Science.gov

Sample records for bone morphogenic proteins

  1. Positive modulator of bone morphogenic protein-2

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  2. Bone morphogenic protein-4 expression in vascular lesions of calciphylaxis.

    PubMed

    Griethe, Wanja; Schmitt, Roland; Jurgensen, Jan Steffen; Bachmann, Sebastian; Eckardt, Kai-Uwe; Schindler, Ralf

    2003-01-01

    Calciphylaxis is characterized by an extensive media-calcification of cutaneous and subcutaneous arterioles and capillaries. Recent studies have provided evidence that vascular calcification is a process with similarities to bone metabolism. Bone morphogenic protein-4 (BMP-4) is physiologically involved in bone development and repair. The presence of BMP-4 in atherosclerosis and in sclerotic heart valves led us to suggest that BMP-4 is also involved in calciphylaxis. A 47-year-old male patient developed end-stage renal failure due to chronic glomerulonephritis. He has had two kidney transplants with an immunosuppressive regimen consisting of cyclosporine A and steroids. He was admitted to our hospital because of an increase in serum creatinine (Cr) and he subsequently developed progressive dermal ulcerations. A skin biopsy led to the diagnosis of calciphylaxis. Immunohistochemistry for BMP-4 of a skin specimen from our patient showed strong cytoplasmic immunoreactivity of intradermal cells with clear spatial association to arterioles and hair follicles. Whereas there are identified inhibitors and promoters of vascular calcification, the presence of BMP-4 has not been demonstrated in calcific uremic arteriolopathy. In contrast to atherosclerosis, BMP-4 in calciphylaxis cannot be found in vascular media, but in intradermal cells at the border of arterioles and hair follicles. Therefore, in calciphylaxis BMP-4 can play the role of a cytokine, a growth factor or a media-calcification promoter. PMID:14733421

  3. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    NASA Technical Reports Server (NTRS)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  4. Evaluation of bone morphogenic proteins in periodontal practice.

    PubMed

    Kaur, Supreet; Grover, Vishakha; Kaur, Harkiran; Malhotra, Ranjan

    2016-01-01

    Forty years ago Marshal R. Urist discovered a substance in bone matrix that had inductive properties for the development of bone and cartilage, until date, at least 20 bone morphogenetic proteins (BMPs) have been identified, some of which have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal models. The purpose of this paper is to give a brief overview of BMPs and to review critically the clinical data currently available on the use of BMPs in various periodontal applications. The literature on BMPs was reviewed. A comprehensive search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal applications were included. The available literature was analyzed and compiled. The analysis indicates BMPs to be a promising, as well as an effective novel approach to reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that make up a special and an in-depth review on the subject. On the basis of the data provided in the studies that were reviewed BMPs provide revolutionary therapies in periodontal practice. PMID:27134452

  5. Evaluation of bone morphogenic proteins in periodontal practice

    PubMed Central

    Kaur, Supreet; Grover, Vishakha; Kaur, Harkiran; Malhotra, Ranjan

    2016-01-01

    Forty years ago Marshal R. Urist discovered a substance in bone matrix that had inductive properties for the development of bone and cartilage, until date, at least 20 bone morphogenetic proteins (BMPs) have been identified, some of which have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal models. The purpose of this paper is to give a brief overview of BMPs and to review critically the clinical data currently available on the use of BMPs in various periodontal applications. The literature on BMPs was reviewed. A comprehensive search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal applications were included. The available literature was analyzed and compiled. The analysis indicates BMPs to be a promising, as well as an effective novel approach to reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that make up a special and an in-depth review on the subject. On the basis of the data provided in the studies that were reviewed BMPs provide revolutionary therapies in periodontal practice. PMID:27134452

  6. Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo

    PubMed Central

    Dorai, Thambi; Diouri, Janane; O'Shea, Orla; Doty, Stephen B.

    2014-01-01

    A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-β signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-βin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-βsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic

  7. Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo.

    PubMed

    Dorai, Thambi; Diouri, Janane; O'Shea, Orla; Doty, Stephen B

    2014-04-01

    A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-β signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-βin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-βsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic

  8. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    NASA Technical Reports Server (NTRS)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; Jo, Hanjoong

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  9. The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db mice.

    PubMed

    Koga, Mitsuhisa; Engberding, Niels; Dikalova, Anna E; Chang, Kyung Hwa; Seidel-Rogol, Bonnie; Long, James S; Lassègue, Bernard; Jo, Hanjoong; Griendling, Kathy K

    2013-09-01

    Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation. We evaluated the effect of angiotensin receptor blockade by valsartan and BMP inhibition by noggin on markers of vascular inflammation in a mouse model of diabetes. Noggin had no effect on blood pressure but decreased serum glucose levels, whereas valsartan significantly decreased blood pressure, but not serum glucose. Both inhibitors reduced reactive oxygen species production in the aorta. Additionally, noggin and valsartan diminish gene transcription and protein expression of various inflammatory molecules in the vascular wall. These observations indicate that although both inhibitors block superoxide production and have similar effects on inflammatory gene expression, glycemia and blood pressure may represent a secondary target differentially affected by noggin and valsartan. Our data clearly identify the BMP pathway as a potentially potent therapeutic target in diabetic inflammatory vascular disease. PMID:23812391

  10. Public awareness of the bone morphogenic protein controversy: Evidence from news publications

    PubMed Central

    Drazin, Doniel; Shweikeh, Faris; Wieshofer, Erich; Kim, Terrence T.; Johnson, J. Patrick

    2014-01-01

    Background: Use of recombinant human bone morphogenic protein-2 (rhBMP-2) in spinal fusion has seen a tremendous increase. Public awareness of rhBMP-2 and its complications has not been assessed. The authors studied published news media articles to analyze information provided to the public on this bone graft substitute. Methods: We utilized the academic database, LexisNexis, to locate newspaper articles published between January 2001 and July 2013. All articles were coded by a coder and reviewed by the principal investigator. Results: The search identified 87 national and 99 local newspaper articles. Complications mentioned in national newspapers included cancer (24%), retrograde ejaculation (24%), and abnormal bone growth (14%). Local newspapers cited cancer (14%), inflammation (14%), and retrograde ejaculation (9.2%) most frequently. Fifty national (59%) and 35 local (54%) articles had no mention of complications. Sources of evidence cited by articles were (in order of frequency): Governmental agencies, medical research or published studies, healthcare personnel or patients, and companies or corporations. Conclusions: Only a small percentage of newspaper articles presented potential complications. Despite lack of clear scientific causal relationship between rhBMP-2 and cancer, this risk was disproportionately reported. Additionally, many did not cite scientific sources. Lack of reliable information available to the public reiterates the role of physicians in discussing risks and benefits BMP use in spinal surgery, assuring that patients are making informed decisions. Future news media articles should present risks in an impartial and evidence-based manner. Collaboration between advocacy groups, medical institutions, and media outlets would be beneficial in achieving this goal. PMID:25593772

  11. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells

    PubMed Central

    Hong, Oak-Kee; Yoo, Soon-Jib; Son, Jang-Won; Kim, Mee-Kyoung; Baek, Ki-Hyun; Song, Ki-Ho; Cha, Bong-Yun; Jo, Hanjoong

    2016-01-01

    Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL. PMID:26937213

  12. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells.

    PubMed

    Hong, Oak-Kee; Yoo, Soon-Jib; Son, Jang-Won; Kim, Mee-Kyoung; Baek, Ki-Hyun; Song, Ki-Ho; Cha, Bong-Yun; Jo, Hanjoong; Kwon, Hyuk-Sang

    2016-03-01

    Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL. PMID:26937213

  13. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  14. Sizn1 is a novel protein that functions as a transcriptional coactivator of bone morphogenic protein signaling.

    PubMed

    Cho, Ginam; Lim, Youngshin; Zand, Dina; Golden, Jeffrey A

    2008-03-01

    Bone morphogenic proteins (BMPs) play pleotrophic roles in nervous system development, and their signaling is highly regulated at virtually every step in the pathway. We have cloned a novel gene, Sizn1 (Smad-interacting zinc finger protein), which functions as a transcriptional coactivator of BMP signaling. It positively modulates BMP signaling by interacting with Smad family members and associating with CBP in the transcription complex. Sizn1 is expressed in the ventral embryonic forebrain, where, as we will show, it contributes to BMP-dependent, cholinergic-neuron-specific gene expression. These data indicate that Sizn1 is a positive modulator of BMP signaling and provide further insight into how BMP signaling can be modulated in neuronal progenitor subsets to influence cell-type-specific gene expression and development.

  15. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells.

    PubMed

    Kim, Jungju; Kim, In Sook; Cho, Tae Hyung; Lee, Kyu Back; Hwang, Soon Jung; Tae, Giyoong; Noh, Insup; Lee, Sang Hoon; Park, Yongdoo; Sun, Kyung

    2007-04-01

    Acrylated hyaluronic acid (HA) was used as a scaffold for bone morphogenic protein-2 (BMP-2) and human mesenchymal stem cells (hMSCs) for rat calvarial defect regeneration. HA was acrylated by two-step reactions: (1) introduction of an amine group using adipic acid dihydrazide (ADH); (2) acrylation by N-acryloxysuccinimide. Tetrathiolated poly(ethylene) glycol (PEG-SH(4)) was used as a cross-linker by a Michael-type addition reaction and the hydrogel was formed within 10min under physiological conditions. This hydrogel is degraded completely by 100U/ml hyaluronidase in vitro. hMSCs and/or BMP-2 was added during gelation. Cellular viability in vitro was increased up to 55% in the hydrogels with BMP-2 compared with the control. For in vivo calvarial defect regeneration, five different samples (i.e., control, hydrogel, hydrogel with BMP-2, hydrogel with MSCs, and hydrogel with BMP-2 and MSCs) were implanted for 4 weeks. The histological results demonstrated that the hydrogels with BMP-2 and MSCs had the highest expression of osteocalcin and mature bone formation with vascular markers, such as CD31 and vascular endothelial growth factors, compared with the other samples. This study demonstrated that HA base hydrogel can be used for cell and growth factor carriers for tissue regeneration. PMID:17208295

  16. Infant formula promotes bone growth in neonatal piglets by enhancing osteoblastogenesis through bone morphogenic protein signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relatively few studies have examined the effects of formula feeding relative to breast-feeding on bone in the neonate. Using peripheral quantitative CT scan and histomorphometric analysis, we demonstrated that neonatal piglets fed with soy-based formula (SF) and cow milk-based formula (MF) for 21 or...

  17. In vivo effect of immobilisation of bone morphogenic protein 2 on titanium implants through nano-anchored oligonucleotides.

    PubMed

    Schliephake, H; Rublack, J; Aeckerle, N; Förster, A; Schwenzer, B; Reichert, J; Scharnweber, D

    2015-07-27

    The aim of the present study was to test the hypothesis that immobilisation of bone morphogenic proteins on the surface of titanium implants through nano-anchored oligonucleotides can enhance peri-implant bone formation. Non-coding 60-mer DNA oligonucleotides (ODN) were anchored to the surface of custom made sandblasted acid etched (SAE) titanium screw implants through anodic polarisation, gamma-sterilised with a standard dose of 25 kGy, and were hybridised with complementary 30-mer strands of DNA oligonucleotides conjugated to rhBMP2. Blank SAE implants, SAE implants with nano-anchored ODN and SAE implants with nano-anchored ODN and non-conjugated rhBMP2 served as controls. The implants were inserted into the tibiae of 36 Sprague Dawley rats. Perforations at the head and the tip of the implants allowed for bone ingrowth. Bone ingrowth into perforations and bone implant contact (BIC) as well as bone density (BD) at a distance of 200 µm from the implant surface were assessed after 1 , 4 and 13 weeks. Implants with nano-anchored ODN strands hybridised with conjugated rhBMP2 exhibited enhanced bone ingrowth into the perforations and increased BIC after 1 week as well as increased BIC after 4 weeks compared to controls. No difference was seen after 13 weeks. Bone density around the outer implant surface did not differ significantly at any of the intervals. It is concluded that rhBMP2 immobilised on the surface of titanium implants through nano-anchored oligonucleotide strands can enhance bone implant contact. The conditions of sterilisation tested allowed for handling under clinically relevant conditions.

  18. The Immunologic Properties of Bone Morphogenic Protein Receptor IB Positive Subpopulation before and after Osteogenic Differentiation in Mouse Dermis

    PubMed Central

    Wang, Tao; Xu, Hua; Zhang, Yi; Dong, Jia-Sheng

    2016-01-01

    We have previously reported that human dermal bone morphogenic protein receptor (BMPR) IB positive subpopulation had a high osteogenic differentiation potential and may be a promising cell source for allogeneic bone tissue engineering. In this study, the immunologic properties of dermal BMPR-IB+ subpopulation before and after osteogenic differentiation were reported. The results confirmed that dermal BMPR-IB+ cells possessed a similar osteogenic differentiation potential with bone marrow mesenchymal stromal cells in a mouse model. Furthermore, the expression of immune rejection-related surface antigens such as major histocompatibility class II and co-stimulatory proteins (CD40, CD80, and CD86) were absent on dermal BMPRIB+ cells. Dermal BMPRIB+ cells elicited no proliferation of allogeneic splenocytes and suppressed the proliferation of stimulated immune cells. Interestingly, osteogenic differentiation in vitro had no adverse effect on the immunological features of these cells. Most importantly, inducible NO synthase (iNOS) was involved in immunoregulatory effects by undifferentiated BMPRIB+ fibroblasts, whereas indoleamine 2,3-dioxygenase (IDO) activity was related to mediating immunomodulatory function by osteogenic differentiated BMPRIB+ fibroblasts. In conclusion, dermal BMPRIB+ cells have a low immunogenicity and possess immunosuppressive capacity before and after osteogenic differentiation in vitro, which would facilitate the allotransplantation in the future. However, mechanisms mediating immunoregulatory property between undifferentiated and osteogenic differentiated BMPRIB+ fibroblasts may be different and need further investigation. PMID:27552226

  19. The Immunologic Properties of Bone Morphogenic Protein Receptor IB Positive Subpopulation before and after Osteogenic Differentiation in Mouse Dermis.

    PubMed

    He, Jin-Guang; Wang, Ting-Liang; Wang, Tao; Xu, Hua; Zhang, Yi; Dong, Jia-Sheng

    2016-01-01

    We have previously reported that human dermal bone morphogenic protein receptor (BMPR) IB positive subpopulation had a high osteogenic differentiation potential and may be a promising cell source for allogeneic bone tissue engineering. In this study, the immunologic properties of dermal BMPR-IB+ subpopulation before and after osteogenic differentiation were reported. The results confirmed that dermal BMPR-IB+ cells possessed a similar osteogenic differentiation potential with bone marrow mesenchymal stromal cells in a mouse model. Furthermore, the expression of immune rejection-related surface antigens such as major histocompatibility class II and co-stimulatory proteins (CD40, CD80, and CD86) were absent on dermal BMPRIB+ cells. Dermal BMPRIB+ cells elicited no proliferation of allogeneic splenocytes and suppressed the proliferation of stimulated immune cells. Interestingly, osteogenic differentiation in vitro had no adverse effect on the immunological features of these cells. Most importantly, inducible NO synthase (iNOS) was involved in immunoregulatory effects by undifferentiated BMPRIB+ fibroblasts, whereas indoleamine 2,3-dioxygenase (IDO) activity was related to mediating immunomodulatory function by osteogenic differentiated BMPRIB+ fibroblasts. In conclusion, dermal BMPRIB+ cells have a low immunogenicity and possess immunosuppressive capacity before and after osteogenic differentiation in vitro, which would facilitate the allotransplantation in the future. However, mechanisms mediating immunoregulatory property between undifferentiated and osteogenic differentiated BMPRIB+ fibroblasts may be different and need further investigation. PMID:27552226

  20. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling

    PubMed Central

    Hopwood, Blair; Tsykin, Anna; Findlay, David M; Fazzalari, Nicola L

    2007-01-01

    Osteoarthritis (OA) is characterized by alterations to subchondral bone as well as articular cartilage. Changes to bone in OA have also been identified at sites distal to the affected joint, which include increased bone volume fraction and reduced bone mineralization. Altered bone remodelling has been proposed to underlie these bone changes in OA. To investigate the molecular basis for these changes, we performed microarray gene expression profiling of bone obtained at autopsy from individuals with no evidence of joint disease (control) and from individuals undergoing joint replacement surgery for either degenerative hip OA, or fractured neck of femur (osteoporosis [OP]). The OP sample set was included because an inverse association, with respect to bone density, has been observed between OA and the low bone density disease OP. Compugen human 19K-oligo microarray slides were used to compare the gene expression profiles of OA, control and OP bone samples. Four sets of samples were analyzed, comprising 10 OA-control female, 10 OA-control male, 10 OA-OP female and 9 OP-control female sample pairs. Print tip Lowess normalization and Bayesian statistical analyses were carried out using linear models for microarray analysis, which identified 150 differentially expressed genes in OA bone with t scores above 4. Twenty-five of these genes were then confirmed to be differentially expressed (P < 0.01) by real-time PCR analysis. A substantial number of the top-ranking differentially expressed genes identified in OA bone are known to play roles in osteoblasts, osteocytes and osteoclasts. Many of these genes are targets of either the WNT (wingless MMTV integration) signalling pathway (TWIST1, IBSP, S100A4, MMP25, RUNX2 and CD14) or the transforming growth factor (TGF)-β/bone morphogenic protein (BMP) signalling pathway (ADAMTS4, ADM, MEPE, GADD45B, COL4A1 and FST). Other differentially expressed genes included WNT (WNT5B, NHERF1, CTNNB1 and PTEN) and TGF-β/BMP (TGFB1, SMAD3

  1. Complement components C1r/C1s, bone morphogenic protein 1 and Xenopus laevis developmentally regulated protein UVS.2 share common repeats.

    PubMed

    Bork, P

    1991-04-22

    Property patterns were constructed, based on an alignment of related domains in human complement subcomponents C1r and C1s as well as in the sea urchin protein uEGF. This kind of consensus pattern was able to identify similar domains in a human bone morphogenic protein, in a Xenopus laevis embryonal protein involved in dorsoanterior development and in a calcium-dependent serine protease secreted from malignant hamster embryo fibroblast cells. Because of the high level of overall sequence homology this protease may be the hamsters' equivalent of the human complement subcomponent C1s. The resulting multiple alignment of all studied domains suggests functionally and structurally important regions.

  2. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    NASA Astrophysics Data System (ADS)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  3. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    SciTech Connect

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin; Wang, Guan-song; Belguise, Karine; Wang, Xiaobo; Qian, Gui-sheng; Lu, Kai-zhi; Yi, Bin

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  4. Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension.

    PubMed

    Chen, Ning-Yuan; D Collum, Scott; Luo, Fayong; Weng, Tingting; Le, Thuy-Trahn; M Hernandez, Adriana; Philip, Kemly; Molina, Jose G; Garcia-Morales, Luis J; Cao, Yanna; Ko, Tien C; Amione-Guerra, Javier; Al-Jabbari, Odeaa; Bunge, Raquel R; Youker, Keith; Bruckner, Brian A; Hamid, Rizwan; Davies, Jonathan; Sinha, Neeraj; Karmouty-Quintana, Harry

    2016-08-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-β activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF. PMID:27317687

  5. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma

    PubMed Central

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J.; Pellegata, Natalia S.

    2015-01-01

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  6. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma.

    PubMed

    Leinhäuser, Ines; Richter, Andrea; Lee, Misu; Höfig, Ines; Anastasov, Nataša; Fend, Falko; Ercolino, Tonino; Mannelli, Massimo; Gimenez-Roqueplo, Anne-Paule; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix; Atkinson, Michael J; Pellegata, Natalia S

    2015-11-17

    BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy. PMID:26337467

  7. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    PubMed

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  8. Combination of Controllably Released Platelet Rich Plasma Alginate Beads and Bone Morphogenic Protein-2 Gene-Modified Mesenchymal Stem Cells for Bone Regeneration

    PubMed Central

    Fernandes, Gabriela; Wang, Changdong; Yuan, Xue; Liu, Zunpeng; Dziak, Rosemary; Yang, Shuying

    2016-01-01

    Background Platelet rich plasma (PRP) consists of platelet derived growth factor (PDGF) and Transforming growth factor-beta (TGF-β) that increase cell proliferation of mesenchymal stem cells (MSCs), whereas, bone morphogenic Protein-2 (BMP2) promotes osteogenic differentiation of MSCs. However, the high degradation rate of fibrin leads to the dissociation of cytokines even before the process of bone regeneration has begun. Hence, for the first time, we studied the combined effect of sustained released PRP from alginate beads on BMP2 modified MSCs osteogenic differentiation in vitro and of sustained PRP alone on a fracture defect model ex vivo as well as its effect on the calvarial suture closure. Methods After optimizing the concentration of alginate for the microspheres, the osteogenic and mineralization effect of PRP and BMP2 in combinations on MSCs was studied. A self-setting alginate hydrogel carrying PRP was tested on a femur defect model ex-vivo. The effect of PRP was studied on the closure of the embryonic (E15) mouse calvaria sutures ex vivo. Results Increase of PRP concentration promoted cellular proliferation of MSCs. 2.5%–10% of PRP displayed gradually increased ALP activity on the cells in a dose dependent manner. Sustained release PRP and BMP2 demonstrated a significantly higher ALP and mineralization activity (p<0.05). The radiographs of alginate hydrogel with PRP treated bone demonstrated a nearly complete healing of the fracture and the histological sections of the embryonic calvaria revealed that PRP leads to suture fusion. Conclusions Sustained release of PRP along with BMP2 gene modified MSCs can significantly promote bone regeneration. PMID:26745613

  9. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    SciTech Connect

    Biver, Emmanuel; Soubrier, Anne-Sophie; Thouverey, Cyril; Cortet, Bernard; Broux, Odile; Caverzasio, Joseph; Hardouin, Pierre

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  10. Sustained dual release of placental growth factor-2 and bone morphogenic protein-2 from heparin-based nanocomplexes for direct osteogenesis

    PubMed Central

    Liu, Yun; Deng, Li-Zhi; Sun, Hai-Peng; Xu, Jia-Yun; Li, Yi-Ming; Xie, Xin; Zhang, Li-Ming; Deng, Fei-Long

    2016-01-01

    Objective To compare the direct osteogenic effect between placental growth factor-2 (PlGF-2) and bone morphogenic protein-2 (BMP-2). Methods Three groups of PlGF-2/BMP-2-loaded heparin–N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanocomplexes were prepared: those with 0.5 μg PlGF-2; with 1.0 μg BMP-2; and with 0.5 μg PlGF-2 combined with 1.0 μg BMP-2. The loading efficiencies and release profiles of these growth factors (GFs) in this nanocomplex system were quantified using enzyme-linked immunosorbent assay, their biological activities were evaluated using cell counting kit-8, cell morphology, and cell number counting assays, and their osteogenic activities were quantified using alkaline phosphatase and Alizarin Red S staining assays. Results The loading efficiencies were more than 99% for the nanocomplexes loaded with just PlGF-2 and for those loaded with both PlGF-2 and BMP-2. For the nanocomplex loaded with just BMP-2, the loading efficiency was more than 97%. About 83%–84% of PlGF-2 and 89%–91% of BMP-2 were stably retained on the nanocomplexes for at least 21 days. In in vitro biological assays, PlGF-2 exhibited osteogenic effects comparable to those of BMP-2 despite its dose in the experiments being lower than that of BMP-2. Moreover, the results implied that heparin-based nanocomplexes encapsulating two GFs have enhanced potential in the enhancement of osteoblast function. Conclusion PlGF-2-loaded heparin–HTCC nanocomplexes may constitute a promising system for bone regeneration. Moreover, the dual delivery of PlGF-2 and BMP-2 appears to have greater potential in bone tissue regeneration than the delivery of either GFs alone. PMID:27042064

  11. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.

    PubMed

    Sorescu, George P; Song, Hannah; Tressel, Sarah L; Hwang, Jinah; Dikalov, Sergey; Smith, Debra A; Boyd, Nolan L; Platt, Manu O; Lassègue, Bernard; Griendling, Kathy K; Jo, Hanjoong

    2004-10-15

    Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is also known to induce monocyte adhesion by producing reactive oxygen species (ROS) from reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, raising the possibility that BMP4 may stimulate the inflammatory response by ROS-dependent mechanisms. Here we show that ROS scavengers blocked ICAM-1 expression and monocyte adhesion induced by BMP4 or OS in endothelial cells (ECs). Similar to OS, BMP4 stimulated H2O2 and O2- production in ECs. Next, we used ECs obtained from p47phox-/- mice (MAE-p47-/-), which do not produce ROS in response to OS, to determine the role of NADPH oxidases. Similar to OS, BMP4 failed to induce monocyte adhesion in MAE-p47-/-, but it was restored when the cells were transfected with p47phox plasmid. Moreover, OS-induced O2- production was blocked by noggin (a BMP antagonist), suggesting a role for BMP. Furthermore, OS increased gp91phox (nox2) and nox1 mRNA levels while decreasing nox4. In contrast, BMP4 induced nox1 mRNA expression, whereas nox2 and nox4 were decreased or not affected, respectively. Also, OS-induced monocyte adhesion was blocked by knocking down nox1 with the small interfering RNA (siRNA). Finally, BMP4 siRNA inhibited OS-induced ROS production and monocyte adhesion. Together, these results suggest that BMP4 produced in ECs by OS stimulates ROS release from the nox1-dependent NADPH oxidase leading to inflammation, a critical early atherogenic step. PMID:15388638

  12. Correlating the effects of bone morphogenic protein to secreted soluble factors from fibroblasts and mesenchymal stem cells in regulating regenerative processes in vitro.

    PubMed

    Lynch, Kristen M; Ahsan, Tabassum

    2014-12-01

    The capacity to regenerate complex tissue structures after amputation in humans is limited to the digit tip. In a comparable mouse digit model, which includes both distal regeneration-competent and proximal regeneration-incompetent regions, successful regeneration involves precise orchestration of complex microenvironmental cues, including paracrine signaling via heterogeneous cell-cell interactions. Initial cellular processes, such as proliferation and migration, are critical in the formation of an initial stable cell mass and the ultimate regenerative outcome. Hence, the objective of these in vitro studies was to investigate the effect of soluble factors secreted by fibroblasts and mesenchymal stem cells (MSCs) on the proliferation and migration of cells from the regeneration-competent (P3) and -incompetent (P2) regions of the mouse digit tip. We found that P2 and P3 cells were more responsive to fibroblasts than MSCs and that the effects were mediated by bi-directional communication. To initiate understanding of the specific soluble factors that may be involved in the fibroblast-mediated changes in migration of P2 and P3 cells, bone morphogenic protein 2 (BMP2) was exogenously added to the medium. We found that changes in migration of P3 cells were similar when exposed to BMP2 or co-cultured with fibroblasts, indicating that BMP signaling may be responsible for the migratory response of P3 cells to the presence of fibroblasts. Furthermore, BMP2 expression in fibroblasts was shown to be responsive to tensile strain, as is present during wound closure. Therefore, these in vitro studies indicate that regenerative processes may be regulated by fibroblast-secreted soluble factors, which, in turn, are modulated by both cross-talk between heterogeneous phenotypes and the physical microenvironment of the healing site.

  13. Correlating the Effects of Bone Morphogenic Protein to Secreted Soluble Factors from Fibroblasts and Mesenchymal Stem Cells in Regulating Regenerative Processes In Vitro

    PubMed Central

    Lynch, Kristen M.

    2014-01-01

    The capacity to regenerate complex tissue structures after amputation in humans is limited to the digit tip. In a comparable mouse digit model, which includes both distal regeneration-competent and proximal regeneration-incompetent regions, successful regeneration involves precise orchestration of complex microenvironmental cues, including paracrine signaling via heterogeneous cell–cell interactions. Initial cellular processes, such as proliferation and migration, are critical in the formation of an initial stable cell mass and the ultimate regenerative outcome. Hence, the objective of these in vitro studies was to investigate the effect of soluble factors secreted by fibroblasts and mesenchymal stem cells (MSCs) on the proliferation and migration of cells from the regeneration-competent (P3) and -incompetent (P2) regions of the mouse digit tip. We found that P2 and P3 cells were more responsive to fibroblasts than MSCs and that the effects were mediated by bi-directional communication. To initiate understanding of the specific soluble factors that may be involved in the fibroblast-mediated changes in migration of P2 and P3 cells, bone morphogenic protein 2 (BMP2) was exogenously added to the medium. We found that changes in migration of P3 cells were similar when exposed to BMP2 or co-cultured with fibroblasts, indicating that BMP signaling may be responsible for the migratory response of P3 cells to the presence of fibroblasts. Furthermore, BMP2 expression in fibroblasts was shown to be responsive to tensile strain, as is present during wound closure. Therefore, these in vitro studies indicate that regenerative processes may be regulated by fibroblast-secreted soluble factors, which, in turn, are modulated by both cross-talk between heterogeneous phenotypes and the physical microenvironment of the healing site. PMID:24851900

  14. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease.

    PubMed

    Ward-Caviness, Cavin K; Neas, Lucas M; Blach, Colette; Haynes, Carol S; LaRocque-Abramson, Karen; Grass, Elizabeth; Dowdy, Elaine; Devlin, Robert B; Diaz-Sanchez, David; Cascio, Wayne E; Lynn Miranda, Marie; Gregory, Simon G; Shah, Svati H; Kraus, William E; Hauser, Elizabeth R

    2016-01-01

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic ("traffic exposure")-a recognized vascular disease risk factor-on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3' untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family

  15. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease.

    PubMed

    Ward-Caviness, Cavin K; Neas, Lucas M; Blach, Colette; Haynes, Carol S; LaRocque-Abramson, Karen; Grass, Elizabeth; Dowdy, Elaine; Devlin, Robert B; Diaz-Sanchez, David; Cascio, Wayne E; Lynn Miranda, Marie; Gregory, Simon G; Shah, Svati H; Kraus, William E; Hauser, Elizabeth R

    2016-01-01

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic ("traffic exposure")-a recognized vascular disease risk factor-on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3' untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family

  16. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

    PubMed Central

    Ward-Caviness, Cavin K.; Neas, Lucas M.; Blach, Colette; Haynes, Carol S.; LaRocque-Abramson, Karen; Grass, Elizabeth; Dowdy, Elaine; Devlin, Robert B.; Diaz-Sanchez, David; Cascio, Wayne E.; Lynn Miranda, Marie; Gregory, Simon G.; Shah, Svati H.; Kraus, William E.; Hauser, Elizabeth R.

    2016-01-01

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic (“traffic exposure”)—a recognized vascular disease risk factor—on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3’ untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene

  17. The effect of a gelatin β-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect

    PubMed Central

    Tsuzuki, Nao; Seo, Jong-pil; Yamada, Kazutaka; Haneda, Shingo; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-01-01

    We evaluated the curative efficacy of a gelatin β-tricalcium phosphate (β-TCP) sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2 (BMP-2), and platelet-rich plasma (PRP) by insertion into an experimentally induced osteochondral defect. A hole of 10 mm diameter and depth was drilled in the bilateral medial femoral condyles of 7 thoroughbred horses, and into each either a loaded sponge (treatment) or a saline-infused β-TCP sponge (control) was inserted. After 16 weeks, defects were examined by computed tomography, macroscopic analyses, and histological analyses. The median subchondral bone density and macroscopic subscores for joint healing were significantly higher in the treatment legs (P < 0.05). Although there was no significant difference in total histological scores between groups, hyaline cartilaginous tissue was observed across a wider area in the treatment group. Equine joint healing can be enhanced by inserting a BMP-2-, MSC-, and PRP-impregnated β-TCP sponge at the lesion site. PMID:24155448

  18. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function.

    PubMed

    Kim, Sung Eun; Song, Sang-Hun; Yun, Young Pil; Choi, Byung-Joon; Kwon, Il Keun; Bae, Min Soo; Moon, Ho-Jin; Kwon, Yong-Dae

    2011-01-01

    The aim of this study was to investigate biologic function of bone morphorgenic protein-2 (rhBMP-2) immobilized on the heparin-grafted Ti surface. Ti surfaces were first modified by 3-aminopropyltriethoxysilane (ATPES), followed by grafting of heparin. BMP-2 was then immobilized on the heparin-grafted Ti surfaces. Pristine Ti and functionalized Ti surfaces were characterized by X-ray photoelectron spectroscopy (XPS), measurement of water contact angles, and protein adsorption. The biological activity of MG-63 cells on pristine and functionalized Ti surfaces was investigated by cell proliferation assays, measurement of alkaline phosphate (ALP) activity, and determination of calcium deposition. Anti-inflammatory effects were assessed by RT-PCR to measure the transcript levels of IL-6 and TNF-α. XPS revealed that heparin and BMP-2 were successfully grafted and immobilized on the Ti surfaces, respectively. In addition, Ti surfaces with BMP-2 immobilized were more hydrophilic than pristine Ti. Furthermore, BMP-2 immobilized Ti promoted significantly higher ALP activity and calcium deposition by MG-63 cells than pristine Ti. The inflammatory response was also decreased when cells were grown on heparin-grafted, BMP-2-immobilized Ti surfaces. The results of this study suggest that by grafting heparin and immobilizing BMP-2 on Ti surfaces, inflammation can be inhibited and osteoblast function promoted.

  19. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone

    PubMed Central

    Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J

    2012-01-01

    Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. PMID:22626978

  20. Anti-Müllerian hormone (AMH), inhibin-α, growth differentiation factor 9 (GDF9), and bone morphogenic protein-15 (BMP15) mRNA and protein are influenced by photoperiod-induced ovarian regression and recrudescence in Siberian hamster ovaries.

    PubMed

    Shahed, Asha; Young, Kelly A

    2013-11-01

    Exposure of Siberian hamsters to short photoperiod (SD) inhibits ovarian function, including folliculogenesis, whereas function is restored with their transfer to long photoperiods (LD). To investigate the mechanism of photo-stimulated recrudescence, we assessed key folliculogenic factors-anti-Müllerian hormone (AMH), inhibin-α, growth differentiation factor-9 (GDF9), and bone morphogenic protein-15 (BMP15)-across the estrus cycle and in photo-regressed and recrudescing ovaries. Adult hamsters were exposed to either LD or SD for 14 weeks, which respectively represent functional and regressed ovaries. Select regressed hamsters were transferred back to LD for 2 (post-transfer week 2; PTw2) or 8 weeks (PTw8). Ovaries were collected and fixed in formalin for immunohistochemistry or frozen in liquid nitrogen for real-time PCR. AMH, inhibin-α, GDF9, and BMP15 mRNA and protein were detected in all stages of the estrus cycle. Fourteen weeks of SD exposure increased (P < 0.05) ovarian AMH, GDF9, and BMP15, but not inhibin-α mRNA levels as compared to LD. Transfer of regressed hamsters to stimulatory long photoperiod for 8 weeks returned AMH and GDF9 mRNA levels to LD-treated levels, and further increased mRNA levels for inhibin-α and BMP15. Immunostaining for AMH, inhibin-α, GDF9, and BMP15 proteins was most intense in preantral/antral follicles and oocytes. The overall immunostaining extent for AMH and inhibin-α generally mirrored the mRNA data, though no changes were observed for GDF9 or BMP15 immunostaining. Shifts in mRNA and protein levels across photoperiod conditions suggest possible syncretic roles for these folliculogenic factors in photo-stimulated recrudescence via potential regulation of follicle recruitment, preservation, and development.

  1. Morphogenic Peptides in Regeneration of Load Bearing Tissues.

    PubMed

    Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-01-01

    Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non

  2. Morphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis

    PubMed Central

    Muchová, Katarína; Chromiková, Zuzana; Bradshaw, Niels; Wilkinson, Anthony J.

    2016-01-01

    The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor σF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cell-specific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetric sporulation septum and is a crucial determinant of σF activation. Here we report that the morphogenic protein, RodZ, which is essential for cell shape determination, is additionally required for asymmetric septum formation and sporulation. In cells depleted of RodZ, formation of asymmetric septa is disturbed and σF activation is perturbed. During sporulation, we found that SpoIIE recruits RodZ to the asymmetric septum. Moreover, we detected a direct interaction between SpoIIE and RodZ in vitro and in vivo, indicating that SpoIIE-RodZ may form a complex to coordinate asymmetric septum formation and σF activation. We propose that RodZ could provide a link between the cell shape machinery and the coordinated morphological and developmental transitions required to form a resistant spore. PMID:27415800

  3. Fine-tuned shuttles for bone morphogenetic proteins.

    PubMed

    Wharton, Kristi A; Serpe, Mihaela

    2013-08-01

    Bone morphogenetic proteins (BMPs) are potent secreted signaling factors that trigger phosphorylation of Smad transcriptional regulators through receptor complex binding at the cell-surface. Resulting changes in target gene expression impact critical cellular responses during development and tissue homeostasis. BMP activity is tightly regulated in time and space by secreted modulators that control BMP extracellular distribution and availability for receptor binding. Such extracellular regulation is key for BMPs to function as morphogens and/or in the formation of morphogen activity gradients. Here, we review shuttling systems utilized to control the distribution of BMP ligands in tissue of various geometries, developing under different temporal constraints. We discuss the biological advantages for employing specific strategies for BMP shuttling and roles of varied ligand forms.

  4. Inhibitory morphogens and monopodial branching of the embryonic chicken lung

    PubMed Central

    Gleghorn, Jason P.; Kwak, Jiyong; Pavlovich, Amira L.; Nelson, Celeste M.

    2012-01-01

    Branching morphogenesis generates a diverse array of epithelial patterns, including dichotomous and monopodial geometries. Dichotomous branching can be instructed by concentration gradients of epithelial-derived inhibitory morphogens, including transforming growth factor-β (TGFβ), which is responsible for ramification of the pubertal mammary gland. Here, we investigated the role of autocrine inhibitory morphogens in monopodial branching morphogenesis of the embryonic chicken lung. Computational modeling and experiments using cultured organ explants each separately revealed that monopodial branching patterns cannot be specified by a single epithelial-derived autocrine morphogen gradient. Instead, signaling via TGFβ1 and bone morphogenetic protein-4 (BMP4) differentially affect the rates of branching and growth of the airways. Allometric analysis revealed that development of the epithelial tree obeys power-law dynamics; TGFβ1 and BMP4 have distinct but reversible effects on the scaling coefficient of the power law. These data suggest that although autocrine inhibition cannot specify monopodial branching, inhibitory morphogens define the dynamics of lung morphogenesis. PMID:22410853

  5. Bone morphogenetic protein

    SciTech Connect

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  6. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

    PubMed Central

    Green, David W.; Padula, Matthew P.; Santos, Jerran; Chou, Joshua; Milthorpe, Bruce; Ben-Nissan, Besim

    2013-01-01

    A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. PMID:23574983

  7. Understanding morphogen gradients: a problem of dispersion and containment.

    PubMed

    Kornberg, Thomas B; Guha, Arjun

    2007-08-01

    Protein morphogens are instructive signals that regulate growth and patterning of tissues and organs. They form long-range, dynamic gradients by moving from regions of high concentration (producing cells) to regions of low concentration (the adjacent, nonproducing developmental field). Since morphogen activity must be limited to the adjacent target field, we want to understand both how signaling proteins move and how their dispersion is restricted. We consider the variety of settings for long-range morphogen systems in Drosophila. In the early embryo, morphogens appear to disperse by free diffusion, and impermeable membranes physically constrain them. However, at later stages, containment is achieved without physical barriers. We argue that in the absence of constraining barriers, gradient-generating dispersion of morphogens cannot be achieved by passive diffusion and that other mechanisms for distribution must be considered.

  8. Protein intake and bone health.

    PubMed

    Bonjour, Jean-Philippe

    2011-03-01

    Adequate nutrition plays an important role in the development and maintenance of bone structures resistant to usual mechanical stresses. In addition to calcium in the presence of an adequate supply of vitamin D, dietary proteins represent key nutrients for bone health and thereby function in the prevention of osteoporosis. Several studies point to a positive effect of high protein intake on bone mineral density or content. This fact is associated with a significant reduction in hip fracture incidence, as recorded in a large prospective study carried out in a homogeneous cohort of postmenopausal women. Low protein intake (< 0.8 g/kg body weight/day) is often observed in patients with hip fractures and an intervention study indicates that following orthopedic management, protein supplementation attenuates post-fracture bone loss, tends to increase muscle strength, and reduces medical complications and rehabilitation hospital stay. There is no evidence that high protein intake per se would be detrimental for bone mass and strength. Nevertheless, it appears reasonable to avoid very high protein diets (i. e. more than 2.0 g/kg body weight/day) when associated with low calcium intake (i. e. less than 600 mg/day). In the elderly, taking into account the attenuated anabolic response to dietary protein with ageing, there is concern that the current dietary protein recommended allowance (RDA), as set at 0.8 g/kg body weight/day, might be too low for the primary and secondary prevention of fragility fractures. PMID:22139564

  9. Special Morphological Features at the Interface of the Renal Stem/Progenitor Cell Niche Force to Reinvestigate Transport of Morphogens During Nephron Induction

    PubMed Central

    Minuth, Will W.; Denk, Lucia

    2016-01-01

    Abstract Formation of a nephron depends on reciprocal signaling of different morphogens between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Previously, it has been surmised that a close proximity exists between both involved cell types and that morphogens are transported between them by diffusion. However, actual morphological data illustrate that mesenchymal and epithelial stem/progenitor cell bodies are separated by a striking interface. Special fixation of specimens by glutaraldehyde (GA) solution including cupromeronic blue, ruthenium red, or tannic acid for electron microscopy depicts that the interface is not void but filled in extended areas by textured extracellular matrix. Surprisingly, projections of mesenchymal cells cross the interface to contact epithelial cells. At those sites the plasma membranes of a mesenchymal and an epithelial cell are connected via tunneling nanotubes. Regarding detected morphological features in combination with involved morphogens, their transport cannot longer be explained solely by diffusion. Instead, it has to be sorted according to biophysical properties of morphogens and to detected environment. Thus, the new working hypothesis is that morphogens with good solubility such as glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factors (FGFs) are transported by diffusion. Morphogens with minor solubility such as bone morphogenetic proteins (BMPs) are secreted and stored for delivery on demand in illustrated extracellular matrix. In contrast, morphogens with poor solubility such as Wnts are transported in mesenchymal cell projections along the plasma membrane or via illustrated tunneling nanotubes. However, the presence of an intercellular route between mesenchymal and epithelial stem/progenitor cells by tunneling nanotubes also makes it possible that all morphogens are transported this way. PMID:26862472

  10. Bone morphogenetic protein signaling in vertebrate motor neurons and neuromuscular communication

    PubMed Central

    Osses, Nelson; Henríquez, Juan P.

    2015-01-01

    An accurate communication between motor neurons and skeletal muscle fibers is required for the proper assembly, growth and maintenance of neuromuscular junctions (NMJs). Several signaling and extracellular matrix molecules play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in Drosophila have revealed crucial functions for early morphogens, such as members of the Wnt and Bone Morphogenetic Proteins (BMP) signaling pathways, during the assembly and maturation of the NMJ. Here, we bring together recent findings that led us to propose that BMPs also work in vertebrate organisms as diffusible cues to communicate motor neurons and skeletal muscles. PMID:25674047

  11. The classic: Bone morphogenetic protein.

    PubMed

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.

  12. The classic: Bone morphogenetic protein.

    PubMed

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989

  13. Solution-state NMR structure of the putative morphogene protein BolA (PFE0790c) from Plasmodium falciparum

    PubMed Central

    Buchko, Garry W.; Yee, Adelinda; Semesi, Anthony; Myler, Peter J.; Arrowsmith, Cheryl H.; Hui, Raymond

    2015-01-01

    Protozoa of the genus Plasmodium are responsible for malaria, which is perhaps the most important parasitic disease to infect mankind. The emergence of Plasmodium strains resistant to current therapeutics and prophylactics makes the development of new treatment strategies urgent. Among the potential targets for new antimalarial drugs is the BolA-like protein PFE0790c from Plasmodium falciparum (Pf-BolA). While the function of BolA is unknown, it has been linked to cell morphology by regulating transcription in response to stress. Using an NMR-based method, an ensemble of 20 structures of Pf-BolA was determined and deposited in the PDB (PDB entry 2kdn). The overall topology of the Pf-BolA structure, α1–β1–β2–η1–α2/η2–β3–α3, with the β-strands forming a mixed β-sheet, is similar to the fold observed in other BolA structures. A helix–turn–helix motif similar to the class II KH fold associated with nucleic acid-binding proteins is present, but contains an FXGXXXL signature sequence that differs from the GXXG signature sequence present in class II KH folds, suggesting that the BolA family of proteins may use a novel protein–nucleic acid interface. A well conserved arginine residue, Arg50, hypothesized to play a role in governing the formation of the C-terminal α-helix in the BolA family of proteins, is too distant to form polar contacts with any side chains in this α-helix in Pf-BolA, suggesting that this conserved arginine may only serve a role in guiding the orientation of this C-terminal helix in some BolA proteins. A survey of BolA structures suggests that the C-terminal helix may not have a functional role and that the third helix (α2/η2) has a ‘kink’ that appears to be conserved among the BolA protein structures. Circular dichroism spectroscopy shows that Pf-BolA is fairly robust, partially unfolding when heated to 353 K and refolding upon cooling to 298 K. PMID:25945703

  14. Soft Tissue Swelling Associated with the Use of Recombinant Human Bone Morphogenetic Protein-2 in Long Bone Non-unions

    PubMed Central

    Young, Andrew; Mirarchi, Adam

    2015-01-01

    Introduction: This report describes two cases of long bone non-union associated with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) and is the first of its kind. The first case describes a 25-year-old male who sustained a left diaphyseal femoral shaft fracture initially treated with operative fixation using an intramedullary nail, which subsequently loosened distally and was treated with exchange nailing and rhBMP-2 application. This patient developed acute local soft tissue inflammation post-operatively. The second case describes a 61-year-old female who sustained a right diaphyseal humeral shaft fracture that was initially treated with intramedullary nail fixation with subsequent distal interlock screw loosening. She underwent nail removal, and compression plating with rhBMP-2 placement, and postoperatively developed severe acute local tissue swelling centered over the rhBMP-2 sponge. Surgeons should be aware that rhBMP-2 may cause local acute tissue swelling and recombinant bone morphogenic proteins such as rhBMP-2 may have a role in the management for atrophic fracture non-unions. The authors recommend careful consideration prior to rhBMP-2 use in long bone non-unions. PMID:27299059

  15. A BMP-FGF morphogen toggle switch drives the ultrasensitive expression of multiple genes in the developing forebrain.

    PubMed

    Srinivasan, Shyam; Hu, Jia Sheng; Currle, D Spencer; Fung, Ernest S; Hayes, Wayne B; Lander, Arthur D; Monuki, Edwin S

    2014-02-01

    Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) pathways interact to generate ultrasensitivity and borders in the dorsal telencephalon. BMP and FGF signaling manipulations in explants produced border defects suggestive of cross inhibition within single cells, which was confirmed in dissociated cultures. Using mathematical modeling, we designed experiments that ruled out alternative cross inhibition mechanisms and identified a cross-inhibitory positive feedback (CIPF) mechanism, or "toggle switch", which acts upstream of transcriptional targets in dorsal telencephalic cells. CIPF explained several cellular phenomena important for border formation such as threshold tuning, ultrasensitivity, and hysteresis. CIPF explicitly links graded morphogen signaling in the telencephalon to switch-like cellular responses and has the ability to form multiple borders and scale pattern to size. These benefits may apply to other developmental systems. PMID:24550718

  16. A BMP-FGF Morphogen Toggle Switch Drives the Ultrasensitive Expression of Multiple Genes in the Developing Forebrain

    PubMed Central

    Currle, D. Spencer; Fung, Ernest S.; Hayes, Wayne B.; Lander, Arthur D.; Monuki, Edwin S.

    2014-01-01

    Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) pathways interact to generate ultrasensitivity and borders in the dorsal telencephalon. BMP and FGF signaling manipulations in explants produced border defects suggestive of cross inhibition within single cells, which was confirmed in dissociated cultures. Using mathematical modeling, we designed experiments that ruled out alternative cross inhibition mechanisms and identified a cross-inhibitory positive feedback (CIPF) mechanism, or “toggle switch”, which acts upstream of transcriptional targets in dorsal telencephalic cells. CIPF explained several cellular phenomena important for border formation such as threshold tuning, ultrasensitivity, and hysteresis. CIPF explicitly links graded morphogen signaling in the telencephalon to switch-like cellular responses and has the ability to form multiple borders and scale pattern to size. These benefits may apply to other developmental systems. PMID:24550718

  17. Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma.

    PubMed

    Zaid, Khaled Waleed; Chantiri, Mansour; Bassit, Ghassan

    2016-01-01

    Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-β superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein?2 (rhBMP?2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma. PMID:27039814

  18. Dentin Matrix Proteins in Bone Tissue Engineering.

    PubMed

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.

  19. Microspectroscopic Evidence of Cretaceous Bone Proteins

    PubMed Central

    Lindgren, Johan; Uvdal, Per; Engdahl, Anders; Lee, Andrew H.; Alwmark, Carl; Bergquist, Karl-Erik; Nilsson, Einar; Ekström, Peter; Rasmussen, Magnus; Douglas, Desirée A.; Polcyn, Michael J.; Jacobs, Louis L.

    2011-01-01

    Low concentrations of the structural protein collagen have recently been reported in dinosaur fossils based primarily on mass spectrometric analyses of whole bone extracts. However, direct spectroscopic characterization of isolated fibrous bone tissues, a crucial test of hypotheses of biomolecular preservation over deep time, has not been performed. Here, we demonstrate that endogenous proteinaceous molecules are retained in a humerus from a Late Cretaceous mosasaur (an extinct giant marine lizard). In situ immunofluorescence of demineralized bone extracts shows reactivity to antibodies raised against type I collagen, and amino acid analyses of soluble proteins extracted from the bone exhibit a composition indicative of structural proteins or their breakdown products. These data are corroborated by synchrotron radiation-based infrared microspectroscopic studies demonstrating that amino acid containing matter is located in bone matrix fibrils that express imprints of the characteristic 67 nm D-periodicity typical of collagen. Moreover, the fibrils differ significantly in spectral signature from those of potential modern bacterial contaminants, such as biofilms and collagen-like proteins. Thus, the preservation of primary soft tissues and biomolecules is not limited to large-sized bones buried in fluvial sandstone environments, but also occurs in relatively small-sized skeletal elements deposited in marine sediments. PMID:21559386

  20. Role of regulator of G protein signaling proteins in bone

    PubMed Central

    Keinan, David; Yang, Shuying; Cohen, Robert E.; Yuan, Xue; Liu, Tongjun; Li, Yi-Ping

    2014-01-01

    Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS genes expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases. PMID:24389209

  1. Dynamics and precision in retinoic acid morphogen gradients

    PubMed Central

    Schilling, Thomas F.; Nie, Qing; Lander, Arthur D.

    2013-01-01

    Summary Retinoic acid (RA) regulates many cellular behaviors during embryonic development and adult homeostasis. Like other morphogens, RA forms gradients through the use of localized sources and sinks, feedback, and interactions with other signals; this has been particularly well studied in the context of hindbrain segmentation in vertebrate embryos. Yet, as a small lipophilic molecule derived from a dietary source—vitamin A—RA differs markedly from better-studied polypeptide morphogens in its mechanisms of transport, signaling, and removal. Computational models suggest that the distinctive features of RA gradients make them particularly robust to large perturbations. Such features include combined positive and negative feedback effects via intracellular fatty acid binding proteins and RA-degrading enzymes. Here, we discuss how these features, together with feedback interactions among RA target genes, help enable RA to specify multiple, accurate pattern elements in the developing hindbrain, despite operating in an environment of high cellular and biochemical uncertainty and noise. PMID:23266215

  2. Turning Bone Morphogenetic Protein 2 (BMP2) on and off in Mesenchymal Cells.

    PubMed

    Rogers, Melissa B; Shah, Tapan A; Shaikh, Nadia N

    2015-10-01

    The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. Bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) is a classical morphogen; a molecule that acts at a distance and whose concentration influences cell behavior. In mesenchymal cells, the concentration of BMP2 influences myogenesis, adipogenesis, chondrogenesis, and osteogenesis. Because the amount, timing, and location of BMP2 synthesis influence the allocation of cells to muscle, fat, cartilage, and bone, the mechanisms that regulate the Bmp2 gene are crucial. Key early mesodermal events that require precise Bmp2 regulation include heart specification and morphogenesis. Originally named for its osteoinductive properties, healing fractures requires BMP2. The human Bmp2 gene also has been linked to osteoporosis and osteoarthritis. In addition, all forms of pathological calcification in the vasculature and in cardiac valves involve the pro-osteogenic BMP2. The diverse tissues, mechanisms, and diseases influenced by BMP2 are too numerous to list here (see OMIM: 112261). However, in all BMP2-influenced pathologies, changes in the behavior and differentiation of pluripotent mesenchymal cells are a recurring theme. Consequently, much effort has been devoted to identifying the molecules and conditions that influence BMP2 synthesis and the complex mechanisms that control Bmp2 gene expression. This review begins with an

  3. Bone morphogenetic protein 4 stimulates neuronal differentiation of neuronal stem cells through the ERK pathway

    PubMed Central

    Moon, Byoung-San; Yoon, Ju-Yong; Kim, Mi-Yeon; Lee, Sang-Hun; Choi, Thomas

    2009-01-01

    Bone morphogenic protein 4 (BMP4), a member of the TGF-β superfamily, induced neural differentiation of neural stem cells (NSCs) grown in a medium containing basic fibroblast growth factor (bFGF). The Ras protein level and the activities of the downstream ERKs were increased by transfection of BMP4 or treatment with recombinant BMP4. The effects of BMP4, including activation of the Ras-ERK pathway and induction of the neuron marker β-tubulin type III (Tuj1), were blocked by co-treatment of the BMP4 antagonist, noggin. The roles of the Ras-ERK pathway in neuronal differentiation by BMP4 were revealed by measuring the effect of the ERK pathway inhibition by dominant negative Ras or PD98059, the MEK specific inhibitor. BMP4 is a transcriptional target of Wnt/β-catenin signaling, and both the mRNA and protein levels of BMP4 were increased by treatment of valproic acid (VPA), a chemical inhibitor of glycogen synthase kinase 3β (GSK3β) activating the Wnt/β-catenin pathway. The BMP4-mimicking effects of VPA, activation of the Ras-ERK pathway and induction of Tuj1, also were blocked by noggin. These results indicate the potential therapeutic usage of VPA as a replacement for BMP4. PMID:19287192

  4. Use of recombinant human bone morphogenetic protein (rhBMP2) in bilateral alveolar ridge augmentation: case report.

    PubMed

    Katanec, Davor; Granić, Marko; Majstorović, Martina; Trampus, Zdenko; Pandurić, Dragana Gabrić

    2014-03-01

    In recent years, the delivery of osteoinductive factors such as bone morphogenic proteins (BMPs) has become an alternative approach to traditional bone grafting due to their capacity to produce bone healing and new bone formation. BMP-2 has proved to possess the highest osteoinductive potential among BMPs. The case reported the clinical use of recombinant human BMP-2 for bilateral vertical alveolar ridge augmentation. In a case of 61 year-old patient with a significant bilateral vertical bony deficiency of the mandible, rhBMP-2 administered via an absorbable collagen sponge carrier (ACS) was used for bilateral alveolar ridge bone induction. Augmented sites were covered and fixed with titanium mesh. Augmented sites were reopened 6 months after surgery. Titanium membrane and retaining screws were removed and three dental implants were placed. The tissue samples for the histologic analysis were harvested. Following 3 months healing period, the submerged implants were uncovered and restored with zirconium-ceramic crowns. Cone beam computed tomography (CBCT), panoramix and 3D radiographic evaluation were obtained prior to and after the surgical procedure. Vertical gain of the bone was 5.5 mm on the left and 5 mm on the right side, with 6 mm width of the bone. Histologic analysis revealed formation of mature trabecular bone with signs of osteoblastic proliferation. Implant stability quotient (ISQ) values were in the range between 69 and 75 for all three implants. No suppuration, gingival recession or pain were present 24 months after surgery. Vertical bone augmentation using rhBMP-2 is optional treatment modality to consider when planning dental implant placement in sites where severe vertical insufficiency exists. PMID:24851636

  5. Evaluation of heterotopic bone formation induced by squalane and bone morphogenetic protein composite.

    PubMed

    Kawakami, T; Kawai, T; Takei, N; Kise, T; Eda, S; Urist, M R

    1997-04-01

    Bone morphogenetic protein is an important molecule whose bioactivity depends on the carrier. Squalane is used in the formulation of various kinds of cosmetics because it is easily emulsified and has the property of spreading well. Thus, squalane might be effective as a bone morphogenetic protein delivery system. As a test for this possibility, gelatin capsules containing squalane and bone morphogenetic protein (bovine derived partially purified) composite were implanted under the hind-quarter perimuscular membrane of ddY mice. Control capsules containing only bone morphogenetic protein were used for controls. The implants were radiographically and histologically examined at 1 to 4 weeks after the operation. According to the radiographic analysis, squalane and bone morphogenetic protein composite and bone morphogenetic protein only control specimens formed widespread heterotopic bone tissues. The amount of heterotopic bone formation in the composite experimental specimens was approximately 40% greater than that in the controls. Histologic examination of experimental and control specimens revealed varying amounts of perichondral ossification by 2 weeks. By 3 and 4 weeks, the bone deposits were colonized by hematopoietic bone marrow. Squalane was effective for the slow local release of bone morphogenetic protein. Furthermore, the squalane and bone morphogenetic protein composite was a reliable osteoinductive biomaterial.

  6. Cross-talk between bone morphogenetic proteins and inflammatory pathways.

    PubMed

    van der Kraan, Peter M; Davidson, Esmeralda N Blaney

    2015-11-23

    Pro-inflammatory cytokines and bone morphogenetic proteins are generally studied separately and considered to be elements of different worlds, immunology and developmental biology. Varas and colleagues report that these factors show cross-talk in rheumatoid arthritis synoviocytes. They show that pro-inflammatory cytokines not only stimulate the production of bone morphogenetic proteins but that these endogenously produced bone morphogenetic proteins interfere with the effects of pro-inflammatory cytokines on synoviocytes.

  7. Radioimmunoassay of bone morphogenetic protein in serum: a tissue-specific parameter of bone metabolism

    SciTech Connect

    Urist, M.R.; Hudak, R.T.

    1984-05-01

    Bone morphogenetic protein (BMP), a paracrine agent inducing cartilage and bone cell differentiation, circulates in the blood and is detectable by BMP radioimmunoassay. Serum BMP levels are higher in growing children and patients with Paget's disease than in normal adults. These observations are interpreted as evidence of a BMP function in the physiology of bone in health and disease.

  8. Bone formation in the presence of platelet-rich plasma vs. bone morphogenetic protein-7.

    PubMed

    Roldán, J Camilo; Jepsen, Søren; Miller, Joanna; Freitag, Sandra; Rueger, David C; Açil, Yahya; Terheyden, Hendrik

    2004-01-01

    Growth factors contained in platelet-rich plasma (PRP) have recently been proposed to enhance maturation of bone grafts and, in combination with anorganic bovine bone, to support repair in the treatment of small bone defects in maxillofacial surgery. Bone morphogenetic proteins (BMP) carried in a matrix may be able to replace the autologous bone graft in the treatment of critical size defects. However, no studies have compared the bone stimulating capacity of PRP and BMP. Likewise there is no data comparing the effects of PRP in either an autologous bone graft or in anorganic bovine bone. We augmented the mandible of Wistar rats (n = 28) on both sides with either anorganic bovine bone (Bio-Oss) or autologous rib bone. On the test side we applied either 20 microl of autologous PRP or 10 microl of rhBMP-7 (4 groups, n = 7). In addition, bone induction was evaluated in an extraskeletal site (n = 14). A polychrome sequential labeling was performed. The animals were sacrificed by intra-vital perfusion on day 50. Undecalcified ground sections were evaluated by microradiography, digitized histomorphometry and under fluorescent light. The qualitative analysis of fluorochrome labels suggested that PRP and rhBMP-7 accelerated bone growth. However, histomorphometric analysis revealed no significant differences in the area of newly mineralized bone under either the influence of PRP or rhBMP-7 on autologous bone graft. Likewise, the addition of PRP to anorganic bovine bone showed no statistical difference to the control group. The strongest bone stimulating effect was seen for the combination of rhBMP-7 with anorganic bovine bone (p = 0.028). In the extraskeletal model, newly formed bone was evident in the presence of rhBMP-7, but not of PRP. In conclusion, according to the histomorphometry, the addition of platelet-rich plasma failed to enhance bone formation on anorganic bovine bone and on autologous bone grafts.

  9. Novel Approaches to Bone Grafting: Porosity, Bone Morphogenetic Proteins, Stem Cells, and the Periosteum

    PubMed Central

    Petrochenko, Peter; Narayan, Roger J.

    2011-01-01

    The disadvantages involving the use of a patient’s own bone as graft material have led surgeons to search for alternative materials. In this review, several characteristics of a successful bone graft material are discussed. In addition, novel synthetic materials and natural bone graft materials are being considered. Various factors can determine the success of a bone graft substitute. For example, design considerations such as porosity, pore shape, and interconnection play significant roles in determining graft performance. The effective delivery of bone morphogenetic proteins and the ability to restore vascularization also play significant roles in determining the success of a bone graft material. Among current approaches, shorter bone morphogenetic protein sequences, more efficient delivery methods, and periosteal graft supplements have shown significant promise for use in autograft substitutes or autograft extenders. PMID:21488823

  10. Bone protein extraction without demineralization utilizing principles from hydroxyapatite chromatography

    PubMed Central

    Cleland, Timothy P.; Vashishth, Deepak

    2014-01-01

    Historically, extraction of bone proteins has relied on the use of demineralization to better retrieve proteins from the extracellular matrix; however, demineralization can be a slow process that restricts subsequent analysis of the samples. Here, we developed a novel protein extraction method that does not use demineralization, but utilizes a methodology from hydroxyapatite chromatography where high concentrations of ammonium phosphate and ammonium bicarbonate are used to extract bone proteins. We report that this method has a higher yield than previously published small-scale extant bone extractions, with and without demineralization. Furthermore, after digestion with trypsin and subsequent HPLC-MS/MS analysis, we were able to detect several extracellular matrix and vascular proteins in addition to collagen I and osteocalcin. Our new method has the potential to isolate proteins in a short period (4 hrs) and provide information about bone proteins that may be lost during demineralization or with the use of denaturing agents. PMID:25535955

  11. A strategy to quantitate global phosphorylation of bone matrix proteins.

    PubMed

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  12. Studies of morphogens: keep calm and carry on

    PubMed Central

    Stathopoulos, Angelike; Iber, Dagmar

    2013-01-01

    Morphogens are signaling factors that direct cell fate and tissue development at a distance from their source, and various modes of transport and interpretation have been suggested for morphogens. The recent EMBO Workshop on ‘Morphogen gradients’, which took place in Oxford, UK in June 2013, centered on the formation and interpretation of such morphogen gradients during development. This meeting allowed an exchange of views in light of recent results. Here, we provide a brief overview of the talks, organized in relation to several major themes of discussion at the meeting: (1) morphogen gradient formation; (2) morphogen gradient interpretation; (3) signaling networks and feedback in morphogenesis; (4) emergence of patterns; (5) scaling of patterns; (6) the control of growth; and (7) new techniques in the field. PMID:24086076

  13. Transcriptional regulation of vascular bone morphogenetic protein by endothelin receptors in early autoimmune diabetes mellitus.

    PubMed

    Nett, Philipp C; Ortmann, Jana; Celeiro, Jennifer; Haas, Elvira; Hofmann-Lehmann, Regina; Tornillo, Luigi; Terraciano, Luigi M; Barton, Matthias

    2006-04-01

    Endothelin (ET) and bone morphogenic proteins (BMP) have been implicated in the development of micro- and macrovascular complications of type 2 diabetes mellitus due to atherosclerosis. This study investigated vascular BMP-expression during early development of experimental autoimmune diabetes mellitus and whether ET(A) receptors are involved in its regulation, using the selective ET(A) receptor antagonist BSF461314. Specificity of BSF461314 was confirmed through ET-mediated p44/42 mitogen-activated protein kinase (ERK1/2) phosphorylation experiments. For animal studies, non-obese diabetic (NOD) and control mice at 16 weeks of age were treated with BSF461314 for 6 weeks. Plasma glucose levels were measured before and after treatment and vascular gene expression of BMP-2, BMP-7, and BMP-type II receptor was determined in the aorta by quantitative real-time polymerase chain reaction analysis. At the beginning of the study in all animals, plasma glucose levels were within the normal range. After 6 weeks gene expression of vascular BMP-2, BMP-7 and BMP-type II receptor was almost doubled in NOD mice compared with non-diabetic controls (p < 0.05). Concomitant treatment with BSF461314 significantly reduced expression of all BMPs and lowered plasma glucose levels in NOD mice close to controls (all p < 0.05 versus untreated). In conclusion, vascular BMP-2, BMP-7, and BMP-type II receptor expression is upregulated in early stages of autoimmune diabetes mellitus. The data further indicate that ET(A) receptors inhibit diabetes-associated activation of vascular BMPs and regulate plasma glucose levels suggesting that ET(A) receptors might provide a new therapeutic target to interfere with the early development of atherosclerosis in patients with type 1 diabetes mellitus. PMID:16300798

  14. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology

    PubMed Central

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2016-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins’ regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. PMID:26123302

  15. Morphogen-related therapeutic targets for liver fibrosis

    PubMed Central

    Fung, Eileen; Tsukamoto, Hidekazu

    2015-01-01

    Recent research on hepatic stellate cells (HSCs) has spotlighted the involvement of morphogens in their cell fate determination in liver fibrosis. Temporally and spatially expressed during embryonic development, morphogens are involved in regulation of cell proliferation and differentiation, and tissue patterning. In normal adult liver, morphogens are generally expressed at low levels. However, in liver disease, myofibroblastic HSCs express morphogens such as Wnt, Shh, Necdin, DLK1, and Notch as part of their participation in fibrogenesis and wound healing. Liver regeneration involves cell proliferation and differentiation akin to embryonic liver development where the cells appear to undergo similar fates, and not surprisingly the morphogens are re-activated for the regenerative purpose in adult liver injury. Evidence also points to crosstalk of these morphogens in regulation of HSC fate determination. Genetic ablation or pharmacologic inhibition of morphogens reverts activated HSC to quiescent cells in culture and attenuates progression of hepatic fibrosis. However, positive regulation of liver regeneration by the morphogens needs to be spared. Therapeutically, manipulation of morphogen activities in a cell type and phase-specific manner, should offer new modalities for chronic liver disease. PMID:26206577

  16. Squalane as a possible carrier of bone morphogenetic protein.

    PubMed

    Kawakami, T; Uji, H; Antoh, M; Hasegawa, H; Kise, T; Eda, S

    1993-07-01

    Gelatin capsules containing squalane partially purified bone morphogenetic protein (BMP) complex were placed on the perimuscular membrane of rats. Two kinds of control, gelatin capsules containing only BMP and those bearing squalane only, were used. The embedded areas were histopathologically examined at 3 and 6 wk after the operation. The observations revealed that the squalane/BMP complex elicited wide heterotopic bone formation with bone marrow tissue, suggesting that squalane is a possible carrier of BMP for clinical applications.

  17. Structure of bone morphogenetic protein 9 procomplex

    PubMed Central

    Mi, Li-Zhi; Brown, Christopher T.; Gao, Yijie; Tian, Yuan; Le, Viet Q.; Walz, Thomas; Springer, Timothy A.

    2015-01-01

    Bone morphogenetic proteins (BMPs) belong to the TGF-β family, whose 33 members regulate multiple aspects of morphogenesis. TGF-β family members are secreted as procomplexes containing a small growth factor dimer associated with two larger prodomains. As isolated procomplexes, some members are latent, whereas most are active; what determines these differences is unknown. Here, studies on pro-BMP structures and binding to receptors lead to insights into mechanisms that regulate latency in the TGF-β family and into the functions of their highly divergent prodomains. The observed open-armed, nonlatent conformation of pro-BMP9 and pro-BMP7 contrasts with the cross-armed, latent conformation of pro-TGF-β1. Despite markedly different arm orientations in pro-BMP and pro-TGF-β, the arm domain of the prodomain can similarly associate with the growth factor, whereas prodomain elements N- and C-terminal to the arm associate differently with the growth factor and may compete with one another to regulate latency and stepwise displacement by type I and II receptors. Sequence conservation suggests that pro-BMP9 can adopt both cross-armed and open-armed conformations. We propose that interactors in the matrix stabilize a cross-armed pro-BMP conformation and regulate transition between cross-armed, latent and open-armed, nonlatent pro-BMP conformations. PMID:25751889

  18. Hepatoregenerative role of bone morphogenetic protein-9

    PubMed Central

    Sosa, Ivan; Cvijanovic, Olga; Celic, Tanja; Cuculic, Drazen; Crncevic-Orlic, Zeljka; Vukelic, Lucian; Cvek, Sanja Zoricic; Dudaric, Luka; Bosnar, Alan; Bobinac, Dragica

    2011-01-01

    Summary Bone morphogenetic protein-9 (BMP-9) is a member of the transforming growth factor beta (TGF-β) superfamily of cytokines, which regulate cell growth and differentiation during embryogenesis. Apart of that, the hypoglycemic potential of BMP-9 is of great interest. It has been confirmed that BMP-9, like insulin, improves glycemia in diabetic mice and regulates directional glucose metabolism in hepatocytes; therefore it is proposed to be a candidate hepatic insulin-sensitizing substance (HISS). In liver fibrosis, due to the portocaval shunt, insulin bypasses the organ and the liver undergoes atrophy. Parenteral administration of insulin reverses atrophy by stimulating mitogenic activity of the hepatocytes. Because BMP-9 has a signaling pathway similar to other BMPs and insulin, it is to be expected that BMP-9 has a certain regenerative role in the liver, supporting the above-mentioned is evidence of BMP-9 expression in Dissè’s spaces and BMP-7’s mitogenic activity in mucosal cells. However, further studies are needed to confirm the possible regenerative role of BMP-9. PMID:22129908

  19. Recovery of proteins from beef bone and the functionality of these proteins in sausage batters.

    PubMed

    Boles, J A; Rathgeber, B M; Shand, P J

    2000-06-01

    Four solutions [4% sodium chloride (control), 4% sodium chloride with 0.3% sodium tripolyphosphate (STP), 0.3% tetrasodium pyrophosphate (TTP) or 0.05 M sodium hydroxide (NaOH)] were used to extract proteins from beef bones. Three bone solution ratios (1:1, 1:4 or 1:10), three bone types [vertebra (lumbar), rib (4-7) and leg (femur)] and two methods of protein recovery from the extraction slurries [dialysis against 0.03 M potassium phosphate buffer (pH 5.3) and acid precipitation] were evaluated. Solutions containing phosphates or NaOH were more effective in extracting protein than sodium chloride alone. Total protein recovery was highest from vertebra bones while extraction of proteins from leg bones resulted in the lowest recovery. A solution to bone ratio of 1 to 10 recovered more total protein from vertebra or rib bones than leg bones. Dialysis recovered more total protein from extraction solutions when the protein concentration was low. Acid precipitation, however, worked best if the protein concentration in the extraction solution was high. Extraction procedures resulted in some myosin degradation. Proteins extracted from beef bone materials and recovered by dialysis, performed equally as well as other commercially available proteins when added to a finely comminuted sausage product.

  20. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  1. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling.

    PubMed

    Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R

    2004-06-25

    Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling. PMID:15090551

  2. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    PubMed

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  3. Multi-lineage MSC Differentiation via Engineered Morphogen Fields

    PubMed Central

    Arany, P.R.; Huang, G.X.; Gadish, O.; Feliz, J.; Weaver, J.C.; Kim, J.; Yuen, W.W.; Mooney, D.J.

    2014-01-01

    Tissue loss due to oral diseases requires the healing and regeneration of tissues of multiple lineages. While stem cells are native to oral tissues, a current major limitation to regeneration is the ability to direct their lineage-specific differentiation. This work utilizes polymeric scaffold systems with spatiotemporally controlled morphogen cues to develop precise morphogen fields to direct mesenchymal stem cell differentiation. First, a simple three-layer scaffold design was developed that presented two spatially segregated, lineage-specific cues (Dentinogenic TGF-β1 and Osteogenic BMP4). However, this system resulted in diffuse morphogen fields, as assessed by the in vitro imaging of cell-signaling pathways triggered by the morphogens. Mathematical modeling was then exploited, in combination with incorporation of specific inhibitors (neutralizing antibodies or a small molecule kinase inhibitor) into each morphogen in an opposing spatial pattern as the respective morphogen, to design a five-layer scaffold that was predicted to yield distinct, spatially segregated zones of morphogen signaling. To validate this system, undifferentiated MSCs were uniformly seeded in these scaffold systems, and distinct mineralized tissue differentiation were noted within these morphogen zones. Finally, to demonstrate temporal control over morphogen signaling, latent TGF-β1 was incorporated into one region of a concentric scaffold design, and laser treatment was used to activate the morphogen on-demand and to induce dentin differentiation solely within that specific spatial zone. This study demonstrates a significant advance in scaffold design to generate precise morphogen fields that can be used to develop in situ models to explore tissue differentiation and may ultimately be useful in engineering multi-lineage tissues in clinical dentistry. PMID:25143513

  4. Matricellular proteins as regulators of cancer metastasis to bone.

    PubMed

    Trotter, Timothy N; Yang, Yang

    2016-01-01

    Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.

  5. A System of Repressor Gradients Spatially Organizes the Boundaries of “Morphogen-dependent” Target Genes

    PubMed Central

    Chen, Hongtao; Xu, Zhe; Mei, Constance; Yu, Danyang; Small, Stephen

    2012-01-01

    Summary The homeodomain (HD) protein Bicoid (Bcd) is thought to function as a gradient morphogen that positions boundaries of target genes via threshold-dependent activation mechanisms. Here we analyze 66 Bcd-dependent regulatory elements, and show that their boundaries are positioned primarily by repressive gradients that antagonize Bcd-mediated activation. A major repressor is the pair-rule protein Runt, which is expressed in an opposing gradient, and is necessary and sufficient for limiting Bcd-dependent activation. Evidence is presented that Runt functions with the maternal repressor Capicua and the gap protein Kruppel as the principal components of a repression system that correctly orders boundaries throughout the anterior half of the embryo. These results put conceptual limits on the Bcd morphogen hypothesis, and demonstrate how the Bcd gradient functions within the gene network that patterns the embryo. PMID:22541432

  6. [Ectopic bone induction by human fetal enamel proteins].

    PubMed

    Wang, W

    1993-11-01

    Mixture of amelogenin, enamelin and soluble dentin proteins with plaster of Paris and distilled water were implanted in the left thigh-muscle pouch of C57BL/6 T mice, and PLP or BSA/PLP were implanted in the contralateral limbs for controls. The hind limbs were examined by means of microradiographic and histological methods three weeks after the implantation. Implants of PLP, BSA/PLP or E/PLP did not evoke formation of new cartilage or bone. Roentgenography showed highly mineralized tissues in the implantation areas of A/PLP or D/PLP, histological examination confirmed this as induced new bone or cartilage formation. Thus it indicates that amelogenins and soluble dentin proteins have bone induction activity as bone morphogenetic protein, they could induce the differentiation of mesenchymal cell in the muscles into chondrocyte and osteocyte. PMID:8033649

  7. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration.

  8. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  9. Sex Affects Bone Morphogenetic Protein Type II Receptor Signaling in Pulmonary Artery Smooth Muscle Cells

    PubMed Central

    Mair, Kirsty M.; Yang, Xu Dong; Long, Lu; White, Kevin; Wallace, Emma; Ewart, Marie-Ann; Docherty, Craig K.; Morrell, Nicholas W.

    2015-01-01

    Rationale: Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH). Objectives: We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs). Methods: We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1. Measurements and Main Results: Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1+/− mice developed pulmonary hypertension (reversed by ovariectomy). Conclusions: We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH. PMID:25608111

  10. Serum bone gla protein (BGP) and other markers of bone mineral metabolism in postmenopausal osteoporosis.

    PubMed

    Ismail, F; Epstein, S; Pacifici, R; Droke, D; Thomas, S B; Avioli, L V

    1986-10-01

    Bone gla protein, the vitamin K-dependent protein synthesized by osteoblasts and measured in blood by radioimmunoassay, has been used as an index of the rate of bone turnover. The relationship of bone gla protein with other markers of bone mineral metabolism was determined in 31 untreated postmenopausal women with the osteoporotic syndrome. In addition to serum osteocalcin (BGP) we measured parathyroid hormone (PTH) (carboxyl and mid-molecule fragments), 25(OH)D, alkaline phosphatase, estradiol (E2), estrone (E1), dietary calcium intake, 24 hour urinary calcium excretion, and bone mineral density by CT scan of the lumbar vertebrae. Significant osteopenia was present on CT in untreated postmenopausal osteoporotic women (bone density in 18 out of 31 was below the critical value of 60 mg/cm3). Serum BGP correlated positively with CT scan (r + 0.647, P less than 0.001). CT and age were negatively correlated (r - 0.661, P less than 0.001) while CT and E2 showed a positive correlation (r + 0.554, P less than 0.01). Unexpectedly, BGP and age revealed a significant negative correlation (r - 0.421, P less than 0.05). These findings suggest a state of low bone turnover in this group with untreated postmenopausal osteoporosis.

  11. Mechanical testing of recombinant human bone morphogenetic protein-7 regenerated bone in sheep mandibles.

    PubMed

    Kontaxis, A; Abu-Serriah, M; Ayoub, A F; Barbenel, J C

    2004-01-01

    A new method was developed in this study for testing excised sheep mandibles as a cantilever. The method was used to determine the strength and stiffness of sheep hemi-mandibles including a 35 mm defect bridged by regenerated bone. Recombinant human bone morphogenetic protein-7 (rhBMP-7) in a bovine collagen type-I carrier was used for the bone regeneration. Initial tests on ten intact sheep mandibles confirmed that the strength, stiffness and area beneath the load-deformation curves of the right and left hemi-mandibles were not significantly different, confirming the validity of using the contra-lateral hemi-mandible as a control side. Complete bone regeneration occurred in six hemi-mandibles treated with rhBMP, but the quality and mechanical properties of the bone were very variable. The new bone in three samples contained fibrous tissue and was weaker and less stiff than the contra-lateral side (strength, 10-20 per cent; stiffness, 6-15 per cent). The other half had better-quality bone and was significantly stiffer and stronger (p < 0.05), with strength 45-63 per cent and stiffness 35-46 per cent of the contra-lateral side. Hemi-mandibles treated with collagen alone had no regenerated bone bridge suggesting that 35 mm is a critical-size bone defect. PMID:15648662

  12. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

    EPA Science Inventory

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been ...

  13. Co-delivery of platelet-derived growth factor (PDGF-BB) and bone morphogenic protein (BMP-2) coated onto heparinized titanium for improving osteoblast function and osteointegration.

    PubMed

    Kim, Sung Eun; Yun, Young-Pil; Lee, Jae Yong; Shim, June-Sung; Park, Kyeongsoon; Huh, Jung-Bo

    2015-12-01

    The aim of this study was to improve osteoblast function by delivering two growth factors, PDGF-BB and BMP-2, incorporated onto heparinized titanium (Hep-Ti) substrate. To achieve co-delivery of PDGF-BB and BMP-2, the surface of anodized Ti was immobilized with heparin, and then the two growth factors were coated onto the Hep-Ti surface. Incorporation of the two growth factors onto Hep-Ti was evaluated by SEM and XPS. Incorporated PDGF-BB and BMP-2 were released from the Hep-Ti substrate in a sustained manner. In vitro studies revealed that osteoblasts grown on PDGF-BB- and BMP-2-immobilized Hep-Ti increased ALP activity, calcium deposition, osteocalcin and osteopontin levels as compared to those grown on PDGF-BB alone- or BMP-2 alone-immobilized Hep-Ti. These results suggested that co-delivery of PDGF-BB and BMP-2 using Hep-Ti substrate will be a promising material for the enhancement of osteoblast function and osteointegration.

  14. Relationships between bone protein and mineral in developing porcine long bone and calvaria.

    PubMed

    Sodek, K L; Tupy, J H; Sodek, J; Grynpas, M D

    2000-02-01

    Several proteins in the bone matrix have been implicated in the regulation of mineral crystal formation and growth. To investigate the relationships between these proteins and the mineral phase at various stages of mineral maturation, fetal porcine calvariae and long bones were fragmented and the particles (20 microm) separated by density gradient sedimentation into fractions of increasing density (1.8 to >2.2 g/cm3). Samples from each fraction were analyzed by X-ray diffraction to obtain the average crystal size/strain and chemical composition. Other samples were sequentially extracted, first with 4.0 mol/L guanidium hydrochloride (GuHCl) (G1), then with 0.5 mol/L ethylene-diamine tetraacetic acid (EDTA) (E), and again with 4.0 mol/L Gu-HCI (G2), for analysis of proteins in different tissue compartments. Based on the mineral density distribution and crystal size, fetal porcine bone protein content was determined for tissue residue and each extract and the protein composition analyzed by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE). Although the insoluble organic matrix decreased with mineral density the collagen and protein content remained fairly constant, representing approximately 10% of the tissue weight, except in the highest density fraction. Whereas the total extractable protein, representing predominantly noncollagenous proteins, did not show density-related differences, differences were observed for individual proteins on SDS-PAGE. Consistent with their presence in osteoid, the content of bone sialoprotein (BSP), tyrosine-rich acidic matrix protein (TRAMP), and a series of small proteins with cell attachment properties in the G1 extract decreased with mineral density, whereas TRAMP and BSP were increased in G2 extracts. Mineral-associated proteins, including alpha2HS-glycoprotein, BSP, osteopontin (OPN), and osteocalcin, increased with mineral density, whereas secreted protein acidic and rich in cysteine (SPARC)/osteonectin, and some minor

  15. Preservation of the bone protein osteocalcin in dinosaurs

    NASA Astrophysics Data System (ADS)

    Muyzer, Gerard; Sandberg, Philip; Knapen, Marjo H. J.; Vermeer, Cees; Collins, Matthew; Westbroek, Peter

    1992-10-01

    Two different immunological assays were used to identify the remains of a bone matrix protein, osteocalcin (OC), in the bones of dinosaurs and other fossil vertebrates. Antibodies raised against OC from modern vertebrates showed strong immunological cross-reactivity with modern and relatively young fossil samples and significant reactions with some of the dinosaur bone extracts. The presence of OC was confirmed by the detection of a peptide-bound, uniquely vertebrate amino acid, γcarboxyglutamic acid (Gla). Preservation of OC in fossil bones appears to be strongly dependent on the burial history and not simply on age. These results extend the range of protein preservation in the geologic record and provide a first step toward a molecular phylogeny of the dinosaurs.

  16. Spatiotemporal Analysis of Different Mechanisms for Interpreting Morphogen Gradients

    PubMed Central

    Richards, David M.; Saunders, Timothy E.

    2015-01-01

    During development, multicellular organisms must accurately control both temporal and spatial aspects of tissue patterning. This is often achieved using morphogens, signaling molecules that form spatially varying concentrations and so encode positional information. Typical analysis of morphogens assumes that spatial information is decoded in steady state by measuring the value of the morphogen concentration. However, recent experimental work suggests that both pre-steady-state readout and measurement of spatial and temporal derivatives of the morphogen concentration can play important roles in defining boundaries. Here, we undertake a detailed theoretical and numerical study of the accuracy of patterning—both in space and time—in models where readout is provided not by the morphogen concentration but by its spatial and temporal derivatives. In both cases we find that accurate patterning can be achieved, with sometimes even smaller errors than directly reading the morphogen concentration. We further demonstrate that such models provide other potential benefits to the system, such as the ability to switch on and off gene response with a high degree of spatiotemporal accuracy. Finally, we discuss how such derivatives might be calculated biologically and examine these models in relation to Sonic Hedgehog signaling in the vertebrate central nervous system. We show that, when coupled to a downstream transcriptional network, pre-steady-state measurement of the temporal change in the Shh morphogen is a plausible mechanism for determining precise gene boundaries in both space and time. PMID:25902445

  17. High-strength silk protein scaffolds for bone repair

    PubMed Central

    Mandal, Biman B.; Grinberg, Ariela; Seok Gil, Eun; Panilaitis, Bruce; Kaplan, David L.

    2012-01-01

    Biomaterials for bone tissue regeneration represent a major focus of orthopedic research. However, only a handful of polymeric biomaterials are utilized today because of their failure to address critical issues like compressive strength for load-bearing bone grafts. In this study development of a high compressive strength (~13 MPa hydrated state) polymeric bone composite materials is reported, based on silk protein-protein interfacial bonding. Micron-sized silk fibers (10–600 µm) obtained utilizing alkali hydrolysis were used as reinforcement in a compact fiber composite with tunable compressive strength, surface roughness, and porosity based on the fiber length included. A combination of surface roughness, porosity, and scaffold stiffness favored human bone marrow-derived mesenchymal stem cell differentiation toward bone-like tissue in vitro based on biochemical and gene expression for bone markers. Further, minimal in vivo immunomodulatory responses suggested compatibility of the fabricated silk-fiber-reinforced composite matrices for bone engineering applications. PMID:22552231

  18. Recombinant human bone morphogenetic protein 2 in lateral ridge augmentation.

    PubMed

    Mehanna, Robert; Koo, Samuel; Kim, David M

    2013-01-01

    This case report describes the augmentation of severe lateral ridge defects in the maxilla and mandible using recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS). The surgical technique used tenting screws and a membrane to maintain space for the ACS. After 7 months of healing, the ridge width increased from 1 to 2 mm to 6 to 9 mm, thus allowing successful placement of dental implants. De novo bone formation through use of the surgical technique for space maintenance of rhBMP-2/ACS was demonstrated without the need for additional particulate bone grafting. PMID:23342352

  19. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    PubMed

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    haematopoietic bone marrow that forms by day 15 in heterotopic rectus abdominis sites. Synergistic binary applications also induce the morphogenesis of rudimentary embryonic growth plates indicating that the "memory" of developmental events in embryo can be redeployed postnatally by the application of morphogen combinations. Synergistic binary applications or single relatively high doses of hTGF-β3 have shown that hTGF-β3 induces bone by expressing a variety of inductive morphogenetic proteins that result in the rapid induction of bone formation. Tissue induction thus invocated singly by hTGF-β3 recapitulates the synergistic induction of bone formation by binary applications of hTGF-β1 and -β3 isoforms with hOP-1. Both synergistic strategies result in the rapid induction and expansion of the transformed mesenchymal tissue into large corticalized heterotopic ossicles with osteoblast-like cell differentiation at the periphery of the implanted reconstituted specimens with "tissue transfiguration" in vivo. Molecularly, the rapid induction of bone formation by binary applications of hOP-1 and hTGF-β3 or by hTGF-β3 applied singly resides in the up-regulation of selected genes involved in tissue induction and morphogenesis, Osteocalcin, RUNX-2, OP-1, TGF-β1 and -β3 with however the noted lack of TGF-β2 up-regulation. PMID:27474964

  20. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    PubMed

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    haematopoietic bone marrow that forms by day 15 in heterotopic rectus abdominis sites. Synergistic binary applications also induce the morphogenesis of rudimentary embryonic growth plates indicating that the "memory" of developmental events in embryo can be redeployed postnatally by the application of morphogen combinations. Synergistic binary applications or single relatively high doses of hTGF-β3 have shown that hTGF-β3 induces bone by expressing a variety of inductive morphogenetic proteins that result in the rapid induction of bone formation. Tissue induction thus invocated singly by hTGF-β3 recapitulates the synergistic induction of bone formation by binary applications of hTGF-β1 and -β3 isoforms with hOP-1. Both synergistic strategies result in the rapid induction and expansion of the transformed mesenchymal tissue into large corticalized heterotopic ossicles with osteoblast-like cell differentiation at the periphery of the implanted reconstituted specimens with "tissue transfiguration" in vivo. Molecularly, the rapid induction of bone formation by binary applications of hOP-1 and hTGF-β3 or by hTGF-β3 applied singly resides in the up-regulation of selected genes involved in tissue induction and morphogenesis, Osteocalcin, RUNX-2, OP-1, TGF-β1 and -β3 with however the noted lack of TGF-β2 up-regulation.

  1. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  2. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

    PubMed

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn; O'Connor, J Patrick

    2015-07-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.

  3. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Choi, Jong-il

    2015-06-01

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants

  4. Proteins in the fossil bone of the dinosaur, Seismosaurus.

    PubMed

    Gurley, L R; Valdez, J G; Spall, W D; Smith, B F; Gillette, D D

    1991-02-01

    Proteins have been successfully extracted from the fossil vertebra of a 150-million-year-old sauropod dinosaur ("Seismosaurus") recently excavated from the Morrison Formation of New Mexico. HCl and guanidine.HCl extracts of the fossil bone and its sandstone matrix were concentrated, demineralized, and resolved into a number of different protein fractions by reversed-phase high-performance liquid chromatography (HPLC). One of these fractions had the same retention time as collagen. Amino acid analysis (Pico-Tag method) of these fractions confirmed they were proteins. Comparison of the correlation coefficients of the amino acid analyses with that of collagen standards indicated that none of the fractions contained significant amounts of collagen. Similar HPLC profiles were obtained for the HCl extracts of fossil bone and its sandstone matrix suggesting they contained the same proteins. However, different HPLC profiles were obtained when these HCl extracts were dried and reextracted with guanidine.HCl. These different fractions represent proteins unique to the fossil and were not found in the sandstone matrix. These differences were confirmed by amino acid analysis. Such information on fossil bone proteins might provide useful knowledge concerning the evolution of skeletal molecules and the fossilization process. Similar information on the proteins from the geological matrix might provide useful fingerprints for reconstructing ancient environments and for assessing sedimentary rocks for fossil fuel exploration.

  5. Pleiotrophin regulates bone morphogenetic protein (BMP)-induced ectopic osteogenesis.

    PubMed

    Sato, Yasuko; Takita, Hiroko; Ohata, Noboru; Tamura, Masato; Kuboki, Yoshinori

    2002-06-01

    We previously isolated pleiotrophin (PTN) from bovine bone as a protein and showed that it stimulated osteoblastic growth and differentiation. Further details of its function, however, have not been fully clarified. The aim of this paper was to elucidate the effects of PTN on bone morphogenetic protein (BMP)-induced ectopic osteogenesis. Recombinant human BMP (rhBMP)-2 (1.2 microg) was combined with a fibrous glass membrane, which had been established as an effective carrier. Various amounts of the purified bovine PTN (5, 10, 50, and 100 microg) or rhPTN (5 and 10 microg) were added to the rhBMP-2/carrier composites and implanted into rats subcutaneously as reported. It was found that the amount of bone induced in the system increased with the addition of 10 microg of either purified PTN or rhPTN. However, the amount of bone decreased with the addition of 50 or 100 microg of purified PTN dose-dependently, as judged by both alkaline phosphatase activity and calcium content in the retrieved implants. It was concluded that purified PTN or rhPTN, at ratios of concentration of 10-100 microg of PTN to 1.2 microg of rhBMP-2 in the carrier, regulated the ectopic bone-inducing activity of rhBMP-2.

  6. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair

    PubMed Central

    Yu, Yan Yiu; Lieu, Shirley; Lu, Chuanyong; Colnot, Céline

    2010-01-01

    Bone repair depends on the coordinated action of numerous growth factors and cytokines to stimulate new skeletal tissue formation. Among all the growth factors involved in bone repair, Bone Morphogenetic Proteins (BMPs) are the only molecules now used therapeutically to enhance healing. Although BMPs are known as strong bone inducers, their role in initiating skeletal repair is not entirely elucidated. The aim of this study was to define the role of BMP2 during the early stages of bone regeneration and more specifically in regulating the fate of skeletal progenitors. During healing of non-stabilized fractures via endochondral ossification, exogenous BMP2 increased the deposition and resorption of cartilage and bone, which was correlated with a stimulation of osteoclastogenesis but not angiogenesis in the early phase of repair. During healing of stabilized fractures, which normally occurs via intramembranous ossification, exogenous BMP2 induced cartilage formation suggesting a role in regulating cell fate decisions. Specifically, the periosteum was found to be a target of exogenous BMP2 as shown by activation of the BMP pathway in this tissue. Using cell lineage analyses, we further show that BMP2 can direct cell differentiation towards the chondrogenic lineage within the periosteum but not the endosteum, indicating that skeletal progenitors within periosteum and endosteum respond differently to BMP signals. In conclusion, BMP2 plays an important role in the early stages of repair by recruiting local sources of skeletal progenitors within periosteum and endosteum and by determining their differentiation towards the chondrogenic and osteogenic lineages. PMID:20348041

  7. Bone GLA protein (BGP) levels and bone turnover in rheumatoid arthritis.

    PubMed

    Magaro, M; Altomonte, L; Mirone, L; Zoli, A; Corvino, G

    1989-06-01

    Bone GLA protein (BGP) and other biochemical indices of bone turnover were measured in 42 female patients with rheumatoid arthritis (RA) and in a group of normal subjects matched for sex and age. Mean serum BGP concentrations were significantly higher in patients with active arthritis than in patients with mild activity (p less than 0.01) and controls (p less than 0.01). No significant difference was found in serum BGP levels and in other parameters of bone turnover when the patients were stratified according to functional class or duration of disease. There was a correlation between BGP and alkaline phosphatase levels only in RA patients with high activity of disease. Our data suggest an accelerated bone turnover in patients with active RA. We infer that in such patients the impairment of bone metabolism is a determinant of RA-associated osteopenia. Disease activity rather than functional impairment or duration of arthritis should be regarded as a factor in the bone loss of RA.

  8. Tooth-derived bone graft material

    PubMed Central

    Kim, Young-Kyun; Lee, Junho; Kim, Kyung-Wook; Murata, Masaru; Akazawa, Toshiyuki; Mitsugi, Masaharu

    2013-01-01

    With successful extraction of growth factors and bone morphogenic proteins (BMPs) from mammalian teeth, many researchers have supported development of a bone substitute using tooth-derived substances. Some studies have also expanded the potential use of teeth as a carrier for growth factors and stem cells. A broad overview of the published findings with regard to tooth-derived regenerative tissue engineering technique is outlined. Considering more than 100 published papers, our team has developed the protocols and techniques for processing of bone graft material using extracted teeth. Based on current studies and studies that will be needed in the future, we can anticipate development of scaffolds, homogenous and xenogenous tooth bone grafts, and dental restorative materials using extracted teeth. PMID:24471027

  9. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    PubMed

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats. PMID:26367331

  10. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    PubMed

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats.

  11. Gene expression of four adhesive proteins in the early healing of bone defect and bone-implant interface.

    PubMed

    Zhang, Ting; Xia, Haibin; Wang, Yining; Peng, Cong; Li, Yuhong; Pan, Xinhua

    2006-01-01

    The objective of this study was to evaluate the gene expression of four bone-related adhesive proteins during the early healing of bone defect and bone-implant interface in animal experiments. T-shaped hollow pure titanium implants with dual acid-etched surfaces were placed into femurs of 17 Sprague-Dawley rats, and bone defects with the same size were made in the same site in 15 rats. Newly formed bone was harvested at 5 days, 8 days and 16 days respectively. The gene expression of fibronectin (FN), collagen I (COL I), bone sialoprotein II (BSP II) and osteopontin (OPN) in non-implant and bone-implant defects were examined using semi-quantity reverse transcription-polymerase chain reaction. The gene expression of OPN in the non-implant defect was slightly higher than that in the bone-implant interface. At 8 days postoperation, FN, COL I and BSP II expression were significantly up-regulated in the bone-implant group. All four proteins peaked at 8 days. The results indicate that the gene expression of the four adhesive proteins is different between bone defect and bone-implant interface. Intracellular synthesis of FN, COL I and BSP II was accelerated in the early healing stages of the bone-implant interface. PMID:17946089

  12. Bone regeneration with plasma-rich-protein following enucleation of traumatic bone cyst

    PubMed Central

    Subramaniam, Priya; Kumar, Krishna; Ramakrishna, T.; Bhadranna, Abhishek

    2013-01-01

    Traumatic bone cyst is an uncommon non-epithelium lined cavity and is seen frequently in young individuals. The lesion occurs more commonly in the mandible, involving the posterior region. It is generally asymptomatic and is diagnosed on routine radiographic examination. The cystic cavity is usually empty and there is scanty material for histological examination. Surgical curettage is usually done and recurrence is rare. A case of traumatic bone cyst occurring in the anterior region of mandible in a young boy is presented. Following surgical intervention, plasma-rich-protein was placed in the cystic cavity. The lesion showed progressive resolution and bone regeneration of the cystic cavity within a short period of time. PMID:24926221

  13. The biological function of type I receptors of bone morphogenetic protein in bone

    PubMed Central

    Lin, Shuxian; Svoboda, Kathy K H; Feng, Jian Q; Jiang, Xinquan

    2016-01-01

    Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In recent decades, genetic studies in humans and mice have demonstrated that perturbations in BMP signaling via BMPRI resulted in various diseases in bone, cartilage, and muscles. In this review, we focus on all three types of BMPRI, which consist of activin-like kinase 2 (ALK2, also called type IA activin receptor), activin-like kinase 3 (ALK3, also called BMPRIA), and activin-like kinase 6 (ALK6, also called BMPRIB). The research areas covered include the current progress regarding the roles of these receptors during myogenesis, chondrogenesis, and osteogenesis. Understanding the physiological and pathological functions of these receptors at the cellular and molecular levels will advance drug development and tissue regeneration for treating musculoskeletal diseases and bone defects in the future. PMID:27088043

  14. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  15. Bone Morphogenetic Protein 7 (BMP-7) Influences Tendon-Bone Integration In Vitro

    PubMed Central

    Schwarting, Tim; Lechler, Philipp; Struewer, Johannes; Ambrock, Marius; Frangen, Thomas Manfred; Ruchholtz, Steffen; Ziring, Ewgeni; Frink, Michael

    2015-01-01

    Introduction Successful graft ingrowth following reconstruction of the anterior cruciate ligament is governed by complex biological processes at the tendon-bone interface. The aim of this study was to investigate in an in vitro study the effects of bone morphogenetic protein 7 (BMP-7) on tendon-bone integration. Materials and Methods To study the biological effects of BMP-7 on the process of tendon-bone-integration, two independent in vitro models were used. The first model involved the mono- and coculture of bovine tendon specimens and primary bovine osteoblasts with and without BMP-7 exposure. The second model comprised the mono- and coculture of primary bovine osteoblasts and fibroblasts. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lactate and osteocalcin (OCN) were analyzed by ELISA. Histological analysis and electron microscopy of the tendon specimens were performed. Results In both models, positive effects of BMP-7 on ALP enzyme activity were observed (p<0.001). Additionally, similar results were noted for LDH activity and lactate concentration. BMP-7 stimulation led to a significant increase in OCN expression. Whereas the effects of BMP-7 on tendon monoculture peaked during an early phase of the experiment (p<0.001), the cocultures showed a maximal increase during the later stages (p<0.001). The histological analysis showed a stimulating effect of BMP-7 on extracellular matrix formation. Organized ossification zones and calcium carbonate-like structures were only observed in the BMP-stimulated cell cultures. Discussion This study showed the positive effects of BMP-7 on the biological process of tendon-bone integration in vitro. Histological signs of improved mineralization were paralleled by increased rates of osteoblast-specific protein levels in primary bovine osteoblasts and fibroblasts. Conclusion Our findings indicated a role for BMP-7 as an adjuvant therapeutic agent in the treatment of ligamentous injuries, and they emphasized the

  16. Prefabrication of bone by use of a vascularized periosteal flap and bone morphogenetic protein.

    PubMed

    Vögelin M D, E; Jones, N F; Lieberman, J R; Baker, J M; Tsingotjidou, A S; Brekke, J H

    2002-01-01

    The purpose of this pilot study was to prefabricate a vascularized bone graft by using a vascularized periosteal flap containing osteoprogenitor cells, a structural matrix, and recombinant human bone morphogenetic protein-2 (rhBMP-2). In a rat model, a periosteal flap vascularized by the saphenous artery and vein was dissected off the medial surface of the tibia. This flap consisted of three layers-periosteum, muscle, and fascia-and was tubed on itself to form a watertight chamber that was then transferred on its vascular pedicle to the groin. A total of 78 vascularized periosteal chambers were constructed in 39 animals and divided into 10 groups. In group 1, the periosteal chamber was left empty. Groups 2, 3, and 4 consisted of the periosteal flap and rhBMP-2, but in group 3, the proximal vascular pedicle was ligated, and in group 4, the flap was harvested without the periosteal layer and turned inside out. Groups 5 through 10 consisted of the vascularized periosteal flap containing several different structural matrices (calcium alginate spheres, polylactic acid, or demineralized bone matrix) with or without rhBMP-2. Animals were killed at 2, 4, or 8 weeks in each group. The presence and density of any new bone formation was evaluated both radiologically and histologically. Significant bone formation was seen only in those periosteal flaps containing rhBMP-2 and either the calcium alginate or polylactic acid matrix. New bone formation increased both radiologically and histologically from 2 weeks to 8 weeks only in the periosteal flaps containing the polylactic acid matrix and rhBMP-2. This preliminary study therefore suggests that four factors-blood supply, osteoprogenitor cells in the periosteal layer, a biodegradable matrix, and rhBMP-2-are required for optimal prefabrication of a vascularized bone graft.

  17. Sustained release emphasizing recombinant human bone morphogenetic protein-2.

    PubMed

    Hollinger; Uludag; Winn

    1998-05-01

    Bone homeostasis is a dynamic process involving a myriad of cells and substrates modulated by regulatory signals such as hormones, growth and differentiating factors. When this environment is damaged, the regenerative sequalae follows a programmed pattern, and the capacity for successful recovery is often dependent on the extent of the injury. Many bony deficits that are excessively traumatic will not result in complete recovery and require therapeutic intervention(s) such as autografting or grafting from banked bone. However, for numerous reasons, an unacceptably high rate of failure is associated with these conventional therapies. Thus, alternative approaches are under investigation. A class of osteogenic regulatory molecules, the bone morphogenetic proteins (BMPs), have been isolated, cloned and characterized as potent supplements to augment bone regeneration. Optimizing a therapeutic application for BMPs may be dependent upon localized sustained release which in kind relies on a safe and well characterized carrier system. This review will discuss the current status of BMPs in bone regeneration and specifically will present the potential for a clinical therapeutic role of recombinant human BMP-2 sustained release carrier systems. PMID:10837631

  18. Multi-protein delivery by nanodiamonds promotes bone formation.

    PubMed

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  19. Multi-protein Delivery by Nanodiamonds Promotes Bone Formation

    PubMed Central

    Moore, L.; Gatica, M.; Kim, H.; Osawa, E.; Ho, D.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE® for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  20. Bone morphogenetic protein in pediatric spine fusion surgery

    PubMed Central

    Kerr, Christine; Kerr, Danielle

    2016-01-01

    Background There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric spine. Outcomes and complications involving the off-label use of bone morphogenetic protein 2 (BMP-2) in the pediatric spine are not clearly defined. The purpose of this study is to review the existing literature with respect to reported outcomes and complications involving the use of low-dose BMP-2 in pediatric patients. Methods A Medline and PubMed literature search was conducted using the words bone morphogenetic protein, BMP, rh-BMP-2, bone graft substitutes, and pediatric spine. Results To date, there are few published reports on this topic. Complications and appropriate BMP-2 dosage application in the pediatric spine remain unknown. Conclusions This report describes the potential for BMP-2 to achieve successful arthrodesis of the spine in pediatric patients. Usage should be judicious as complications and long-term outcomes of pediatric BMP-2 usage remain undefined in the existing literature.

  1. Bone protein “extractomics”: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics

    PubMed Central

    DeHart, Caroline J.; Schweitzer, Mary H.; Thomas, Paul M.; Kelleher, Neil L.

    2016-01-01

    Proteomic studies of bone require specialized extraction protocols to demineralize and solubilize proteins from within the bone matrix. Although various protocols exist for bone protein recovery, little is known about how discrete steps in each protocol affect the subset of the bone proteome recovered by mass spectrometry (MS) analyses. Characterizing these different “extractomes” will provide critical data for development of novel and more efficient protein extraction methodologies for fossils. Here, we analyze 22 unique sub-extractions of chicken bone and directly compare individual extraction components for their total protein yield and diversity and coverage of bone proteins identified by MS. We extracted proteins using different combinations and ratios of demineralizing reagents, protein-solubilizing reagents, and post-extraction buffer removal methods, then evaluated tryptic digests from 20 µg aliquots of each fraction by tandem MS/MS on a 12T FT-ICR mass spectrometer. We compared total numbers of peptide spectral matches, peptides, and proteins identified from each fraction, the redundancy of protein identifications between discrete steps of extraction methods, and the sequence coverage obtained for select, abundant proteins. Although both alpha chains of collagen I (the most abundant protein in bone) were found in all fractions, other collagenous and non-collagenous proteins (e.g., apolipoprotein, osteonectin, hemoglobin) were differentially identified. We found that when a standardized amount of extracted proteins was analyzed, extraction steps that yielded the most protein (by weight) from bone were often not the ones that produced the greatest diversity of bone proteins, or the highest degree of protein coverage. Generally, the highest degrees of diversity and coverage were obtained from demineralization fractions, and the proteins found in the subsequent solubilization fractions were highly redundant with those in the previous fraction. Based on

  2. Bone Morphogenetic Protein (BMP) signaling in development and human diseases

    PubMed Central

    Wang, Richard N.; Green, Jordan; Wang, Zhongliang; Deng, Youlin; Qiao, Min; Peabody, Michael; Zhang, Qian; Ye, Jixing; Yan, Zhengjian; Denduluri, Sahitya; Idowu, Olumuyiwa; Li, Melissa; Shen, Christine; Hu, Alan; Haydon, Rex C.; Kang, Richard; Mok, James; Lee, Michael J.; Luu, Hue L.; Shi, Lewis L.

    2014-01-01

    Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling. PMID:25401122

  3. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    SciTech Connect

    Yonezawa, Takayuki; Lee, Ji-Won; Hibino, Ayaka; Asai, Midori; Hojo, Hironori; Cha, Byung-Yoon; Teruya, Toshiaki; Nagai, Kazuo; Chung, Ung-Il; Yagasaki, Kazumi; and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  4. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  5. Nonlinear degradation-enhanced transport of morphogens performing subdiffusion.

    PubMed

    Fedotov, Sergei; Falconer, Steven

    2014-01-01

    We study a morphogen gradient formation under nonlinear degradation and subdiffusive transport. In the long-time limit, we obtain the nonlinear effect of degradation-enhanced diffusion, resulting from the interaction of non-Markovian subdiffusive transport with a nonlinear reaction. We find the stationary profile of power-law type, which has implications for robustness, with the shape of the profile being controlled by the anomalous exponent. Far away from the source of morphogens, any changes in the rate of production are not felt.

  6. A radioimmunoassay for bone Gla protein (BGP) in human plasma.

    PubMed

    Johansen, J S; Mølholm Hansen, J E; Christiansen, C

    1987-03-01

    To study the value of bone Gla protein (BGP) as a biochemical marker of normal bone physiology and metabolic bone disorders, we have developed a radioimmunoassay (RIA) for the detection of BGP in human plasma. Antibodies were generated in rabbits immunized with purified calf BGP conjugated to thyroglobulin. Human plasma BGP reacted identically with the calf BGP standard, thus demonstrating the suitability of the assay to measure plasma BGP levels in man. The RIA is sensitive, accurate, and technically simple. Plasma BGP levels were determined in normal subjects (N = 35) and in patients with hypothyroidism (N = 10), hyperthyroidism (N = 22) and chronic renal failure (N = 35). The mean (+/- 1 SEM) concentration of plasma BGP in normal subjects was 1.27 +/- 0.07 nmol/l. Plasma BGP was significantly increased in patients with hyperthyroidism, 4.04 +/- 0.78 nmol/l (P less than 0.001) and chronic renal failure, 10.17 +/- 2.47 nmol/l (P less than 0.001). Low concentrations were found in patients with hypothyroidism, 0.74 +/- 0.11 nmol/l (P less than 0.01). Our studies indicate that plasma BGP provides a useful technique in the diagnosis of patients with bone disease.

  7. Imaging symptomatic bone morphogenetic protein-2-induced heterotopic bone formation within the spinal canal: case report.

    PubMed

    Chryssikos, Timothy; Crandall, Kenneth M; Sansur, Charles A

    2016-05-01

    Heterotopic bone formation within the spinal canal is a known complication of bone morphogenetic protein-2 (BMP-2) and presents a clinical and surgical challenge. Imaging modalities are routinely used for operative planning in this setting. Here, the authors present the case of a 59-year-old woman with cauda equina syndrome following intraoperative BMP-2 administration. Plain film myelographic studies showed a region of severe stenosis that was underappreciated on CT myelography due to a heterotopic bony lesion mimicking the dorsal aspect of a circumferentially patent thecal sac. When evaluating spinal stenosis under these circumstances, it is important to carefully consider plain myelographic images in addition to postmyelography CT images as the latter may underestimate the true degree of stenosis due to the potentially similar radiographic appearances of evolving BMP-2-induced heterotopic bone and intrathecal contrast. Alternatively, comparison of sequentially acquired noncontrast CT scans with CT myelographic images may also assist in distinguishing BMP-2-induced heterotopic bony lesions from the thecal sac. Further studies are needed to elucidate the roles of the available imaging techniques in this setting and to characterize the connection between the radiographic and histological appearances of BMP-2-induced heterotopic bone. PMID:26824586

  8. Resveratrol improves bone repair by modulation of bone morphogenetic proteins and osteopontin gene expression in rats.

    PubMed

    Casarin, R C; Casati, M Z; Pimentel, S P; Cirano, F R; Algayer, M; Pires, P R; Ghiraldini, B; Duarte, P M; Ribeiro, F V

    2014-07-01

    This study investigated the effect of resveratrol on bone healing and its influence on the gene expression of osteogenic markers. Two calvarial defects were created and one screw-shaped titanium implant was inserted in the tibia of rats that were assigned to daily administration of placebo (control group, n=15) or 10mg/kg of resveratrol (RESV group, n=15) for 30 days. The animals were then sacrificed. One of the calvarial defects was processed for histomorphometric analysis and the tissue relative to the other was collected for mRNA quantification of bone morphogenetic protein (BMP)-2, BMP-7, osteopontin (OPN), bone sialoprotein (BSP), osteoprotegrin (OPG), and receptor activator of NF-κB ligand (RANKL). Implants were removed by applying a counter-torque force. Histomorphometric analysis revealed higher remaining defect in the calvarial defects of the control group than the RESV group (P=0.026). Resveratrol increased the counter-torque values of implant removal when compared to control therapy (P=0.031). Gene expression analysis showed a higher expression of BMP-2 (P=0.011), BMP-7 (P=0.049), and OPN (P=0.002) genes in the RESV group than in the control group. In conclusion, resveratrol improved the repair of critical-sized bone defects and the biomechanical retention of implants. Indeed, this natural agent may up-regulate the gene expression of important osteogenic markers. PMID:24530035

  9. Usefulness of protein analysis for detecting pathologies in bone remains.

    PubMed

    Pérez-Martínez, Cristina; Prieto-Bonete, Gemma; Pérez-Cárceles, María D; Luna, Aurelio

    2016-01-01

    Forensic pathology often uses osteobiography, which involves biological profiles based on a determination of the age, sex, constitution, pathological states and other anomalies (paleopathology) of subjects for identification purposes. In this paper, proteins were analysed in bone remains. A total of 45 long bones from 45 different cadavers (29 males, 16 females) with a mean age of 66.31 years (S.D.=19.48, range 20-97) were used to search for pathological biomarkers which are closely related to several diseases. The bones were removed from the cement niches of a cemetery in Murcia (south-eastern Spain), where they had lain for between 18 and 45 years (mean time 25.84 years, S.D.=8.91). After a specific extraction using Tris-Urea buffer, were measured using HPLC/MS/MS. Our results show that proteins resulting from tumoral diseases and bacterial and viral pathogens can be detected and identified in the skeletal remains, making them useful pathological biomarkers for constructing biological profiles.

  10. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    PubMed Central

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell (MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted cell-type lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair. PMID:26839636

  11. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    PubMed Central

    Sun, Han; Yang, Hui-Lin

    2015-01-01

    Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions. PMID:25881610

  12. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2

    PubMed Central

    Mediero, Aránzazu; Wilder, Tuere; Perez-Aso, Miguel; Cronstein, Bruce N.

    2015-01-01

    Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration.—Mediero, A., Wilder, T., Perez-Aso, M., Cronstein, B. N. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. PMID:25573752

  13. Protein and mineral characterisation of rendered meat and bone meal.

    PubMed

    Buckley, M; Penkman, K E H; Wess, T J; Reaney, S; Collins, M J

    2012-10-01

    We report the characterisation of meat and bone meal (MBM) standards (Set B-EFPRA) derived from cattle, sheep, pig and chicken, each rendered at four different temperatures (133, 137, 141 and 145 °C). The standards, prepared for an EU programme STRATFEED (to develop new methodologies for the detection and quantification of illegal addition of mammalian tissues in feeding stuffs), have been widely circulated and used to assess a range of methods for identification of the species composition of MBM. The overall state of mineral alteration and protein preservation as a function of temperature was monitored using small angle X-ray diffraction (SAXS), amino acid composition and racemization analyses. Progressive increases in protein damage and mineral alteration in chicken and cattle standards was observed. In the case of sheep and pig, there was greater damage to the proteins and alteration of the minerals at the lowest treatment temperature (133 °C), suggesting that the thermal treatments must have been compromised in some way. This problem has probably impacted upon the numerous studies which tested methods against these heat treatments. We use protein mass spectrometric methods to explore if thermostable proteins could be used to identify rendered MBM. In more thermally altered samples, so-called 'thermostable' proteins such as osteocalcin which has been proposed as a ideal target to speciate MBM were no longer detectable, but the structural protein type I collagen could be used to differentiate all four species, even in the most thermally altered samples.

  14. Development of morphogen gradient: The role of dimension and discreteness

    SciTech Connect

    Teimouri, Hamid; Kolomeisky, Anatoly B.

    2014-02-28

    The fundamental processes of biological development are governed by multiple signaling molecules that create non-uniform concentration profiles known as morphogen gradients. It is widely believed that the establishment of morphogen gradients is a result of complex processes that involve diffusion and degradation of locally produced signaling molecules. We developed a multi-dimensional discrete-state stochastic approach for investigating the corresponding reaction-diffusion models. It provided a full analytical description for stationary profiles and for important dynamic properties such as local accumulation times, variances, and mean first-passage times. The role of discreteness in developing of morphogen gradients is analyzed by comparing with available continuum descriptions. It is found that the continuum models prediction about multiple time scales near the source region in two-dimensional and three-dimensional systems is not supported in our analysis. Using ideas that view the degradation process as an effective potential, the effect of dimensionality on establishment of morphogen gradients is also discussed. In addition, we investigated how these reaction-diffusion processes are modified with changing the size of the source region.

  15. Morphogengineering roots: comparing mechanisms of morphogen gradient formation

    PubMed Central

    2012-01-01

    Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698

  16. Inkjet-Based Biopatterning of Bone Morphogenetic Protein-2 to Spatially Control Calvarial Bone Formation

    PubMed Central

    Miller, Eric D.; DeCesare, Gary E.; Usas, Arvydas; Lensie, Emily L.; Bykowski, Michael R.; Huard, Johnny; Weiss, Lee E.; Losee, Joseph E.; Campbell, Phil G.

    2010-01-01

    The purpose of this study was to demonstrate spatial control of osteoblast differentiation in vitro and bone formation in vivo using inkjet bioprinting technology and to create three-dimensional persistent bio-ink patterns of bone morphogenetic protein-2 (BMP-2) and its modifiers immobilized within microporous scaffolds. Semicircular patterns of BMP-2 were printed within circular DermaMatrix™ human allograft scaffold constructs. The contralateral halves of the constructs were unprinted or printed with BMP-2 modifiers, including the BMP-2 inhibitor, noggin. Printed bio-ink pattern retention was validated using fluorescent or 125I-labeled bio-inks. Mouse C2C12 progenitor cells cultured on patterned constructs differentiated in a dose-dependent fashion toward an osteoblastic fate in register to BMP-2 patterns. The fidelity of spatial restriction of osteoblastic differentiation at the boundary between neighboring BMP-2 and noggin patterns improved in comparison with patterns without noggin. Acellular DermaMatrix constructs similarly patterned with BMP-2 and noggin were then implanted into a mouse calvarial defect model. Patterns of bone formation in vivo were comparable with patterned responses of osteoblastic differentiation in vitro. These results demonstrate that three-dimensional biopatterning of a growth factor and growth factor modifier within a construct can direct cell differentiation in vitro and tissue formation in vivo in register to printed patterns. PMID:20028232

  17. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence?

    PubMed

    Van Lieshout, Esther M M; Alt, Volker

    2016-01-01

    Despite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substitutes are often used for stabilizing the implant and for providing a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials are available. Products generally contain hydroxyapatite, tricalcium phosphate, dicalcium phosphate, calcium phosphate cement, calcium sulfate (plaster of Paris), or combinations of the above. Products have been used for the treatment of osteoporotic fractures of the proximal humerus, distal radius, vertebra, hip, and tibia plateau. Although there is generally consensus that screw augmentation increased the biomechanical properties and implant stability, the results of using these products for void filling are not unequivocal. In osteoporotic patients, Bone Morphogenetic Proteins (BMPs) have the potential impact to improve fracture healing by augmenting the impaired molecular and cellular mechanisms. However, the clinical evidence on the use of BMPs in patients with osteoporotic fractures is poor as there are no published clinical trials, case series or case studies. Even pre-clinical literature on in vitro and in vivo data is weak as most articles focus on the beneficial role for BMPs for restoration of the underlying pathophysiological factors of osteoporosis but do not look at the specific effects on osteoporotic fracture healing. Limited data on animal experiments suggest stimulation of fracture healing in ovariectomized rats by the use of BMPs. In conclusion, there is only limited data on the clinical relevance and optimal indications for the use of bone graft substitute materials and BMPs on the treatment of osteoporotic fractures despite the clinical benefits of these materials in other clinical indications. Given the

  18. Calcium homeostasis and bone metabolic responses to protein diets and energy restriction: a randomized control trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite some beneficial effects on bone, high protein diets are conventionally considered a primary dietary risk factor for osteoporosis and bone fracture due to the acid load associated with protein catabolism. To test the hypothesis that high dietary protein diets do not negatively affect calcium ...

  19. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    SciTech Connect

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-04-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.

  20. Chlorpyrifos and Chlorpyrifos-Oxon Inhibit Axonal Growth by Interfering with the Morphogenic Activity of Acetylcholinesterase

    PubMed Central

    Yang, Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE−/−) versus wildtype (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE−/− DRG neurons. However, transfection of AChE−/− DRG neurons with cDNA encoding full-length AChE restored the wildtype response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs. PMID:18076960

  1. Enhanced bone morphogenetic protein-2 performance on hydroxyapatite ceramic surfaces.

    PubMed

    Schuessele, A; Mayr, H; Tessmar, J; Goepferich, A

    2009-09-15

    The immobilization of biomolecules on biomaterial surfaces allows for the control of their localization and retention. In numerous studies, proteins have been simply adsorbed to enhance the biological performance of various materials in vivo. We investigated the potential of surface modification techniques on hydroxyapatite (HA) ceramic discs in an in vitro approach. A novel method for protein immobilization was evaluated using the aminobisphosphonates pamidronate and alendronate, which are strong Ca chelating agents, and was compared with the established silanization technique. Lysozyme and bone morphogenetic protein-2 (BMP-2) were used to assess the suitability of the two surface modification methods with regard to the enzymatic activity of lysozyme and to the capacity of BMP-2 to stimulate the osteoblastic differentiation of C2C12 mouse myoblasts. After immobilization, a 2.5-fold increase in enzymatic activity of lysozyme was observed compared with the control. The alkaline phosphatase activity per cell stimulated by immobilized BMP-2 was 2.5-fold higher [9 x 10(-6) I.U.] than the growth factor on unmodified surfaces [2-4 x 10(-6) I.U.]. With regard to the increase in protein activity, both procedures lead to equivalent results. Thus, the bisphosphonate-based surface modification represents a safe and easy alternative for the attachment of proteins to HA surfaces. PMID:18655137

  2. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow.

    PubMed

    den Boer, Frank C; Wippermann, Burkhard W; Blokhuis, Taco J; Patka, Peter; Bakker, Fred C; Haarman, Henk J Th M

    2003-05-01

    Hydroxyapatite is a synthetic bone graft, which is used for the treatment of bone defects and nonunions. However, it is a rather inert material with no or little intrinsic osteoinductive activity. Recombinant human osteogenic protein-1 (rhOP-1) is a very potent biological agent, that enhances osteogenesis during bone repair. Bone marrow contains mesenchymal stem cells, which are capable of new bone formation. Biosynthetic bone grafts were created by the addition of rhOP-1 or bone marrow to granular porous hydroxyapatite. The performance of these grafts was tested in a sheep model and compared to the results of autograft, which is clinically the standard treatment of bone defects and nonunions. A 3 cm segmental bone defect was made in the tibia and fixed with an interlocking intramedullary nail. There were five treatment groups: no implant (n=6), autograft (n=8), hydroxyapatite alone (n=8), hydroxyapatite loaded with rhOP-1 (n=8), and hydroxyapatite loaded with autologous bone marrow (n=8). At 12 weeks, healing of the defect was evaluated with radiographs, a torsional test to failure, and histological examination of longitudinal sections through the defect. Torsional strength and stiffness of the healing tibiae were about two to three times higher for autograft and hydroxyapatite plus rhOP-1 or bone marrow compared to hydroxyapatite alone and empty defects. The mean values of both combination groups were comparable to those of autograft. There were more unions in defects with hydroxyapatite plus rhOP-1 than in defects with hydroxyapatite alone. Although the differences were not significant, histological examination revealed that there was more often bony bridging of the defect in both combination groups and the autograft group than in the group with hydroxyapatite alone. Healing of bone defects, treated with porous hydroxyapatite, can be enhanced by the addition of rhOP-1 or autologous bone marrow. The results of these composite biosynthetic grafts are equivalent to

  3. Adenovirus-mediated bone morphogenetic protein-2 gene transfection of bone marrow mesenchymal stem cells combined with nano-hydroxyapatite to construct bone graft material in vitro.

    PubMed

    Li, W C; Wang, D P; Li, L J; Zhu, W M; Zeng, Y J

    2013-04-01

    To study the adhesion, proliferation and expression of bone marrow mesenchymal stem cells (BMSCs) on nano-hydroxyapatite (Nano-HA) bone graft material after transfection of adenovirus-mediated human bone morphogenetic protein-2 expression vector (Ad-BMP-2). BMSCs were transfected using Ad-BMP-2. Immunohistochemistry and Western blot were used to detect BMP-2 expression in transfected cells. After transfection, BMP-2 protein was highly expressed in BMSCs; MTT test assay showed that the Nano-HA bone graft material could not inhibit in vitro proliferation of BMSCs. Ad-BMP-2-transfected BMSCs are well biocompatible with Nano-HA bone graft material, the transfected cells in material can secrete BMP-2 stably for a long time.

  4. Combined intervention of dietary soybean proteins and swim training: effects on bone metabolism in ovariectomized rats.

    PubMed

    Figard, Hélène; Mougin, Fabienne; Gaume, Vincent; Berthelot, Alain

    2006-01-01

    Soybean proteins, a rich source of isoflavones, taken immediately after an ovariectomy prevent bone loss in rats. Exercise-induced stimuli are essential for bone growth. Few studies exist about the combined effects of swim training and soybean protein supplementation on bone metabolism. So, the purpose of this study was to investigate, in 48 female Sprague-Dawley rats (12 weeks old) the effects of an 8-week swim-training regimen (1 h/day, 5 days/week) and dietary soybean proteins (200 g/kg diet) on bone metabolism. Rats were randomly assigned to four groups: (1) ovariectomized fed with a semisynthetic control diet; (2) ovariectomized fed with a soybean protein-enriched semisynthetic diet; (3) ovariectomized trained to exercise and fed with control diet; (4) ovariectomized trained to exercise and fed with a soybean protein diet. Following the treatment period, body weight gain was identical in the four groups. Soybean protein supplementation increased bone calcium content, and reduced plasma osteocalcin values, without significant modification of calcium balance and net calcium absorption. Swim training enhanced plasma and bone calcium content and calcium balance and net calcium absorption. It did not modify either plasma osteocalcin values or urinary deoxypyridinoline excretion. Both exercise and soybean protein intake increased plasma on bone calcium without modifying net calcium absorption or bone markers. In conclusion, we demonstrated, in ovariectomized rats, that swimming exercise and dietary supplementation with soy proteins do not have synergistic effects on calcium metabolism and bone markers.

  5. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development.

    PubMed Central

    Bigbee, J W; Sharma, K V; Gupta, J J; Dupree, J L

    1999-01-01

    Acetylcholinesterase (AChE) is the enzyme that hydrolyzes the neurotransmitter acetylcholine at cholinergic synapses and neuromuscular junctions. However, results from our laboratory and others indicate that AChE has an extrasynaptic, noncholinergic role during neural development. This article is a review of our findings demonstrating the morphogenic role of AChE, using a neuronal cell culture model. We also discuss how these data suggest that AChE has a cell adhesive function during neural development. These results could have additional significance as AChE is the target enzyme of agricultural organophosphate and carbamate pesticides as well as the commonly used household organophosphate chlorpyrifos (Dursban). Prenatal exposure to these agents could have adverse effects on neural development by interfering with the morphogenic function of AChE. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:10229710

  6. Planar Polarity: Converting a Morphogen Gradient into Cellular Polarity

    PubMed Central

    Collu, Giovanna M.; Mlodzik, Marek

    2015-01-01

    Epithelial cells are polarized within the apico-basal and planar axes. The latter—planar cell polarity—requires long-range regulation of orientation as well as short-range, cell-to-cell realignment through feedback loops. New insights into the long-range, gradient-type regulation reveal how a kinase translates the morphogen gradient input into cellular orientation. PMID:25942551

  7. Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

    PubMed

    Hatakeyama, S; Gao, Y H; Ohara-Nemoto, Y; Kataoka, H; Satoh, M

    1997-07-01

    Bone morphogenetic proteins (BMPs) are crucial factors of osteogenesis. We investigated the expressions of BMP subtypes in human salivary adenocarcinoma cell line (HSG-S8), tongue squamous cell (HSC-4) and gingival squamous cell (Ca9-22) carcinoma cell lines, gastric poorly differentiated adenocarcinoma cell (MNK45) and signet ring cell (KATOIII) carcinoma cell lines, rectal adenocarcinoma (RCM-1, RCM-2, and RCM-3), and thyroid (8505C) and bladder (T24) carcinoma cell lines by reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR disclosed that BMP-1 was expressed in all cell lines examined, and BMP-2 was amplified in almost all cells except MKN45. Two squamous cell carcinomas, HSC-4 and Ca9-22, and KATOIII expressed only BMP-1 and BMP-2. MKN45 did not express BMP-2, but expressed BMP-7 and weakly BMP-4 and BMP-5. In addition to the expression BMP-7, and HSG-S8 expressed BMP-6. These findings indicated that the neoplastic epithelial cells possessed a rather great potency to express BMP mRNAs. On the other hand, among these carcinoma cells, HSG-S8 solely induced bone in nude mouse tumors, and HSC-4 and KATOIII contained many calcified masses in tumors while the rest did not induce either. PMID:9247707

  8. Role of bone morphogenetic proteins in adrenal physiology and disease.

    PubMed

    Johnsen, Inga K; Beuschlein, Felix

    2010-04-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily of ligands that impact on a multitude of biological processes including cell type specification, differentiation and organogenesis. Furthermore, a large body of evidence points towards important BMP-dependent mechanisms in tumorigenesis. In accordance with their diverse actions, BMPs have been demonstrated to serve as auto-, para- and endocrine modulators also in a number of hormonal systems. In this review, we highlight novel aspects of BMP-dependent regulatory networks that pertain to adrenal physiology and disease, which have been uncovered during recent years. These aspects include the role of BMP-dependent mechanism during adrenal development, modulating effects on catecholamine synthesis and steroidogenesis and dysregulation of BMP signalling in adrenal tumorigenesis. Furthermore, we summarize potential therapeutic approaches that are based on reconstitution of BMP signalling in adrenocortical tumour cells. PMID:20133384

  9. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation*

    PubMed Central

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O.; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  10. The Bone Morphogenetic Protein 1/Tolloid-like Metalloproteinases

    PubMed Central

    Hopkins, Delana R.; Keles, Sunduz; Greenspan, Daniel S.

    2009-01-01

    A decade ago, bone morphogenetic protein 1 (BMP1) was shown to provide the activity necessary for proteolytic removal of the C-propeptides of procollagens I–III: precursors of the major fibrillar collagens. Subsequent studies have shown BMP1 to be the prototype of a small group of extracellular metalloproteinases that play manifold roles in regulating formation of the extracellular matrix (ECM). Soon after initial cloning of BMP1, genetic studies showed the related Drosophila proteinase Tolloid (TLD) to be necessary for formation of the dorsal-ventral axis in early embryogenesis. It is now clear that the BMP1/TLD-like proteinases, conserved in species ranging from Drosophila to humans, act in dorsal-ventral patterning via activation of transforming growth factor β (TGFβ)-like proteins BMP2, BMP4 (vertebrates) and decapentaplegic (arthropods). More recently, it has become apparent that the BMP1/TLD-like proteinases are key activators of a broader subset of the TGFβ superfamily of proteins, with implications that these proteinases may be key in orchestrating formation of ECM with growth factor activation and BMP signaling in morphogenetic processes. PMID:17560775

  11. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  12. Bone Morphogenetic Proteins: Promising Molecules for Bone Healing, Bioengineering, and Regenerative Medicine.

    PubMed

    Carreira, Ana Claudia Oliveira; Zambuzzi, Willian Fernando; Rossi, Mariana Correa; Astorino Filho, Renato; Sogayar, Mari Cleide; Granjeiro, José Mauro

    2015-01-01

    Bone morphogenetic proteins (BMPs), glycoproteins secreted by some cells, are members of the TGF-β superfamily that have been implicated in a wide variety of roles. Currently, about 20 different BMPs have been identified and grouped into subfamilies, according to similarities with respect to their amino acid sequences. It has been shown that BMPs are secreted growth factors involved in mesenchymal stem cell differentiation, also being reported to control the differentiation of cancer stem cells. BMPs initiate signaling from the cell surface by binding to two different receptors (R: Type I and II). The heterodimeric formation of type I R and II R may occur before or after BMP binding, inducing signal transduction pathways through SMADs. BMPs may also signal through SMAD-independent pathways via mitogen-activated protein kinases (ERK, p38MAPKs, JNK). BMPs may act in an autocrine or paracrine manner, being regulated by specific antagonists, namely: noggin and chordin. Genetic engineering allows the production of large amounts of BMPs for clinical use, and clinical trials have shown the benefits of FDA-approved recombinant human BMPs 2 and 7. Several materials from synthetic to natural sources have been tested as BMP carriers, ranging from hydroxyapatite, and organic polymers to collagen. Bioactive membranes doped with BMPs are promising options, acting to accelerate and enhance osteointegration. The development of smart materials, mainly based on biopolymers and bone-like calcium phosphates, appears to provide an attractive alternative for delivering BMPs in an adequately controlled fashion. BMPs have revealed a promising future for the fields of Bioengineering and Regenerative Medicine. In this chapter, we review and discuss the data on BMP structure, mechanisms of action, and possible clinical applications.

  13. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  14. The Role of Regulated mRNA Stability in Establishing Bicoid Morphogen Gradient in Drosophila Embryonic Development

    PubMed Central

    Liu, Wei; Niranjan, Mahesan

    2011-01-01

    The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner. PMID:21949782

  15. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  16. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  17. Bone Tissue Engineering Using High Permeability Poly-epsilon-caprolactone Scaffolds Conjugated with Bone Morphogenetic Protein-2

    NASA Astrophysics Data System (ADS)

    Mitsak, Anna Guyer

    Bone is the second most commonly transplanted tissue in the United States. Limitations of current bone defect treatment options include morbidity at the autograft harvest site, mechanical failure, and poorly controlled growth factor delivery. Combining synthetic scaffolds with biologics may address these issues and reduce dependency on autografts. The ideal scaffolding system should promote tissue in-growth and nutrient diffusion, control delivery of biologics and maintain mechanical integrity during bone formation. This dissertation evaluates how scaffold permeability, conjugated bone morphogenetic protein-2 (BMP-2) and differentiation medium affect osteogenesis in vitro and bone growth in vivo.. "High" and "low" permeability polycaprolactone (PCL) scaffolds with regular architectures were manufactured using solid free form fabrication. Bone growth in vivo was evaluated in an ectopic mouse model. High permeability scaffolds promoted better 8 week bone growth, supported tissue penetration into the scaffold core, and demonstrated increased mechanical properties due to newly formed bone. Next, the effects of differentiation medium and conjugated BMP-2 on osteogenesis were compared. Conjugation may improve BMP-2 loading efficiency, help localize bone growth and control release. High permeability scaffolds were conjugated with BMP-2 using the crosslinker, sulfo-SMCC. When adipose-derived and bone marrow stromal cells were seeded onto constructs (with or without BMP-2), BMSC expressed more differentiation markers, and differentiation medium affected differentiation more than BMP-2. In vivo, scaffolds with ADSC pre-differentiated in osteogenic medium (with and without BMP-2) and scaffolds with only BMP-2 grew the most bone. Bone volume did not differ among these groups, but constructs with ADSC had evenly distributed, scaffold-guided bone growth. Analysis of two additional BMP-2 attachment methods (heparin and adsorption) showed highest conjugation efficiency for the

  18. Successful treatment of a humeral capitulum osteonecrosis with bone morphogenetic protein-7 combined with autologous bone grafting.

    PubMed

    Marsell, Richard; Hailer, Nils P

    2014-08-01

    We present the case of a 27-year-old female with subcortical osteonecrosis of the humeral capitulum. Percutaneous retrograde drilling of the lesion and application of recombinant human bone morphogenetic protein (BMP)-7 were combined with autologous bone grafting. At follow-up the patient was almost pain-free, had normalized her range of motion, and radiography showed consolidation of the lesion without any heterotopic bone formation. By timing surgery prior to subchondral collapse, biomechanical stability of the subchondral bone was maintained. To our knowledge, this is the first report on the treatment of an osteonecrosis in this location with a BMP, and this strategy could potentially be applied in other locations with juxta-articular osteonecrosis. PMID:25017508

  19. Molecular Design of Bisphosphonate-Modified Proteins for Efficient Bone Targeting In Vivo

    PubMed Central

    Katsumi, Hidemasa; Sano, Jun-ichi; Nishikawa, Makiya; Hanzawa, Keiko; Sakane, Toshiyasu; Yamamoto, Akira

    2015-01-01

    To establish a rational molecular design for bisphosphonate (BP)-modified proteins for efficient bone targeting, a pharmacokinetic study was performed using a series of alendronate (ALN), a nitrogen-containing BP, modified proteins with various molecular weights and varying degrees of modification. Four proteins with different molecular weight—yeast glutathione reductase (GR; MW: 112,000 Da), bovine serum albumin (BSA; MW: 67,000 Da), recombinant human superoxide dismutase (SOD; MW: 32,000 Da), and chicken egg white lysozyme (LZM; MW: 14,000 Da)—were modified with ALN to obtain ALN-modified proteins. Pharmacokinetic analysis of the tissue distribution of the ALN-modified and unmodified proteins was performed after radiolabeling them with indium-111 (111In) by using a bifunctional chelating agent. Calculation of tissue uptake clearances revealed that the bone uptake clearances of 111In-ALN-modified proteins were proportional to the degree of ALN modification. 111In-GR-ALN and BSA-ALN, the two high-molecular-weight proteins, efficiently accumulated in bones, regardless of the degree of ALN modification. Approximately 36 and 34% of the dose, respectively, was calculated to be delivered to the bones. In contrast, the maximum amounts taken up by bone were 18 and 13% of the dose for 111In-SOD-ALN(32) and LZM-ALN(9), respectively, because of their high renal clearance. 111In-SOD modified with both polyethylene glycol (PEG) and ALN (111In-PEG-SOD-ALN) was efficiently delivered to the bone. Approximately 36% of the dose was estimated to be delivered to the bones. In an experimental bone metastasis mouse model, treatment with PEG-SOD-ALN significantly reduced the number of tumor cells in the bone of the mice. These results indicate that the combination of PEG and ALN modification is a promising approach for efficient bone targeting of proteins with a high total-body clearance. PMID:26287482

  20. Effect of Polycaprolactone Scaffold Permeability on Bone Regeneration In Vivo

    PubMed Central

    Mitsak, Anna G.; Kemppainen, Jessica M.; Harris, Matthew T.

    2011-01-01

    Successful bone tissue engineering depends on the scaffold's ability to allow nutrient diffusion to and waste removal from the regeneration site, as well as provide an appropriate mechanical environment. Since bone is highly vascularized, scaffolds that provide greater mass transport may support increased bone regeneration. Permeability encompasses the salient features of three-dimensional porous scaffold architecture effects on scaffold mass transport. We hypothesized that higher permeability scaffolds will enhance bone regeneration for a given cell seeding density. We manufactured poly-ɛ-caprolactone scaffolds, designed to have the same internal pore design and either a low permeability (0.688×10−7m4/N-s) or a high permeability (3.991×10−7m4/N-s), respectively. Scaffolds were seeded with bone morphogenic protein-7-transduced human gingival fibroblasts and implanted subcutaneously in immune-compromised mice for 4 and 8 weeks. Micro-CT evaluation showed better bone penetration into high permeability scaffolds, with blood vessel infiltration visible at 4 weeks. Compression testing showed that scaffold design had more influence on elastic modulus than time point did and that bone tissue infiltration increased the mechanical properties of the high permeability scaffolds at 8 weeks. These results suggest that for polycaprolactone, a more permeable scaffold with regular architecture is best for in vivo bone regeneration. This finding is an important step toward the end goal of optimizing a scaffold for bone tissue engineering. PMID:21395465

  1. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (p<0.05) in CON. Isocaloric high protein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: p<0.001). Bone formation markers were unaffected by high protein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  2. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques.

    PubMed

    Dhore, C R; Cleutjens, J P; Lutgens, E; Cleutjens, K B; Geusens, P P; Kitslaar, P J; Tordoir, J H; Spronk, H M; Vermeer, C; Daemen, M J

    2001-12-01

    In the present study, we examined the expression of regulators of bone formation and osteoclastogenesis in human atherosclerosis because accumulating evidence suggests that atherosclerotic calcification shares features with bone calcification. The most striking finding of this study was the constitutive immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein in nondiseased aortas and the absence of bone morphogenetic protein (BMP)-2, BMP-4, osteopontin, and osteonectin in nondiseased aortas and early atherosclerotic lesions. When atherosclerotic plaques demonstrated calcification or bone formation, BMP-2, BMP-4, osteopontin, and osteonectin were upregulated. Interestingly, this upregulation was associated with a sustained immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein. The 2 modulators of osteoclastogenesis (osteoprotegerin [OPG] and its ligand, OPGL) were present in the nondiseased vessel wall and in early atherosclerotic lesions. In advanced calcified lesions, OPG was present in bone structures, whereas OPGL was only present in the extracellular matrix surrounding calcium deposits. The observed expression patterns suggest a tight regulation of the expression of bone matrix regulatory proteins during human atherogenesis. The expression pattern of both OPG and OPGL during atherogenesis might suggest a regulatory role of these proteins not only in osteoclastogenesis but also in atherosclerotic calcification. PMID:11742876

  3. Bone reservoir: Injectable hyaluronic acid hydrogel for minimal invasive bone augmentation.

    PubMed

    Martínez-Sanz, Elena; Ossipov, Dmitri A; Hilborn, Jöns; Larsson, Sune; Jonsson, Kenneth B; Varghese, Oommen P

    2011-06-10

    A strategy has been designed to develop hyaluronic acid (HA) hydrogel for in vivo bone augmentation using minimal invasive technique. A mild synthetic procedure was developed to prepare aldehyde modified HA by incorporating an amino-glycerol side chain via amidation reaction and selective oxidation of the pendent group. This modification, upon mixing with hydrazide modified HA formed hydrazone-crosslinked hydrogel within 30s that was stable at physiological pH. In vitro experiments showed no cytotoxicity of hydrogel with the controlled release of active bone morphogenic protein-2 (BMP-2). In vivo evaluation of this gel as a BMP-2 carrier was performed by injecting gels over the rat calvarium and showed bone formation in 8 weeks in correlation with the amount of BMP-2 loaded (0, 1 and 30μg) within the gel. Furthermore, hydrogels with 30μg of BMP-2 induced less bone formation upon subcutaneous injection in comparison with subperiosteal implantation. Histological examination showed newly formed bone with a high expression of osteocalcin, osteopontin and with angiogenic bone marrow when higher BMP-2 concentration was employed. Our result suggests that novel HA hydrogels could be used as a BMP-2 carrier and can promote bone augmentation for potential orthopedic applications.

  4. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling

    PubMed Central

    Raja, Erna; Edlund, Karolina; Kahata, Kaoru; Zieba, Agata; Morén, Anita; Watanabe, Yukihide; Voytyuk, Iryna; Botling, Johan; Söderberg, Ola; Micke, Patrick; Pyrowolakis, George; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease. PMID:26701726

  5. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding.

    PubMed

    Weyers, Amanda; Yang, Bo; Solakyildirim, Kemal; Yee, Vienna; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive tissues, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan and mimecan proteoglycans, and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited, owing to restrictions on the shipment of bovine central nervous system byproducts across international borders in an effort to prevent additional cases of mad cow disease. We report a simple method for the purification of multi-milligram quantities of bovine corneal KS, and characterize its structural properties. We also examined its protein-binding properties, and discovered that corneal KS bound with high affinity to fibroblast growth factor-2 and sonic hedgehog, a growth factor and a morphogen involved in corneal development and healing. PMID:23402351

  6. Bone morphogenetic protein-2 in biodegradable gelatin and β-tricalcium phosphate sponges enhances the in vivo bone-forming capability of bone marrow mesenchymal stem cells.

    PubMed

    Tadokoro, Mika; Matsushima, Asako; Kotobuki, Noriko; Hirose, Motohiro; Kimura, Yu; Tabata, Yasuhiko; Hattori, Koji; Ohgushi, Hajime

    2012-04-01

    Bone marrow mesenchymal stem cells (MSCs) have been used for bone tissue engineering due to their osteogenic differentiation capability, but their application is controversial. To enhance their capability, we prepared biodegradable gelatin sponges incorporating β-tricalcium phosphate ceramics (GT sponge), which has been shown to possess excellent controlled drug-release properties. The GT sponge was used as a carrier for both rat MSCs and bone morphogenetic protein-2 (BMP-2) and osteogenic differentiation was assessed by subcutaneous implantation of four different kinds of implants, i.e. GT-alone, MSC-GT composites, BMP-GT composites and BMP-GT composites supplemented with MSCs (BMP-MSC-GT) in rats. Two weeks after implantation, histological sections showed new bone formation in the peripheral parts of the BMP-GT and in almost the total volume of the BMP-MSC-GT implants. After 4 weeks, histology as well as microCT analyses demonstrated extensive bone formation in BMP-MSC-GT implants. Gene expression and biochemical analyses of both alkaline phosphatase and bone-specific osteocalcin confirmed the histological findings. These results indicate that the combination of MSCs, GT and BMP synergistically enhances osteogenic capability and provides a rational basis for their clinical application in bone reconstruction.

  7. Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension

    PubMed Central

    Dewachter, Laurence; Adnot, Serge; Guignabert, Christophe; Tu, Ly; Marcos, Elisabeth; Fadel, Elie; Humbert, Marc; Dartevelle, Philippe; Simonneau, Gérald; Naeije, Robert; Eddahibi, Saadia

    2009-01-01

    Mutations in gene encoding for bone morphogenetic protein type 2 receptor (BMPR-2) have been reported in pulmonary arterial hypertension (PAH), but their functional relevance remains incompletely understood. BMP receptors expression was evaluated in human lungs and in cultured pulmonary artery smooth muscle cells (PASMCs) isolated from 19 idiopathic PAH patients and 9 heritable PAH patients with demonstrated BMPR-2 mutations. BMP4-treated PASMCs were assessed for Smad and p38MAPK signaling associated to mitosis and apoptosis. Lung tissue and PASMCs from heritable PAH patients presented with decreased BMPR-2 expression and variable increases in BMPR-1A and BMPR-1B expressions, while a less important decreased BMPR-2 expression was observed in PASMCs from idiopathic PAH patients. Heritable PAH PASMCs showed no increased phosphorylation of Smad1/5/8 in the presence of BMP4, which actually activated the p38MAPK pathway. Individual responses varied from one mutation to another. PASMCs from PAH patients presented with an in vitro proliferative pattern, which could be inhibited by BMP4 in idiopathic PAH, not in heritable PAH. PASMCs from idiopathic PAH and more so from heritable presented an inhibition of BMP4-induced apoptosis. Most heterogenous BMPR-2 mutations are associated with defective Smad signaling compensed for by an activation of p38MAPK signaling, accounting for PASMC proliferation and deficient apoptosis. PMID:19324947

  8. DRAGON, a bone morphogenetic protein co-receptor.

    PubMed

    Samad, Tarek A; Rebbapragada, Anuradha; Bell, Esther; Zhang, Ying; Sidis, Yisrael; Jeong, Sung-Jin; Campagna, Jason A; Perusini, Stephen; Fabrizio, David A; Schneyer, Alan L; Lin, Herbert Y; Brivanlou, Ali H; Attisano, Liliana; Woolf, Clifford J

    2005-04-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)beta superfamily of ligands that regulate many crucial aspects of embryonic development and organogenesis. Unlike other TGFbeta ligands, co-receptors for BMP ligands have not been described. Here we show that DRAGON, a glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, which is expressed early in the developing nervous system, enhances BMP but not TGFbeta signaling. DRAGON binds directly to BMP2 and BMP4 but not to BMP7 or other TGFbeta ligands. The enhancing action of DRAGON on BMP signaling is also reduced by administration of Noggin, a soluble BMP antagonist, indicating that the action of DRAGON is ligand-dependent. DRAGON associates directly with BMP type I (ALK2, ALK3, and ALK6) and type II (ActRII and ActRIIB) receptors, and its signaling is reduced by dominant negative Smad1 and ALK3 or -6 receptors. In the Xenopus embryo, DRAGON both reduces the threshold of the ability of Smad1 to induce mesodermal and endodermal markers and alters neuronal and neural crest patterning. The direct interaction of DRAGON with BMP ligands and receptors indicates that it is a BMP co-receptor that potentiates BMP signaling.

  9. Short term effects on bone quality associated with consumption of soy protein isolate and other dietary protein sources in rapidly growing female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth has been less well examined. The current study compared effects of feeding soy protein i...

  10. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone

    PubMed Central

    Wadsworth, Caroline; Buckley, Mike

    2014-01-01

    RATIONALE We report the use of proteomics techniques to study how the fossil bone proteome changes in complexity over one million years. METHODS We include the attempted use of a previously unreported methodology in proteome research, to remove the dominant bone collagens using bacterial collagenase as well as conventional shotgun proteomics methodology following digestion with the protease trypsin. In this study we expand upon a set of 19 bovine sub-fossil specimens ranging over one and a half million years that had previously been shown to possess collagen, using a total of 46 LTQ-Orbitrap liquid chromatography/tandem mass spectrometry (LC/MS/MS) analyses containing 462,186 precursor ion analyses. RESULTS Although many types of proteins can typically be identified in recent bone, in degraded bone we observe a rapid loss of lower abundance proteins. Abundant serum proteins such as serum albumin and alpha-2-HS-glycoprotein appear to be more easily recovered in ancient bone, both being identified in specimens dating to the Early Pleistocene, the earliest period tested in this study. Proteins belonging to the leucine-rich repeat family such as lumican, biglycan and chondroadherin also survive well, possibly because of their interactions with bone collagen. CONCLUSIONS Of these 'survivor proteins' A2HSG shows a remarkable amount of sequence variation, making it potentially one of the most useful proteins to study for species identification and phylogenetic inference in archaeological and palaeontological bone. PMID:24519823

  11. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    SciTech Connect

    Taguchi, Kazuhiro . E-mail: s3061@nms.ac.jp; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-05-27

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.

  12. Interaction of dietary calcium and protein in bone health in humans.

    PubMed

    Dawson-Hughes, Bess

    2003-03-01

    Protein has both positive and negative effects on calcium balance, and the net effect of dietary protein on bone mass and fracture risk may be dependent on the dietary calcium intake. In addition to providing substrate for bone matrix, dietary protein stimulates the production of insulin-like growth factor-1 (IGF-1), a factor that promotes osteoblast-mediated bone formation. Protein also increases urinary calcium losses, by several proposed mechanisms. Increasing calcium intake may offset the negative impact of dietary protein on urinary calcium losses, allowing the favorable effect of protein on the IGF-1 axis to dominate. Several, although not all, studies are either compatible with or support this hypothesis. Protein supplements significantly reduced bone loss in elderly hip-fracture patients in a study in which both the protein and control groups received supplemental calcium. In an observational study, total protein intake was positively associated with favorable 3-y changes in femoral neck and total body bone mineral density in volunteers who received supplemental calcium citrate malate and vitamin D, but not in volunteers taking placebos. In conclusion, an adequate calcium intake may help promote a favorable effect of dietary protein on the skeleton in older individuals.

  13. Altered Expression of Bone Morphogenetic Protein Accessory Proteins in Murine and Human Pulmonary Fibrosis.

    PubMed

    Murphy, Noelle; Gaynor, Katherine U; Rowan, Simon C; Walsh, Sinead M; Fabre, Aurelie; Boylan, John; Keane, Michael P; McLoughlin, Paul

    2016-03-01

    Idiopathic pulmonary fibrosis is a chronic, progressive fibrotic disease with a poor prognosis. The balance between transforming growth factor β1 and bone morphogenetic protein (BMP) signaling plays an important role in tissue homeostasis, and alterations can result in pulmonary fibrosis. We hypothesized that multiple BMP accessory proteins may be responsible for maintaining this balance in the lung. Using the bleomycin mouse model for fibrosis, we examined an array of BMP accessory proteins for changes in mRNA expression. We report significant increases in mRNA expression of gremlin 1, noggin, follistatin, and follistatin-like 1 (Fstl1), and significant decreases in mRNA expression of chordin, kielin/chordin-like protein, nephroblastoma overexpressed gene, and BMP and activin membrane-bound inhibitor (BAMBI). Protein expression studies demonstrated increased levels of noggin, BAMBI, and FSTL1 in the lungs of bleomycin-treated mice and in the lungs of idiopathic pulmonary fibrosis patients. Furthermore, we demonstrated that transforming growth factor β stimulation resulted in increased expression of noggin, BAMBI, and FSTL1 in human small airway epithelial cells. These results provide the first evidence that multiple BMP accessory proteins are altered in fibrosis and may play a role in promoting fibrotic injury.

  14. Bone morphogenetic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells.

    PubMed

    Yan, Hualong; Zhu, Songcheng; Song, Chenlin; Liu, Naifa; Kang, Jiuhong

    2012-04-01

    Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection. PMID:22234345

  15. Optimizing protein quality of mixtures of blood meal, feather meal and bone meal.

    PubMed

    Hegedüs, M; Bokori, J; Andrásofszky, E; Kövári, L

    1990-01-01

    The protein quality of two- or three-component mixtures of blood meal, feather meal and bone meal was characterized by amino acid scores and rat net protein utilization (NPU) values. A graphic method designed to find optimum levels of the limiting essential amino acids in the mixtures was suitable for predicting the optimum of NPU values determined by feeding rats with diets having 10% crude protein. The protein quality of mixtures of blood meal, feather meal and bone meal showed an optimum if blood meal constituted 60% of the protein content of the mixtures; however, poor feed intake and growth data were obtained.

  16. Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals.

    PubMed

    Nishimori, Hikaru; Ehata, Shogo; Suzuki, Hiroshi I; Katsuno, Yoko; Miyazono, Kohei

    2012-06-01

    Functional interactions between cancer cells and the bone microenvironment contribute to the development of bone metastasis. Although the bone metastasis of prostate cancer is characterized by increased ossification, the molecular mechanisms involved in this process are not fully understood. Here, the roles of bone morphogenetic proteins (BMPs) in the interactions between prostate cancer cells and bone stromal cells were investigated. In human prostate cancer LNCaP cells, BMP-4 induced the production of Sonic hedgehog (SHH) through a Smad-dependent pathway. In mouse stromal MC3T3-E1 cells, SHH up-regulated the expression of activin receptor IIB (ActR-IIB) and Smad1, which in turn enhanced BMP-responsive reporter activities in these cells. The combined stimulation with BMP-4 and SHH of MC3T3-E1 cells cooperatively induced the expression of osteoblastic markers, including alkaline phosphatase, bone sialoprotein, collagen type II α1, and osteocalcin. When MC3T3-E1 cells and LNCaP cells were co-cultured, the osteoblastic differentiation of MC3T3-E1 cells, which was induced by BMP-4, was accelerated by SHH from LNCaP cells. Furthermore, LNCaP cells and BMP-4 cooperatively induced the production of growth factors, including fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) in MC3T3-E1 cells, and these may promote the proliferation of LNCaP cells. Taken together, our findings suggest that BMPs provide favorable circumstances for the survival of prostate cancer cells and the differentiation of bone stromal cells in the bone microenvironment, possibly leading to the osteoblastic metastasis of prostate cancer.

  17. The effects of protein deficiency and fluoride on bone mineral content of rat tibia.

    PubMed

    Likimani, S; Whitford, G M; Kunkel, M E

    1992-02-01

    This study examined the effects of chronic protein deficiency and fluoride administration (10 mg/kg/day), separately or in combination, on rat tibia properties. Protein deficiency increased the bone fluoride concentration and reduced the bone mineral content (BMC) especially at the proximal or growing end which contains mainly cancellous bone. Fluoride administration also reduced BMC, but to a lesser extent, and it resulted in proximal tibia fluoride concentrations that were nearly twice those of the distal tibia. The interaction between fluoride administration and the protein content of the diet on BMC was nonsignificant, suggesting that the effects were additive, not multiplicative or synergistic. Fluoride administration, but not protein deficiency, increased bone magnesium levels. It is hypothesized that the reduction in BMC in the areas where the fluoride concentrations were the highest was due to a localized toxic effect of fluoride.

  18. Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.

    PubMed

    Nowak, Matthias; Machate, Anja; Yu, Shuizi Rachel; Gupta, Mansi; Brand, Michael

    2011-02-01

    Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.

  19. Associations of total, dairy, and meat protein with markers for bone turnover in healthy, prepubertal boys.

    PubMed

    Budek, Alicja Z; Hoppe, Camilla; Michaelsen, Kim F; Bügel, Susanne; Mølgaard, Christian

    2007-04-01

    We previously reported that high intake of milk, but not meat, equal in protein content, increased serum insulin-like growth factor-I (sIGF-I) in prepubertal boys. sIGF-I plays a key role in bone metabolism. Therefore, the aim of this cross-sectional study was to investigate associations of total, dairy, and meat protein intake with markers for bone turnover and sIGF-I in prepubertal, healthy boys (n = 81). We measured bone turnover (enzyme-linked immunoassay) in serum osteocalcin (sOC), bone-specific alkaline phosphatase (sBAP), and C-terminal telopeptide of collagen type-I (sCTX); dietary intake was estimated from a 3-d weighed food record. sIGF-I and its binding protein-3 were assessed (immunoassay) in a subgroup of 56 boys. All statistical models included effects of age, BMI, and energy intake. Dairy protein was negatively associated with sOC (P = 0.05) but not significantly associated with sBAP and sCTX. Further analyses showed that dairy protein decreased (P = 0.05) sOC at a high meat protein intake (>0.8 g/kg), whereas meat protein increased (P = 0.03) sOC at a low dairy protein intake (<0.4 g/kg). Total and meat protein intake was positively associated with sBAP (P < or = 0.04) but not significantly associated with sOC and sCTX. Free sIGF-I was positively associated with total (P < 0.01) and dairy (P = 0.06) protein but not with meat protein. Our results indicate that dairy and meat protein may exhibit a distinct regulatory effect on different markers for bone turnover. Future studies should focus on differential effects of dairy and meat protein on bone health during growth.

  20. Platelet-rich plasma for long bone healing

    PubMed Central

    Lenza, Mário; Ferraz, Silvia de Barros; Viola, Dan Carai Maia; dos Santos, Oscar Fernando Pavão; Cendoroglo, Miguel; Ferretti, Mario

    2013-01-01

    ABSTRACT Objective: To evaluate effectiveness of the use of platelet-rich plasma as coadjuvant for union of long bones. Methods: The search strategy included the Cochrane Library (via Central) and MEDLINE (via PubMed). There were no limits as to language or publication media. The latest search strategy was conducted in December 2011. It included randomized clinical trials that evaluated the use of platelet-rich plasma as coadjuvant medication to accelerate union of long bones (acute fractures, pseudoarthrosis and bone defects). The outcomes of interest for this review include bone regeneration, adverse events, costs, pain, and quality of life. The authors selected eligible studies, evaluated the methodological quality, and extracted the data. It was not possible to perform quantitative analysis of the grouped studies (meta-analyses). Results: Two randomized prospective clinical trials were included, with a total of 148 participants. One of them compared recombinant human morphogenic bone protein-7 versus platelet-rich plasma for the treatment of pseudoarthrosis; the other evaluated the effects of three coadjuvant treatments for union of valgising tibial osteotomies (platelet-rich plasma, platelet-rich plasma plus bone marrow stromal cells, and no coadjuvant treatment). Both had low statistical power and moderate to high risk of bias. Conclusion: There was no conclusive evidence that sustained the use of platelet-rich plasma as a coadjuvant to aid bone regeneration of fractures, pseudoarthrosis, or bone defects. PMID:23579757

  1. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  2. Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids

    PubMed Central

    Szymczak, Lindsey C.; Aydin, Taner; Yun, Sijung; Constas, Katharine; Schaeffer, Arielle; Ranjan, Sinthu; Kubba, Saad; Alam, Emad; McMahon, Devin E.; He, Jingpeng; Shwartz, Neta; Tian, Chenxi; Plavskin, Yevgeniy; Lindy, Amanda; Dad, Nimra Amir; Sheth, Sunny; Amin, Nirav M.; Zimmerman, Stephanie; Liu, Dennis; Schwarz, Erich M.; Smith, Harold; Krause, Michael W.; Liu, Jun

    2015-01-01

    Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. PMID:25978409

  3. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity.

    PubMed

    Alsamarah, Abdelaziz; LaCuran, Alecander E; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  4. Protein malnutrition attenuates bone anabolic response to PTH in female rats.

    PubMed

    Ammann, P; Zacchetti, G; Gasser, J A; Lavet, C; Rizzoli, R

    2015-02-01

    PTH is indicated for the treatment of severe osteoporosis. Elderly osteoporotic patients frequently suffer from protein malnutrition, which may contribute to bone loss. It is unknown whether this malnutrition may affect the response to PTH. Therefore, the aim of the present study was to assess whether an isocaloric low-protein (LP) diet may influence the bone anabolic response to intermittent PTH in 6-month-old female rats. Six-month-old female rats were either pair fed an isocaloric LP diet (2.5% casein) or a normal-protein (NP) diet (15% casein) for 2 weeks. The rats continued on their respective diet while being treated with 5- or 40-μg/kg recombinant human PTH amino-terminal fragment 1-34 (PTH-[1-34]) daily, or with vehicle for 4 weeks. At the end of this period, areal bone mineral density, bone mineral content, microstructure, and bone strength in axial compression of proximal tibia or 3-point bending for midshaft tibia tests were measured. Blood was collected for the determination of IGF-I and osteocalcin. After 4 weeks of PTH-(1-34), the dose-dependent increase of proximal tibia bone mineral density, trabecular microstructure variables, and bone strength was attenuated in rats fed a LP diet as compared with rats on a NP intake. At the level of midshaft tibia cortical bone, PTH-(1-34) exerted an anabolic effect only in the NP but not in the LP diet group. Protein malnutrition was associated with lower IGF-I levels. Protein malnutrition attenuates the bone anabolic effects of PTH-(1-34) in rats. These results suggest that a sufficient protein intake should be recommended for osteoporotic patients undergoing PTH therapy.

  5. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  6. Effects of Bone Matrix Proteins on Fracture and Fragility in Osteoporosis

    PubMed Central

    Sroga, Grażyna E.

    2012-01-01

    Bone mineral density alone cannot reliably predict fracture risk in humans and laboratory animals. Therefore, other factors including the quality of organic bone matrix components and their interactions may be of crucial importance to understanding of fragility fractures. Emerging research evidence shows, that in addition to collagen, certain noncollagenous proteins (NCPs) play a significant role in the structural organization of bone and influence its mechanical properties. However, their contribution to bone strength still remains largely undefined. Collagen and NCPs undergo different post-translational modifications, which alter the quality of the extracellular matrix and the response of bone to mechanical load. The primary focus of this overview is on NCPs that, together with collagen, contribute to structural and mechanical properties of bone. Current information on several mechanisms through which some NCPs influence bone’s resistance to fracture, including the role of nonenzymatic glycation, is also presented. PMID:22535528

  7. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses

    PubMed Central

    Ali, Imran H A; Brazil, Derek P

    2014-01-01

    Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients. PMID:24758361

  8. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects.

    PubMed Central

    Takagi, K; Urist, M R

    1982-01-01

    Trephine defects in the adult rat skull 0.8 cm in diameter, which do not spontaneously heal, were filled with a bovine bone morphogenetic protein (BMP) fraction. The defects healed not only by bony ingrowth from the trephine rim, but also by proliferation of pervascular mesenchymal-type cells (pericytes) of the dura mater. Under the influence of BMP, dural pericytes differentiated into chondroid and woven bone. Between three and four weeks postimplantation, sinusoids formed and the woven bone remodelled into lamellar bone. Concurrently, blood-borne bone marrow cells colonized the bone deposits, and the diploe were restored. Demonstrating that it is soluble in interstitial fluid, and diffusible across a nucleopore membrane (which isolated the bony margins of the skull), BMP induced new bone formation in the underlying dura and complete repair of the defect. The response of the dura to the BMP fraction produced more new bone than the response to allogeneic bone matrix. The BMP-induced repair was dose dependent; the quantity of new bone was proportional to the dose of the implanted BMP. Images Fig. 1a. Fig. 1b. Fig. 1c. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. Fig. 9. PMID:7092346

  9. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    PubMed Central

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  10. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    PubMed

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. PMID:27142453

  11. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    PubMed

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects.

  12. Attenuated Human Bone Morphogenetic Protein-2–Mediated Bone Regeneration in a Rat Model of Composite Bone and Muscle Injury

    PubMed Central

    Li, Mon-Tzu A.; Uhrig, Brent A.; Boerckel, Joel David; Huebsch, Nathaniel; Lundgren, Taran L.; Warren, Gordon L.; Guldberg, Robert E.

    2013-01-01

    Extremity injuries involving large bone defects with concomitant severe muscle damage are a significant clinical challenge often requiring multiple treatment procedures and possible amputation. Even if limb salvage is achieved, patients are typically left with severe short- and long-term disabilities. Current preclinical animal models do not adequately mimic the severity, complexity, and loss of limb function characteristic of these composite injuries. The objectives of this study were to establish a composite injury model that combines a critically sized segmental bone defect with an adjacent volumetric muscle loss injury, and then use this model to quantitatively assess human bone morphogenetic protein-2 (rhBMP-2)–mediated tissue regeneration and restoration of limb function. Surgeries were performed on rats in three experimental groups: muscle injury (8-mm-diameter full-thickness defect in the quadriceps), bone injury (8-mm nonhealing defect in the femur), or composite injury combining the bone and muscle defects. Bone defects were treated with 2 μg of rhBMP-2 delivered in the pregelled alginate injected into a cylindrical perforated nanofiber mesh. Bone regeneration was quantitatively assessed using microcomputed tomography, and limb function was assessed using gait analysis and muscle strength measurements. At 12 weeks postsurgery, treated bone defects without volumetric muscle loss were consistently bridged. In contrast, the volume and mechanical strength of regenerated bone were attenuated by 45% and 58%, respectively, in the identically treated composite injury group. At the same time point, normalized muscle strength was reduced by 51% in the composite injury group compared to either single injury group. At 2 weeks, the gait function was impaired in all injury groups compared to baseline with the composite injury group displaying the greatest functional deficit. We conclude that sustained delivery of rhBMP-2 at a dose sufficient to induce bridging of

  13. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family.

    PubMed Central

    Tung, H s; Guss, B; Hellman, U; Persson, L; Rubin, K; Rydén, C

    2000-01-01

    Staphylococcus aureus bacteria, isolated from bone and joint infections, specifically interact with bone sialoprotein (BSP), a glycoprotein of bone and dentine extracellular matrix, via a cell-surface protein of M(r) 97000 [Yacoub, Lindahl, Rubin, Wendel, Heinegârd and Rydén, (1994) Eur. J. Biochem. 222, 919-925]. Amino acid sequences of seven trypsin fragments from the 97000-M(r) BSP-binding protein were determined. A gene encoding a protein encompassing all seven peptide sequences was identified from chromosomal DNA isolated from S. aureus strain O24. This gene encodes a protein with 1171 amino acids, called BSP-binding protein (Bbp), which displays similarity to recently described proteins of the Sdr family from S. aureus. SdrC, SdrD and SdrE encode putative cell-surface proteins with no described ligand specificity. Bbp also shows similarity to a fibrinogen-binding protein from S. epidermidis called Fbe. A serine-aspartic acid repeat sequence was found close to the cell-wall-anchoring Leu-Pro-Xaa-Thr-Gly sequence in the C-terminal end of the protein. Escherichia coli cells were transformed with an expression vector containing a major part of the bbp gene fused to the gene for glutathione S-transferase. The affinity-purified fusion protein bound radiolabelled native BSP, and inhibited the binding of radiolabelled BSP to staphylococcal cells. Serum from patients suffering from bone and joint infection contained antibodies that reacted with the fusion protein of the BSP-binding protein, indicating that the protein is expressed during an infection and is immunogenic. The S. aureus Bbp protein may be important in the localization of bacteria to bone tissue, and thus might be of relevance in the pathogenicity of osteomyelitis. PMID:10642520

  14. Physical growth and bone age of survivors of protein energy malnutrition.

    PubMed Central

    Alvear, J; Artaza, C; Vial, M; Guerrero, S; Muzzo, S

    1986-01-01

    Early postnatal malnutrition produces delay in growth and developmental processes, and children from a low socioeconomical level where undernutrition is prevalent are shorter than those from higher socioeconomic levels. We examined the effects of severe and early protein energy malnutrition on growth and bone maturation. We studied 40 preschool children who had been admitted to hospital in infancy with protein energy malnutrition and 38 children from the same socioeconomic level, paired for age and sex, who had never been malnourished. Growth measurements were made over a period of 4-6 years, and bone age was determined in a subgroup through wrist roentgenograms. Results showed a correlation between protein energy malnutrition, birth weight of infants, and mother's height and head circumference. The group with protein energy malnutrition showed a significant delay in stature after four years, especially the girls (p less than 0.001). Weight:height ratio was reduced in boys compared with controls but not in girls. Both groups showed a delay in bone maturation, but there were no significant differences between them. We found a positive correlation between bone age and arm fat area in control boys and between bone age and height for age in boys with protein energy malnutrition. The finding that rehabilitated children were shorter than the control group but had similar bone age at follow up suggests that genetic or prenatal factors were important in their later poor growth, and this suggestion is supported by their smaller birth size and the smaller size of their mothers. PMID:3083790

  15. Enhanced Control of In Vivo Bone Formation with Surface Functionalized Alginate Microbeads Incorporating Heparin and Human Bone Morphogenetic Protein-2

    PubMed Central

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong

    2013-01-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this “naive carriers” into “mini-reservoirs” for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C2C12 cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to

  16. Enhanced control of in vivo bone formation with surface functionalized alginate microbeads incorporating heparin and human bone morphogenetic protein-2.

    PubMed

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong; Wong, Hee-Kit

    2013-02-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this "naive carriers" into "mini-reservoirs" for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C(2)C(12) cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to contralateral

  17. Bone morphogenetic protein signaling and growth suppression in colon cancer

    PubMed Central

    Beck, Stayce E.; Jung, Barbara H.; Fiorino, Antonio; Gomez, Jessica; Del Rosario, Eunice; Cabrera, Betty L.; Huang, Sherry C.; Chow, Jimmy Y. C.; Carethers, John M.

    2014-01-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily, which utilize BMP receptors and intracellular SMADs to transduce their signals to regulate cell differentiation, proliferation, and apoptosis. Because mutations in BMP receptor type IA (BMPRIA) and SMAD4 are found in the germline of patients with the colon cancer predisposition syndrome juvenile polyposis, and because the contribution of BMP in colon cancers is largely unknown, we examined colon cancer cells and tissues for evidence of BMP signaling and determined its growth effects. We determined the presence and functionality of BMPR1A by examining BMP-induced phosphorylation and nuclear translocation of SMAD1; transcriptional activity via a BMP-specific luciferase reporter; and growth characteristics by cell cycle analysis, cell growth, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide metabolic as-says. These assays were also performed after transfection with a dominant negative (DN) BMPR1A construct. In SMAD4-null SW480 cells, we examined BMP effects on cellular wound assays as well as BMP-induced transcription in the presence of transfected SMAD4. We also determined the expression of BMPR1A, BMP ligands, and phospho-SMAD1 in primary human colon cancer specimens. We found intact BMP signaling and modest growth suppression in HCT116 and two derivative cell lines and, surprisingly, growth suppression in SMAD4-null SW480 cells. BMP-induced SMAD signaling and BMPR1A-mediated growth suppression were reversed with DN BMPR1A transfection. BMP2 slowed wound closure, and transfection of SMAD4 into SW480 cells did not change BMP-specific transcriptional activity over controls due to receptor stimulation by endogenously produced ligand. We found no cell cycle alterations with BMP treatment in the HCT116 and derivative cell lines, but there was an increased G1 fraction in SW480 cells that was not due to increased p21 transcription. In human colon cancer

  18. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients

    NASA Astrophysics Data System (ADS)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    2015-07-01

    Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.

  19. Interaction between Cartilage Oligomeric Matrix Protein and Extracellular Matrix Protein 1 Mediates Endochondral Bone Growth

    PubMed Central

    Kong, Li; Tian, Qingyun; Guo, Fengjin; Mucignat, Maria T.; Perris, Roberto; Sercu, Sandy; Merregaert, Joseph; Di Cesare, Paul E.; Liu, Chuan-ju

    2010-01-01

    In an effort to define the biological functions of COMP, a functional genetic screen was performed. This led to the identification of extracellular matrix protein 1 (ECM1) as a novel COMP-associated partner. COMP directly binds to ECM1 both in vitro and in vivo. The EGF domain of COMP and the C-terminus of ECM1 mediate the interaction between them. COMP and ECM1 Colocalize in the Growth Plates in Vivo. ECM1 inhibits chondrocyte hypertrophy, matrix mineralization, and endochondral bone formation, and COMP overcomes the inhibition by ECM1. In addition, COMP-mediated neutralization of ECM1 inhibition depends on their interaction, since COMP largely fails to overcome the ECM1 inhibition in the presence of the EGF domain of COMP, which disturbs the association of COMP and ECM1. These findings provide the first evidence linking the association of COMP and ECM1 and the biological significance underlying the interaction between them in regulating endochondral bone growth. PMID:20138147

  20. Morphogen-based simulation model of ray growth and joint patterning during fin development and regeneration.

    PubMed

    Rolland-Lagan, Anne-Gaëlle; Paquette, Mathieu; Tweedle, Valerie; Akimenko, Marie-Andrée

    2012-03-01

    The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation. PMID:22318227

  1. Fos/AP-1 proteins in bone and the immune system.

    PubMed

    Wagner, Erwin F; Eferl, Robert

    2005-12-01

    The skeleton and the immune system share a variety of different cytokines and transcription factors, thereby mutually influencing each other. These interactions are not confined to the bone marrow cavity where bone cells and hematopoietic cells exist in proximity but also occur at locations that are target sites for inflammatory bone diseases. The newly established research area termed 'osteoimmunology' attempts to unravel these skeletal/immunological relationships. Studies towards a molecular understanding of inflammatory bone diseases from an immunological as well as a bone-centered perspective have been very successful and led to the identification of several signaling pathways that are causally involved in inflammatory bone loss. Induction of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signals by activated T cells and subsequent activation of the key transcription factors Fos/activator protein-1 (AP-1), NF-kappaB, and NF for activation of T cells c1 (NFATc1) are in the center of the signaling networks leading to osteoclast-mediated bone loss. Conversely, nature has employed the interferon system to antagonize excessive osteoclast differentiation, although this counteracting activity appears to be overruled under pathological conditions. Here, we focus on Fos/AP-1 functions in osteoimmunology, because this osteoclastogenic transcription factor plays a central role in inflammatory bone loss by regulating genes like NFATc1 as well as the interferon system. We also attempt to put potential therapeutic strategies for inflammatory bone diseases in perspective.

  2. Systems control of BMP morphogen flow in vertebrate embryos

    PubMed Central

    Plouhinec, Jean-Louis; Zakin, Lise; De Robertis, Edward M.

    2011-01-01

    Embryonic morphogenetic programs coordinate cell behavior to ensure robust pattern formation. Having identified components of those programs by molecular genetics, developmental biology is now borrowing concepts and tools from systems biology to decode their regulatory logic. Dorsal-ventral (D-V) patterning of the frog gastrula by Bone Morphogenetic Proteins (BMPs) is one of the best studied examples of a self-regulating embryonic patterning system. Embryological analyses and mathematical modeling are revealing that the BMP activity gradient is maintained by a directed flow of BMP ligands towards the ventral side. Pattern robustness is ensured through feedback control of the levels of extracellular BMP pathway modulators that adjust the flow to the dimensions of the embryonic field. PMID:21937218

  3. Acid diet (high meat protein) effects on calcium metabolism and bone health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: Update recent advancements regarding the effect of high animal protein on calcium utilization and bone health. Recent findings: Increased potential renal acid load resulting from a high protein (meat) intake has been closely associated with increased urinary calcium excretion. How...

  4. Effect of protein intake on bone and muscle mass in the elderly.

    PubMed

    Genaro, Patrícia de Souza; Martini, Lígia Araújo

    2010-10-01

    The aging process is frequently characterized by an involuntary loss of muscle (sarcopenia) and bone (osteoporosis) mass. Both chronic diseases are associated with decreased metabolic rate, increased risk of falls/fracture, and, as a result, increased morbidity and loss of independence in the elderly. The quality and quantity of protein intake affects bone and muscle mass in several ways and there is evidence that increased essential amino acid or protein availability can enhance muscle protein synthesis and anabolism, as well as improve bone homeostasis in older subjects. A thorough evaluation of renal function is important, since renal function decreases with age. Finally, protein and calcium intake should be considered in the prevention or treatment of the chronic diseases osteoporosis and sarcopenia. PMID:20883419

  5. Cilia/Ift protein and motor-related bone diseases and mouse models

    PubMed Central

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways. PMID:25553465

  6. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  7. Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.

    PubMed

    Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela

    2014-01-01

    To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients. PMID:25216148

  8. Bone-related matrix proteins expression in vitro and in vivo by marrow stromal cell line.

    PubMed

    Benayahu, D; Gurevitz, O A; Shamay, A

    1994-10-01

    MBA-1, a bone marrow stroma-derived cell line, was transplanted in an ectopic site and formed endochondral bone. The ossicle developed through stages of cell proliferation, differentiated into a zone of hypertrophy and formed a chondroid-like area which further developed to primary mineralized bone. We explored the expression of various matrix proteins by MBA-1 cells in vitro and in the ossicle formed in vivo. MBA-1 cells constitutively expressed mRNAs encoding for collagen I, non-collagenous proteins and alkaline phosphatase. RNA extracted from the ossicle formed by these cells was expressed in a different pattern. The in vivo maturation of MBA-1 cells was accompanied by low expression of mRNA for procollagen alpha 2(I) and a marked increase in osteonectin and osteopontin mRNA levels. Thus, the ability to follow expression of these genes through bone formation in vivo has been demonstrated. PMID:9437244

  9. Distribution of SIBLING proteins in the organic and inorganic phases of rat dentin and bone.

    PubMed

    Huang, Bingzhen; Sun, Yao; Maciejewska, Izabela; Qin, Disheng; Peng, Tao; McIntyre, Bradley; Wygant, James; Butler, William T; Qin, Chunlin

    2008-04-01

    The SIBLING protein family is a group of non-collagenous proteins (NCPs) that includes dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN). In the present study, we compared these four proteins in different phases of rat dentin and bone. First, we extracted NCPs in the unmineralized matrices and cellular compartments using guanidium-HCl (G1). Second, we extracted NCPs closely associated with hydroxyapatite using an EDTA solution (E). Last, we extracted the remaining NCPs again with guanidium-HCl (G2). Each fraction of Q-Sepharose ion-exchange chromatography was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Stains-All stain, and with western immunoblotting. In dentin, the NH(2)-terminal fragment of DSPP and its proteoglycan form were primarily present in the G1 extract, whereas the COOH-terminal fragment of DSPP was present exclusively in the E extract. The processed NH(2)-terminal fragment of DMP1 was present in G1 and E extracts, whereas the COOH-terminal fragment of DMP1 existed mainly in the E extract. Bone sialoprotein was present in all three extracts of dentin and bone, whereas OPN was present only in the G1 and E extracts of bone. The difference in the distribution of the SIBLING proteins between organic and inorganic phases supports the belief that these molecular species play different roles in dentinogenesis and osteogenesis.

  10. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  11. Bone morphogenetic proteins for periodontal and alveolar indications; biological observations - clinical implications.

    PubMed

    Wikesjö, U M E; Qahash, M; Huang, Y-H; Xiropaidis, A; Polimeni, G; Susin, C

    2009-08-01

    Surgical placement of endosseous oral implants is governed by the prosthetic design and by the morphology and quality of the alveolar bone. Nevertheless, often implant placement may be complexed, if at all possible, by alveolar ridge irregularities resulting from periodontal disease, and chronic and acute trauma. In consequence, implant positioning commonly necessitates bone augmentation procedures. One objective of our laboratory is to evaluate the biologic potential of bone morphogenetic proteins (BMP) and other candidate biologics, bone biomaterials, and devices for alveolar ridge augmentation and implant fixation using discriminating large animal models. This focused review illustrates the unique biologic potential, the clinical relevance and perspectives of recombinant human BMP-2 (rhBMP-2) using a variety of carrier technologies to induce local bone formation and implant osseointegration for inlay and onlay indications. Our studies demonstrate a clinically relevant potential of a purpose-designed titanium porous oxide implant surface as stand-alone technology to deliver rhBMP-2 for alveolar augmentation. In perspective, merits and shortcomings of current treatment protocol including bone biomaterials and guided bone regeneration are addressed and explained. We demonstrate that rhBMP-2 has unparalleled potential to augment alveolar bone, and support implant osseointegration and long-term functional loading. Inclusion of rhBMP-2 for alveolar augmentation and osseointegration will not only enhance predictability of existing clinical protocol but also radically change current treatment paradigms.

  12. Alveolar Bone Grafting in Cleft Patients from Bone Defect to Dental Implants

    PubMed Central

    Vuletić, Marko; Jokić, Dražen; Rebić, Jerko; Žabarović, Domagoj; Macan, Darko

    2014-01-01

    Cleft lip and palate is the most common congenital deformity affecting craniofacial structures. Orofacial clefts have great impact on the quality of life which includes aesthetics, function, psychological impact, dental development and facial growth. Incomplete fusion of facial prominences during the fourth to tenth week of gestation is the main cause. Cleft gaps are closed with alveolar bone grafts in surgical procedure called osteoplasty. Autogenic bone is taken from the iliac crest as the gold standard. The time of grafting can be divided into two stages: primary and secondary. The alveolar defect is usually reconstructured between 7 and 11 years and is often related to the development of the maxillary canine root. After successful osteoplasty, cleft defect is closed but there is still a lack of tooth. The space closure with orthodontic treatment has 50-75% success. If the orthodontic treatment is not possible, in order to replace the missing tooth there are three possibilities: adhesive bridgework, tooth transplantation and implants. Dental implant has the role of holding dental prosthesis, prevents pronounced bone atrophy and loads the augmentation material in the cleft area. Despite the fact that autologous bone from iliac crest is the gold standard, it is not a perfect source for reconstruction of the alveolar cleft. Bone morphogenic protein (BMP) is appropriate as an alternative graft material. The purpose of this review is to explain morphology of cleft defects, historical perspective, surgical techniques and possibilities of implant and prosthodontic rehabilitation.

  13. Protein intake and lumbar bone density: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Hu, Tian; Rianon, Nahid J; Nettleton, Jennifer A; Hyder, Joseph A; He, Jiang; Steffen, Lyn M; Jacobs, David R; Criqui, Michael H; Bazzano, Lydia A

    2014-10-28

    Dietary protein has been shown to increase urinary Ca excretion in randomised controlled trials, and diets high in protein may have detrimental effects on bone health; however, studies examining the relationship between dietary protein and bone health have conflicting results. In the present study, we examined the relationship between dietary protein (total, animal and vegetable protein) and lumbar spine trabecular volumetric bone mineral density (vBMD) among participants enrolled in the Multi-Ethnic Study of Atherosclerosis (n 1658). Protein intake was assessed using a FFQ obtained at baseline examination (2000-2). Lumbar spine vBMD was measured using quantitative computed tomography (2002-5), on average 3 years later. Multivariable linear and robust regression techniques were used to examine the associations between dietary protein and vBMD. Sex and race/ethnicity jointly modified the association of dietary protein with vBMD (P for interaction = 0·03). Among white women, higher vegetable protein intake was associated with higher vBMD (P for trend = 0·03), after adjustment for age, BMI, physical activity, alcohol consumption, current smoking, educational level, hormone therapy use, menopause and additional dietary factors. There were no consistently significant associations for total and animal protein intakes among white women or other sex and racial/ethnic groups. In conclusion, data from the present large, multi-ethnic, population-based study suggest that a higher level of protein intake, when substituted for fat, is not associated with poor bone health. Differences in the relationship between protein source and race/ethnicity of study populations may in part explain the inconsistent findings reported previously.

  14. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction

    PubMed Central

    Dubrulle, Julien; Jordan, Benjamin M; Akhmetova, Laila; Farrell, Jeffrey A; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Schier, Alexander F

    2015-01-01

    Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI: http://dx.doi.org/10.7554/eLife.05042.001 PMID:25869585

  15. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors.

    PubMed

    Marques, Cátia L; Cancela, M Leonor; Laizé, Vincent

    2016-01-15

    Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context. PMID:26456102

  16. The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts.

    PubMed

    McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F

    2010-04-01

    Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.

  17. Morphogen-defined patterning of Escherichia coli enabled by an externally tunable band-pass filter

    PubMed Central

    Sohka, Takayuki; Heins, Richard A; Ostermeier, Marc

    2009-01-01

    Background Gradients of morphogens pattern cell fate – a phenomenon that is especially important during development. A simple model system for studying how morphogens pattern cell behavior would overcome difficulties inherent in the study of natural morphogens in vivo. A synthetic biology approach to building such a system is attractive. Results Using an externally-tunable band-pass filter paradigm, we engineered Escherichia coli cells to function as a model system for the study of how multiple morphogens can pattern cell behavior. We demonstrate how our system exhibits behavior such as morphogen crosstalk and how the cells' growth and fluorescence can be patterned in a number of complex patterns. We extend our cell patterning from 2D cultures on the surface of plates to 3D cultures in soft agarose medium. Conclusion Our system offers a convenient, well-defined model system for fundamental studies on how multiple morphogen gradients can affect cell fate and lead to pattern formation. Our design principles could be applied to eukaryotic cells to develop other models systems for studying development or for enabling the patterning of cells for applications such as tissue engineering and biomaterials. PMID:19586541

  18. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients

    PubMed Central

    Cotterell, James; Sharpe, James

    2010-01-01

    The interpretation of morphogen gradients is a pivotal concept in developmental biology, and several mechanisms have been proposed to explain how gene regulatory networks (GRNs) achieve concentration-dependent responses. However, the number of different mechanisms that may exist for cells to interpret morphogens, and the importance of design features such as feedback or local cell–cell communication, is unclear. A complete understanding of such systems will require going beyond a case-by-case analysis of real morphogen interpretation mechanisms and mapping out a complete GRN ‘design space.' Here, we generate a first atlas of design space for GRNs capable of patterning a homogeneous field of cells into discrete gene expression domains by interpreting a fixed morphogen gradient. We uncover multiple very distinct mechanisms distributed discretely across the atlas, thereby expanding the repertoire of morphogen interpretation network motifs. Analyzing this diverse collection of mechanisms also allows us to predict that local cell–cell communication will rarely be responsible for the basic dose-dependent response of morphogen interpretation networks. PMID:21045819

  19. Association of total protein intake with bone mineral density (BMD) and bone loss in men and women from the Framingham Offspring Study

    PubMed Central

    Sahni, Shivani; Broe, Kerry E.; Tucker, Katherine L.; McLean, Robert R.; Kiel, Douglas P.; Cupples, L. Adrienne; Hannan, Marian T.

    2014-01-01

    Objective To examine the association of % of total energy from protein (protein%) with bone mineral density (BMD, g/cm2) and bone loss at the femoral neck (FN), trochanter (TR); L2–L4 spine (LS). To examine calcium as an effect modifier. Setting The Framingham Offspring Study. Subjects 1,280 men and 1,639 women completed an FFQ in 1992–95 or 1995–98 and baseline DXA-BMD measurement in 1996–2000. 495 men and 680 women had follow-up BMD measured in 2002–2005. Design Cohort study using multivariable regression to examine the association of protein% with each BMD, adjusting for covariates. Statistical interaction between protein% and calcium (total, dietary; supplemental) intake was examined. Results The mean age at baseline was 61y(±9). In the cross-sectional analyses, protein% was positively associated with all BMD sites (P:0.02–0.04) in women but not in men. Significant interactions were observed with total calcium intake (<800 vs. ≥800 mg/d) in women at all bone sites (P:0.002–0.02). Upon stratification, protein% was positively associated with all BMD sites (P:0.04–0.10) in women with low calcium intakes but not with high calcium intakes. In the longitudinal analyses, in men, higher protein% was associated with more TR-bone loss (P=0.01) while no associations were seen in women, regardless of calcium intake. Conclusion This suggests that greater protein intake benefits women especially those with lower calcium intakes. However, protein effects are not significant for short term changes in bone density. Contrastingly, in men, higher protein intakes lead to greater TR-bone loss. Longer follow-up is required to examine the impact of protein on bone loss. PMID:24168918

  20. Modern bone regeneration instead of bone transplantation: a combination of recombinant human bone morphogenetic protein-2 and platelet-rich plasma for the vertical augmentation of the maxillary bone-a single case report.

    PubMed

    Schuckert, Karl-Heinz; Jopp, Stefan; Osadnik, Magdalena

    2010-12-01

    This publication describes the clinical case of a 75-year-old woman. She suffered from total alveolar ridge atrophy due to 20 years of wearing dentures. Bone transplantation, including harvesting of the iliac crest, was rejected by another clinic due to various existing diseases and risk of blood loss on donor side. Moreover, the minimal residual alveolar ridge did not allow bone fixation using screws nor did it allow osteodistraction. Before deciding which bone tissue engineering techniques should best be employed in this surgical treatment, cardiological and internistic consultations and treatments were carried out. In addition, anesthetic preparations were made. The surgical treatment was performed implementing special bridge flap techniques to preserve the periosteum. Tricalcium phosphate blocks soaked with recombinant human bone morphogenetic protein-2 and platelet-rich plasma were implanted on the narrow alveolar ridge. They were attached by tightening the soft tissue, including the periosteum. Four months later, after complication-free wound healing and bone regeneration, six dental implants were inserted into the new alveolar ridge. The histology of all bone samples showed vital lamellar bone. Three months after implantation, a new dental structure was fixed on the implants. The patient's quality of life improved significantly with this new situation. PMID:20302447

  1. [MORPHOLOGICAL CHARACTERISTICS OF OSSEOINTEGRATION AFTERAPPLICATION OF TITANIUM IMPLANTS WITH BIOACTIVE COATING AND RECOMBINANT BONE MORPHOGENETIC PROTEIN].

    PubMed

    Gaifullin, N M; Karyagina, A S; Gromov, A V; Terpilovskiy, A A; Malanin, D A; Demeshchenko, M V; Novochadov, V V

    2016-01-01

    Experiments were carried out on 22 albino male Wistar rats to study the morphological peculiarities of osseointegration of titanium grafts with bioactive surface stimulated additionally with bone plastic material "Gamalant-paste-FORTE Plus" containing recombinant human bone morphogenetic protein-2 (rhBMP-2). In 9 rats the implants were placed into femoral bones after local treatment of bone canal with rhBMP-2-containing material. Another 9 animals were implanted but received no treatment, 4 rats formed the group of intact control. Zone of osseointegration was studied 4, 8 and 12 weeks after graft placement using histological and morphometric methods as well as immune histochemistry to demonstrate osteonectin, CD68, MMP-9, and TIMP-1. The study showed that preliminary treatment of bone canal with rhBMP-2-containing material preceding implant placement was accompanied by an additional osteoinductive effect. More intense and outrunning bone formation in the area of osseointegration was observed, together with remodeling and compaction of the contiguous cancellous bone, thus providing the necessary balance between MMP-9 and TIMP-1 with a high level of each factor expression. PMID:27487669

  2. [MORPHOLOGICAL CHARACTERISTICS OF OSSEOINTEGRATION AFTERAPPLICATION OF TITANIUM IMPLANTS WITH BIOACTIVE COATING AND RECOMBINANT BONE MORPHOGENETIC PROTEIN].

    PubMed

    Gaifullin, N M; Karyagina, A S; Gromov, A V; Terpilovskiy, A A; Malanin, D A; Demeshchenko, M V; Novochadov, V V

    2016-01-01

    Experiments were carried out on 22 albino male Wistar rats to study the morphological peculiarities of osseointegration of titanium grafts with bioactive surface stimulated additionally with bone plastic material "Gamalant-paste-FORTE Plus" containing recombinant human bone morphogenetic protein-2 (rhBMP-2). In 9 rats the implants were placed into femoral bones after local treatment of bone canal with rhBMP-2-containing material. Another 9 animals were implanted but received no treatment, 4 rats formed the group of intact control. Zone of osseointegration was studied 4, 8 and 12 weeks after graft placement using histological and morphometric methods as well as immune histochemistry to demonstrate osteonectin, CD68, MMP-9, and TIMP-1. The study showed that preliminary treatment of bone canal with rhBMP-2-containing material preceding implant placement was accompanied by an additional osteoinductive effect. More intense and outrunning bone formation in the area of osseointegration was observed, together with remodeling and compaction of the contiguous cancellous bone, thus providing the necessary balance between MMP-9 and TIMP-1 with a high level of each factor expression.

  3. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways.

    PubMed

    Krause, Carola; Korchynskyi, Olexandr; de Rooij, Karien; Weidauer, Stella E; de Gorter, David J J; van Bezooijen, Rutger L; Hatsell, Sarah; Economides, Aris N; Mueller, Thomas D; Löwik, Clemens W G M; ten Dijke, Peter

    2010-12-31

    Sclerostin is expressed by osteocytes and has catabolic effects on bone. It has been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity, although at present the underlying mechanisms are unclear. Consistent with previous findings, Sclerostin opposed direct Wnt3a-induced but not direct BMP7-induced responses when both ligand and antagonist were provided exogenously to cells. However, we found that when both proteins are expressed in the same cell, sclerostin can antagonize BMP signaling directly by inhibiting BMP7 secretion. Sclerostin interacts with both the BMP7 mature domain and pro-domain, leading to intracellular retention and proteasomal degradation of BMP7. Analysis of sclerostin knock-out mice revealed an inhibitory action of sclerostin on Wnt signaling in both osteoblasts and osteocytes in cortical and cancellous bones. BMP7 signaling was predominantly inhibited by sclerostin in osteocytes of the calcaneus and the cortical bone of the tibia. Our results suggest that sclerostin exerts its potent bone catabolic effects by antagonizing Wnt signaling in a paracrine and autocrine manner and antagonizing BMP signaling selectively in the osteocytes that synthesize simultaneously both sclerostin and BMP7 proteins.

  4. Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing.

    PubMed

    Miller, Gregory J; Gerstenfeld, Louis C; Morgan, Elise F

    2015-11-01

    Uncovering the mechanisms of the sensitivity of bone healing to mechanical factors is critical for understanding the basic biology and mechanobiology of the skeleton, as well as for enhancing clinical treatment of bone injuries. This study refined an experimental method of measuring the strain microenvironment at the site of a bone injury during bone healing. This method used a rat model in which a well-controlled bending motion was applied to an osteotomy to induce the formation of pseudarthrosis that is composed of a range of skeletal tissues, including woven bone, cartilage, fibrocartilage, fibrous tissue, and clot tissue. The goal of this study was to identify both the features of the strain microenvironment associated with formation of these different tissues and the expression of proteins frequently implicated in sensing and transducing mechanical cues. By pairing the strain measurements with histological analyses that identified the regions in which each tissue type formed, we found that formation of the different tissue types occurs in distinct strain microenvironments and that the type of tissue formed is correlated most strongly to the local magnitudes of extensional and shear strains. Weaker correlations were found for dilatation. Immunohistochemical analyses of focal adhesion kinase and rho family proteins RhoA and CDC42 revealed differences within the cartilaginous tissues in the calluses from the pseudarthrosis model as compared to fracture calluses undergoing normal endochondral bone repair. These findings suggest the involvement of these proteins in the way by which mechanical stimuli modulate the process of cartilage formation during bone healing. PMID:25822264

  5. Effects of ionizing radiation on proteins in lyophilized or frozen demineralized human bone

    PubMed Central

    Antebi, Uri; Mathor, Monica Beatriz; da Silva, André Ferreira; Guimarães, Rodrigo Pereira; Honda, Emerson Kiyoshi

    2016-01-01

    Objective The aim was to study the effects of application of ionizing radiation (gamma and electrons) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, on lyophilized or frozen demineralized bone tissue for use in transplants. Methods Five human femoral diaphyses from different donors of musculoskeletal tissue were demineralized and preserved as lyophilized or frozen at −80 °C. The samples were divided into two groups: non-irradiated (control) and irradiated by means of gamma rays or an electron beam. The bone proteins were extracted and used to determine the concentrations of total protein and BMP 2 and 7. Results Decreases in total protein and BMP 2 and 7 concentrations were observed. The decreases in total protein concentrations, in comparison with the respective control groups, were significant in the lyophilized and frozen samples that were irradiated at a dose of 50 kGy of gamma radiation and electron beam, with reductions of more than 30%. Significant decreases in the levels of BMP 2 and 7 were also observed at higher doses and especially through use of the electron beam. Conclusion The reductions in the concentrations of total proteins and osteoinductive proteins (BMP 2 and 7) were related to the radiation dose, i.e. they increased with higher doses of ionizing radiation type and the type of bone preservation. The largest reductions in concentrations were observed in the bones irradiated by means of an electron beam and at a dose of 50 kGy. However, this type of radiation and this high dose are not usual practices for sterilization of bone tissue. PMID:27069893

  6. Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L.

    PubMed

    Tariq, Umayya; Ali, Mohammad; Abbasi, Bilal Haider

    2014-01-01

    Through its impact on morphogenesis, light is the key environmental factor that alters plant architectural development; however, the understanding that how light controls plant growth and developmental processes is still poor and needs further research. In this study, we monitored the effect of various monochromatic lights and plant growth regulators (PGRs) combinations on morphogenic and biochemical variation in wild grown-leaf derived callus cultures of Artemisia absinthium L. Combination of α-naphthalene acetic acid (NAA 1.0mg/l) and Thidiazuron (TDZ 2.0mg/l) resulted in optimum callogenic frequency (90%) when kept under fluorescent light for 4weeks (16/8h). In contrast to the control (white spectrum), red spectrum enhanced peroxidase activity, protease activity, total protein content and chlorophyll a/b ratio. Green spectrum was found to be more supportive for total phenolics, total flavonoids and antioxidant activity. Yellow light enhanced MDA content while white and green light improved total chlorophyll content and carotenoid content. A positive correlation among callogenic response, antioxidant activities and set of antioxidative enzyme activities was also observed in the current report. This study will help in understanding the influence of light on production of commercially important secondary metabolites and their optimization in the in vitro cultures of A. absinthium L.

  7. Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila

    PubMed Central

    Wang, Wei; Kidd, Bryan J.; Carroll, Sean B.; Yoder, John H.

    2011-01-01

    Sexual dimorphism is widespread throughout the metazoa and plays important roles in mate recognition and preference, sex-based niche partitioning, and sex-specific coadaptation. One notable example of sex-specific differences in insect body morphology is presented by the higher diptera, such as Drosophila, in which males develop fewer abdominal segments than females. Because diversity in segment number is a distinguishing feature of major arthropod clades, it is of fundamental interest to understand how different numbers of segments can be generated within the same species. Here we show that sex-specific and segment-specific regulation of the Wingless (Wg) morphogen underlies the development of sexually dimorphic adult segment number in Drosophila. Wg expression is repressed in the developing terminal male abdominal segment by the combination of the Hox protein Abdominal-B (Abd-B) and the sex-determination regulator Doublesex (Dsx). The subsequent loss of the terminal male abdominal segment during pupation occurs through a combination of developmental processes including segment compartmental transformation, apoptosis, and suppression of cell proliferation. Furthermore, we show that ectopic expression of Wg is sufficient to rescue this loss. We propose that dimorphic Wg regulation, in concert with monomorphic segment-specific programmed cell death, are the principal mechanisms of sculpting the sexually dimorphic abdomen of Drosophila. PMID:21690416

  8. Role of morphogenetic proteins in skeletal tissue engineering and regeneration.

    PubMed

    Reddi, A H

    1998-03-01

    Morphogenesis is the developmental cascade of pattern formation and body plan establishment, culminating in the adult form. It has formed the basis for the emerging discipline of tissue engineering, which uses principles of molecular developmental biology and morphogenesis gleaned through studies on inductive signals, responding stem cells, and the extracellular matrix to design and construct spare parts that restore function to the human body. Among the many organs in the body, bone has considerable powers for regeneration and is a prototype model for tissue engineering. Implantation of demineralized bone matrix into subcutaneous sites results in local bone induction. This model mimics sequential limb morphogenesis and has permitted the isolation of bone morphogens, such as bone morphogenetic proteins (BMPs), from demineralized adult bone matrix. BMPs initiate, promote, and maintain chondrogenesis and osteogenesis, but are also involved in the morphogenesis of organs other than bone. The symbiosis of the mechanisms underlying bone induction and differentiation is critical for tissue engineering and is governed by both biomechanics (physical forces) and context (microenvironment/extracellular matrix), which can be duplicated by biomimetic biomaterials such as collagens, hydroxyapatite, proteoglycans, and cell adhesion glycoproteins, including fibronectins and laminin. Rules of tissue architecture elucidated in bone morphogenesis may provide insights into tissue engineering and be universally applicable for all organs/tissues, including bones and joints. PMID:9528003

  9. Butterfly wing patterns: how good a determining mechanism is the simple diffusion of a single morphogen?

    PubMed

    Bard, J B; French, V

    1984-12-01

    The formation of the wing pigmentation patterns of three species of butterflies has been modelled using a mechanism based on a tripod of assumptions. First, that there may be morphogen sources in the foci of eyespots and morphogen sinks at some parts of the wing margin, all other cells being passive. Second, that the morphogen has a finite half life and diffuses simply and freely away from the sources throughout a wing of hexagonally packed cells. Third, that the overt pattern derives from cells interpreting the local morphogen concentration with respect to thresholds which determine scale colours. The final pattern thus follows lines of constant morphogen concentration and may, depending on the distribution of sources, comprise rings, curves or bands. With such a model, we have been able to compute stable patterns having the essential topology of the compound spots of Tenaris domitilla, the large rings of Diaethria marchalii and the pattern of eyespots, rings and asymmetric bands of Ragadia minoa. Quantitative analysis of the pattern-forming process shows that, with a biologically realistic diffusion constant (approximately 5.10(-7) cm2 sec-1) and a morphogen half life less than 6h, the patterns form within approximately 12h over a wing of approximately 1000 cells in length. The limitations of the model are that the exact morphology of the eyespots and bands do not match precisely those of the original wings, that there are edge distortions and that optimal patterns may be critically dependent on the exact positions of sources and sinks. An explanation for part of the discrepancy is that we have assumed an adult wing shape and foci coordinates in modelling a process that took place earlier in development. Nevertheless, the limitations of the model argue against a mechanism based on a single morphogen operating in vivo. However, as the model can generate many features of butterfly wing patterns, it may be considered as a degenerate case of that mechanism. PMID

  10. Butterfly wing patterns: how good a determining mechanism is the simple diffusion of a single morphogen?

    PubMed

    Bard, J B; French, V

    1984-12-01

    The formation of the wing pigmentation patterns of three species of butterflies has been modelled using a mechanism based on a tripod of assumptions. First, that there may be morphogen sources in the foci of eyespots and morphogen sinks at some parts of the wing margin, all other cells being passive. Second, that the morphogen has a finite half life and diffuses simply and freely away from the sources throughout a wing of hexagonally packed cells. Third, that the overt pattern derives from cells interpreting the local morphogen concentration with respect to thresholds which determine scale colours. The final pattern thus follows lines of constant morphogen concentration and may, depending on the distribution of sources, comprise rings, curves or bands. With such a model, we have been able to compute stable patterns having the essential topology of the compound spots of Tenaris domitilla, the large rings of Diaethria marchalii and the pattern of eyespots, rings and asymmetric bands of Ragadia minoa. Quantitative analysis of the pattern-forming process shows that, with a biologically realistic diffusion constant (approximately 5.10(-7) cm2 sec-1) and a morphogen half life less than 6h, the patterns form within approximately 12h over a wing of approximately 1000 cells in length. The limitations of the model are that the exact morphology of the eyespots and bands do not match precisely those of the original wings, that there are edge distortions and that optimal patterns may be critically dependent on the exact positions of sources and sinks. An explanation for part of the discrepancy is that we have assumed an adult wing shape and foci coordinates in modelling a process that took place earlier in development. Nevertheless, the limitations of the model argue against a mechanism based on a single morphogen operating in vivo. However, as the model can generate many features of butterfly wing patterns, it may be considered as a degenerate case of that mechanism.

  11. Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling

    PubMed Central

    Vogt, Janis; Dingwell, Kevin S.; Herhaus, Lina; Gourlay, Robert; Macartney, Thomas; Campbell, David; Smith, James C.; Sapkota, Gopal P.

    2014-01-01

    Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression. BMPs can also signal independently of SMAD4, but this pathway is poorly understood. Here, we report the discovery and characterization of PAWS1/FAM83G as a novel SMAD1 interactor. PAWS1 forms a complex with SMAD1 in a SMAD4-independent manner, and BMP signalling induces the phosphorylation of PAWS1 through BMPR1A. The phosphorylation of PAWS1 in response to BMP is essential for activation of the SMAD4-independent BMP target genes NEDD9 and ASNS. Our findings identify PAWS1 as the first non-SMAD substrate for type I BMP receptor kinases and as a novel player in the BMP pathway. We also demonstrate that PAWS1 regulates the expression of several non-BMP target genes, suggesting roles for PAWS1 beyond the BMP pathway. PMID:24554596

  12. Platelet-rich plasma and fibrin as delivery systems for recombinant human bone morphogenetic protein-2.

    PubMed

    Jung, Ronald E; Schmoekel, Hugo G; Zwahlen, Roger; Kokovic, Vladimir; Hammerle, Christoph H F; Weber, Franz E

    2005-12-01

    The aim of the present study was (1) to test whether or not platelet-rich plasma (PRP) or commercially available fibrin can increase bone regeneration compared with non-treated defects and (2) to test whether or not PRP or fibrin increases bone regeneration when used as a delivery system for recombinant human bone morphogenetic protein-2 (rhBMP-2). In 16 New Zealand White rabbits, four evenly distributed 6 mm diameter defects were drilled into the calvarial bone. The following five treatment modalities were randomly allocated to all 64 defects: (0) untreated control, (1) fibrin alone, (2) PRP alone, (3) fibrin with 15 microg rhBMP-2 and (4) PRP with 15 microg rhBMP-2. For the fibrin gels and the PRP containing rhBMP-2, the 15 microg rhBMP-2 was incorporated by precipitation within the matrices before their gelation. After 4 weeks, the animals were sacrificed and the calvarial bones were removed for histological preparation. The area fraction of newly formed bone was determined in vertical sections from the middle of the defect by applying histomorphometrical analysis. A mean area fraction of newly formed bone was found within the former defect of 23.4% (+/-13.5%) in the control sites, of 28.4% (+/-17.4%) in the fibrin sites and of 34.5% (+/-17.4%) in the PRP sites. The statistical analysis revealed no significant difference in bone formation between the three groups (ANOVA). Addition of 15 microg rhBMP-2 in the fibrin gel (59.9+/-20.3%) and the PRP gels (63.1+/-25.3%) increased bone formation significantly. No significant difference was observed between sites, where PRP or fibrin has been used as a delivery system for rhBMP-2 (ANOVA). In conclusion, the application of fibrin gels or PRP gels to bone defects is not superior to leaving the defect untreated. Regarding the amount of bone formation, the application of 15 microg rhBMP-2 in bone defects enhances the healing significantly at 4 weeks. In this animal model, commercially available fibrin and autologous PRP

  13. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    PubMed Central

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  14. Modeling and Validation of Multilayer Poly(Lactide-Co-Glycolide) Scaffolds for In Vitro Directed Differentiation of Juxtaposed Cartilage and Bone

    PubMed Central

    Huang, George X.; Arany, Praveen R.

    2015-01-01

    Polymeric scaffolds, which release growth factors in a temporally controlled manner, have successfully directed the differentiation of stem cells into monolithic tissues of a single lineage. However, engineering precise boundaries in multilineage functional tissues, such as the juxtaposed cartilaginous and osseous tissue present in articulated joints, often remains a challenge. This work demonstrates a precise materials system for in vitro reconstruction of the three-dimensional architecture of these types of human tissues. Multilayer poly(lactide-co-glycolide) (PLG) scaffolds were used to produce spatiotemporal gradients to direct the differentiation of an initially uniform population of mesenchymal stem cells (MSCs) into juxtaposed cartilage and bone. Specifically, growth factors (chondrogenic transforming growth factor-β3 and osteogenic bone morphogenetic protein-4) and their neutralizing antibodies were incorporated within distinct layers of the PLG scaffolds to create spatially segregated morphogen fields within the scaffold volume. The multilayer PLG scaffold designs were optimized by mathematical modeling, and generation of spatially segregated morphogen gradients was validated by assessing activity of luciferase reporter cell lines responsive to each growth factor. Scaffolds seeded with MSCs demonstrated production of juxtaposed cartilage and bone, as evaluated by biochemical staining and western blotting for tissue-specific matrix proteins. This work demonstrates a significant advance for the engineering of implantable constructs comprising tissues of multiple lineages, with potential applications in orthopedic regenerative medicine. PMID:25923238

  15. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease.

    PubMed

    Wu, Mengrui; Chen, Guiqian; Li, Yi-Ping

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin-proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines' signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling. PMID:27563484

  16. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    PubMed Central

    Wu, Mengrui; Chen, Guiqian; Li, Yi-Ping

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling. PMID:27563484

  17. An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Lu, Qiaozhi; Uy, Manuel O; Elisseeff, Jennifer H

    2013-03-11

    A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality. PMID:23320412

  18. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    PubMed

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width. PMID:25006772

  19. Turning Bone Morphogenetic Protein 2 (BMP2) On and Off in Mesenchymal Cells†

    PubMed Central

    Rogers, Melissa B.; Shah, Tapan A.; Shaikh, Nadia N.

    2016-01-01

    The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. This article is protected by copyright. All rights reserved PMID:25776852

  20. Serum levels of bone Gla-protein in inhabitants exposed to environmental cadmium

    SciTech Connect

    Kido, T.; Honda, R.; Tsuritani, I.; Ishizaki, M.; Yamada, Y.; Nakagawa, H.; Nogawa, K.; Dohi, Y. )

    1991-01-01

    Serum levels of bone Gla-protein (BGP)--the vitamin K-dependent CA2(+)-binding protein--were evaluated in 76 cadmium (Cd)-exposed subjects with renal tubular dysfunction (32 men, 44 women) and 133 nonexposed subjects (53 men, 80 women). Serum BGP levels were higher in the Cd-exposed subjects than in nonexposed subjects. Significant correlations between BGP and each index measured by bone microdensitometry (MD), serum alkaline phosphatase activity, and Cd in blood and urine were found. For all of the Cd-exposed and nonexposed men and women, BGP showed a significant standard partial regression coefficient (multiple regression analysis) with the metacarpal index (MCI), which was one of the MD indicators. Bone Gla-protein also correlated significantly with urinary beta 2-microglobulin in the men and with serum creatinine in the women. Serum BGP values strongly reflect the degree of bone damage and also reflect, although less strongly, the degree of renal damage induced by exposure to Cd.

  1. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    PubMed

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-09-01

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins. PMID:26133398

  2. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    PubMed

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-07-02

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.

  3. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins

    PubMed Central

    Gorski, Jeffrey Paul

    2015-01-01

    The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein nteractions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author’s laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced. PMID:21622198

  4. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    PubMed

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  5. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    PubMed

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits.

  6. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion

    PubMed Central

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  7. Identification of full-length dentin matrix protein 1 in dentin and bone.

    PubMed

    Huang, Bingzhen; Maciejewska, Izabela; Sun, Yao; Peng, Tao; Qin, Disheng; Lu, Yongbo; Bonewald, Lynda; Butler, William T; Feng, Jian; Qin, Chunlin

    2008-05-01

    Dentin matrix protein 1 (DMP1) has been identified in the extracellular matrix (ECM) of dentin and bone as the processed NH(2)-terminal and COOH-terminal fragment. However, the full-length form of DMP1 has not been identified in these tissues. The focus of this investigation was to search for the intact full-length DMP1 in dentin and bone. We used two types of anti-DMP1 antibodies to identify DMP1: one type specifically recognizes the NH(2)-terminal region and the other type is only reactive to the COOH-terminal region of the DMP1 amino acid sequence. An approximately 105-kDa protein, extracted from the ECM of rat dentin and bone, was recognized by both types of antibodies; and the migration rate of this protein was identical to the recombinant mouse full-length DMP1 made in eukaryotic cells. We concluded that this approximately 105-kDa protein is the full-length form of DMP1, which is considerably less abundant than its processed fragments in the ECM of dentin and bone. We also detected the full-length form of DMP1 and its processed fragments in the extract of dental pulp/odontoblast complex dissected from rat teeth. In addition, immunofluorescence analysis showed that in MC3T3-E1 cells the NH(2)-terminal and COOH-terminal fragments of DMP1 are distributed differently. Our findings indicate that the majority of DMP1 must be cleaved within the cells that synthesize it and that minor amounts of uncleaved DMP1 molecules are secreted into the ECM of dentin and bone.

  8. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...

  9. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.

    PubMed

    Simonet, W S; Lacey, D L; Dunstan, C R; Kelley, M; Chang, M S; Lüthy, R; Nguyen, H Q; Wooden, S; Bennett, L; Boone, T; Shimamoto, G; DeRose, M; Elliott, R; Colombero, A; Tan, H L; Trail, G; Sullivan, J; Davy, E; Bucay, N; Renshaw-Gegg, L; Hughes, T M; Hill, D; Pattison, W; Campbell, P; Sander, S; Van, G; Tarpley, J; Derby, P; Lee, R; Boyle, W J

    1997-04-18

    A novel secreted glycoprotein that regulates bone resorption has been identified. The protein, termed Osteoprotegerin (OPG), is a novel member of the TNF receptor superfamily. In vivo, hepatic expression of OPG in transgenic mice results in a profound yet nonlethal osteopetrosis, coincident with a decrease in later stages of osteoclast differentiation. These same effects are observed upon administration of recombinant OPG into normal mice. In vitro, osteoclast differentiation from precursor cells is blocked in a dose-dependent manner by recombinant OPG. Furthermore, OPG blocks ovariectomy-associated bone loss in rats. These data show that OPG can act as a soluble factor in the regulation of bone mass and imply a utility for OPG in the treatment of osteoporosis associated with increased osteoclast activity. PMID:9108485

  10. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.

    PubMed

    Simonet, W S; Lacey, D L; Dunstan, C R; Kelley, M; Chang, M S; Lüthy, R; Nguyen, H Q; Wooden, S; Bennett, L; Boone, T; Shimamoto, G; DeRose, M; Elliott, R; Colombero, A; Tan, H L; Trail, G; Sullivan, J; Davy, E; Bucay, N; Renshaw-Gegg, L; Hughes, T M; Hill, D; Pattison, W; Campbell, P; Sander, S; Van, G; Tarpley, J; Derby, P; Lee, R; Boyle, W J

    1997-04-18

    A novel secreted glycoprotein that regulates bone resorption has been identified. The protein, termed Osteoprotegerin (OPG), is a novel member of the TNF receptor superfamily. In vivo, hepatic expression of OPG in transgenic mice results in a profound yet nonlethal osteopetrosis, coincident with a decrease in later stages of osteoclast differentiation. These same effects are observed upon administration of recombinant OPG into normal mice. In vitro, osteoclast differentiation from precursor cells is blocked in a dose-dependent manner by recombinant OPG. Furthermore, OPG blocks ovariectomy-associated bone loss in rats. These data show that OPG can act as a soluble factor in the regulation of bone mass and imply a utility for OPG in the treatment of osteoporosis associated with increased osteoclast activity.

  11. Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone

    PubMed Central

    Hang, Fei; Gupta, Himadri S.; Barber, Asa H.

    2014-01-01

    Antler bone displays considerable toughness through the use of a complex nanofibrous structure of mineralized collagen fibrils (MCFs) bound together by non-collagenous proteins (NCPs). While the NCP regions represent a small volume fraction relative to the MCFs, significant surface area is evolved upon failure of the nanointerfaces formed at NCP–collagen fibril boundaries. The mechanical properties of nanointerfaces between the MCFs are investigated directly in this work using an in situ atomic force microscopy technique to pull out individual fibrils from the NCP. Results show that the NCP–fibril interfaces in antler bone are weak, which highlights the propensity for interface failure at the nanoscale in antler bone and extensive fibril pullout observed at antler fracture surfaces. The adhesion between fibrils and NCP is additionally suggested as being rate dependent, with increasing interfacial strength and fracture energy observed when pullout velocity decreases. PMID:24352676

  12. Purification of a bone sialoprotein-binding protein from Staphylococcus aureus.

    PubMed

    Yacoub, A; Lindahl, P; Rubin, K; Wendel, M; Heinegård, D; Rydén, C

    1994-06-15

    Bone sialoprotein (BSP) is selectively bound by Staphylococcus aureus cells isolated from patients suffering from infections of bone and joint tissues [Rydén C., Maxe, I., Franzén, A., Ljungh, A., Heinegård, D. & Rubin, K. (1987) Lancet II, 515]. We now report on the purification of a cell-wall protein from Staphylococcus aureus, strain O24, that possesses affinity for bone sialoprotein. Staphylococcal cell-wall components with capacity to inhibit binding of 125I-labeled BSP to staphylococcal cells were solubilized with LiCl (1.0 M, pH 5.0). Preparative SDS/PAGE and protein-overlay experiments revealed that inhibitory activity present in LiCl extracts resided in a fraction of polypeptides with M(r) 75,000-110,000. Staphylococcal proteins solubilized with LiCl were chromatographed on a Mono-Q anion-exchange column. Inhibitory activity was eluted at 0.6-0.8 M NaCl and could be further purified by affinity chromatography on BSP-Sepharose. Elution of the affinity matrix with 0.1 M glycine, pH 3.0, specifically eluted inhibitory activity. Analysis by SDS/PAGE revealed a single M(r) 97,000 polypeptide in the eluate. The purified M(r) 97,000 protein bound BSP in protein-overlay experiments. LiCl extracts from S. aureus, strain E514 or Staphylococcus epidermidis, strain 7686, both lacking the capacity to bind BSP did not contain the M9r) 97,000 protein. Our data demonstrate the presence of a S. aureus cell-surface BSP-binding protein. This protein could be involved in bacterial tropism in osteomyelitis.

  13. Purification of a bone sialoprotein-binding protein from Staphylococcus aureus.

    PubMed

    Yacoub, A; Lindahl, P; Rubin, K; Wendel, M; Heinegård, D; Rydén, C

    1994-06-15

    Bone sialoprotein (BSP) is selectively bound by Staphylococcus aureus cells isolated from patients suffering from infections of bone and joint tissues [Rydén C., Maxe, I., Franzén, A., Ljungh, A., Heinegård, D. & Rubin, K. (1987) Lancet II, 515]. We now report on the purification of a cell-wall protein from Staphylococcus aureus, strain O24, that possesses affinity for bone sialoprotein. Staphylococcal cell-wall components with capacity to inhibit binding of 125I-labeled BSP to staphylococcal cells were solubilized with LiCl (1.0 M, pH 5.0). Preparative SDS/PAGE and protein-overlay experiments revealed that inhibitory activity present in LiCl extracts resided in a fraction of polypeptides with M(r) 75,000-110,000. Staphylococcal proteins solubilized with LiCl were chromatographed on a Mono-Q anion-exchange column. Inhibitory activity was eluted at 0.6-0.8 M NaCl and could be further purified by affinity chromatography on BSP-Sepharose. Elution of the affinity matrix with 0.1 M glycine, pH 3.0, specifically eluted inhibitory activity. Analysis by SDS/PAGE revealed a single M(r) 97,000 polypeptide in the eluate. The purified M(r) 97,000 protein bound BSP in protein-overlay experiments. LiCl extracts from S. aureus, strain E514 or Staphylococcus epidermidis, strain 7686, both lacking the capacity to bind BSP did not contain the M9r) 97,000 protein. Our data demonstrate the presence of a S. aureus cell-surface BSP-binding protein. This protein could be involved in bacterial tropism in osteomyelitis. PMID:8026501

  14. Effects of bioactive glass S53P4 or beta-tricalcium phosphate and bone morphogenetic protein-2 and bone morphogenetic protein-7 on osteogenic differentiation of human adipose stem cells

    PubMed Central

    Patrikoski, Mimmi; Juntunen, Miia; Kujala, Kasperi; Kääriäinen, Minna; Kuokkanen, Hannu; Sándor, George K; Vapaavuori, Outi; Suuronen, Riitta; Mannerström, Bettina; von Rechenberg, Brigitte; Miettinen, Susanna

    2012-01-01

    The effects of bioactive glass S53P4 or beta-tricalcium phosphate; and bone morphogenetic proteins bone morphogenetic protein-2, bone morphogenetic protein-7, or bone morphogenetic protein-2 + 7 on osteogenic differentiation of human adipose stem cells were compared in control medium, osteogenic medium, and bone morphogenetic protein-supplemented osteogenic medium to assess suitability for bone tissue engineering. Cell amount was evaluated with qDNA measurements; osteogenic differentiation using marker gene expression, alkaline phosphate activity, and angiogenic potential was measured by vascular endothelial growth factor expression. As compared to beta-tricalcium phosphate, cell amount was significantly greater for bioactive glass in control medium after 7 days and in osteogenic medium after 14 days, and alkaline phosphate activity was always significantly greater for bioactive glass in control medium. However, alkaline phosphate activity increased for beta-tricalcium phosphate and decreased for bioactive glass granules in osteogenic medium. For both biomaterials, bone morphogenetic protein supplementation decreased cell amount and osteogenic differentiation of human adipose stem cells, and vascular endothelial growth factor expressions correlated with cell amounts. Effects of culture medium on human adipose stem cells are biomaterial dependent; bioactive glass in control medium enhanced osteogenic differentiation most effectively. PMID:23316275

  15. A Mechanochemical Model for Embryonic Pattern Formation: Coupling Tissue Mechanics and Morphogen Expression

    PubMed Central

    Mercker, Moritz; Hartmann, Dirk; Marciniak-Czochra, Anna

    2013-01-01

    Motivated by recent experimental findings, we propose a novel mechanism of embryonic pattern formation based on coupling of tissue curvature with diffusive signaling by a chemical factor. We derive a new mathematical model using energy minimization approach and show that the model generates a variety of morphogen and curvature patterns agreeing with experimentally observed structures. The mechanism proposed transcends the classical Turing concept which requires interactions between two morphogens with a significantly different diffusivity. Our studies show how biomechanical forces may replace the elusive long-range inhibitor and lead to formation of stable spatially heterogeneous structures without existence of chemical prepatterns. We propose new experimental approaches to decisively test our central hypothesis that tissue curvature and morphogen expression are coupled in a positive feedback loop. PMID:24376555

  16. Temporal control of self-organized pattern formation without morphogen gradients in bacteria

    PubMed Central

    Payne, Stephen; Li, Bochong; Cao, Yangxiaolu; Schaeffer, David; Ryser, Marc D; You, Lingchong

    2013-01-01

    Diverse mechanisms have been proposed to explain biological pattern formation. Regardless of their specific molecular interactions, the majority of these mechanisms require morphogen gradients as the spatial cue, which are either predefined or generated as a part of the patterning process. However, using Escherichia coli programmed by a synthetic gene circuit, we demonstrate here the generation of robust, self-organized ring patterns of gene expression in the absence of an apparent morphogen gradient. Instead of being a spatial cue, the morphogen serves as a timing cue to trigger the formation and maintenance of the ring patterns. The timing mechanism enables the system to sense the domain size of the environment and generate patterns that scale accordingly. Our work defines a novel mechanism of pattern formation that has implications for understanding natural developmental processes. PMID:24104480

  17. Is Heparin Effective for the Controlled Delivery of High-Dose Bone Morphogenetic Protein-2?

    PubMed

    Kim, Ri Youn; Lee, Beomseok; Park, Si-Nae; Ko, Jae-Hyung; Kim, In Sook; Hwang, Soon Jung

    2016-05-01

    Sustained release of bone morphogenetic protein (BMP)-2 by heparin-contained biomaterials is advantageous for bone tissue regeneration using low-dose BMP-2. However, its effect with high-dose BMP-2 is still unclear and should be clarified considering the clinical use of a high dose of BMP-2 in spine and oral surgery. This study aimed to evaluate the efficacy of a heparin-conjugated collagen sponge (HCS) with high-dose BMP-2 delivery by investigating in vivo initial osteogenic regulation and bone healing over 12 weeks in comparison with that of an absorbable collagen sponge (ACS). The in vitro BMP-2 release profile in the HCS exhibited a lower burst followed by a sustained release of BMP-2, whereas that of the ACS showed an initial burst phase only. As a result of a lower burst, the HCS-BMP group showed higher expression of bone-forming/resorbing markers and enhanced activation of osteoclasts than the ACS-BMP group within the scaffold of defect after 7 days, which is presumed to be because of retention of relatively higher amounts of BMP-2. However, the surrounding calvariae were less resorbed in the HCS-BMP group, compared with the aggressive resorptive response in the ACS-BMP group. Microcomputed tomography and histology revealed that HCS-BMP guided more effective bone regeneration of central defect over time inducing minor ossification at the defect exterior, whereas ACS-BMP exhibited excessive ossification at the defect exterior. These results showed that HCS-mediated BMP-2 delivery at a high dose has advantages over ACS, including less early resorption of surrounding bone tissue and higher efficacy in compact bone regeneration over a longer period, highlighting a clinical feasibility of this technology. PMID:27098389

  18. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology

    NASA Astrophysics Data System (ADS)

    Torday, J. S.

    2003-10-01

    Parathyroid Hormone-related Protein (PTHrP) has been shown to be essential for the development and homeostatic regulation of lung and bone. Since both lung and bone structure and function are affected by microgravity, we hypothesized that 0 × g down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the simulated microgravity environment of a Rotating Wall Vessel Bioreactor, which simulates microgravity, for up to 72 hours. During the first 8 hours of exposure to simulated 0 × g, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64 hours, PTHrP expression remained at this newly established level of expression. PTHrP production decreased from 12 pg/ml/hour to 1 pg/ml/hour in culture medium from microgravity-exposed cells. The cells were then recultured at unit gravity for 24hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (Mission STS-58, SL-2). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from control ground-based rats. Interestingly, there were no differences in PTHrP expression by parietal bone from space-exposed versus ground-based animals, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway. In conclusion, PTHrP represents a stretch-sensitive paracrine signaling mechanism that may sense gravity.

  19. Histological characterization of the early stages of bone morphogenetic protein-induced osteogenesis.

    PubMed

    Vehof, J W M; Takita, H; Kuboki, Y; Spauwen, P H M; Jansen, J A

    2002-09-01

    On the basis of currently available knowledge, we hypothesize that the initial bone formation, as induced by bone morphogenetic protein (BMP), is influenced by the chemical composition and three-dimensional spatial configuration of the used carrier material. Therefore, in the current study, the osteoinductive properties of porous titanium (Ti) fiber mesh with a calcium phosphate (Ca-P) coating (Ti-CaP), insoluble bone matrix (IBM), fibrous glass membrane (FGM), and porous particles of hydroxy apatite (PPHAP) loaded with rhBMP-2 were compared in a rat ectopic assay model at short implantation periods. Twelve Ti-CaP, 12 IBM, 12 FGM, and 12 PPHAP implants, loaded with rhBMP-2, were subcutaneously placed in 16 Wistar King rats. The rats were sacrificed at 3, 5, 7, and 9 days post-operative, and the implants were retrieved. Histological analysis demonstrated that IBM and Ti-CaP had induced ectopic cartilage and bone formation by 5 and 7 days, respectively. However, in PPHAP, bone formation and cartilage formation were seen together at 7 days. At 9 days, in Ti-CaP, IBM, and PPHAP, cartilage was seen together with trabecular bone. At 9 days, in FGM, only cartilage was observed. Quantitative rating of the tissue response, using a scoring system, demonstrated that the observed differences were statistically significant (Wilcoxon rank sum test, p < 0.05). We conclude that IBM, CaP-coated Ti mesh, FGM, and PPHAP provided with rhBMP-2 can indeed induce ectopic bone formation with a cartilaginous phase in a rat model at short implantation periods. Considering the different chemical composition and three-dimensional spatial configuration of the carrier materials used, these findings even suggest that endochondral ossification is present in rhBMP-2-induced osteogenesis, even though the amount of cartilage may differ.

  20. Estrogen modulates the mRNA levels for cancellous bone protein of ovariectomized rats.

    PubMed

    Salih, M A; Liu, C C; Arjmandi, B H; Kalu, D N

    1993-12-01

    This study was undertaken to examine the effects of ovariectomy and 17 beta-estradiol (E2) on the gene expression of type 1 collagen, osteocalcin and the protooncogen, c-myc, in cancellous bone. Female Sprague-Dawley rats, aged 95 days, were divided into 4 groups. Group 1 was sham operated and Groups 2-4 were ovariectomized. Groups 3 and 4 received daily injections of 160 ng and 1600 ng E2/kg body weight, respectively. Groups 1 and 2 received the solvent vehicle. All animals were sacrificed after 14 days. The femurs were dissected out and cancellous bone scraped from the distal metaphysis. RNA was isolated from the cancellous bone, immobilized on filters or size-fractionated by agarose gel electrophoresis and adsorbed on filters which were then hybridized with specific cDNA probes. Ovariectomy resulted in a significant increase in the mRNAs of type 1 collagen, osteocalcin and c-myc. The increase was suppressed in animals that received 17 beta-estradiol injections. In addition, ovariectomy caused the expected decrease in cancellous bone in the proximal tibia and increased osteoclast and osteoblast numbers. The ovariectomy-induced changes were prevented by 17 beta-estradiol administration. These findings suggest that the lack of ovarian hormones shortly after ovariectomy up-regulates and estrogen administration down-regulates the expression of important cancellous bone matrix proteins as well as the protooncogen, c-myc.

  1. The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2.

    PubMed

    Shi, Qin; Li, Yang; Sun, Jie; Zhang, Hua; Chen, Lei; Chen, Bing; Yang, Huilin; Wang, Zhaoxu

    2012-10-01

    Bacterial cellulose (BC) is a nanofibrous biological material with attractive physicochemical properties and biocompatibility. Its fiber is similar to the collagenous fiber of bone. To explore if BC could be utilized as a localized delivery system to increase the local concentration of cytokines for tissue engineering, we prepared the BC scaffold from Acetobacter xylinum X-2 (A. xylinum X-2) and investigated the osteogenic potential of the BC scaffold coated with bone morphogenetic protein-2 (BMP-2). The data showed that BC had a good biocompatibility and induced differentiation of mouse fibroblast-like C2C12 cells into osteoblasts in the presence of BMP-2 in vitro, as demonstrated by alkaline phosphatase (ALP) activity assays. Within a certain range (0 ∼ 3 μg/scaffold), the osteogenic activity of induced osteoblasts was positively correlated to the concentrations of BMP-2. In in vivo subcutaneous implantation studies, BC scaffolds carrying BMP-2 showed more bone formation and higher calcium concentration than the BC scaffolds alone at 2 and 4 weeks, respectively. The ALP activity assay and the measurement of calcium concentration of BC scaffolds also showed that more new bone was developed in the BC scaffolds carrying BMP-2 than in the BC scaffolds alone. Our studies suggest that BC is a good localized delivery system for BMPs and would be a potential candidate in bone tissue engineering.

  2. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation

    PubMed Central

    Chen, Qin; Zhang, Liping; de Crombrugghe, Benoit; Krahe, Ralf

    2015-01-01

    Previous studies showed that nucleolar protein 66 (NO66), the Jumonji C-domain-containing histone demethylase for methylated histone H3K4 and H3K36 (H3K36me), negatively regulates osteoblast differentiation in vitro by inhibiting the activity of transcription factor osterix (Osx). However, whether NO66 affects mammalian skeletogenesis in vivo is not yet known. Here, we generated transgenic (TG) mice overexpressing a flag-tagged NO66 transgene driven by the Prx1 (paired related homeobox 1) promoter. We found that NO66 overexpression in Prx1-expressing mesenchymal cells inhibited skeletal growth and bone formation. The inhibitory phenotype was associated with >50% decreases in chondrocyte/osteoblast proliferation and differentiation. Moreover, we found that in bones of NO66-TG mice, expression of Igf1, Igf1 receptor (Igf1r), runt-related transcription factor 2, and Osx was significantly down-regulated (P < 0.05). Consistent with these results, we observed >50% reduction in levels of phosphorylated protein kinase B (Akt) and H3K36me3 in bones of NO66-TG mice, suggesting an inverse correlation between NO66 histone demethylase and the activity of IGF1R/Akt signaling. This correlation was further confirmed by in vitro assays of C2C12 cells with NO66 overexpression. We propose that the decrease in the IGF1R/Akt signaling pathway in mice with mesenchymal overexpression of NO66 may contribute in part to the inhibition of skeletal growth and bone formation.—Chen, Q., Zhang, L., de Crombrugghe, B., Krahe, R. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. PMID:25746793

  3. Binding of integrin α1 to bone morphogenetic protein receptor IA suggests a novel role of integrin α1β1 in bone morphogenetic protein 2 signalling.

    PubMed

    Zu, Yan; Liang, Xudong; Du, Jing; Zhou, Shuai; Yang, Chun

    2015-11-01

    Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells.

  4. Binding of integrin α1 to bone morphogenetic protein receptor IA suggests a novel role of integrin α1β1 in bone morphogenetic protein 2 signalling.

    PubMed

    Zu, Yan; Liang, Xudong; Du, Jing; Zhou, Shuai; Yang, Chun

    2015-11-01

    Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells. PMID:26475222

  5. Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure

    PubMed Central

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566

  6. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab

    PubMed Central

    Mukaihara, Kenta; Suehara, Yoshiyuki; Kohsaka, Shinji; Akaike, Keisuke; Tanabe, Yu; Kubota, Daisuke; Ishii, Midori; Fujimura, Tsutomu; Kazuno, Saiko; Okubo, Taketo; Takagi, Tatsuya; Yao, Takashi; Kaneko, Kazuo; Saito, Tsuyoshi

    2016-01-01

    Giant cell tumors of bone (GCTB) are locally aggressive osteolytic bone tumors. Recently, some clinical trials have shown that denosumab is a novel and effective therapeutic option for aggressive and recurrent GCTB. This study was performed to investigate the molecular mechanism underlying the therapeutic effect of denosumab. Comparative proteomic analyses were performed using GCTB samples which were taken before and after denosumab treatment. Each expression profile was analyzed using the software program to further understand the affected biological network. One of identified proteins was further evaluated by gelatin zymography and an immunohistochemical analysis. We identified 13 consistently upregulated proteins and 19 consistently downregulated proteins in the pre- and post-denosumab samples. Using these profiles, the software program identified molecular interactions between the differentially expressed proteins that were indirectly involved in the RANK/RANKL pathway and in several non-canonical subpathways including the Matrix metalloproteinase pathway. The data analysis also suggested that the identified proteins play a critical functional role in the osteolytic process of GCTB. Among the most downregulated proteins, the activity of MMP-9 was significantly decreased in the denosumab-treated samples, although the residual stromal cells were found to express MMP-9 by an immunohistochemical analysis. The expression level of MMP-9 in the primary GCTB samples was not correlated with any clinicopathological factors, including patient outcomes. Although the replacement of tumors by fibro-osseous tissue or the diminishment of osteoclast-like giant cells have been shown as therapeutic effects of denosumab, the residual tumor after denosumab treatment, which is composed of only stromal cells, might be capable of causing bone destruction; thus the therapeutic application of denosumab would be still necessary for these lesions. We believe that the protein expression

  7. On-column refolding of bone morphogenetic protein-2 using cation exchange resin.

    PubMed

    Rane, Anuja M; Jonnalagadda, Sriramakamal; Li, Zhiyu

    2013-08-01

    Refolding is often the bottle-neck step in producing recombinant proteins from inclusion bodies of Escherichia coli, especially for dimer proteins. The refolding process is protein specific, engaging a lot of time and cost to optimize conditions so that the thermodynamics favor protein refolding over competitive aggregation. Bone morphogenetic protein-2 (BMP-2) is a potent osteogenic agent having significant applications in bone regeneration therapy. In this study, we present a novel solid-phase refolding method for rapid and efficient refolding of recombinant BMP-2 dimer from E. coli. We employed a weak cation exchange resin as the adsorbing support, with decreasing gradient of denaturing agent and exposure to oxidizing conditions for adequate disulfide bond formation. Refolded BMP-2 was further purified using size exclusion chromatography and analyzed for its secondary structure and biological activity. The purified BMP-2 dimer showed dose-dependent induction of alkaline phosphatase (ALP) activity in MC3T3 pre-osteoblast cells, thus translating the success of our refolding method. This simple and rapid method can also be applied in refolding and purification of other BMP-2 like dimer proteins. PMID:23748143

  8. Flagellar display of bone protein-derived peptides for studying peptide-mediated biomineralization

    PubMed Central

    Li, Dong; Newton, Salete M. C.; Klebba, Philip E.; Mao, Chuanbin

    2012-01-01

    Bacterial flagellum is self-assembled primarily from thousands of a protein subunit called flagellin (FliC). A foreign peptide can be fully displayed on the surface of the flagellum through inserting it into every constituent protein subunit. To shed light into the role of bone proteins during nucleation of hydroxyapatite (HAP), representative domains from type I collagen, including a part of N-, C-terminal, N-, C-zone around hole zone and a 8 repetitive Gly-Pro-Pro (GPP8) sequence similar to central sequence of type I collagen, were separately displayed on the surface of the flagella. Moreover, eight negatively charged, contiguous glutamic acid residues (E8) and two other characteristic sequences, derived from a representative non-collagenous protein called bone sialoprotein (BSP), were also displayed on flagella. After being incubated in a HAP supersaturated precursor solution, flagella displaying E8 or GPP8 sequences were found to be coated with a layer of HAP nanocrystals. Very weak or no nucleation are observed on flagella displaying other peptides being tested. We also found that calcium ions can induce the assembly of the negatively charged E8 flagella into bundles mimicking collagen fibers, followed by the formation of HAP nanocrystals with the crystallographic c-axis preferentially aligned with long axes of flagella which is similar to that along the collagen fibrils in bone. This work demonstrates that due to the ease of peptide display on flagella and self-assembly of flagella, flagella can serve as a platform for studying biomineralization and as a building block to generate bone-like biomaterials. PMID:23148645

  9. Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation.

    PubMed

    Zhu, Qi; Zhou, Xichao; Zhu, Min; Wang, Qian; Goltzman, David; Karaplis, Andrew; Miao, Dengshun

    2013-09-01

    To assess the effect of hypoparathyroidism on osteogenesis and bone turnover in vivo, bone marrow ablation (BMXs) were performed in tibias of 8-week-old wild-type and parathyroid hormone-null (PTH(-/-)) mice and newly formed bone tissue was analyzed from 5 days to 3 weeks after BMX. At 1 week after BMX, trabecular bone volume, osteoblast numbers, alkaline phosphatase-positive areas, type I collagen-positive areas, PTH receptor-positive areas, calcium sensing receptor-positive areas, and expression of bone formation-related genes were all decreased significantly in the diaphyseal regions of bones of PTH(-/-) mice compared to wild-type mice. In contrast, by 2 weeks after BMX, all parameters related to osteoblastic bone accrual were increased significantly in PTH(-/-) mice. At 5 days after BMX, active tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts had appeared in wild-type mice but were undetectable in PTH(-/-) mice, Both the ratio of mRNA levels of receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) and TRAP-positive osteoclast surface were still reduced in PTH(-/-) mice at 1 week but were increased by 2 weeks after BMX. The expression levels of parathyroid hormone-related protein (PTHrP) at both mRNA and protein levels were upregulated significantly at 1 week and more dramatically at 2 weeks after BMX in PTH(-/-) mice. To determine whether the increased newly formed bones in PTH(-/-) mice at 2 weeks after BMX resulted from the compensatory action of PTHrP, PTH(-/-) PTHrP(+/-) mice were generated and newly formed bone tissue was compared in these mice with PTH(-/-) and wild-type mice at 2 weeks after BMX. All parameters related to osteoblastic bone formation and osteoclastic bone resorption were reduced significantly in PTH(-/-) PTHrP(+/-) mice compared to PTH(-/-) mice. These results demonstrate that PTH deficiency itself impairs osteogenesis, osteoclastogenesis, and osteoclastic bone resorption, whereas subsequent upregulation of PTHr

  10. Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation.

    PubMed

    Zhu, Qi; Zhou, Xichao; Zhu, Min; Wang, Qian; Goltzman, David; Karaplis, Andrew; Miao, Dengshun

    2013-09-01

    To assess the effect of hypoparathyroidism on osteogenesis and bone turnover in vivo, bone marrow ablation (BMXs) were performed in tibias of 8-week-old wild-type and parathyroid hormone-null (PTH(-/-)) mice and newly formed bone tissue was analyzed from 5 days to 3 weeks after BMX. At 1 week after BMX, trabecular bone volume, osteoblast numbers, alkaline phosphatase-positive areas, type I collagen-positive areas, PTH receptor-positive areas, calcium sensing receptor-positive areas, and expression of bone formation-related genes were all decreased significantly in the diaphyseal regions of bones of PTH(-/-) mice compared to wild-type mice. In contrast, by 2 weeks after BMX, all parameters related to osteoblastic bone accrual were increased significantly in PTH(-/-) mice. At 5 days after BMX, active tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts had appeared in wild-type mice but were undetectable in PTH(-/-) mice, Both the ratio of mRNA levels of receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) and TRAP-positive osteoclast surface were still reduced in PTH(-/-) mice at 1 week but were increased by 2 weeks after BMX. The expression levels of parathyroid hormone-related protein (PTHrP) at both mRNA and protein levels were upregulated significantly at 1 week and more dramatically at 2 weeks after BMX in PTH(-/-) mice. To determine whether the increased newly formed bones in PTH(-/-) mice at 2 weeks after BMX resulted from the compensatory action of PTHrP, PTH(-/-) PTHrP(+/-) mice were generated and newly formed bone tissue was compared in these mice with PTH(-/-) and wild-type mice at 2 weeks after BMX. All parameters related to osteoblastic bone formation and osteoclastic bone resorption were reduced significantly in PTH(-/-) PTHrP(+/-) mice compared to PTH(-/-) mice. These results demonstrate that PTH deficiency itself impairs osteogenesis, osteoclastogenesis, and osteoclastic bone resorption, whereas subsequent upregulation of PTHr

  11. Alternate protein kinase A activity identifies a unique population of stromal cells in adult bone.

    PubMed

    Tsang, Kit Man; Starost, Matthew F; Nesterova, Maria; Boikos, Sosipatros A; Watkins, Tonya; Almeida, Madson Q; Harran, Michelle; Li, Andrew; Collins, Michael T; Cheadle, Christopher; Mertz, Edward L; Leikin, Sergey; Kirschner, Lawrence S; Robey, Pamela; Stratakis, Constantine A

    2010-05-11

    A population of stromal cells that retains osteogenic capacity in adult bone (adult bone stromal cells or aBSCs) exists and is under intense investigation. Mice heterozygous for a null allele of prkar1a (Prkar1a(+/-)), the primary receptor for cyclic adenosine monophosphate (cAMP) and regulator of protein kinase A (PKA) activity, developed bone lesions that were derived from cAMP-responsive osteogenic cells and resembled fibrous dysplasia (FD). Prkar1a(+/-) mice were crossed with mice that were heterozygous for catalytic subunit Calpha (Prkaca(+/-)), the main PKA activity-mediating molecule, to generate a mouse model with double heterozygosity for prkar1a and prkaca (Prkar1a(+/-)Prkaca(+/-)). Unexpectedly, Prkar1a(+/-)Prkaca(+/-) mice developed a greater number of osseous lesions starting at 3 months of age that varied from the rare chondromas in the long bones and the ubiquitous osteochondrodysplasia of vertebral bodies to the occasional sarcoma in older animals. Cells from these lesions originated from an area proximal to the growth plate, expressed osteogenic cell markers, and showed higher PKA activity that was mostly type II (PKA-II) mediated by an alternate pattern of catalytic subunit expression. Gene expression profiling confirmed a preosteoblastic nature for these cells but also showed a signature that was indicative of mesenchymal-to-epithelial transition and increased Wnt signaling. These studies show that a specific subpopulation of aBSCs can be stimulated in adult bone by alternate PKA and catalytic subunit activity; abnormal proliferation of these cells leads to skeletal lesions that have similarities to human FD and bone tumors. PMID:20421483

  12. Activity of bone morphogenetic protein-7 after treatment at various temperatures: freezing vs. pasteurization vs. allograft.

    PubMed

    Takata, Munetomo; Sugimoto, Naotoshi; Yamamoto, Norio; Shirai, Toshiharu; Hayashi, Katsuhiro; Nishida, Hideji; Tanzawa, Yoshikazu; Kimura, Hiroaki; Miwa, Shinji; Takeuchi, Akihiko; Tsuchiya, Hiroyuki

    2011-12-01

    Insufficient bone union is the occasional complication of biomechanical reconstruction after malignant bone tumor resection using temperature treated tumor bearing bone; freezing, pasteurization, and autoclaving. Since bone morphogenetic protein (BMP) plays an important role in bone formation, we assessed the amount and activity of BMP preserved after several temperature treatments, including -196 and -73°C for 20 min, 60 and 100°C for 30 min, 60°C for 10h following -80°C for 12h as an allograft model, and 4°C as the control. The material extracted from the human femoral bone was treated, and the amount of BMP-7 was analyzed using an enzyme-linked immunosorbent assay. Then, the activity of recombinant human BMP-7 after the treatment was assessed using a bioassay with NIH3T3 cells and immunoblotting analysis to measure the amount of phospho-Smad, one of the signaling substrates that reflect the intracellular reaction of BMPs. Both experiments revealed that BMP-7 was significantly better preserved in the hypothermia groups. The percentages of the amount of BMP-7 in which the control group was set at 100% were 114%, 108%, 70%, 49%, and 53% in the -196, -73, 60, 100°C, and the allograft-model group, respectively. The percentages of the amount of phospho-Smad were 89%, 87%, 24%, 4.9%, and 14% in the -196, -73, 60, 100°C, and the allograft-model group, respectively. These results suggested that freezing possibly preserves osteoinductive ability than hyperthermia treatment.

  13. Impairment of gamma carboxylation of circulating osteocalcin (bone gla protein) in elderly women.

    PubMed

    Plantalech, L; Guillaumont, M; Vergnaud, P; Leclercq, M; Delmas, P D

    1991-11-01

    Osteocalcin, also called bone gla protein, is a unique noncollagenous protein of the extracellular matrix of bone that circulates in blood. Oseteocalcin contains three residues of the vitamin K-dependent gamma-carboxyglutamic acid (gla) responsible for the affinity of osteocalcin for bone mineral. In animals treated with the vitamin K antagonist warfarin, the osteocalcin content of bone is markedly reduced and the fraction of osteocalcin released into the circulation is increased. Most studies have shown that osteocalcin increases with aging in women, reflecting an increase in bone turnover, especially after the menopause. To determine if this increase in osteocalcin could be associated with impaired carboxylation, we measured total and noncarboxylated osteocalcin in the serum of 72 women of various ages: 22 premenopausal (31 +/- 7 years old), 20 early postmenopausal (54 +/- 3 years), and 30 elderly women (85 +/- 8 years). As previously reported, total serum osteocalcin was significantly increased in early postmenopausal and elderly women. Noncarboxylated serum osteocalcin was slightly increased in early postmenopausal women (0.95 +/- 0.4 versus 0.65 +/- 0.5 ng/ml in premenopausal women), markedly elevated in elderly women (1.59 +/- 1.1 ng/ml, p less than 0.001), and correlated with age (r = 0.47, p less than 0.001). Elderly women had values of the same magnitude as in 10 patients on chronic warfarin therapy (1.94 +/- 1.1 ng/ml). As a consequence, the increase in carboxylated serum osteocalcin was significant in early postmenopausal women but not in elderly women. Serum levels of vitamin K1 and of menaquinones 6, 7, and 8 were measured in some of the young and elderly women.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  15. A Meta Analysis of Lumbar Spinal Fusion Surgery Using Bone Morphogenetic Proteins and Autologous Iliac Crest Bone Graft

    PubMed Central

    Zhang, Haifei; Wang, Feng; Ding, Lin; Zhang, Zhiyu; Sun, Deri; Feng, Xinmin; An, Jiuli; Zhu, Yue

    2014-01-01

    Background Bone morphogenetic protein (BMPs) as a substitute for iliac crest bone graft (ICBG) has been increasingly widely used in lumbar fusion. The purpose of this study is to systematically compare the effectiveness and safety of fusion with BMPs for the treatment of lumbar disease. Methods Cochrane review methods were used to analyze all relevant randomized controlled trials (RCTs) published up to nov 2013. Results 19 RCTs (1,852 patients) met the inclusion criteria. BMPs group significantly increased fusion rate (RR: 1.13; 95% CI 1.05–1.23, P = 0.001), while there was no statistical difference in overall success of clinical outcomes (RR: 1.04; 95% CI 0.95–1.13, P = 0.38) and complications (RR: 0.96; 95% CI 0.85–1.09, p = 0.54). A significant reduction of the reoperation rate was found in BMPs group (RR: 0.57; 95% CI 0.42–0.77, p = 0.0002). Significant difference was found in the operating time (MD−0.32; 95% CI−0.55, −0.08; P = 0.009), but no significant difference was found in the blood loss, the hospital stay, patient satisfaction, and work status. Conclusion Compared with ICBG, BMPs in lumbar fusion can increase the fusion rate, while reduce the reoperation rate and operating time. However, it doesn’t increase the complication rate, the amount of blood loss and hospital stay. No significant difference was found in the overall success of clinical outcome of the two groups. PMID:24886911

  16. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins.

    PubMed

    Cappellini, Enrico; Jensen, Lars J; Szklarczyk, Damian; Ginolhac, Aurélien; da Fonseca, Rute A R; Stafford, Thomas W; Holen, Steven R; Collins, Matthew J; Orlando, Ludovic; Willerslev, Eske; Gilbert, M Thomas P; Olsen, Jesper V

    2012-02-01

    We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth ( Mammuthus primigenius ) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low-abundance extracellular matrix and plasma proteins, were confidently identified by solid molecular evidence. Among the best characterized was the carrier protein serum albumin, presenting two single amino acid substitutions compared to extant African ( Loxodonta africana ) and Indian ( Elephas maximus ) elephants. Strong evidence was observed of amino acid modifications due to post-mortem hydrolytic and oxidative damage. A consistent subset of this permafrost bone proteome was also identified in more recent Columbian mammoth ( Mammuthus columbi ) samples from temperate latitudes, extending the potential of the approach described beyond subpolar environments. Mass spectrometry-based ancient protein sequencing offers new perspectives for future molecular phylogenetic inference and physiological studies on samples not amenable to ancient DNA investigation. This approach therefore represents a further step into the ongoing integration of different high-throughput technologies for identification of ancient biomolecules, unleashing the field of paleoproteomics.

  17. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins.

    PubMed

    Cappellini, Enrico; Jensen, Lars J; Szklarczyk, Damian; Ginolhac, Aurélien; da Fonseca, Rute A R; Stafford, Thomas W; Holen, Steven R; Collins, Matthew J; Orlando, Ludovic; Willerslev, Eske; Gilbert, M Thomas P; Olsen, Jesper V

    2012-02-01

    We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth ( Mammuthus primigenius ) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low-abundance extracellular matrix and plasma proteins, were confidently identified by solid molecular evidence. Among the best characterized was the carrier protein serum albumin, presenting two single amino acid substitutions compared to extant African ( Loxodonta africana ) and Indian ( Elephas maximus ) elephants. Strong evidence was observed of amino acid modifications due to post-mortem hydrolytic and oxidative damage. A consistent subset of this permafrost bone proteome was also identified in more recent Columbian mammoth ( Mammuthus columbi ) samples from temperate latitudes, extending the potential of the approach described beyond subpolar environments. Mass spectrometry-based ancient protein sequencing offers new perspectives for future molecular phylogenetic inference and physiological studies on samples not amenable to ancient DNA investigation. This approach therefore represents a further step into the ongoing integration of different high-throughput technologies for identification of ancient biomolecules, unleashing the field of paleoproteomics. PMID:22103443

  18. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head.

    PubMed

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head.

  19. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    PubMed Central

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  20. ASSOCIATIONS OF PROTEIN INTAKE AND PROTEIN SOURCE WITH BONE MINERAL DENSITY AND FRACTURE RISK: A POPULATION-BASED COHORT STUDY

    PubMed Central

    LANGSETMO, L.; BARR, S.I.; BERGER, C.; KREIGER, N.; RAHME, E.; ADACHI, J.D.; PAPAIOANNOU, A.; KAISER, S. M; PRIOR, J.C.; HANLEY, D.A.; KOVACS, C.S.; JOSSE, R.G.; GOLTZMAN, D.

    2016-01-01

    High dietary protein has been hypothesized to cause lower bone mineral density (BMD) and greater fracture risk. Previous results are conflicting and few studies have assessed potential differences related to differing protein sources. Objective To determine associations between total protein intake, and protein intake by source (dairy, non-dairy animal, plant) with BMD, BMD change, and incident osteoporotic fracture. Design/Setting Prospective cohort study (Canadian Multicentre Osteoporosis Study). Participants/Measures Protein intake was assessed as percent of total energy intake (TEI) at Year 2 (1997–99) using a food frequency questionnaire (N=6510). Participants were contacted annually to ascertain incident fracture. Total hip and lumbar spine BMD was measured at baseline and Year 5. Analyses were stratified by group (men 25–49 y, men 50+ y, premenopausal women 25–49 y, and postmenopausal women 50+ y) and adjusted for major confounders. Fracture analyses were limited to those 50+ y. Results Intakes of dairy protein (with adjustment for BMI) were positively associated with total hip BMD among men and women aged 50+ y, and in men aged 25–49. Among adults aged 50+ y, those with protein intakes of <12% TEI (women) and <11% TEI (men) had increased fracture risk compared to those with intakes of 15% TEI. Fracture risk did not significantly change as intake increased above 15% TEI, and was not significantly associated with protein source. Conclusions In contrast to hypothesized risk of high protein, we found that for adults 50+ y, low protein intake (below 15% TEI) may lead to increased fracture risk. Source of protein was a determinant of BMD, but not fracture risk. PMID:26412291

  1. Controversies Surrounding High-Protein Diet Intake: Satiating Effect and Kidney and Bone Health12

    PubMed Central

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-01-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. PMID:25979491

  2. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health.

    PubMed

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-05-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake.

  3. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies.

    PubMed

    Esbrit, Pedro; Alcaraz, María José

    2013-05-15

    Osteoporosis is characterized by low bone mineral density and/or poor bone microarchitecture leading to an increased risk of fractures. The skeletal alterations in osteoporosis are a consequence of a relative deficit of bone formation compared to bone resorption. Osteoporosis therapies have mostly relied on antiresorptive drugs. An alternative therapeutic approach for osteoporosis is currently available, based on the intermittent administration of parathyroid hormone (PTH). Bone anabolism caused by PTH therapy is mainly accounted for by the ability of PTH to increase osteoblastogenesis and osteoblast survival. PTH and PTH-related protein (PTHrP)-an abundant local factor in bone- interact with the common PTH type 1 receptor with similar affinities in osteoblasts. Studies mainly in osteoporosis rodent models and limited data in postmenopausal women suggest that N-terminal PTHrP peptides might be considered a promising bone anabolic therapy. In addition, putative osteogenic actions of PTHrP might be ascribed not only to its N-terminal domain but also to its PTH-unrelated C-terminal region. In this review, we discuss the underlying cellular and molecular mechanisms of the anabolic actions of PTH and the similar potential of PTH-related protein (PTHrP) to increase bone mass and improve bone regeneration.

  4. Experimental study of osteoinduction using a new material as a carrier for bone morphogenetic protein-2.

    PubMed

    Koyama, Noriaki; Okubo, Yasunori; Nakao, Kazumasa; Osawa, Kenji; Bessho, Kazuhisa

    2011-06-01

    We evaluated the usefulness of artificial collagen as a new carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2) by comparing it with that of atelopeptide collagen, which is derived from porcine skin, and which we have previously shown to be useful for the induction of bone. rhBMP-2 5μg with either atelopeptide collagen 3mg or artificial collagen 3mg was implanted into the calf muscle of 10-week-old Wistar rats (n=3 in each group). Three rats were given artificial collagen alone and acted as controls (n=3). Radiographic evaluation, histological analysis, and biochemical examinations were made on day 21 after implantation. Soft radiographs (wavelength 10-0.10nm) showed opaque shadows in both groups. Histological analysis showed that new bone had formed in both experimental groups. Endochondral ossification was found at the outermost edge of the implanted collagen in the atelopeptide group. However, there was less ossification in the implanted collagen in the artificial collagen group. On biochemical examination, alkaline phosphatase activity and calcium concentrations in both experimental groups were higher than in the control group, and were higher in the atelopeptide group than in the artificial collagen group. Our results suggest that artificial collagen is useful as a carrier for rhBMP-2 designed to promote the formation of new bone. PMID:20554359

  5. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  6. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice.

    PubMed

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-03-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6-8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts. PMID:27013781

  7. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice

    PubMed Central

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-01-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6–8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts. PMID:27013781

  8. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice.

    PubMed

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-03-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6-8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts.

  9. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I.

    PubMed Central

    Takeshita, S; Kikuno, R; Tezuka, K; Amann, E

    1993-01-01

    A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580

  10. Bone response to biomimetic implants delivering BMP-2 and VEGF: an immunohistochemical study.

    PubMed

    Ramazanoglu, Mustafa; Lutz, Rainer; Rusche, Philipp; Trabzon, Levent; Kose, Gamze Torun; Prechtl, Christopher; Schlegel, Karl Andreas

    2013-12-01

    This animal study evaluated bone healing around titanium implant surfaces biomimetically coated with bone morphogenic protein-2 (BMP-2) and/or vascular endothelial growth factor (VEGF) by examining bone matrix proteins and mineralisation. Five different implant surfaces were established: acid-etched surface (AE), biomimetic calcium phosphate surface (CAP), BMP-2 loaded CAP surface, VEGF loaded CAP surface and dual BMP-2 + VEGF loaded CAP surface. The implants were inserted into calvariae of adult domestic pigs. For the comparison of osteoconductive capacity of each surface, bone mineral density and expression of bone matrix proteins (collagen I, BMP-2/4, osteocalcin and osteopontin) inside defined chambers around the implant were assessed using light microscopy and microradiography and immunohistochemical analysis at 1, 2 and 4 weeks. In the both groups delivering BMP-2, the bone mineral density was significantly enhanced after 2 weeks and the highest value was measured for the group BMP + VEGF. In the group VEGF, collagen I and BMP-2/4 expressions were significantly up-regulated at the first and second weeks. The percentage of BMP-2/4 positive cells in the group BMP + VEGF was significantly enhanced compared with the groups AE and CAP at the second week. Although the highest osteocalcin and osteopontin expression values were observed for the group BMP + VEGF after 2 weeks, no statistically significant difference in osteocalcin and osteopontin expressions was found between all groups at any time. It was concluded that combined delivery of BMP-2 and VEGF favoured bone mineralisation and expression of important bone matrix proteins that might explain synergistic interaction between both growth factors. PMID:23434516

  11. Bone response to biomimetic implants delivering BMP-2 and VEGF: an immunohistochemical study.

    PubMed

    Ramazanoglu, Mustafa; Lutz, Rainer; Rusche, Philipp; Trabzon, Levent; Kose, Gamze Torun; Prechtl, Christopher; Schlegel, Karl Andreas

    2013-12-01

    This animal study evaluated bone healing around titanium implant surfaces biomimetically coated with bone morphogenic protein-2 (BMP-2) and/or vascular endothelial growth factor (VEGF) by examining bone matrix proteins and mineralisation. Five different implant surfaces were established: acid-etched surface (AE), biomimetic calcium phosphate surface (CAP), BMP-2 loaded CAP surface, VEGF loaded CAP surface and dual BMP-2 + VEGF loaded CAP surface. The implants were inserted into calvariae of adult domestic pigs. For the comparison of osteoconductive capacity of each surface, bone mineral density and expression of bone matrix proteins (collagen I, BMP-2/4, osteocalcin and osteopontin) inside defined chambers around the implant were assessed using light microscopy and microradiography and immunohistochemical analysis at 1, 2 and 4 weeks. In the both groups delivering BMP-2, the bone mineral density was significantly enhanced after 2 weeks and the highest value was measured for the group BMP + VEGF. In the group VEGF, collagen I and BMP-2/4 expressions were significantly up-regulated at the first and second weeks. The percentage of BMP-2/4 positive cells in the group BMP + VEGF was significantly enhanced compared with the groups AE and CAP at the second week. Although the highest osteocalcin and osteopontin expression values were observed for the group BMP + VEGF after 2 weeks, no statistically significant difference in osteocalcin and osteopontin expressions was found between all groups at any time. It was concluded that combined delivery of BMP-2 and VEGF favoured bone mineralisation and expression of important bone matrix proteins that might explain synergistic interaction between both growth factors.

  12. Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model.

    PubMed

    Seo, Jong-Pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2014-03-01

    Fracture is one of the most life-threatening injuries in horses. Fracture repair is often associated with unsatisfactory outcomes and is associated with a high incidence of complications. This study aimed to evaluate the osteogenic effects of gelatin/β-tricalcium phosphate (GT) sponges loaded with different concentrations/ratios of mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) in an equine bone defect model. Seven thoroughbred horses were used in this study. Eight bone defects were created in the third metatarsal bones of each horse. Then, eight treatments, namely control, GT, GT/M-5, GT/M-6, GT/M-5/B-1, GT/M-5/B-3, GT/M-6/B-1, and GT/M-6/B-3 were applied to the eight different sites in a randomized manner (M-5: 2 × 10(5) MSCs; M-6: 2 × 10(6) MSCs; B-1: 1 μg of BMP-2; B-3: 3 μg of BMP-2). Repair of bone defects was assessed by radiography, quantitative computed tomography (QCT), and histopathological evaluation. Radiographic scores and CT values were significantly lower in the control group than in the other groups, while they were significantly higher in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The amount of mature compact bone filling the defects was greater in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The present study demonstrated that the GT sponge loaded with MSCs and BMP-2 promoted bone regeneration in an equine bone defect model. The GT/MSC/BMP-2 described here may be useful for treating horses with bone injuries.

  13. Maxillary sinus augmentation using recombinant bone morphogenetic protein-2/acellular collagen sponge in combination with a mineralized bone replacement graft: a report of three cases.

    PubMed

    Tarnow, Dennis P; Wallace, Stephen S; Testori, Tiziano; Froum, Stuart J; Motroni, Alessandro; Prasad, Hari S

    2010-04-01

    The objective of the following case reports was to assess whether mineralized bone replacement grafts (eg, xenografts and allografts) could be added to recombinant human bone morphogenetic protein-2/acellular collagen sponge (rhBMP-2/ACS) in an effective manner that would: (1) reduce the graft shrinkage observed when using rhBMP-2/ACS alone, (2) reduce the volume and dose of rhBMP-2 required, and (3) preserve the osteoinductivity that rhBMP-2/ACS has shown when used alone. The primary outcome measures were histomorphometric analysis of vital bone production and analysis of serial computed tomographic scans to determine changes in bone graft density and stability. Over the 6-month course of this investigation, bone graft densities tended to increase (moreso with the xenograft than the allograft). The increased density in allograft cases was likely the result of both compression of the mineralized bone replacement graft and vital bone formation, seen histologically. Loss of volume was greater with the four-sponge dose than the two-sponge dose because of compression and resorption of the sponges. Vital bone formation in the allograft cases ranged from 36% to 53% but, because of the small sample size, it was not possible to determine any significant difference between the 5.6 mL (four-sponge) dose and the 2.8 mL (two-sponge) dose. Histology revealed robust new woven bone formation with only minimal traces of residual allograft, which appeared to have undergone accelerated remodeling or rhBMP-2-mediated resorption. PMID:20228973

  14. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo.

    PubMed

    Teng, Fu-Yuan; Chen, Wen-Cheng; Wang, Yin-Lai; Hung, Chun-Cheng; Tseng, Chun-Chieh

    2016-01-01

    This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH); and sandblasting, alkali heating, and etching (SMART). Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use. PMID:26977141

  15. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration.

    PubMed

    Mieszawska, Aneta J; Nadkarni, Lauren D; Perry, Carole C; Kaplan, David L

    2010-10-26

    The biomimetic design of silk/silica fusion proteins was carried out, combining the self assembling domains of spider dragline silk (Nephila clavipes) and silaffin derived R5 peptide of Cylindrotheca fusiformis that is responsible for silica mineralization. Genetic engineering was used to generate the protein-based biomaterials incorporating the physical properties of both components. With genetic control over the nanodomain sizes and chemistry, as well as modification of synthetic conditions for silica formation, controlled mineralized silk films with different silica morphologies and distributions were successfully generated; generating 3D porous networks, clustered silica nanoparticles (SNPs), or single SNPs. Silk serves as the organic scaffolding to control the material stability and multiprocessing makes silk/silica biomaterials suitable for different tissue regenerative applications. The influence of these new silk-silica composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on the silk/silica films. The presence of the silica in the silk films influenced osteogenic gene expression, with the upregulation of alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col 1) markers. Evidence for early bone formation as calcium deposits was observed on silk films with silica. These results indicate the potential utility of these new silk/silica systems towards bone regeneration. PMID:20976116

  16. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo

    PubMed Central

    Teng, Fu-Yuan; Chen, Wen-Cheng; Wang, Yin-Lai; Hung, Chun-Cheng; Tseng, Chun-Chieh

    2016-01-01

    This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH); and sandblasting, alkali heating, and etching (SMART). Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use. PMID:26977141

  17. Conditional expression of human bone Gla protein in osteoblasts causes skeletal abnormality in mice.

    PubMed

    Ikeda, Kazuhiro; Tsukui, Tohru; Tanaka, Daisuke; Maruyama, Yojiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-07-20

    Bone Gla protein (BGP), also known as osteocalcin, is one of the most abundant γ-carboxylated noncollagenous protein in bone matrix and plays important roles in mineralization and calcium ion homeostasis. BGP is synthesized specifically in osteoblasts; however, its precise function in bone metabolism has not been fully elucidated. To investigate the in vivo function of human BGP (hBGP), we generated CAG-GFP(floxed)-hBGP transgenic mice carrying a transgene cassette composed of the promoter and a floxed GFP linked to hBGP cDNA. The mice were crossed with ColI-Cre mice, which express the Cre recombinase driven by the mouse collagen type 1a1 gene promoter, to obtain hBGP(ColI) conditional transgenic mice that expressed human BGP in osteoblasts. The hBGP(ColI) mice did not survive more than 2days after birth. The analysis of the 18.5-day post coitum fetuses of the hBGP(ColI) mice revealed that they displayed abnormal skeletal growth such as deformity of the rib and short femur and cranium lengths. Moreover, increased BGP levels were detected in the serum of the neonates. These findings indicate that hBGP expression in osteoblasts resulted in the abnormal skeletal growth in the mice. Our study provides a valuable model for understanding the fundamental role of BGP in vivo.

  18. Genetics of Bone Density

    MedlinePlus

    ... study linked 32 novel genetic regions to bone mineral density. The findings may help researchers understand why ... or treating osteoporosis. Bones are made of a mineral and protein scaffold filled with bone cells. Bone ...

  19. Temporal and spatial expression patterns of bone morphogenetic protein 3 in developing zebrafish.

    PubMed

    Ito-Amano, Midori; Nakamura, Yukio; Morisaki, Mika; He, Xinjun; Hayashi, Masanori; Watanapokasin, Ramida; Kato, Hiroyuki

    2014-01-01

    Bone morphogenetic proteins (BMPs) are important elements in bone biology. We herein report the expression profiles of zebrafish bmp3 (zbmp3) as demonstrated by real-time PCR and in situ hybridization. The expression of zbmp3 was highly detectable by real-time PCR from 1 day post-fertilization (1 dpf) to 2 weeks post-fertilization (2 wpf) and peaked at 1 wpf. For in situ hybridization experiments, zbmp3 was expressed in the otic vesicle at 1 dpf, 2 dpf, 3 dpf, and 5 dpf. It was also expressed in the pharyngeal arches, including the opercle, branchiostegal ray, and pectoral fins, at 2 dpf. Our results suggest that zbmp3 may play an important role in the skeletal biology of developing zebrafish.

  20. Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females.

    PubMed Central

    Ganesan, Kalpana; Teklehaimanot, Senait; Tran, The-Huy; Asuncion, Merlyn; Norris, Keith

    2005-01-01

    OBJECTIVE: Inflammatory cytokines have been shown to play an important role in bone remodeling. We hypothesized that higher levels of C-reactive protein (CRP) are associated with low bone mineral density (BMD) in elderly females. DESIGN: Secondary data analysis of the Third National Health and Nutrition Examination Survey. PARTICIPANTS: 2,807 females 65 years and older. RESULTS: CRP was associated with BMD in the bivariate sis (p<0.001) but not in the multivariate analysis (p=0.23) Age, ethnicity, body mass index (BMI), hormone replacement therapy (HRT) and immobility were independently associated with BMD. CONCLUSIONS: CRP may be useful in screening for osteoporosis among community-dwelling elderly females. However, CRP appears to act as a surrogate for other factorsdirectly associated with osteoporosis. Further studies are needed to validate these findings. PMID:15779496

  1. Histologic and Histomorphometric Comparison of Bone Regeneration Between Bone Morphogenetic Protein-2 and Platelet-Derived Growth Factor-BB in Experimental Groups.

    PubMed

    Guven, Gokhan; Gultekin, B Alper; Guven, Gamze Senol; Guzel, Elif; Furat, Selenay; Ersanli, Selim

    2016-05-01

    Efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human platelet-derived growth factor-BB (rhPDGF-BB) delivered via absorbable collagen sponge (ACS) on bone formation was evaluated in guinea pig tibias. Three-millimeter-circular bone tibia defects were created in 24 guinea pigs assigned randomly to 4 groups according to the following defect filling materials: ACS only, rhBMP-2+ACS, rhPDGF-BB+ACS, or empty. New bone formation was evaluated histologically and histomorphometrically at 15 (early healing) and 45 days (late healing). Mean new bone per total defect area ratio was 0.73, 0.57, 0.43, and 0.42 in rhBMP-2+ACS, rhPDGF-BB+ACS, ACS only, and empty groups at early healing, respectively. During early healing, significantly more new bone formation was observed in rhBMP-2+ACS and rhPDGF-BB+ACS groups than in the control groups. New bone formation was significantly higher with rhBMP-2+ACS than with rhPDGF-BB+ACS. Mean new bone per total defect area ratio was 0.81, 0.86, 0.74, and 0.75 in the rhBMP-2+ACS, rhPDGF-BB+ACS, ACS only, and empty groups at late healing, respectively. During late healing, new bone formation was significantly higher in the rhPDGF-BB+ACS group relative to both control groups, but the results did not differ significantly from those in the rhBMP-2+ACS group. New bone formation in the rhBMP-2+ACS group did not change significantly between the healing periods. In the rhPDGF-BB+ACS group, however, new bone formation was significantly higher in the late healing period. Both growth factors accelerated new bone formation in the early healing period. Although rhBMP-2 was more effective in the early healing period, the effects of rhPDGF-BB were longer lasting. PMID:27092911

  2. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    NASA Technical Reports Server (NTRS)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous

  3. Biological roles of human bone morphogenetic protein 9 in the bone microenvironment of human breast cancer MDA-MB-231 cells

    PubMed Central

    Wang, Wei; Weng, Yaguang; Ren, Wei; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Jiang, Yayun; Chen, Yingying; Zhou, Lan; He, Tongchuan; Zhang, Yan

    2015-01-01

    Bone marrow stroma plays a critical role in the bone metastasis of breast cancer. Bone marrow-derived mesenchymal stem cells (BMSC) are critical to facilitate cancer progression. Human bone morphogenetic protein 9 (BMP9) is the most potent osteogenic factor and one of bone-stored growth factors involved in both promotion and inhibition of different cancers. However, it is unclear whether BMP9 correlates with the bone metastasis of breast cancer. This study was to evaluate the role of BMP9 in the interaction between BMSC and breast cancer cells (BCC). To determine whether BMP9 is able to block the tumor promoting effect of BMSC, an in vitro model was developed using breast cancer MDA-MB-231 cells co-cultured with bone marrow-derived mesenchymal stem cells HS-5 with-BMP9 overexpression. The expressions of metastasis-related genes were detected to identify important factors mediating the role of BMP9 in breast cancer cells. Results showed BMP9 could inhibit invasion and promote apoptosis of MDA-MB-231 cells. The expressions of interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2) and monocyte chemoattratctant protein-1 (MCP-1) decreased in the MDA-MB-231 cells of BMP9 over-expression group, and the expressions of epithelial-mesenchymal transition (EMT)-related molecules was also reduced. On the other hand, the expression of stromal cell derived factor-1 (SDF-1) decreased in HS-5 cells of BMP9 over-expression group. Taken together, BMP9 is able to inhibit the migration and promote the apoptosis of breast cancer by regulating the interaction between MDA-MB-231 cells and HS-5 cells in which SDF-1/CXCR4-PI3K pathway and EMT are involved. PMID:26550465

  4. Role of Polymer Architecture on the Activity of Polymer-Protein Conjugates for the Treatment of Accelerated Bone Loss Disorders.

    PubMed

    Tucker, Bryan S; Stewart, Jon D; Aguirre, J Ignacio; Holliday, L Shannon; Figg, C Adrian; Messer, Jonathan G; Sumerlin, Brent S

    2015-08-10

    Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate.

  5. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    PubMed

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period. PMID:27031629

  6. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-07-08

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation.

  7. Effects of Recombinant Human Bone Morphogenetic Protein-2 Dose and Ceramic Composition on New Bone Formation and Space Maintenance in a Canine Mandibular Ridge Saddle Defect Model.

    PubMed

    Talley, Anne D; Kalpakci, Kerem N; Shimko, Daniel A; Zienkiewicz, Katarzyna J; Cochran, David L; Guelcher, Scott A

    2016-03-01

    Treatment of mandibular osseous defects is a significant clinical challenge. Maintenance of the height and width of the mandibular ridge is essential for placement of dental implants and restoration of normal dentition. While guided bone regeneration using protective membranes is an effective strategy for maintaining the anatomic contour of the ridge and promoting new bone formation, complications have been reported, including wound failure, seroma, and graft exposure leading to infection. In this study, we investigated injectable low-viscosity (LV) polyurethane/ceramic composites augmented with 100 μg/mL (low) or 400 μg/mL (high) recombinant human bone morphogenetic protein-2 (rhBMP-2) as space-maintaining bone grafts in a canine mandibular ridge saddle defect model. LV grafts were injected as a reactive paste that set in 5-10 min to form a solid porous composite with bulk modulus exceeding 1 MPa. We hypothesized that compression-resistant LV grafts would enhance new bone formation and maintain the anatomic contour of the mandibular ridge without the use of protective membranes. At the rhBMP-2 dose recommended for the absorbable collagen sponge carrier in dogs (400 μg/mL), LV grafts maintained the width and height of the host mandibular ridge and supported new bone formation, while at suboptimal (100 μg/mL) doses, the anatomic contour of the ridge was not maintained. These findings indicate that compression-resistant bone grafts with bulk moduli exceeding 1 MPa and rhBMP-2 doses comparable to that recommended for the collagen sponge carrier support new bone formation and maintain ridge height and width in mandibular ridge defects without protective membranes. PMID:26800574

  8. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-08-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. PMID:26154695

  9. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor

    PubMed Central

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  10. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor.

    PubMed

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  11. Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins.

    PubMed

    Olivares-Navarrete, Rene; Hyzy, Sharon L; Haithcock, David A; Cundiff, Caitlin A; Schwartz, Zvi; Boyan, Barbara D

    2015-04-01

    Human mesenchymal stem cells (MSCs) differentiate into osteoblasts on microstructured titanium (Ti) surfaces without addition of medium supplements, suggesting that surface-dependent endogenous mechanisms are involved. They produce bone morphogenetic proteins (BMPs), which regulate MSC differentiation and bone formation via autocrine/paracrine mechanisms that are modulated by changes in BMP mRNA and protein, receptors, and inhibitors (Noggin, Cerberus, Gremlin 1, and Chordin). We examined expression of BMPs, their receptors and their inhibitors over time and used BMP2-silenced cells to determine how modulating endogenous BMP signaling can affect the process. MSCs were cultured on tissue culture polystyrene or Ti [PT (Ra<0.4 μm); sandblasted/acid-etched Ti (SLA, Ra=3.2 μm); or hydrophilic-SLA (modSLA)]. BMP mRNAs and proteins increased by day 4 of culture. Exogenous BMP2 increased differentiation whereas differentiation was decreased in BMP2-silenced cells. Noggin was regulated by day 2 whereas Gremlin 1 and Cerberus were regulated after 6days. Osteoblastic differentiation increased in cells cultured with blocking antibodies against Noggin, Gremlin 1, and Cerberus. Endogenous BMPs enhance an osteogenic microenvironment whereas exogenous BMPs are inhibitory. Antibody blocking of the BMP2 inhibitor Cerberus resulted in IL-6 and IL-8 levels that were similar to those observed when treating cells with exogenous BMP2, while antibodies targeting the inhibitors Gremlin or Noggin did not. These results suggest that microstructured titanium implants supporting therapeutic stem cells may be treated with appropriately selected agents antagonistic to extracellular BMP inhibitors in order to enhance BMP2 mediated bone repair while avoiding undesirable inflammatory side effects observed with exogenous BMP2 treatment. PMID:25554602

  12. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  13. Production and characterization of an antibody against the human bone GLA protein (BGP/osteocalcin) propeptide and its use in immunocytochemistry of bone cells.

    PubMed

    Kasai, R; Bianco, P; Robey, P G; Kahn, A J

    1994-06-01

    We have generated and characterized an antibody that recognizes the C-terminal sequence of the propeptide of human bone GLA protein (BGP/osteocalcin)(amino acid -26 to -1, with +1 being the amino terminus of the mature protein). The range of sensitivity of the antibody, as determined by enzyme-linked immunosorbent assay (ELISA), was 0.5-250 ng/ml. The antibody effectively recognized pro-BGP in cell layer extracts of transformed cells (KT-005), but did not recognize mature, propeptide-less BGP in the medium from the same cultures. Strong labelling was obtained using this antibody in immunoperoxidase staining or immunofluorescence of both transformed and normal human bone cells in vitro. Monensin significantly altered the intracellular pattern of labelling in immunofluorescence studies, indicating that the recognized antigen was associated with the cellular secretory pathway. We also obtained a specific and strong staining of cells in tissue sections of human fetal bone. Antibodies against the mature protein strongly stained the mineralization front, but did not stain cells to any appreciable level. Newly embedded osteocytes were the predominant cell type stained in such material, suggesting that they may represent the major of BGP in the intact tissue. These observations indicate that BGP synthesis is a late event in osteoblastic development and that antibodies generated against the propeptide sequence are a potentially powerful tool in the analysis of bone tumors and evaluation of osteoblastic differentiation.

  14. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    PubMed Central

    Cole, Alistair E.; Murray, Simon S.; Xiao, Junhua

    2016-01-01

    Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research. PMID:27293450

  15. Preliminary in vivo studies on the osteogenic potential of bone morphogenetic proteins delivered from an absorbable puttylike polymer matrix.

    PubMed

    Andriano, K P; Chandrashekar, B; McEnery, K; Dunn, R L; Moyer, K; Balliu, C M; Holland, K M; Garrett, S; Huffer, W E

    2000-01-01

    This article describes preliminary in vivo studies evaluating the osteogeneic potential of bone morphogenetic proteins (BMPs) delivered from an absorbable puttylike polymer matrix. In the first study, bovine-derived bone morphogenetic proteins were incorporated in an polymer matrix consisting of 50:50 poly(DL-lactide-co-glycolide) dissolved in N-methyl-2-pyrrolidone. The matrix was implanted in an 8 mm critical-size calvarial defect created in the skull of adult Sprague-Dawley rats (n = 5 per treatment group). After 28 days, the implant sites were removed and examined for new bone formation, polymer degradation, and tissue reaction. Gamma-irradiated polymer matrices appeared to give more bone formation than nonirradiated samples (histological analysis; 2. 76 + 1.34 mm(2) of bone versus 1.30 + 0.90 mm(2) of bone, respectively and x-ray analysis; 27.2 + 15.9 mm(2) of bone versus 20. 7 + 16.7 mm(2) of bone, respectively) and less residual polymer (0.0 + 0.0 versus 0.2 + 0.4, respectively). The polymer implants with bone morphogenetic protein also gave less inflammatory response than the polymer controls (gamma irradiated polymer/BMP = 1.8 + 0.4 and nonirradiated polymer/BMP = 1.2 + 0.4 versus polymer only = 3.0 + 1. 2, respectively). However, despite trends in both the x-ray and histological data there was no statistical difference in the amount of new bone formed among the four treatment groups (P > 0.05). This was most likely due to the large variance in the data scatter and the small number of animals per group. In the second animal study, bovine-derived BMPs and the polymeric carrier were gamma irradiated separately, at doses of 1.5 or 2.5 Mrad, and their ability to form bone in a rat skull onlay model was evaluated using Sprague-Dawley rats (n = 5 per treatment group). Histomorphometry of skull caps harvested 28 days after implantation showed no significant differences as compared to non-irradiated samples, in implant area, new bone area, and percent new bone (P

  16. Recombinant human bone morphogenetic protein-2 binding and incorporation in PLGA microsphere delivery systems.

    PubMed

    Schrier, J A; DeLuca, P P

    1999-01-01

    The objective of this research was to determine the binding capacity and kinetics, and total incorporation of recombinant human bone morphogenetic protein-2 (rhBMP-2) in microspheres made from hydrophilic and hydrophobic poly(lactide-co-glycolide) (PLGA). Polymers were characterized by molecular weight, polydispersity, and acid number. Microspheres were produced via a water-in-oil-in-water double emulsion system and characterized for bulk density, size, specific surface area, and porosity. Protein concentrations were determined by reversed phase HPLC. Protein was loaded by soaking microspheres in a buffered solution, pH 4.5, of rhBMP-2, decanting excess liquid, and vacuum drying the wetted particles. Total loading and binding were determined by comparing protein concentration remaining to non-microsphere containing samples. Polymer acid number was the dominant polymer feature affecting the binding. Higher acid values correlated with increased rhBMP-2 binding. The amount of non-bound incorporated rhBMP-2 linearly correlated with the concentration of protein used in binding. High rhBMP-2 concentrations inhibit binding to PLGA microspheres. Binding was also inhibited by increased lactide content in the PLGA polymer. The polymer characteristics controlling rhBMP-2 binding to PLGA microspheres are acid value foremost followed by molecular weight and lactide/glycolide ratio. The total amount of rhBMP-2 incorporated depends on the bound amount and on the amount of free protein present.

  17. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the effects of diet (AIN93G or high-fat), physical activity (sedentary or voluntary running) and protein source (casein or soy protein isolate) and their interactions on bone microstructural changes in distal femurs in male C57BL/6 mice by using micro-computed tomography. After 14 w...

  18. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    SciTech Connect

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil Lee, Zang Hee

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  19. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation.

    PubMed

    Park-Min, Kyung-Hyun; Lim, Elisha; Lee, Min Joon; Park, Sung Ho; Giannopoulou, Eugenia; Yarilina, Anna; van der Meulen, Marjolein; Zhao, Baohong; Smithers, Nicholas; Witherington, Jason; Lee, Kevin; Tak, Paul P; Prinjha, Rab K; Ivashkiv, Lionel B

    2014-11-13

    Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study, we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that 'read' chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis macrophages and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and oestrogen deficiency-mediated pathologic bone resorption.

  20. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients.

    PubMed

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B; Abildgaard, Niels; Bøgsted, Martin; Johnsen, Hans E; Conover, Cheryl A; De Bruyne, Elke; Vanderkerken, Karin; Overgaard, Michael T; Nyegaard, Mette

    2016-01-01

    Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5-3.8 fold) and decrease in intact IGFBP-3 (0.6-0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration. PMID:27111220

  1. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients

    PubMed Central

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B.; Abildgaard, Niels; Bøgsted, Martin; Johnsen, Hans E.; Conover, Cheryl A.; De Bruyne, Elke; Vanderkerken, Karin

    2016-01-01

    Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5–3.8 fold) and decrease in intact IGFBP-3 (0.6–0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration. PMID:27111220

  2. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation.

    PubMed

    Park-Min, Kyung-Hyun; Lim, Elisha; Lee, Min Joon; Park, Sung Ho; Giannopoulou, Eugenia; Yarilina, Anna; van der Meulen, Marjolein; Zhao, Baohong; Smithers, Nicholas; Witherington, Jason; Lee, Kevin; Tak, Paul P; Prinjha, Rab K; Ivashkiv, Lionel B

    2014-01-01

    Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study, we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that 'read' chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis macrophages and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and oestrogen deficiency-mediated pathologic bone resorption. PMID:25391636

  3. Inhibition of Osteoclastogenesis and Inflammatory Bone Resorption by Targeting BET Proteins and Epigenetic Regulation

    PubMed Central

    Park-Min, Kyung-Hyun; Lim, Elisha; Lee, Min Joon; Park, Sung Ho; Giannopoulos, Eugenia; Yarilina, Anna; van der Meulen, Marjolein; Zhao, Baohong; Smithers, Nicholas; Witherington, Jason; Lee, Kevin; Tak, Paul P.; Prinjha, Rab K.; Ivashkiv, Lionel B.

    2014-01-01

    Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that “read” chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis, and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and estrogen deficiency-mediated pathologic bone resorption. PMID:25391636

  4. A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment.

    PubMed

    Qin, Chunlin; Huang, Bingzhen; Wygant, James N; McIntyre, Bradley W; McDonald, Charles H; Cook, Richard G; Butler, William T

    2006-03-24

    Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein shown by gene ablations to be critical for the proper mineralization of bone and dentin. In the extracellular matrix of these tissues DMP1 is present as fragments representing the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) portions of the cDNA-deduced amino acid sequence. During our separation of bone noncollagenous proteins, we observed a high molecular weight, DMP1-related component (designated DMP1-PG). We purified DMP1-PG with a monoclonal anti-DMP1 antibody affinity column. Amino acid analysis and Edman degradation of tryptic peptides proved that the core protein for DMP1-PG is the 37-kDa fragment of DMP1. Chondroitinase treatments demonstrated that the slower migration rate of DMP1-PG is due to the presence of glycosaminoglycan. Quantitative disaccharide analysis indicated that the glycosaminoglycan is made predominantly of chondroitin 4-sulfate. Further analysis on tryptic peptides led us to conclude that a single glycosaminoglycan chain is linked to the core protein via Ser74, located in the Ser74-Gly75 dipeptide, an amino acid sequence specific for the attachment of glycosaminoglycans. Our findings show that in addition to its existence as a phosphoprotein, the NH2-terminal fragment from DMP1 occurs as a proteoglycan. Amino acid sequence alignment analysis showed that the Ser74-Gly75 dipeptide and its flanking regions are highly conserved among a wide range of species from caiman to the Homo sapiens, indicating that this glycosaminoglycan attachment domain has survived an extremely long period of evolution pressure, suggesting that the glycosaminoglycan may be critical for the basic biological functions of DMP1.

  5. Bone formation of human mesenchymal stem cells harvested from reaming debris is stimulated by low-dose bone morphogenetic protein-7 application in vivo.

    PubMed

    Westhauser, Fabian; Höllig, Melanie; Reible, Bruno; Xiao, Kai; Schmidmaier, Gerhard; Moghaddam, Arash

    2016-12-01

    Stimulation of mesenchymal stem cells (MSC) by bone morphogenetic protein-7 (BMP-7) leads to superior bone formation in vitro. In this in vivo-study we evaluated the use of BMP-7 in combination with MSC isolated from reaming debris (RIA-MSC) and iliac crest bone marrow (BMSC) with micro-computed tomography (mCT)-analysis. β-Tricalciumphosphate scaffolds coated with BMSC and RIA-MSC were stimulated with three different BMP-7-concentrations and implanted ectopically in severe combined immunodeficiency (SCID) mice. Our results demonstrate that RIA-MSC show a higher osteogenic potential in vivo compared to BMSC. Ossification increased in direct correlation with the BMP-7-dose applied, however low-dose-stimulation by BMP-7 was more effective for RIA-MSC. PMID:27621556

  6. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.

    PubMed

    Shalumon, K T; Lai, Guo-Jyun; Chen, Chih-Hao; Chen, Jyh-Ping

    2015-09-30

    The presence of both osteoconductive and osteoinductive factors is important in promoting stem cell differentiation toward the osteogenic lineage. In this study, we prepared silk fibroin/chitosan/nanohydroxyapatite/bone morphogenetic protein-2 (SF/CS/nHAP/BMP-2, SCHB2) nanofibrous membranes (NFMs) by incorporating BMP-2 in the core and SF/CS/nHAP as the shell layer of a nanofiber with two different shell thicknesses (SCHB2-thick and SCHB-thin). The physicochemical properties of SCHB2 membranes were characterized and compared with those of SF/CS and SF/CS/nHAP NFMs. When tested in release studies, the release rate of BMP-2 and the concentration of BMP-2 in the release medium were higher for SCHB2-thin NFMs because of reduced shell thickness. The BMP-2 released from the nanofiber retained its osteoinductive activity toward human-bone-marrow-derived mesenchymal stem cells (hMSCs). Compared with SF/CS and SF/CS/nHAP NFMs, the incorporation of BMP-2-promoted osteogenic differentiation of hMSCs and the SCHB-thin NFM is the best scaffold during in vitro cell culture. Gene expression analysis by real-time quantitative polymerase chain reaction detected the evolution of both early and late marker genes of bone formation. The relative mRNA expression is in accordance with the effect of BMP-2 incorporation and shell thickness, while the same was reconfirmed through the quantification of bone marker protein osteocalcin. In vivo experiments were carried out by subcutaneously implanting hMSC-seeded SCHB2-thin NFMs and acellular controls on the back sides of nude mice. Immunohistochemical and histological staining confirmed ectopic bone formation and osteogenesis of hMSCs in SCHB2-thin NFMs. In conclusion, the SCHB2-thin NFM could be suggested as a promising scaffold for bone tissue engineering. PMID:26355766

  7. Low-dose bone morphogenetic protein-2/stromal cell-derived factor-1β cotherapy induces bone regeneration in critical-size rat calvarial defects.

    PubMed

    Herberg, Samuel; Susin, Cristiano; Pelaez, Manuel; Howie, R Nicole; Moreno de Freitas, Rubens; Lee, Jaebum; Cray, James J; Johnson, Maribeth H; Elsalanty, Mohammed E; Hamrick, Mark W; Isales, Carlos M; Wikesjö, Ulf M E; Hill, William D

    2014-05-01

    Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1/CXCL12) is involved in bone formation, though underlying molecular mechanisms remain to be fully elucidated. Also, contributions of SDF-1β, the second most abundant splice variant, as an osteogenic mediator remain obscure. We have shown that SDF-1β enhances osteogenesis by regulating bone morphogenetic protein-2 (BMP-2) signaling in vitro. Here we investigate the dose-dependent contribution of SDF-1β to suboptimal BMP-2-induced local bone formation; that is, a dose that alone would be too low to significantly induce bone formation. We utilized a critical-size rat calvarial defect model and tested the hypotheses that SDF-1β potentiates BMP-2 osteoinduction and that blocking SDF-1 signaling reduces the osteogenic potential of BMP-2 in vivo. In preliminary studies, radiographic analysis at 4 weeks postsurgery revealed a dose-dependent relationship in BMP-2-induced new bone formation. We then found that codelivery of SDF-1β potentiates suboptimal BMP-2 (0.5 μg) osteoinduction in a dose-dependent order, reaching comparable levels to the optimal BMP-2 dose (5.0 μg) without apparent adverse effects. Blocking the CXC chemokine receptor 4 (CXCR4)/SDF-1 signaling axis using AMD3100 attenuated the osteoinductive potential of the optimal BMP-2 dose, confirmed by qualitative histologic analysis. In conclusion, SDF-1β provides potent synergistic effects that support BMP-induced local bone formation and thus appears a suitable candidate for optimization of bone augmentation using significantly lower amounts of BMP-2 in spine, orthopedic, and craniofacial settings.

  8. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling

    PubMed Central

    Herhaus, Lina; Al-Salihi, Mazin A.; Dingwell, Kevin S.; Cummins, Timothy D.; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C.; Sapkota, Gopal P.

    2014-01-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis. PMID:24850914

  9. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling.

    PubMed

    Herhaus, Lina; Al-Salihi, Mazin A; Dingwell, Kevin S; Cummins, Timothy D; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C; Sapkota, Gopal P

    2014-05-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis. PMID:24850914

  10. Complications of Anterior Cervical Fusion using a Low-dose Recombinant Human Bone Morphogenetic Protein-2

    PubMed Central

    Kukreja, Sunil; Ahmed, Osama I; Haydel, Justin; Nanda, Anil

    2015-01-01

    Objective There are several reports, which documented a high incidence of complications following the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in anterior cervical fusions (ACFs). The objective of this study is to share our experience with low-dose rhBMP-2 in anterior cervical spine. Methods We performed a retrospective analysis of 197 patients who underwent anterior cervical fusion (ACF) with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) during 2007-2012. A low-dose rhBMP-2 (0.7mg/level) sponge was placed exclusively within the cage. In 102 patients demineralized bone matrix (DBM) was filled around the BMP sponge. Incidence and severity of dysphagia was determined by 5 points SWAL-QOL scale. Results Two patients had prolonged hospitalization due to BMP unrelated causes. Following the discharge, 13.2%(n=26) patients developed dysphagia and 8.6%(n=17) patients complained of neck swelling. More than half of the patients (52.9%, n=9) with neck swelling also had associated dysphagia; however, only 2 of these patients necessitated readmission. Both of these patients responded well to the intravenous dexamethasone. The use of DBM did not affect the incidence and severity of complications (p>0.05). Clinico-radiological evidence of fusion was not observed in 2 patients. Conclusion A low-dose rhBMP-2 in ACFs is not without risk. However, the incidence and severity of complications seem to be lower with low-dose BMP placed exclusively inside the cage. Packing DBM putty around the BMP sponge does not affect the safety profile of rhBMP-2 in ACFs. PMID:26217385

  11. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease.

    PubMed

    Zenz, Rainer; Eferl, Robert; Scheinecker, Clemens; Redlich, Kurt; Smolen, Josef; Schonthaler, Helia B; Kenner, Lukas; Tschachler, Erwin; Wagner, Erwin F

    2008-01-01

    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications.

  12. Enhanced healing of segmental tibial defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and type IV collagen.

    PubMed

    Gao, T J; Lindholm, T S; Kommonen, B; Ragni, P; Paronzini, A; Lindholm, T C; Jämsä, T; Jalovaara, P

    1996-12-01

    Diaphyseal segmental defects in the tibia of 18 sheep were used to evaluate the healing potential of a composite bone substitute device (CBS) composed of a tricalcium phosphate cylinder (TCP), naturally occurring sheep bone morphogenetic protein (sBMP), and type IV collagen. A total of 100 mg of sBMP and 20 mg of type IV collagen in the high-dose group (CBSH), and 13 mg of sBMP and 2.5 mg of type IV collagen in the low-dose group (CBSL) were adsorbed to TCP cylinders, respectively. TCP cylinders impregnated with type IV collagen alone (TCPC) were used as control. A significantly larger area and more highly integrated intensity of newly formed external callus between CBSH and CBSL or TCPC group were quantified by computerized image analyzer at both 3 and 6 weeks. A torsion test showed that the maximal torque capacity, maximal angular deformation, and bone stiffness of healed osteotomized tibia with implants recovered 117-125% in CBSH, 72-109% in CBSL, and 63-80% in TCPC, compared with the corresponding contralateral tibia at 16 weeks. A healing superiority of the segmental bone defects replaced by the implants was demonstrated in the CBSH group. Thus, the composite bone substitute device defined in this study was shown to possess osteoinductivity, osteoconductivity, and mechanical strength.

  13. Bone Morphogenetic Protein Signaling Regulates Development and Activation of CD4(+) T Cells.

    PubMed

    Kuczma, Michal; Kraj, Piotr

    2015-01-01

    Bone morphogenetic proteins (BMPs) are growth factors belonging to the TGF-β (transforming growth factor β) superfamily. BMPs were found to regulate multiple cell processes such as proliferation, survival, differentiation, and apoptosis. They were originally described to play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites but were found to play a significant role in embryogenesis and development of multiple tissues and organs. Activities of BMPs are regulated by a number of secreted proteins, which modulate their availability to bind cellular receptors. The functions of individual BMPs are highly redundant due to binding the same receptors and inducing overlapping signal transduction pathways. Recently, BMPs were found to regulate cells of the innate and adaptive immune system. BMPs are involved in thymic development of T cells at the early, double negative, as well as later, double positive, stages of thymopoesis. They specifically modulate thymic development of regulatory T cells (T(reg)). In the periphery, BMPs affect T cell activation, promoting generation of T(reg) cells. We found that mice deficient for one of the receptors activated by BMPs demonstrated slower growth of transplantable melanoma tumors.

  14. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  15. Two proteins with gamma-carboxyglutamic acid in frog bone: isolation and comparative characterization.

    PubMed

    Dohi, Y; Iwami, K; Yonemasu, K; Moriyama, T

    1987-10-15

    Two gamma-carboxyglutamic acid-containing proteins were purified from neutral (pH 7.5) EDTA-extract of frog, Rana catesbiana, cortical bone by Sephadex G-75 gel filtration, DEAE-Sephadex A-25 chromatography and successive hydroxyapatite column chromatography. These two bone gamma-carboxyglutamic acid-containing proteins, termed osteocalcin, P-1 and P-2, had molecular weights of about 5100 and 4900, respectively, based on their amino-acid composition. Both species of osteocalcin have two gamma-carboxyglutamic acid residues, one disulfide bond, but there was no 4-hydroxyproline in either molecule. Each N-terminus of both proteins was acetylated and each C-terminal amino acid was lysine. The isoelectric points of P-1 and P-2 are 4.02 and 3.91, respectively, and their pI values shifted to more neutral pH in the presence of calcium ions. Equilibrium dialysis has indicated that each of these two proteins binds specifically 2 mol Ca2+, and nonspecifically more, 4-5 mol, Ca2+ in 0.02 M Tris-HCl/0.15 M NaCl (pH 7.4), at 4 degrees C. By the best-fitted calculation, P-1 had one high affinity Ca2+-binding site (Kd1 = 0.17 mM) and one lower affinity site (Kd2 = 0.29 mM), and P-2 contained one high affinity site (Kd1 = 0.154 mM) and one lower affinity site (Kd2 = 0.67 mM). PMID:2443180

  16. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches

    PubMed Central

    Page, Karen M.

    2016-01-01

    During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively

  17. Color-pattern analysis of eyespots in butterfly wings: a critical examination of morphogen gradient models.

    PubMed

    Otaki, Joji M

    2011-06-01

    Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity. PMID:21627450

  18. Color-pattern analysis of eyespots in butterfly wings: a critical examination of morphogen gradient models.

    PubMed

    Otaki, Joji M

    2011-06-01

    Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity.

  19. Embryonic Morphogen Nodal Is Associated with Progression and Poor Prognosis of Hepatocellular Carcinoma

    PubMed Central

    Jia, Wei-Dong; Xu, Ge-Liang; Ma, Jin-Liang; Ren, Yun; Chen, Hao; Sun, Si-Nan; Huang, Mei; Li, Jian-Sheng

    2014-01-01

    Background Nodal, a TGF-β-related embryonic morphogen, is involved in multiple biologic processes. However, the expression of Nodal in hepatocellular carcinoma (HCC) and its correlation with tumor angiogenesis, epithelial-mesenchymal transition, and prognosis is unclear. Methods We used real-time PCR and Western blotting to investigate Nodal expression in 6 HCC cell lines and 1 normal liver cell line, 16 pairs of tumor and corresponding paracarcinomatous tissues from HCC patients. Immunohistochemistry was performed to examine Nodal expression in HCC and corresponding paracarcinomatous tissues from 96 patients. CD34 and Vimentin were only examined in HCC tissues of patients mentioned above. Nodal gene was silenced by shRNA in MHCC97H and HCCLM3 cell lines, and cell migration and invasion were detected. Statistical analyses were applied to evaluate the prognostic value and associations of Nodal expression with clinical parameters. Results Nodal expression was detected in HCC cell lines with high metastatic potential alone. Nodal expression is up-regulated in HCC tissues compared with paracarcinomatous and normal liver tissues. Nodal protein was expressed in 70 of the 96 (72.9%) HCC tumors, and was associated with vascular invasion (P = 0.000), status of metastasis (P = 0.004), AFP (P = 0.049), ICGR15 (indocyanine green retention rate at 15 min) (P = 0.010) and tumor size (P = 0.000). High Nodal expression was positively correlated with high MVD (microvessal density) (P = 0.006), but not with Vimentin expression (P = 0.053). Significantly fewer migrated and invaded cells were seen in shRNA group compared with blank group and negative control group (P<0.05). High Nodal expression was found to be an independent factor for predicting overall survival of HCC. Conclusions Our study demonstrated that Nodal expression is associated with aggressive characteristics of HCC. Its aberrant expression may be a predictive factor of unfavorable prognosis

  20. Deletion of the sequence encoding the tail domain of the bone morphogenetic protein type 2 receptor reveals a bone morphogenetic protein 7-specific gain of function.

    PubMed

    Leyton, Patricio A; Beppu, Hideyuki; Pappas, Alexandra; Martyn, Trejeeve M; Derwall, Matthias; Baron, David M; Galdos, Rita; Bloch, Donald B; Bloch, Kenneth D

    2013-01-01

    The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.

  1. Regulation of the activin-inhibin-follistatin system by bone morphogenetic proteins in the zebrafish ovary.

    PubMed

    Li, Cheuk Wun; Ge, Wei

    2013-09-01

    In the zebrafish, the dynamic expression of the activin-inhibin-follistatin system during folliculogenesis and its exclusive localization (except follistatin) in follicle cells suggests that the system plays important roles in follicle development and that its expression is subject to tight controls, probably by external factors including those derived from the oocyte. We have previously identified zebrafish bone morphogenetic proteins (BMPs) as oocyte factors that may act on follicle cells; however, the targets of BMPs in the follicle cells remain unknown. Considering their spatiotemporal expression in the follicle, we hypothesized that members of the activin-inhibin-follistatin system in follicle cells could be potential target genes of BMPs. In the present study, we developed a novel coculture system to co-incubate zebrafish bone morphogenetic protein 2b or 4 (zfBMP2b/4)-producing Chinese hamster ovary (CHO) cells with zebrafish follicle cells. During incubation, the zfBMPs secreted from the CHO cells would act directly on the follicle cells in a paracrine manner. Our results showed that all activin beta subunits (inhbaa, inhbab, and inhbb) were down-regulated by both zfBMP2b and zfBMP4, while follistatin (fst, an activin-binding protein) and inhibin alpha (inha, an activin antagonist) were significantly up-regulated. The specificity of bone morphogenetic protein (BMP) actions was confirmed by short interfering RNA knockdown of zfBMP4 expression in the CHO cells. The robust response of inha to zfBMPs, together with our previous observation that inha expression surged at the full-grown stage prior to oocyte maturation, led us to hypothesize that the full-grown oocyte may signal upper levels of the hypothalamic-pituitary-gonadal axis its readiness to mature by releasing BMPs, which in turn stimulate inhibin production. As an ovarian hormone and activin antagonist, inhibin may suppress the action of activin in the pituitary to reduce follicle-stimulating hormone

  2. Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects in vivo.

    PubMed

    Komatsu, K; Shibata, T; Shimada, A; Ideno, H; Nakashima, K; Tabata, Y; Nifuji, A

    2016-01-01

    Gene transduction of exogenous factors at local sites in vivo is a promising approach to promote regeneration of tissue defects owing to its simplicity and capacity for expression of a variety of genes. Gene transduction by viral vectors is highly efficient; however, there are safety concerns associated with viruses. As a method for nonviral gene transduction, plasmid DNA delivery is safer and simpler, but requires an efficient carrier substance. Here, we aimed to develop a simple, efficient method for bone regeneration by gene transduction and to identify optimal conditions for plasmid DNA delivery at bone defect sites. We focused on carrier substances and compared the efficiencies of two collagen derivatives, atelocollagen, and gelatin hydrogel, as substrates for plasmid DNA delivery in vivo. To assess the efficiencies of these substrates, we examined exogenous expression of green fluorescence protein (GFP) by fluorescence microscopy, polymerase chain reaction, and immunohistochemistry. GFP expression at the bone defect site was higher when gelatin hydrogel was used as a substrate to deliver plasmids than when atelocollagen was used. Moreover, the gelatin hydrogel was almost completely absorbed at the defect site, whereas some atelocollagen remained. When a plasmid harboring bone morphogenic protein 2 was delivered with the substrate to bony defect sites, more new bone formation was observed in the gelatin group than in the atelocollagen group. These results suggested that the gelatin hydrogel was more efficient than atelocollagen as a substrate for local gene delivery and may be a superior material for induction of bone regeneration. PMID:26848778

  3. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    NASA Astrophysics Data System (ADS)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  4. Interaction between bone morphogenetic protein receptor type 2 and estrogenic compounds in pulmonary arterial hypertension.

    PubMed

    Fessel, Joshua P; Chen, Xinping; Frump, Andrea; Gladson, Santhi; Blackwell, Tom; Kang, Christie; Johnson, Jennifer; Loyd, James E; Hemnes, Anna; Austin, Eric; West, James

    2013-09-01

    Abstract The majority of heritable pulmonary arterial hypertension (HPAH) cases are associated with mutations in bone morphogenetic protein receptor type 2 (BMPR2). BMPR2 mutation carries about a 20% lifetime risk of PAH development, but penetrance is approximately three times higher in females. Previous studies have shown a correlation between estrogen metabolism and penetrance, with increased levels of the estrogen metabolite 16α-hydroxyestrone (16αOHE) and reduced levels of the metabolite 2-methoxyestrogen (2ME) associated with increased risk of disease. The goal of this study was to determine whether 16αOHE increased and 2ME decreased penetrance of disease in Bmpr2 mutant mice and, if so, by what mechanism. We found that 16αOHE∶2ME ratio was high in male human HPAH patients. Bmpr2 mutant male mice receiving chronic 16αOHE had doubled disease penetrance, associated with reduced cardiac output. 2ME did not have a significant protective effect, either alone or in combination with 16αOHE. In control mice but not in Bmpr2 mutant mice, 16αOHE suppressed bone morphogenetic protein signaling, probably directly through suppression of Bmpr2 protein. Bmpr2 mutant pulmonary microvascular endothelial cells were insensitive to estrogen signaling through canonical pathways, associated with aberrant intracellular localization of estrogen receptor α. In both control and Bmpr2 mutant mice, 16αOHE was associated with suppression of cytokine expression but with increased alternate markers of injury, including alterations in genes related to thrombotic function, angiogenesis, planar polarity, and metabolism. These data support a causal relationship between increased 16αOHE and increased PAH penetrance, with the likely molecular mechanisms including suppression of BMPR2, alterations in estrogen receptor translocation, and induction of vascular injury and insulin resistance-related pathways.

  5. Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists

    PubMed Central

    Fan, Jiabing; Im, Choong Sung; Guo, Mian; Cui, Zhong-Kai; Fartash, Armita; Kim, Soyon; Patel, Nikhil; Bezouglaia, Olga; Wu, Benjamin M.; Wang, Cun-Yu

    2016-01-01

    Although adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP–Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics. Significance Although stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell

  6. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.

    PubMed

    Strobel, L A; Rath, S N; Maier, A K; Beier, J P; Arkudas, A; Greil, P; Horch, R E; Kneser, U

    2014-03-01

    Bone tissue engineering strategies mainly depend on porous scaffold materials. In this study, novel biphasic calcium phosphate (BCP) matrices were generated by 3D-printing. High porosity was achieved by starch consolidation. This study aimed to characterise the porous BCP-scaffold properties and interactions of osteogenic cells and growth factors under in vivo conditions. Five differently treated constructs were implanted subcutaneously in syngeneic rats: plain BCP constructs (group A), constructs pre-treated with BMP-2 (group B; 1.6 µg BMP-2 per scaffold), seeded with primary osteoblasts (OB) (group C), seeded with OB and BMP-2 (group D) and constructs seeded with OB and pre-cultivated in a flow bioreactor for 6 weeks (group E). After 2, 4 and 6 weeks, specimens were explanted and subjected to histological and molecular biological analyses. Explanted scaffolds were invaded by fibrovascular tissue without significant foreign body reactions. Morphometric analysis demonstrated significantly increased bone formation in samples from group D (OB + BMP-2) compared to all other groups. Samples from groups B-E displayed significant mRNA expression of bone-specific genes after 6 weeks. Pre-cultivation in the flow bioreactor (group E) induced bone formation comparable with group B. In this study, differences in bone distribution between samples with BMP-2 or osteoblasts could be observed. In conclusion, combination of osteoblasts and BMP-2 synergistically enhanced bone formation in novel ceramic scaffolds. These results provide the basis for further experiments in orthotopic defect models with a focus on future applications in orthopaedic and reconstructive surgery.

  7. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration

    PubMed Central

    Ye, S.; Ju, B.; Wang, H.

    2016-01-01

    Objectives Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye

  8. Beyond osteogenesis: an in vitro comparison of the potentials of six bone morphogenetic proteins.

    PubMed

    Rivera, Jessica C; Strohbach, Cassandra A; Wenke, Joseph C; Rathbone, Christopher R

    2013-01-01

    Bone morphogenetic proteins (BMPs) other than the clinically available BMP-2 and BMP-7 may be useful for improving fracture healing through both increasing osteogenesis and creating a favorable healing environment by altering cytokine release by endogenous cells. Given the spectrum of potential applications for BMPs, the objective of this study was to evaluate various BMPs under a variety of conditions to provide further insight into their therapeutic capabilities. The alkaline phosphatase (ALP) activity of both C2C12 and human adipose-derived stem cells (hASCs) was measured after exposure of increasing doses of recombinant human BMP-2, -4, -5, -6, -7, or -9 for 3 and 7 days. BMPs-2, -4, -5, -6, -7, and -9 were compared in terms of their ability to affect the release of stromal derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (b-FGF) from human bone marrow stromal cells (hBMSCs). Gene expression of ALP, osteocalcin, SDF-1, VEGF, and b-FGF following shRNA-mediated knockdown of BMP-2 and BMP-6 in hBMSCs or human osteoblasts under osteogenic differentiation conditions was also evaluated. Collectively, BMPs-6 and -9 produced the greatest osteogenic differentiation of C2C12 and hASCs as determined by ALP. The hBMSC secretion of SDF-1 was most affected by BMP-5, VEGF by BMP-4, and b-FGF by BMP-2. The knockdown of BMP-2 in BMSCs had no effect on any of the genes measured whereas BMP-6 knockdown in hBMSCs caused a significant increase in VEGF gene expression. BMP-2 and BMP-6 knockdown in human osteoblasts caused significant increases in VEGF gene expression and trends toward decreases in osteocalcin expression. These findings support efforts to study other BMPs as potential bone graft supplements, and to consider combined BMP delivery for promotion of multiple aspects of fracture healing. PMID:24101902

  9. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin.

    PubMed

    Bonnet, Nicolas; Conway, Simon J; Ferrari, Serge L

    2012-09-11

    Periostin (Postn) is a matricellular protein preferentially expressed by osteocytes and periosteal osteoblasts in response to mechanical stimulation and parathyroid hormone (PTH). Whether and how periostin expression influences bone anabolism, however, remains unknown. We investigated the skeletal response of adult Postn(-/-) and Postn(+/+) mice to intermittent PTH. Compared with Postn(+/+), Postn(-/-) mice had a lower bone mass, cortical bone volume, and strength response to PTH. PTH-stimulated bone-forming indices were all significantly lower in Postn(-/-) mice, particularly at the periosteum. Furthermore, in vivo stimulation of Wnt-β-catenin signaling by PTH, as evaluated in TOPGAL reporter mice, was inhibited in the absence of periostin (TOPGAL;Postn(-/-) mice). PTH stimulated periostin and inhibited MEF2C and sclerostin (Sost) expression in bone and osteoblasts in vitro. Recombinant periostin also suppressed Sost expression, which was mediated through the integrin αVβ3 receptor, whereas periostin-blocking antibody prevented inhibition of MEF2C and Sost by PTH. In turn, administration of a Sost-blocking antiboby partially restored the PTH-mediated increase in bone mass in Postn(-/-) mice. In addition, primary osteoblasts from Postn(-/-) mice showed a lower proliferation, mineralization, and migration, both spontaneously and in response to PTH. Osteoblastic gene expression levels confirmed a defect of Postn(-/-) osteoblast differentiation with and without PTH, as well as an increased osteoblast apoptosis in the absence of periostin. These data elucidate the complex role of periostin on bone anabolism, through the regulation of Sost, Wnt-β-catenin signaling, and osteoblast differentiation.

  10. Extracellular Regulation of Bone Morphogenetic Protein Activity by the Microfibril Component Fibrillin-1*

    PubMed Central

    Wohl, Alexander P.; Troilo, Helen; Collins, Richard F.; Baldock, Clair

    2016-01-01

    Since the discovery of bone morphogenetic proteins (BMPs) as pluripotent cytokines extractable from bone matrix, it has been speculated how targeting of BMPs to the extracellular matrix (ECM) modulates their bioavailability. Understanding these processes is crucial for elucidating pathomechanisms of connective tissue disorders characterized by ECM deficiency and growth factor dysregulation. Here, we provide evidence for a new BMP targeting and sequestration mechanism that is controlled by the ECM molecule fibrillin-1. We present the nanoscale structure of the BMP-7 prodomain-growth factor complex using electron microscopy, small angle x-ray scattering, and circular dichroism spectroscopy, showing that it assumes an open V-like structure when it is bioactive. However, upon binding to fibrillin-1, the BMP-7 complex is rendered into a closed ring shape, which also confers latency to the growth factor, as demonstrated by bioactivity measurements. BMP-7 prodomain variants were used to map the critical epitopes for prodomain-growth factor and prodomain-prodomain binding. Together, these data show that upon prodomain binding to fibrillin-1, the BMP-7 complex undergoes a conformational change, which denies access of BMP receptors to the growth factor. PMID:27059954

  11. Effect of glucocorticoids on bone Gla protein values--BGP as a good marker of osteoporosis.

    PubMed

    Iwasaki, T

    1991-06-01

    It is important to prevent corticosteroid(CS)-induced osteoporosis, particularly in children. One of the mechanisms is a direct inhibitory effect of CS on osteoblasts. Bone Gla protein (BGP) is produced in osteoblasts, and the serum level of BGP reflects the bone formation rate. The aim of this study is to examine the usefulness of BGP as a marker of CS-induced osteoporosis. In the present study, serum levels of 24 pediatric patients who were given prednisolone (PSL) for long periods were studied in relation to their growth rate. Serum BGP was also determined in 167 healthy children and 16 adults. In healthy children, BGP levels reached a peak at the age of 15 years in boys and 11 years in girls. In patients who were given more than 0.25 mg/kg/day PSL, serum BGP levels were significantly decreased and height growth was remarkably suppressed. In conclusion, the measurement of serum BGP is useful for early detection of CS-induced osteoporosis.

  12. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva.

    PubMed

    Chaikuad, Apirat; Alfano, Ivan; Kerr, Georgina; Sanvitale, Caroline E; Boergermann, Jan H; Triffitt, James T; von Delft, Frank; Knapp, Stefan; Knaus, Petra; Bullock, Alex N

    2012-10-26

    Bone morphogenetic protein (BMP) receptor kinases are tightly regulated to control development and tissue homeostasis. Mutant receptor kinase domains escape regulation leading to severely degenerative diseases and represent an important therapeutic target. Fibrodysplasia ossificans progressiva (FOP) is a rare but devastating disorder of extraskeletal bone formation. FOP-associated mutations in the BMP receptor ALK2 reduce binding of the inhibitor FKBP12 and promote leaky signaling in the absence of ligand. To establish structural mechanisms of receptor regulation and to address the effects of FOP mutation, we determined the crystal structure of the cytoplasmic domain of ALK2 in complex with the inhibitors FKBP12 and dorsomorphin. FOP mutations break critical interactions that stabilize the inactive state of the kinase, thereby facilitating structural rearrangements that diminish FKBP12 binding and promote the correct positioning of the glycine-serine-rich loop and αC helix for kinase activation. The balance of these effects accounts for the comparable activity of R206H and L196P. Kinase activation in the clinically benign mutant L196P is far weaker than R206H but yields equivalent signals due to the stronger interaction of FKBP12 with R206H. The presented ALK2 structure offers a valuable template for the further design of specific inhibitors of BMP signaling.

  13. The content of bone morphogenetic proteins in platelets varies greatly between different platelet donors

    SciTech Connect

    Kalen, Anders; Wahlstroem, Ola; Linder, Cecilia Halling; Magnusson, Per

    2008-10-17

    Platelet derivates and platelet rich plasma have been used to stimulate bone formation and wound healing because of the rich content of potent growth factors. However, not all reports have been conclusive since some have not been able to demonstrate a positive effect. We investigated the interindividual variation of bone morphogenetic proteins (BMPs) in platelets from healthy donors, and the pH-dependent effect on the release of BMPs in preparations of lysed platelets in buffer (LPB). Platelet concentrates from 31 healthy donors were prepared in pH 4.3 and pH 7.4 buffers and investigated with respect to BMP-2, -4, -6, and -7. BMP-2 and BMP-4 were significantly more common in acidic LPBs in comparison with neutral preparations. We also observed a considerable variation among platelet donors with respect to the release of BMPs at pH 4.3 and 7.4. In conclusion, a considerable variation was found among platelet donors, which may be of importance considering the ambiguous results previously reported on osteoblast proliferation and differentiation.

  14. Effect of selective heparin desulfation on preservation of bone morphogenetic protein-2 bioactivity after thermal stress.

    PubMed

    Seto, Song P; Miller, Tobias; Temenoff, Johnna S

    2015-02-18

    Bone morphogenetic protein-2 (BMP-2) plays an important role in bone and cartilage formation and is of interest in regenerative medicine. Heparin can interact electrostatically with BMP-2 and thus has been explored for controlled release and potential stabilization of this growth factor in vivo. However, in its natively sulfated state, heparin has potent anticoagulant properties that may limit its use. Desulfation reduces anticoagulant properties, but may impact heparin's ability to interact and protect BMP-2 from denaturation. The goal of this study was to characterize three selectively desulfated heparin species (N-desulfated (Hep(-N)), 6-O,N-desulfated (Hep(-N,-6O)), and completely desulfated heparin (Hep(-))) and determine if the sulfation level of heparin affected the level of BMP-2 bioactivity after heat treatment at 65 °C. BMP-2 bioactivity was evaluated using the established C2C12 cell assay. The resulting alkaline phosphatase activity data demonstrated that native heparin maintained a significant amount of BMP-2 bioactivity and the effect appeared to be heparin concentration dependent. Although all three had the same molecular charge as determined by zeta potential measurements, desulfated heparin derivatives Hep(-N) and Hep(-N,-6O) were not as effective as native heparin in maintaining BMP-2 bioactivity (only ~35% of original activity remained in both cases). These findings can be used to better select desulfated heparin species that exhibit low anticoagulant activity while extending the half-life of BMP-2 in solution and in delivery systems.

  15. Bone morphogenetic protein-2 and -4 expression during murine orofacial development.

    PubMed

    Bennett, J H; Hunt, P; Thorogood, P

    1995-09-01

    In the developing orofacial region, epithelial-mesenchymal interactions induce a differentiation cascade leading to bone and cartilage formation. Although the nature of this interaction is unknown, bone morphogenetic proteins (BMP)-2 and -4 have been suggested as putative signalling molecules. Using 35S-labelled cDNA probes, the expression patterns of BMP-2 and -4 mRNA were examined in murine perioral tissues preceding, during and following the time of the epithelial-mesenchymal interaction leading to mandibular formation. At embryonic age (e) 9.5 days, a restricted pattern of BMP-4 mRNA was expressed in the epithelium of the developing facial processes. This decreased rapidly, with little or no signal on E10.5 or E11.5. By E13.5, BMP-4 signal was restricted to the dental lamina, follicle and papilla. BMP-2 expression was not prominent in the developing face until E13.5. At this stage, signal was widespread throughout mesenchyme of neural-crest, but not somatic origin. Different domains of expression were present in the developing epithelium: for example, there was strong signal in the floor of the mouth and the ventral tongue, in contrast to that of the dorsum of the tongue and primary palate, which were negative. These results support the role of BMP-2 and -4 as regulators of orofacial development and demonstrates different fields of BMP-2 expression in developing oral mucosal epithelium.

  16. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells.

    PubMed

    Li, Hongshuai; Johnson, Noah Ray; Usas, Arvydas; Lu, Aiping; Poddar, Minakshi; Wang, Yadong; Huard, Johnny

    2013-09-01

    Muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle by a modified preplate technique exhibit long-term proliferation, high self-renewal, and multipotent differentiation capabilities in vitro. MDSCs retrovirally transduced to express bone morphogenetic proteins (BMPs) can differentiate into osteocytes and chondrocytes and enhance bone and articular cartilage repair in vivo, a feature that is not observed with nontransduced MDSCs. These results emphasize that MDSCs require prolonged exposure to BMPs to undergo osteogenic and chondrogenic differentiation. A sustained BMP protein delivery approach provides a viable and potentially more clinically translatable alternative to genetic manipulation of the cells. A unique growth factor delivery platform comprised of native heparin and a synthetic polycation, poly(ethylene argininylaspartate diglyceride) (PEAD), was used to bind, protect, and sustain the release of bone morphogenetic protein-2 (BMP2) in a temporally and spatially controlled manner. Prolonged exposure to BMP2 released by the PEAD:heparin delivery system promoted the differentiation of MDSCs to an osteogenic lineage in vitro and induced the formation of viable bone at an ectopic site in vivo. This new strategy represents an alternative approach for bone repair mediated by MDSCs while bypassing the need for gene therapy.

  17. Testosterone Delivered with a Scaffold Is as Effective as Bone Morphologic Protein-2 in Promoting the Repair of Critical-Size Segmental Defect of Femoral Bone in Mice

    PubMed Central

    Cheng, Bi-Hua; Chu, Tien-Min G.; Chang, Chawnshang; Kang, Hong-Yo; Huang, Ko-En

    2013-01-01

    Loss of large bone segments due to fracture resulting from trauma or tumor removal is a common clinical problem. The goal of this study was to evaluate the use of scaffolds containing testosterone, bone morphogenetic protein-2 (BMP-2), or a combination of both for treatment of critical-size segmental bone defects in mice. A 2.5-mm wide osteotomy was created on the left femur of wildtype and androgen receptor knockout (ARKO) mice. Testosterone, BMP-2, or both were delivered locally using a scaffold that bridged the fracture. Results of X-ray imaging showed that in both wildtype and ARKO mice, BMP-2 treatment induced callus formation within 14 days after initiation of the treatment. Testosterone treatment also induced callus formation within 14 days in wildtype but not in ARKO mice. Micro-computed tomography and histological examinations revealed that testosterone treatment caused similar degrees of callus formation as BMP-2 treatment in wildtype mice, but had no such effect in ARKO mice, suggesting that the androgen receptor is required for testosterone to initiate fracture healing. These results demonstrate that testosterone is as effective as BMP-2 in promoting the healing of critical-size segmental defects and that combination therapy with testosterone and BMP-2 is superior to single therapy. Results of this study may provide a foundation to develop a cost effective and efficient therapeutic modality for treatment of bone fractures with segmental defects. PMID:23940550

  18. Three-Dimensional Upper Lip and Nostril Sill Changes After Cleft Alveolus Reconstruction Using Autologous Bone Grafting Versus Recombinant Human Bone Morphogenetic Protein-2.

    PubMed

    Raposo-Amaral, Cassio Eduardo; Denadai, Rafael; Alonso, Nivaldo

    2016-06-01

    Cleft alveolus in patients with unilateral complete cleft lip and palate has been alternatively reconstructed with recombinant human bone morphogenetic protein (rhBMP)-2. However, its effects on upper lip and nostril sill anatomy are not known. Thus, the objective of this investigation was to assess and compare upper lip and nostril sill changes after cleft alveolus reconstruction with autologous bone from the iliac crest region and rhBMP-2. Patients were randomly allocated into 2 groups. In group 1, autologous bone from the iliac crest region was used to fill the cleft alveolus (n = 4), and in group 2, rhBMP-2 was used to fill the cleft alveolus (n = 8). Preoperatively and at one after the surgery, computerized tomography (CT) was performed. Reformatted CT imaging was used to perform cephalometric linear measurements of the upper lip and nostril sill regions. Inter- and intragroup data of the pre and postoperative reformatted CT measurements of the upper lip and nostril sill regions did not show differences (P >0.05) in cutaneous upper lip height and projection, nostril sill elevation, and subnasale projection. There were no significant upper lip and nostril sill anatomical changes after cleft alveolus reconstruction using autologous bone grafting and rhBMP-2. PMID:27244210

  19. Pregnancy-associated plasma protein-A modulates the anabolic effects of parathyroid hormone in mouse bone.

    PubMed

    Clifton, Kari B; Conover, Cheryl A

    2015-12-01

    Intermittent parathyroid hormone (PTH) is a potent anabolic therapy for bone, and several studies have implicated local insulin-like growth factor (IGF) signaling in mediating this effect. The IGF system is complex and includes ligands and receptors, as well as IGF binding proteins (IGFBPs) and IGFBP proteases. Pregnancy-associated plasma protein-A (PAPP-A) is a metalloprotease expressed by osteoblasts in vitro that has been shown to enhance local IGF action through cleavage of inhibitory IGFBP-4. This study was set up to test two specific hypotheses: 1) Intermittent PTH treatment increases the expression of IGF-I, IGFBP-4 and PAPP-A in bone in vivo, thereby increasing local IGF activity. 2) In the absence of PAPP-A, local IGF activity and the anabolic effects of PTH on bone are reduced. Wild-type (WT) and PAPP-A knock-out (KO) mice were treated with 80 μg/kg human PTH 1-34 or vehicle by subcutaneous injection five days per week for six weeks. IGF-I, IGFBP-4 and PAPP-A mRNA expression in bone were significantly increased in response to PTH treatment. PTH treatment of WT mice, but not PAPP-A KO mice, significantly increased expression of an IGF-responsive gene. Bone mineral density (BMD), as measured by DEXA, was significantly decreased in femurs of PAPP-A KO compared to WT mice with PTH treatment. Volumetric BMD, as measured by pQCT, was significantly decreased in femoral midshaft (primarily cortical bone), but not metaphysis (primarily trabecular bone), of PAPP-A KO compared to WT mice with PTH treatment. These data suggest that stimulation of PAPP-A expression by intermittent PTH treatment contributes to PTH bone anabolism in mice.

  20. Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion.

    PubMed

    Anitua, E; Zalduendo, M M; Prado, R; Alkhraisat, M H; Orive, G

    2015-03-01

    The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet-rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet-rich plasma (L-PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte-free (PRGF-Endoret) and L-PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte-free fibrin matrices were homogenous while leukocyte-containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)-1β and IL-16 but not in the platelet-derived growth factors release (<1.5-fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L-PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF-Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF-Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines.

  1. Bone Morphogenetic Protein-2 Adsorption onto Poly-ɛ-caprolactone Better Preserves Bioactivity In Vitro and Produces More Bone In Vivo than Conjugation Under Clinically Relevant Loading Scenarios

    PubMed Central

    Patel, Janki J.; Flanagan, Colleen L.

    2015-01-01

    Background: One strategy to reconstruct large bone defects is to prefabricate a vascularized flap by implanting a biomaterial scaffold with associated biologics into the latissimus dorsi and then transplanting this construct to the defect site after a maturation period. This strategy, similar to all clinically and regulatory feasible biologic approaches to surgical reconstruction, requires the ability to quickly (<1 h within an operating room) and efficiently bind biologics to scaffolds. It also requires the ability to localize biologic delivery. In this study, we investigated the efficacy of binding bone morphogenetic protein-2 (BMP2) to poly-ɛ-caprolactone (PCL) using adsorption and conjugation as a function of time. Methods: BMP2 was adsorbed (Ads) or conjugated (Conj) to PCL scaffolds with the same three-dimensional printed architecture while altering exposure time (0.5, 1, 5, and 16 h), temperature (4°C, 23°C), and BMP2 concentration (1.4, 5, 20, and 65 μg/mL). The in vitro release was quantified, and C2C12 cell alkaline phosphatase (ALP) expression was used to confirm bioactivity. Scaffolds with either 65 or 20 μg/mL Ads or Conj BMP2 for 1 h at 23°C were implanted subcutaneously in mice to evaluate in vivo bone regeneration. Micro-computed tomography, compression testing, and histology were performed to characterize bone regeneration. Results: After 1 h exposure to 65 μg/mL BMP2 at 23°C, Conj and Ads resulted in 12.83±1.78 and 10.78±1.49 μg BMP2 attached, respectively. Adsorption resulted in a positive ALP response and had a small burst release; whereas conjugation provided a sustained release with negligible ALP production, indicating that the conjugated BMP2 may not be bioavailable. Adsorbed 65 μg/mL BMP2 solution resulted in the greatest regenerated bone volume (15.0±3.0 mm3), elastic modulus (20.1±3.0 MPa), and %bone ingrowth in the scaffold interior (17.2%±5.4%) when compared with conjugation. Conclusion: Adsorption

  2. Regulators of G protein signaling 12 (Rgs12) promotes osteoclastogenesis in bone remodeling and pathologic bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium (Ca2+) signaling plays a pivotal role in controlling various cellular processes such as secretion, differentiation, proliferation, motility, and cell death through the release of Ca2+ from internal stores and entry from extracellular fluid. In bone, receptor activator of NF-kB ligand (RANKL)...

  3. Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects.

    PubMed Central

    Marden, L J; Fan, R S; Pierce, G F; Reddi, A H; Hollinger, J O

    1993-01-01

    Platelet-derived growth factor (PDGF) is a potent moderator of soft tissue repair through induction of the inflammatory phase of repair and subsequent enhanced collagen deposition. We examined the effect of recombinant BB homodimer PDGF (rPDGF-BB) applied to rat craniotomy defects, treated with and without bovine osteogenin (OG), to see if bone regeneration would be stimulated. Implants containing 0, 20, 60, or 200 micrograms rPDGF-BB, reconstituted with insoluble rat collagenous bone matrix containing 0, 30, or 150 micrograms OG, were placed into 8-mm craniotomies. After 11 d, 21 of the 144 rats presented subcutaneous masses superior to the defect sites. The masses, comprised of serosanguinous fluid encapsulated by fibrous connective tissue, were larger and occurred more frequently in rats treated with 200 micrograms rPDGF-BB, and were absent in rats not treated with rPDGF-BB. The masses underwent resorption within 28 d after surgery. OG (2-256 micrograms) caused a dose-dependent increase in radiopacity and a marked regeneration of calcified tissue in a dose-dependent fashion within defect sites. However, OG-induced bone regeneration was inhibited 17-53% in the presence of rPDGF-BB. These results suggest that rPDGF-BB inhibited OG-induced bone regeneration and stimulated a soft tissue repair wound phenotype and response. Images PMID:8254045

  4. Feeding soy protein isolate prevents impairment of bone acquisition by western diets as a result of insulin signaling in bone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive consumption of high fat/high cholesterol “Western” diets during postnatal life results in increased energy intake, development of obesity and systemic insulin resistance. However, how this diet impairs bone development and remodeling is not well understood, and no effective dietary interve...

  5. Incorporation of glycine-2-C-14 in acid-insoluble proteins of rat bones and teeth during hypokinesia and administration of thyrocalcitonine

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stekolnikov, L. I.; Uglova, N. N.; Potkin, V. Y.

    1979-01-01

    A forced limitation of the motor activity in rats (from 5 to 60 days) results in reduced incorporation of glycine 2-C14 in the total acid insoluble proteins of limb bones and its increase in the teeth and mandibular-maxillary bones. Daily administration of five micrograms of thyrocalcitonine together with polyvinylpyrrolidone normalizes the protein metabolism in the bone tissues during the 40 days of experimentation.

  6. Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth.

    PubMed

    Hover, Laura D; Young, Christian D; Bhola, Neil E; Wilson, Andrew J; Khabele, Dineo; Hong, Charles C; Moses, Harold L; Owens, Philip

    2015-11-01

    The bone morphogenetic protein (BMP) pathway belonging to the Transforming Growth Factor beta (TGFβ) family of secreted cytokines/growth factors is an important regulator of cancer. BMP ligands have been shown to play both tumor suppressive and promoting roles in human cancers. We have found that BMP ligands are amplified in human ovarian cancers and that BMP receptor expression correlates with poor progression-free-survival (PFS). Furthermore, active BMP signaling has been observed in human ovarian cancer tissue. We also determined that ovarian cancer cell lines have active BMP signaling in a cell autonomous fashion. Inhibition of BMP signaling with a small molecule receptor kinase antagonist is effective at reducing ovarian tumor sphere growth. Furthermore, BMP inhibition can enhance sensitivity to Cisplatin treatment and regulates gene expression involved in platinum resistance in ovarian cancer. Overall, these studies suggest targeting the BMP pathway as a novel source to enhance chemo-sensitivity in ovarian cancer.

  7. Mutational analysis of human bone morphogenetic protein 15 in Chinese women with polycystic ovary syndrome.

    PubMed

    Liu, Jingjing; Wang, Binbin; Wei, Zhaolian; Zhou, Ping; Zu, Yuping; Zhou, Sirui; Wen, Qiaolian; Wang, Jing; Cao, Yunxia; Ma, Xu

    2011-11-01

    Polycystic ovary syndrome (PCOS) is one of the common defects that cause ovary dysfunction and link to the aberrant process of folliculogenesis. Bone morphogenetic protein 15 (BMP15) is expressed in human oocytes and functions importantly to regulate early follicle growth and fertility. Previous studies have discovered several mutations in the screening of BMP15 in premature ovarian failure but none in PCOS. In this current study, we focused on the mutational analysis of the coding region of BMP15 among 216 Chinese PCOS patients. Five novel missense mutations in BMP15 were discovered, namely, c.34C>G, c.109G>C, c.169C>G, c.288G>C, and c.598C>T. These results are the first to indicate that BMP15 gene mutations may be potentially associated with PCOS patients.

  8. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  9. A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives

    PubMed Central

    2016-01-01

    Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways. PMID:27433166

  10. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles

    PubMed Central

    Wissenbach, Dirk K.; Pfeiffer, Susanne E. M.; Baumann, Sven; Hofbauer, Lorenz C.; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis. PMID:27441377

  11. Inhibitory Effect of Bone Morphogenetic Protein 4 in Retinal Pigment Epithelial-Mesenchymal Transition

    PubMed Central

    Yao, Haipei; Li, Hui; Yang, Shuai; Li, Min; Zhao, Chun; Zhang, Jingfa; Xu, Guotong; Wang, Fang

    2016-01-01

    Proliferative vitreoretinopathy (PVR), a serious vision-threatening complication of retinal detachment (RD), is characterized by the formation of contractile fibrotic membranes, in which epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a major event. Recent studies suggest an important role of bone morphogenetic protein 4 (BMP4) in the suppression of fibrosis. In this study, we aimed to investigate the role of BMP4 in the pathological process of PVR, particularly in the EMT of RPE cells. We found that BMP4 and its receptors were co-labelled with cytokeratin and α-SMA positive cells within the PVR membrane. Moreover, the mRNA and protein expression levels of BMP4 were decreased whereas BMP4 receptors ALK2, ALK3 and ALK6 were increased during TGF-β-induced EMT in primary RPE cells. Exogenous BMP4 inhibited TGF-β-induced epithelial marker down-regulation, as well as mesenchymal marker up-regulation at both the mRNA and protein levels in RPE cells. In addition, BMP4 treatment attenuated the TGF-β-induced gel contraction, cell migration and Smad2/3 phosphorylation. However, knockdown of endogenous BMP4 stimulated changes in EMT markers. Our results confirm the hypothesis that BMP4 might inhibit TGF-β-mediated EMT in RPE cells via the Smad2/3 pathway and suppress contraction. This might represent a potential treatment for PVR. PMID:27586653

  12. Inhibitory Effect of Bone Morphogenetic Protein 4 in Retinal Pigment Epithelial-Mesenchymal Transition

    NASA Astrophysics Data System (ADS)

    Yao, Haipei; Li, Hui; Yang, Shuai; Li, Min; Zhao, Chun; Zhang, Jingfa; Xu, Guotong; Wang, Fang

    2016-09-01

    Proliferative vitreoretinopathy (PVR), a serious vision-threatening complication of retinal detachment (RD), is characterized by the formation of contractile fibrotic membranes, in which epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a major event. Recent studies suggest an important role of bone morphogenetic protein 4 (BMP4) in the suppression of fibrosis. In this study, we aimed to investigate the role of BMP4 in the pathological process of PVR, particularly in the EMT of RPE cells. We found that BMP4 and its receptors were co-labelled with cytokeratin and α-SMA positive cells within the PVR membrane. Moreover, the mRNA and protein expression levels of BMP4 were decreased whereas BMP4 receptors ALK2, ALK3 and ALK6 were increased during TGF-β-induced EMT in primary RPE cells. Exogenous BMP4 inhibited TGF-β-induced epithelial marker down-regulation, as well as mesenchymal marker up-regulation at both the mRNA and protein levels in RPE cells. In addition, BMP4 treatment attenuated the TGF-β-induced gel contraction, cell migration and Smad2/3 phosphorylation. However, knockdown of endogenous BMP4 stimulated changes in EMT markers. Our results confirm the hypothesis that BMP4 might inhibit TGF-β-mediated EMT in RPE cells via the Smad2/3 pathway and suppress contraction. This might represent a potential treatment for PVR.

  13. Genetic analyses of bone morphogenetic protein 2, 4 and 7 in congenital combined pituitary hormone deficiency

    PubMed Central

    2013-01-01

    Background The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD. Methods We sequenced BMP2, 4 and 7 in 19 subjects with CPHD. For validation purposes, novel genetic variants were genotyped in 1046 healthy subjects. Additionally, potential functional relevance for most promising variants has been assessed by phylogenetic analyses and prediction of effects on protein structure. Results Sequencing revealed two novel variants and confirmed 30 previously known polymorphisms and mutations in BMP2, 4 and 7. Although phylogenetic analyses indicated that these variants map within strongly conserved gene regions, there was no direct support for their impact on protein structure when applying predictive bioinformatics tools. Conclusions A mutation in the BMP4 coding region resulting in an amino acid exchange (p.Arg300Pro) appeared most interesting among the identified variants. Further functional analyses are required to ultimately map the relevance of these novel variants in CPHD. PMID:24289245

  14. Inhibitory Effect of Bone Morphogenetic Protein 4 in Retinal Pigment Epithelial-Mesenchymal Transition.

    PubMed

    Yao, Haipei; Li, Hui; Yang, Shuai; Li, Min; Zhao, Chun; Zhang, Jingfa; Xu, Guotong; Wang, Fang

    2016-01-01

    Proliferative vitreoretinopathy (PVR), a serious vision-threatening complication of retinal detachment (RD), is characterized by the formation of contractile fibrotic membranes, in which epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a major event. Recent studies suggest an important role of bone morphogenetic protein 4 (BMP4) in the suppression of fibrosis. In this study, we aimed to investigate the role of BMP4 in the pathological process of PVR, particularly in the EMT of RPE cells. We found that BMP4 and its receptors were co-labelled with cytokeratin and α-SMA positive cells within the PVR membrane. Moreover, the mRNA and protein expression levels of BMP4 were decreased whereas BMP4 receptors ALK2, ALK3 and ALK6 were increased during TGF-β-induced EMT in primary RPE cells. Exogenous BMP4 inhibited TGF-β-induced epithelial marker down-regulation, as well as mesenchymal marker up-regulation at both the mRNA and protein levels in RPE cells. In addition, BMP4 treatment attenuated the TGF-β-induced gel contraction, cell migration and Smad2/3 phosphorylation. However, knockdown of endogenous BMP4 stimulated changes in EMT markers. Our results confirm the hypothesis that BMP4 might inhibit TGF-β-mediated EMT in RPE cells via the Smad2/3 pathway and suppress contraction. This might represent a potential treatment for PVR. PMID:27586653

  15. Recombinant Human Bone Morphogenetic Protein-2 in Posterolateral Spinal Fusion: What's the Right Dose?

    PubMed Central

    Jones, Clifford Barry; Sietsema, Debra Lynn

    2016-01-01

    Study Design Single center retrospective cohort analysis. Purpose The goal was to evaluate the influence of varying amount of recombinant human bone morphogenetic protein 2 (rhBMP-2) per level on fusion rates and complications in posterolateral spinal fusions. Overview of Literature rhBMP-2 has been utilized for lumbar posterolateral fusions for many years. Initial rhBMP-2 recommendations were 20 mg/level of fusion. Dose and concentration per level in current studies vary from 4.2 to 40 mg and 1.5 to 2.0 mg/mL, respectively. Variable fusion and complication rates have been reported. Methods Patients (n=1,610) undergoing instrumented lumbar spinal fusion (2003–2009) with utilization of rhBMP-2 were retrospectively evaluated. Patient demographics, body mass index (BMI), comorbidities, number of levels, associated interbody fusion, and types of bone void filler were analyzed. Fusions rates and nonunions were subdivided into number of levels and amount of rhBMP-2 used per level. Results Patients (n=559) were evaluated with 58.5% females having an average age of 63 years, BMI of 31 kg/m2. Number of levels fused ranged from 1 to 8. rhBMP-2 averaged 7.3 mg/level (range, 1.5–24 mg/level) based upon length of collagen sponge in relation to length of fusion levels. Patients with non-union formation had lower rhBMP-2 dose per level (p=0.016). A significant difference in non-union rate was found between patients undergoing fusion with <6 mg/level compared to those with >6 mg/level (9.1% vs. 2.4%, χ2=0.012). No significant differences were noted between 6–11.9 mg/level and ≥12 mg/level. No threshold was found for seroma formation or bone overgrowth. Conclusions Previous recommendation of 20 mg/level of rhBMP-2 is more than what is required for predictable fusion rates of 98%. No dose related increase of infection, seroma formation, and bone overgrowth has been found. In order to provide variable dosing and cost reduction, industry generated rhBMP-2 kit size should be

  16. Bone response to 3-D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2.

    SciTech Connect

    Eurell, Jo Ann; Dellinger, Jennifer Gwynne; Cesarano, Joseph, III; Jamison, Russell D.

    2005-06-01

    The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 {micro}m{sup 2} in quadrant 1, 250 x 500 {micro}m{sup 2} in quadrants 2 and 4, and 500 x 500 {micro}m{sup 2} in quadrant 3. In the second group, HA rods (400 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 {micro}m{sup 2} in quadrant 1, 500 x 750 {micro}m{sup 2} in quadrants 2 and 4, and 750 x 750 {micro}m{sup 2} in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.

  17. Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized control trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although consuming dietary protein above current recommendations during energy deficit enhances blood lipid profiles and preserves lean body mass, concerns have been raised regarding effects of high-protein diets on bone health. To determine whether calcium homeostasis and bone turnover are affected...

  18. Vitamin D–Binding Protein Modifies the Vitamin D–Bone Mineral Density Relationship

    PubMed Central

    Powe, Camille E; Ricciardi, Catherine; Berg, Anders H; Erdenesanaa, Delger; Collerone, Gina; Ankers, Elizabeth; Wenger, Julia; Karumanchi, S Ananth; Thadhani, Ravi; Bhan, Ishir

    2011-01-01

    Studies examining the relationship between total circulating 25-hydroxyvitamin D [25(OH)D] levels and bone mineral density (BMD) have yielded mixed results. Vitamin D–binding protein (DBP), the major carrier protein for 25(OH)D, may alter the biologic activity of circulating vitamin D. We hypothesized that free and bioavailable 25(OH)D, calculated from total 25(OH)D, DBP, and serum albumin levels, would be more strongly associated with BMD than levels of total 25(OH)D. We measured total 25(OH)D, DBP, and serum albumin levels in 49 healthy young adults enrolled in the Metabolic Abnormalities in College-Aged Students (MACS) study. Lumbar spine BMD was measured in all subjects using dual-energy X-ray absorptiometry. Clinical, diet, and laboratory information also was gathered at this time. We determined free and bioavailable (free + albumin-bound) 25(OH)D using previously validated formulas and examined their associations with BMD. BMD was not associated with total 25(OH)D levels (r = 0.172, p = .236). In contrast, free and bioavailable 25(OH)D levels were positively correlated with BMD (r = 0.413, p = .003 for free, r = 0.441, p = .002 for bioavailable). Bioavailable 25(OH)D levels remained independently associated with BMD in multivariate regression models adjusting for age, sex, body mass index, and race (p = .03). It is concluded that free and bioavailable 25(OH)D are more strongly correlated with BMD than total 25(OH)D. These findings have important implications for vitamin D supplementation in vitamin D–deficient states. Future studies should continue to explore the relationship between free and bioavailable 25(OH)D and health outcomes. © 2011 American Society for Bone and Mineral Research. PMID:21416506

  19. Effects of designed PLLA and 50:50PLGA scaffold architectures on bone formation in vivo

    PubMed Central

    Saito, Eiji; Liao, Elly E.; Hu, Wei-Wen; Krebsbach, Paul H.; Hollister, Scott J.

    2015-01-01

    Biodegradable porous scaffolds have been investigated as an alternative approach to current metal, ceramic, and polymer bone graft substitutes for lost or damaged bone tissues. Although there have been many studies investigating the effects of scaffold architecture on bone formation, many of these scaffolds were fabricated using conventional methods, such as salt leaching and phase separation, and were constructed without designed architecture. To study the effects of both designed architecture and material on bone formation, we designed and fabricated three types of porous scaffold architecture from two biodegradable materials, poly (L-lactic acid) (PLLA) and 50:50Poly (lactic-co-glycolic acid) (PLGA) using image based design and indirect solid freeform fabrication techniques, seeded them with bone morphogenic protein-7 transduced human gingival fibroblasts and implanted them subcutaneously into mice for 4 and 8 weeks. Micro-computed tomography data confirmed that the fabricated porous scaffolds replicated the designed architectures. Histological analysis revealed that the 50:50PLGA scaffolds degraded and did not maintain their architecture after 4 weeks. The PLLA scaffolds maintained their architecture at both time points and showed improved bone ingrowth which followed the internal architecture of the scaffolds. Mechanical properties of both PLLA and 50:50PLGA scaffolds decreased, but PLLA scaffolds maintained greater mechanical properties than 50:50PLGA after implantation. The increase of mineralized tissue helped to support mechanical properties of bone tissue and scaffold constructs from 4 to 8 weeks. The results indicated the importance of choice of scaffold materials and computationally designed scaffolds to control tissue formation and mechanical properties for desired bone tissue regeneration. PMID:22162220

  20. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold

    PubMed Central

    Hao, Wei; Dong, Jinlei; Jiang, Ming; Wu, Junwei; Cui, Fuzhai

    2010-01-01

    In this study, rabbit adipose-derived stem cells (rASCs) were isolated, cultured in vitro, and transfected with recombinant adenovirus vector containing human bone morphogenetic protein 2 (Ad-hBMP2). These cells were combined with a nano-hydroxyapatite/recombinant human-like collagen/poly(lactic acid) scaffold (nHA/RHLC/PLA) to fabricate a new biocomposite (hBMP2/rASCs-nHA/RHLC/PLA, group 1) and cultured in osteogenic medium. Non-transfected rASCs mixed with nHA/RHLC/PLA (rASCs-nHA/RHLC/PLA, group 2) and nHA/RHLC/PLA scaffold alone (group 3) served as controls. Scanning electron microscope (SEM) demonstrated integration of rASCs with the nHA/RHLC/PLA scaffold. Quantitative real-time RT-PCR analyses of collagen I, osteonectin, and osteopontin cDNA expression indicated that the osteogenic potency of rASCs was enhanced by transfection with Ad-hBMP2. After in vitro culture for seven days, three groups were implanted into 15-mm length critical-sized segmental radial defects in rabbits. After 12 weeks, radiographic and histological analyses were performed. In group 1, the medullary cavity was recanalised, bone was rebuilt and moulding was finished, the bone contour had begun to remodel and scaffold was degraded completely. In contrast, bone defects were not repaired in groups 2 or 3. Furthermore, the scaffold degradation rate in group 1 was significantly higher than in groups 2 or 3. In summary, after transduction with Ad-hBMP2, the osteogenesis of rASCs was enhanced; a new biocomposite created with these cells induced repair of a critical bone defect in vivo in a relatively short time. PMID:20140671

  1. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects.

    PubMed

    Machado, Eduardo Gomes; Issa, João Paulo Mardegan; Figueiredo, Fellipe Augusto Tocchini de; Santos, Geovane Ribeiro Dos; Galdeano, Ewerton Alexandre; Alves, Mariana Carla; Chacon, Erivelto Luis; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Cunha, Marcelo Rodrigues da

    2015-04-01

    Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p<0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p>0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery. PMID:25825118

  2. Heterotopic Bone Formation Around Vessels: Pilot Study of a New Animal Model

    PubMed Central

    Cai, Wei-Xin; Zheng, Li-Wu; Weber, Franz E.; Li, Chun-Lei; Ma, Li; Ehrbar, Martin

    2013-01-01

    Abstract To achieve an easily established, safe, and reproducible animal model for the study of heterotopic bone formation around vessels, a small animal series using New Zealand White rabbits was performed. Three different dosages of recombinant human bone morphogenic protein (rhBMP-2) carried by fibrin matrix were tested. A guided tissue regeneration (GTR) membrane sheet was formed into a tube and allowed to harden; it served both to maintain the space around the vessel bundle and to separate the fibrin matrix with rhBMP-2 from skeletal muscle. Wrapped around the femoral vessel bundle and fixed in place, the tube was filled with the fibrin matrix containing rhBMP-2. The surgical site was closed in layers, and the postoperative healing was uneventful. All animals resumed their full preoperative daily activities 3–4 days after the operation. No adverse events such as wound dehiscence or infection occurred, and all animals could be sacrified at the scheduled date. Micro–computed tomography and histological investigations showed heterotopic bone formation around the vessel bundle in the medium- and high-dosage rhBMP-2 groups. An easy, safe, and reproducible animal model that allows the study of heterotopic bone formation around vessels was successfully established. PMID:23914333

  3. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption.

    PubMed

    Alves, Catarina M; Yang, Y; Carnes, D L; Ong, J L; Sylvia, V L; Dean, D D; Agrawal, C M; Reis, R L

    2007-01-01

    The effect of oxygen-based radio frequency glow discharge (rfGD) on the surface of different starch-based biomaterials (SBB) and the influence of proteins adsorption on modulating bone-cells behavior was studied. Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB. Biodegradable polymeric blends of cornstarch with cellulose acetate (SCA; 50/50wt%), ethylene vinyl alcohol (SEVA-C; 50/50wt%) and polycaprolactone (SPCL; 30/70wt%) were studied. SCA and SCA reinforced with 10% hydroxyapatite (HA) showed the highest degree of modification as result of the rfGD treatment. Protein and control solutions were used to incubate with the characterized SBB and, following this, MG63 osteoblast-like osteosarcoma cells were seeded over the surfaces. Cell adhesion and proliferation onto SCA was found to be enhanced for non-treated surfaces and on SCA+10%HA no alteration was brought up by the plasma modification. Onto SCA surfaces, BSA, FN and VN single solutions improved cell adhesion, and this same effect was found upscaled for ternary systems. In addition, plasma treated SEVA-C directed an increase in both adhesion and proliferation comparing to non-treated surfaces. Even though adhesion onto treated and untreated SPCL was quite similar, plasma modification clearly promoted MG63 cells proliferation. Regarding MG63 cells morphology it was shown that onto SEVA-C surfaces the variation of cell shape was primarily defined by the protein system, while onto SPCL it was mainly affected by the plasma treatment. PMID:17011619

  4. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption.

    PubMed

    Alves, Catarina M; Yang, Y; Carnes, D L; Ong, J L; Sylvia, V L; Dean, D D; Agrawal, C M; Reis, R L

    2007-01-01

    The effect of oxygen-based radio frequency glow discharge (rfGD) on the surface of different starch-based biomaterials (SBB) and the influence of proteins adsorption on modulating bone-cells behavior was studied. Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB. Biodegradable polymeric blends of cornstarch with cellulose acetate (SCA; 50/50wt%), ethylene vinyl alcohol (SEVA-C; 50/50wt%) and polycaprolactone (SPCL; 30/70wt%) were studied. SCA and SCA reinforced with 10% hydroxyapatite (HA) showed the highest degree of modification as result of the rfGD treatment. Protein and control solutions were used to incubate with the characterized SBB and, following this, MG63 osteoblast-like osteosarcoma cells were seeded over the surfaces. Cell adhesion and proliferation onto SCA was found to be enhanced for non-treated surfaces and on SCA+10%HA no alteration was brought up by the plasma modification. Onto SCA surfaces, BSA, FN and VN single solutions improved cell adhesion, and this same effect was found upscaled for ternary systems. In addition, plasma treated SEVA-C directed an increase in both adhesion and proliferation comparing to non-treated surfaces. Even though adhesion onto treated and untreated SPCL was quite similar, plasma modification clearly promoted MG63 cells proliferation. Regarding MG63 cells morphology it was shown that onto SEVA-C surfaces the variation of cell shape was primarily defined by the protein system, while onto SPCL it was mainly affected by the plasma treatment.

  5. [Preparation of monoclonal antibodies against human bone gamma-carboxyglutamic acid containing protein (BGP) and its immunohistochemical application to various human tissues].

    PubMed

    Takada, J; Ohta, T; Koshiba, H

    1990-05-01

    Bone gamma-carboxyglutamic acid containing protein (BGP) has been considered to play an important role in mineralization of bone, because this protein is capable of binding to calcium ions. However, the function and localization of BGP in normal bones have not yet been fully understood. In this study, we prepared monoclonal antibodies against human BGP, by immunizing BALB/c mice with human BGP. All five monoclonal antibodies obtained were shown to bind specifically to human BGP, but not to the other bone-derived proteins. In immunohistochemical analysis, these antibodies were shown to react with osteoblasts and osteocytes in normal human bone tissues, but not with chondrocytes, osteoclasts and osteoid tissues. These antibodies are expected to be useful for the diagnosis of human osteoblastic tumors and also for the analysis of the role of BGP in the ossification process in bone.

  6. Short communication: Proteins in heat-processed skim milk powder have no positive effects on bone loss of ovariectomized rats.

    PubMed

    Du, M; Kong, Y; Wang, C; Gao, H; Han, X; Yi, H; Zhang, L

    2011-06-01

    Milk has positive effects on bone growth. However, the effect of skim milk powder (SMP) on bone properties has not been reported. This study investigated the effect of SMP on bone loss in ovariectomized (OVX) rats. Forty female Sprague-Dawley rats were ovariectomized and another 10 rats received a sham operation. The OVX rats were randomly separated into 4 groups: OVX control, OVX SMP1 (SMP at 0.04 g/d), OVX SMP2 (SMP at 0.20 g/d), and OVX SMP3 (SMP at 0.40 g/d). Skim milk powder was supplied in the rat diet for 12 wk, and the rats were gavaged once per day. The effects of SMP on calcium content and bone mineral density of femur were determined by atomic absorption spectrophotometry and dual-energy x-ray absorptiometry, respectively. Compared with the control, SMP at all dose levels tested had no particular effect on weight:length, calcium content, or bone mineral density of femurs. It was demonstrated that SMP (0.04 to 0.40 g/d) had no positive effect on bone loss in OVX rats, probably because the heat treatment used during SMP processing caused a loss of biological activity in the protein.

  7. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy.

    PubMed

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-03-25

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical (in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an anti-osteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint.

  8. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    PubMed Central

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical (in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an anti-osteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint. PMID:27022443

  9. Regeneration of Articular Cartilage Surface: Morphogens, Cells, and Extracellular Matrix Scaffolds.

    PubMed

    Sakata, Ryosuke; Iwakura, Takashi; Reddi, A Hari

    2015-10-01

    The articular cartilage is a well-organized tissue for smooth and friction-free joint movement for locomotion in animals and humans. Adult articular cartilage has a very low self-regeneration capacity due to its avascular nature. The regeneration of articular cartilage surface is critical to prevent the progression to osteoarthritis (OA). Although various joint resurfacing procedures in experimental articular cartilage defects have been developed, no standardized clinical protocol has yet been established. The three critical ingredients for tissue regeneration are morphogens and growth factors, cells, and scaffolds. The concepts based on the regeneration triad have been extensively investigated in animal models. However, these studies in animal models have demonstrated variable results and outcomes. An optimal animal model must precisely mimic and model the sequence of events in articular cartilage regeneration in human. In this article, the progress and remaining challenges in articular cartilage regeneration in animal models are reviewed. The role of individual morphogens and growth factors in cartilage regeneration has been investigated. In normal articular cartilage homeostasis, morphogens and growth factors function sequentially in tissue regeneration. Mesenchymal stem cell-based repair of articular cartilage defects, performed with or without various growth factors and scaffolds, has been widely attempted in animal models. Stem cells, including embryonic and adult stem cells and induced pluripotent stem cells, have also been reported as attractive cell sources for articular cartilage surface regeneration. Several studies with regard to scaffolds have been advanced, including recent investigations based on nanomaterials, functional mechanocompatible scaffolds, multilayered scaffolds, and extracellular matrix scaffolds for articular cartilage surface regeneration. Continuous refinement of animal models in chondral and osteochondral defects provide opportunities

  10. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery

    PubMed Central

    Balaji, V.; Kaila, R.; Wilson, L.

    2016-01-01

    Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418. PMID:27121215

  11. Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure.

    PubMed

    Wang, Jing; Zhang, Huijie; Zhu, Xiangdong; Fan, Hongsong; Fan, Yujiang; Zhang, Xingdong

    2013-08-01

    The biocompatibility and bioactivity of biomaterials used for hard tissue repair are closely related to their adsorption capacities for bone-related proteins. In the present study, three types of calcium phosphate (CaP) ceramic particles with different phase composition or microstructure were fabricated, and their protein adsorption abilities were investigated by a self-made device under the simulated dynamic physiological circumstance. The results of X-ray diffraction, field emission scanning electron microscopy, mercury penetration test, and nitrogen sorption test showed that the irregular hydroxyapatite (HA) ceramic particles obtained by conventional drying and sintering (named as HA-C) had fewer micropores and lower specific surface area (SSA) than did the spherical HA or biphasic calcium phosphate (BCP) ceramic particles made by spray drying and sintering (named as HA-S and BCP-S, respectively). The dynamic protein adsorption study proved that both the phase composition and microstructure of CaP ceramic particles affected their adsorption capacities for those bone-related proteins. The spherical HA-S and BCP-S particles with abundant micropores and high SSA showed higher adsorption of serum proteins, including fibronectin and vitronectin, than the irregular HA-C did. On the other hand, in spite of the relatively high concentration of bovine serum albumin (BSA) in the binary bone morphogenetic protein 2 (BMP-2)/BSA solution, BMP-2 adsorption on the three CaP ceramic particles increased with the increase in its initial concentration. Similarly, HA-S and BCP-S particles had a larger amount of the adsorbed BMP-2 per gram solid than HA-C did. Therefore, it could be believed that the difference of various CaP ceramics in the phase composition and microporous structure would affect their binding capacity for those bone-related proteins and thus lead to their difference in osteoinduction.

  12. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules.

    PubMed

    Ding, H F; Liu, R; Li, B G; Lou, J R; Dai, K R; Tang, T T

    2007-11-01

    We investigated the encapsulation of BMP-2 gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of bone morphogenic protein-2 (BMP-2) to induce bone formation. An electrostatic droplet generator was employed to produce APA microcapsules containing encapsulated beta-gal or BMP-2 gene-transfected bone marrow-derived MSCs. We found that X-gal staining was still positive 28 days after encapsulation. Encapsulated BMP-2 gene-transfected cells were capable of constitutive delivery of BMP-2 proteins for at least 30 days. The encapsulated BMP-2 gene-transfected MSCs or the encapsulated non-gene transfer MSCs (control group) were cocultured with the undifferentiated MSCs. The gene products from the encapsulated BMP-2 cells could induce the undifferentiated MSCs to become osteoblasts that had higher alkaline phosphatase (ALP) activity than those in the control group (p<0.05). The APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Mixed lymphocyte reaction also indicates that the APA microcapsules could prevent the encapsulated BMP-2 gene-transfected MSCs from initiating the cellular immune response. These results demonstrated that the nonautologous BMP-2 gene-transfected stem cells are of potential utility for enhancement of bone repair and bone regeneration in vivo.

  13. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. PMID:25952563

  14. Bone morphogenetic protein 7 polarizes THP-1 cells into M2 macrophages.

    PubMed

    Rocher, Crystal; Singla, Reetu; Singal, Pawan K; Parthasarathy, Sampath; Singla, Dinender K

    2012-07-01

    It was hypothesized that monocyte treatment with bone morphogenetic protein 7 (BMP7) would significantly enhance monocyte polarization into M2 macrophages as well as increasing the levels of anti-inflammatory cytokines. In a cell culture system using monocytes (human acute monocytic leukemia cell line THP-1), we studied the effects of BMP7 on monocytes polarizing into M2 macrophages. The data demonstrate that THP-1 cells contain a BMP type II receptor (BMPR2), and that its activation is significantly (p < 0.05) increased following treatment with BMP7. Furthermore, there was an increase of M2 macrophages, BMPR2, and anti-inflammatory cytokines interleukin (IL)-10 and IL-1ra compared with the respective controls. Moreover, treatment with BMP7 caused a significant (p < 0.05) decrease in the levels of pro-inflammatory cytokines IL-6, tumour necrosis factor (TNF-α), and monocyte chemotactic protein-1 (MCP-1), compared with the controls. In conclusion, we suggest for the first time that BMP7 has a unique potential to polarize monocytes into M2 macrophages, required for tissue repair, which will have significant applications for the treatment of atherosclerosis. PMID:22720873

  15. Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos

    PubMed Central

    Dunworth, William P.; Cardona-Costa, Jose; Bozkulak, Esra Cagavi; Kim, Jun-Dae; Meadows, Stryder; Fischer, Johanna C.; Wang, Yeqi; Cleaver, Ondine; Qyang, Yibing; Ober, Elke A.; Jin, Suk-Won

    2014-01-01

    Rationale The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. Objective Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. Methods and Results BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2 signaling in zebrafish embryos and mouse embryonic stem cell–derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox protein 1 during development. Conclusions Our data identify BMP2 as a key negative regulator for the emergence of the lymphatic lineage during vertebrate development. PMID:24122719

  16. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    PubMed

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  17. Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein

    PubMed Central

    Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian

    2015-01-01

    Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661

  18. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice.

    PubMed

    Ebelt, Henning; Hillebrand, Ina; Arlt, Stephan; Zhang, Ying; Kostin, Sawa; Neuhaus, Herbert; Müller-Werdan, Ursula; Schwarz, Elisabeth; Werdan, Karl; Braun, Thomas

    2013-04-01

    Various strategies have been devised to reduce the clinical consequences of myocardial infarction, including acute medical care, revascularization, stem cell transplantations, and more recently, prevention of cardiomyocyte cell death. Activation of embryonic signaling pathways is a particularly interesting option to complement these strategies and to improve the functional performance and survival rate of cardiomyocytes. Here, we have concentrated on bone morphogenetic protein 2 (BMP-2), which induces ectopic formation of beating cardiomyocytes during development in the mesoderm and protects neonatal cardiomyocytes from ischemia-reperfusion injury. In a mouse model of acute myocardial infarction, an i.v. injection of BMP-2 reduced infarct size in mice when given after left anterior descending artery ligation. Mice treated with BMP-2 are characterized by a reduced rate of apoptotic cardiomyocytes both in the border zone of the infarcts and in the remote myocardium. In vitro, BMP-2 increases the frequency of spontaneously beating neonatal cardiomyocytes and the contractile performance under electrical pacing at 2 Hz, preserves cellular adenosine triphosphate stores, and decreases the rate of apoptosis despite the increased workload. In addition, BMP-2 specifically induced phosphorylation of Smad1/5/8 proteins and protected adult cardiomyocytes from long-lasting hypoxia-induced cellular damage and oxidative stress without activation of the cardiodepressant transforming growth factor-β pathway. Our data suggest that BMP-2 treatment may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by improving the contractility of cardiomyocytes and preventing cardiomyocyte cell death.

  19. Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis.

    PubMed

    Bryant, Andrew J; Robinson, Linda J; Moore, Christy S; Blackwell, Thomas R; Gladson, Santhi; Penner, Niki L; Burman, Ankita; McClellan, Lucas J; Polosukhin, Vasiliy V; Tanjore, Harikrishna; McConaha, Melinda E; Gleaves, Linda A; Talati, Megha A; Hemnes, Anna R; Fessel, Joshua P; Lawson, William E; Blackwell, Timothy S; West, James D

    2015-12-01

    Pulmonary fibrosis is often complicated by pulmonary hypertension (PH), and previous studies have shown a potential link between bone morphogenetic protein receptor II (BMPR2) and PH secondary to pulmonary fibrosis. We exposed transgenic mice expressing mutant BMPR2 and control mice to repetitive intraperitoneal injections of bleomycin for 4 weeks. The duration of transgene activation was too short for mutant BMPR2 mice to develop spontaneous PH. Mutant BMPR2 mice had increased right ventricular systolic pressure compared to control mice, without differences in pulmonary fibrosis. We found increased hypoxia-inducible factor (HIF)1-α stabilization in lungs of mutant-BMPR2-expressing mice compared to controls following bleomycin treatment. In addition, expression of the hypoxia response element protein connective tissue growth factor was increased in transgenic mice as well as in a human pulmonary microvascular endothelial cell line expressing mutant BMPR2. In mouse pulmonary vascular endothelial cells, mutant BMPR2 expression resulted in increased HIF1-α and reactive oxygen species production following exposure to hypoxia, both of which were attenuated with the antioxidant TEMPOL. These data suggest that expression of mutant BMPR2 worsens secondary PH through increased HIF activity in vascular endothelium. This pathway could be therapeutically targeted in patients with PH secondary to pulmonary fibrosis.

  20. Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis

    PubMed Central

    Robinson, Linda J.; Moore, Christy S.; Blackwell, Thomas R.; Gladson, Santhi; Penner, Niki L.; Burman, Ankita; McClellan, Lucas J.; Polosukhin, Vasiliy V.; Tanjore, Harikrishna; McConaha, Melinda E.; Gleaves, Linda A.; Talati, Megha A.; Hemnes, Anna R.; Fessel, Joshua P.; Lawson, William E.; Blackwell, Timothy S.; West, James D.

    2015-01-01

    Abstract Pulmonary fibrosis is often complicated by pulmonary hypertension (PH), and previous studies have shown a potential link between bone morphogenetic protein receptor II (BMPR2) and PH secondary to pulmonary fibrosis. We exposed transgenic mice expressing mutant BMPR2 and control mice to repetitive intraperitoneal injections of bleomycin for 4 weeks. The duration of transgene activation was too short for mutant BMPR2 mice to develop spontaneous PH. Mutant BMPR2 mice had increased right ventricular systolic pressure compared to control mice, without differences in pulmonary fibrosis. We found increased hypoxia-inducible factor (HIF)1-α stabilization in lungs of mutant-BMPR2-expressing mice compared to controls following bleomycin treatment. In addition, expression of the hypoxia response element protein connective tissue growth factor was increased in transgenic mice as well as in a human pulmonary microvascular endothelial cell line expressing mutant BMPR2. In mouse pulmonary vascular endothelial cells, mutant BMPR2 expression resulted in increased HIF1-α and reactive oxygen species production following exposure to hypoxia, both of which were attenuated with the antioxidant TEMPOL. These data suggest that expression of mutant BMPR2 worsens secondary PH through increased HIF activity in vascular endothelium. This pathway could be therapeutically targeted in patients with PH secondary to pulmonary fibrosis. PMID:26697175

  1. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis.

  2. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice.

    PubMed Central

    Kitazawa, R; Kimble, R B; Vannice, J L; Kung, V T; Pacifici, R

    1994-01-01

    To investigate the contribution of IL-1, IL-6, and TNF to the increased osteoclastogenesis induced by estrogen deficiency, ovariectomized (ovx) mice were treated with either IL-1 receptor antagonist (IL-1ra), a competitive inhibitor of IL-1, TNF binding protein (TNFbp), an inhibitor of TNF, or the anti-IL-6 antibody (Ab) 20F3 for the first 2 wk after surgery. ovx increased the bone marrow cells secretion of IL-1 and TNF, but not IL-6, and the formation of TRAP-positive osteoclast-like multinucleated cells (MNCs) in bone marrow cultures treated with 1,25(OH)2D3. The increase in MNC formation induced by ovx was prevented by in vivo treatment with either 17 beta estradiol, IL-1ra, TNFbp, or anti-IL-6 Ab. However, the percent change in MNC formation induced by the anti-IL-6 Ab was similar in ovx and sham-operated animals, whereas IL-1ra and TNFbp were effective only in ovx mice. MNC formation was also decreased by in vitro treatment of bone marrow cultures with IL-1ra and TNFbp, but not with anti-IL-6 Ab. Ovx also increased bone resorption in vivo and in vitro, as assessed by the urinary excretion of pyridinoline cross links and the formation of resorption pits, respectively. IL-1ra, TNFbp and estrogen decreased bone resorption in vivo and in vitro whereas the anti-IL-6 Ab inhibited bone resorption in vitro but not in vivo. In conclusion, these data indicate that IL-1 and TNF play a direct role in mediating the effects of ovx on osteoclastogenesis and bone resorption. The data also suggest that IL-6 is not essential for increasing bone resorption in the early postovariectomy period. Images PMID:7989596

  3. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    PubMed Central

    Hassan, Ali Habiballah; Hosny, Khaled Mohamed; Murshid, Zuahir A; Alhadlaq, Adel; Alyamani, Ahmed; Naguib, Ghada

    2015-01-01

    Objective The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA) and polycaprolactone (PCL), to prepare sustained-release injectable nanoparticles (NPs) of bone morphogenetic protein-2 (BMP-2) for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2) containing grafting material for the repair of alveolar bone clefts. Materials and methods BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 μg/kg of rhBMP-2 NP formulations. Results The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w) ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for scanning electron microscope examination and in vivo evaluation. Histomorphometric analysis showed 78% trabecular bone fill, mostly mature bone in the defects treated with rhBMP-2 in NPs within 6 weeks. Conclusion The prepared NPs prolonged the release and the residence time of rhBMP-2 in rabbits, which led to the formation of adequate bone in critical size alveolar bone defects in 6 weeks. This noninvasive method has application for the primary restoration of alveolar bone defects. PMID:26203226

  4. A covalently dimerized recombinant human bone morphogenetic protein-15 variant identifies bone morphogenetic protein receptor type 1B as a key cell surface receptor on ovarian granulosa cells.

    PubMed

    Pulkki, Minna M; Mottershead, David G; Pasternack, Arja H; Muggalla, Pranuthi; Ludlow, Helen; van Dinther, Maarten; Myllymaa, Samu; Koli, Katri; ten Dijke, Peter; Laitinen, Mika; Ritvos, Olli

    2012-03-01

    Genetic studies have identified bone morphogenetic protein-15 (BMP15) as an essential regulator of female fertility in humans and in sheep. Oocyte-derived BMP15 is a noncovalently linked dimeric growth factor mediating its effects to ovarian somatic cells in a paracrine manner. Although receptor ectodomains capable of binding BMP15 have previously been reported, no cell surface receptor complex involved in BMP15 signaling has previously been characterized. Here we have expressed and purified recombinant human BMP15 noncovalent and covalent dimer variants. The biological effects of these BMP15 variants were assessed in cultured human granulosa-luteal cells or COV434 granulosa cell tumor cells using BMP-responsive transcriptional reporter assays and an inhibin B ELISA. Biochemical characterization of ligand-receptor interactions was performed with affinity-labeling experiments using [(125)I]iodinated BMP15 variants. Both ligand variants were shown to form homodimers and to stimulate Smad1/5/8 signaling and inhibin B production in human granulosa cells in a similar manner. [(125)I]Iodination of both ligands was achieved, but only the covalent dimer variant retained receptor binding capacity. The [(125)I]BMP15(S356C) variant bound preferentially to endogenous BMP receptor 1B (BMPR1B) and BMPR2 receptors on COV434 cells. Binding experiments in COS cells with overexpression of these receptors confirmed that the [(125)I]BMP15(S356C) variant binds to BMPR1B and BMPR2 forming the BMP15 signaling complex. The results provide the first direct evidence in any species on the identification of specific cell surface receptors for a member of the GDF9/BMP15 subfamily of oocyte growth factors. The fact that BMP15 uses preferentially BMPR1B as its type I receptor suggests an important role for the BMPR1B receptor in human female fertility. The result is well in line with the demonstration of ovarian failure in a recently reported human subject with a homozygous BMPR1B loss

  5. Evaluation of early cellular influences of bone morphogenetic proteins 12 and 2 on equine superficial digital flexor tenocytes and bone marrow–derived mesenchymal stem cells in vitro

    PubMed Central

    Murray, Shannon J.; Santangelo, Kelly S.; Bertone, Alicia L.

    2014-01-01

    Objective To evaluate early cellular influences of bone morphogenetic protein (BMP)12 and BMP2 on equine superficial digital flexor tenocytes (SDFTNs) and equine bone marrow–derived mesenchymal stem cells (BMDMSCs). Animals 9 adult clinically normal horses. Procedures BMDMSCs and SDFTNs were cultured in monolayer, either untreated or transduced with adenovirus encoding green fluorescent protein, adenovirus encoding BMP12, or adenovirus encoding BMP2. Cytomorphologic, cytochemical, immunocytochemical, and reverse transcriptase–quantitative PCR (RT-qPCR) analyses were performed on days 3 and 6. Genetic profiling for effects of BMP12 was evaluated by use of an equine gene expression microarray on day 6. Results BMDMSCs and SDFTNs had high BMP12 gene expression and remained viable and healthy for at least 6 days. Type l collagen immunocytochemical staining for SDFTNs and tenocyte-like morphology for SDFTNs and BMDMSCs were greatest in BMP12 cells. Cartilage oligomeric matrix protein, as determined via RT-qPCR assay, and chondroitin sulfate, as determined via gene expression microarray analysis, were upregulated relative to control groups in SDFTN-BMP12 cells. The BMDMSCs and SDFTNs became mineralized with BMP2, but not BMP12. Superficial digital flexor tenocytes responded to BMP12 with upregulation of genes relevant to tendon healing and without mineralization as seen with BMP2. Conclusions and Clinical Relevance Targeted equine SDFTNs may respond to BMP12 with improved tenocyte morphology and without mineralization, as seen with BMP2. Bone marrow–derived mesenchymal stem cells may be able to serve as a cell delivery method for BMP12. PMID:20043789

  6. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    PubMed

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  7. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    PubMed

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-12-16

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active.

  8. Characterization of human bone morphogenetic protein gene variants for possible roles in congenital heart disease

    PubMed Central

    Li, Fei Feng; Deng, Xia; Zhou, Jing; Yan, Peng; Zhao, Er Ying; Liu, Shu Lin

    2016-01-01

    Congenital heart disease (CHD) is a complex illness with high rates of morbidity and mortality. In embryonic development, the heart is the first formed organ, which is strictly controlled by gene regulatory networks, including transcription factors, signaling pathways, epigenetic factors and microRNAs. Bone morphogenetic protein (BMP)-2 and -4 are essential in cardiogenesis as they can induce the expression of transcription factors, NKX2-5 and GATA binding protein 4, which are important in the development of the heart. The inhibition of BMP-2 and 4- inhibits the late expression of NKX2-5 and affects cardiac differentiation. The aim of the present study was to investigate whether BMP-2 and -4 variations may be associated with CHD in Chinese Han populations. The rs1049007, rs235768 and rs17563 single nucleotide polymorphisms (SNPs), which are genetic variations located within the translated region of the BMP-2 and -4, were evaluated in 230 patients with CHD from the Chinese Han population and 160 non CHD control individuals. Statistical analyses were performed using the χ2 test, implemented using SPSS software (version 13.0). The Hardy Weinberg equilibrium test was performed on the population using online Online Encyclopedia for Genetic Epidemiology studies software, and multiple-sequence alignments of the BMP proteins were performed using Vector NTI software. No statistically significant associations were identified between these genetic variations and the risk of CHD (rs1049007, P value=0.560; rs235768, P value=0.972; rs17563, P value=0.787). In addition, no correlation was found between the patients with CHD and the non-CHD control individuals. Therefore, the rs1049007, rs235768 and rs17563 genetic variations of BMP-2 were not associated with CHD in the Chinese Han population. PMID:27357418

  9. Bone morphogenetic protein 15 (BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis.

    PubMed

    Di Pasquale, Elisa; Brivanlou, Ali H

    2009-09-18

    Bone morphogenetic protein 15 (BMP15) belongs to an unusual subgroup of the transforming growth factor beta (TGFbeta) superfamily of signaling ligands as it lacks a key cysteine residue in the mature region required for proper intermolecular dimerization. Naturally occurring BMP15 mutation leads to early ovarian failure in humans, and BMP15 has been shown to activate the Smad1/5/8 pathway in that context. Despite its important role in germ cell specification, the embryological function of BMP15 remains unknown. Surprisingly, we find that during early Xenopus embryogenesis BMP15 acts solely as an inhibitor of the Smad1/5/8 pathway and the Wnt pathway. BMP15 gain-of-function leads to embryos with secondary ectopic heads and to direct neural induction in intact explants. BMP15 inhibits BMP4-mediated epidermal induction in dissociated explants. BMP15 strongly inhibits BRE response induced by BMP4 and blocks phosphorylation and activation of Smad1/5/8 MH2-domain. Mechanistically, BMP15 protein specifically interacts with BMP4 protein, suggesting inhibition upstream of receptor binding. Loss-of-function experiments using morpholinos or a naturally occurring human BMP15 dominant-negative mutant (BMP15-Y235C) leads to embryos lacking head. BMP15-Y235C also eliminates the inhibitory activity of BMP15 on BRE (BMP-responsive element). Finally, we show that BMP15 inhibits the canonical branch of the Wnt pathway, upstream of beta-catenin. We, thus, demonstrate that BMP15 is necessary and sufficient for the specification of dorso-anterior structures and highlight novel mechanisms of BMP15 function that strongly suggest a reinterpretation of its function in ovaries specially for ovarian failure.

  10. MiR-503 inhibits adipogenesis by targeting bone morphogenetic protein receptor 1a

    PubMed Central

    Man, Xiao-Fei; Tan, Shu-Wen; Tang, Hao-Neng; Guo, Yue; Tang, Chen-Yi; Tang, Jun; Zhou, Ci-La; Zhou, Hou-De

    2016-01-01

    Adipogenesis plays a key role in the regulation of whole-body energy homeostasis and is critically related to obesity. To overcome obesity and its associated disorders, it is necessary to elucidate the molecular mechanisms involved in adipogenesis. An adipogenesis-related miRNA array analysis demonstrated that miR-503 was differentially expressed before and after adipocyte differentiation; however, the exact role of miR-503 in adipocyte differentiation is unclear. Thus, the objective of this study was to further examine miR-503 in adipocyte differentiation. We found significantly decreased expression of miR-503 during adipocyte differentiation process. Using bioinformatic analysis, miR-503 was identified as a potential regulator of Bone Morphogenetic Protein Receptor 1a (BMPR1a). We then validated BMPR1a as the target of miR-503 using a dual luciferase assay, and found decreased miR-503 and increased BMPR1a expression during adipogenesis. Overexpression of miR-503 in preadipocytes repressed expression of BMPR1a and adipogenic-related factors such as CCAAT/enhancer binding protein a (C/EBPα), proliferator-activated receptor-gamma (PPARγ), and adipocyte protein 2 (AP2). In addition, miR-503 overexpression impaired the phosphoinositol-3 kinase (PI3K)/Akt pathway. Inhibition of miR-503 had the opposite effect. Additionally, BMPR1a interference by siRNA attenuated adipocyte differentiation and the accumulation of lipid droplets via downregulating the PI3K/Akt signaling pathway. Our study provides the first evidence of the role miR-503 plays in adipocyte differentiation by regulating BMPR1a via the PI3K/Akt pathway, which may become a novel target for obesity therapy. PMID:27398155

  11. Characterization of human bone morphogenetic protein gene variants for possible roles in congenital heart disease.

    PubMed

    Li, Fei-Feng; Deng, Xia; Zhou, Jing; Yan, Peng; Zhao, Er-Ying; Liu, Shu-Lin

    2016-08-01

    Congenital heart disease (CHD) is a complex illness with high rates of morbidity and mortality. In embryonic development, the heart is the first formed organ, which is strictly controlled by gene regulatory networks, including transcription factors, signaling pathways, epigenetic factors and microRNAs. Bone morphogenetic protein (BMP)-2 and -4 are essential in cardiogenesis as they can induce the expression of transcription factors, NKX2‑5 and GATA binding protein 4, which are important in the development of the heart. The inhibition of BMP‑2 and ‑4 inhibits the late expression of NKX2-5 and affects cardiac differentiation. The aim of the present study was to investigate whether BMP-2 and ‑4 variations may be associated with CHD in Chinese Han populations. The rs1049007, rs235768 and rs17563 single nucleotide polymorphisms (SNPs), which are genetic variations located within the translated region of the BMP-2 and -4, were evaluated in 230 patients with CHD from the Chinese Han population and 160 non-CHD control individuals. Statistical analyses were performed using the χ2 test, implemented using SPSS software (version 13.0). The Hardy-Weinberg equilibrium test was performed on the population using online Online Encyclopedia for Genetic Epidemiology studies software, and multiple-sequence alignments of the BMP proteins were performed using Vector NTI software. No statistically significant associations were identified between these genetic variations and the risk of CHD (rs1049007, P‑value=0.560; rs235768, P‑value=0.972; rs17563, P‑value=0.787). In addition, no correlation was found between the patients with CHD and the non‑CHD control individuals. Therefore, the rs1049007, rs235768 and rs17563 genetic variations of BMP-2 were not associated with CHD in the Chinese Han population. PMID:27357418

  12. Whole-body vibration can reduce calciuria induced by high protein intakes and may counteract bone resorption: A preliminary study.

    PubMed

    Cardinale, M; Leiper, J; Farajian, P; Heer, M

    2007-01-01

    Excess protein intake can adversely affect the bone via an increase in calcium excretion, while suitable mechanical loading promotes osteogenesis. We therefore investigated whether vibration exposure could alleviate the bone mineral losses associated with a metabolic acidosis. Ten healthy individuals aged 22 - 29 years (median = 25) underwent three 5-day study periods while monitoring their dietary intake. The study consisted of recording the participants' usual dietary intake for 5 consecutive days. Participants were then randomly divided into two groups, one of which received a protein supplement (2 g x kg(-1) body mass x day(-1); n = 5) and the other whole-body low-magnitude (3.5 g), low-frequency (30 Hz) mechanical vibration (WBV) delivered through a specially designed vibrating plate for 10 min each day (n = 5). Finally, for the third treatment period, all participants consumed the protein supplement added to their normal diet and were exposed to WBV exercise for 10 min per day. Daily urine samples were collected throughout the experimental periods to determine the excretion of calcium, phosphate, titratable acid, urea, and C-telopeptide. As expected, when the participants underwent the high protein intake, there was an increase in urinary excretion rates of calcium (P < 0.001), phosphate (P < 0.003), urea (P < 0.001), titratable acid (P < 0.001), and C-telopeptide (P < 0.05) compared with baseline values. However, high protein intake coupled with vibration stimulation resulted in a significant reduction in urinary calcium (P = 0.006), phosphate excretion (P = 0.021), and C-telopeptide (P < 0.05) compared with protein intake alone, but did not affect titratable acid and urea output. The participants showed no effect of WBV exercise alone on urinary excretion of calcium, phosphate, urea, titratable acid, or C-telopeptide. The results indicate that vibration stimulation can moderate the increase in bone resorption and reduction in bone formation caused by a

  13. Influence of bone morphogenetic protein-2 on spiral ganglion neurite growth in vitro.

    PubMed

    Volkenstein, Stefan; Brors, D; Hansen, S; Minovi, A; Laub, M; Jennissen, H P; Dazert, S; Neumann, A

    2009-09-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a growth factor of the transforming growth factor-beta superfamily. Members of this protein family are involved in the development of various mammalian tissues, including the inner ear. As their notations indicate, they also have well-known effects on bone formation and regeneration. In this study, we examined the influence of rhBMP-2 on spiral ganglion (SG) neurite growth in vitro and showed the presence of its most preferred receptor BMPR-IB in spiral ganglion cells both in vitro and in vivo. SG explants of postnatal day 4 rats were analysed for neurite length and number after organotypical cell culture for 72 h, fixation and immunolabeling. Different concentrations of rhBMP-2 were used in a serum-free culture media. Neurite growth was compared with control groups that lacked stimulative effects; with neutrophin-3 (NT-3), which is a well-established positive stimulus on neurite length and number; and with combinations of these parameters. The results display that neurite number and total neurite length per explant in particular concentrations of rhBMP-2 increased by a maximum factor of two, while the mean neurite length was not affected. NT-3 demonstrated a much more potent effect, delivering a maximum increase of a factor of five. Furthermore, a combination of both growth factors shows a predominant effect on NT-3. Immunohistological detection of BMPR-IB was successful both in cell culture explants and in paraffin-embedded sections of animals of different ages. The results show that rhBMP-2 is, among other growth factors, a positive stimulus for SG neurite growth in vitro. Most growth factors are unstable and cannot be attached to surfaces without loss of their biological function. In contrast, rhBMP-2 can be attached to metal surfaces without loss of activity. Our findings suggest in vivo studies and a future clinical application of rhBMP-2 in cochlear implant technology to improve the tissue

  14. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins

    PubMed Central

    Rahman, M. Azizur

    2016-01-01

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery. PMID:27626432

  15. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins.

    PubMed

    Rahman, M Azizur

    2016-01-01

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery. PMID:27626432

  16. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins.

    PubMed

    Rahman, M Azizur

    2016-09-12

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.

  17. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia

    PubMed Central

    Seijo, Irene; Andrés, Germán; Rodríguez-Navas, Carmen; González-Méndez, Laura; Guerrero, Isabel

    2013-01-01

    Summary Hedgehog (Hh) signalling is important in development, stem cell biology and disease. In a variety of tissues, Hh acts as a morphogen to regulate growth and cell fate specification. Several hypotheses have been proposed to explain morphogen movement, one of which is transport via filopodia-like protrusions called cytonemes. Here, we analyse the mechanism underlying Hh movement in the wing disc and the abdominal epidermis of Drosophila. We show that, in both epithelia, cells generate cytonemes in regions of Hh signalling. These protrusions are actin-based and span several cell diameters. Various Hh signalling components localise to cytonemes, as well as to punctate structures that move along cytonemes and are probably exovesicles. Using in vivo imaging, we show that cytonemes are dynamic structures and that Hh gradient establishment correlates with cytoneme formation in space and time. Indeed, mutant conditions that affect cytoneme formation reduce both cytoneme length and Hh gradient length. Our results suggest that cytoneme-mediated Hh transport is the mechanistic basis for Hh gradient formation. PMID:24121526

  18. Butterfly eyespot patterns: evidence for specification by a morphogen diffusion gradient.

    PubMed

    Monteiro, A; French, V; Smit, G; Brakefield, P M; Metz, J A

    2001-01-01

    In this paper we describe a test for Nijhout's (1978, 1980a) hypothesis that the eyespot patterns on butterfly wings are the result of a threshold reaction of the epidermal cells to a concentration gradient of a diffusing degradable morphogen produced by focal cells at the centre of the future eyespot. The wings of the nymphalid butterfly, Bicyclus anynana, have a series of eyespots. each composed of a white pupil, a black disc and a gold outer ring. In earlier extirpation and transplantation experiments (Nijhout 1980a; French and Brakefield, 1995) it has been established that these eyespots are indeed organised around groups of signalling cells active during the first hours of pupal development. If these cells were to supply the positional information for eyespot formation in accordance with Nijhout's diffusion-degradation gradient model, then, when two foci are close together. the signals should sum, and this effect should be apparent in the detailed shape of the resulting pigment pattern. We give an equation for the form of the contours that would be obtained in this manner. We use this to test the morphogen gradient hypothesis on measurements of the outlines of fused eyespots obtained either by grafting focal cells close together, or by using a mutation (Spotty) that produces adjacent fused eyespots. The contours of the fused patterns were found to satisfy our equation, thus corroborating Nijhout's hypothesis to the extent possible with this particular type of experiment. PMID:11450809

  19. The structure and morphogenic changes of antennae of Matsucoccus matsumurae (Hemiptera: Coccoidea: Matsucoccidae) in different instars.

    PubMed

    Wang, Xu; Xie, Yingping; Zhang, Yanfeng; Liu, Weimin; Wu, Jun

    2016-05-01

    To better understand the functioning and morphogenic changes of the antennae of Matsucoccus matsumurae (Kuwana) in different instars, the antennae are examined using light microscopy, scanning and transmission electron microscopy. The results show that the antennae of M. matsumurae display three different styles in morphology and sensillar distribution in different instars. The antennae of first instar nymphs are relatively simple, including one campaniform sensillum (Ca), four smooth aporous trichoid sensilla (SAt), two intersegmental sensilla (Ins), two coeloconic sensilla (Co), three multiporous pegs (Mp) and four uniporous pegs (Up). The antennae of adult females and third instar male nymphs both possess similar antennae, and exhibit seven types of sensilla. Adult female antennae have in total 82-108 sensilla, including 9-16 Böhm's bristle (Bb), 3-7 Ca, 50-75 SAt, 0-3 Ins, 3-10 Co, 8 Mp and 5 Up, whereas third instar male nymph antennae possess approximately 62-79 sensilla. Adult male antennae are the most developed, possessing 259-312 sensilla, including 7-15 Bb, 2-5 Ca, 7-11 grooved aporous trichoid sensilla, 4-9 SAt, 0-3 Ins, 2-7 Co, 23-29 knobbed seta sensilla, 179-230 multiporous trichoid sensilla and 8 Mp. Based on these results, the main functions and morphogenic changes of antennae M. matsumurae in different instars are discussed.

  20. Butterfly eyespot patterns: evidence for specification by a morphogen diffusion gradient.

    PubMed

    Monteiro, A; French, V; Smit, G; Brakefield, P M; Metz, J A

    2001-01-01

    In this paper we describe a test for Nijhout's (1978, 1980a) hypothesis that the eyespot patterns on butterfly wings are the result of a threshold reaction of the epidermal cells to a concentration gradient of a diffusing degradable morphogen produced by focal cells at the centre of the future eyespot. The wings of the nymphalid butterfly, Bicyclus anynana, have a series of eyespots. each composed of a white pupil, a black disc and a gold outer ring. In earlier extirpation and transplantation experiments (Nijhout 1980a; French and Brakefield, 1995) it has been established that these eyespots are indeed organised around groups of signalling cells active during the first hours of pupal development. If these cells were to supply the positional information for eyespot formation in accordance with Nijhout's diffusion-degradation gradient model, then, when two foci are close together. the signals should sum, and this effect should be apparent in the detailed shape of the resulting pigment pattern. We give an equation for the form of the contours that would be obtained in this manner. We use this to test the morphogen gradient hypothesis on measurements of the outlines of fused eyespots obtained either by grafting focal cells close together, or by using a mutation (Spotty) that produces adjacent fused eyespots. The contours of the fused patterns were found to satisfy our equation, thus corroborating Nijhout's hypothesis to the extent possible with this particular type of experiment.

  1. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice.

    PubMed

    Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay

    2015-06-01

    Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running.

  2. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    SciTech Connect

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen Chen, Fulin

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  3. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maegawa, Naoki; Kawamura, Kenji; Hirose, Motohiro; Yajima, Hiroshi; Takakura, Yoshinori; Ohgushi, Hajime

    2007-01-01

    It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering. PMID:18038421

  4. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.

    PubMed

    Kim, In Gul; Hwang, Mintai P; Du, Ping; Ko, Jaehoon; Ha, Chul-won; Do, Sun Hee; Park, Kwideok

    2015-05-01

    Successful bone tissue engineering generally requires an osteoconductive scaffold that consists of extracellular matrix (ECM) to mimic the natural environment. In this study, we developed a PLGA/PLA-based mesh scaffold coated with cell-derived extracellular matrix (CDM) for the delivery of bone morphogenic protein (BMP-2), and assessed the capacity of this system to provide an osteogenic microenvironment. Decellularized ECM from human lung fibroblasts (hFDM) was coated onto the surface of the polymer mesh scaffolds, upon which heparin was then conjugated onto hFDM via EDC chemistry. BMP-2 was subsequently immobilized onto the mesh scaffolds via heparin, and released at a controlled rate. Human placenta-derived mesenchymal stem cells (hPMSCs) were cultured in such scaffolds and subjected to osteogenic differentiation for 28 days in vitro. The results showed that alkaline phosphatase (ALP) activity, mineralization, and osteogenic marker expression were significantly improved with hPMSCs cultured in the hFDM-coated mesh scaffolds compared to the control and fibronectin-coated ones. In addition, a mouse ectopic and rat calvarial bone defect model was used to examine the feasibility of current platform to induce osteogenesis as well as bone regeneration. All hFDM-coated mesh groups exhibited a significant increase of newly formed bone and in particular, hFDM-coated mesh scaffold loaded with a high dose of BMP-2 exhibited a nearly complete bone defect healing as confirmed via micro-CT and histological observation. This work proposes a great potency of using hFDM (biophysical) coupled with BMP-2 (biochemical) as a promising osteogenic microenvironment for bone tissue engineering applications.

  5. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin

    PubMed Central

    Bonnet, Nicolas; Conway, Simon J.; Ferrari, Serge L.

    2012-01-01

    Periostin (Postn) is a matricellular protein preferentially expressed by osteocytes and periosteal osteoblasts in response to mechanical stimulation and parathyroid hormone (PTH). Whether and how periostin expression influences bone anabolism, however, remains unknown. We investigated the skeletal response of adult Postn−/− and Postn+/+ mice to intermittent PTH. Compared with Postn+/+, Postn−/− mice had a lower bone mass, cortical bone volume, and strength response to PTH. PTH-stimulated bone-forming indices were all significantly lower in Postn−/− mice, particularly at the periosteum. Furthermore, in vivo stimulation of Wnt-β-catenin signaling by PTH, as evaluated in TOPGAL reporter mice, was inhibited in the absence of periostin (TOPGAL;Postn−/− mice). PTH stimulated periostin and inhibited MEF2C and sclerostin (Sost) expression in bone and osteoblasts in vitro. Recombinant periostin also suppressed Sost expression, which was mediated through the integrin αVβ3 receptor, whereas periostin-blocking antibody prevented inhibition of MEF2C and Sost by PTH. In turn, administration of a Sost-blocking antiboby partially restored the PTH-mediated increase in bone mass in Postn−/− mice. In addition, primary osteoblasts from Postn−/− mice showed a lower proliferation, mineralization, and migration, both spontaneously and in response to PTH. Osteoblastic gene expression levels confirmed a defect of Postn−/− osteoblast differentiation with and without PTH, as well as an increased osteoblast apoptosis in the absence of periostin. These data elucidate the complex role of periostin on bone anabolism, through the regulation of Sost, Wnt-β-catenin signaling, and osteoblast differentiation. PMID:22927401

  6. Inhaled formaldehyde induces DNA-protein crosslinks and oxidative stress in bone marrow and other distant organs of exposed mice.

    PubMed

    Ye, Xin; Ji, Zhiying; Wei, Chenxi; McHale, Cliona M; Ding, Shumao; Thomas, Reuben; Yang, Xu; Zhang, Luoping

    2013-12-01

    Formaldehyde (FA), a major industrial chemical and ubiquitous environmental pollutant, has been classified as a leukemogen. The causal relationship remains unclear, however, due to limited evidence that FA induces toxicity in bone marrow, the site of leukemia induction, and in other distal organs. Although induction of DNA-protein crosslinks (DPC), a hallmark of FA toxicity, was not previously detected in the bone marrow of FA-exposed rats and monkeys in studies published in the 1980s, our recent studies showed increased DPC in the bone marrow, liver, kidney, and testes of exposed Kunming mice. To confirm these preliminary results, in the current study we exposed BALB/c mice to 0, 0.5, 1.0, and 3.0 mg m(-3) FA (8 hr per day, for 7 consecutive days) by nose-only inhalation and measured DPC levels in bone marrow and other organs of exposed mice. As oxidative stress is a potential mechanism of FA toxicity, we also measured glutathione (GSH), reactive oxygen species (ROS), and malondialdehyde (MDA), in the bone marrow, peripheral blood mononuclear cells, lung, liver, spleen, and testes of exposed mice. Significant dose-dependent increases in DPC, decreases in GSH, and increases in ROS and MDA were observed in all organs examined (except for DPC in lung). Bone marrow was among the organs with the strongest effects for DPC, GSH, and ROS. In conclusion, exposure of mice to FA by inhalation induced genotoxicity and oxidative stress in bone marrow and other organs. These findings strengthen the biological plausibility of FA-induced leukemogenesis and systemic toxicity.

  7. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  8. Bisphosphonate-linked hyaluronic acid hydrogel sequesters and enzymatically releases active bone morphogenetic protein-2 for induction of osteogenic differentiation.

    PubMed

    Hulsart-Billström, Gry; Yuen, Pik Kwan; Marsell, Richard; Hilborn, Jöns; Larsson, Sune; Ossipov, Dmitri

    2013-09-01

    Regeneration of bone by delivery of bone morphogenetic proteins (BMPs) from implantable scaffolds is a promising alternative to the existing autologous bone grafting procedures. Hydrogels are used extensively in biomaterials as delivery systems for different growth factors. However, a controlled release of the growth factors is necessary to induce bone formation, which can be accomplished by various chemical functionalities. Herein we demonstrate that functionalization of a hyaluronan (HA) hydrogel with covalently linked bisphosphonate (BP) ligands provides efficient sequestering of BMP-2 in the resulting HA-BP hydrogel. The HA-BP hydrogel was investigated in comparison with its analogue lacking BP groups (HA hydrogel). While HA hydrogel released 100% of BMP-2 over two weeks, less than 10% of BMP-2 was released from the HA-BP hydrogel for the same time. We demonstrate that the sequestered growth factor can still be released by enzymatic degradation of the HA-BP hydrogel. Most importantly, entrapment of BMP-2 in HA-BP hydrogel preserves the growth factor bioactivity, which was confirmed by induction of osteogenic differentiation of mesenchymal stem cells (MSCs) after the cells incubation with the enzymatic digest of the hydrogel. At the same time, the hydrogels degradation products were not toxic to MSCs and osteoblasts. Furthermore, BP-functionalization of HA hydrogels promotes adhesion of the cells to the surface of HA hydrogel. Altogether, the present findings indicate that covalent grafting of HA hydrogel with BP groups can alter the clinical effects of BMPs in bone tissue regeneration.

  9. Tissue engineering for lateral ridge augmentation with recombinant human bone morphogenetic protein 2 combination therapy: a case report.

    PubMed

    Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei

    2015-01-01

    This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations. PMID:25909520

  10. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells.

    PubMed

    Liu, Chun; Ma, Xueqin; Li, Tao; Zhang, Qiqing

    2015-09-01

    Osteoarthritis, a common joint degeneration, can cause breakdown of articular cartilage with the presence of lubricin metabolic abnormalities. Lubricin is a multi-level chondroprotective mucinous glycoprotein in articular joints. Joint defect and infection is elevated and accompanied by accelerated cartilage lesions involving degradation and loss of lubricin. However, a novel, heterocyclic compound called kartogenin (KGN) was discovered to stimulate chondrogenic differentiation of bone-derived mesenchymal stem cells (BMSCs). And the synergistic effect of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7) could provoke lubricin accumulation. This paper attempted to explore the connection between accumulation of lubricin and the effect of TGF-β1, BMP-7 and/or KGN. Hence, we investigated the expression and secretion of lubricin in BMSCs treated with different combinations of TGF-β1, BMP-7, and/or KGN. Using an in vitro BMSCs system, we observed the content of lubricin from BMSCs treated with TGF-β1, BMP-7, and KGN was the highest at both the protein level and the gene level. The accumulation of lubricin was enhanced coordinately by the increase of synthesis and decrease of degradation possibly via c-Myc and adamts5 pathway. These results further suggested that supplementation of the defect parts with lubricin by using growth factors and small molecules showed a promising potential on preventing joint deterioration in patients with acquired or genetic deficiency of lubricin in the future of regenerative medicine.

  11. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases

    PubMed Central

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-01-01

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of Bmp7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases. PMID:27679685

  12. Identifying an ovarian cancer cell hierarchy regulated by bone morphogenetic protein 2

    PubMed Central

    Choi, Yun-Jung; Ingram, Patrick N.; Yang, Kun; Coffman, Lan; Iyengar, Mangala; Bai, Shoumei; Thomas, Dafydd G.; Yoon, Euisik; Buckanovich, Ronald J.

    2015-01-01

    Whether human cancer follows a hierarchical or stochastic model of differentiation is controversial. Furthermore, the factors that regulate cancer stem-like cell (CSC) differentiation potential are largely unknown. We used a novel microfluidic single-cell culture method to directly observe the differentiation capacity of four heterogeneous ovarian cancer cell populations defined by the expression of the CSC markers aldehyde dehydrogenase (ALDH) and CD133. We evaluated 3,692 progeny from 2,833 cells. We found that only ALDH+CD133+ cells could generate all four ALDH+/−CD133+/− cell populations and identified a clear branched differentiation hierarchy. We also observed a single putative stochastic event. Within the hierarchy of cells, bone morphologenetic protein 2 (BMP2) is preferentially expressed in ALDH−CD133− cells. BMP2 promotes ALDH+CD133+ cell expansion while suppressing the proliferation of ALDH−CD133− cells. As such, BMP2 suppressed bulk cancer cell growth in vitro but increased tumor initiation rates, tumor growth, and chemotherapy resistance in vivo whereas BMP2 knockdown reduced CSC numbers, in vivo growth, and chemoresistance. These data suggest a hierarchical differentiation pattern in which BMP2 acts as a feedback mechanism promoting ovarian CSC expansion and suppressing progenitor proliferation. These results explain why BMP2 suppresses growth in vitro and promotes growth in vivo. Together, our results support BMP2 as a therapeutic target in ovarian cancer. PMID:26621735

  13. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases

    PubMed Central

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-01-01

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of Bmp7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.

  14. Functional evaluation of a novel tooth agenesis-associated bone morphogenetic protein 4 prodomain mutation.

    PubMed

    Huang, Yanyu; Lu, Yongbo; Mues, Gabriele; Wang, Suzhen; Bonds, John; D'Souza, Rena

    2013-08-01

    The detection of gene mutations in patients with congenitally missing teeth is not very complicated; however, proving causality is often quite difficult. Here, we report the detection of a substitution mutation, A42P, within the prodomain of bone morphogenetic protein 4 (BMP4) in a small family with tooth agenesis and describe a functional alteration that may be responsible for the tooth phenotype. As BMP4 is essential for the development of teeth and also for many other organs, it would be of considerable interest to find a BMP4 mutation that is associated only with tooth agenesis. Our in vitro investigations revealed that the A42P mutation neither affected processing and secretion of BMP4 nor altered functional properties, such as the induction of alkaline phosphatase or signaling through Smad1/5/8 phosphorylation by the mature BMP4 ligand. However, immunofluorescence staining revealed that the prodomains of BMP4 which harbor the A42P substitution form fibrillar structures around transfected cells in culture and that this fibrillar network is significantly decreased when mutant prodomains are expressed. Our finding suggests that in vivo, BMP4 prodomain behavior might also be altered by the mutation and could influence storage or transport of mature BMP4 in the extracellular matrix of the developing tooth.

  15. Identification and Analysis of Regulatory Elements in Porcine Bone Morphogenetic Protein 15 Gene Promoter.

    PubMed

    Wan, Qianhui; Wang, Yaxian; Wang, Huayan

    2015-10-27

    Bone morphogenetic protein 15 (BMP15) is secreted by the mammalian oocytes and is indispensable for ovarian follicular development, ovulation, and fertility. To determine the regulation mechanism of BMP15 gene, the regulatory sequence of porcine BMP15 was investigated in this study. The cloned BMP15 promoter retains the cell-type specificity, and is activated in cells derived from ovarian tissue. The luciferase assays in combination with a series of deletion of BMP15 promoter sequence show that the -427 to -376 bp region of BMP15 promoter is the primary regulatory element, in which there are a number of transcription factor binding sites, including LIM homeobox 8 (LHX8), newborn ovary homeobox gene (NOBOX), and paired-like homeodomain transcription factor 1 (PITX1). Determination of tissue-specific expression reveals that LHX8, but not PITX1 and NOBOX, is exclusively expressed in pig ovary tissue and is translocated into the cell nuclei. Overexpression of LHX8 in Chinese hamster ovary (CHO) cells could significantly promote BMP15 promoter activation. This study confirms a key regulatory element that is located in the proximal region of BMP15 promoter and is regulated by the LHX8 factor.

  16. Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction.

    PubMed

    Sun, Lijun; Yu, Jing; Qi, Shun; Hao, Yuewen; Liu, Ying; Li, Zhenwu

    2014-11-01

    Heart disease is among the leading causes of death worldwide, and the limited proliferation of mammalian cardiomyocytes prevents heart regeneration in response to injury. Bone morphogenetic protein-10 (BMP10) exerts multiple roles in various developmental events; however, the effect of BMP10 and the underlying mechanism involved in cardiac repair remains unclear. After stimulation with the recombinant BMP10, an obvious dose-dependent cardiomyocyte proliferation and reentry of differentiated mammalian cardiomyocytes into the cell cycle was observed. Furthermore, BMP10 stimulation strikingly enhanced Tbx20 expression. Further analysis demonstrated that T-box 20 (Tbx20) was involved in BMP10-induced proliferation of differentiated cardiomyocytes as preconditioning with Tbx20 siRNA significantly attenuated BMP10-induced DNA synthesis. In vivo, BMP10 induced rat cardiomyocyte DNA synthesis and cytokinesis. After myocardial infarction (MI), BMP10 stimulated cardiomyocyte cell-cycle reentry and mitosis, resulting in the decrease of infarct size and improvement of cardiac repair. Taken together, these data indicated that BMP10 stimulated cardiomyocyte proliferation and repaired cardiac function after heart injury. Consequently, BMP10 may be a potential target for innovative strategies against heart failure.

  17. Expression of bone morphogenetic protein receptors in the developing mouse metanephros.

    PubMed

    Martinez, G; Loveland, K L; Clark, A T; Dziadek, M; Bertram, J F

    2001-01-01

    While bone morphogenetic proteins (BMPs) 2, 4 and 7 have recently been implicated in aspects of metanephric development, and expression patterns of these ligands have been described in the developing metanephros, the distribution of BMP receptors in developing metanephroi remains unknown. In the present study, in situ hybridisation histochemistry was used to localise mRNAs for BMP type-I receptors (BMPR-IA and BMPR-IB) and the BMP type-II receptor (BMPR-II) in developing mouse metanephroi. At embryonic day 12.5 (E12.5) and E14.5 transcripts for BMP type-I receptors were localised to the tips and body of the branching ureter as well as mesenchymal condensates, developing vesicles and comma-shaped bodies. Localisation of BMPR-II transcripts was similar although expression was not observed in the body of the ureter. At E17.5, transcripts for all three receptors were localised in the nephrogenic zone including ureteric tips, vesicles, comma- and S-shaped bodies as well the body of the ureter and in tubules. BMP type-I and type-II receptor transcripts co-localised with each other, in agreement with the well-documented evidence that BMPs signal via heterotetrameric complexes of type-I and type-II receptors and with the previously reported metanephric expression pattern of BMPs. These patterns of receptor expression suggest that these molecules are important regulators of epithelial-mesenchymal interactions, nephron development and ureteric branching morphogenesis.

  18. Cross Talk between Insulin and Bone Morphogenetic Protein Signaling Systems in Brown Adipogenesis ▿ †

    PubMed Central

    Zhang, Hongbin; Schulz, Tim J.; Espinoza, Daniel O.; Huang, Tian Lian; Emanuelli, Brice; Kristiansen, Karsten; Tseng, Yu-Hua

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation. Treatment of these cells with BMP7 for 3 days prior to adipogenic induction restored differentiation and expression of brown adipogenic markers. The high level of adipogenic inhibitor preadipocyte factor 1 (Pref-1) in IRS-1-null cells was markedly reduced by 3 days of BMP7 treatment, and analysis of the 1.3-kb pref-1 promoter revealed 9 putative Smad binding elements (SBEs), suggesting that BMP7 could directly suppress Pref-1 expression, thereby allowing the initiation of the adipogenic program. Using a series of sequential deletion mutants of the pref-1 promoter linked to the luciferase gene and chromatin immunoprecipitation, we demonstrate that the promoter-proximal SBE (−192/−184) was critical in mediating BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance. PMID:20584981

  19. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases.

    PubMed

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-09-26

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of Bmp7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.

  20. Gremlin, a Bone Morphogenetic Protein Antagonist, Is a Crucial Angiogenic Factor in Pituitary Adenoma

    PubMed Central

    Yoshida, Daizo; Kim, Kyongsong; Ishii, Yudo; Tahara, Shigeyuki; Teramoto, Akira; Morita, Akio

    2015-01-01

    Gremlin is an antagonist of bone morphogenetic protein (BMP) and a major driving force in skeletal modeling in the fetal stage. Several recent reports have shown that Gremlin is also involved in angiogenesis of lung cancer and diabetic retinopathy. The purpose of this study was to investigate the role of Gremlin in tumor angiogenesis in pituitary adenoma. Double fluorescence immunohistochemistry of Gremlin and CD34 was performed in pituitary adenoma tissues obtained during transsphenoidal surgery in 45 cases (7 PRLoma, 17 GHoma, 2 ACTHoma, and 2 TSHoma). Gremlin and microvascular density (MVD) were detected by double-immunofluorescence microscopy in CD34-positive vessels from tissue microarray analysis of 60 cases of pituitary adenomas (6 PRLoma, 23 GHoma, 22 NFoma, 5 ACTHoma, and 4 TSHoma). In tissue microarray analysis, MVD was significantly correlated with an increased Gremlin level (linear regression: P < 0.005,  r2 = 0.4958). In contrast, Gremlin expression showed no correlation with tumor subtype or Knosp score. The high level of expression of Gremlin in pituitary adenoma tissue with many CD34-positive vessels and the strong coherence of these regions indicate that Gremlin is associated with angiogenesis in pituitary adenoma cells. PMID:25834571

  1. Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion

    PubMed Central

    Cyr-Depauw, Chanèle; Northey, Jason J.; Tabariès, Sébastien; Annis, Matthew G.; Dong, Zhifeng; Cory, Sean; Hallett, Michael; Rennhack, Jonathan P.; Andrechek, Eran R.

    2016-01-01

    ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling. PMID:26976638

  2. First Evidence of Bone Morphogenetic Protein 1 Expression and Activity in Sheep Ovarian Follicles1

    PubMed Central

    Canty-Laird, Elizabeth; Carré, Gwenn-Aël; Mandon-Pépin, Béatrice; Kadler, Karl E.; Fabre, Stéphane

    2010-01-01

    Bone morphogenetic protein (BMP) 1 is a vertebrate metalloproteinase of the astacin family. BMP1 plays a key role in regulating the formation of the extracellular matrix (ECM), particularly by processing the C-propeptide of fibrillar procollagens. BMP1 also promotes BMP signaling by releasing BMP signaling molecules from complexes with the BMP-antagonist chordin. As a result of BMP1′s dual role in both ECM formation and BMP signaling, we hypothesized that BMP1 could play a role in ovarian physiology. Using the sheep ovary as a model system, we showed that BMP1 was expressed in the ovary throughout early fetal stages to adulthood. Furthermore, in adult ovaries, BMP1 was expressed along with chordin, BMP4, and twisted gastrulation, which together form an extracellular regulatory complex for BMP signaling. Within ovine ovaries, immunohistochemical localization demonstrated that BMP1 was present in granulosa cells at all stages of follicular development, from primordial to large antral follicles, and that the levels of BMP1 were not affected by the final follicle selection mechanism. In cultured granulosa cells, BMP1 expression was not affected by gonadotropins, but BMP4 and activin A had opposing effects on the levels of BMP1 mRNA. BMP1 appeared to be secreted into the follicular fluid of antral follicles, where it is able to exert procollagen C-proteinase and chordinase activities. Interestingly, BMP1 activity in follicular fluid decreased with follicular growth. PMID:20357269

  3. Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells

    PubMed Central

    ZHANG, YUNYUAN; CHEN, XIAN; QIAO, MIN; ZHANG, BING-QIANG; WANG, NING; ZHANG, ZHONGLIN; LIAO, ZHAN; ZENG, LIYI; DENG, YOULIN; DENG, FANG; ZHANG, JUNHUI; YIN, LIANGJUN; LIU, WEI; ZHANG, QIAN; YAN, ZHENGJIAN; YE, JIXING; WANG, ZHONGLIANG; ZHOU, LAN; LUU, HUE H.; HAYDON, REX C.; HE, TONG-CHUAN; ZHANG, HONGYU

    2014-01-01

    Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/β-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells. PMID:24993644

  4. Identification and Analysis of Regulatory Elements in Porcine Bone Morphogenetic Protein 15 Gene Promoter

    PubMed Central

    Wan, Qianhui; Wang, Yaxian; Wang, Huayan

    2015-01-01

    Bone morphogenetic protein 15 (BMP15) is secreted by the mammalian oocytes and is indispensable for ovarian follicular development, ovulation, and fertility. To determine the regulation mechanism of BMP15 gene, the regulatory sequence of porcine BMP15 was investigated in this study. The cloned BMP15 promoter retains the cell-type specificity, and is activated in cells derived from ovarian tissue. The luciferase assays in combination with a series of deletion of BMP15 promoter sequence show that the −427 to −376 bp region of BMP15 promoter is the primary regulatory element, in which there are a number of transcription factor binding sites, including LIM homeobox 8 (LHX8), newborn ovary homeobox gene (NOBOX), and paired-like homeodomain transcription factor 1 (PITX1). Determination of tissue-specific expression reveals that LHX8, but not PITX1 and NOBOX, is exclusively expressed in pig ovary tissue and is translocated into the cell nuclei. Overexpression of LHX8 in Chinese hamster ovary (CHO) cells could significantly promote BMP15 promoter activation. This study confirms a key regulatory element that is located in the proximal region of BMP15 promoter and is regulated by the LHX8 factor. PMID:26516845

  5. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases.

    PubMed

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-09-26

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron prog