CS) composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. Compared with pristine CS, the addition of ND resulted in a significant improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young’s modulus and a 68%, 96%, 114%, 118%, and 127% increase in hardness when the ND amount was 1 wt %, 2 wt %, 3 wt %, 4 wt %, and 5 wt %, respectively. The strong interaction between ND surface groups and the chitosan matrix plays an important role in improving mechanical properties. PMID:27649252

  1. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  2. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  3. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    PubMed

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day-old trabecular bone in vertebrae (31%) and in 2-month old trabecular bone in both tibia (31%) and vertebrae (4%). There was also a 16% lower carbonate-to-phosphate ratio in vertebral trabeculae and a correspondingly higher (22%) carbonate-to-phosphate ratio in 2month-old vertebral cortices. At age 3-months-of-age, male femurs with both a Col1a2(+/G610C) allele and a Lrp5 high bone mass allele (Lrp5+/A214V) showed an improvement in bone composition, presenting higher trabecular carbonate-to-phosphate ratio (18%) and lower trabecular and cortical acid-phosphate substitutions (8% and 18%, respectively). Together, these results indicate that mutant collagen α2(I) chain affects both bone quantity and composition, and the usefulness of this model for studies of potential OI therapies such as anti-sclerostin treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Bone Mineral Properties in Growing Col1a2+/G610C Mice, an animal model of Osteogenesis Imperfecta

    PubMed Central

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Yihe, Huang; Yan, Ma; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-01-01

    The Col1a2+/G610C knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2+/G610C and their wild-type controls (Col1a2+/+), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2+/G610C with an LRP+/A214V high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2+/G610C tibias had 13% fewer secondary trabeculae than Col1a2+/+, these were thinner (11%) and more widely spaced (20%) than those of Col1a2+/+ mice. Vertebrae of Col1a2+/G610C mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1a2+/+. The cortical bone of Col1a2+/G610C tibias at 2-months had 3% higher tissue mineral density compared to Col1a2+/+; Col1a2+/G610C vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2+/+. FTIRI analysis, which provides information on bone chemical composition at ~ 7 µm-spatial resolution, showed tibias at 10-days, did not differ between genotypes. Comparing identical bone types in Col1a2+/G610C to Col1a2+/+ at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2+/G610C vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day-old trabecular bone in vertebrae (31%) and in 2-month old trabecular bone in both tibia (31%) and vertebrae (4%). There was also a 16% lower carbonate-to-phosphate ratio in vertebral trabeculae and a correspondingly higher (22%) carbonate-to-phosphate ratio in 2 month-old vertebral cortices. At age 3- months-of-age, male femurs with both a Col1a2+/G610C allele and a Lrp5 high bone mass allele (Lrp5+/A214V) showed an improvement in bone composition, presenting higher trabecular carbonate-to-phosphate ratio (18%) and lower trabecular and cortical acid-phosphate substitutions (8% and 18%, respectively). Together, these results indicate that mutant collagen α2(I) chain affects both bone quantity and composition, and the usefulness of this model for studies of potential OI therapies such as anti-sclerostin treatments. PMID:27083399

  5. Influence of demineralized bone matrix's embryonic origin on bone formation: an experimental study in rats.

    PubMed

    Stavropoulos, Andreas; Kostopoulos, Lambros; Mardas, Nicolaos; Karring, Thorkild

    2003-01-01

    There are results suggesting that differences regarding bone-inducing potential, in terms of amount and/or rate of bone formation, exist between demineralized bone matrices (DBMs) of different embryonic origins. The aim of the present study was to examine whether the embryonic origin of DBM affects bone formation when used as an adjunct to guided tissue regeneration (GTR). Endomembranous (EM) and endochondral (ECH) DBMs were produced from calvarial and long bones of rats, respectively. Prior to the study the osteoinductive properties of the DBMs were confirmed in six rats following intramuscular implantation. Following surgical exposure of the mandibular ramus, a rigid hemispheric Teflon capsule loosely packed with a standardized quantity of DBM was placed with its open part facing the lateral surface of the ramus in both sides of the jaw in 30 rats. In one side of the jaw, chosen at random, the capsule was filled with EM-DBM, whereas in the other side ECH-DBM was used. Groups of 10 animals were sacrificed after healing periods of 1, 2, and 4 months, and undecalcified sections of the capsules were produced and subjected to histologic analysis and computer-assisted planimetric measurements. During the experiment increasing amounts of newly formed bone were observed inside the capsules in both sides of the animals' jaws. Limited bone formation was observed in the 1- and 2-month specimens, but after 4 months of healing, the newly formed bone in the ECH-DBM grafted sides occupied 59.1% (range 45.6-74.7%) of the area created by the capsule versus 46.9% (range 23.0-64.0%) in the EM-DBM grafted sides (p =.01). It is concluded that the embryonic origin of DBM influences bone formation by GTR and that ECH-DBM is superior to EM-DBM.

  6. Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering

    PubMed Central

    James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben

    2012-01-01

    Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855

  7. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls.

    PubMed

    Milovanovic, Petar; Rakocevic, Zlatko; Djonic, Danijela; Zivkovic, Vladimir; Hahn, Michael; Nikolic, Slobodan; Amling, Michael; Busse, Bjoern; Djuric, Marija

    2014-07-01

    To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Bone-Derived Growth Factors

    PubMed Central

    Capanna, R.; Campanacci, D.A.; De Biase, P.; Cuomo, P.; Lorenzoni, A.

    2010-01-01

    Bone regeneration is based on the synergy between osteconduction, osteoinduction and osteogenesis. In recent years, we have witnessed the birth and development of numerous osteoconductive substrates, created with the intention of replacing bone grafts, both autologous and homologous. Recently, attention has shifted to osteogenesis, in other words, to the study of mesenchymal cells and their differentiation into osteoblastic cell lines that can be cultured in vitro (as already seen with chondroblasts). Osteoinduction, too, has been shown to be equally important, ever since Urist’s 1967 study which drew attention to the demineralised bone matrix and its properties. The following twenty years led to the definition of bone morphogenetic protein (BMP) and finally to the marketing of the first ostegenic protein (OP-1) obtained by means of the gene recombination technique. The BMPs produced using this technique that, so far, have been shown to be most active are BMP-2 (Infuse) and BMP-7 (Osigraft). The BMPs are not the only molecules with osteoinductive capacity. Other molecules capable of influencing bone regeneration are: platelet-derived growth factors (PDGFs), the transforming growth factor-beta (TGF-β) family, insulin-like growth factor (IGF-I) and the acidic and basic fibroblast growth factors (FGFs). All these growth factors act in synergy with the BMPs, modulating their action and exerting an inductive and proliferative action on the cell lines responsible for regenerating the bone matrix. The literature has been literally invaded by studies, both experimental and preclinical, on these proteins (Termaat, 2005), and they have provided ample demonstration that the BMPs are effective in improving healing of fractures, pseudoarthrosis and spinal fusions. Important advantages of BMPs are the complete absence of risk of transmissible disease, given that they are produced using recombination technology; their purity, and thus absence of an immune response (although such a response could be linked to the carrier used to administer them); their efficacy, which derives from the use of a pre-established dose and not from the individual variability that is a specific feature of demineralized bone matrix homologous bone grafts. In addition to their use in fractures, pseudoarthrosis and spinal fusions, very recent studies are opening up new possibilities which may represent the future field of application of these proteins: Cook et al. (Cook, 2001, Barrack, 2003) have presented the first results obtained using OP-1 in prosthetic revisions carried out in the presence of bone defects; other authors have published a case report on osteonecrosis of the femoral head treated with grafts in association with OP-1; an Italian group is currently experimenting the use of OP-1 in distraction osteogenesis with the aim of speeding up the results that can be obtained using this already well-established technique. However, the most interesting results on the use of recombinant morphogenetic proteins are those obtained by Warnke et al. (2004), maxillo-facial surgeons who, by mixing synthetic spongious bone grafts, bone marrow concentrate and morphogenetic proteins, prepared a new, replacement mandible for implantation in a patient who had lost his own due to cancer, thereby creating new vacularised bone, tailored to that specific patient. The experimental applications of these new drugs are countless and, with regard to their therapeutic potential, the general feeling is that what we are seeing is only the tip of the iceberg. However, it is necessary to ensure that experiments in this field are always geared towards sustainable clinical applications and, to this end, they should be concentrated in a smaller number of centres and conducted in accordance with approved and recognised guidelines.

  9. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone

    PubMed Central

    Tang, S.Y.; Vashishth, D.

    2010-01-01

    The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk. PMID:21056419

  10. A combined approach of enamel matrix derivative gel and autogenous bone grafts in treatment of intrabony periodontal defects. A case report.

    PubMed

    Leung, George; Jin, Lijian

    2003-04-01

    Enamel matrix derivative (EMD) has recently been introduced as a new modality in regenerative periodontal therapy. This case report demonstrates a combined approach in topical application of EMD gel (Emdogain) and autogenous bone grafts for treatment of intrabony defects and furcation involvement defects in a patient with chronic periodontitis. The seven-month post-surgery clinical and radiographic results were presented. The combined application of EMD gel with autogenous bone grafts in intrabony osseous defects resulted in clinically significant gain of attachment on diseased root surfaces and bone fill on radiographs. Further controlled clinical studies are required to confirm the long-term effectiveness of the combination of EMD gel and autogenous bone grafts in treatment of various osseous defects in subjects with chronic periodontitis.

  11. Determining 'age at death' for forensic purposes using human bone by a laboratory-based biomechanical analytical method.

    PubMed

    Zioupos, P; Williams, A; Christodoulou, G; Giles, R

    2014-05-01

    Determination of age-at-death (AAD) is an important and frequent requirement in contemporary forensic science and in the reconstruction of past populations and societies from their remains. Its estimation is relatively straightforward and accurate (±3yr) for immature skeletons by using morphological features and reference tables within the context of forensic anthropology. However, after skeletal maturity (>35yr) estimates become inaccurate, particularly in the legal context. In line with the general migration of all the forensic sciences from reliance upon empirical criteria to those which are more evidence-based, AAD determination should rely more-and-more upon more quantitative methods. We explore here whether well-known changes in the biomechanical properties of bone and the properties of bone matrix, which have been seen to change with age even after skeletal maturity in a traceable manner, can be used to provide a reliable estimate of AAD. This method charts a combination of physical characteristics some of which are measured at a macroscopic level (wet & dry apparent density, porosity, organic/mineral/water fractions, collagen thermal degradation properties, ash content) and others at the microscopic level (Ca/P ratios, osteonal and matrix microhardness, image analysis of sections). This method produced successful age estimates on a cohort of 12 donors of age 53-85yr (7 male, 5 female), where the age of the individual could be approximated within less than ±1yr. This represents a vastly improved level of accuracy than currently extant age estimation techniques. It also presents: (1) a greater level of reliability and objectivity as the results are not dependent on the experience and expertise of the observer, as is so often the case in forensic skeletal age estimation methods; (2) it is purely laboratory-based analytical technique which can be carried out by someone with technical skills and not the specialised forensic anthropology experience; (3) it can be applied worldwide following stringent laboratory protocols. As such, this technique contributes significantly to improving age estimation and therefore identification methods for forensic and other purposes. © 2013 Elsevier Ltd. All rights reserved.

  12. Stem cells and bone diseases: new tools, new perspective

    PubMed Central

    Riminucci, Mara; Remoli, Cristina; Robey, Pamela G.; Bianco, Paolo

    2017-01-01

    Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. PMID:25240458

  13. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering.

    PubMed

    Dong, Liang; Wang, Shao-Jie; Zhao, Xin-Rong; Zhu, Yu-Fang; Yu, Jia-Kuo

    2017-10-17

    Synthetic polymeric scaffolds are commonly used in bone tissue engineering (BTE) due to their biocompatibility and adequate mechanical properties. However, their hydrophobicity and the lack of specific cell recognition sites confined their practical application. In this study, to improve the cell seeding efficiency and osteoinductivity, an injectable thermo-sensitive chitosan hydrogel (CSG) was incorporated into a 3D-printed poly(ε-caprolactone) (PCL) scaffold to form a hybrid scaffold. To demonstrate the feasibility of this hybrid system for BTE application, rabbit bone marrow mesenchymal stem cells (BMMSCs) and bone morphogenetic protein-2 (BMP-2) were encapsulated in CSG. Pure PCL scaffolds were used as controls. Cell proliferation and viability were investigated. Osteogenic gene expressions of BMMSCs in various scaffolds were determined with reverse transcription polymerase chain reaction (RT-PCR). Growth factor releasing profile and mechanical tests were performed. CCK-8 assay confirmed greater cell retention and proliferation in chitosan and hybrid groups. Confocal microscopy showed even distribution of cells in the hybrid system. After 2-week osteogenic culture in vitro, BMMSCs in hybrid and chitosan scaffolds showed stronger osteogenesis and bone-matrix formation. To conclude, chitosan/PCL hybrid scaffolds are a favorable platform for BTE due to its capacity to carry cells and drugs, and excellent mechanical strength.

  14. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    PubMed Central

    Rodriguez, Isaac A.; Sell, Scott A.; McCool, Jennifer M.; Saxena, Gunjan; Spence, Andrew J.; Bowlin, Gary L.

    2013-01-01

    The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma), hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone. PMID:24709699

  15. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties.

    PubMed

    Changotade, S Igondjo Tchen; Korb, G; Bassil, J; Barroukh, B; Willig, C; Colliec-Jouault, S; Durand, P; Godeau, G; Senni, K

    2008-12-01

    In this work, we first tested the influence of low-molecular-weight (LMW) fucoidan extracted from pheophicae cell wall on bidimensional cultured normal human osteoblasts' behaviors. Second, by impregnation procedure with LMW fucoidan of bone biomaterial (Lubboc), we explored in this bone extracellular matrix context its capabilities to support human osteoblastic behavior in 3D culture. In bidimensionnal cultures, we evidenced that LMW fucoidan promotes human osteoblast proliferation and collagen type I expression and favors precocious alkaline phosphatase activity. Furthermore, with LMW fucoidan, von Kossa's staining was positive at 30 days and positive only at 45 days in the absence of LMW fucoidan. In our three-dimensional culture models with the biomaterial pretreated with LMW fucoidan, osteoblasts promptly overgrew the pretreated biomaterial. We also evidenced that osteoblasts increased proliferation with pretreated biomaterial when compared with untreated biomaterial. Osteoblasts secreted osteocalcin and expressed BMP2 receptor on control material as well as with LMW fucoidan impregnated biomaterial. In conclusion, in our experimental conditions, LMW fucoidan stimulated expression of osteoblastic markers differentiation such as alkaline phosphatase activity, collagen type I expression, and mineral deposition; furthermore, cell proliferation was favored. These findings suggest that fucoidan could be clinically useful for bone regeneration and bone substitute design. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  16. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering.

    PubMed

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-06-21

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.

  17. Modeling of Stiffness and Strength of Bone at Nanoscale.

    PubMed

    Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M

    2017-05-01

    Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

  18. A Comparative Analysis of the In Vitro Effects of Pulsed Electromagnetic Field Treatment on Osteogenic Differentiation of Two Different Mesenchymal Cell Lineages

    PubMed Central

    Ceccarelli, Gabriele; Bloise, Nora; Mantelli, Melissa; Gastaldi, Giulia; Fassina, Lorenzo; De Angelis, Maria Gabriella Cusella; Ferrari, Davide; Imbriani, Marcello

    2013-01-01

    Abstract Human mesenchymal stem cells (MSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications. Exposure of MSCs to physical stimuli favors early and rapid activation of the tissue repair process. In this study we investigated the in vitro effects of pulsed electromagnetic field (PEMF) treatment on the proliferation and osteogenic differentiation of bone marrow MSCs (BM-MSCs) and adipose-tissue MSCs (ASCs), to assess if both types of MSCs could be indifferently used in combination with PEMF exposure for bone tissue healing. We compared the cell viability, cell matrix distribution, and calcified matrix production in unstimulated and PEMF-stimulated (magnetic field: 2 mT, amplitude: 5 mV) mesenchymal cell lineages. After PEMF exposure, in comparison with ASCs, BM-MSCs showed an increase in cell proliferation (p<0.05) and an enhanced deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p<0.05). Calcium deposition was 1.5-fold greater in BM-MSC–derived osteoblasts (p<0.05). The immunofluorescence related to the deposition of bone matrix proteins and calcium showed their colocalization to the cell-rich areas for both types of MSC-derived osteoblast. Alkaline phosphatase activity increased nearly 2-fold (p<0.001) and its protein content was 1.2-fold higher in osteoblasts derived from BM-MSCs. The quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis revealed up-regulated transcription specific for bone sialoprotein, osteopontin, osteonectin, and Runx2, but at a higher level for cells differentiated from BM-MSCs. All together these results suggest that PEMF promotion of bone extracellular matrix deposition is more efficient in osteoblasts differentiated from BM-MSCs. PMID:23914335

  19. Quantification of various growth factors in different demineralized bone matrix preparations.

    PubMed

    Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G

    2007-05-01

    Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.

  20. Stem cells and bone diseases: new tools, new perspective.

    PubMed

    Riminucci, Mara; Remoli, Cristina; Robey, Pamela G; Bianco, Paolo

    2015-01-01

    Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix that they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. This article is part of a Special Issue entitled Stem cells and Bone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  2. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model.

    PubMed

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo . The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  3. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis.

    PubMed

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone(®) (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone(®), while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone(®) showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone(®) appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone(®) also in humans.

  4. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis

    PubMed Central

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone® (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone®, while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone® showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone® appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone® also in humans. PMID:22745551

  5. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution.

    PubMed

    He, Gen; Gajjeraman, Sivakumar; Schultz, David; Cookson, David; Qin, Chunlin; Butler, William T; Hao, Jianjun; George, Anne

    2005-12-13

    Bone and dentin biomineralization are well-regulated processes mediated by extracellular matrix proteins. It is widely believed that specific matrix proteins in these tissues modulate nucleation of apatite nanoparticles and their growth into micrometer-sized crystals via molecular recognition at the protein-mineral interface. However, this assumption has been supported only circumstantially, and the exact mechanism remains unknown. Dentin matrix protein 1 (DMP1) is an acidic matrix protein, present in the mineralized matrix of bone and dentin. In this study, we have demonstrated using synchrotron small-angle X-ray scattering that DMP1 in solution can undergo oligomerization and temporarily stabilize the newly formed calcium phosphate nanoparticle precursors by sequestering them and preventing their further aggregation and precipitation. The solution structure represents the first low-resolution structural information for DMP1. Atomic force microscopy and transmission electron microscopy studies further confirmed that the nascent calcium phosphate nuclei formed in solution were assembled into ordered protein-mineral complexes with the aid of oligomerized DMP1, recombinant and native. This study reveals a novel mechanism by which DMP1 might facilitate initiation of mineral nucleation at specific sites during bone and dentin mineralization and prevent spontaneous calcium phosphate precipitation in areas in which mineralization is not desirable.

  6. Bone augmentation at peri-implant dehiscence defects comparing a synthetic polyethylene glycol hydrogel matrix vs. standard guided bone regeneration techniques.

    PubMed

    Thoma, Daniel S; Jung, Ui-Won; Park, Jin-Young; Bienz, Stefan P; Hüsler, Jürg; Jung, Ronald E

    2017-07-01

    The aim of the study was to test whether or not the use of a polyethylene glycol (PEG) hydrogel with or without the addition of an arginylglycylaspartic acid (RGD) sequence applied as a matrix in combination with hydroxyapatite/tricalciumphosphate (HA/TCP) results in similar peri-implant bone regeneration as traditional guided bone regeneration procedures. In 12 beagle dogs, implant placement and peri-implant bone regeneration were performed 2 months after tooth extraction in the maxilla. Two standardized box-shaped defects were bilaterally created, and dental implants were placed in the center of the defects with a dehiscence of 4 mm. Four treatment modalities were randomly applied: i)HA/TCP mixed with a synthetic PEG hydrogel, ii)HA/TCP mixed with a synthetic PEG hydrogel supplemented with an RGD sequence, iii)HA/TCP covered with a native collagen membrane (CM), iv)and no bone augmentation (empty). After a healing period of 8 or 16 weeks, micro-CT and histological analyses were performed. Histomorphometric analysis revealed a greater relative augmented area for groups with bone augmentation (43.3%-53.9% at 8 weeks, 31.2%-42.8% at 16 weeks) compared to empty controls (22.9% at 8 weeks, 1.1% at 16 weeks). The median amount of newly formed bone was greatest in group CM at both time-points. Regarding the first bone-to-implant contact, CM was statistically significantly superior to all other groups at 8 weeks. Bone can partially be regenerated at peri-implant buccal dehiscence defects using traditional guided bone regeneration techniques. The use of a PEG hydrogel applied as a matrix mixed with a synthetic bone substitute material might lack a sufficient stability over time for this kind of defect. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation.

    PubMed

    Wieland, D C F; Krywka, C; Mick, E; Willumeit-Römer, R; Bader, R; Kluess, D

    2015-10-01

    In the present paper we have investigated the impact of electro stimulation on microstructural parameters of the major constituents of bone, hydroxyapatite and collagen. Therapeutic approaches exhibit an improved healing rate under electric fields. However, the underlying mechanism is not fully understood so far. In this context one possible effect which could be responsible is the inverse piezo electric effect at bone structures. Therefore, we have carried out scanning X-ray microdiffraction experiments, i.e. we recorded X-ray diffraction data with micrometer resolution using synchrotron radiation from trabecular bone samples in order to investigate how the bone matrix reacts to an applied electric field. Different samples were investigated, where the orientation of the collagen matrix differed with respect to the applied electric field. Our experiments aimed to determine whether the inverse piezo electric effect could have a significant impact on the improved bone regeneration owing to electrostimulative therapy. Our data suggest that strain is in fact induced in bone by the collagen matrix via the inverse piezo electric effect which occurs in the presence of an adequately oriented electric field. The magnitude of the underlying strain is in a range where bone cells are able to detect it. In our study we report on the piezoelectric effect in bone which was already discovered and explored on a macro scale in the 1950. Clinical approaches utilize successfully electro stimulation to enhance bone healing but the exact mechanisms taking place are still a matter of debate. We have measured the stress distribution with micron resolution in trabecular bone to determine the piezo electric induced stress. Our results show that the magnitude of the induced stress is big enough to be sensed by cells and therefore, could be a trigger for bone remodeling and growth. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Bioactive composites with designed interfaces

    NASA Astrophysics Data System (ADS)

    Orefice, Rodrigo Lambert

    Bioactive glasses can bond to bone and even soft tissue. However, they are usually weak, brittle and hard to process in specific shapes. The goal of this work is to produce polymer composites having bioactive materials as a reinforcing phase that would display both bioactive behavior and mechanical properties compatible to bone. Polysulfone and bioactive glass particulate were combined in composites with different volume fractions. Composites with 40 vol.% of particulate were submitted to in vitro tests in simulated body fluids. The recorded rates of hydroxy-carbonate-apatite layer deposition were close to the ones observed for pure bioactive glasses. Mechanical properties showed values of elastic modulus, strain at failure and strength within the range of cortical bone for composites with high volume fraction of particles. Fibers can usually favor higher levels of reinforcement in composites than particles. Novel multicomponent fibers were prepared by using the sol-gel method. They were determined to be bioactive in vitro and were successfully used as a reinforcing phase in polysulfone composites. Properties of the bioactive composites were modified by altering the chemistry and structure of the interfaces. Polymers with sulfonic acid and silane groups were specially designed to interact with both the silica surface and the polymer matrix. Nano-composites with a structure and chemistry in between the macrocomponents of the composite were prepared by combining a silanated polymer and silica sol-gel. When applied as interfacial agents, these nano-composites as well as the modified polymers improved the overall properties of the bioactive system. A decay in mechanical properties was observed for composites submitted to an in vitro test. The developed interfacial agents successfully reduced the degree of degradation in properties. Interactions occurring at the interfaces of bioactive composites were studied using Atomic Force Microscopy (AFM). The effect of the structure and chemistry of interfaces was correlated to physical and chemical processes occurring at the interfaces and to the overall properties of composites.

  9. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    PubMed

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.

  10. Transcription Factor Erg Variants and Functional Diversification of Chondrocytes during Limb Long Bone Development

    PubMed Central

    Iwamoto, Masahiro; Higuchi, Yoshinobu; Koyama, Eiki; Enomoto-Iwamoto, Motomi; Kurisu, Kojiro; Yeh, Helena; Abrams, William R.; Rosenbloom, Joel; Pacifici, Maurizio

    2000-01-01

    During limb development, chondrocytes located at the epiphyseal tip of long bone models give rise to articular tissue, whereas the more numerous chondrocytes in the shaft undergo maturation, hypertrophy, and mineralization and are replaced by bone cells. It is not understood how chondrocytes follow these alternative pathways to distinct fates and functions. In this study we describe the cloning of C-1-1, a novel variant of the ets transcription factor ch-ERG. C-1-1 lacks a short 27–amino acid segment located ∼80 amino acids upstream of the ets DNA binding domain. We found that in chick embryo long bone anlagen, C-1-1 expression characterizes developing articular chondrocytes, whereas ch-ERG expression is particularly prominent in prehypertrophic chondrocytes in the growth plate. To analyze the function of C-1-1 and ch-ERG, viral vectors were used to constitutively express each factor in developing chick leg buds and cultured chondrocytes. We found that virally driven expression of C-1-1 maintained chondrocytes in a stable and immature phenotype, blocked their maturation into hypertrophic cells, and prevented the replacement of cartilage with bone. It also induced synthesis of tenascin-C, an extracellular matrix protein that is a unique product of developing articular chondrocytes. In contrast, virally driven expression of ch-ERG significantly stimulated chondrocyte maturation in culture, as indicated by increases in alkaline phosphatase activity and deposition of a mineralized matrix; however, it had modest effects in vivo. The data show that C-1-1 and ch-ERG have diverse biological properties and distinct expression patterns during skeletogenesis, and are part of molecular mechanisms by which limb chondrocytes follow alternative developmental pathways. C-1-1 is the first transcription factor identified to date that appears to be instrumental in the genesis and function of epiphyseal articular chondrocytes. PMID:10893254

  11. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

    PubMed

    Martins, Ana M; Pham, Quynh P; Malafaya, Patrícia B; Raphael, Robert M; Kasper, F Kurtis; Reis, Rui L; Mikos, Antonios G

    2009-08-01

    This work proposes the use of nonporous, smart, and stimulus responsive chitosan-based scaffolds for bone tissue engineering applications. The overall vision is to use biodegradable scaffolds based on chitosan and starch that present properties that will be regulated by bone regeneration, with the capability of gradual in situ pore formation. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan-based materials with the main objective of controlling and tailoring their degradation profile as a function of immersion time. To confirm the concept, degradation tests with a lysozyme concentration similar to that incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as a function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity ( approximately 5-55% up to 21 days) resulting in porous three-dimensional structures with interconnected pores. Additional studies investigated the influence of a CaP biomimetic coating on osteogenic differentiation of rat marrow stromal cells (MSCs) and showed enhanced differentiation of rat MSCs seeded on the CaP-coated chitosan-based scaffolds with lysozyme incorporated. At all culture times, CaP-coated chitosan-based scaffolds with incorporated lysozyme demonstrated greater osteogenic differentiation of MSCs, bone matrix production, and mineralization as demonstrated by calcium deposition measurements, compared with controls (uncoated scaffolds). The ability of these CaP-coated chitosan-based scaffolds with incorporated lysozyme to create an interconnected pore network in situ coupled with the demonstrated positive effect of these scaffolds upon osteogenic differentiation of MSCs and mineralized matrix production illustrates the strong potential of these scaffolds for application in bone tissue engineering strategies.

  12. "Processing and Mechanical Properties of NiTi-Nb Porous Structures with Microchannels"

    NASA Astrophysics Data System (ADS)

    Bewerse, Catherine Nicole

    Nickel-Titanium alloys are able to recover high amounts of strain (~5-8%) through a reversible phase transformation. This shape recovery, and its accompanying toughness and high yield strength, make the material attractive for biomedical, actuation, and energy absorption applications. Porous structures made out of NiTi are particularly interesting, as the mechanical properties can be tailored close to that of bone. While various methods exist to create NiTi porous structures, many are limited by pore interconnectivity, pore geometry and spatial arrangement, or undesirable formation of intermetallics. In this dissertation, we present three different processing methods to fabricate NiTi(Nb) porous structures with 3D fully interconnected microchannels. These structures have controllable volume fraction, orientation, and spatial distribution of the microchannels. In addition, we characterize the NiTi-Nb eutectic material used to bond the porous structures and investigate the strain field and stress concentrations around a model pore though Digital Image Correlation (DIC) and FEM. We first present a method using hot isostatic pressing (HIPing) with a steel wire scaffold to create a structure with a 60% volume fraction of a regular 3D network of orthogonally interconnected microchannels. This structure exhibited an effective stiffness similar to cortical bone, but exhibited brittle fracture at a relatively low strength, implying poor NiTi powder bonding. This prompted the use of liquid phase sintering instead of HIPing in our second method, where a quasi-binary NiTi-Nb eutectic was used to bond the NiTi powders. The resulting structure contained 34% channel porosity with 16% matrix porosity due to void consolidation and a clearly defined 3D network of interconnected microchannels with circular cross sections. In an effort to simplify the processing of these NiTi-Nb structures and enable scalability, the final method presented employs slip casting with and without magnesium spaceholders combined with liquid phase sintering. This pressure-less processing method makes costly HIPing equipment unnecessary, with a single multi-step heat treatment in which binders and spaceholder are removed and the NiTi powder matrix is bonded. These structures have excellent shape memory properties, high toughness, and low stiffnesses between trabecular and cortical bone. The high-aspect ratio microchannels create anisotropic mechanical properties, which are also explored.

  13. Vascular Spaces in Compact Bone: A Technique to Correct a Common Misinterpretation of Structure

    ERIC Educational Resources Information Center

    Locke, M.; Dean, Rob L.

    2003-01-01

    Old bones are often discolored by the grime that infiltrates spaces in the matrix once occupied by blood vessels. This suggested that allowing dry bone to absorb colorants might be a useful way to show the three dimensional complexity of bone vascularization. The authors have developed a simple way to show blood vessels spaces in bone at a glance…

  14. An Immunohistochemical Study of Matrix Proteins in the Craniofacial Cartilage in Midterm Human Fetuses

    PubMed Central

    Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.

    2013-01-01

    Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192

  15. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    PubMed

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  16. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis

    PubMed Central

    Lorenz-Depiereux, Bettina; Bastepe, Murat; Benet-Pagès, Anna; Amyere, Mustapha; Wagenstaller, Janine; Müller-Barth, Ursula; Badenhoop, Klaus; Kaiser, Stephanie M; Rittmaster, Roger S; Shlossberg, Alan H; Olivares, José L; Loris, César; Ramos, Feliciano J; Glorieux, Francis; Vikkula, Miikka; Jüppner, Harald; Strom, Tim M

    2018-01-01

    Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression. PMID:17033625

  17. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis.

    PubMed

    Lorenz-Depiereux, Bettina; Bastepe, Murat; Benet-Pagès, Anna; Amyere, Mustapha; Wagenstaller, Janine; Müller-Barth, Ursula; Badenhoop, Klaus; Kaiser, Stephanie M; Rittmaster, Roger S; Shlossberg, Alan H; Olivares, José L; Loris, César; Ramos, Feliciano J; Glorieux, Francis; Vikkula, Miikka; Jüppner, Harald; Strom, Tim M

    2006-11-01

    Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression.

  18. Identification of Pyridinoline Trivalent Collagen Cross-Links by Raman Microspectroscopy.

    PubMed

    Gamsjaeger, Sonja; Robins, Simon P; Tatakis, Dimitris N; Klaushofer, Klaus; Paschalis, Eleftherios P

    2017-06-01

    Intermolecular cross-linking of bone collagen is intimately related to the way collagen molecules are arranged in a fibril, imparts certain mechanical properties to the fibril, and may be involved in the initiation of mineralization. Raman microspectroscopy allows the analysis of minimally processed bone blocks and provides simultaneous information on both the mineral and organic matrix (mainly type I collagen) components, with a spatial resolution of ~1 μm. The aim of the present study was to validate Raman spectroscopic parameters describing one of the major mineralizing type I trivalent cross-links, namely pyridinoline (PYD). To achieve this, a series of collagen cross-linked peptides with known PYD content (as determined by HPLC analysis), human bone, porcine skin, predentin and dentin animal model tissues were analyzed by Raman microspectroscopy. The results of the present study confirm that it is feasible to monitor PYD trivalent collagen cross-links by Raman spectroscopic analysis in mineralized tissues, exclusively through a Raman band ~1660 wavenumbers. This allows determination of the relative PYD content in undecalcified bone tissues with a spatial resolution of ~1 μm, thus enabling correlations with histologic and histomorphometric parameters.

  19. Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.

    2011-04-01

    As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.

  20. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on β-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro.

    PubMed

    An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin

    2015-05-01

    The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.

  1. Postextraction socket preservation using epithelial connective tissue graft vs porcine collagen matrix. 1-year results of a randomised controlled trial.

    PubMed

    Meloni, Silvio Mario; Tallarico, Marco; Lolli, Francesco Maria; Deledda, Alessandro; Pisano, Milena; Jovanovic, Sascha A

    2015-01-01

    To compare epithelial connective tissue graft vs porcine collagen matrix for sealing postextraction sockets grafted with deproteinised bovine bone. A total of 30 patients, who needed a maxillary tooth to be extracted between their premolars and required a delayed, fixed, single implant-supported restoration, had their teeth atraumatically extracted and their sockets grafted with deproteinised bovine bone. Patients were randomised according to a parallel group design into two arms: socket sealing with epithelial connective tissue graft (group A) vs porcine collagen matrix (group B). Outcome measures were: implant success and survival rate, complications, horizontal and vertical alveolar bone dimensional changes measured on Cone Beam computed tomography (CBCT) scans at three levels localised 1, 3, and 5 mm below the most coronal aspect of the bone crest (levels A, B, and C); and between the palatal and buccal wall peaks (level D); and peri-implant marginal bone level changes measured on periapical radiographs. 15 patients were randomised to group A and 15 to group B. No patients dropped out. No failed implants or complications were reported 1 year after implant placement. Five months after tooth extraction there were no statistically significant differences between the 2 groups for both horizontal and vertical alveolar bone dimensional changes. At level A the difference was 0.13 ± 0.18; 95% CI 0.04 to 0.26 mm (P = 0.34), at level B it was 0.08 ± 0.23; 95% CI -0.14 to 0.14 (P = 0.61), at level C it was 0.05 ± 0.25; 95% CI -0.01 to 0.31 mm (P = 0.55) and at level D it was 0.13 ± 0.27; 95% CI -0.02 to 0.32 mm (P = 0.67). One year after implant placement there were no statistically significant differences between the 2 groups for peri-implant marginal bone level changes (difference: 0.07 ± 0.11 mm; 95% CI -0.02 to 0.16; P = 0.41). When teeth extractions were performed atraumatically and sockets were filled with deproteinised bovine bone, sealing the socket with a porcine collagen matrix or a epithelial connective tissue graft showed similar outcomes. The use of porcine collagen matrix allowed simplification of treatment because no palatal donor site was involved.

  2. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions.

    PubMed

    Kang, James; An, Howard; Hilibrand, Alan; Yoon, S Tim; Kavanagh, Eoin; Boden, Scott

    2012-05-20

    Prospective multicenter randomized clinical trail. The goal of our 2-year prospective study was to perform a randomized clinical trial comparing the outcomes of Grafton demineralized bone matrix (DBM) Matrix with local bone with that of iliac crest bone graft (ICBG) in a single-level instrumented posterior lumbar fusion. There has been extensive research and development in identifying a suitable substitute to replace autologous ICBG that is associated with known morbidities. DBMs are a class of commercially available grafting agents that are prepared from allograft bone. Many such products have been commercially available for clinical use; however, their efficacy for spine fusion has been mostly based on anecdotal evidence rather than randomized controlled clinical trials. Forty-six patients were randomly assigned (2:1) to receive Grafton DBM Matrix with local bone (30 patients) or autologous ICBG (16 patients). The mean age was 64 (females [F] = 21, males [M] = 9) in the DBM group and 65 (F = 9, M = 5) in the ICBG group. An independent radiologist evaluated plain radiographs and computed tomographic scans at 6-month, 1-year, and 2-year time points. Clinical outcomes were measured using Oswestry Disability Index (ODI) and Medical Outcomes Study 36-Item Short Form Health Survey. Forty-one patients (DBM = 28 and ICBG = 13) completed the 2-year follow-up. Final fusion rates were 86% (Grafton Matrix) versus 92% (ICBG) (P = 1.0 not significant). The Grafton group showed slightly better improvement in ODI score than the ICBG group at the final 2-year follow-up (Grafton [16.2] and ICBG [22.7]); however, the difference was not statistically significant (P = 0.2346 at 24 mo). Grafton showed consistently higher physical function scores at 24 months; however, differences were not statistically significant (P = 0.0823). Similar improvements in the physical component summary scores were seen in both the Grafton and ICBG groups. There was a statistically significant greater mean intraoperative blood loss in the ICBG group than in the Grafton group (P < 0.0031). At 2-year follow-up, subjects who were randomized to Grafton Matrix and local bone achieved an 86% overall fusion rate and improvements in clinical outcomes that were comparable with those in the ICBG group.

  3. Uncarboxylated Osteocalcin and Gprc6a Axis Produce Intratumoral Androgens in Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2015-03-01

    interacts with bone extracellular matrix associated calcium and hydroxyapatite and deposited in the bone matrix. Some Osteocalcin is released into...fluorescence protein as control) Osteocalcin and mutant Osteocalcin using lentivirus mediated stable infections. 2. Determined the gene expression of Gprc61... used a lentiviral system for expressing Osteocalcin and mutated Osteocalcin. Osteocalcin is mutated at three positions where glutamic acid residue at

  4. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  5. Pro416Arg cherubism mutation in Sh3bp2 knock-in mice affects osteoblasts and alters bone mineral and matrix properties

    PubMed Central

    Wang, Chiachien J.; Chen, I-Ping; Koczon-Jaremko, Boguslawa; Boskey, Adele L.; Ueki, Yasuyoshi; Kuhn, Liisa; Reichenberger, Ernst J.

    2010-01-01

    Cherubism is an autosomal dominant disorder in children characterized by unwarranted symmetrical bone resorption of the jaws with fibrous tissue deposition. Mutations causing cherubism have been identified in the adaptor protein SH3BP2. Knock-in mice with a Pro416Arg mutation in Sh3bp2 exhibit a generalized osteoporotic bone phenotype. In this study, we examined the effects of this “cherubism” mutation on spectroscopic indices of “bone quality” and on osteoblast differentiation. Fourier-transform infrared imaging (FTIRI) analysis of femurs from wild-type and Sh3bp2 knock-in mice showed decreased mineral content, decreased mineral crystallinity/crystal size, and increased collagen maturity in homozygous mutants. To assess osteoblast maturation in vivo, knock-in mice were crossed with transgenic mice over-expressing GFP driven by 3.6-kb or 2.3-kb Col1a1 promoter fragments. Reduced numbers of mature osteoblasts were observed in homozygous mice. Neonatal calvarial cultures, which were enriched for osteoblasts by depletion of hematopoietic cells (negative selection for Ter119- and CD45-positive cells) were investigated for osteoblast-specific gene expression and differentiation, which demonstrated that differentiation and mineralization in homozygous osteoblast cultures was impaired. Co-cultures with calvarial osteoblasts and bone marrow macrophages showed that mutant osteoblasts appear to increase osteoclastogenesis resulting in increased bone resorption on bone chips. In summary, the Sh3bp2 mutation in cherubism mice alters bone quality, reduces osteoblast function, and may contribute to excessive bone resorption by osteoclasts. Our data, together with previous osteoclast studies, demonstrate a critical role of Sh3bp2 in bone remodeling and osteoblast differentiation. PMID:20117257

  6. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements.

    PubMed

    Pahlevanzadeh, F; Bakhsheshi-Rad, H R; Hamzah, E

    2018-06-01

    In this study, a bone cement consisting of poly methyl methacrylate (PMMA)-poly caprolactone (PCL)-fluorapatite (FA)-graphene oxide (GO) was synthesized as bone filler for application in orthopedic surgeries. The FA and GO particulates were homogenously distributed in the PMMA-PCL polymer matrix and no defects and agglomeration were found in the PMMA-PCL/FA/GO bone cement. The in-vitro bioactivity result exhibited that addition of FA and GO to the polymer cement (PMMA-PCL) improved the apatite formation ability on the surface of polymer. The results also showed that addition of FA to the polymer bone cement escalated the compressive strength and elastic modulus while reducing elongation to 8 ± 2%. However, after addition of GO into the PMMA-PCL/FA bone cement, both compressive strength and elongation considerably increased to 101 ± 5 MPa and 35 ± 6%, respectively. Furthermore, tensile tests exhibited that inclusion of GO was favorable in improving the tensile modulus, UTS and elongation of the PMMA-PCL/FA bone cement. The cytotoxicity test pointed out that MG63 osteoblast cells viability increased to 279 ± 15% after addition of FA and GO to the PMMA-PCL polymer bone cement. The DAPI (4',6-diamidino-2-phenylindole) staining demonstrated better spreading and attachment of MG63 cells on PMMA-PCL/FA/GO surface compared to the PMMA-PCL bone cements. These results confirm the suitable mechanical properties and favorable bioactivity along with high cells viability of PMMA-PCL/FA/GO bone cement, indicating its potentials for orthopedic applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES

    PubMed Central

    Karim, Lamya; Diab, Tamim; Vashishth, Deepak

    2015-01-01

    Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375

  8. The role of bone sialoprotein in the tendon-bone insertion.

    PubMed

    Marinovich, Ryan; Soenjaya, Yohannes; Wallace, Gregory Q; Zuskov, Andre; Dunkman, Andrew; Foster, Brian L; Ao, Min; Bartman, Kevin; Lam, Vida; Rizkalla, Amin; Beier, Frank; Somerman, Martha J; Holdsworth, David W; Soslowsky, Louis J; Lagugné-Labarthet, François; Goldberg, Harvey A

    2016-01-01

    Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp(-/-) mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp(-/-) mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp(-/-) patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, Picrosirius Red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp(-/-) mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone. Copyright © 2016 International Society of Matrix Biology. All rights reserved.

  9. Oleic acid surfactant in polycaprolactone/hydroxyapatite-composites for bone tissue engineering.

    PubMed

    Cardoso, Guinea B C; Maniglio, Devid; Volpato, Fabio Z; Tondon, Abhishek; Migliaresi, Claudio; Kaunas, Roland R; Zavaglia, Cecilia A C

    2016-08-01

    Bone substitutes are required to repair osseous defects caused by a number of factors, such as traumas, degenerative diseases, and cancer. Autologous bone grafting is typically used to bridge bone defects, but suffers from chronic pain at the donor-site and limited availability of graft material. Tissue engineering approaches are being investigated as viable alternatives, which ideal scaffold should be biocompatible, biodegradable, and promote cellular interactions and tissue development, need to present proper mechanical and physical properties. In this study, poly(ε-caprolactone) (PCL), oleic acid (OA) and hydroxyapatite (HAp) were used to obtain films whose properties were investigated by contact angle, scanning electron microscopy, atomic force microscopy, tensile mechanical tests, and in vitro tests with U2OS human osteosarcoma cells by direct contact. Our results indicate that by using OA as surfactant/dispersant, it was possible to obtain a homogenous film with HAp. The PCL/OA/Hap sample had twice the roughness of the control (PCL) and a lower contact angle, indicating increased hydrophilicity of the film. Furthermore, mechanical testing showed that the addition of HAp decreased the load at yield point and tensile strength and increased tensile modulus, indicating a more brittle composition vs. PCL matrix. Preliminary cell culture experiments carried out with the films demonstrated that U2OS cells adhered and proliferated on all surfaces. The data demonstrate the improved dispersion of HAp using OA and the important consequences of this addition on the composite, unveiling the potentially of this composition for bone growth support. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1076-1082, 2016. © 2015 Wiley Periodicals, Inc.

  10. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The NH2-terminal and COOH-terminal fragments of dentin matrix protein 1 (DMP1) localize differently in the compartments of dentin and growth plate of bone.

    PubMed

    Maciejewska, Izabela; Cowan, Cameron; Svoboda, Kathy; Butler, William T; D'Souza, Rena; Qin, Chunlin

    2009-02-01

    Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.

  12. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  13. Influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a bovine bone biomaterial and provisions for guided tissue regeneration: an experimental study in the dog.

    PubMed

    Stavropoulos, Andreas; Wikesjö, Ulf M E

    2010-06-01

    To evaluate the influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a deproteinized bovine bone/collagen matrix under provisions for guided tissue regeneration. Contra-lateral one-wall intrabony [6 x 6 mm (wide/deep) versus 4 x 4 mm (narrow/shallow)] periodontal defects were surgically created at the edentulated mesial aspect of the mandibular first molars in three Labradors, i.e., three defects in each category. The defects were implanted with the bovine bone/collagen matrix and covered with a collagen membrane. Histologic/histometric analysis followed an 18-month healing interval. New cementum encompassed the entire intrabony component in both wide/deep (5.6 +/- 0.5 mm) and narrow/shallow (4.2 +/- 0.1 mm) defects; bone formation amounted to 5.6 +/- 0.6 and 4.0 +/- 0.8 mm, respectively. Mineralized bone encompassed 57.5%versus 65% and the bone biomaterial 11.6%versus 13.1% of the defect space. A periodontal ligament with a width and composition similar to that of the resident periodontal ligament encompassing the entire aspect of the defects was observed. Root resorption/ankylosis was rare. Both wide/deep and narrow/shallow intrabony defects showed a substantial potential for periodontal regeneration in this pre-clinical model. The contribution of the bovine bone/collagen matrix and guided tissue regeneration to this regenerative potential is not clear.

  14. The influence of phosphorylation and freezing temperature on the mechanical properties of hydroxyapatite/chitosan composite as bone scaffold biomaterial

    NASA Astrophysics Data System (ADS)

    Albab, Muh Fadhil; Giovani, Nicholas; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska; Whulanza, Yudan

    2018-02-01

    Biomaterials composite of hydroxyapatite/chitosan is a preeminent material for medical applications including bone scaffold. To improve its mechanical properties, the chitosan as the matrix needs to be modified with particular chemical agents. One of the methods is phosphorylation of chitosan by using orthophosphoric acid prior to the biomaterials fabrication. In the current study, biomaterials with the weight composition of 70% hydroxyapatite (HA) and 30% phosphorylated chitosan have been fabricated using thermally induced phase separation (TIPS) method with freezing temperature variation of -20, -30, -40 and -80°C prior to three day-freeze drying. The results obtained by this work showed that the highest compression modulus of 376.9 kPa, highest compressive strength of 38.4 kPa and biggest pore size of 48.24 µm were achieved in the freezing temperature of -20°C. In comparison to non-phosphorylated chitosan/hydroxyapatite, the modification of chitosan using orthophosphoric acid in this work has been found to increase the compressive strength of composite up to 5.5 times.

  15. Hierarchically engineered fibrous scaffolds for bone regeneration

    PubMed Central

    Sachot, Nadège; Castaño, Oscar; Mateos-Timoneda, Miguel A.; Engel, Elisabeth; Planell, Josep A.

    2013-01-01

    Surface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopographic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchically engineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular matrix. Based on the sol–gel method and a succession of surface treatments, hollow electrospun polylactic acid fibres were coated with a silicon–calcium–phosphate bioactive organic–inorganic glass. Compared with pure polymeric fibres that showed a completely smooth surface, the coated fibres exhibited a nanostructured topography and greater roughness. They also showed improved hydrophilic properties and a Young's modulus sixfold higher than non-coated ones, while remaining fully flexible and easy to handle. Rat mesenchymal stem cells cultured on these fibres showed great cellular spreading and interactions with the material. This protocol can be transferred to other structures and glasses, allowing the fabrication of various materials with well-defined features. This novel approach represents therefore a valuable improvement in the production of artificial matrices able to direct stem cell fate through physical and chemical interactions. PMID:23985738

  16. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  17. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing.

    PubMed

    Schrier, J A; Fink, B F; Rodgers, J B; Vasconez, H C; DeLuca, P P

    2001-10-07

    The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization, matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well, allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days, with the unembedded microspheres releasing faster than those embedded in CMC. In vivo, the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2/PLGA microspheres in CMC was an effective implantable protein-delivery system for use in bone repair.

  18. Comparative Analysis of Mouse-Induced Pluripotent Stem Cells and Mesenchymal Stem Cells During Osteogenic Differentiation In Vitro

    PubMed Central

    Kayashima, Hiroki; Miura, Jiro; Uraguchi, Shinya; Wang, Fangfang; Okawa, Hiroko; Sasaki, Jun-Ichi; Saeki, Makio; Matsumoto, Takuya; Yatani, Hirofumi

    2014-01-01

    Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and are, therefore, expected to be useful for bone regenerative medicine; however, the characteristics of iPSC-derived osteogenic cells remain unclear. Here, we provide a direct in vitro comparison of the osteogenic differentiation process in mesenchymal stem cells (MSCs) and iPSCs from adult C57BL/6J mice. After 30 days of culture in osteogenic medium, both MSCs and iPSCs produced robustly mineralized bone nodules that contained abundant calcium phosphate with hydroxyapatite crystal formation. Mineral deposition was significantly higher in iPSC cultures than in MSC cultures. Scanning electron microscopy revealed budding matrix vesicles in early osteogenic iPSCs; subsequently, the vesicles propagated to exhibit robust mineralization without rich fibrous structures. Early osteogenic MSCs showed deposition of many matrix vesicles in abundant collagen fibrils that became solid mineralized structures. Both cell types demonstrated increased expression of osteogenic marker genes, such as runx2, osterix, dlx5, bone sialoprotein (BSP), and osteocalcin, during osteogenesis; however, real-time reverse transcription–polymerase chain reaction array analysis revealed that osteogenesis-related genes encoding mineralization-associated molecules, bone morphogenetic proteins, and extracellular matrix collagens were differentially expressed between iPSCs and MSCs. These data suggest that iPSCs are capable of differentiation into mature osteoblasts whose associated hydroxyapatite has a crystal structure similar to that of MSC-associated hydroxyapatite; however, the transcriptional differences between iPSCs and MSCs could result in differences in the mineral and matrix environments of the bone nodules. Determining the biological mechanisms underlying cell-specific differences in mineralization during in vitro iPSC osteogenesis may facilitate the development of clinically effective engineered bone. PMID:24625139

  19. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications.

    PubMed

    Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries

    PubMed Central

    Hernandez-Hurtado, Adelina A.; Lara-Arias, Jorge; Romero-Diaz, Viktor J.; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F.; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G.; Espinoza-Juarez, Marcela A.; Mendoza Lemus, Oscar F.

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology. PMID:27818692

  1. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing

    PubMed Central

    Zhu, Chenyuan; Lv, Yuting; Qian, Chao; Qian, Haixin; Jiao, Ting; Wang, Liqiang; Zhang, Fuqiang

    2016-01-01

    The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration. PMID:27958394

  2. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone.

    PubMed

    Chappard, D; Bizot, P; Mabilleau, G; Hubert, L

    2016-06-01

    Several decades ago, aluminum encephalopathy associated with osteomalacia has been recognized as the major complication of chronic renal failure in dialyzed patients. Removal of aluminum from the dialysate has led to a disappearance of the disease. However, aluminum deposit occurs in the hydroxyapatite of the bone matrix in some clinical circumstances that are presented in this review. We have encountered aluminum in bone in patients with an increased intestinal permeability (coeliac disease), or in the case of prolonged administration of aluminum anti-acid drugs. A colocalisation of aluminum with iron was also noted in cases of hemochromatosis and sickle cell anemia. Aluminium was also identified in a series of patients with exostosis, a frequent benign bone tumor. Corrosion of prosthetic implants composed of grade V titanium (TA6V is an alloy containing 6% aluminum and 4% vanadium) was also observed in a series of hip or knee revisions. Aluminum can be identified in undecalcified bone matrix stained by solochrome azurine, a highly specific stain allowing the detection of 0.03 atomic %. Colocalization of aluminum and iron does not seem to be the fruit of chance but the cellular and molecular mechanisms are still poorly understood. Histochemistry is superior to spectroscopic analyses (EDS and WDS in scanning electron microscopy). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Biomechanical properties of 3D-printed bone scaffolds are improved by treatment with CRFP.

    PubMed

    Helguero, Carlos G; Mustahsan, Vamiq M; Parmar, Sunjit; Pentyala, Sahana; Pfail, John L; Kao, Imin; Komatsu, David E; Pentyala, Srinivas

    2017-12-22

    One of the major challenges in orthopedics is to develop implants that overcome current postoperative problems such as osteointegration, proper load bearing, and stress shielding. Current implant techniques such as allografts or endoprostheses never reach full bone integration, and the risk of fracture due to stress shielding is a major concern. To overcome this, a novel technique of reverse engineering to create artificial scaffolds was designed and tested. The purpose of the study is to create a new generation of implants that are both biocompatible and biomimetic. 3D-printed scaffolds based on physiological trabecular bone patterning were printed. MC3T3 cells were cultured on these scaffolds in osteogenic media, with and without the addition of Calcitonin Receptor Fragment Peptide (CRFP) in order to assess bone formation on the surfaces of the scaffolds. Integrity of these cell-seeded bone-coated scaffolds was tested for their mechanical strength. The results show that cellular proliferation and bone matrix formation are both supported by our 3D-printed scaffolds. The mechanical strength of the scaffolds was enhanced by trabecular patterning in the order of 20% for compression strength and 60% for compressive modulus. Furthermore, cell-seeded trabecular scaffolds modulus increased fourfold when treated with CRFP. Upon mineralization, the cell-seeded trabecular implants treated with osteo-inductive agents and pretreated with CRFP showed a significant increase in the compressive modulus. This work will lead to creating 3D structures that can be used in the replacement of not only bone segments, but entire bones.

  4. Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model

    PubMed Central

    Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-01-01

    Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p < 0.05). On comparing the change of bone mineral density the bone ingrowth surface area among the 4 groups, there were no statistically significant differences among the groups found for any period (p > 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite cylinder showed better results for the sustained morphology. PMID:20514266

  5. Human fetal bone cells in delivery systems for bone engineering.

    PubMed

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  7. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    NASA Astrophysics Data System (ADS)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility of various HA/bioresorbable polymer composites are described through the use of cell cultures run in collaboration with a research group specializing in immunology.

  8. Physicomechanical, In Vitro and In Vivo Performance of 3D Printed Doped Tricalcium Phosphate Scaffolds for Bone Tissue Engineering and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Tarafder, Solaiman

    Although tricalcium phosphate (TCP) is widely used in bone tissue engineering, the strength degradation kinetics is not well controlled. This study focuses on the underlying mechanism of strength degradation kinetics by incorporating trace elements in TCP. The objective of this research is to modify the mechanical properties of TCP to achieve the desired degradation rate for the specific need, and improve the in vivo bioactivity for early wound healing by incorporating trace elements such as strontium (Sr2+), magnesium (Mg2+) and silicon (Si4+) as dopants. The hypothesis of this research is that the presence of different trace elements in TCP will influence its phase stability, microstructure, mechanical strength, and both in vitro and in vivo bioactivity. Direct three dimensional printing (3DP) was used to fabricate designed interconnected macroporous pure and doped TCP scaffolds. Microwave sintering as opposed to conventional sintering was also used for better densification and higher mechanical strength. A maximum compressive strength of 10.95 +/- 1.28 MPa and 12.01 +/- 1.56 MPa were achieved for pure and Sr2+-Mg2+ doped TCP scaffolds with 500 microm designed pores (˜400 microm after sintering) sintered in microwave furnace, respectively. Substitution of Mg2+ and Sr2+ into calcium (Ca2+) sites of TCP crystal lattice contributed to phase stability and controlled gradual degradation. On the other hand, Si4+ substitution into phosphorous (P5+) sites destabilized the crystal structure and accelerated degradation of TCP. Interconnected macroporous beta-TCP scaffolds facilitated in vivo guided bone tissue regeneration through infiltration of cells and extracellular matrix into the designed pores. Presence of Sr2+, Mg2+ and Si4+ into beta-TCP induced increased in vivo early bone formation and better bone remodeling through increased extracellular matrix production such as, collagen and osteocalcin, when tested in rat and rabbit distal femur model. The presence of Si4+ along with Mg 2+ induced increased new blood vessel formation. Our results exhibited that Sr2+, Mg2+ and Si4+ doped 3DP TCP scaffolds have strong potential in bone tissue engineering applications for early wound healing.

  9. Freeze Casting for Assembling Bioinspired Structural Materials.

    PubMed

    Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P

    2017-12-01

    Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Processing and evaluation of long fiber thermoplastic composite plates for internal fixation

    NASA Astrophysics Data System (ADS)

    Warren, Paul B.

    The metallic plates used in internal fracture fixation may have up to ten times the elastic modulus of normal bone tissue, causing stress shielding-induced osteopenia in healed bone that can lead to re-fracture after plate removal and prolonged and painful recovery. Thermoplastic polymer matrix composites reinforced with long carbon fiber are promising alternative materials for internal fixation plates because they may be produced with relative ease and be tailored to have specific mechanical properties, alleviating the stress shielding problem. Long carbon fiber-reinforced polyetheretherketone (LCF PEEK) plates were produced using the extrusion / compression molding process. Static flexural testing determined that LCF PEEK plates with rectangular cross-section had an average flexural modulus of 12 GPa, or 23% of the flexural modulus of a stainless steel plate. The LCF PEEK plates also experienced negligible (14.7%, 14.5%, and 16.7%) reductions in modulus after fatigue testing at applied moments of 2.5, 3.0, and 3.5 N•m, respectively, over 106 load cycles. Aging the plates in 0.9% NaCl solution for four and eight weeks caused 0.34% and 0.28% increases in plate mass, respectively. No significant decrease of flexural properties due to aging was detected. Differential scanning calorimetry (DSC) revealed the PEEK matrix of the plates to be 24.5% crystalline, which is lower than typical PEEK crystallinity values of 30-35%. Scanning electron microscopy (SEM) revealed three times as many fiber pullout areas in LCF PEEK fracture surfaces as in fracture surfaces of long carbon fiber-reinforced polyphenylenesulfide (LCF PPS), another plate material tested. DSC and SEM data suggest that improvements in processing conditions and fiber/matrix bonding, along with higher carbon fiber fractions, would enhance LCF PEEK plate performance. LCF PEEK remains a promising alternative to stainless steel for internal fixation plates.

  11. Dependence of Long Bone Flexural Properties on Bone Mineral Distribution

    NASA Technical Reports Server (NTRS)

    Katz, BethAnn; Cleek, Tammy M.; Whalen, Robert T.; Connolly, James P. (Technical Monitor)

    1995-01-01

    The objective of this study is to assess whether a non-invasive determination of long bone cross-sectional areal properties using bone densitometry accurately estimates true long bone flexural properties. In this study, section properties of two pairs of human female embalmed tibiae were compared using two methods: special analysis of bone densitometry data, and experimental determination of flexural regidities from bone surface strain measurements during controlled loading.

  12. Poly(caprolactone) based magnetic scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Bañobre-López, M.; Piñeiro-Redondo, Y.; De Santis, R.; Gloria, A.; Ambrosio, L.; Tampieri, A.; Dediu, V.; Rivas, J.

    2011-04-01

    Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagnetic iron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also observed. Energy loss (absorption) measurements under a radio-frequency applied magnetic field were performed in the resulting magnetic scaffolds and very promising heating properties were observed, making them very useful for potential biomedical applications.

  13. Complete horizontal skin cell resurfacing and delayed vertical cell infiltration into porcine reconstructive tissue matrix compared to bovine collagen matrix and human dermis.

    PubMed

    Mirastschijski, Ursula; Kerzel, Corinna; Schnabel, Reinhild; Strauss, Sarah; Breuing, Karl-Heinz

    2013-10-01

    Xenogenous dermal matrices are used for hernia repair and breast reconstruction. Full-thickness skin replacement is needed after burn or degloving injuries with exposure of tendons or bones. The authors used a human skin organ culture model to study whether porcine reconstructive tissue matrix (Strattice) is effective as a dermal tissue replacement. Skin cells or split-thickness skin grafts were seeded onto human deepidermized dermis, Strattice, and Matriderm. Cellular resurfacing and matrix infiltration were monitored by live fluorescence imaging, histology, and electron microscopy. Proliferation, apoptosis, cell differentiation, and adhesion were analyzed by immunohistochemistry. Epithelial resurfacing and vertical proliferation were reduced and delayed with both bioartificial matrices compared with deepidermized dermis; however, no differences in apoptosis, cell differentiation, or basement membrane formation were found. Vertical penetration was greatest on Matriderm, whereas no matrix infiltration was found on Strattice in the first 12 days. Uncompromised horizontal resurfacing was greatest with Strattice but was absent with Matriderm. Strattice showed no stimulatory effect on cellular inflammation. Matrix texture and surface properties governed cellular performance on tissues. Although dense dermal compaction delayed vertical cellular ingrowth for Strattice, it allowed uncompromised horizontal resurfacing. Dense dermal compaction may slow matrix decomposition and result in prolonged biomechanical stability of the graft. Reconstructive surgeons should choose the adequate matrix substitute depending on biomechanical requirements at the recipient site. Strattice may be suitable as a dermal replacement at recipient sites with high mechanical load requirements.

  14. Ultrasonic and electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto a titanium plasma-spray surface.

    PubMed

    Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; Cusella De Angelis, Maria Gabriella; Mazzini, Giuliano; Benazzo, Francesco; Magenes, Giovanni

    2009-06-01

    Several studies suggest that the surface coating of titanium could play an important role in bone tissue engineering. In the present study, we have followed a particular biomimetic strategy where ultrasonically or electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix on a titanium plasma-spray surface. In comparison with control conditions, the ultrasonic stimulation (average power, 149 mW; frequency, 1.5 MHz) and the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation, and increased surface coating with decorin, osteocalcin, osteopontin, and type I collagen together with higher incorporation of calcium and phosphorus inside the extracellular matrix. The immunofluorescence related to the preceding bone matrix proteins showed their colocalization in the cell-rich areas. The use of the two physical stimulations aimed at obtaining the coating of the rough titanium plasma-spray surface in terms of cell colonization and deposition of extracellular matrix. The superficially cultured biomaterial could be theoretically used, in clinical applications, as an implant for bone repair.

  15. An immunohistochemical and ultrastructural study of the pericellular matrix of uneroded hypertrophic chondrocytes in the mandibular condyle of aged c-src-deficient mice.

    PubMed

    Shibata, Shunichi; Baba, Otto; Oda, Tsuyoshi; Yokohama-Tamaki, Tamaki; Qin, Chunlin; Butler, William T; Sakakura, Yasunori; Takano, Yoshiro

    2008-03-01

    Previous studies indicate that hypertrophic chondrocytes can transdifferentiate or dedifferentiate and redifferentiate into bone cells during the endochondral bone formation. Mandibular condyle in aged c-src-deficient mice has incremental line-like striations consisting of cartilaginous and non-cartilaginous layers, and the former contains intact hypertrophic chondrocytes in uneroded lacunae. The purpose of this study is to determine the phenotype changes of uneroded hypertrophic chondrocytes. Immunohistochemical and ultrastructural examinations of the pericellular matrix of hypertrophic chondrocytes in the upper, middle, and lower regions of the mandibular condyle were conducted in aged c-src-deficient mice, using several antibodies of cartilage/bone marker proteins. Co-localisation of aggrecan, type I collagen, and dentin matrix protein-1 (DMP-1) or matrix extracellular phosphoprotein (MEPE) was detected in the pericellular matrix of the middle region. Ultrastructurally, granular substances in the pericellular matrix of the middle region were the remains of upper region chondrocytes, which were mixed with thick collagen fibrils. In the lower region, the width of the pericellular matrix and the amount of collagen fibrils were increased. Versican, type I collagen, DMP-1, and MEPE were detected in the osteocyte lacunae. Additionally, DMP-1 and MEPE were detected in the pericellular matrix of uneroded hypertrophic chondrocytes located in the lower, peripheral region of the mandibular condyle in younger c-src-deficient mice, but not in the aged wild-type mice. These results indicate that long-term survived, uneroded hypertrophic chondrocytes, at least in a part, acquire osteocytic characteristics.

  16. Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering.

    PubMed

    Ohgushi, Hajime

    2014-02-01

    In the human body, cells having self-renewal and multi-differentiation capabilities reside in many tissues and are called adult stem cells. In bone marrow tissue, two types of stem cells are well known: hematopoietic stem cells and mesenchymal stem cells (MSCs). Though the number of MSCs in bone marrow tissue is very low, it can be increased by in vitro culture of the marrow, and culture-expanded MSCs are available for various tissue regeneration. The culture-expanded MSCs can further differentiate into osteogenic cells such as bone forming osteoblasts by culturing the MSCs in an osteogenic medium. This paper discusses osteogenically differentiated MSCs derived from the bone marrow of patients. Importantly, the differentiation can be achieved on ceramic surfaces which demonstrate mineralized bone matrix formation as well as appearance of osteogenic cells. The cell/matrix/ceramic constructs could show immediate in vivo bone formation and are available for bone reconstruction surgery. Currently, MSCs are clinically available for the regeneration of various tissues due to their high proliferation/differentiation capabilities. However, the capabilities are still limited and thus technologies to improve or recover the inherent capabilities of MSCs are needed.

  17. Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing.

    PubMed

    Aravamudhan, Aja; Ramos, Daisy M; Nip, Jonathan; Kalajzic, Ivo; Kumbar, Sangamesh G

    2018-02-01

    Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Management of Distal Tibial Metaphyseal Bone Defects With an Intramedullary Nitinol Scaffold: A Novel Technique.

    PubMed

    Ford, Samuel E; Ellington, J Kent

    2017-08-01

    Difficult problems that are faced when reconstructing severe pilon fractures include filling metaphyseal defects and supporting an impacted, multifragmented articular surface. Supplements to plate fixation currently available in a surgeon's armamentarium include cancellous bone autograft, structural bone allograft, demineralized bone matrix, and calcium-based cements. Cancellous autograft possesses limited inherent mechanical stability and is associated with graft site morbidity. Structural allografts incorporate inconsistently and are plagued by late resorption. Demineralized bone matrix also lacks inherent structural stability. Calcium phosphate cements are not rigidly fixed to bone unless fixation is applied from cortical bone or through a plate, which must be taken into consideration when planning fixation. The Conventus DRS (Conventus Orthopaedics, Maple Grove, MN) implant is an expandable nitinol scaffold that takes advantage of the elasticity and shape memory of nitinol alloy. Once deployed and locked, it serves as a stable intramedullary base for fragment-specific periarticular fracture fixation, even in the face of metaphyseal bone loss. Two cases of successful implant use are presented. In both cases, the implant is used to fill a metaphyseal void and provide stable articular support to the distal tibial plafond. Therapeutic Level V: Case Report, Expert Opinion.

  19. Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering

    PubMed Central

    Frohbergh, Michael E.; Katsman, Anna; Botta, Gregory P.; Lazarovici, Phillip; Schauer, Caroline L.; Wegst, Ulrike G. K.; Lelkes, Peter I.

    2012-01-01

    Reconstruction of large bone defects remains problematic in orthopedic and craniofacial clinical practice. Autografts are limited in supply and are associated with donor site morbidity while other materials show poor integration with the host’s own bone. This lack of integration is often due to the absence of periosteum, the outer layer of bone that contains osteoprogenitor cells and is critical for the growth and remodeling of bone tissue. In this study we developed a one-step platform to electrospin nanofibrous scaffolds from chitosan, which also contain hydroxyapatite nanoparticles and are crosslinked with genipin. We hypothesized that the resulting composite scaffolds represent a microenvironment that emulates the physical, mineralized structure and mechanical properties of non-weight bearing bone extracellular matrix while promoting osteoblast differentiation and maturation similar to the periosteum. The ultrastructure and physicochemical properties of the scaffolds were studied using scanning electron microscopy and spectroscopic techniques. The average fiber diameters of the electrospun scaffolds were 227±154 nm as spun, and increased to 335±119 nm after crosslinking with genipin. Analysis by X-ray diffraction, Fourier transformed infrared spectroscopy and energy dispersive spectroscopy confirmed the presence of characteristic features of hydroxyapatite in the composite chitosan fibers. The Young’s modulus of the composite fibrous scaffolds was 142±13 MPa, which is similar to that of the natural periosteum. Both pure chitosan scaffolds and composite hydroxyapatite-containing chitosan scaffolds supported adhesion, proliferation and osteogenic differentiation of mouse 7F2 osteoblast-like cells. Expression and enzymatic activity of alkaline phosphatase, an early osteogenic marker, were higher in cells cultured on the composite scaffolds as compared to pure chitosan scaffolds, reaching a significant, 2.4 fold, difference by day 14 (p<0.05). Similarly, cells cultured on hydroxyapatite-containing scaffolds had the highest rate of osteonectin mRNA expression over 2 weeks, indicating enhanced osteoinductivity of the composite scaffolds. Our results suggest that crosslinking electrospun hydroxyapatite-containing chitosan with genipin yields bio-composite scaffolds, which combine non-weight-bearing bone mechanical properties with a periosteum-like environment and facilitate the proliferation, differentiation and maturation of osteoblast-like cells. We propose that these scaffolds might be useful for the repair and regeneration of maxillofacial defects and injuries. PMID:23022346

  20. How tough is bone? Application of elastic-plastic fracture mechanics to bone.

    PubMed

    Yan, Jiahau; Mecholsky, John J; Clifton, Kari B

    2007-02-01

    Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is a better technique in estimating the toughness of bone.

Top