Sample records for bone specific alkaline

  1. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content

    USDA-ARS?s Scientific Manuscript database

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...

  2. Changes in Bone Alkaline Phosphatase and Procollagen Type-1 C-Peptide after Static and Dynamic Exercises

    ERIC Educational Resources Information Center

    Kubo, Keitaro; Yuki, Kazuhito; Ikebukuro, Toshihiro

    2012-01-01

    We investigated the effects of two types of nonweight-bearing exercise on changes in bone-specific alkaline phosphatase (BAP) and pro-collagen type 1 C-peptide (P1P). BAP is a specific marker of bone synthesis, whereas P1P reflects synthesis of type 1 collagen in other organs as well as bone. Eight participants performed static and dynamic…

  3. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.

    PubMed

    Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate

    2007-09-26

    Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.

  4. Osteocalcin and bone-specific alkaline phosphatase in Asian elephants (Elephas maximus) at different ages.

    PubMed

    Arya, Nlin; Moonarmart, Walasinee; Cheewamongkolnimit, Nareerat; Keratikul, Nutcha; Poon-Iam, Sawinee; Routh, Andrew; Bumpenpol, Pitikarn; Angkawanish, Taweepoke

    2015-11-01

    Bone turnover markers could offer a potential alternative means for the early diagnosis of metabolic bone disease in young growing elephants although the baseline of bone turnover markers in elephant is not well established. The aim of this study was to determine any relationship between the age of captive Asian elephants (Elephas maximus) and markers of bone formation. Serum samples from 24 female Asian elephants were collected to evaluate levels of two bone formation markers, namely, osteocalcin (OC) and bone-specific alkaline phosphatase (BAP). Both intact and N-terminal midfragment OC and BAP were negatively correlated with age. The findings demonstrate that younger elephants have a higher rate of bone turnover than older elephants. Use of these and additional bone markers could lead to the establishment of validated protocols for the monitoring of bone disease in elephants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    PubMed

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  6. Identification of rat serum alkaline phosphatase isoenzyme by means of wheat germ agglutinin.

    PubMed

    Wada, H; Niwa, N; Hayakawa, T; Tsuge, H

    1997-01-01

    Wheat germ agglutinin (WGA) precipitates bone type serum alkaline phosphatase (sALP) isoenzyme specifically. The precipitates are composed of the macromolecules of WGA and "bone type sALP" (WGA-ALP complex). In order to use bone type sALP as a marker in polyacrylamide gel electrophoresis (PAGE), a method to separate "bone type sALP" from the "WGA-ALP complex" was established by using N-acetyl-D-glucosamine (GlcNAc)-Sepharose 6E column chromatography. It was concluded that this method is useful for clinical examination in the rat.

  7. The relationship between glucose metabolism, metabolic syndrome, and bone-specific alkaline phosphatase: a structural equation modeling approach.

    PubMed

    Cheung, Ching-Lung; Tan, Kathryn C B; Lam, Karen S L; Cheung, Bernard M Y

    2013-09-01

    Serum alkaline phosphatase plays a role in vascular calcification. It is found in various tissues, whereas bone-specific alkaline phosphatase (BAP) more specifically reflects mineral metabolism. The relationship of serum alkaline phosphatase (total and bone-specific) with diabetes and metabolic syndrome (MetS), 2 major risk factors of vascular calcification, is largely unknown. We aimed to investigate the relationships between glucose metabolism, components of the MetS, and alkaline phosphatase. This was a cross-sectional study of a nationally representative sample of the U.S. population in 1999 through 2004. Participants were 3773 nondiabetic participants of the National Health and Nutrition Examination Survey 1999-2004. We measured serum BAP and total alkaline phosphatase. In multivariable linear regression, updated homeostasis model assessment (HOMA2) for insulin resistance (β = 0.068), HOMA2 for β-cell function (β = 0.081), insulin (β = 0.065), mean arterial pressure (β = 0.15), and high-density lipoprotein (HDL)-cholesterol (β = 0.209) were positively associated with BAP, whereas HOMA2 for insulin sensitivity (β = -0.065) was negatively associated with BAP. On the other hand, only mean arterial pressure and HDL-cholesterol were significantly associated with total alkaline phosphatase. Moreover, a structural equation model revealed that hypertension, low HDL, and insulin resistance had significant direct effects on serum BAP levels, whereas obesity and inflammation might have indirect effects on serum BAP levels. The overall model showed very good fit to the data (comparative fit index = 0.995, root mean square error of approximation = 0.037, and standardized root mean square residual = 0.006). Glucose metabolism and MetS are significantly related to serum BAP levels. How BAP mediates vascular calcification in diabetes and MetS warrants further studies.

  8. Osteomalacia with low alkaline phosphatase: a not so rare condition with important consequences.

    PubMed

    Belkhouribchia, Jamal; Bravenboer, Bert; Meuwissen, Marije; Velkeniers, Brigitte

    2016-01-28

    Hypophosphatasia is a genetic disorder, characterised by a dysfunctional tissue-non-specific isoenzyme of alkaline phosphatase that impacts bone metabolism and predisposes to osteomalacia or rickets. The clinical presentation is very diverse, depending on the age of onset and the severity of the disease. Several forms of hypophosphatasia are recognised. We present a case of a 50-year-old woman with low impact fractures and loss of teeth at a young age. She also had a low alkaline phosphatase and was diagnosed with adult hypophosphatasia. Although the severe forms of hypophosphatasia are rather rare, the adult form is thought to occur quite frequently. As this condition is not well known by healthcare professionals, the time to diagnosis and initiation of adequate treatment is often postponed. When encountering a patient with low alkaline phosphatase, low bone density or a history of bone fractures, the possibility of hypophosphatasia should be considered. 2016 BMJ Publishing Group Ltd.

  9. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    PubMed

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that residual material may influence μe-pH even 9 weeks post-surgery. The pH microelectrode is suitable for in vivo μe-pH detection. Alkaline biodegradable materials generate an in vivo microenvironmental pH which is higher than the normal physiological value and show promising healing effects in the context of osteoporotic bone defects.

  10. An evaluation of the effect of age and the peri-parturient period on bone metabolism in dairy cows as measured by serum bone-specific alkaline phosphatase activity and urinary deoxypyridinoline concentration.

    PubMed

    Sato, Reiichiro; Onda, Ken; Kato, Hajime; Ochiai, Hideharu; Kawai, Kazuhiro; Iriki, Tsunenori; Kaneko, Kazuyuki; Yamazaki, Yukio; Wada, Yasunori

    2013-08-01

    Various biochemical markers help to evaluate the state of bone turnover in humans and could be used during the peri-parturient period in dairy cows when calcium (Ca) metabolism changes dramatically. To investigate this, the peri-partum characteristics of serum bone-specific alkaline phosphatase (BAP) and urinary deoxypyridinoline (DPD) were investigated. Both serum BAP activity and urinary DPD concentrations were increased and demonstrated wide variability in younger animals, and these findings were consistent with other bone turnover markers. Around the time of parturition, serum Ca concentration and serum BAP activity in multiparous cows were significantly lower than in primiparous cows, but urinary DPD concentration was unchanged. The use of BAP as a bone formation marker appears to be valuable for evaluating bone remodelling status in cows, but the specificity of the test needs to be confirmed. The DPD/BAP ratio around parturition demonstrated a clear difference in bone turnover status between the two parity groups with multiparous cows demonstrating increased signs of bone resorption compared with primiparous cows, corresponding to the Ca requirement for milk production. In future studies, the applicability of the ratio of bone resorption marker to bone formation marker should be evaluated for bone turnover assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Clinical utility of a wheat-germ precipitation assay for determination of bone alkaline phosphatase concentrations in patients with different metabolic bone diseases.

    PubMed

    Braga, V; Dorizzi, R; Brocco, G; Rossini, M; Zamberlan, N; Gatti, D; Adami, S

    1995-07-01

    Bone alkaline phosphatase was evaluated by wheat-germ lectin precipitation in several clinical conditions. The study included 33 premenopausal healthy women, 46 postmenopausal apparently healthy women, 19 growing children, 24 patients with Paget's disease, 31 patients with primary hyperparathyroidism and 66 patients with hepatobiliary diseases. In postmenopausal women the mean T score (i.e.: the number of SD below or above the mean for premenopausal women) was 2.6 +/- 1.3 (SD) for bone alkaline phosphatase and 1.61 +/- 1.21 for total alkaline phosphatase (p < 0.001). The T score for bone alkaline phosphatase provided a better discrimination from normals for both Paget's disease (22.1 +/- 27.8 versus 12.8 +/- 16 p < 0.001) and primary hyperparathyroidism (8.2 +/- 4.3 versus 4.6 +/- 3.7 p < 0.005 for bone alkaline phosphatase and total alkaline phosphatase respectively). After treatment with intravenous bisphosphonate the percent decrease of bone alkaline phosphatase was larger than that of total alkaline phosphatase both in patients with Paget's disease (-46% versus -72% p < 0.01) and in patients with primary hyperparathyroidism (-21% versus -47% p < 0.02) and an estimate of the precision (delta mean/SD of the delta mean) for bone alkaline phosphatase was 1.9-3.7 times higher than that of total alkaline phosphatase. In twelve osteoporotic patients treated for six months with oral alendronate the decrease in bone turnover was detected with significantly higher precision with bone alkaline phosphatase than with total alkaline phosphatase (p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Short-term variability in biomarkers of bone metabolism in sheep.

    PubMed

    Sousa, Cristina P; de Azevedo, Jorge T; Reis, Rui L; Gomes, Manuela E; Dias, Isabel R

    2014-01-01

    Changes in bone remodeling during pathological states and during their treatment can be assessed noninvasively by measuring biomarkers of bone metabolism. Their application is limited, however, by the potential biological variability in the levels of these biomarkers over time. To determine the short-term variability in biomarkers of bone metabolism in adult sheep, the authors measured serum levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC), N-terminal propeptide of type-III procollagen (PIIINP), deoxypyridinoline (DPD), tartrate-resistant acid phosphatase (TRAP), calcium and phosphorus intermittently over a 12-week period. There were significant differences in mean ALP activity and in phosphorus concentrations over time, but all other biomarkers showed no significant short-term variability. The results suggest that biomarkers of bone metabolism in sheep, especially the bone resorption marker DPD and the bone formation marker BALP, can be used reliably to detect changes in bone cellular activity.

  13. Effects of soy protein isolate and moderate exercise on bone turnover and bone mineral density in postmenopausal women

    PubMed Central

    Evans, Ellen M.; Racette, Susan B.; Van Pelt, Rachael E.; Peterson, Linda R.; Villareal, Dennis T.

    2008-01-01

    Objective The aim of this study was to assess the independent and additive effects of soy protein isolate (SPI) and moderate-intensity exercise (EX) on bone turnover and bone mineral density (BMD). Design This study used a placebo-controlled, double-blind (soy), randomized 2 (SPI vs milk protein isolate [MPI]) × 2 (EX vs no EX) design. Sixty-one postmenopausal women were randomized, and 43 (62 ± 5 y) completed the 9-month intervention (SPI, n = 10; MPI, n = 12; SPI + EX, n = 11; MPI + EX, n = 10). Serum C-terminal cross-linked telopeptides of type I collagen and serum bone-specific alkaline phosphatase were measured as markers of bone resorption and formation, respectively. BMD was measured by dual-energy x-ray absorptiometry. Results At 9 months, SPI reduced serum C-terminal cross-linked telopeptides (−13.3% ± 15.3% vs −1.5% ± 21.0%; P = 0.02) and serum bone-specific alkaline phosphatase (−4.7% ± 14.7% vs 6.5% ± 17.7%; P = 0.02) compared to milk protein isolate. EX attenuated the reduction in serum C-terminal cross-linked telopeptides (−1.9% ± 21.6% vs −12.4% ± 15.3%; P = 0.04); however, no EX effects were apparent in serum bone-specific alkaline phosphatase at 9 months (2.8% ± 16.1% vs −1.0% ± 18.3%; P = 0.28). Neither SPI nor EX affected BMD at any site; however, change in BMD was related to change in fat mass (r = 0.40, P < 0.05). Conclusions In postmenopausal women (1) SPI reduces bone turnover with no impact on BMD over 9 months; (2) moderate-intensity endurance exercise training did not favorably alter bone turnover and had no impact on BMD; and (3) there were no additive effects of soy and exercise on bone turnover or BMD. PMID:17213752

  14. Bone Turnover Markers and Lean Mass in Pubescent Boys: Comparison Between Elite Soccer Players and Controls.

    PubMed

    Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem

    2017-11-01

    The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P < .001). Indeed, the total LM correlated with whole-body bone mineral density and bone mineral content (P < .001). There were significant differences within the bone formation markers and osteocalcin (formation)/C-telopeptide type I collagen (resorption) ratio between young soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P < .05) only for the young soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.

  15. Effects of physical activities that induce moderate external loading on bone metabolism in male athletes.

    PubMed

    Maïmoun, L; Mariano-Goulart, D; Couret, I; Manetta, J; Peruchon, E; Micallef, J P; Verdier, R; Rossi, M; Leroux, J L

    2004-09-01

    Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. The objective of this study was to determine the effect on bone remodelling of physical activities that induce moderate external loading on the skeleton. Thirty-eight male athletes aged 18-39 years (cyclists, n = 11; swimmers, n = 13; triathletes, n = 14) and 10 age-matched sedentary controls aged 22-35 years participated in the study. The study combined measurement of bone mineral density by dual-energy X-ray absorptiometry and bone turnover assessment from specific biochemical markers: serum bone-specific alkaline phosphatase, osteocalcin, urinary type I collagen C-telopeptide and calcium. Compared with the controls and swimmers, adjusted bone mineral density was higher (P < 0.05) in triathletes at the total proximal femur and lower limbs. No differences in bone mineral density were found between cyclists, swimmers and controls. Compared with controls, osteocalcin was higher (P < 0.05) in triathletes and swimmers and urinary type I collagen C-telopeptide was higher in swimmers only. Serum bone-specific alkaline phosphatase was lower (P < 0.05) in cyclists than in all other groups. In conclusion, an osteogenic effect was found only in triathletes, mainly at bone sites under high mechanical stress. Bone turnover differed in athletes compared with controls, suggesting that bone turnover may be sport-practice dependent. Despite some encouraging observations, it was not possible to show that changes in the bone remodelling process were sport-discipline dependent.

  16. Bone mineral density and metabolic indices in hyperthyroidism.

    PubMed

    Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M

    1991-09-01

    Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.

  17. Genetic evaluations of Chinese patients with odontohypophosphatasia resulting from heterozygosity for mutations in the tissue-non-specific alkaline phosphatase gene.

    PubMed

    Wan, Jia; Zhang, Li; Liu, Tang; Wang, Yewei

    2017-08-01

    Hypophosphatasia is a rare heritable metabolic disorder characterized by defective bone and tooth mineralization accompanied by a deficiency of tissue-non-specific (liver/bone/kidney) isoenzyme of alkaline phosphatase activity, caused by a number of loss-of-function mutations in the alkaline phosphatase liver type gene. We seek to explore the clinical manifestations and identify the mutations associated with the disease in a Chinese odonto- hypophosphatasia family. The proband and his younger brother affected with premature loss of primary teeth at their 2-year-old. They have mild abnormal serum alkaline phosphatase and 25-hydroxy vitamin D values, but the serum alkaline phosphatase activity of their father, mother and grandmother, who showed no clinical symptoms of hypophosphatasia, was exhibited significant decreased. In addition to premature loss of primary teeth, the proband and his younger brother showed low bone mineral density, X-rays showed that they had slight metaphyseal osteoporosis changes, but no additional skeletal abnormalities. Deoxyribonucleic acid sequencing and analysis revealed a single nucleotide polymorphism c.787T>C (p.Y263H) in exon 7 and/or a novel mutation c.-92C>T located at 5'UTR were found in the affected individuals. We examined all individuals of an odonto- hypophosphatasia family by clinical and radiographic examinations as well as laboratory assays. Furthermore, all 12 exons and the exon-intron boundaries of the alkaline phosphatase liver type gene were amplified and directly sequenced for further analysis and screened for mutations. Our present findings suggest the single nucleotide polymorphism c.787T>C and c.-92C>T should be responsible for the odonto- hypophosphatasia disorders in this family.

  18. The Association of Endothelin-1 Signaling with Bone Alkaline Phosphatase Expression and Protumorigenic Activities in Canine Osteosarcoma.

    PubMed

    Neumann, Z L; Pondenis, H C; Masyr, A; Byrum, M L; Wycislo, K L; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is an aggressive sarcoma characterized by pathologic skeletal resorption and pulmonary metastases. A number of negative prognostic factors, including bone alkaline phosphatase, have been identified in dogs with OS, but the underlying biologic factors responsible for such observations have not been thoroughly investigated. Endothelin-1-mediated signaling is active during bone repair, and is responsible for osteoblast migration, survival, proliferation, and bone alkaline phosphatase expression. The endothelin-1 signaling axis is active in canine OS cells, and this pathway is utilized by malignant osteoblasts for promoting cellular migration, survival, proliferation, and bone alkaline phosphatase activities. 45 dogs with appendicular OS. The expressions of endothelin-1 and endothelin A receptor were studied in OS cell lines and in samples from spontaneously occurring tumors. Activities mediated by endothelin-1 signaling were investigated by characterizing responses in 3 OS cell lines. In 45 dogs with OS, bone alkaline phosphatase concentrations were correlated with primary tumor osteoproductivity. Canine OS cells express endothelin-1 and endothelin A receptor, and this signaling axis mediates OS migration, survival, proliferation, and bone alkaline phosphatase activities. In OS-bearing dogs, circulating bone alkaline phosphatase activities were positively correlated with primary tumor relative bone mineral densities. Canine OS cells express endothelin-1 and functional endothelin A receptors, with the potential for a protumorigenic signaling loop. Increases in bone alkaline phosphatase activity are associated with osteoblastic OS lesions, and might be an epiphenomenon of active endothelin-1 signaling or excessive osteoproduction within the localized bone microenvironment. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. POTASSIUM CITRATE DECREASES BONE RESORPTION IN POSTMENOPAUSAL WOMEN WITH OSTEOPENIA: A RANDOMIZED, DOUBLE-BLIND CLINICAL TRIAL.

    PubMed

    Gregory, Naina Sinha; Kumar, Rekha; Stein, Emily M; Alexander, Ellen; Christos, Paul; Bockman, Richard S; Rodman, John S

    2015-12-01

    Diets rich in animal protein, such as the typical American diet, are thought to create a high acid load. An association between acid load and bone loss has led to the idea that providing positive alkaline salt therapy could have beneficial effects on bone metabolism. The objective of this study was to investigate the effects of potassium citrate (K-citrate), 40 mEq daily, over 1 year on bone resorption and formation. A randomized, double-blind, placebo-controlled trial of 83 women with postmenopausal osteopenia. Levels of bone turnover markers, specifically urinary N-telopeptide of collagen type 1 (u-NTX), amino-terminal propeptide of type 1 procollagen (P1NP), bone-specific alkaline phosphatase (BSAP), and osteocalcin (OC) were compared. Changes in bone mineral density (BMD) were also examined. K-citrate decreased both u-NTX (P = .005) and serum P1NP (P<.001) starting at month 1 and continuing through month 12. No significant change was seen in BSAP or OC. No significant change was seen in lumbar or hip BMD between the 2 groups. In women with postmenopausal osteopenia, treatment with K-citrate for 1 year resulted in a significant decrease in markers of turnover. The effect on markers of bone formation was not consistent. K-citrate may serve as a potential treatment for bone loss that is well tolerated and without any significant known long-term consequences.

  20. Vitamin K, bone turnover, and bone mass in girls.

    PubMed

    Kalkwarf, Heidi J; Khoury, Jane C; Bean, Judy; Elliot, James G

    2004-10-01

    Vitamin K has been suggested to have a role in bone metabolism, and low vitamin K intake has been related to low bone density and increased risk of osteoporotic fracture. The objective of this study was to determine whether phylloquinone (vitamin K(1)) intake and biochemical indicators of vitamin K status are related to bone mineral content (BMC) and markers of bone formation and bone resorption in girls. Vitamin K status [plasma phylloquinone concentration and percentage of undercarboxylated osteocalcin (%ucOC)] was measured at baseline in a study of 245 healthy girls aged 3-16 y. Cross-linked N-telopeptide of type 1 collagen (NTx) breakdown, osteocalcin, and bone-specific alkaline phosphatase were measured to reflect bone resorption and formation. BMC of the total body, lumbar spine, and hip and dietary phylloquinone intake were measured annually for 4 y. Phylloquinone intake (median: 45 microg/d) was not consistently associated with bone turnover markers or BMC. Better vitamin K status (high plasma phylloquinone and low %ucOC) was associated with lower bone resorption and formation. Plasma phylloquinone was inversely associated with NTx and osteocalcin concentrations (P < 0.05), and %ucOC was positively associated with NTx and bone-specific alkaline phosphatase concentrations (P < 0.05). Indicators of vitamin K status were not consistently associated with current BMC or gain in BMC over the 4-y study period. Better vitamin K status was associated with decreased bone turnover in healthy girls consuming a typical US diet. Randomized phylloquinone supplementation trials are needed to further understand the potential benefits of phylloquinone on bone acquisition in growing children.

  1. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  2. ATF4, A Novel Mediator of the Anabolic Actions of PTH on Bone

    DTIC Science & Technology

    2010-07-01

    increased the expression of genes known to be associated with osteoblast differentiation including osteocalcin (Ocn), bone sialoprotein (Bsp...differentiation including osteocalcin (Ocn) (2.2-fold), bone sialoprotein (Bsp) (4.2-fold), alkaline phosphatase (Alp) (3.2-fold), a1(I) collagen (Col1... sialoprotein (BSP) gene transcription is mediated through a pituitary-specific transcription factor-1 (Pit-1) motif in the rat BSP gene promoter. Matrix Biol

  3. Differences of bone alkaline phosphatase isoforms in metastatic bone disease and discrepant effects of clodronate on different skeletal sites indicated by the location of pain.

    PubMed

    Magnusson, P; Larsson, L; Englund, G; Larsson, B; Strang, P; Selin-Sjögren, L

    1998-08-01

    We compared clodronate with placebo administration in 42 primarily or secondarily hormone-refractory prostate cancer patients with skeletal metastases and persisting pain. Serum total alkaline phosphatase (ALP), bone ALP isoforms, osteocalcin, cross-linked carboxy-terminal telopeptide of type I collagen, and prostate-specific antigen were analyzed before and after 1 month of treatment. Six ALP isoforms were quantified by HPLC: one bone/intestinal, two bone (B1, B2), and three liver ALP isoforms. The most apparent difference compared with healthy males was observed for the bone ALP isoform B2. Patients and healthy males had a B2 activity corresponding to 75% and 35% of the total ALP activity, respectively (P <0.0001). We propose that the different bone ALP isoforms reflect different stages of osteoblast differentiation during the extracellular matrix maturation phase of osteogenesis. All bone markers except osteocalcin increased after 1 month of clodronate administration. These increases were associated with pain only in the upper part of the body. We suggest that the uptake of clodronate by the skeleton was not uniform during our treatment period.

  4. Longitudinal changes in bone metabolism and bone mineral content in children with celiac disease during consumption of a gluten-free diet.

    PubMed

    Barera, Graziano; Beccio, Sabrina; Proverbio, Maria Carla; Mora, Stefano

    2004-01-01

    A gluten-free diet (GFD) rapidly corrects the bone mineral deficit of children with untreated celiac disease. The mechanisms underlying such changes are still poorly understood. In a longitudinal study, we monitored changes in bone metabolism during consumption of a GFD. We studied 22 white patients with celiac disease (11 girls) aged 10.5 +/- 1.0 y at the time of diagnosis. We compared bone metabolism and bone mass values in these patients with those in 428 healthy white children aged 11.3 +/- 0.2 y. Bone-specific alkaline phosphatase (a bone formation index) and N-terminal telopeptide of type I collagen (NTx; a bone resorption marker) were measured at the time of diagnosis and after 2, 6, and 12 mo of the GFD. Bone mineral content was measured at the lumbar spine and for the whole skeleton. The bone mineral content of patients was significantly lower than that of control subjects at the time of diagnosis but not after 1 y of the GFD. Serum bone-specific alkaline phosphatase concentrations of patients were significantly lower than those of control subjects at the time of diagnosis (P = 0.0064) and increased gradually and significantly during the GFD (ANOVA F = 4.71; P = 0.024). Conversely, patients with untreated disease had significantly higher urinary concentrations of NTx than did healthy control subjects (P < 0.0001). Urinary concentrations of NTx were not significantly affected by treatment (P = 0.37). The rate of bone metabolism is altered in children with untreated celiac disease, and these alterations may be the cause of osteopathy. Remarkable changes occur after the initiation of a GFD, and they result in a more balanced equilibrium.

  5. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. Nature of immobilization surface affects antibody specificity to placental alkaline phosphatase.

    PubMed

    Kumar, Mukesh; Khan, Imran; Sinha, Subrata

    2015-01-01

    Retention of native conformation of immobilized protein is essential for various applications including selection and detection of specific recombinant antibodies (scFvs). Placental alkaline phosphatase (PAP), an onco-fetal antigen expressed on the surface of several tumors, was immobilized on supermagnetic particles for selection of recombinant antibodies from a human phage display antibody library. The isolated antibodies were found to be cross-reactive to either of the isozymes of alkaline phosphatase, i.e., bone alkaline phosphatase (BAP) or intestinal alkaline phosphatase (IAP) and could not be used for tumor targeting. A specific anti-PAP monoclonal antibody H17E2 was tested for retention of specificity under these conditions. Binding of the antibody to magnetic beads conjugated IAP and BAP along with PAP and the ability of the two isozymes to inhibit its binding to PAP depicted the loss of isozyme specificity of the antibody. However, the antibody retained its specificity to PAP immobilized on polyvinyl chloride (PVC) surface. Enzyme activity was observed on both surfaces. This demonstrates that nature of immobilization may affect antigen-antibody binding in subtle ways, resulting in alteration of conformation of the epitopes. This may have consequences for determining the specificity of antibody binding for proteins that share a high degree of homology.

  7. Alkaline Phosphatases in the Complex Chronic Kidney Disease-Mineral and Bone Disorders.

    PubMed

    Bover, Jordi; Ureña, Pablo; Aguilar, Armando; Mazzaferro, Sandro; Benito, Silvia; López-Báez, Víctor; Ramos, Alejandra; daSilva, Iara; Cozzolino, Mario

    2018-02-14

    Alkaline phosphatases (APs) remove the phosphate (dephosphorylation) needed in multiple metabolic processes (from many molecules such as proteins, nucleotides, or pyrophosphate). Therefore, APs are important for bone mineralization but paradoxically they can also be deleterious for other processes, such as vascular calcification and the increasingly known cross-talk between bone and vessels. A proper balance between beneficial and harmful activities is further complicated in the context of chronic kidney disease (CKD). In this narrative review, we will briefly update the complexity of the enzyme, including its different isoforms such as the bone-specific alkaline phosphatase or the most recently discovered B1x. We will also analyze the correlations and potential discrepancies with parathyroid hormone and bone turnover and, most importantly, the valuable recent associations of AP's with cardiovascular disease and/or vascular calcification, and survival. Finally, a basic knowledge of the synthetic and degradation pathways of APs promises to open new therapeutic strategies for the treatment of the CKD-Mineral and Bone Disorder (CKD-MBD) in the near future, as well as for other processes such as sepsis, acute kidney injury, inflammation, endothelial dysfunction, metabolic syndrome or, in diabetes, cardiovascular complications. However, no studies have been done using APs as a primary therapeutic target for clinical outcomes, and therefore, AP's levels cannot yet be used alone as an isolated primary target in the treatment of CKD-MBD. Nonetheless, its diagnostic and prognostic potential should be underlined.

  8. Differentiation potentials of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Katkova, Olena

    Adaptive remodeling processes in the skeleton bones occur in the close topographical interconnection with blood capillaries followed by perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel D.B., Fee W.S., 1980; Rodionova N.V., 1989, 2006) has shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic ones. Using electron microscopy and cytochemistry we studied perivsacular cells in metaphysis of the rats femoral bones under conditions of modeling microgravity (28 days duration) and in femoral bones metaphyses of rats flown on board of the space laboratory (Spacelab - 2) It was revealed that population of the perivascular cells is not homogeneous in adaptive zones of the remodeling in both control and test groups (lowering support loading). This population comprises adjacent to endothelium little differentiated forms and isolated cells with differentiation features (specific volume of rough endoplasmic reticulum in cytoplasm is increased). Majority of the perivascular cells in the control group reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In little differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of animals under microgravitaty reaction to the alkaline phosphatase is registered not for all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. There is also visible trend of individual alkaline phosphatase containing perivascular cells amounts decrease (i.e. osteogenic cells-precursors). Under microgravity some little differentiated perivascular cells reveal destruction signs. Found decrease trend of the alkaline phosphatase containing cells (i.e. osteogenic cells) number in perivascular cells population. It is one of the mechanisms of the osteogenic process intensity decrease in bones due to lowering support loading on the bone skeleton. In particular this is confirmed by the fact that in the zones of adaptive remodeling we found fibroblasts and fibrosis zones - areas filled with non mineralized collagen fibrils on the bones surfaces. Hence it should be considered that lowering (removal) support loading slows down (or blocks) osteogenic differentiation of the perivascular cells part and stimulates differentiation of the fibroblast cells. Obtained data considered as one of the cellular mechanisms of the adaptive reactions development in spongy bone under microgravity which could lead to the bone mass loss.

  9. Effects of 1.8 GHz radiofrequency field on microstructure and bone metabolism of femur in mice.

    PubMed

    Guo, Ling; Zhang, Jun-Ping; Zhang, Ke-Ying; Wang, Huan-Bo; Wang, Huan; An, Guang-Zhou; Zhou, Yan; Meng, Guo-Lin; Ding, Gui-Rong

    2018-04-30

    To investigate the effects of 1.8 GHz radiofrequency (RF) field on bone microstructure and metabolism of femur in mice, C57BL/6 mice (male, age 4 weeks) were whole-body exposed or sham exposed to 1.8 GHz RF field. Specific absorption rates of whole body and bone were approximately 2.70 and 1.14 W/kg (6 h/day for 28 days). After exposure, microstructure and morphology of femur were observed by microcomputed tomography (micro-CT), Hematoxylin and Eosin (HE) and Masson staining. Subsequently, bone parameters were calculated directly from the reconstructed images, including structure model index, bone mineral density, trabecular bone volume/total volume, connectivity density, trabecular number, trabecular thickness, and trabecular separation. Biomarkers that reflect bone metabolism, such as serum total alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), and tartrate-resistant acid phosphatase 5b (TRACP-5b), were determined by biochemical assay methods. Micro-CT and histology results showed that there was no significant change in bone microstructure and the above parameters in RF group, compared with sham group. The activity of serum ALP and BALP increased 29.47% and 16.82%, respectively, in RF group, compared with sham group (P < 0.05). In addition, there were no significant differences in the activity of serum TRACP-5b between RF group and sham group. In brief, under present experimental conditions, we did not find support for an effect of 1.8 GHz RF field on bone microstructure; however, it might promote metabolic function of osteoblasts in mice. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    PubMed

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  11. The effect of cinacalcet on bone remodeling and renal function in transplant patients with persistent hyperparathyroidism.

    PubMed

    Schwarz, Anke; Merkel, Saskia; Leitolf, Holger; Haller, Hermann

    2011-03-15

    Parathyroidectomy is associated with renal functional losses in transplant patients; cinacalcet offers an attractive alternative. We performed a prospective observational study in 58 patients with persisting hyperparathyroidism after renal transplantation (Ca≥2.6 mmol/L) and impaired renal transplant function (estimated glomerular filtration rate [eGFR] <50 mL/min). The patients received 30 to 90 mg cinacalcet for 12 months with the target to normalize serum Ca. We measured parathyroid hormone (PTH), serum Ca, serum phosphorus, alkaline phosphatase, bone-specific alkaline phosphatase, osteocalcin, and telopeptide at 0, 1, 2, 3, 6, 9, and 12 months of cinacalcet treatment. Fractional excretion of calcium and phosphorus (n=24) were monitored at 0 and 1 month. At inclusion, creatinine was 181±70 μmol/L, eGFR 43±19 mL/min, PTH 371±279 pg/mL, and Ca 2.73±0.22 mmol/L. We observed nephrocalcinosis in 58% of biopsied patients at enrollment. After cinacalcet, Ca decreased significantly and normalized at nearly any measurement. Phosphorus increased significantly at months 1, 9, and 12. PTH decreased significantly, but only at months 9 and 12 and did not normalize. Bone-specific alkaline phosphatase increased significantly (>normal) by month 12. eGFR decreased and serum creatinine increased at all time points. The Δ(creatinine) % increase correlated significantly with the Δ(PTH) % decrease at month 1 and 12. Telopeptide and alkaline phosphatase correlated with PTH and telopeptide also correlated with serum creatinine. Calcium-phosphorus homeostasis in hypercalcemic renal transplant patients normalizes under cinacalcet and PTH decreases, albeit not to normal. The renal functional decline could be PTH mediated, analogous to the effects observed after parathyroidectomy.

  12. Induction of alkaline phosphatase in the inflamed intestine: a novel pharmacological target for inflammatory bowel disease.

    PubMed

    Sánchez de Medina, Fermín; Martínez-Augustin, Olga; González, Raquel; Ballester, Isabel; Nieto, Ana; Gálvez, Julio; Zarzuelo, Antonio

    2004-12-15

    This study demonstrates the upregulation of alkaline phosphatase and the mechanisms involved in experimental colitis. All models of ileal and colonic inflammation examined, which were characterized by significant oxidative stress and neutrophil infiltration, resulted in an increase in alkaline phosphatase activity which was attributable to both epithelial cells and cells of the lamina propria, mainly leukocytes. The increase in alkaline phosphatase sensitivity to the inhibitors levamisole and homoarginine, together with changes in the apparent molecular size and in the sialization of the enzyme, indicated a change in the isoform expressed. An increase in tissue non-specific alkaline phosphatase expression was observed by Western blotting. Treatment with the bone/kidney alkaline phosphatase inhibitor levamisole or a monoclonal antibody resulted in significant protection from colonic inflammation. Taken together, these results indicate that the kidney isoform is a marker of intestinal inflammation and that it might even constitute a target for pharmacological intervention.

  13. Direct comparison of progenitor cells derived from adipose, muscle, and bone marrow from wild-type or craniosynostotic rabbits

    PubMed Central

    GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee

    2010-01-01

    Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482

  14. The effects of tissue-non-specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis.

    PubMed

    Wang, E; Nam, H K; Liu, J; Hatch, N E

    2015-04-01

    Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-non-specific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Neonatal Crouzon (FGFRC342Y/+) and wild-type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at 4 weeks postnatal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology were assessed by micro-computed tomography. Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphological analysis revealed craniofacial form differences for inferior surface (p=0.023) and cranial height (p=0.014) regions between TNAP lentivirus-injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=0.068). These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Alkaline phosphatase as a screening test for osteomalacia.

    PubMed

    Chinoy, Muhammad Amin; Javed, Muhammad Imran; Khan, Alamzeb; Sadruddin, Nooruddin

    2011-01-01

    Vitamin D deficiency remains common in children and adults in Pakistan despite adequate sunlight exposure. Diagnosis in adults is usually delayed and is made following pathological fractures that result in significant morbidity. The objective of this study was to see whether Serum Alkaline Phosphatase levels could be used as a screening test for osteomalacia. The Study was conducted at Fatima Hospital, Baqai Medical University, Gadap, Karachi, between July 2002 and June 2005. Serum calcium levels are commonly used to screen patients suspected of osteomalacia, and raised serum alkaline phosphatase (SALP) is considered a diagnostic finding. We used SALP to screen patients who presented with back or non-specific aches and pain of more than six months duration. Three hundred thirty-four (334) patients were screened of which 116 (35%) had raised SALP. Osteomalacia was diagnosed in 92 (79.3%) of these 116 either by plain radiographs, bone biopsy or isotope bone scan. Fifty-four (53.4%) of the 101 cases had a normal level of serum calcium. Osteomalacia is likely to be missed if only serum calcium is used to screen patients. Serum Alkaline Phosphate should be used as the preferred method for screening these patients.

  16. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular cells reveal signs of destruction. Thus it was found that number of the alkaline phosphatase containing cells (i.e. osteogenic cells) declines in perivascular cells population. It is one of the mechanisms of the osteogenic process decrease of intensity in bones because of lessening support loading on the bone skeleton. In the adaptive remodeling zones of bone tissue (near the vascular canals) in experiments fibroblasts and fibrosis zones were found - areas filled with non-mineralized collagen fibrils on the bones surfaces. Hence it should be considered that decrease (removal) of support loading slows down osteogenic differentiation of the part of perivascular cells and stimulates differentiation of the fibroblast cells. Obtained data is considered as one of the cellular mechanisms of the adaptive reactions development in spongy bone under microgravity which could lead to the bone mass loss.

  17. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.

    PubMed

    Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A

    2000-01-01

    The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.

  18. Serum tumour necrosis factor alpha in osteopenic and osteoporotic postmenopausal females: A cross-sectional study in Pakistan.

    PubMed

    Murad, Rafat; Shezad, Zahra; Ahmed, Saara; Ashraf, Mussarat; Qadir, Murad; Rehman, Rehana

    2018-03-01

    To compare biochemical parameters serum tumour necrosis factor alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D in postmenopausal women. This cross-sectional study was carried out from June 2015 to July 2016 at Jinnah Medical and Dental College, Karachi, and comprised postmenopausal women. Bone mineral density done by dual energy X-ray absorptiometryscan categorised subjects by World Health Organisation classification into normal (T score > -1) osteopenic (T score between -1 and -2.5) and osteoporotic (T score < -2.5). Biochemical parameters like tumour necrosis alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D were measured by solid phase enzyme amplified sensitivity immunoassay method. SPSS 16 was used to analyse the data. Of the 146 women, 34(23%) were normal, 93(67%) were osteopenic and 19(13%) were osteoporotic. There was significant difference in mean body mass index, serum tumour necrosis factor alpha and calcium in all the three groups (p<0.01). Significant mean difference was observed in serum calcium levels between normal and osteopenic, and between normal and osteoporotic group (p<0.05 each) without any significant mean difference between osteopenic and osteoporotic groups (p>0.05). A significant difference was observed for mean tumour necrosis factor alpha values between normal and osteoporotic groups (p<0.05). Tumour necrosis factor alpha showed negative correlation with bone mineral density in osteopenic and osteoporotic groups (p>0.05). Increased bone turnover in postmenopausal osteopenic women can be predicted by increased serum cytokine.

  19. Osteoblasts are target cells for transformation in c-fos transgenic mice

    PubMed Central

    1993-01-01

    We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype. PMID:8335693

  20. Phage displayed scFv: pIII scaffold may fine tune binding specificity.

    PubMed

    Goswami, Pooja; Saini, Deepti; Sinha, Subrata

    2009-10-01

    The fine specificity of antibodies is important for their discriminating powers during diagnostics and in vivo therapy. We have attempted to isolate human scFv antibodies to the oncofetal antigen, the placental isozyme of alkaline phosphatase (PLAP) in which it is important to distinguish between the closely related intestinal alkaline phosphatase (IAP) and bone alkaline phosphatase (BAP) isozymes. As the antibodies are selected in the phage displayed form and might be finally used as different entities, including the soluble scFv form, it may be important to look at the influence of scaffolds in determining specificity. There have been earlier reports of the role of the constant region and other scaffolding proteins in determining specificity. In this paper, we report isolation of one such clone, E6, which showed specificity to PLAP in phage antibody form but lost the specificity when soluble scFv was tested for same, and showed partial cross reactivity to BAP. We suggest that the altered specificity of scFv might be the result of loss of phage pIII scaffold, which is present in phage-displayed antibody and may help the displayed antibody to assume specific conformational structure, which may govern binding characteristics of the same.

  1. Spurious testosterone laboratory results in a patient taking synthetic alkaline phosphatase (asfotase alfa).

    PubMed

    Sofronescu, Alina G; Ross, Meredith; Rush, Eric; Goldner, Whitney

    2018-04-27

    We report a case of discordant total and free testosterone values in a patient with hypogonadism and juvenile hypophosphatasia after he initiated treatment with asfotase alfa, recombinant tissue non-specific alkaline phosphatase. Total testosterone was evaluated using immunoassay pre and post initiation of therapy with asfotase alfa, and free testosterone was evaluated using radioimmunoassay and LC-MS/MS while on asfotase alfa therapy. Total testosterone measured by immunoassay was normal prior to therapy with asfotase alfa, and was low post initiation of therapy. During the same time frame, free testosterone measured using RAI and total testosterone measured using LC-MS/MS were normal on asfotase alfa therapy. This suggests assay interference with the total testosterone immunoassay. When laboratory results are discordant or do not match the clinical impression, the possibility of assay interference should be considered. Alternative laboratory methods free of the interference should be selected to evaluate these patients. ALPL gene, Approved name: Alkaline phosphatase, liver/bone/kidney, Synonym: Tissue non-specific alkaline phosphatase (TNSAP). Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. WAIF1 Is a Cell-Surface CTHRC1 Binding Protein Coupling Bone Resorption and Formation.

    PubMed

    Matsuoka, Kazuhiko; Kohara, Yukihiro; Naoe, Yoshinori; Watanabe, Atsushi; Ito, Masako; Ikeda, Kyoji; Takeshita, Sunao

    2018-04-06

    The osteoclast-derived collagen triple helix repeat containing 1 (CTHRC1) protein stimulates osteoblast differentiation, but the underlying mechanism remains unclear. Here, we identified Wnt-activated inhibitory factor 1 (WAIF1)/5T4 as a cell-surface protein binding CTHRC1. The WAIF1-encoding Trophoblast glycoprotein (Tpbg) gene, which is abundantly expressed in the brain and bone but not in other tissues, showed the same expression pattern as Cthrc1. Tpbg downregulation in marrow stromal cells reduced CTHRC1 binding and CTHRC1-stimulated alkaline phosphatase activity through PKCδ activation of MEK/ERK, suggesting a novel WAIF1/PKCδ/ERK pathway triggered by CTHRC1. Unexpectedly, osteoblast lineage-specific deletion of Tpbg downregulated Rankl expression in mouse bones and reduced both bone formation and resorption; importantly, it impaired bone mass recovery following RANKL-induced resorption, reproducing the phenotype of osteoclast-specific Cthrc1 deficiency. Thus, the binding of osteoclast-derived CTHRC1 to WAIF1 in stromal cells activates PKCδ-ERK osteoblastogenic signaling and serves as a key molecular link between bone resorption and formation during bone remodeling. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.

  3. Effect of modified alkaline supplementation on bone metabolic turnover in rats.

    PubMed

    Chui, D H; Marotta, F; Liu, T; Minelli, E; Yadav, H; Signorelli, P; Lorenzetti, A; Jain, S

    2008-01-01

    This study aims to determine the effects of a high protein diet and alkaline supplementation on bone metabolic turnover in rats. Eight-week-old male Sprague-Dawley rats were investigated by bone status, including bone mineral density (BMD) and biomechanical markers from blood and urine. Thirty rats were randomly divided into three groups and treated for 8 weeks as follows: baseline control group (n. 10, C), high-protein supplemented diet group (n. 10, chronic acidosis, CA group) and supplemented chronic acidosis (n.10, SCA). Diet-treated rats were fed an acidic high-protein diet and the supplementation consisted in a modified alkaline formula (Basenpulver, NaMed, Italy). At the end of the experimental period, the rats were sacrificed, blood samples were drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the CA group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased 2.1-fold (p<0.05 vs normal diet controls) as well as kidney weight. However, serum Ca and P concentration, as well as urinary Dpd excretion were not significantly changed. Femural and tibial BMD was significantly decreased in the CA group (p<0.05), but alkaline supplementation prevented such phenomenon (p<0.05 vs CA). These results suggest that blood Ca and P concentrations in chronic acidosis condition during the 12-week supplementation might be maintained by hypercalciuria and hyperphosphaturia at the expenses of bone structure. However, modified alkaline supplementation is able to prevent such derangements.

  4. A comparison of bone-related biomarkers and CA27.29 to assess response to treatment of osseous metastatic breast cancer.

    PubMed

    Lüfter, D; Richter, A; Günther, S; Flath, B; Akrivakis, C; Geppert, R; Wernecke, K D; Possinger, K

    2000-01-01

    The assessment of bone metastases by clinical examination or imaging techniques is still considered unreliable. We compared a specific marker of bone resorption, urinary deoxypyridinoline (DPD)-crosslinks, with serum calcium (Ca), alkaline phosphatase (AP) and CA27.29, to evaluate the status of bone metastases in patients with breast cancer. Second morning voided urine was collected from 2 groups of patient (pts), those without evidence of disease (n = 118), and those with bone metastases (n = 85) under specific therapy plus pamidronate. DPD and CA27.29 were measured on the automated ACS180 system (Bayer Diagnostics, Tarrytown, NY, USA). Receiver operating characteristics (ROC) curves were established for each of the 4 biomarkers to determine whether they could distinguish the 2 subsets of pts with clinically sufficient validity, and to establish the corresponding cut-off values. Neither Ca nor AP was useful in discriminating the 2 subgroups. At a DPD cut-off of 13 nmol/mmol, we found a specificity of 69% and a sensitivity of 53% for diagnosing bone metastases. Best results, however, were seen for CA27.29. A cut-off value of 30 U/ml resulted in a specificity of 62% and a sensitivity of 81%. CA27.29 was the best parameter for the discrimination of stage IV breast cancer with bone metastases. The primary advantage of DPD lies in the monitoring of bone metastases under specific therapy.

  5. Triiodothyronine increases calcium loss in a bed rest antigravity model for space flight.

    PubMed

    Smith, Steven R; Lovejoy, Jennifer C; Bray, George A; Rood, Jennifer; Most, Marlene M; Ryan, Donna H

    2008-12-01

    Bed rest has been used as a model to simulate the effects of space flight on bone metabolism. Thyroid hormones accelerate bone metabolism. Thus, supraphysiologic doses of this hormone might be used as a model to accelerate bone metabolism during bed rest and potentially simulate space flight. The objective of the study was to quantitate the changes in bone turnover after low doses of triiodothyronine (T(3)) added to short-term bed rest. Nine men and 5 women were restricted to bed rest for 28 days with their heads positioned 6 degrees below their feet. Subjects were randomly assigned to receive either placebo or oral T(3) at doses of 50 to 75 microg/d in a single-blind fashion. Calcium balance was measured over 5-day periods; and T(3), thyroxine, thyroid-stimulating hormone, immunoreactive parathyroid hormone, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were measured weekly. Triiodothyronine increased 2-fold in the men and 5-fold in the women during treatment, suppressing both thyroxine and thyroid-stimulating hormone. Calcium balance was negative by 300 to 400 mg/d in the T(3)-treated volunteers, primarily because of the increased fecal loss that was not present in the placebo group. Urinary deoxypyridinoline to creatinine ratio, a marker of bone resorption, increased 60% in the placebo group during bed rest, but more than doubled in the T(3)-treated subjects (P < .01), suggesting that bone resorption was enhanced by treatment with T(3). Changes in serum osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, were similar in T(3)- and placebo-treated subjects. Triiodothyronine increases bone resorption and fecal calcium loss in subjects at bed rest.

  6. Alkaline phosphatase binds tenaciously to titanium; implications for biological surface evaluation following bone implant retrieval.

    PubMed

    Mansell, J P; Shiel, A I; Harwood, C; Stephens, D

    2017-07-01

    Enhancing the performance and longevity of titanium (Ti) implants continues to be a significant developmental theme in contemporary biomaterials design. Our specific focus pertains to the surface functionalisation of Ti using the bioactive lipid, lysophosphatidic acid (LPA) and certain phosphatase-resistant analogues of LPA. Coating survivorship to a plethora of testing regimens is required to align with due regulatory process before novel biomaterials can enter clinical trials. One of the key acceptance criteria is coating retention to the physical stresses experienced during implantation. In assessing coating stability to insertion into porcine bone we found that a subsequent in vitro assessment to confirm coating persistence was masked by abundant alkaline phosphatase (ALP) contamination adsorbed to the metal surface. Herein we report that ALP can bind to Ti in a matter of minutes by simply immersing Ti samples in aqueous solutions of the enzyme. We strongly discourage the in vitro monitoring of osteoblast and stromal cell ALP expression when assessing bioactive coating survivorship following Ti implant retrieval form native bone tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  8. Does a high dietary acid content cause bone loss, and can bone loss be prevented with an alkaline diet?

    PubMed

    Hanley, David A; Whiting, Susan J

    2013-01-01

    A popular concept in nutrition and lay literature is that of the role of a diet high in acid or protein in the pathogenesis of osteoporosis. A diet rich in fruit and vegetable intake is thought to enhance bone health as the result of its greater potassium and lower "acidic" content than a diet rich in animal protein and sodium. Consequently, there have been a number of studies of diet manipulation to enhance potassium and "alkaline" content of the diet to improve bone density or other parameters of bone health. Although acid loading or an acidic diet featuring a high protein intake may be associated with an increase in calciuria, the evidence supporting a role of these variables in the development of osteoporosis is not consistent. Similarly, intervention studies with a more alkaline diet or use of supplements of potassium citrate or bicarbonate have not consistently shown a bone health benefit. In the elderly, inadequate protein intake is a greater problem for bone health than protein excess. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. Effects of combined maternal administration with alpha-ketoglutarate (AKG) and β-hydroxy-β-methylbutyrate (HMB) on prenatal programming of skeletal properties in the offspring.

    PubMed

    Tatara, Marcin R; Krupski, Witold; Tymczyna, Barbara; Studziński, Tadeusz

    2012-05-11

    Nutritional manipulations during fetal growth may induce long-term metabolic effects in postnatal life. The aim of the study was to test whether combined treatment of pregnant sows with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate induces additive long-term effects on skeletal system properties in the offspring. The study was performed on 290 pigs obtained from 24 sows divided into 4 equal groups and subjected to experimental treatment during two weeks before delivery. The first group consisted of control sows, while the second group received alpha-ketoglutarate. The third group was treated with β-hydroxy-β-methylbutyrate and the fourth group underwent combined administration of alpha-ketoglutarate and β-hydroxy-β-methylbutyrate. Piglets obtained from sows were reared until slaughter age to perform morphometric, densitometric and mechanical analyses of femur. Serum evaluations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin were performed in newborns and 90-day old piglets; additionally, plasma amino acid concentration was measured in newborns. Maternal treatment with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate significantly reduced fattening time and increased birth body weight, daily body weight gain, bone weight, volumetric bone mineral density, geometrical parameters and mechanical endurance of femur. These effects were associated with increased serum concentrations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin. Furthermore, alpha-ketoglutarate and β-hydroxy-β-methylbutyrate administered solely or in combination significantly increased plasma level of 19 amino acids. Hormonal and amino acid evaluations in pigs indicate additive effects of AKG and HMB on systemic growth and development; however, determination of bone properties has not shown such phenomenon.

  10. Effects of combined maternal administration with alpha-ketoglutarate (AKG) and β-hydroxy-β-methylbutyrate (HMB) on prenatal programming of skeletal properties in the offspring

    PubMed Central

    2012-01-01

    Background Nutritional manipulations during fetal growth may induce long-term metabolic effects in postnatal life. The aim of the study was to test whether combined treatment of pregnant sows with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate induces additive long-term effects on skeletal system properties in the offspring. Methods The study was performed on 290 pigs obtained from 24 sows divided into 4 equal groups and subjected to experimental treatment during two weeks before delivery. The first group consisted of control sows, while the second group received alpha-ketoglutarate. The third group was treated with β-hydroxy-β-methylbutyrate and the fourth group underwent combined administration of alpha-ketoglutarate and β-hydroxy-β-methylbutyrate. Piglets obtained from sows were reared until slaughter age to perform morphometric, densitometric and mechanical analyses of femur. Serum evaluations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin were performed in newborns and 90-day old piglets; additionally, plasma amino acid concentration was measured in newborns. Results Maternal treatment with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate significantly reduced fattening time and increased birth body weight, daily body weight gain, bone weight, volumetric bone mineral density, geometrical parameters and mechanical endurance of femur. These effects were associated with increased serum concentrations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin. Furthermore, alpha-ketoglutarate and β-hydroxy-β-methylbutyrate administered solely or in combination significantly increased plasma level of 19 amino acids. Conclusions Hormonal and amino acid evaluations in pigs indicate additive effects of AKG and HMB on systemic growth and development; however, determination of bone properties has not shown such phenomenon. PMID:22578071

  11. Impact of air pollution on vitamin D deficiency and bone health in adolescents.

    PubMed

    Feizabad, Elham; Hossein-Nezhad, Arash; Maghbooli, Zhila; Ramezani, Majid; Hashemian, Roxana; Moattari, Syamak

    2017-12-01

    The association between air pollution and bone health was evaluated in adolescents in the city of Tehran. This study is essentially ecological. Vitamin D deficiency among adolescents has been reported at higher rates in polluted areas than in non-polluted areas. Additionally, residence in polluted areas is associated with lower levels of bone alkaline phosphatase. The aim of this study was to evaluate the association between ambient air pollution and bone turnover in adolescents and to compare the prevalence of vitamin D deficiency between polluted and non-polluted areas of Tehran. This cross-sectional population-based study was conducted on 325 middle- and high-school students (both girls and boys) in Tehran in the winter. During the study period, detailed daily data on air pollution were obtained from archived data collected by Tehran Air Quality Control Company (AQCC). Serum levels of calcium, phosphorus, parathyroid hormone (PTH), bone-specific alkaline phosphatase, 25(OH) vitamin D, osteocalcin, cross-linked C-telopeptide (CTX), total protein, albumin, and creatinine were obtained from the study group. Vitamin D deficiency was more prevalent in polluted areas than in non-polluted areas. After adjustment for age and sex, residence in the polluted area showed a statistically significant positive association with vitamin D deficiency and a statistically significant negative association with bone turnover. Interestingly, high calcium intake (>5000 mg/week) protects against the effects of air pollution on bone turnover. Air pollution is a chief factor determining the amount of solar UVB that reaches the earth's surface. Thus, atmospheric pollution may play a significant independent role in the development of vitamin D deficiency.

  12. Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease patients starting dialysis.

    PubMed

    Bergman, Annelie; Qureshi, Abdul Rashid; Haarhaus, Mathias; Lindholm, Bengt; Barany, Peter; Heimburger, Olof; Stenvinkel, Peter; Anderstam, Björn

    2017-04-01

    Alkaline phosphatase (ALP) and bone-specific ALP (BALP) are implicated in the abnormal skeletal mineralization and accelerated vascular calcification in chronic kidney disease (CKD) patients. Whereas ALP and BALP may predict mortality in CKD, BALP is reported to have higher sensitivity and specificity than total ALP in reflecting histological alterations in bone; however, results on their associations with bone mineral density (BMD) are inconsistent. Here we evaluated associations of total ALP and BALP with BMD during up to 24 months in end-stage renal disease (ESRD) patients. In this longitudinal study, 194 ESRD patients (median age 57 years, 66 % male, 32 % diabetes mellitus, mean body mass index 24.8 kg/m 2 ) underwent measurements of total ALP and BALP and total and regional body BMD (by dual-energy X-ray absorptiometry) at dialysis initiation (n = 194), and after 12 (n = 98) and 24 months (n = 40) on dialysis. At baseline, patients had median total ALP 65.4 (43.3-126.4) U/l, BALP 13.5 (7.1-27.3) µg/l and BMD 1.14 (0.97-1.31) g/cm 2 . During the study period, serum concentrations of ALP and BALP increased significantly (p < 0.001), whereas total and regional BMD remained stable. BMD correlated inversely with total ALP (rho = -0.20, p = 0.005) and BALP (rho = -0.30, p < 0.001) at baseline, and correlations were similar also at 12 and 24 months. ALP and BALP are equally accurate albeit weak predictors of BMD in ESRD patients, both at baseline and longitudinally. The dissociation between stable BMD and increasing ALP and BALP may possibly reflect increased soft tissue calcifications with time on dialysis.

  13. Calorie restriction and bone health in young, overweight individuals.

    PubMed

    Redman, Leanne M; Rood, Jennifer; Anton, Stephen D; Champagne, Catherine; Smith, Steven R; Ravussin, Eric

    2008-09-22

    Calorie restriction (CR) is promoted to increase longevity, yet this regimen could lead to bone loss and fracture and therefore affect quality of life. Forty-six individuals were randomized to 4 groups for 6 months: (1) healthy diet (control group); (2) 25% CR from baseline energy requirements (CR group); (3) 25% energy deficit by a combination of CR and increased aerobic exercise (CR + EX group); and (4) low-calorie diet (890 kcal/d; goal, 15% weight loss) followed by weight maintenance (LCD group). Bone mineral density (total body and hip by dual-energy x-ray absorptiometry) and serum bone markers (bone-specific alkaline phosphatase, osteocalcin, cross-linked C-telopeptide of type I collagen, and cross-linked N-telopeptide of type I collagen) were measured at baseline and after 6 months. Mean +/- SE body weight was reduced by -1.0% +/- 1.1% (control), -10.4% +/- 0.9% (CR), -10.0% +/- 0.8% (CR + EX), and -13.9% +/- 0.7% (LCD). Compared with the control group, none of the groups showed any change in bone mineral density for total body or hip. Bone resorption by serum cross-linked C-telopeptide of type I collagen was increased in all 3 intervention groups, with the largest change observed in the LCD group (CR, 23% +/- 10%; CR + EX, 22% +/- 9%; and LCD, 74% +/- 16% vs control, 4% +/- 10%). Serum levels of cross-linked N-telopeptide of type I collagen were also increased in the LCD group. With regard to bone formation, bone alkaline phosphatase levels were decreased in the CR group (-23% +/- 10%) but were unchanged in the CR + EX, LCD, and control groups. Moderate CR, with or without exercise, that preserves calcium intake for 6 months leads to large changes in body composition without significant bone loss in young adults. Longer studies with assessments of bone architecture are needed to confirm that CR nutrient-dense diets have no deleterious effect on bone health. clinicaltrials.gov Identifier: NCT00099151.

  14. [Influence of hormonal contraceptives on indices of zinc homeostasis and bone remodeling in young adult women].

    PubMed

    Simões, Tania Mara Rodrigues; Zapata, Carmiña Lucía Vargas; Donangelo, Carmen Marino

    2015-09-01

    To investigate the influence of the use of oral hormonal contraceptive agents (OCA) on the biochemical indices related to metabolic zinc utilization and distribution, and to bone turnover in young adult women. Cross-sectional study. Blood and urine samples from non-users (-OCA; control; n=69) and users of hormonal contraceptives for at least 3 months (+OCA; n=62) were collected under controlled conditions. Indices of zinc homeostasis and of bone turnover were analyzed in serum or plasma (total, albumin-bound and α2-macroglobulin-bound zinc, albumin and total and bone alkaline phosphatase activity), in erythrocytes (zinc and metallothionein) and in urine (zinc, calcium and hydroxyproline). The habitual zinc and calcium intakes were evaluated by a food frequency questionnaire. Dietary zinc intake was similar in both groups and on average above recommended values, whereas calcium intake was similarly sub-adequate in +OCA and -OCA. Compared to controls, +OCA had lower concentrations of total and α2-macroglobulin-bound zinc (11 and 28.5%, respectively, p<0.001), serum albumin (13%, p<0.01), total and bone-specific alkaline phosphatase activity (13 and 18%, respectively, p<0.05), erythrocyte metallothionein (13%, p<0.01), and, urinary zinc (34%, p<0.05). OCA use decreases serum zinc, alters zinc distribution in major serum fractions with possible effects on tissue uptake, enhances zinc retention in the body and decreases bone turnover. Prolonged OCA use may lead to lower peak bone mass and/or to impaired bone mass maintenance in young women, particularly in those with marginal calcium intake. The observed OCA effects were more evident in women younger than 25 years and in nulliparous women, deserving special attention in future studies.

  15. Effects of Fok-I polymorphism in vitamin D receptor gene on serum 25-hydroxyvitamin D, bone-specific alkaline phosphatase and calcaneal quantitative ultrasound parameters in young adults.

    PubMed

    Tanabe, Rieko; Kawamura, Yuka; Tsugawa, Naoko; Haraikawa, Mayu; Sogabe, Natsuko; Okano, Toshio; Hosoi, Takayuki; Goseki-Sone, Masae

    2015-01-01

    Several genes have been implicated as genetic determinants of osteoporosis. Vitamin D receptor (VDR) is an intracellular hormone receptor that specifically binds to the biologically active form of vitamin D, 1-alpha, 25- dihydroxyvitamin D3 [1, 25(OH)2D], and mediates its effects. One of the most frequently studied single nucleotide polymorphisms is the restriction fragment length polymorphism (RFLP) Fok-I (rs2228570). The presence of a Fok-I site, designated f, allows protein translation to initiate from the first ATG. An allele lacking the site (ATG>ACG: designated F), initiates from a second ATG site. In the present study, we explored the effect of the VDR Fok-I genotype on associations among serum bone-specific alkaline phosphatase (ALP), 25- hydroxyvitamin D3 [25(OH)D], 1, 25(OH)2D, and the dietary nutrient intake in healthy young Japanese subjects (n=193). Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Quantitative ultrasound (QUS) parameters at the right calcaneus (heel bone) were measured. The allele frequencies were 0.622 for the F allele and 0.378 for the f allele in all subjects. Grouped by the VDR genotype, a significant positive correlation between the levels of serum bone-specific ALP and 25(OH)D was observed in the FF-type (p=0.005), but not in the ff-type. In addition, there was a significant positive correlation between the level of serum 25(OH)D and osteo-sono assessment index (OSI) in the FF-type (p=0.008), but not in the ff-type. These results suggest that the level of circulating 25(OH)D is an important factor when assessing the VDR Fok-I polymorphism to prevent osteoporosis.

  16. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality

    PubMed Central

    2011-01-01

    Background Modern diets have been suggested to increase systemic acid load and net acid excretion. In response, alkaline diets and products are marketed to avoid or counteract this acid, help the body regulate its pH to prevent and cure disease. The objective of this systematic review was to evaluate causal relationships between dietary acid load and osteoporosis using Hill's criteria. Methods Systematic review and meta-analysis. We systematically searched published literature for randomized intervention trials, prospective cohort studies, and meta-analyses of the acid-ash or acid-base diet hypothesis with bone-related outcomes, in which the diet acid load was altered, or an alkaline diet or alkaline salts were provided, to healthy human adults. Cellular mechanism studies were also systematically examined. Results Fifty-five of 238 studies met the inclusion criteria: 22 randomized interventions, 2 meta-analyses, and 11 prospective observational studies of bone health outcomes including: urine calcium excretion, calcium balance or retention, changes of bone mineral density, or fractures, among healthy adults in which acid and/or alkaline intakes were manipulated or observed through foods or supplements; and 19 in vitro cell studies which examined the hypothesized mechanism. Urine calcium excretion rates were consistent with osteoporosis development; however calcium balance studies did not demonstrate loss of whole body calcium with higher net acid excretion. Several weaknesses regarding the acid-ash hypothesis were uncovered: No intervention studies provided direct evidence of osteoporosis progression (fragility fractures, or bone strength as measured using biopsy). The supporting prospective cohort studies were not controlled regarding important osteoporosis risk factors including: weight loss during follow-up, family history of osteoporosis, baseline bone mineral density, and estrogen status. No study revealed a biologic mechanism functioning at physiological pH. Finally, randomized studies did not provide evidence for an adverse role of phosphate, milk, and grain foods in osteoporosis. Conclusions A causal association between dietary acid load and osteoporotic bone disease is not supported by evidence and there is no evidence that an alkaline diet is protective of bone health. PMID:21529374

  17. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality.

    PubMed

    Fenton, Tanis R; Tough, Suzanne C; Lyon, Andrew W; Eliasziw, Misha; Hanley, David A

    2011-04-30

    Modern diets have been suggested to increase systemic acid load and net acid excretion. In response, alkaline diets and products are marketed to avoid or counteract this acid, help the body regulate its pH to prevent and cure disease. The objective of this systematic review was to evaluate causal relationships between dietary acid load and osteoporosis using Hill's criteria. Systematic review and meta-analysis. We systematically searched published literature for randomized intervention trials, prospective cohort studies, and meta-analyses of the acid-ash or acid-base diet hypothesis with bone-related outcomes, in which the diet acid load was altered, or an alkaline diet or alkaline salts were provided, to healthy human adults. Cellular mechanism studies were also systematically examined. Fifty-five of 238 studies met the inclusion criteria: 22 randomized interventions, 2 meta-analyses, and 11 prospective observational studies of bone health outcomes including: urine calcium excretion, calcium balance or retention, changes of bone mineral density, or fractures, among healthy adults in which acid and/or alkaline intakes were manipulated or observed through foods or supplements; and 19 in vitro cell studies which examined the hypothesized mechanism. Urine calcium excretion rates were consistent with osteoporosis development; however calcium balance studies did not demonstrate loss of whole body calcium with higher net acid excretion. Several weaknesses regarding the acid-ash hypothesis were uncovered: No intervention studies provided direct evidence of osteoporosis progression (fragility fractures, or bone strength as measured using biopsy). The supporting prospective cohort studies were not controlled regarding important osteoporosis risk factors including: weight loss during follow-up, family history of osteoporosis, baseline bone mineral density, and estrogen status. No study revealed a biologic mechanism functioning at physiological pH. Finally, randomized studies did not provide evidence for an adverse role of phosphate, milk, and grain foods in osteoporosis. A causal association between dietary acid load and osteoporotic bone disease is not supported by evidence and there is no evidence that an alkaline diet is protective of bone health.

  18. Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Wastney, M. E.; Morukov, B. V.; Larina, I. M.; Nyquist, L. E.; Abrams, S. A.; Taran, E. N.; Shih, C. Y.; Nillen, J. L.; Davis-Street, J. E.; hide

    1999-01-01

    The loss of bone during spaceflight is considered a physiological obstacle for the exploration of other planets. This report of calcium metabolism before, during, and after long-duration spaceflight extends results from Skylab missions in the 1970s. Biochemical and endocrine indexes of calcium and bone metabolism were measured together with calcium absorption, excretion, and bone turnover using stable isotopes. Studies were conducted before, during, and after flight in three male subjects. Subjects varied in physical activity, yet all lost weight during flight. During flight, calcium intake and absorption decreased up to 50%, urinary calcium excretion increased up to 50%, and bone resorption (determined by kinetics or bone markers) increased by over 50%. Osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, increased after flight. Subjects lost approximately 250 mg bone calcium per day during flight and regained bone calcium at a slower rate of approximately 100 mg/day for up to 3 mo after landing. Further studies are required to determine the time course of changes in calcium homeostasis during flight to develop and assess countermeasures against flight-induced bone loss.

  19. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes.

    PubMed

    Leboy, P S; Vaias, L; Uschmann, B; Golub, E; Adams, S L; Pacifici, M

    1989-10-15

    During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.

  20. Bone-specific alkaline phosphatase - a potential biomarker for skeletal growth assessment.

    PubMed

    Tripathi, Tulika; Gupta, Prateek; Sharma, Jitender; Rai, Priyank; Gupta, Vinod Kumar; Singh, Navneet

    2018-03-01

    The present study was aimed to assess levels of serum Bone-specific alkaline phosphatase (BALP) and serum Insulin-like growth factor-1 (IGF-1) and comparing with cervical vertebral maturation index (CVMI) stages. Cross-sectional study. Maulana Azad Institute of Dental Sciences, New Delhi, India. 150 subjects (75 males and 75 females) in the age group of 8-20 years. Subjects were divided into six CVMI stages. Enzyme-linked immunosorbant assay was performed for the estimation of serum BALP and serum IGF-1 levels. Mann-Whitney U test was performed to compare mean ranks of serum BALP and serum IGF-1 with different CVMI stages. Spearman correlation between serum BALP and serum IGF-1 was done across 6 CVMI stages. Peak serum IGF-1 levels were found at CVMI stages 4 and 3 for males and females respectively. Peak levels for serum BALP were found at stage 3 for both genders with significant differences from other stages. A statistically significant correlation was seen between serum IGF-1 and serum BALP from CVMI stages 1 to 3 and 4 to 6 (p < .01). BALP showed promising results and can be employed as a potential biomarker for the estimation of growth status.

  1. Increased osteoblastic activity and expression of receptor activator of NF-kappaB ligand in nonuremic nephrotic syndrome.

    PubMed

    Freundlich, Michael; Alonzo, Evelyn; Bellorin-Font, Ezequiel; Weisinger, Jose R

    2005-07-01

    Patients with nephrotic syndrome (NS), even with normal GFR, often display altered mineral homeostasis and abnormal bone histology. However, the latter, mostly osteomalacia and increased bone resorption, cannot be readily explained by the prevalent concentrations of parathyroid hormone and vitamin D metabolites. The transmembrane receptor activator of NF-kappaB ligand (RANKL) of osteoblasts is essential for osteoclast formation and differentiation. Osteoblasts activity and the expression of RANKL were tested in cultures of normal human osteoblasts with sera obtained from patients with NS and normal GFR (129 +/- 26 ml/min per 1.73 m2) during relapse and remission of their NS. Osteoblasts that were cultured in vitro with sera during relapse displayed elevated concentrations of alkaline phosphatase (AP) and increased expression of RANKL. By contrast, during remission, AP concentrations were significantly lower (P < 0.05) and RANKL expression notably attenuated or absent. AP correlated with the proteinuria (r = 0.5, P < 0.05) and was not significantly affected by the therapeutic administration of corticosteroids. Whereas parathyroid hormone levels were normal (35 +/- 21 pg/ml), the serum markers of bone formation (osteocalcin and bone-specific alkaline phosphatase) were lower during relapse compared with remission. Thus, sera from patients with NS and normal GFR stimulate the activity of osteoblasts and upregulate their expression of RANKL. These alterations, more prominent during clinically active NS, are transient and reversible upon remission. These disturbances of bone biology may play an important pathogenic role in the abnormal bone histology observed in patients with NS even before a decline in GFR occurs.

  2. Finasteride therapy does not alter bone turnover in men with benign prostatic hyperplasia--a Clinical Research Center study.

    PubMed

    Tollin, S R; Rosen, H N; Zurowski, K; Saltzman, B; Zeind, A J; Berg, S; Greenspan, S L

    1996-03-01

    Benign prostatic hyperplasia is often treated with finasteride, which inhibits the conversion of testosterone to dihydrotestosterone (DHT). Aside from the prostate, other androgen-dependent tissues seem to be unaffected by selective DHT deficiency, but the effect on bone density in humans has not yet been defined. To study this question, we compared indices of bone turnover and bone mineral density in 35 men treated with finasteride with controls. Bone resorption was assessed by measuring urinary excretion of N-telopeptide cross-links of type I collagen and hydroxyproline, and bone formation was assessed by measuring serum osteoncalcin and bone-specific alkaline phosphatase. Bone density of the spine and hip were assessed by dual energy x-ray absorptiometry. We found that finasteride-treated patients had mean DHT levels 81% lower than controls (P < 0.0001). There were no significant differences between the two groups in any of the markers of bone turnover or measures of bone density. These results suggest that testosterone can maintain bone density in men even in the absence of DHT. Although long term studies are needed, our results suggest that men who take finasteride are not at increased risk for bone loss.

  3. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    PubMed Central

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline phosphatase and osteocalcin gene expressions. Our results suggest the potential of chitosan nanofiber scaffolds for therapy of bone diseases, including bone defects and bone fractures. PMID:26451104

  4. Association between serum alkaline phosphatase and primary resistance to erythropoiesis stimulating agents in chronic kidney disease: a secondary analysis of the HERO trial.

    PubMed

    Badve, Sunil V; Zhang, Lei; Coombes, Jeff S; Pascoe, Elaine M; Cass, Alan; Clarke, Philip; Ferrari, Paolo; McDonald, Stephen P; Morrish, Alicia T; Pedagogos, Eugenie; Perkovic, Vlado; Reidlinger, Donna; Scaria, Anish; Walker, Rowan; Vergara, Liza A; Hawley, Carmel M; Johnson, David W

    2015-01-01

    Erythropoiesis stimulating agent (ESA)-resistant anemia is common in chronic kidney disease (CKD). To evaluate the determinants of severity of ESA resistance in patients with CKD and primary ESA-resistance. Secondary analysis of a randomized controlled trial (the Handling Erythropoietin Resistance with Oxpentifylline, HERO). 53 adult patients with CKD stage 4 or 5 and primary ESA-resistant anemia (hemoglobin ≤120 g/L, ESA resistance index [ERI] ≥1.0 IU/kg/week/gHb for erythropoietin or ≥0.005 μg/kg/week/gHb for darbepoeitin, no cause for ESA-resistance identified). Iron studies, parathyroid hormone, albumin, liver enzymes, phosphate or markers of oxidative stress and inflammation. Participants were divided into tertiles of ERI. Multinomial logistic regression was used to analyse the determinants of ERI tertiles. All patients, except one, were receiving dialysis for end-stage kidney disease. The mean ± SD ERI values in the low (n = 18), medium (n = 18) and high (n = 17) ERI tertiles were 1.4 ± 0.3, 2.3 ± 0.2 and 3.5 ± 0.8 IU/kg/week/gHb, respectively (P < 0.001). There were no significant differences observed in age, gender, ethnicity, cause of kidney disease, diabetes, iron studies, parathyroid hormone, albumin, liver enzymes, phosphate or markers of oxidative stress and inflammation between the ERI tertiles. The median [inter-quartile range] serum alkaline phosphatase concentrations in the low, medium and high ERI tertiles were 89 [64,121], 99 [76,134 and 148 [87,175] U/L, respectively (P = 0.054). There was a weak but statistically significant association between ERI and serum alkaline phosphatase (R(2) = 0.06, P = 0.03). Using multinomial logistic regression, the risk of being in the high ERI tertile relative to the low ERI tertile increased with increasing serum alkaline phosphatase levels (P = 0.02). No other variables were significantly associated with ERI. Small sample size; bone-specific alkaline phosphatase, other markers of bone turnover and bone biopsies not evaluated. Serum alkaline phosphatase was associated with severity of ESA resistance in ESA-resistant patients with CKD. Large prospective studies are required to confirm this association. ( Australian New Zealand Clinical Trials Registry 12608000199314).

  5. Assessment of the serum levels of bone alkaline phosphatase with a new immunoradiometric assay in patients with metabolic bone disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnero, P.; Delmas, P.D.

    1993-10-01

    The authors measured serum bone alkaline phosphatase (B-ALP) with a new immunoradiometric assay (IRMA) in a large sample of healthy controls comprising 173 women and 180 men, 20-88 yr of age, and in patients with metabolic bone disease. Using serum samples from patients with liver disease and patients with Paget's disease with elevated total alkaline phosphatase (T-ALP) as a source of, respectively, liver and bone isoenyzmes, they determined a liver cross-reactivity of the IRMA of 16% that was confirmed by electrophoresis of the circulating alkaline phosphatase isoenzymes. The IRMA was linear for serial sample dilutions, the recovery ranged from 89-110%,more » and the intra- and interassay variations were below 7% and 9%, respectively. B-ALP increased linearly with age in both sexes, and the mean B-ALP serum levels were not significantly different for women and men (11.3 [+-] 4.8 ng/mL for women; 11.0 [+-] 4.0 ng/mL for men). The increase in B-ALP after the menopause was significantly higher than that in T-ALP (+77% vs. +24%; P<0.001). When the values of postmenopausal women were expressed as the SD from the mean of premenopausal women, the mean Z scores were 2.2[+-] 1.8 for B-ALP and 0.9 [+-] 1.3 for T-ALP (P<0.001 between the two).« less

  6. Clay-Enriched Silk Biomaterials for Bone Formation

    PubMed Central

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  7. Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E.

    1994-01-01

    Spaceflight leads to osteopenia, in part by inhibiting bone formation. Using an animal model (hindlimb elevation) that simulates the weightlessness of spaceflight, we and others showed a reversible inhibition of bone formation and bone mineralization. In this study, we have measured the mRNA levels of insulin-like growth factor I (IGF-I), IGF-I receptor (IGF-IR), alkaline phosphatase, and osteocalcin in the tibiae of rats flown aboard National Aeronautics and Space Administration Shuttle Flight STS-54 and compared the results with those obtained from their ground-based controls and from the bones of hindlimb-elevated animals. Spaceflight and hindlimb elevation transiently increase the mRNA levels for IGF-I, IGF-IR, and alkaline phosphatase but decrease the mRNA levels for osteocalcin. The changes in osteocalcin and alkaline phosphatase mRNA levels are consistent with a shift toward decreased maturation, whereas the rise in IGF-I and IGF-IR mRNA levels may indicate a compensatory response to the fall in bone formation. We conclude that skeletal unloading during spaceflight or hindlimb elevation resets the pattern of gene expression in the osteoblast, giving it a less mature profile.

  8. Noninvasive diagnosis of uremic osteodystrophy: uses and limitations.

    PubMed

    Heaf, J G; Joffe, P; Pødenphant, J; Andersen, J R

    1987-01-01

    45 bone biopsies from patients with chronic uremia were reviewed to define which noninvasive investigations were of value in predicting the histological diagnosis and to quantify the spectrum of uremic bone disease at a center that has consistently used an aluminum-free dialysis bath. 17 biopsies were taken postmortem. 15 patients received conservative treatment, the rest were on maintenance dialysis. 13 patients had symptomatic bone disease. Virtually all patients with a uremia duration greater than 3 years had uremic osteodystrophy. All patients with clinical bone disease, hypercalcemia or raised alkaline phosphatase activity had osteodystrophy, but the specific histology was not indicated. Greatly raised parathyroid levels suggested secondary hyperparathyroidism, but the test was only 100% specific when 20 times normal. Total aluminum consumption was highly indicative of bone aluminum concentration (p less than 0.0001) and aluminum-related osteomalacia (5 cases), suggesting that a considerable proportion of uremic bone disease is iatrogenic. Serum aluminum was of some use in the diagnosis of aluminum-related osteomalacia, but was not wholly reliable. Bone mineral content (BMC) using both forearm measurements and total body bone mineral levels (TBBM) were assessed in 32 patients and were found to be reduced in 12, with a preponderance of secondary hyperparathyroidism. BMC and TBBM were negatively correlated to resorbing surfaces and bone formation rate, suggesting that secondary hyperparathyroidism is the uremic bone disease that represents the greatest threat to bone mass. It is concluded that while noninvasive investigations give considerable information, reliable diagnosis requires the use of histological methods.

  9. Effect of low-intensity pulsed ultrasound on bone regeneration: biochemical and radiologic analyses.

    PubMed

    Pomini, Karina T; Andreo, Jesus C; Rodrigues, Antonio de C; de O Gonçalves, Jéssica B; Daré, Letícia R; German, Iris J S; Rosa, Geraldo M; Buchaim, Rogerio L

    2014-04-01

    The purpose of this study was to evaluate the effects of low-intensity pulsed ultrasound at 1.0 MHz on the healing process of fractures with bone loss in the rat fibula by alkaline phosphate level measurement and radiologic analyses. Thirty 70-day-old male Wistar rats underwent a bone resection of 2.5 to 3.0 mm between the proximal and middle third of the right fibular diaphysis. The animals were randomly divided into 3 experimental groups: reference (uninjured), control (injured only), and treated (injured and treated with 5 applications of ultrasound, interspersed by 2 days of rest, beginning 24 hours after the osteotomy). Euthanasia was performed at experimental periods of 7 and 14 days. The right hind limb was removed for radiologic analysis. The blood was collected via cardiac puncture to determine the serum alkaline phosphatase activity. The bone fractures had not been completely consolidated in the treated and control group when analysis of the bone took place. At day 7, the serum alkaline phosphatase activity was higher in the treated group (mean ± SD, 72.17 ± 7.02 U/L) compared to the control (65.26 ± 8.41 U/L) and reference (67.21 ± 7.86 U/L) groups. At day 14, higher alkaline phosphatase activity was seen in the control group (68.96 ± 8.12 U/L) compared to the treated (66.09 ± 8.46 U/L) and reference (67.14 ± 7.96 U/L) groups. The biochemical and radiologic results suggest that low-intensity pulsed ultrasound can be used as an auxiliary method to consolidate fractures and probably reduces the bone healing time, offering clinical benefits.

  10. The relationship between alkaline phosphatase and bone alkaline phosphatase activity and the growth hormone/insulin-like growth factor-1 axis and vitamin D status in children with growth hormone deficiency.

    PubMed

    Witkowska-Sędek, Ewelina; Stelmaszczyk-Emmel, Anna; Majcher, Anna; Demkow, Urszula; Pyrżak, Beata

    2018-04-13

    The relationships between bone turnover, the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and vitamin D are complex, but still not fully explained. The GH/IGF-1 axis and vitamin D can mutually modulate each other's metabolism and influence the activation of cell proliferation, maturation, and mineralization as well as bone resorption. The aim of this study was to evaluate the reciprocal associations between bone formation markers [alkaline phosphatase (ALP), bone alkaline phosphatase (BALP)], the GH/IGF-1 axis and 25-hydroxyvitamin D [25(OH)D] in children with growth hormone deficiency at baseline and during recombinant human growth hormone (rhGH) therapy. ALP, BALP, 25(OH)D and IGF-1 levels were evaluated in 53 patients included in this prospective three-year study. ALP, BALP and IGF-1 increased during rhGH therapy. Baseline ALP activity correlated positively with baseline height velocity (HV). ALP and BALP activity at 12 months correlated positively with HV in the first year of therapy. We found positive correlations between ALP and IGF-1 at baseline and during the first year of therapy, between BALP activity at 12 months and rhGH dose in the first year of therapy, and between doses of cholecalciferol in the first year of rhGH therapy and early changes in BALP activity during rhGH therapy. Our results indicate that vitamin D supplementation enhances the effect of rhGH on bone formation process, which could improve the effects of rhGH therapy. ALP and BALP activity are useful in the early prediction of the effects of rhGH therapy, but their utility as long-term predictors seemed insufficient.

  11. Effect of antitumour necrosis factor-alpha therapy on bone turnover in patients with active Crohn's disease: a prospective study.

    PubMed

    Ryan, B M; Russel, M G V M; Schurgers, L; Wichers, M; Sijbrandij, J; Stockbrugger, R W; Schoon, E

    2004-10-15

    Patients with Crohn's disease are at increased risk of osteoporosis. Disease activity and circulating proinflammatory cytokines are thought to play a role in this process. Infliximab, a chimaeric antitumour necrosis factor-alpha antibody is effective in the treatment of Crohn's disease. The aim of this study was to investigate the impact of treatment with infliximab on bone turnover in Crohn's disease patients. This was a prospective trial. Twenty-four patients with active Crohn's disease were treated with infliximab (5 mg/kg). Bone markers were assayed pre- and post-treatment. Bone formation was measured using serum bone-specific alkaline phosphatase and total osteocalcin and bone resorption using serum N-telopeptide cross-linked type 1 collagen. Infliximab therapy caused a significant increase in both markers of bone formation in patients with active Crohn's disease. No significant change in the bone resorption marker serum N-telopeptide cross-linked type 1 was found. Infliximab therapy had a significant beneficial effect on bone metabolism in patients with active Crohn's disease. These findings further support the theory that active ongoing inflammation and high levels of circulating cytokines play a pivotal role in the pathogenesis of bone loss in patients with Crohn's disease.

  12. Effects of gentamicin and monomer on bone. An in vitro study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedersen, J.G.; Lund, B.

    1988-01-01

    Gentamicin-loaded bone cement is used with increasing frequency in primary and revision arthroplasty. Considering the high local concentration and the well-known toxic effect of gentamicin on the kidney, a similar inhibiting effect on bone tissue might be expected. In a series of in vitro studies using paired mouse calvaries cultured for 2 days, the authors found a dose-dependent decrease in the release of previously incorporated calcium-45 (UVCa) or tritiated proline and a decrease in alkaline phosphatase activity. In combination with methylmethacrylate, a small additional reduction in UVCa release and a marked decrease in alkaline phosphatase activity were recorded. These resultsmore » indicate that released gentamicin and monomer from antibiotic-supplemented bone cement depresses bone turnover and might thus play an important part in the pathogenesis of loosening.« less

  13. Effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in severe haemophilia A patients with osteoporosis: a randomized controlled trial.

    PubMed

    Parhampour, Behrouz; Torkaman, Giti; Hoorfar, Hamid; Hedayati, Mehdi; Ravanbod, Roya

    2014-05-01

    To assess the effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in patients with haemophilia with osteoporosis. A randomized, controlled, patient and blood sample assessor-blinded, six-week trial, three times weekly. Hospital outpatients with severe haemophilia A and osteoporosis. Forty-eight patients were randomly assigned to resistance training (RT, n = 13), combined resistance training with pulsed electromagnetic fields (RTPEMF, n = 12), pulsed electromagnetic fields (PEMF, n = 11) and control (n = 12) groups. The RT group received 30-40 minutes of resistance exercises and placebo pulsed electromagnetic fields. The RTPEMF group received the same exercises with lower repetition and 30 minutes of pulsed electromagnetic fields. The PEMF group was exposed to 60 minutes of pulsed electromagnetic fields (30 Hz and 40 Gauss). Bone-specific alkaline phosphatase, N-terminal telopeptide of type 1 collagen, and joint function, using the modified Colorado Questionnaire, were measured before and after the programme. The absolute change of bone-specific alkaline phosphatase was significant in the RT and RTPEMF groups compared with the control group (25.41 ± 14.40, 15.09 ± 5.51, and -4.73 ± 2.93 U/L, respectively). The absolute changes in the total score for joint function were significant for knees, ankles, and elbows in the RT group (9.2 ± 1.38, 5.1 ± 0.5, and 3.2 ± 0.8, respectively) and the RTPEMF group (7.7 ± 1.0, 3.3 ± 0.6, and 2.5 ± 0.7, respectively) compared to the PEMF and control groups. This value was significant for knee joints in the PEMF group compared to the control group (3.4 ± 0.5 and 0.66 ± 0.4, respectively). Resistance training is effective for improving bone formation and joint function in severe haemophilia A patients with osteoporosis.

  14. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging.

    PubMed

    Yu, Jinhua; He, Huixia; Tang, Chunbo; Zhang, Guangdong; Li, Yuanfei; Wang, Ruoning; Shi, Junnan; Jin, Yan

    2010-05-08

    Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.

  15. [Pathological and metabolic bone diseases: Clinical importance for fracture treatment].

    PubMed

    Oheim, R

    2015-12-01

    Pathological and metabolic bone diseases are common and relevant occurrences in orthopedics and trauma surgery; however, fractures are often treated as being the illness itself and not seen as the symptom of an underlying bone disease. This is why further diagnostics and systemic treatment options are often insufficiently considered in the routine treatment of fractures. This review focuses on osteoporosis, osteopetrosis, hypophosphatasia and Paget's disease of bone.In patients with osteoporotic vertebral or proximal femur fractures, pharmaceutical treatment to prevent subsequent fractures is an integral part of fracture therapy together with surgical treatment. Osteopetrosis is caused by compromised osteoclastic bone resorption; therefore, even in the face of an elevated bone mass, vitamin D3 supplementation is crucial to avoid clinically relevant hypocalcemia. Unspecific symptoms of the musculoskeletal system, especially together with stress fractures, are typically found in patients suffering from hypophosphatasia. In these patients measurement of alkaline phosphatase shows reduced enzyme activity. Elevated levels of alkaline phosphatase are found in Paget's disease of bone where bisphosphonates are still the treatment of choice.

  16. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. © 2014 Wiley Periodicals, Inc.

  17. Identification of human pulmonary alkaline phosphatase isoenzymes.

    PubMed

    Capelli, A; Cerutti, C G; Lusuardi, M; Donner, C F

    1997-04-01

    An increase of alkaline phosphatase (ALP) activity has been observed in the bronchoalveolar lavage fluid (BALF) of patients affected by pulmonary fibrosis in chronic interstitial lung disorders. To characterize the ALP isoenzymes in such cases, we used gel filtration, agarose gel electrophoresis, heat and amino acid inhibition assays, wheat-germ agglutinin (WGA) precipitation, and an immunoassay specific for the bone-isoform of ALP. Only one anodic band representing a high-molecular-weight isoform of ALP (Mr approximately 2,000 kDa) was observed on electrophoresis of BALF. The inhibition assay results were consistent for a tissue-nonspecific isoenzyme sensitive to a temperature of 56 degrees C (71.9 +/- 2.5% inhibition) and to homoarginine (65.7 +/- 1.9%), and resistant to L-phenylalanine and L-leucine. Less than 13% of ALP activity was heat-stable. After incubation of BALF specimens with glycosyl-phosphatidylinositol-phospholipase D plus Nonidet P-40, or with phosphatidylinositol-phospholipase C alone, an electrophoretic cathodic band (Mr approximately 220 kDa) appeared near the bone band of a standard serum. With the WGA assay, 84.4 +/- 3.3% of ALP precipitated and the band disappeared. After immunoassay for the bone isoform, a mean of less than 5% enzyme activity was measured. We conclude that the ALP found in BALF is a pulmonary isoform of a tissue nonspecific isoenzyme.

  18. [The effects of oxygen partial pressure changes on the osteometric markers of the bone tissue in rats].

    PubMed

    Berezovs'kyĭ, V Ia; Zamors'ka, T M; Ianko, R V

    2013-01-01

    Our purpose was to investigate the oxygen partial pressure changes on the osteometric and biochemical markers of bone tissue in rats. It was shown that breathing of altered gas mixture did not change the mass, general length, sagittal diameter and density thigh-bones in 12-month Wistar male-rats. The dosed normobaric hypoxia increased the activity of alkaline phosphatase and decreased the activity of tartrate-resistant acid phosphatase. At the same time normobaric hyperoxia with 40 and 90% oxygen conversely decreased the activity of alkaline phosphatase and increased the activity of tartrate-resistant acid phosphatase.

  19. A Combination Histochemical and Autoradiographic Method for Analysis of Enzymatic and Proliferative Responses to Immunoreactive Osteoinducer

    DTIC Science & Technology

    1988-01-15

    DNA replication and alkaline phosphate activity in the responding cells was shown to result in effective differential labeling of these features in mildly fixed tissue sections. Application of this method with monoclonal antibodies specific for induction-associated determinants and with modifications to permit ultrastructural analyses may provide important information relevant to the mechanism of matrix-induced bone formation. Keywords: Osteogenic implants; Immunohistochemistry;

  20. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.

    PubMed

    Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A

    2014-11-01

    In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Clinical utility of bone turnover markers in the management of common metabolic bone diseases in adults.

    PubMed

    Glendenning, Paul; Chubb, S A Paul; Vasikaran, Samuel

    2018-06-01

    Bone turnover marker (BTMs) concentrations in blood and urine reflect bone-remodelling activity, and may be useful adjuncts in the diagnosis and management of metabolic bone diseases. Newer biomarkers, mainly bone regulatory proteins, are currently being investigated to elucidate their role in bone metabolism and disease and may in future be useful in clinical diagnosis and management of metabolic bone disease. BTM concentrations increase around menopause in women, and at a population level the degree of increase in BTMs reflect bone loss. However, lack of adequate data precludes their use in individual patients for fracture risk assessment in clinical practice. The rapid and large changes in BTMs following anti-resorptive and anabolic therapies for osteoporosis treatment indicate they may be useful for monitoring therapy in clinical practice. The offset of drug effect on BTMs could be helpful for adjudicating the duration of bisphosphonate drug holidays. BTMs may offer useful additional data in skeletal diseases that are typically characterised by increased bone remodelling: chronic kidney disease (CKD), primary hyperparathyroidism (PHPT) and Paget's disease. In CKD, bone specific alkaline phosphatase (bAP) is currently endorsed for use for the assessment of mineral bone disease. The role of BTMsin predicting the bone mineral density response to successful parathyroidectomy in PHPT shows some utility but the data are not consistent and studies are limited in size and/or duration. In Paget's disease of bone, BTMs are used to confirm diagnosis, evaluate extent of disease or degree of activity and for monitoring the response to bisphosphonate treatment. Whilst BTMs are currently used in specific clinical practice instances when investigating or managing metabolic bone disease, further data are needed to consolidate their clinical use where evidence of utility is limited. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Optimizing Biomaterials for Tissue Engineering Human Bone Using Mesenchymal Stem Cells.

    PubMed

    Weinand, Christian; Neville, Craig M; Weinberg, Eli; Tabata, Yasuhiko; Vacanti, Joseph P

    2016-03-01

    Adequate biomaterials for tissue engineering bone and replacement of bone in clinical settings are still being developed. Previously, the combination of mesenchymal stem cells in hydrogels and calcium-based biomaterials in both in vitro and in vivo experiments has shown promising results. However, results may be optimized by careful selection of the material combination. β-Tricalcium phosphate scaffolds were three-dimensionally printed with five different hydrogels: collagen I, gelatin, fibrin glue, alginate, and Pluronic F-127. The scaffolds had eight channels, running throughout the entire scaffold, and macropores. Mesenchymal stem cells (2 × 10) were mixed with each hydrogel, and cell/hydrogel mixes were dispersed onto the corresponding β-tricalcium phosphate/hydrogel scaffold and cultured under dynamic-oscillating conditions for 6 weeks. Specimens were harvested at 1, 2, 4, and 6 weeks and evaluated histologically, radiologically, biomechanically and, at 6 weeks, for expression of bone-specific proteins by reverse-transcriptase polymerase chain reaction. Statistical correlation analysis was performed between radiologic densities in Hounsfield units and biomechanical stiffness. Collagen I samples had superior bone formation at 6 weeks as demonstrated by volume computed tomographic scanning, with densities of 300 HU, similar to native bone, and the highest compression values. Bone specificity of new tissue was confirmed histologically and by the expression of alkaline phosphatase, osteonectin, osteopontin, and osteocalcin. The bone density correlated closely with histologic and biomechanical testing results. Bone formation is supported best by β-tricalcium phosphate/collagen I hydrogel and mesenchymal stem cells in collagen I hydrogel. Therapeutic, V.

  3. Use of bone alkaline phosphatase to monitor alendronate therapy in individual postmenopausal osteoporotic women.

    PubMed

    Kress, B C; Mizrahi, I A; Armour, K W; Marcus, R; Emkey, R D; Santora, A C

    1999-07-01

    Biochemical bone markers are sensitive to the changes in bone turnover that result from treatment of postmenopausal osteoporotic women with antiresorptive therapies. Although information is available on the use of bone markers in monitoring therapy in groups of subjects, less is known regarding how these markers perform in individual patients. Serum bone alkaline phosphatase (bone ALP) concentrations, measured with the Tandem(R) Ostase(R) assay, were used to monitor the biochemical response of bone in postmenopausal women with osteoporosis receiving either 10 mg/day alendronate therapy (n = 74) or calcium supplementation (n = 148) for 24 months. Bone ALP decreased significantly from baseline at 3 months (P

  4. Cyclosporin A promotes mineralization by human cementoblastoma-derived cells in culture.

    PubMed

    Arzate, Higinio; Alvarez, Marco A; Narayanan, A Sampath

    2005-06-01

    The immunosuppressive drug cyclosporin A has been shown to induce cementum deposition in vivo in experimental animals. Using cementoblastoma-derived cells, we have studied whether this drug will be useful to study cementum mineralization and differentiation in vitro. Human cementoblastoma cells and gingival fibroblasts (controls) were cultured and treated with 0.5, 1.0 and 5.0 microg/ml of cyclosporin A. Cell proliferation was evaluated by MTT (tetrazolium) assay and cell number, and cell viability was assessed by trypan blue dye exclusion. Induction of mineralization was evaluated by alizarin red S staining to detect mineralized nodules and by reverse transcription-polymerase chain reaction (RT-PCR) to assess the expression of bone differentiation markers alkaline phosphatase, osteocalcin, bone sialoprotein and core-binding factor a1 (Cbfa1). Cyclosporin A at 5.0 microg/ml concentration reduced significantly the increase in the number of cementoblastoma cells. A dose-dependent increase in the number of mineralized nodules occurred in cultures of cementoblastoma-derived cells treated with cyclosporin A, and RT-PCR analyses showed significantly higher levels of expression of alkaline phosphatase, bone sialoprotein, type I collagen, matrix metalloproteinase-1, osteocalcin, osteopontin, and Cbfa1. Human gingival fibroblast proliferation and cell number were not affected. Mineralized nodules were not detected in gingival fibroblasts and bone specific proteins were not expressed. Presence of cyclosporin A during 14-day culture period appears to suppress the proliferation of cementoblastoma cells and induce the formation mineralized-like tissue by these cells.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu Qisheng; Valverde, Paloma; Chen, Jake

    Osterix (Osx) is a zinc-finger-containing transcription factor that is expressed in osteoblasts of all endochondral and membranous bones. In Osx null mice osteoblast differentiation is impaired and bone formation is absent. In this study, we hypothesized that overexpression of Osx in murine bone marrow stromal cells (BMSC) would be able to enhance their osteoblastic differentiation and mineralization in vitro. Retroviral transduction of Osx in BMSC cultured in non-differentiating medium did not affect expression of Runx2/Cbfa1, another key transcription factor of osteoblast differentiation, but induced an increase in the expression of other markers associated with the osteoblastic lineage including alkaline phosphatase,more » bone sialoprotein, osteocalcin, and osteopontin. Retroviral transduction of Osx in BMSC also increased their proliferation, alkaline phosphatase activity, and ability to form bone nodules. These events occurred without significant changes in the expression of {alpha}1(II) procollagen or lipoprotein lipase, which are markers of chondrogenic and adipogenic differentiation, respectively.« less

  6. Associations between serum bone-specific alkaline phosphatase activity, biochemical parameters, and functional polymorphisms of the tissue-nonspecific alkaline phosphatase gene in a Japanese population.

    PubMed

    Sogabe, Natsuko; Tanabe, Rieko; Haraikawa, Mayu; Maruoka, Yutaka; Orimo, Hideo; Hosoi, Takayuki; Goseki-Sone, Masae

    2013-01-01

    We had demonstrated that single nucleotide polymorphism (787T>C) in the tissue-nonspecific ALP (TNSALP) gene was associated with the bone mineral density (BMD). BMD was the lowest among TNSALP 787T homozygotes (TT-type) and highest among TNSALP 787T>C homozygotes (CC-type) in postmenopausal women. In the present study, we investigated the effects of the TNSALP genotype on associations among serum bonespecific alkaline phosphatase (BAP), serum calcium, and phosphorus in healthy young Japanese subjects. Young healthy adult subjects (n=193) were genotyped for the polymorphism, and we measured the levels of serum BAP, serum calcium, and phosphorus. Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Grouped by the TNSALP genotype, a significant negative correlation between serum BAP and phosphorus was observed in 787T>C homozygotes (CC-type), but not in heterozygotes (TCtype), nor in 787T homozygotes (TT-type). In the present study, we revealed that the single nucleotide polymorphism 787T>C in the TNSALP gene had effects on the correlation between serum BAP and phosphorus in young adult subjects. These results suggest that variation in TNSALP may be an important determinant of phosphate metabolism. Our data may be useful for planning strategies to prevent osteoporosis.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culbert, A.A.; Wallis, G.A.; Kadler, K.E.

    The brittleness of bone in people with lethal (type II) osteogenesis imperfecta, a heritable disorder caused by mutations in the type I collagen genes, arises from the deposition of abnormal collagen in the bone matrix. The inability of the abnormal collagen to participate in mineralization may be caused by its failure to interact with other bone proteins. Here, we have designed a strategy to isolate the genes important for mineralization of collagen during bone formation. Cells isolated from 16-day embryonic chick calvaria and seeded post-confluence in culture deposited a mineralized matrix over a period of 2 weeks. Chick skin fibroblastsmore » seeded and cultured under the same conditions did not mineralize. Using RT-PCR, we prepared short cDNAs ({approximately}300 bp) corresponding to the 3{prime} ends of mRNA from fibroblasts and separately from the mineralizing calvarial cells. Subtractive cDNA hybridization generated a pool of cDNAs that were specific to mineralizing calvarial cells but not to fibroblasts. Screening of 100,000 plaques of a chick bone ZAP Express cDNA library with this pool of mineralizing-specific cDNAs identified ten clones which comprised full-length cDNAs for the bone proteins osteopontin (eight of the ten positives), bone sialoprotein II (one of the ten positives), and cystatin (one of the ten positives). cDNAs for type I collagen, fibronectin, alkaline phosphatase, house-keeping genes, and other genes expressed in fibroblasts were not identified in this preliminary screen. The pool of short cDNAs is likely to comprise cDNAs for further bone-specific genes and will be used to screen the entire bone cDNA library of 4.2 million clones. 30 refs., 4 figs.« less

  8. Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial.

    PubMed

    Marini, Herbert; Minutoli, Letteria; Polito, Francesca; Bitto, Alessandra; Altavilla, Domenica; Atteritano, Marco; Gaudio, Agostino; Mazzaferro, Susanna; Frisina, Alessia; Frisina, Nicola; Lubrano, Carla; Bonaiuto, Michele; D'Anna, Rosario; Cannata, Maria Letizia; Corrado, Francesco; Adamo, Elena Bianca; Wilson, Steven; Squadrito, Francesco

    2007-06-19

    Observational studies and small trials of short duration suggest that the isoflavone phytoestrogen genistein reduces bone loss, but the evidence is not definitive. To assess the effects of genistein on bone metabolism in osteopenic postmenopausal women. Randomized, double-blind, placebo-controlled trial. 3 university medical centers in Italy. 389 postmenopausal women with a bone mineral density (BMD) less than 0.795 g/cm2 at the femoral neck and no significant comorbid conditions. After a 4-week stabilization period during which participants received a low-soy, reduced-fat diet, participants were randomly assigned to receive placebo (n = 191) or 54 mg of genistein (n = 198) daily for 24 months. Both the genistein and placebo tablets contained calcium and vitamin D. The primary outcome was BMD at the anteroposterior lumbar spine and femoral neck at 24 months. Secondary outcomes were serum levels of bone-specific alkaline phosphatase and insulin-like growth factor I, urinary excretion of pyridinoline and deoxypyridinoline, and endometrial thickness. Data on adverse events were also collected. At 24 months, BMD had increased in genistein recipients and decreased in placebo recipients at the anteroposterior lumbar spine (change, 0.049 g/cm2 [95% CI, 0.035 to 0.059] vs. -0.053 g/cm2 [CI, -0.058 to -0.035]; difference, 0.10 g/cm2 [CI, 0.08 to 0.12]; P < 0.001) and the femoral neck (change, 0.035 g/cm2 [CI, 0.025 to 0.042] vs. -0.037 g/cm2 [CI, -0.044 to -0.027]; difference, 0.062 g/cm2 [CI, 0.049 to 0.073]; P < 0.001). Genistein statistically significantly decreased urinary excretion of pyridinoline and deoxypyridinoline, increased levels of bone-specific alkaline phosphatase and insulin-like growth factor I, and did not change endometrial thickness compared with placebo. More genistein recipients than placebo recipients experienced gastrointestinal side effects (19% vs. 8%; P = 0.002) and discontinued the study. The study did not measure fractures and had limited power to evaluate adverse effects. Twenty-four months of treatment with genistein has positive effects on BMD in osteopenic postmenopausal women. ClinicalTrials.gov registration number: NCT00355953.

  9. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  10. Compensatory Cellular Reactions to Nonsteroidal Anti-Inflammatory Drugs on Osteogenic Differentiation in Canine Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    OH, Namgil; KIM, Sangho; HOSOYA, Kenji; OKUMURA, Masahiro

    2014-01-01

    ABSTRACT The suppressive effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on the bone healing process have remained controversial, since no clinical data have clearly shown the relationship between NSAIDs and bone healing. The aim of this study was to assess the compensatory response of canine bone marrow-derived mesenchymal stem cells (BMSCs) to several classes of NSAIDs, including carprofen, meloxicam, indomethacin and robenacoxib, on osteogenic differentiation. Each of the NSAIDs (10 µM) was administered during 20 days of the osteogenic process with human recombinant IL-1β (1 ng/ml) as an inflammatory stimulator. Gene expression of osteoblast differentiation markers (alkaline phosphatase and osteocalcin), receptors of PGE2 (EP2 and EP4) and enzymes for prostaglandin (PG) E2 synthesis (COX-1, COX-2, cPGES and mPGES-1) was measured by using quantitative reverse transcription-polymerase chain reaction. Protein production levels of alkaline phosphatase, osteocalcin and PGE2 were quantified using an alkaline phosphatase activity assay, osteocalcin immunoassay and PGE2 immunoassay, respectively. Histologic analysis was performed using alkaline phosphatase staining, von Kossa staining and alizarin red staining. Alkaline phosphatase and calcium deposition were suppressed by all NSAIDs. However, osteocalcin production showed no significant suppression by NSAIDs. Gene expression levels of PGE2-related receptors and enzymes were upregulated during continuous treatment with NSAIDs, while certain channels for PGE2 synthesis were utilized differently depending on the kind of NSAIDs. These data suggest that canine BMSCs have a compensatory mechanism to restore PGE2 synthesis, which would be an intrinsic regulator to maintain differentiation of osteoblasts under NSAID treatment. PMID:24419976

  11. Chondroprotective effects of zoledronic acid on articular cartilage in dogs with experimentally induced osteoarthritis.

    PubMed

    Dearmin, Michael G; Trumble, Troy N; García, Anapatricia; Chambers, Jon N; Budsberg, Steven C

    2014-04-01

    To assess effects of zoledronic acid on biomarkers, radiographic scores, and gross articular cartilage changes in dogs with induced osteoarthritis. 21 purpose-bred hound-type dogs. The left stifle joint of each dog was examined arthroscopically to determine initial articular cartilage status, which was followed by cranial cruciate ligament (CrCL) transection to induce osteoarthritis. Dogs were assigned to 3 groups (control group, low dose [10 μg of zoledronic acid/kg], or high dose [25 μg of zoledronic acid/kg). Treatments were administered SC every 3 months for 1 year beginning the day after CrCL transection. Serum and synovial fluid samples and radiographs were obtained 0, 1, 3, 6, 9, and 12 months after transection. At 12 months, each joint was scored for cartilage defects. Serum and synovial fluid biomarkers of bone and cartilage turnover (bone-specific alkaline phosphatase, type I and II collagen, carboxy-propeptide of type II collagen, and chondroitin sulfate 846) were analyzed with ELISAs. The high-dose group had fewer total articular defects and lower severity scores in CrCL-transected stifle joints than did the control group. In addition, the high-dose group had significantly less change in collagenase cleavage of type I or II collagen in the synovial fluid at 1 and 3 months after CrCL transection than did the control group and also had greater changes in bone-specific alkaline phosphatase in synovial fluid at 3 months after CrCL transection than did the control group. Zoledronic acid had a chondroprotective effect in dogs with a transected CrCL.

  12. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    PubMed

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for in vitro bone engineering. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. The role of whole-body bone scanning and clinical factors in detecting bone metastases in patients with non-small cell lung cancer.

    PubMed

    Erturan, Serdar; Yaman, Mustafa; Aydin, Günay; Uzel, Isil; Müsellim, Benan; Kaynak, Kamil

    2005-02-01

    Correct detection of bone metastases in patients with non-small cell lung cancer (NSCLC) is crucial for prognosis and selection of an appropriate treatment regimen. The aim of this study was to investigate the role of whole-body bone scanning (WBBS) and clinical factors in detecting bone metastases in NSCLC. One hundred twenty-five patients with a diagnosis made between 1998 and 2002 were recruited (squamous cell carcinoma, 54.4%; adenocarcinoma, 32.8%; non-small cell carcinoma, 8.8%; large cell carcinoma, 4%). Clinical factors suggesting bone metastasis (skeletal pain, elevated alkaline phosphatase, hypercalcemia) were evaluated. WBBS was performed in all patients, and additional MRI was ordered in 10 patients because of discordance between clinical factors and WBBS findings. Bone metastases were detected in 53% (n = 21) of 39 clinical factor-positive patients, 5.8% (n = 5) of 86 clinical factor-negative patients, and 20.8% of total patients. The existence of bone-specific clinical factors as indicators of metastasis presented 53.8% positive predictive value (PPV), 94.2% negative predictive value (NPV), and 81.6% accuracy. However, the findings of WBBS showed 73.5% PPV, 97.8% NPV, and 91.2% accuracy. Adenocarcinoma was the most common cell type found in patients with bone metastasis (39%). The routine bone scanning prevented two futile thoracotomies (8%) in 25 patients with apparently operable lung cancer. In spite of the high NPV of the bone-specific clinical factors and the high value obtained in the false-positive findings in the bone scan, the present study indicates that in patients for whom surgical therapy is an option, preoperative staging using WBBS can be helpful to avoid misstaging due to asymptomatic bone metastases.

  14. Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.

    PubMed

    Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P

    2006-04-01

    Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.

  15. Association of Blood Biomarkers of Bone Turnover in HIV-1 Infected Individuals Receiving Anti-Retroviral Therapy (ART)

    PubMed Central

    Aziz, Najib; Butch, Anthony W; Quint, Joshua J; Detels, Roger

    2015-01-01

    Objective To evaluate the association of bone turnover biomarkers with blood levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase (TRAP), parathyroid hormone (PTH), and other blood markers in HIV-1 infected men receiving anti-retroviral therapy (ART). Advances in the treatment of HIV-1 infection have extended the life span of HIV-1 infected individuals. However, these advances may come at the price of metabolic side effects and bone disorders, including premature osteopenia, osteoporosis and osteonecrosis. Methods Analyses of Ostase BAP, osteocalcin, and TRAP in blood were measured in three groups of MACS participants: 35 HIV-1 infected men on ART (A); 35 HIV-1- infected men not on ART (B); and 34 HIV-1 uninfected men (C). Results The mean and standard deviation results for groups A, B, and C were 19.7 ± 6.56, 17.2 ± 3.96, and 16.9 ± 5.78 for ostase BAP; 7.9 ± 9.53, 8.5 ± 8.30, and 5.5 ± 1.65 for osteocalcin; and 3.9 ± 1.04, 3.1 ± 0.81, and 2.5 ± 0.59 for TRAP, respectively. Simple and multivariate analyses showed significant differences in mean TRAP and BAP concentrations between the three groups. In addition strong correlations between blood levels of Ostase BAP and TRAP (r=0.570, p=0.0004), and between blood levels of Ostase BAP and PTH (r=0.436, P=0.0098) for HIV-1 infected men on ART were observed. Conclusion New strategies for measurement of blood and urine biochemical markers of bone formation and resorption during bone turnover can be useful for clinical monitoring of treatment of HIV-1 infected patients. Recently developed methods for measuring serum levels of TRAP and Ostase BAP represent superior laboratory tools for assessing the hyperactivity of osteoclasts, osteoblasts and bone loss in HIV-1 infected individuals receiving ART. Measurements of TRAP and BAP as bone turnover biomarkers are economical and are important for monitoring bone metabolism during ART and the need for osteoporosis treatment. PMID:25705563

  16. Kidney transplantation restored uncoupled bone turnover in end-stage renal disease.

    PubMed

    Kawarazaki, Hiroo; Shibagaki, Yugo; Kido, Ryo; Nakajima, Ichiro; Fuchinoue, Shohei; Ando, Katsuyuki; Fujita, Toshiro; Fukagawa, Masafumi; Teraoka, Satoshi; Fukumoto, Seiji

    2012-07-01

    While kidney transplantation (KTx) reverses many disorders associated with end-stage renal disease (ESRD), patients who have received KTx often have chronic kidney disease and bone and mineral disorder (CKD-MBD). However, it is unknown how bone metabolism changes by KTx. Living donor-KTx recipients (n = 34) at Tokyo Women's Medical University were prospectively recruited and the levels of bone-specific alkaline phosphatase (BAP) and serum cross-linked N-telopeptides of Type 1 collagen (NTX) were measured before, 6 and 12 months after transplantation. Before KTx, serum BAP was within the reference range in more than half of patients while NTX was high in most patients. Serum NTX was higher in patients with longer dialysis durations compared to that with shorter durations before KTx. However, there was no difference in serum BAP between these patients. After KTx, BAP increased while NTX decreased along with the decline of PTH. In addition, the numbers of patients who showed high BAP and NTX were comparable after KTx. These results suggest that bone formation is suppressed and uncoupled with bone resorption in patients with ESRD and this uncoupling is restored by KTx. Further studies are necessary to clarify the mechanism of bone uncoupling in patients with ESRD.

  17. Enhanced osteoinductive capacity and decreased variability by enrichment of demineralized bone matrix with a bone protein extract.

    PubMed

    Ramis, Joana M; Calvo, Javier; Matas, Aina; Corbillo, Cristina; Gayà, Antoni; Monjo, Marta

    2018-06-28

    Osteoinductive capacity of demineralized bone matrix (DBM) is sometimes insufficient or shows high variability between different batches of DBM. Here, we tried to improve its osteoinductive activity by alkali-urea or trypsin treatment but this strategy was unsuccessful. Then, we tested the enrichment of DBM with a bone protein extract (BPE) containing osteogenic growth factors comparing two sources: cortical bone powder and DBM. The osteoinductive capacity (alkaline phosphatase activity) of the obtained BPEs was evaluated in vitro in C2C12 cells. Specific protein levels present in the different BPE was determined by enzyme-linked immunosorbent assay or by a multiplex assay. BPE from cortical bone powder showed a lack of osteoinductive effect, in agreement with the low content on osteoinductive factors. In contrast, BPE from DBM showed osteoinductive activity but also high variability among donors. Thus, we decided to enrich DBM with BPE obtained from a pool of DBM from different donors. Following this strategy, we achieved increased osteoinductive activity and lower variability among donors. In conclusion, the use of a BPE obtained from a pool of demineralized bone to enrich DBM could be used to increase its osteoinductive effect and normalize the differences between donors.

  18. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Bone Density: MedinePlus Health Topic

    MedlinePlus

    ... Articles References and abstracts from MEDLINE/PubMed (National Library of Medicine) Article: Associations between bone-alkaline phosphatase ... MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 ...

  20. Age-related changes in bone biochemical markers and their relationship with bone mineral density in normal Chinese women.

    PubMed

    Pi, Yin-Zhen; Wu, Xian-Ping; Liu, Shi-Ping; Luo, Xiang-Hang; Cao, Xing-Zhi; Xie, Hui; Liao, Er-Yuan

    2006-01-01

    Measurements of bone biochemical markers are increasingly being used to evaluate the state of bone turnover in the management of bone metabolic diseases, especially osteoporosis. However, changes in the bone turnover rate vary with age. The aim of this study was to establish the laboratory reference range of serum bone-specific alkaline phosphatase (sBAP), serum type I collagen cross-linked C-terminal telopeptide (sCTx), and urine CTx (uCTx), based on values from 665 healthy Chinese women aged 20-80 years. We measured the levels of sBAP, sCTx, serum alkaline phosphatase (sALP), and uCTx and evaluated the age-related changes and their relationship with bone mineral density (BMD) in the anteroposterior (AP) lumbar spine, hip, and left forearm. We found significant correlations between biochemical markers and age, with coefficients of determination (R (2)) of 0.358 for sBAP, 0.126 for sCTx, 0.125 for uCTx, and 0.336 for sALP. The net changes in different biochemical markers were inversely correlated with the rates of BMD loss in the AP lumbar spine. After correction for age, body weight, and height, the levels of the markers had significant negative correlations with the BMD of the AP lumbar spine, femoral neck, and ultradistal forearm. All four biochemical markers had the highest negative correlation with BMD of the AP lumbar spine (partial correlation coefficients of -0.366, -0.296, -0.290, and -0.258 for sBAP, sCTx, uCTx, and sALP, respectively). The mean and SD values of these markers in premenopausal and postmenopausal women with normal BMD values were used as the normal reference ranges. The reference ranges of sBAP, sCTx, and uCTx for pre- vs postmenopausal women were 17.3 +/- 6.23 vs 18.9 +/- 7.52 U/l, 3.18 +/- 1.49 vs 3.23 +/- 1.57 nmol/l, and 15.5 +/- 11.4 vs 16.2 +/- 12.4 nM bone collagen equivalents/mM urinary creatinine, respectively. Levels of the bone formation marker (sBAP) and bone resorption markers (sCTx, uCTx) increased rapidly in women with osteopenia or osteoporosis, indicating that they may be sensitive markers to determine the bone turnover rate in healthy Chinese women.

  1. Novel in Vitro Modification of Bone for an Allograft with Improved Toughness Osteoconductivity

    DTIC Science & Technology

    2015-06-01

    osteocalcin, Runx2, and col1a1 by RT-PCR. Spectrophotometry and fluorescence microscopy were used to quantify AGEs. 2. KEYWORDS Fracture toughness, R...markers (alkaline phosphatase, osteocalcin, RUNX2 and COL1A1 ) Completed Task 10 Data analysis, publications, reports Completed Task 1. Retrieval...FEMALE 25 Task 9. Measure expression of molecular markers of mineralization, osteocalcin, RUNX2 and COL1A1 using quantitative RT-PCR with specific

  2. Appliance-induced osteopenia of dentoalveolar bone in the rat: effect of reduced bone strains on serum bone markers and the multifunctional hormone leptin.

    PubMed

    Vinoth, Jayaseelan K; Patel, Kaval J; Lih, Wei-Song; Seow, Yian-San; Cao, Tong; Meikle, Murray C

    2013-12-01

    To understand, in greater detail, the molecular mechanisms regulating the complex relationship between mechanical strain and alveolar bone metabolism during orthodontic treatment, passive cross-arch palatal springs were bonded to the maxillary molars of 6-wk-old rats, which were killed after 4 and 8 d. Outcome measures included serum assays for markers of bone formation and resorption and for the multifunctional hormone leptin, and histomorphometry of the inter-radicular bone. The concentration of the bone-formation marker alkaline phosphatase (ALP) was significantly reduced at both time points in the appliance group, accompanied by a 50% reduction in inter-radicular bone volume; however, osteocalcin (bone Gla protein) levels remained unaffected. Bone collagen deoxypyridinoline (DPD) crosslinks increased 2.3-fold at 4 d only, indicating a transient increase in bone resorption; in contrast, the level of the osteoclast-specific marker, tartrate-resistant acid phosphatase 5b (TRACP 5b), was unchanged. Leptin levels closely paralleled ALP reductions at both time points, suggesting an important role in the mechanostat negative-feedback loop required to normalize bone mass. These data suggest that an orthodontic appliance, in addition to remodeling the periodontal ligament (PDL)-bone interface, may exert unexpected side-effects on the tooth-supporting alveolar bone, and highlights the importance of recognizing that bone strains can have negative, as well as positive, effects on bone mass. © 2013 Eur J Oral Sci.

  3. Sex-specific factors for bone density in patients with schizophrenia.

    PubMed

    Lin, Chieh-Hsin; Lin, Chun-Yuan; Huang, Tiao-Lai; Wang, Hong-Song; Chang, Yue-Cune; Lane, Hsien-Yuan

    2015-03-01

    Patients with schizophrenia are susceptible to low bone mineral density (BMD). Many risk factors have been suggested. However, it remains uncertain whether the risk factors differ between men and women. In addition, the study of bone density in men is neglected more often than that in women. This study aims to examine specific risk factors of low BMD in different sexes. Men (n=80) and women (n=115) with schizophrenia, similar in demographic and clinical characteristics, were enrolled in three centers. Clinical and laboratory variables (including blood levels of prolactin, sex and thyroid hormones, cortisol, calcium, and alkaline phosphatase) were collected. BMD was measured using a dual-energy X-ray absorptiometer. Men had lower BMD than women. Predictors for BMD in men included hyperprolactinemia (B=-0.821, P=0.009), body weight (B=0.024, P=0.046), and Global Assessment of Functioning score (B=0.027, P=0.043); in women, BMD was associated with menopause (B=-1.070, P<0.001), body weight (B=0.027, P=0.003), and positive symptoms (B=0.094, P<0.001). In terms of the effect of psychotic symptoms, positive symptoms were related positively to BMD in women, but not in men. The findings suggest that sex-specific risk factors should be considered for an individualized intervention of bone loss in patients with schizophrenia. Physicians should pay particular attention to bone density in men with hyperprolactinemia and postmenopausal women. Further prospective studies in other populations are warranted to confirm these findings.

  4. Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: a 2-year follow-up study.

    PubMed

    Berberoglu, Zehra; Yazici, Ayse C; Demirag, Nilgun G

    2010-09-01

    To evaluate the effect of rosiglitazone on bone metabolism and bone density. An open-label, randomized, controlled trial of 24-month duration. Patients and measurements Obese, postmenopausal women with newly diagnosed diabetes were studied. Before and after the intervention, metabolic bone markers and bone density were assessed. Twenty-six patients received rosiglitazone (4 mg/day), and 23 remained on diet alone. Serum bone-specific alkaline phosphatase and osteocalcin levels decreased by 17% (P < 0.001 vs control group) and 26% (P < 0.01 vs control group), respectively, in the rosiglitazone group. There were no significant changes in the deoxypyridinoline levels between the two groups. Annual bone loss at the trochanter and at the lumbar spine associated with each year of rosiglitazone use was 2.56% (P = 0.01 vs control group) and 2.18% (P < 0.01 vs control group), respectively. Femoral neck and total hip bone density declined significantly in both groups (P < 0.01, and P = 0.01, respectively) but was not significantly different between the two groups. Rosiglitazone treatment adversely affects bone formation over a 2-year period. It increases bone loss at the lumbar spine and trochanter in postmenopausal, type 2 diabetic women. However, bone loss at the total hip did not differ with use of this agent.

  5. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial.

    PubMed

    Jakeman, Steven A; Henry, Courtney N; Martin, Berdine R; McCabe, George P; McCabe, Linda D; Jackson, George S; Peacock, Munro; Weaver, Connie M

    2016-09-01

    Dietary soluble corn fiber (SCF) significantly improves calcium absorption in adolescents and the bone strength and architecture in rodent models. In this study, we aimed to determine the skeletal benefits of SCF in postmenopausal women. We used our novel technology of determining bone calcium retention by following the urinary appearance of (41)Ca, a rare long-lived radioisotope, from prelabeled bone to rapidly and sensitively evaluate the effectiveness of SCF in reducing bone loss. A randomized-order, crossover, double-blinded trial was performed in 14 healthy postmenopausal women to compare doses of 0, 10, and 20 g fiber from SCF/d for 50 d. A dose-response effect was shown with 10 and 20 g fiber from SCF/d, whereby bone calcium retention was improved by 4.8% (P < 0.05) and 7% (P < 0.04), respectively. The bone turnover biomarkers N-terminal telopeptide and osteocalcin were not changed by the interventions; however, a significant increase in bone-specific alkaline phosphatase, which is a bone-formation marker, was detected between 0 and 20 g fiber from SCF/d (8%; P = 0.035). Daily SCF consumption significantly increased bone calcium retention in postmenopausal women, which improved the bone calcium balance by an estimated 50 mg/d. This study was registered at clinicaltrials.gov as NCT02416947. © 2016 American Society for Nutrition.

  6. Heterodimeric BMP-2/7 Antagonizes the Inhibition of All-Trans Retinoic Acid and Promotes the Osteoblastogenesis

    PubMed Central

    Bi, Wenjuan; Gu, Zhiyuan; Zheng, Yuanna; Zhang, Xiao; Guo, Jing; Wu, Gang

    2013-01-01

    Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. Materials and Methods We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points. Results All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7). Conclusions Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism. PMID:24205156

  7. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway

    PubMed Central

    Zhang, Wei; Xue, Deting; Yin, Houfa; Wang, Shengdong; Li, Chao; Chen, Erman; Hu, Dongcai; Tao, Yiqing; Yu, Jiawei; Zheng, Qiang; Gao, Xiang; Pan, Zhijun

    2016-01-01

    HSPA1A, which encodes cognate heat shock protein 70, plays important roles in various cellular metabolic pathways. To investigate its effects on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), its expression level was compared between undifferentiated and differentiated BMSCs. Rat HSPA1A overexpression in BMSCs increased osteoblast-specific gene expression, alkaline phosphatase activity, and mineral deposition in vitro. Moreover, it upregulated β-catenin and downregulated DKK1 and SOST. The enhanced osteogenesis due to HSPA1A overexpression was partly rescued by a Wnt/β-catenin inhibitor. Additionally, using a rat tibial fracture model, a sheet of HSPA1A-overexpressing BMSCs improved bone fracture healing, as determined by imaging and histological analysis. Taken together, these findings suggest that HSPA1A overexpression enhances osteogenic differentiation of BMSCs, partly through Wnt/β-catenin. PMID:27279016

  8. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    PubMed

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  9. Thyrotropin serum levels are differentially associated with biochemical markers of bone turnover and stiffness in women and men: results from the SHIP cohorts.

    PubMed

    Tsourdi, E; Wallaschofski, H; Rauner, M; Nauck, M; Pietzner, M; Rettig, R; Ittermann, T; Völzke, H; Völker, U; Hofbauer, L C; Hannemann, A

    2016-02-01

    In two large German population-based cohorts, we showed positive associations between serum thyrotropin (TSH) concentrations and the Fracture Risk Assessment score (FRAX) in men and positive associations between TSH concentrations and bone turnover markers in women. The role of thyroid hormones on bone stiffness and turnover is poorly defined. Existing studies are confounded by differences in design and small sample size. We assessed the association between TSH serum concentrations and bone stiffness and turnover in the SHIP cohorts, which are two population-based cohorts from a region in Northern Germany comprising 2654 men and women and 3261 men and women, respectively. We calculated the bone stiffness index using quantitative ultrasound (QUS) at the calcaneus, employed FRAX score for assessment of major osteoporotic fractures, and measured bone turnover markers, N-terminal propeptide of type I procollagen (P1NP), bone-specific alkaline phosphatase (BAP), osteocalcin, and type I collagen cross-linked C-telopeptide (CTX) in all subjects and sclerostin in a representative subgroup. There was no association between TSH concentrations and the stiffness index in both genders. In men, TSH correlated positively with the FRAX score both over the whole TSH range (p < 0.01) and within the reference TSH range (p < 0.01). There were positive associations between TSH concentrations and P1NP, BAP, osteocalcin, and CTX (p < 0.01) in women but not in men. There was no significant association between TSH and sclerostin levels. TSH serum concentrations are associated with gender-specific changes in bone turnover and stiffness.

  10. Eldecalcitol normalizes bone turnover markers regardless of their pre-treatment levels.

    PubMed

    Shiraki, Masataka; Saito, Hitoshi; Matsumoto, Toshio

    2012-09-01

    Three-year treatment with eldecalcitol has been shown to improve lumbar and total hip bone mineral density (BMD), decrease bone turnover markers, and lower the incidences of vertebral and wrist fractures in patients with osteoporosis more than with treatment with alfacalcidol under vitamin D repletion. The purpose of this study was to determine whether there was a risk of eldecalcitol causing severely suppressed bone turnover in osteoporosis patients with low pre-treatment levels of bone turnover markers. Post-hoc analysis was conducted on the data from a 3-year, randomized, double-blind, active-comparator, clinical trial of eldecalcitol versus alfacalcidol under vitamin D repletion conducted in Japan. Enrolled patients with baseline measurements of bone turnover markers were stratified into tertiles according to their pre-treatment levels of serum bone-specific alkaline phosphatase, serum procollagen type I N-terminal propeptide, or urinary collagen-N-telopeptide. Eldecalcitol treatment rapidly reduced bone turnover markers, and kept them within the normal range. However, in the patients whose baseline values for bone turnover were low, eldecalcitol treatment did not further reduce bone turnover markers during the 3-year treatment period. Further long-term observation may be required to reach the conclusion. CLINICALTRIALS.GOV NUMBER: NCT00144456. Eldecalcitol normalizes, but does not overly suppress, bone turnover regardless of baseline levels of bone turnover markers. Thus, it is unlikely that eldecalcitol treatment will increase the risk of severely suppressed bone turnover and therefore deterioration of bone quality, at least for a treatment duration of 3 years.

  11. Injectable nanosilica-chitosan microparticles for bone regeneration applications.

    PubMed

    Gaihre, Bipin; Lecka-Czernik, Beata; Jayasuriya, Ambalangodage C

    2018-01-01

    This study was aimed at assessing the effects of silica nanopowder incorporation into chitosan-tripolyphosphate microparticles with the ultimate goal of improving their osteogenic properties. The microparticles were prepared by simple coacervation technique and silica nanopowder was added at 0% (C), 2.5% (S1), 5% (S2) and 10% (S3) (w/w) to chitosan. We observed that this simple incorporation of silica nanopowder improved the growth and proliferation of osteoblasts along the surface of the microparticles. In addition, the composite microparticles also showed the increased expression of alkaline phosphatase and osteoblast specific genes. We observed a significant increase ( p < 0.05) in the expression of alkaline phosphatase by the cells growing on all sample groups compared to the control (C) groups at day 14. The morphological characterization of these microparticles through scanning electron microscopy showed that these microparticles were well suited to be used as the injectable scaffolds with perfectly spherical shape and size. The incorporation of silica nanopowder altered the nano-roughness of the microparticles as observed through atomic force microscopy scans with roughness values going down from C to S3. The results in this study, taken together, show the potential of chitosan-tripolyphosphate-silica nanopowder microparticles for improved bone regeneration applications.

  12. Low bone mineral mass is associated with decreased bone formation and diet in girls with Rett syndrome.

    PubMed

    Motil, Kathleen J; Barrish, Judy O; Neul, Jeffrey L; Glaze, Daniel G

    2014-09-01

    The aim of the present study was to characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of girls with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Total body bone mineral content (BMC) and bone mineral density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and sex, showed significant positive associations with total body BMD z scores. The present study suggests decreased bone formation instead of increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium, and phosphorus intakes may offer an opportunity to improve bone health in RTT.

  13. Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones

    PubMed Central

    Llinas, Paola; Masella, Michel; Stigbrand, Torgny; Ménez, André; Stura, Enrico A.; Le Du, Marie Hélène

    2006-01-01

    Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites—two for zinc, one for magnesium, and one for calcium ion—that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210–228 and 250–297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. PMID:16815919

  14. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    PubMed

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  15. Zoledronate promotes bone formation by blocking osteocyte-osteoblast communication during bone defect healing.

    PubMed

    Cui, Pingping; Liu, Hongrui; Sun, Jing; Amizuka, Norio; Sun, Qinfeng; Li, Minqi

    2018-01-01

    Nitrogen-containing bisphosphonates (N-BPs) are potent antiresorptive drugs and their actions on osteoclasts have been studied extensively. Recent studies have suggested that N-BPs also target bone-forming cells. However, the precise mechanism of N-BPs in osteoblasts is paradoxical, and the specific role of osteocytes is worthy of in-depth study. Here, we investigated the cellular mechanisms of N-BPs regulating bone defect healing by zoledronate (ZA). Bone histomorphometry confirmed an increase in new bone formation by systemic ZA administration. ZA induced more alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-positive osteoclasts residing on the bone surface. Inexplicably, ZA increased SOST expression in osteocytes embedded in the bone matrix, which was not compatible with the intense osteoblast activity on the bone surface. ZA induced heterogeneous osteocytes and disturbed the distribution of the osteocytic-canalicular system (OLCS). Furthermore, according to the degree of OLCS regularity, dentin matrix protein 1 reactivity had accumulated around osteocytes in the ZA group, but it was distributed evenly in the OLCS of the control group. The control group showed a dense array of the gap junction protein connexin 43. However, connexin 43 was extremely sparse after ZA administration. In summary, ZA treatment reduces gap junction connections and blocks cellular communication between osteocytes and osteoblasts. Retaining SOST expression in osteocytes leads to activation of the Wnt signaling pathway and subsequent bone formation.

  16. [Phytoestrogens role in bone functional structure protection in the ovariectomized rat].

    PubMed

    Mihalache, Gr; Mihalache, Gr D; Indrei, L L; Indrei, Anca; Hegsted, Maren

    2002-01-01

    Effects of soy protein diet on bone formation and density were evaluated in ovariectomized rats as a model for postmenopausal women. Twenty-seven 9-month-old rats were assigned to 3 treatment groups for the 9-week study: sham-surgery (Sh, n = 9); ovariectomy (Ovx, n = 9); ovariectomy + soy diet (OvxS, n = 9). Rats had free access to an AIN-93 M diet or AIN-93 M diet with 7% soy protein concentration and water. At sacrifice, rear legs were removed, and the right femur and tibia were cleaned manually. Serum alkaline phosphatase, a marker of bone formation, was measured colorimetrically. Bone density was measured using Archimedes' Principle. Alkaline phosphatase activity was greater in OvxS (114 +/- 19 U/L) and Ovx (128 +/- 26 U/L) compared to Sh (110 +/- 22 U/L). Femur bone density was greater for OvxS (1.520 +/- 0.02 g/cc) compared to Ovx (1.510 +/- 0.017 g/cc), but not to Sh (1532 +/- 0.025 g/cc). Tibia bone density was greater for OvxS (1.560 +/- 0.019 g/cc) compared to Ovx (1.553 +/- 0.015 g/cc), but not to Sh (1566 +/- 0.03 g/cc). In conclusion soy protein diet increased the rate of bone formation and bone density in some bones, suggesting that may help prevent bone loss in postmenopausal women.

  17. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  18. Postgraduate Symposium: Positive influence of nutritional alkalinity on bone health.

    PubMed

    Wynn, E; Krieg, M A; Lanham-New, S A; Burckhardt, P

    2010-02-01

    There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly patients with an already-high fracture risk. The latter study adds to knowledge by confirming a positive link between dietary alkalinity and bone health indices in the very elderly. In a further study to complement these findings it has also been shown in a group of thirty young women that in Ca sufficiency an acid Ca-rich water has no effect on bone resorption, while an alkaline bicarbonate-rich water leads to a decrease in both serum parathyroid hormone and serum C-telopeptide. Further investigations need to be undertaken to study whether these positive effects on bone loss are maintained over long-term treatment. Mineral-water consumption could be an easy and inexpensive way of helping to prevent osteoporosis and could be of major interest for long-term prevention of bone loss.

  19. Assessment of bone turnover markers and bone mineral density in normal short boys.

    PubMed

    Gayretli Aydin, Zeynep Gökçe; Bideci, Aysun; Emeksiz, Hamdi C; Çelik, Nurullah; Döğer, Esra; Bukan, Neslihan; Yildiz, Ummügülsüm; Camurdan, Orhun M; Cinaz, Peyami

    2015-11-01

    To investigate whether there is a change in bone turnover-related biochemical markers and bone mineral density of children with constitutional delay of growth and puberty (CDGP) in the prepubertal period. We measured serum calcium, phosphorus, alkaline phosphatase, parathormone, 25-OH vitamin D, osteocalcin, osteoprotogerin and urinary deoxypyridinoline levels (D-pyd), and bone mineral density (BMD) in 31 prepubertal boys with CDGP. These children were compared with 22 prepubertal boys with familial short stature (FSS) and 27 normal prepubertal boys. Urinary D-pyd was significantly high in CDGP group as compared to control group (p=0.010). Volumetric BMD did not significantly differ between CDGP, FSS, and control groups (p=0.450). Volumetric BMD and urinary D-pyd levels of FSS and control groups were similar. Mean or median levels of calcium, phosphorus, alkaline phosphatase, parathormone, and osteoprotegerin did not significantly differ between CDGP, FSS, and control groups. Our data suggest that prepubertal boys with CDPG have normal bone turnover. However, their significantly higher urinary D-pyd levels relative to those of FSS and control groups might be an indicator of later development of osteoporosis. Therefore, long-term follow-up studies monitoring bone mineral status of prepubertal boys with CDPG from prepuberty to adulthood are needed to better understand bone metabolism of these patients.

  20. Low Bone Mineral Mass Is Associated with Decreased Bone Formation and Diet in Females with Rett Syndrome

    PubMed Central

    Motil, Kathleen J.; Barrish, Judy O.; Neul, Jeffrey L.; Glaze, Daniel G.

    2014-01-01

    Objective To characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of females with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Methods Total body bone mineral content (BMC) and density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Results Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z-scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and gender, showed significant positive associations with total body BMD z-scores. Conclusion This study suggests decreased bone formation rather than increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium and phosphorus intakes may offer an opportunity to improve bone health in RTT. PMID:25144778

  1. Cord blood calcium, phosphate, magnesium, and alkaline phosphatase gestational age-specific reference intervals for preterm infants.

    PubMed

    Fenton, Tanis R; Lyon, Andrew W; Rose, M Sarah

    2011-08-31

    The objective was to determine the influence of gestational age, maternal, and neonatal variables on reference intervals for cord blood bone minerals (calcium, phosphate, magnesium) and related laboratory tests (alkaline phosphatase, and albumin-adjusted calcium), and to develop gestational age specific reference intervals based on infants without influential pathological conditions. Cross-sectional study. 702 babies were identified as candidates for this study in a regional referral neonatal unit. After exclusions (for anomalies, asphyxia, maternal magnesium sulfate administration, and death), relationships were examined between cord blood serum laboratory analytes (calcium, phosphate, magnesium, alkaline phosphatase, and albumin-adjusted calcium) with gestation age and also with maternal and neonatal variables using multiple linear regression. Infants with influential pathological conditions were omitted from the development of gestational age specific reference intervals for the following categories: 23-27, 28-31, 32-34, 35-36 and > 36 weeks. Among the 506 preterm and 54 terms infants included in the sample. Phosphate, magnesium, and alkaline phosphatase in cord blood serum decreased with gestational age, calcium increased with gestational age. Those who were triplets, small for gestational age, and those whose mother had pregnancy-induced hypertension were influential for most of the analytes. The reference ranges for the preterm infants ≥ 36 weeks were: phosphate 1.5 to 2.6 mmol/L (4.5 to 8.0 mg/dL), calcium: 2.1 to 3.1 mmol/L (8.3 to 12.4 mg/dL); albumin-adjusted calcium: 2.3 to 3.2 mmol/L (9.1 to 12.9 mg/dL); magnesium 0.6 to 1.0 mmol/L (1.4 to 2.3 mg/dL), and alkaline phosphatase 60 to 301 units/L. These data suggest that gestational age, as well as potentially pathogenic maternal and neonatal variables should be considered in the development of reference intervals for preterm infants.

  2. Participation of GATA-3 in regulation of bone healing through transcriptional upregulation of bcl-xL expression

    PubMed Central

    Liao, Mei-Hsiu; Lin, Pei-I; Ho, Wei-Pin; Chan, Wing P; Chen, Ta-Liang; Chen, Ruei-Ming

    2017-01-01

    We have previously demonstrated the expression of GATA-DNA-binding protein (GATA)-3, a transcription factor, in osteoblasts and have verified its function in transducing cell survival signaling. This translational study was further designed to evaluate the roles of GATA-3 in regulating bone healing and to explore its possible mechanisms. A metaphyseal bone defect was created in the left femurs of male ICR mice. Analysis by micro-computed topography showed that the bone volume, trabecular bone number and trabecular thickness were augmented and that the trabecular pattern factor decreased. Interestingly, immunohistological analyses showed specific expression of GATA-3 in the defect area. In addition, colocalized expression of GATA-3 and alkaline phosphatase was observed at the wound site. As the fracture healed, the amounts of phosphorylated and non-phosphorylated GATA-3 concurrently increased. Separately, GATA-3 mRNA was induced during bone healing, and, levels of Runx2 mRNA and protein were also increased. The results of confocal microscopy and co-immunoprecipitation showed an association between nuclear GATA-3 and Runx2 in the area of insult. In parallel with fracture healing, Bcl-XL mRNA was significantly triggered. A bioinformatic search revealed the existence of a GATA-3-specific DNA-binding element in the promoter region of the bcl-xL gene. Analysis by chromatin immunoprecipitation assays further demonstrated transactivation activity by which GATA-3 regulated bcl-xL gene expression. Therefore, this study shows that GATA-3 participates in the healing of bone fractures via regulating bcl-xL gene expression, owing to its association with Runx2. In the clinic, GATA-3 may be used as a biomarker for diagnoses/prognoses or as a therapeutic target for bone diseases, such as bone fractures. PMID:29170477

  3. The character of gene expression of human periosteum used to form new tissue in allograft bone.

    PubMed

    Kemppainen, Jessica; Yu, Qing; Alexander, John; Jacquet, Robin; Scharschmidt, Thomas; Landis, William

    2014-08-01

    Of more than 2 million segmental bone defects repaired annually with bone autografts and allografts, 15-40% fail. Improving healing rates may be approached with tissue engineering and use of periosteum overlying an allograft. The present study documents gene expression in human periosteum-allograft constructs compared to allografts alone. Strips of human cadaveric periosteum (26 years, f, distal femur) were sutured about sterilized human femoral cortical strut bone allograft (54 years, m) segments. After construct incubation (M199 supplemented medium) for 8 d, constructs and allografts alone were implanted in nude mice. At 10 and 20 weeks, constructs (N = 4, each group) and allografts (N = 2, each group) were retrieved and placed in RNAlater for quantitative PCR to determine expression of human- and murine-specific genes relevant to remodeling. Specimens were frozen-ground to powders and RNA was extracted, purified, reverse-transcribed, and amplified. Ribosomal protein (P0) was used to normalize sample quantities. Fold change plots were generated following statistical analyses comparing 20- to 10-week gene expression data. Allografts alone yielded no human-specific gene expression. Notable fold changes of human-specific alkaline phosphatase, bone sialoprotein, type I collagen, decorin, RANKL, RANK, cathepsin K, and osteocalcin in 20-week compared to 10-week specimens were found. Murine-specific expression of genes indicative of host mouse vascularization (RANK, type I collagen) was detected in both allograft alone and periosteum-allograft samples. Gene data confirm viable periosteum in constructs after 20 weeks. Relatively higher fold-change values of RANK, RANKL and cathepsin K indicate activities of osteoclast precursors, osteoclasts and osteoblasts involved in allograft remodeling during implantation. All additional genes of interest indicate osteoblast activity in new bone matrix formation. Gene data are directly correlated with previous and present histology work. The results of this study suggest that further investigations could help to establish whether autologous periosteum-allograft constructs could be used for the repair of bone defects.

  4. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review.

    PubMed

    Maïmoun, Laurent; Fattal, Charles; Sultan, Charles

    2011-12-01

    Patients with spinal cord injury exhibit early and acute bone loss with the major functional consequence being a high incidence of pathological fractures. The bone status of these patients is generally investigated by dual-energy x-ray absorptiometry, but this technique does not reveal the pathophysiological mechanism underlying the bone loss. Bone cell activity can be indirectly evaluated by noninvasive techniques, including measurement of specific biochemical markers of bone formation (such as osteocalcin or bone-alkaline phosphatase) and resorption (such as procollagen type I N- or C-terminal propeptide). The bone loss in spinal cord injury is clearly due to an uncoupling of bone remodeling in favor of bone resorption, which starts just after the injury and peaks at about 1 to 4 months. Beyond 6 months, bone resorption activity decreases progressively but remains elevated for many years after injury. Conversely, bone formation is less affected. Antiresorptive treatment induces an early and acute reduction in bone resorption markers. Level of injury and health-related complications do not seem to be implicated in the intensity of bone resorption. During the acute phase, the hypercalcemic status is associated with the suppression of parathyroid hormone and vitamin D metabolites. The high sensitivity of these markers after treatment suggests that they can be used for monitoring treatment efficacy and patient compliance. The concomitant use of bone markers and dual-energy x-ray absorptiometry may improve the physician's ability to detect patients at risk of severe bone loss and subsequent fractures. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Using the Abitibi Greenstone Belt to Understand Martian Hydrothermal Systems and the Potential for Biosignature Preservation in High Temperature Aqueous Environments

    NASA Technical Reports Server (NTRS)

    Hurowitz, J.; Abelson, J.; Allwood, A.; Anderson, R.; Atkinson, B.; Beaty, D.; Bristow, T.; Ehlmann, B.; Eigenbrode, J.; Grotzinger, J.; hide

    2011-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 +/- 0.07% (+/- SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  6. Effects of exemestane, anastrozole and tamoxifen on bone mineral density and bone turnover markers in postmenopausal early breast cancer patients: results of N-SAS BC 04, the TEAM Japan substudy.

    PubMed

    Aihara, T; Suemasu, K; Takei, H; Hozumi, Y; Takehara, M; Saito, T; Ohsumi, S; Masuda, N; Ohashi, Y

    2010-01-01

    Use of aromatase inhibitors in women with postmenopausal breast cancer accompanies risks of bone loss. We evaluated changes in bone mineral density (BMD) and bone turnover markers in patients treated with exemestane, anastrozole or tamoxifen for hormone-sensitive postmenopausal early breast cancer. Sixty-eight patients enrolled in the Tamoxifen Exemestane Adjuvant Multinational Japan bone substudy were randomly assigned to receive tamoxifen, exemestane or anastrozole. During a 2-year study period, lumbar spine BMD was measured using dual-energy X-ray absorptiometry, and urinary type I collagen cross-linked N-telopeptide (NTX) and serum bone-specific alkaline phosphatase (BAP) were also measured. BMD at 2 years of treatment was higher in tamoxifen patients compared with exemestane and anastrozole patients; however, the intergroup difference was not significant (p = 0.2521 and p = 0.0753, respectively). BMD was higher in exemestane patients compared with anastrozole patients; however, the intergroup difference was not significant (p = 0.7059 and p = 0.8134, respectively). NTX and BAP were significantly lower in tamoxifen patients compared with exemestane and anastrozole patients at 1 and 2 years of treatment (p < 0.05). Tamoxifen may provide better bone protection compared with exemestane or anastrozole. The effect of exemestane and anastrozole on bone loss may be comparable in Japanese postmenopausal women. Copyright © 2011 S. Karger AG, Basel.

  7. Effect of carbonated hydroxyapatite incorporated advanced platelet rich fibrin intrasulcular injection on the alkaline phosphatase level during orthodontic relapse

    NASA Astrophysics Data System (ADS)

    Alhasyimi, Ananto Ali; Pudyani, Pinandi Sri; Asmara, Widya; Ana, Ika Dewi

    2018-02-01

    Nowadays, relapse in orthodontic treatment is considered very important because of high incidence of relapse after the treatment. Alkaline phosphatase (ALP) as a biomarker of bone formation will decrease in compression sites during relapse after orthodontic tooth movement. In this situation, manipulating alveolar bone remodeling to increase ALP level is considered one of the new strategies to prevent relapse properly. In the field of tissue engineering, in this study, carbonated hydroxyapatite (CHA) is expected to have the ability to incorporate advanced platelet rich fibrin (aPRF). Next, CHA will retain the aPRF containing various growth factors (GF) until it reaches into a specific targeted area, gradually degraded, and deliver the GF in a controlled manner to prevent relapse. Here, gingival crevicular fluid (GCF) of 45 samples (n=45) were collected and levels of ALP were analyzed using UV-Vis 6300 Spectrophotometer at 405 nm wavelength. We found that there is a significant difference of ALP levels (p<0.05) in GCF between treatments and control groups. ALP level was elevated significantly in CHA and CHA-aPRF groups at days 7 and 14 after debonding compared with the control groups. The peak level of ALP was observed at days 14 after debonding in groups C (0.789 ± 0.039 U/mg). Therefore, it can be concluded that the application of hydrogel CHA with controlled release manner incorporated aPRF enhances bone regeneration by increasing ALP level.

  8. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP).

    PubMed

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2012-03-09

    Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor γ. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a novel CBP could be a useful candidate for regenerating bone and treating osteoporosis, which result from an imbalance in osteogenesis and adipogenesis differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Artificial Gravity as a Bone Loss Countermeasure in Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; LeBlanc, A.; Shackelford, L. C.; Heer, M. A.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. We report here initial results from a pilot study designed to explore the utility of artificial gravity (AG) as a countermeasure to the effects of microgravity, specifically to bone loss. After an initial phase of adaptation and testing, 15 male subjects underwent 21 days of 6 head-down bed rest to simulate the deconditioning associated with space flight. Eight of the subjects underwent 1 h of centrifugation (AG, 1 gz at the heart, 2.5 gz at the feet) each day for 21 days, while 7 of the subjects served as untreated controls (CN). Blood and urine were collected before, during, and after bed rest for bone marker determinations. At this point, preliminary data are available on the first 8 subjects (6 AG, and 2 CN). Comparing the last week of bed rest to before bed rest, urinary excretion of the bone resorption marker n-telopeptide increased 95 plus or minus 59% (mean plus or minus SD) in CN but only 32 plus or minus 26% in the AG group. Similar results were found for another resorption marker, helical peptide (increased 57 plus or minus 0% and 35 plus or minus 13% in CN and AG respectively). Bone-specific alkaline phosphatase, a bone formation marker, did not change during bed rest. At this point, sample analyses are continuing, including calcium tracer kinetic studies. These initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest.

  10. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2006-10-01

    A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.

  11. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Atkinson, Charlotte; Compston, Juliet E; Day, Nicholas E; Dowsett, Mitch; Bingham, Sheila A

    2004-02-01

    Isoflavone phytoestrogen therapy has been proposed as a natural alternative to hormone replacement therapy (HRT). HRT has a beneficial effect on bone, but few trials in humans have investigated the effects of isoflavones on bone. The objective of the study was to determine the effect on bone density of a red clover-derived isoflavone supplement that provided a daily dose of 26 mg biochanin A, 16 mg formononetin, 1 mg genistein, and 0.5 mg daidzein for 1 y. Effects on biochemical markers of bone turnover and body composition were also studied. Women aged 49-65 y (n = 205) were enrolled in a double-blind, randomized, placebo-controlled trial; 177 completed the trial. Bone density, body composition, bone turnover markers, and diet were measured at baseline and after 12 mo. Loss of lumbar spine bone mineral content and bone mineral density was significantly (P = 0.04 and P = 0.03, respectively) lower in the women taking the isoflavone supplement than in those taking the placebo. There were no significant treatment effects on hip bone mineral content or bone mineral density, markers of bone resorption, or body composition, but bone formation markers were significantly increased (P = 0.04 and P = 0.01 for bone-specific alkaline phosphatase and N-propeptide of collagen type I, respectively) in the intervention group compared with placebo in postmenopausal women. Interactions between treatment group and menopausal status with respect to changes in other outcomes were not significant. These data suggest that, through attenuation of bone loss, isoflavones have a potentially protective effect on the lumbar spine in women.

  12. 2-Substituted 7-trifluoromethyl-thiadiazolopyrimidones as alkaline phosphatase inhibitors. Synthesis, structure activity relationship and molecular docking study.

    PubMed

    Jafari, Behzad; Ospanov, Meirambek; Ejaz, Syeda Abida; Yelibayeva, Nazym; Khan, Shafi Ullah; Amjad, Sayyeda Tayyeba; Safarov, Sayfidin; Abilov, Zharylkasyn A; Turmukhanova, Mirgul Zh; Kalugin, Sergey N; Ehlers, Peter; Lecka, Joanna; Sévigny, Jean; Iqbal, Jamshed; Langer, Peter

    2018-01-20

    Alkaline Phosphatases (APs) play a key role in maintaining a ratio of phosphate to inorganic pyrophosphate (P i /PP i ) and thus regulate extracellular matrix calcification during bone formation and growth. Among different isozymes of AP, aberrant increase in the level of tissue non-specific alkaline phosphatase (TNAP) is strongly associated with vascular calcification and end-stage renal diseases. In this context, we synthesized a novel series of fluorinated pyrimidone derivatives, i.e., 2-bromo-7-trifluoromethyl-5-oxo-5H-1,3,4-thiadiazolepyrimidones. The bromine functionality was further used for derivatisation by nucleophilic aromatic substitution using amines as nucleophiles as well as by Palladium catalysed Suzuki-Miyaura reactions. The synthesized derivatives were found potent but non-selective inhibitors of both isozymes of AP. Arylated thiadiazolopyrimidones exhibited stronger inhibitory activities than 2-amino-thiadiazolopyrimidones. The binding modes and possible interactions of the most active inhibitor within the active site of the enzyme were observed by molecular docking studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Resistance exercise as a countermeasure to disuse-induced bone loss.

    PubMed

    Shackelford, L C; LeBlanc, A D; Driscoll, T B; Evans, H J; Rianon, N J; Smith, S M; Spector, E; Feeback, D L; Lai, D

    2004-07-01

    During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.

  14. Resistance exercise as a countermeasure to disuse-induced bone loss

    NASA Technical Reports Server (NTRS)

    Shackelford, L. C.; LeBlanc, A. D.; Driscoll, T. B.; Evans, H. J.; Rianon, N. J.; Smith, S. M.; Spector, E.; Feeback, D. L.; Lai, D.

    2004-01-01

    During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.

  15. Alkaline DNA fragmentation, DNA disentanglement evaluated viscosimetrically and sister chromatid exchanges, after treatment in vivo with nitrofurantoin.

    PubMed

    Parodi, S; Pala, M; Russo, P; Balbi, C; Abelmoschi, M L; Taningher, M; Zunino, A; Ottaggio, L; de Ferrari, M; Carbone, A; Santi, L

    1983-07-01

    Nitrofurantoin was not positive as a carcinogen in long term assays. In vitro it was positive in some short term tests and negative in others. We have examined Nitrofurantoin for its capability of inducing DNA damage in vivo. With the alkaline elution technique, Nitrofurantoin appeared clearly positive in all the tissues examined (liver, kidney, lung, spleen and bone marrow). In the liver we also observed some cross-linking effect. In bone marrow cells Nitrofurantoin was also clearly positive in terms of sister chromatid exchanges (SCEs) induction. DNA damage in vivo was also examined with a viscosimetric method, more sensitive than alkaline elution. With this method the results were essentially negative, suggesting that the two methods detect different types of damage. In view of its positivity in many organs and in two short term tests in vivo, the carcinogenic potential of Nitrofurantoin should be reconsidered.

  16. A method for direct assessment of tissue-nonspecific alkaline phosphatase (TNAP) inhibitors in blood samples.

    PubMed

    Sergienko, Eduard A; Sun, Qing; Ma, Chen-Ting

    2013-01-01

    Tissue nonspecific alkaline phosphatase (TNAP) is one of four human alkaline phosphatases (AP), a family of exocytic enzymes that catalyze hydrolysis of phospho-monoesters in bone, liver, kidney, and various other tissues. Overexpression of TNAP gives rise to excessive bone and soft tissue mineralization, including blood vessel calcification. Our prior screening campaigns have found several leads against this attractive therapeutic target using in vitro assay with a recombinant enzyme; these compounds were further optimized using medicinal chemistry approaches. To prioritize compounds for their use in animal models, we have designed and developed a biomarker assay for in situ detection of TNAP activity within human and mouse blood samples at physiological pH. This assay is suitable for screening compounds in 1,536-well plates using blood plasma from different mammalian species. The user may choose from two different substrates based on the need for greater assay simplicity or sensitivity.

  17. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone.

    PubMed

    Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min

    2017-08-01

    Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption. Copyright © 2017 Endocrine Society

  18. Changes in biochemical markers after lower limb fractures.

    PubMed

    Stoffel, Karl; Engler, Hanna; Kuster, Markus; Riesen, Walter

    2007-01-01

    The bone remodeling sequence after bone fracture changes the concentrations of biochemical bone markers, but the relationships of fracture size and of healing time to changes in biomarkers are unclear. The present pilot study was undertaken to determine the changes found in serum bone markers after plate osteosynthesis of closed distal tibial and malleolar fractures during a study period of 24 weeks. We measured tatrate-resistant acid phosphatase (TRACP 5b), collagen type I C-terminal telopeptide (ICTP), bone-specific alkaline phosphatase (bone ALP), osteocalcin (OC), procollagen type I C-terminal propeptide (PICP), procollagen type III N-terminal propeptide (PIIINP), and human cartilage glycoprotein 39 (YKL-40) in 20 patients with lower limb fractures (10 malleolar, 10 tibia). A physical examination and radiographs were completed to assess evidence of union. All malleolar fractures healed within 6 weeks, whereas 2 tibial fractures did not show complete bone healing after 24 weeks. Changes were comparable but more pronounced in the tibia group, and marker concentrations remained increased at the end of study (bone ALP, 86 vs 74 U/L; OC, 14.9 vs 7.7 microg/L; ICTP: 5.6 vs 3.3 microg/L at day 84 after osteosynthesis, P <0.05 in tibia; 80 vs 70 U/L, 8 vs 5.2 microg/L, and 3.5 vs 3.2 microg/L, respectively, in the malleolar fracture group). In normal bone healing, changes in bone turnover markers were primarily dependent on the fracture size. Delayed tibia fracture healing may involve a disturbance in bone remodeling.

  19. Osteograft, plastic material for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Zaidman, A. M.; Korel, A. V.; Shevchenko, A. I.; Shchelkunova, E. I.; Sherman, K. M.; Predein, Yu. A.; Kosareva, O. S.

    2016-08-01

    Creating tissue-engineering constructs based on the mechanism of cartilage-bone evolution is promising for traumatology and orthopedics. Such a graft was obtained from a chondrograft by transdifferentiation. The hondrograft placed in osteogenic medium is undergoing osteogenic differentiation for 14-30 days. Tissue specificity of the osteograft was studied by morphology, immunohistochemistry, electron microscopy, and the expression of the corresponding genes was estimated. The expression of osteonectin, fibronectin, collagen of type I, izolektin and CD 44 is determined. Alkaline phosphatase and matrix vesicles are determined in osteoblasts. Calcificates are observed in the matrix. Chondrogenic proteins expression is absent. These findings evidence the tissue specificity of the developed osteograft.

  20. Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible.

    PubMed

    Kim, Ji-Eun; Takanche, Jyoti Shrestha; Kim, Jeong-Seok; Lee, Min-Ho; Jeon, Jae-Gyu; Park, Il-Song; Yi, Ho-Keun

    2018-04-12

    Poor bone quality and osteolysis are the major causes of implant failure in dentistry. Here, this study tested the effect of phelligridin D-loaded nanotubes titanium (Ti) for bone formation around the dental implants. The purpose of this study was to enhance osseointegration of phelligridin D-loaded implant into the bone for bone formation and prevention of osteolysis. Cell viability, crystal violet staining, Western blot, alizarin red S staining, alkaline phosphatase activity, tartrate-resistant acid phosphatase staining, micro-computed tromography (μ-CT), hematoxylin and eosin (H&E) and immunohistochemical staining were used in vitro and in vivo to test the biocompatibility of phelligridin D. Phelligridin D enhanced osteoblast differentiation and mineralization by increasing bone morphogenic protein-2/7 (BMP-2/7), Osterix, Runx-2, osteoprotegerin (OPG), alkaline phosphatase and inhibited osteoclast differentiation by decreasing receptor activator of nuclear factor kappa-B ligand (RANKL) in MC-3T3 E1 cells. Further, phelligridin D promoted bone regeneration around nanotube Ti implant surface by increasing the levels of BMP-2/7 and OPG in a rat model. Phelligridin D also inhibited osteolysis by suppressing the expression of RANKL. These findings strongly suggest that phelligridin D is a new compound representing a potential therapeutic candidate for implant failure caused by osteolysis and poor bone quality of teeth.

  1. Antiosteoporotic Effect of Combined Extract of Morus alba and Polygonum odoratum

    PubMed Central

    Sungkamanee, Sudarat; Thukham-mee, Wipawee

    2014-01-01

    Due to the limitation of osteoporosis therapy, the alternative therapies from natural sources have been considered. In this study, we aimed to determine the antiosteoporotic effect of the combined extract of Morus alba and Polygonum odoratum leaves. Ovariectomized rats, weighing 200–220 g, were orally given the combined extract at doses of 5, 150, and 300 mg·kg−1 BW for 3 months. At the end of study, blood was collected to determine serum osteocalcin, calcium, and alkaline phosphatase level. In addition, tibia bone was isolated to determine bone oxidative stress markers, cortical bone thickness, and density of osteoblast. The combined extract decreased oxidative stress and osteoclast density but increased osteoblast density and cortical thickness. The elevation of serum calcium, alkaline phosphatase, and osteocalcin was also observed. These results suggested the antiosteoporotic effect of the combined extract via the increased growth formation together with the suppression of bone resorption. However, further studies concerning chronic toxicity and the underlying mechanism are required. PMID:25478061

  2. Pueraria mirifica alleviates cortical bone loss in naturally menopausal monkeys.

    PubMed

    Kittivanichkul, Donlaporn; Charoenphandhu, Narattaphol; Khemawoot, Phisit; Malaivijitnond, Suchinda

    2016-11-01

    Since the in vitro and in vivo anti-osteoporotic effects of Pueraria mirifica (PM) in rodents have been verified, its activity in menopausal monkeys was evaluated as required before it can be applicable for human use. In this study, postmenopausal osteoporotic monkeys were divided into two groups (five per group), and fed daily with standard diet alone (PMP0 group) or diet mixed with 1000 mg/kg body weight (BW) of PM powder (PMP1000 group) for 16 months. Every 2 months, the bone mineral density (BMD), bone mineral content (BMC) and bone geometry parameters (cortical area and thickness and periosteal and endosteal circumference) at the distal radius and proximal tibia were determined using peripheral quantitative computed tomography together with plasma and urinary bone markers. Compared with the baseline (month 0) values, the cortical, but not trabecular, BMDs and BMCs and the cortical area and thickness at the metaphysis and diaphysis of the radius and tibia of the PMP0 group continuously decreased during the 16-month study period. In contrast, PMP1000 treatment ameliorated the bone loss mainly at the cortical diaphysis by decreasing bone turnover, as indicated by the lowered plasma bone-specific alkaline phosphatase and osteocalcin levels. Generally, changes in the cortical bone geometry were in the opposite direction to the cortical bone mass after PMP1000 treatment. This study indicated that postmenopausal monkeys continuously lose their cortical bone compartment, and they have a higher possibility for long bone fractures. Oral PMP treatment could improve both the bone quantity (BMC and BMD) and quality (bone geometry). © 2016 Society for Endocrinology.

  3. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.

    PubMed

    Götz, Werner; Gerber, Thomas; Michel, Barbara; Lossdörfer, Stefan; Henkel, Kai-Olaf; Heinemann, Friedhelm

    2008-10-01

    Bone substitute biomaterials may be osteogenic, osteoconductive or osteoinductive. To test for these probable characteristics in a new nanoporous grafting material consisting of nanocrystalline hydroxyapatite embedded in a porous silica gel matrix (NanoBone(s)), applied in humans, we studied biopsies from 12 patients before dental implantation following various orofacial augmentation techniques with healing times of between 3.5 and 12 months. Sections from decalcified specimens were investigated using histology, histochemistry [periodic acid Schiff, alcian blue staining and tartrate-resistant acid phosphatase (TRAP)] and immunohistochemistry, with markers for osteogenesis, bone remodelling, resorption and vessel walls (alkaline phosphatase, bone morphogenetic protein-2, collagen type I, ED1, osteocalcin, osteopontin, runx2 and Von-Willebrand factor). Histologically, four specific stages of graft transformation into lamellar bone could be characterized. During early stages of healing, bone matrix proteins were absorbed by NanoBone(s) granules, forming a proteinaceous matrix, which was invaded by small vessels and cells. We assume that the deposition of these molecules promotes early osteogenesis in and around NanoBone(s) and supports the concomitant degradation probably by osteoclast-like cells. TRAP-positive osteoclast-like cells were localized directly on the granular surfaces. Runx2-immunoreactive pre-osteoblasts, which are probably involved in direct osteogenesis forming woven bone that is later transformed into lamellar bone, were attracted. Graft resorption and bone apposition around the graft granules appear concomitantly. We postulate that NanoBone(s) has osteoconductive and biomimetic properties and is integrated into the host's physiological bone turnover at a very early stage.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment proteinmore » (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.« less

  5. Alendronate promotes bone formation by inhibiting protein prenylation in osteoblasts in rat tooth replantation model.

    PubMed

    Komatsu, Koichiro; Shimada, Akemi; Shibata, Tatsuya; Wada, Satoshi; Ideno, Hisashi; Nakashima, Kazuhisa; Amizuka, Norio; Noda, Masaki; Nifuji, Akira

    2013-11-01

    Bisphosphonates (BPs) are a major class of antiresorptive drug, and their molecular mechanisms of antiresorptive action have been extensively studied. Recent studies have suggested that BPs target bone-forming cells as well as bone-resorbing cells. We previously demonstrated that local application of a nitrogen-containing BP (N-BP), alendronate (ALN), for a short period of time increased bone tissue in a rat tooth replantation model. Here, we investigated cellular mechanisms of bone formation by ALN. Bone histomorphometry confirmed that bone formation was increased by local application of ALN. ALN increased proliferation of bone-forming cells residing on the bone surface, whereas it suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in vivo. Moreover, ALN treatment induced more alkaline phosphatase-positive and osteocalcin-positive cells on the bone surface than PBS treatment. In vitro studies revealed that pulse treatment with ALN promoted osteocalcin expression. To track the target cells of N-BPs, we applied fluorescence-labeled ALN (F-ALN) in vivo and in vitro. F-ALN was taken into bone-forming cells both in vivo and in vitro. This intracellular uptake was inhibited by endocytosis inhibitors. Furthermore, the endocytosis inhibitor dansylcadaverine (DC) suppressed ALN-stimulated osteoblastic differentiation in vitro and it suppressed the increase in alkaline phosphatase-positive bone-forming cells and subsequent bone formation in vivo. DC also blocked the inhibition of Rap1A prenylation by ALN in the osteoblastic cells. These data suggest that local application of ALN promotes bone formation by stimulating proliferation and differentiation of bone-forming cells as well as inhibiting osteoclast function. These effects may occur through endocytic incorporation of ALN and subsequent inhibition of protein prenylation.

  6. Bone Resorption and Environmental Exposure to Cadmium in Women: A Population Study

    PubMed Central

    Schutte, Rudolph; Nawrot, Tim S.; Richart, Tom; Thijs, Lutgarde; Vanderschueren, Dirk; Kuznetsova, Tatiana; Van Hecke, Etienne; Roels, Harry A.; Staessen, Jan A.

    2008-01-01

    Background Environmental exposure to cadmium decreases bone density indirectly through hypercalciuria resulting from renal tubular dysfunction. Objective We sought evidence for a direct osteotoxic effect of cadmium in women. Methods We randomly recruited 294 women (mean age, 49.2 years) from a Flemish population with environmental cadmium exposure. We measured 24-hr urinary cadmium and blood cadmium as indexes of lifetime and recent exposure, respectively. We assessed the multivariate-adjusted association of exposure with specific markers of bone resorption, urinary hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), as well as with calcium excretion, various calciotropic hormones, and forearm bone density. Results In all women, the effect sizes associated with a doubling of lifetime exposure were 8.4% (p = 0.009) for HP, 6.9% (p = 0.10) for LP, 0.77 mmol/day (p = 0.003) for urinary calcium, –0.009 g/cm2 (p = 0.055) for proximal forearm bone density, and –16.8% (p = 0.065) for serum parathyroid hormone. In 144 postmenopausal women, the corresponding effect sizes were –0.01223 g/cm2 (p = 0.008) for distal forearm bone density, 4.7% (p = 0.064) for serum calcitonin, and 10.2% for bone-specific alkaline phosphatase. In all women, the effect sizes associated with a doubling of recent exposure were 7.2% (p = 0.001) for urinary HP, 7.2% (p = 0.021) for urinary LP, –9.0% (p = 0.097) for serum parathyroid hormone, and 5.5% (p = 0.008) for serum calcitonin. Only one woman had renal tubular dysfunction (urinary retinol-binding protein > 338 μg/day). Conclusions In the absence of renal tubular dysfunction, environmental exposure to cadmium increases bone resorption in women, suggesting a direct osteotoxic effect with increased calciuria and reactive changes in calciotropic hormones. PMID:18560534

  7. Characterisation of Bone Beneficial Components from Australian Wallaby Bone

    PubMed Central

    Lao, Weiguo; Jin, Xingliang; Tan, Yi; Xiao, Linda; Padula, Matthew P.; Bishop, David P.; Reedy, Brian; Ong, Madeleine; Kamal, Mohammad A.; Qu, Xianqin

    2016-01-01

    Background: Osteoporosis is a condition in which the bones become brittle, increasing the risk of fractures. Complementary medicines have traditionally used animal bones for managing bone disorders, such as osteoporosis. This study aimed to discover new natural products for these types of conditions by determining mineral and protein content of bone extracts derived from the Australian wallaby. Methods: Inductively coupled plasma-mass spectrometry and Fourier transform infrared spectroscopic analysis were used for mineral tests, proteome analysis was using LC/MS/MS and the effects of wallaby bone extracts (WBE)s on calcium deposition and alkaline phosphatase activity were evaluated in osteogenic cells derived from adipose tissue-derived stem cells (ADSCs). Results: Concentrations of calcium and phosphorus were 26.21% and 14.72% in WBE respectively. Additionally, minerals found were wide in variety and high in concentration, while heavy metal concentrations of aluminium, iron, zinc and other elements were at safe levels for human consumption. Proteome analysis showed that extracts contained high amounts of bone remodelling proteins, such as osteomodulin, osteopontin and osteoglycin. Furthermore, in vitro evaluation of WBEs showed increased deposition of calcium in osteoblasts with enhanced alkaline phosphatase activity in differentiated adipose-derived stem cells. Conclusion: Our results demonstrate that wallaby bone extracts possess proteins and minerals beneficial for bone metabolism. WBEs may therefore be used for developing natural products for conditions such as osteoporosis and further investigation to understand biomolecular mechanism by which WBEs prevent osteoporosis is warranted. PMID:28930133

  8. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    PubMed

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P < 0.03) and RANKL (P < 0.003) and significantly higher (P < 0.02) for BMP-2 in ONJ compared with healthy bone. Expression was sevenfold lower (P < 0.03) for Msx-1, 22-fold lower (P < 0.001) for RANKL and eightfold higher (P < 0.02) for BMP-2 in ONJ bone. Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  9. Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold

    PubMed Central

    Ge, Shaohua; Zhao, Ning; Wang, Lu; Yu, Meijiao; Liu, Hong; Song, Aimei; Huang, Jing; Wang, Guancong; Yang, Pishan

    2012-01-01

    Background A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs) and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS) in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo. Methods Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively. Results PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair. Conclusion This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration. PMID:23091383

  10. Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells.

    PubMed

    Shokrgozar, M A; Farokhi, M; Rajaei, F; Bagheri, M H A; Azari, Sh; Ghasemi, I; Mottaghitalab, F; Azadmanesh, K; Radfar, J

    2010-12-15

    Biocompatibility of β-TCP/HDPE-UHMWPE nanocomposite as a new bone substitute material was evaluated by using highly purified human osteoblast cells. Human osteoblast cells were isolated from bone tissue and characterized by immunofluorescence Staining before and after purification using magnetic bead system. Moreover, proliferation, alkaline phosphatase production, cell attachment, calcium deposition, gene expression, and morphology of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposites were evaluated. The results have shown that the human osteoblast cells were successfully purified and were suitable for subsequent cell culturing process. The high proliferation rate of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposite confirmed the great biocompatibility of the scaffold. Expression of bone-specific genes was taken place after the cells were incubated in composite extract solutions. Furthermore, osteoblast cells were able to mineralize the matrix next to composite samples. Scanning electron microscopy demonstrated that cells had normal morphology on the scaffold. Thus, these results indicated that the nanosized β-TCP/HDPE-UHMWPE blend composites could be potential scaffold, which is used in bone tissue engineering. Copyright © 2010 Wiley Periodicals, Inc.

  11. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    PubMed Central

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H2SO4) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications. PMID:23319862

  12. Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering.

    PubMed

    Zhang, Ming-Lei; Cheng, Ji; Xiao, Ye-Chen; Yin, Ruo-Feng; Feng, Xu

    2017-02-25

    Engineering novel scaffolds that can mimic the functional extracellular matrix (ECM) would be a great achievement in bone tissue engineering. This paper reports the fabrication of novel collagen/chitosan/β-tricalcium phosphate (CCTP) based tissue engineering scaffold. In order to improve the regeneration ability of scaffold, we have embedded raloxifene (RLX)-loaded PLGA microsphere in the CCTP scaffold. The average pore of scaffold was in the range of 150-200μm with ideal mechanical strength and swelling/degradation characteristics. The release rate of RLX from the microsphere (MS) embedded scaffold was gradual and controlled. Also a significantly enhanced cell proliferation was observed in RLX-MS exposed cell group suggesting that microsphere/scaffold could be an ideal biomaterial for bone tissue engineering. Specifically, RLX-MS showed a significantly higher Alizarin red staining indicating the higher mineralization capacity of this group. Furthermore, a high alkaline phosphatase (ALP) activity for RLX-MS exposed group after 15days incubation indicates the bone regeneration capacity of MC3T3-E1 cells. Overall, present study showed that RLX-loaded microsphere embedded scaffold has the promising potential for bone tissue engineering applications. Copyright © 2016. Published by Elsevier B.V.

  13. Relationship between bone turnover markers and the heel stiffness index measured by quantitative ultrasound in middle-aged and elderly Japanese men

    PubMed Central

    Nishimura, Takayuki; Arima, Kazuhiko; Abe, Yasuyo; Kanagae, Mitsuo; Mizukami, Satoshi; Okabe, Takuhiro; Tomita, Yoshihito; Goto, Hisashi; Horiguchi, Itsuko; Aoyagi, Kiyoshi

    2018-01-01

    Abstract The aim of the present study was to investigate the age-related patterns and the relationships between serum levels of tartrate-resistant acid phosphatase-5b (TRACP-5b) or bone-specific alkaline phosphatase (BAP), and the heel stiffness index measured by quantitative ultrasound (QUS) in 429 Japanese men, with special emphasis on 2 age groups (40–59 years and 60 years or over). The heel stiffness index (bone mass) was measured by QUS. Serum samples were collected, and TRACP-5b and BAP levels were measured. The stiffness index was significantly decreased with age. Log (TRACP-5b) was significantly increased with age, but Log (BAP) was stable. Generalized linear models showed that higher levels of Log (TRACP-5b) and Log (BAP) were correlated with a lower stiffness index after adjusting for covariates in men aged 60 years or over, but not in men aged 40 to 59 years. In conclusion, higher rates of bone turnover markers were associated with a lower stiffness index only in elderly men. These results may indicate a different mechanism of low bone mass among different age groups of men. PMID:29465590

  14. Biochemical markers of bone turnover in diagnosis of myeloma bone disease.

    PubMed

    Dizdar, Omer; Barista, Ibrahim; Kalyoncu, Umut; Karadag, Omer; Hascelik, Gulsen; Cila, Aysenur; Pinar, Asli; Celik, Ismail; Kars, Ayse; Tekuzman, Gulten

    2007-03-01

    This study was designed to explore the value of markers of bone turnover, macrophage inflammatory protein-1alpha (MIP-1alpha), and osteopontin (OPN) in the diagnosis of myeloma bone disease. Twenty-five patients with newly diagnosed and untreated multiple myeloma (MM), and 22 age-, sex-, and bone mineral density-matched control subjects were enrolled. Levels of MIP-1alpha, OPN, carboxy-terminal telopeptide of Type-1 collagen (C-telopeptide or Ctx), deoxypyridinoline (DPD), Type-1 collagen propeptide (T1Pro), and bone-specific alkaline phosphatase (BALP) were assessed in both groups. Twenty-two of the patients had bone involvement documented by skeletal surveys and lumbar spinal magnetic resonance imaging. Levels of serum Ctx, OPN, MIP-1alpha, and urine DPD were significantly higher in MM patients with bone disease than in controls (P<0.01). Serum Ctx levels were elevated in 90.9% of patients with MM and 40.9% of controls (P<0.001). Urine DPD levels were elevated in 90.4% of the patients and 31.8% of the controls (P<0.001). The serum OPN and MIP-1alpha levels of the patients were significantly correlated with beta2-microglobulin and lactate dehydrogenase levels (P<0.05). Our study indicates that Ctx and DPD are sensitive markers of bone disease in MM, and higher than normal values suggest presence of bone disease rather than benign osteoporosis in MM. The utility of OPN and MIP-1alpha needs to be further investigated. Copyright (c) 2006 Wiley-Liss, Inc.

  15. A feasibility study for in vitro evaluation of fixation between prosthesis and bone with bone marrow-derived mesenchymal stem cells.

    PubMed

    Morita, Yusuke; Yamasaki, Kenichi; Hattori, Koji

    2010-10-01

    It is difficult to quantitatively evaluate adhesive strength between an implant and the neighboring bone using animal experiments, because the degree of fixation of an implant depends on differences between individuals and the clearance between the material and the bone resulting from surgical technique. A system was designed in which rat bone marrow cells were used to quantitatively evaluate the adhesion between titanium alloy plates and bone plates in vitro. Three kinds of surface treatment were used: a sand-blasted surface, a titanium-sprayed surface and a titanium-sprayed surface coated with hydroxyapatite. Bone marrow cells obtained from rat femora were seeded on the titanium alloy plates, and the cells were cultured between the titanium alloy plates and the bone plates sliced from porcine ilium for 2 weeks. After cultivation, adhesive strength was measured using a tensile test, after which DNA amount and Alkaline phosphatase activity were measured. The seeded cells accelerated adhesion of the titanium alloy plate to the bone plate. Adhesive strength of the titanium-sprayed surface was lower than that of the sand-blasted surface because of lower initial contact area, although there was no difference in Alkaline phosphatase activity between two surface treatments. A hydroxyapatite coating enhanced adhesive strength between the titanium alloy palate and the bone plate, as well as enhancing osteogenic differentiation of bone marrow cells. It is believed that this novel experimental method can be used to simultaneously evaluate the osteogenic differentiation and the adhesive strength of an implant during in vitro cultivation. 2010 Elsevier Ltd. All rights reserved.

  16. Tridax procumbens flavonoids promote osteoblast differentiation and bone formation.

    PubMed

    Al Mamun, Md Abdullah; Hosen, Mohammad Jakir; Islam, Kamrul; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim

    2015-11-18

    Tridax procumbens flavonoids (TPFs) are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts. TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs) including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2. Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis.

  17. Second hand tobacco smoke adversely affects the bone of immature rats.

    PubMed

    Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; Santiago, Hildemberg Agostinho Rocha de; Volpon, José Batista

    2017-12-01

    To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.

  18. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Bone dissemination of prostate cancer after holmium laser enucleation of the prostate: a case report and a review of the literature.

    PubMed

    Koguchi, Dai; Nishi, Morihiro; Satoh, Takefumi; Shitara, Toshiya; Matsumoto, Kazumasa; Fujita, Tetsuo; Yoshida, Kazunari; Iwamura, Masatsugu

    2014-02-01

    We report a case of dissemination of prostate cancer after holmium laser enucleation of the prostate in an 80-year-old patient. The patient presented at hospital because of nocturia. Transrectal ultrasound-guided biopsy was carried out because of high serum prostate-specific antigen (3.55 ng/mL), but it showed no malignancies. Benign prostate hyperplasia was diagnosed, and he was started on an α1-blocker. Although the urinary symptom improved with silodosin, acute urinary retention occurred 3 years after therapy began. Holmium laser enucleation of the prostate for relief of bladder outlet obstruction enabled discharge of urine. Pathological examination of the resected tissue found adenocarcinoma with a high Gleason score, 4 + 5. Serum alkaline phosphatase increased rapidly after holmium laser enucleation, and bone scintigraphy confirmed multiple bone metastases. Prostate cancer, T1bN0M1b, was diagnosed. © 2013 The Japanese Urological Association.

  20. Osteogenic capability of autologous rabbit adipose-derived stromal cells in repairing calvarial defects.

    PubMed

    Cheng, Shao-Wen; Lin, Zhong-Qin; Wang, Wei; Zhang, Wei; Kou, Dong-Quan; Ying, Xiao-Zhou; Chen, Qing-Yu; Shen, Yue; Cheng, Xiao-Jie; Peng, Lei; Lv, Chuan-Zhu

    2011-01-01

    To evaluate the in vitro and in vivo osteogenic capability of adipose-derived stromal cells (ASCs). ASCs were isolated from New Zealand white rabbits and determined by alkaline phosphatase (ALP) staining, von Kossa staining and alizarin red staining. Some specific markers of osteogenic differentiation, including ALP, osteocalcin (OCN), osteopontin (OPN) were examined by reverse transcription-polymerase chain reaction (RT-PCR). In vivo, demineralized bone matrix (DBM)-ASCs composites were implanted into the rabbit calvarial defects created at each side of the longitudinal midline. After 6 weeks, histologic properties of the transplants were analyzed. ASCs were successfully induced into osteogenesis. ALP staining, von Kossa staining and alizarin red staining showed positive results. The expressions of ALP, OCN and OPN were detected in ASCs after cultivation in osteogenic medium. Extensive new bone was observed in the defects transplanted with DBM-ASCs composites. ASCs have the potential to differentiate into osteogenic lineage and DBM-ASCs constructs are a promising method for regeneration in bone defects.

  1. Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities.

    PubMed

    Uchida, Yoko; Irie, Koichiro; Fukuhara, Daiki; Kataoka, Kota; Hattori, Takako; Ono, Mitsuaki; Ekuni, Daisuke; Kubota, Satoshi; Morita, Manabu

    2018-06-23

    Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin , which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II , and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1 . In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and enhances both osteoblast and osteoclast activity by regulating specific transcription factors.

  2. Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects.

    PubMed

    Poudel, Sher Bahadur; Bhattarai, Govinda; Kook, Sung-Ho; Shin, Yun-Ji; Kwon, Tae-Ho; Lee, Seung-Youp; Lee, Jeong-Chae

    2017-10-01

    Transgenic plant cell suspension culture systems have been utilized extensively as convenient and efficient expression systems for the production of recombinant human growth factors. We produced insulin-like growth factor-1 using a plant suspension culture system (p-IGF-1) and explored its effect on new bone formation in calvarial defects. We also compared the bone regenerating potential of p-IGF-1 with commercial IGF-1 derived from Escherichia coli (e-IGF-1). Male C57BL/6 mice underwent calvarial defect surgery, and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 13μg of p-IGF-1 (p-IGF-1 group) or e-IGF-1 (e-IGF-1 group). The sham group did not receive any treatment with ACS or IGFs after surgery. Live μCT and histological analyses showed critical-sized bone defects in the sham group, whereas greater bone formation was observed in the p-IGF-1 and e-IGF-1 groups than the ACS group both 5 and 10weeks after surgery. Bone mineral density, bone volume, and bone surface values were also higher in the IGF groups than in the ACS group. Local delivery of p-IGF-1 or e-IGF-1 more greatly enhanced the expression of osteoblast-specific markers, but inhibited osteoclast formation, in newly formed bone compared with ACS control group. Specifically, p-IGF-1 treatment induced higher expression of alkaline phosphatase, osteocalcin, and osteopontin in the defect site than did e-IGF-1. Furthermore, treatment with p-IGF-1, but not e-IGF-1, increased mineralization of MC3T3-E1 cells, with the attendant upregulation of osteogenic marker genes. Collectively, our findings suggest the potential of p-IGF-1 in promoting the processes required for bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  3. Osthole Promotes Endochondral Ossification and Accelerates Fracture Healing in Mice.

    PubMed

    Zhang, Zhongrong; Leung, Wing Nang; Li, Gang; Lai, Yau Ming; Chan, Chun Wai

    2016-12-01

    Osthole has been found to restore bone mass in preclinical osteoporotic models. In the present study, we investigated the effects of osthole on bone fracture repair in mice. Adult C57BL/6 mice were subjected to transverse femoral fractures and administrated orally with 20 mg/kg osthole and vehicle solvent daily from week 1 post-operation. Fracture callus were analyzed by plain radiography, micro-computed tomography, histology, molecular imaging and immunohistochemistry and tartrate-resistant acid phosphatase staining. Results demonstrated that osthole treatment enhanced removal of cartilage and bony union during reparative stage without significant interfering on remodeling process. In vivo molecular imaging showed bone formation rate of the treatment group was almost twofold of control group at week 2 post-operation. Osthole augmented the expression of alkaline phosphatase and collagen type X in hypertrophic chondrocytes as well as expression of bone morphogenetic protein-2, osteocalcin and alkaline phosphatase in osteoblastic cells, indicating it promoted mineralization of hypertrophic cartilage and woven bone growth simultaneously during endochondral healing. In summary, osthole promotes endochondral ossification via upregulation of maturation osteogenic marker genes in chondrocytes and subsequently accelerates fracture repair and bony fusion.

  4. Associations between bone-alkaline phosphatase and bone mineral density in adults with and without diabetes

    PubMed Central

    Chen, Hailing; Li, Jufen; Wang, Qian

    2018-01-01

    Abstract Insufficient evidence is available to reliably compare the roles of bone alkaline phosphatase (BAP) and bone mineral density (BMD) in diabetes. This study aimed to compare associations between BAP and BMD in adults with and without diabetes to elucidate fracture risk in diabetes. Data were extracted from the National Health and Nutrition Examination Survey (NHANES), 2001–2004, including 4197 adults aged 20 to 49 years, 143 with diabetes (DM group), and 4054 without (non-DM group). Main outcome measure was BMD and regression analyses were performed to identify serum BAP and other covariates associated with total BMD. BMD decreased significantly in DM patients when BAP was increased. In the non-DM group, all BMD results were significantly decreased when BAP was increased. Factors associated with total BMD varied with DM status. Lifestyle measures such as smoking and physical activity were also associated with BMD in the non-DM group. BAP and BMD are inversely associated in DM and non-DM patients. BAP is significantly associated with BMD after controlling for other variables, suggesting that BAP may interact with other factors altering bone metabolism in DM patients. PMID:29702995

  5. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells.

    PubMed

    Doorn, Joyce; Siddappa, Ramakrishnaiah; van Blitterswijk, Clemens A; de Boer, Jan

    2012-03-01

    Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effect on proliferation of hMSCs. Therefore, we investigated whether fine-tuning of the dose and timing of PKA activation could enhance bone formation even further, with minimum effects on proliferation. To test this, we selected two different PKA activators (8-bromo-cAMP (8-br-cAMP) and forskolin) and compared their effects on proliferation and osteogenic differentiation with those of db-cAMP. We found that all three compounds induced alkaline phosphatase levels, bone-specific target genes, and secretion of insulin-like growth factor-1, although 8-br-cAMP induced adipogenic differentiation in long-term cultures and was thus considered unsuitable for further in vivo testing. All three compounds inhibited proliferation of hMSCs in a dose-dependent manner, with forskolin inhibiting proliferation most. The effect of forskolin on in vivo bone formation was tested by pretreating hMSCs before implantation, and we observed greater amounts of bone using forskolin than db-cAMP. Our data show forskolin to be a novel agent that can be used to increase bone formation and also suggests a role for PKA in the delicate balance between adipogenic and osteogenic differentiation.

  6. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  7. Palmitate Attenuates Osteoblast Differentiation of Fetal Rat Calvarial Cells

    PubMed Central

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-01-01

    Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl Co-A carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPAR gamma in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects. PMID:24955854

  8. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells.

    PubMed

    Yeh, Lee-Chuan C; Ford, Jeffery J; Lee, John C; Adamo, Martin L

    2014-07-18

    Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Racial differences in cortical bone and their relationship to biochemical variables in black and white children in the early stages of puberty

    PubMed Central

    Warden, Stuart J.; Hill, Kathleen M.; Ferira, Ashley J.; Laing, Emma M.; Martin, Berdine R.; Hausman, Dorothy B.; Weaver, Connie M.; Peacock, Munro; Lewis, Richard D.

    2014-01-01

    Introduction Racial differences in bone structure likely have roots in childhood as bone size develops predominantly during growth. This study aimed to compare cortical bone health within the tibial diaphysis of black and white children in the early stages of puberty, and explore the contributions of biochemical variables in explaining racial variation in cortical bone properties. Methods A cross-sectional study was performed comparing peripheral quantitative computed tomography-derived cortical bone measures of the tibial diaphysis and biochemical variables in 314 participants (n=155 males; n=164 blacks) in the early stages of puberty. Results Blacks had greater cortical volumetric bone mineral density, mass and size compared to whites (all p<0.01), contributing to blacks having 17.0% greater tibial strength (polar strength-strain index [SSIP]) (p<0.001). Turnover markers indicated blacks had higher bone formation (osteocalcin [OC] and bone specific alkaline phosphatase) and lower bone resorption (N-terminal telopeptide) than whites (all p<0.01). Blacks also had lower 25-hydroxyvitamin D [25(OH)D], and higher 1,25-dihydroxyvitamin D [1,25(OH)2D] and parathyroid hormone (PTH) (all p<0.05). There were no correlations between tibial bone properties, and 25(OH)D and PTH in whites (all p≥0.10); however, SSIP was negatively and positively correlated with 25(OH)D and PTH in blacks, respectively (all p≤0.02). Variation in bone cross-sectional area and SSIP attributable to race was partially explained by tibial length, 25(OH)D/PTH and OC. Conclusions Divergence in tibial cortical bone properties between blacks and whites is established by the early stages of puberty with the enhanced cortical bone properties in black children possibly being explained by higher PTH and OC. PMID:23093348

  10. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    PubMed Central

    Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327

  12. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    PubMed

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  13. Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation in vitro as a bone tissue engineering strategy.

    PubMed

    Freeman, F E; Haugh, M G; McNamara, L M

    2016-04-01

    Recent in vitro tissue engineering approaches have shown that chondrogenic priming of human bone marrow mesenchymal stem cells (MSCs) can have a positive effect on osteogenesis in vivo. However, whether chondrogenic priming is an effective in vitro bone regeneration strategy is not yet known. In particular, the appropriate timing for chondrogenic priming in vitro is unknown albeit that in vivo cartilage formation persists for a specific period before bone formation. The objective of this study is to determine the optimum time for chondrogenic priming of MSCs to enhance osteogenic differentiation by MSCs in vitro. Pellets derived from murine and human MSCs were cultured in six different media groups: two control groups (chondrogenic and osteogenic) and four chondrogenic priming groups (10, 14, 21 and 28 days priming). Biochemical analyses (Hoechst, sulfate glycosaminoglycan (sGAG), Alkaline Phosphate (ALP), calcium), histology (Alcian Blue, Alizarin Red) and immunohistochemistry (collagen types I, II and X) were performed on the samples at specific times. Our results show that after 49 days the highest amount of sGAG production occurred in MSCs chondrogenically primed for 21 days and 28 days. Moreover we found that chondrogenic priming of MSCs in vitro for specific amounts of time (14 days, 21 days) can have optimum influence on their mineralization capacity and can produce a construct that is mineralized throughout the core. Determining the optimum time for chondrogenic priming to enhance osteogenic differentiation in vitro provides information that might lead to a novel regenerative treatment for large bone defects, as well as addressing the major limitation of core degradation and construct failure. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Osteograft, plastic material for regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidman, A. M., E-mail: AZaydman@niito.ru; Korel, A. V., E-mail: AKorel@niito.ru; Shchelkunova, E. I., E-mail: EShelkunova@niito.ru

    Creating tissue-engineering constructs based on the mechanism of cartilage-bone evolution is promising for traumatology and orthopedics. Such a graft was obtained from a chondrograft by transdifferentiation. The hondrograft placed in osteogenic medium is undergoing osteogenic differentiation for 14–30 days. Tissue specificity of the osteograft was studied by morphology, immunohistochemistry, electron microscopy, and the expression of the corresponding genes was estimated. The expression of osteonectin, fibronectin, collagen of type I, izolektin and CD 44 is determined. Alkaline phosphatase and matrix vesicles are determined in osteoblasts. Calcificates are observed in the matrix. Chondrogenic proteins expression is absent. These findings evidence the tissuemore » specificity of the developed osteograft.« less

  15. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  16. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  17. Association between absolute tumor burden and serum bone-specific alkaline phosphatase in canine appendicular osteosarcoma.

    PubMed

    Sternberg, R A; Pondenis, H C; Yang, X; Mitchell, M A; O'Brien, R T; Garrett, L D; Helferich, W G; Hoffmann, W E; Fan, T M

    2013-01-01

    In dogs with appendicular osteosarcoma (OSA), increased pretreatment serum bone-specific alkaline phosphatase (BALP) activity is a negative prognostic factor, associated with shorter disease-free intervals and survival times, but a biologic basis for observed differential serum BALP activities in canine OSA patients remains incompletely defined. Serum BALP activity will correlate with absolute tumor burden in dogs with OSA. This study included 96 client-owned dogs with appendicular OSA. In canine OSA cell lines, the expression and membranous release of BALP was evaluated in vitro. The correlation between serum BALP activity and radiographic primary tumor size was evaluated in OSA-bearing dogs. In dogs developing visceral OSA metastases, serial changes in serum BALP activities were evaluated in relation to progression of macroscopic metastases, and visceral metastatic OSA cells were evaluated for BALP expression. In vitro, BALP expression was not associated with either tumorigenic or metastatic phenotype, rather the quantity of membranous BALP released was proportional with cell density. In dogs devoid of macroscopic metastases, there was a positive correlation between serum BALP activity and absolute primary tumor size. In dogs with progressive OSA metastases, serum BALP activity increased and coincided with the development of macroscopic metastases. OSA cells derived from visceral metastatic lesions retained BALP expression. Tumor burden is a determinant of serum BALP activity in dogs with appendicular OSA. The association between increased pretreatment BALP activity and negative clinical prognosis may simply be attributed to greater initial tumor burden, and consequently more advanced tumor stage. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  18. Factors associated with bone turnover and speed of sound in early and late-pubertal females.

    PubMed

    Klentrou, Panagiota; Ludwa, Izabella A; Falk, Bareket

    2011-10-01

    This cross-sectional study examines whether maturity, body composition, physical activity, dietary intake, and hormonal concentrations are related to markers of bone turnover and tibial speed of sound (tSOS) in premenarcheal (n = 20, 10.1 ± 1.1 years) and postmenarcheal girls (n = 28, aged 15.0 ± 1.4 years). Somatic maturity was evaluated using years from age of peak height velocity (aPHV). Daily dietary intake was assessed with a 24-h recall interview, and moderate to very vigorous physical activity (MVPA) was measured using accelerometry. Plasma levels of 25-OH vitamin D, serum levels of insulin-like growth-factor 1 (IGF-1) and leptin, and serum levels of bone turnover markers including osteocalcin (OC), bone-specific alkaline phosphatase (BAP) and cross-linked N-teleopeptide of type I collagen (NTX) were measured using ELISA. OC, BAP, and NTX were significantly higher while IGF-1 and tSOS were lower in the premenarcheal group. The premenarcheal girls were more active and had higher daily energy intake relative to their body mass but there were no group differences in body mass index percentile. Maturity predicted 40%-57% of the variance in bone turnover markers. Additionally, daily energy intake was a significant predictor of OC, especially in the postmenarcheal group. IGF-1 and MVPA were significant predictors of BAP in the group as a whole. However, examined separately, IGF-1 was a predictor of BAP in the premenarcheal group while MVPA was a predictor in the postmenarcheal group. Adiposity and leptin were both negative predictors of tSOS, with leptin being specifically predictive in the postmenarcheal group. In conclusion, while maturity was the strongest predictor of bone markers and tSOS, dietary intake, physical activity, body composition, and hormonal factors further contribute to the variance in bone turnover and bone SOS in young Caucasian females. Further, the predicting factors of bone turnover and tSOS were different within each maturity group.

  19. WIse-2005: Combined Aerobic and Resistive Exercise May Help Mitigate Bone Loss During 60-D Simulated Microgravity in Women

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Heer, M. A.; Lee, S. M. C.; Macias, B. R.; Schneider, S. M.; Trappe, S. M.; Hargens, A. R.

    2006-01-01

    Exercise can attenuate bone loss associated with disuse during bed rest (BR), an analog of space flight. Previous studies have examined the efficacy of aerobic or resistive exercise countermeasures, but not in combination. We sought to determine the effect of a combined resistive and aerobic exercise regimen on bone metabolism during BR. After a 20-d ambulatory adaptation to confinement and diet, 16 women participated in a 60-d head-down-tilt BR. Control subjects (CN, n=8) performed no countermeasures. Exercise subjects, (EX, n=8) participated in exercise alternating daily between supine treadmill exercise within lower body negative pressure and resistive fly-wheel exercise (6-d wk(sup -1)). In the last week of BR, bone resorption was greater (p less than 79 plus or minus 44%, mean plus or minus SD) and EX groups (64 50%). N-telopeptide also increased (CN: 51 plus or minus 34%; EX: 43 plus or minus 56%). However, bone-specific alkaline phosphatase, a bone formation marker, tended to be higher in EX (26 plus or minus 18%) than in CN (8 plus or minus 33%) groups. The combination of resistive and aerobic exercise does not prevent bone resorption, but may promote formation, potentially mitigating the net bone loss associated with simulated microgravity. This study was supported by CNES, CSA, ESA, NASA, and NASA grant NNJ04HF71G to ARH. MEDES (French Institute for Space Medicine and Physiology) organized the study.

  20. Reduced bone resorption by intake of dietary vitamin D and K from tailor-made Atlantic salmon: A randomized intervention trial.

    PubMed

    Graff, Ingvild Eide; Øyen, Jannike; Kjellevold, Marian; Frøyland, Livar; Gjesdal, Clara Gram; Almås, Bjørg; Rosenlund, Grethe; Lie, Øyvind

    2016-10-25

    Suboptimal vitamin D status is common among humans, and might increase bone resorption with subsequent negative effects on bone health. Fatty fish, including Atlantic salmon, is an important dietary vitamin D source. However, due to a considerable change in fish feed composition, the contribution of vitamin D from salmon fillet has been reduced. The main objective was to investigate if intake of vitamin D3 enriched salmon or vitamin D3 tablets decreased bone biomarkers (urinary N-telopeptides, deoxypyridinoline, serum bone-specific alkaline phosphatase, and osteocalcin) compared to a low vitamin D3 intake. The 122 healthy postmenopausal women included in this 12 weeks intervention trial were randomized into four groups: three salmon groups (150 grams/two times/week) and one tablet group (800 IU vitamin D and 1000 mg calcium/day). The salmon groups also received calcium supplements. The salmon had three different vitamin D3/vitamin K1 combinations: high D3+high K1, low D3+high K1, or high D3+low K1. Increased intake of salmon containing high levels of vitamin D3 (0.35-0.38 mg/kg/fillet) and supplements with the same weekly contribution had a positive influence on bone health as measured by bone biomarkers in postmenopausal women. Consequently, an increased level of vitamin D3 at least to original level in feed for salmonids will contribute to an improved vitamin D3 status and may improve human bone health.

  1. Vitamin D receptor genotypes are not associated with rheumatoid arthritis or biochemical parameters of bone turnover in German RA patients.

    PubMed

    Goertz, B; Fassbender, W J; Williams, J C; Marzeion, A M; Bretzel, R G; Stracke, H; Berliner, M N

    2003-01-01

    Vitamin D is known to exert immunomodulatory effects. An overrepresentation of the b allele of the vitamin D receptor (VDR) has been detected in autoimmune diseases as type-1-diabetes and multiple sclerosis. VDR polymorphisms have been shown to influence bone metabolism and bone density. The aim of the present study was to examine the distribution of VDR alleles in German rheumatoid arthritis (RA) patients and their relation to bone turnover parameters. 62 German RA patients were included and compared to 40 controls. Three VDR alleles were examined (Bsm I, Taq I and Fok I). In addition, serum intact osteocalcin (OC), parathyroid hormone, bone specific alkaline phosphatase (B-ALP), the carboxyterminal extension peptide of type I procollagen, 25-OH-vitamin D and urinary deoxypyridinoline (DPD) excretion were measured. Furthermore, C-reactive protein, erythrocyte sedimentation rate and rheumatoid factor were measured. We found a slightly higher frequency of the bB and tT-genotype in RA patients compared to controls, which was not statistically significant. OC and B-ALP were found to be significantly higher in RA patients with positive correlations between bone formation and resorption parameters indicating higher bone turnover in RA patients with maintained coupling. CRP in RA patients correlated with DPD and inversely with PTH. VDR genotype showed no association with bone turnover, family history or the presence of rheumatoid factor. Our results suggest that VDR polymorphisms do not play a major role in RA predisposition in Germans.

  2. Disruption of c-Kit Signaling in Kit(W-sh/W-sh) Growing Mice Increases Bone Turnover.

    PubMed

    Lotinun, Sutada; Krishnamra, Nateetip

    2016-08-16

    c-Kit tyrosine kinase receptor has been identified as a regulator of bone homeostasis. The c-Kit loss-of-function mutations in WBB6F1/J-Kit(W/W-v) mice result in low bone mass. However, these mice are sterile and it is unclear whether the observed skeletal phenotype is secondary to a sex hormone deficiency. In contrast, C57BL/6J-Kit(W-sh)/(W-sh) (W(sh)/W(sh)) mice, which carry an inversion mutation affecting the transcriptional regulatory elements of the c-Kit gene, are fertile. Here, we showed that W(sh)/W(sh) mice exhibited osteopenia with elevated bone resorption and bone formation at 6- and 9-week-old. The c-Kit W(sh) mutation increased osteoclast differentiation, the number of committed osteoprogenitors, alkaline phosphatase activity and mineralization. c-Kit was expressed in both osteoclasts and osteoblasts, and c-Kit expression was decreased in W(sh)/W(sh)osteoclasts, but not osteoblasts, suggesting an indirect effect of c-Kit on bone formation. Furthermore, the osteoclast-derived coupling factor Wnt10b mRNA was increased in W(sh)/W(sh) osteoclasts. Conditioned medium from W(sh)/W(sh) osteoclasts had elevated Wnt10b protein levels and induced increased alkaline phosphatase activity and mineralization in osteoblast cultures. Antagonizing Wnt10b signaling with DKK1 or Wnt10b antibody inhibited these effects. Our data suggest that c-Kit negatively regulates bone turnover, and disrupted c-Kit signaling couples increased bone resorption with bone formation through osteoclast-derived Wnt 10 b.

  3. Second hand tobacco smoke adversely affects the bone of immature rats

    PubMed Central

    Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; de Santiago, Hildemberg Agostinho Rocha; Volpon, José Batista

    2017-01-01

    OBJECTIVES: To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. METHODS: Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). RESULTS: Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). CONCLUSION: Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure. PMID:29319726

  4. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells.

    PubMed

    Subia, Bano; Dey, Tuli; Sharma, Shaily; Kundu, Subhas C

    2015-02-04

    To avoid the indiscriminating action of anticancer drugs, the cancer cell specific targeting of drug molecule becomes a preferred choice for the treatment. The successful screening of the drug molecules in 2D culture system requires further validation. The failure of target specific drug in animal model raises the issue of creating a platform in between the in vitro (2D) and in vivo animal testing. The metastatic breast cancer cells migrate and settle at different sites such as bone tissue. This work evaluates the in vitro 3D model of the breast cancer and bone cells to understand the cellular interactions in the presence of a targeted anticancer drug delivery system. The silk fibroin based cytocompatible 3D scaffold is used as in vitro 3D distribution model. Human breast adenocarcinoma and osteoblast like cells are cocultured to evaluate the efficiency of doxorubicin loaded folic acid conjugated silk fibroin nanoparticle as drug delivery system. Decreasing population of the cancer cells, which lower the levels of vascular endothelial growth factors, glucose consumption, and lactate production are observed in the drug treated coculture constructs. The drug treated constructs do not show any major impact on bone mineralization. The diminished expression of osteogenic markers such as osteocalcein and alkaline phosphatase are recorded. The result indicates that this type of silk based 3D in vitro coculture model may be utilized as a bridge between the traditional 2D and animal model system to evaluate the new drug molecule (s) or to reassay the known drug molecules or to develop target specific drug in cancer research.

  5. Structural Characterization of Sm(III)(EDTMP).

    PubMed

    Yang, Y; Pushie, M J; Cooper, D M L; Doschak, M R

    2015-11-02

    Samarium-153 ethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid) ((153)Sm-EDTMP, or samarium lexidronam), also known by its registered trademark name Quadramet, is an approved therapeutic radiopharmaceutical used in the palliative treatment of painful bone metastases. Typically, patients with prostate, breast, or lung cancer are most likely to go on to require bone pain palliation treatment due to bone metastases. Sm(EDTMP) is a bone-seeking drug which accumulates on rapidly growing bone, thereby delivering a highly region-specific dose of radiation, chiefly through β particle emission. Even with its widespread clinical use, the structure of Sm(EDTMP) has not yet been characterized at atomic resolution, despite attempts to crystallize the complex. Herein, we prepared a 1:1 complex of the cold (stable isotope) of Sm(EDTMP) under alkaline conditions and then isolated and characterized the complex using conventional spectroscopic techniques, as well as with extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional structure calculations, using natural abundance Sm. We present the atomic resolution structure of [Sm(III)(EDTMP)-8H](5-) for the first time, supported by the EXAFS data and complementary spectroscopic techniques, which demonstrate that the samarium coordination environment in solution is in agreement with the structure that has long been conjectured.

  6. Biochemical Assessment of Bone Health in Working Obese Egyptian Females with Metabolic Syndrome; the Effect of Weight Loss by Natural Dietary Therapies

    PubMed Central

    Moaty, Maha I. A.; Fouad, Suzanne; Shebini, Salwa M. El; Kazem, Yusr I.; Tapozada, Salwa T.

    2015-01-01

    AIM: To investigate the relation between bone parameters and the metabolic syndrome criteria, before and after the administration of two different natural dietary supplements in middle aged working obese Egyptian women suffering from metabolic syndrome (MetS). SUBJECTS AND METHODS: Fifty eight middle aged obese female volunteers suffering from metabolic syndrome were divided into two groups. During the first period, group (A) consumed a low caloric diet and nutritional supplement consisting of doum flour biscuits, while group (B) consumed whole meal wheat flour biscuit with the same instructions. During the second period, both supplements were omitted. Assessment of blood pressure, relevant anthropometric parameters, lipid accumulation product, fasting blood glucose, uric acid, 25 hydroxy vitamin D (25 (OH) D), parathyroid hormone (PTH) and bone-specific alkaline phosphatase were performed. RESULTS: Data showed that although both supplements improved the MetS criteria and the bone health parameters, the supplement containing the doum flour proved to be more effective. CONCLUSION: These results confirm the benefit of doum in improving bone health parameter [25 (OH) D/PTH axis] in the MetS patients, beside the MetS criteria. So, we can conclude that natural effective supplements lead towards the optimization of biochemical parameters in favor of a healthy outcome. PMID:27275291

  7. Effects of omega-3 fatty acids on bone turnover markers in postmenopausal women: systematic review and meta-analysis.

    PubMed

    Shen, D; Zhang, X; Li, Z; Bai, H; Chen, L

    2017-12-01

    There is conflicting evidence regarding the effects of omega-3 fatty acids on bone turnover markers in postmenopausal women. Thus, we systematically reviewed the efficacy of omega-3 fatty acids by conducting a meta-analysis of available randomized controlled trials. PubMed, Embase, Cochrane Library and Scopus were searched in December 2016. The standardized mean difference (SMD) or weighted mean difference (WMD) and the corresponding 95% confidence intervals (CIs) were calculated using a fixed-effects model. Eight trials were included in the present meta-analysis. The pooled findings did not identify significant decreases in bone-specific alkaline phosphatase (SMD -0.08, 95% CI -0.29 to 0.12, p = 0.429) and collagen type I cross-linked C-telopeptide (WMD 0 ng/ml, 95% CI -0.04 to 0.04, p = 0.899). There was a significant decrease in osteocalcin (WMD -0.86 ng/ml, 95% CI -1.68 to -0.04, p = 0.040) as compared with control. Omega-3 fatty acids reduced postmenopausal women's serum osteocalcin. Further well-designed studies are needed to verify the effects of omega-3 fatty acids on bone mass density and other bone turnover markers in postmenopausal women. CRD42016053219 ( https://www.crd.york.ac.uk/PROSPERO/ ).

  8. Protective effect of egg yolk peptide on bone metabolism.

    PubMed

    Kim, Hye Kyung; Lee, Sena; Leem, Kang-Hyun

    2011-03-01

    Osteoporosis is a major health problem worldwide, and most current therapy used in osteoporosis treatment acts by either increasing bone formation or decreasing bone resorption. However, the adverse effects of these therapies may preclude their long-term use. We examined the effects of egg yolk water-soluble peptide (YPEP) on bone metabolism as an alternative to current therapeutic agents in ovariectomized (OVX) rats. In the first step, the in vitro effects of YPEP on bone loss were determined. The proliferation, collagen content, and alkaline phosphatase activity of preosteoblastic MC3T3-E1 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of YPEP on bone tissue. Three-month-old female Sprague-Dawley rats were either sham operated or ovariectomized and fed commercial chow diet or 0.1% YPEP-supplemented diet for 3 month. YPEP increased preosteoblastic MC3T3-E1 cell proliferation and alkaline phosphatase activity in a dose-dependent manner. Collagen content was also increased by YPEP treatment. Furthermore, YPEP potently suppressed osteoclastogenesis from bone marrow-derived precursor cells. YPEP (100 μg/mL) abolished the formation of osteoclasts positive for tartrate-resistant acid phosphatase. OVX rats supplemented with YPEP showed an osteoprotective effect, as the bone mineral density and cortical thickness in the tibia were increased compared with the OVX controls. Moreover, histological data indicate that YPEP prevented the cancellous bone loss induced by ovariectomy. None of these protective effects were observed in casein-treated rats. The present study suggests that YPEP is a promising alternative to current therapeutic agents for the management of osteoporosis.

  9. Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

    PubMed Central

    Lin, Cheng-Yung; Hsu, Jenn-Chung; Wan, Tien-Chun

    2012-01-01

    An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05) lower in capons after 12 wks of age (caponized treatment after 4 wks) than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05) higher in intact males, while capons had higher (p<0.05) plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05) with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. PMID:25049655

  10. Effects of an oral contraceptive (norgestimate/ethinyl estradiol) on bone mineral density in women with hypothalamic amenorrhea and osteopenia: an open-label extension of a double-blind, placebo-controlled study.

    PubMed

    Warren, Michelle P; Miller, K K; Olson, W H; Grinspoon, S K; Friedman, A J

    2005-09-01

    The effects of long-term triphasic oral contraceptive administration on bone mineral density (BMD) were investigated in premenopausal women with hypothalamic amenorrhea (HA) and osteopenia. After completing three 28-day cycles in the double-blind phase of a placebo-controlled trial, women (mean age, 26.7 years) who received norgestimate 180-250 microg/ethinyl estradiol 35 microg (NGM/EE, n = 15) or placebo (n = 12) in the double-blind phase were to receive open-label NGM/EE for 10 additional cycles. For subjects completing > or =10 NGM/EE treatment cycles, mean posteroanterior total lumbar spine BMD (L1-L4) increased from 0.881+/-0.0624 g/cm2 at baseline (last visit prior to NGM/EE) to 0.894+/-0.0654 g/cm2 at final visit (p = .043); no significant changes in hip BMD occurred. Decreases in N-telopeptide, osteocalcin, procollagen type I propeptide and bone-specific alkaline phosphatase levels indicated effects on bone metabolism. Long-term administration of triphasic NGM/EE to osteopenic women with HA may increase total lumbar spine BMD.

  11. Black rice (Oryza sativa L.) extracts induce osteoblast differentiation and protect against bone loss in ovariectomized rats.

    PubMed

    Jang, Woo-Seok; Seo, Cho-Rong; Jang, Hwan Hee; Song, No-Joon; Kim, Jong-Keun; Ahn, Jee-Yin; Han, Jaejoon; Seo, Woo Duck; Lee, Young Min; Park, Kye Won

    2015-01-01

    Osteoporosis, an age associated skeletal disease, exhibits increased adipogenesis at the expense of osteogenesis from common osteoporotic bone marrow cells. In this study, black rice (Oryza sativa L.) extracts (BRE) were identified as osteogenic inducers. BRE stimulated the alkaline phosphatase (ALP) activity in both C3H10T1/2 and primary bone marrow cells. Similarly, BRE increased mRNA expression of ALP and osterix. Oral administration of BRE in OVX rats prevented decreases in bone density and strength. By contrast, BRE inhibited adipocyte differentiation of mesenchymal C3H10T1/2 cells and prevented increases in body weight and fat mass in high fat diet fed obese mice, further suggesting the dual effects of BRE on anti-adipogenesis and pro-osteogenesis. UPLC analysis identified cyanidin-3-O-glucoside and peonidin-3-O-glucoside as main anti-adipogenic effectors but not for pro-osteogenic induction. In mechanism studies, BRE selectively stimulated Wnt-driven luciferase activities. BRE treatment also induced Wnt-specific target genes such as Axin2, WISP2, and Cyclin D1. Taken together, these data suggest that BRE is a potentially useful ingredient to protect against age related osteoporosis and diet induced obesity.

  12. Estrogenic Activity Including Bone Enhancement and Effect on Lipid Profile of Luteolin-7-O-glucoside Isolated from Trifolium alexandrinum L. in Ovariectomized Rats.

    PubMed

    Ammar, N M; El-Hawary, S S; Mohamed, D A; El-Halawany, A M; El-Anssary, A A; El-Kassem, L T Abou; Hussein, R A; Jaleel, G A Abdel; El-Dosoky, A H

    2016-05-01

    Luteolin-7-O-glycoside (LG), an abundant component in many edible plants, was found to be one of the major constituents of the aqueous methanol extract of Trifolium alexandrinum L. family Fabaceae, a fodder plant widely cultivated in Egypt. The estrogenic activity of LG concerning the effect on uterotrophy, lipid profile, weight gain and bone enhancement activity was determined in ovariectomized rat model at a dose of 5 mg/kg. Luteolin-7-O-glycoside showed significant estrogenic effect through the preservation of normal uterine weight and plasma estradiol level. It also significantly inhibited the bone turnover markers plasma bone-specific alkaline phosphatase, plasma osteocalsin, type I procollagen N-terminal, and C-telopeptide of type II collagen levels. It induced a significant improvement in plasma lipid profile. The effect of LG was comparable with estradiol with lower effect on uterine weight. Liver and kidney functions revealed a wide safety of LG at this dose level. The present study revealed that LG may be a promising hormone replacement therapy after being examined thoroughly on human. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Potassium bicarbonate supplementation lowers bone turnover and calcium excretion in older men and women a randomized dose-finding trial

    USDA-ARS?s Scientific Manuscript database

    The acid load accompanying modern diets may have adverse effects on bone and muscle metabolism. Treatment with alkaline salts of potassium can neutralize the acid load, but the optimal amount of alkali is not established. Our objective was to determine the effectiveness of two doses of potassium bic...

  14. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  15. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model.

    PubMed

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo . The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  16. Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface.

    PubMed

    Samavedi, Satyavrata; Guelcher, Scott A; Goldstein, Aaron S; Whittington, Abby R

    2012-11-01

    Biomaterial scaffolds with gradients in architecture, mechanical and chemical properties have the potential to improve the osseointegration of ligament grafts by recapitulating phenotypic gradients that exist at the natural ligament-bone (L-B) interface. Towards the larger goal of regenerating the L-B interface, this in vitro study was performed to investigate the potential of two scaffolds with mineral gradients in promoting a spatial gradient of osteoblastic differentiation. Specifically, the first graded scaffold was fabricated by co-electrospinning two polymer solutions (one doped with nano-hydroxyapatite particles) from offset spinnerets, while the second was created by immersing the first scaffold in a 5 × simulated body fluid. Rat bone marrow stromal cells, cultured in the presence of osteogenic supplements, were found to be metabolically active on all regions of both scaffolds after 1 and 7 days of culture. Gene expression of bone morphogenic protein-2 and osteopontin was elevated on mineral-containing regions as compared to regions without mineral, while the expression of alkaline phosphatase mRNA revealed the opposite trend. Finally, the presence of osteopontin and bone sialoprotein confirmed osteoblastic phenotypic maturation by day 28. This study indicates that co-electrospun scaffolds with gradients in mineral content can guide the formation of phenotypic gradients and may thus promote the regeneration of the L-B interface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells.

    PubMed

    Hong, Seok-Jung; Jeong, Ishik; Noh, Kyung-Tae; Yu, Hye-Sun; Lee, Gil-Su; Kim, Hae-Won

    2009-09-01

    The development of bioactive scaffolds with a designed pore configuration is of particular importance in bone tissue engineering. In this study, bone scaffolds with a controlled pore structure and a bioactive composition were produced using a robotic dispensing technique. A poly(epsilon-caprolactone) (PCL) and hydroxyapatite (HA) composite solution (PCL/HA = 1) was constructed into a 3-dimensional (3D) porous scaffold by fiber deposition and layer-by-layer assembly using a computer-aided robocasting machine. The in vitro tissue cell compatibility was examined using rat bone marrow stromal cells (rBMSCs). The adhesion and growth of cells onto the robotic dispensed scaffolds were observed to be limited by applying the conventional cell seeding technique. However, the initially adhered cells were viable on the scaffold surface. The alkaline phosphatase activity of the cells was significantly higher on the HA-PCL than on the PCL and control culture dish, suggesting that the robotic dispensed HA-PCL scaffold should stimulate the osteogenic differentiation of rBMSCs. Moreover, the expression of a series of bone-associated genes, including alkaline phosphatase and collagen type I, was highly up-regulated on the HA-PCL scaffold as compared to that on the pure PCL scaffold. Overall, the robotic dispensed HA-PCL is considered to find potential use as a bioactive 3D scaffold for bone tissue engineering.

  18. Alginate Bead-Encapsulated PEDF Induces Ectopic Bone Formation In Vivo in the Absence of Co-Administered Mesenchymal Stem Cells.

    PubMed

    Elahy, Mina; Doschak, Michael R; Hughes, Jeffery D; Baindur-Hudson, Swati; Dass, Crispin R

    2018-01-01

    Bone defects can be severely debilitating and reduce quality of life. Osteoregeneration can alleviate some of the complications in bony defects. For therapeutic use in future, a single factor that can cause potent bone regeneration is highly preferred as it will be more costeffective, any off-target effects will be more easily monitored and potentially managed, and for ease of administration which would lead to better patient compliance and satisfaction. We demonstrate that pigment epithelium-derived factor (PEDF), one such factor that is known to be potent against angiogenesis, promotes osteoblastogenesis in mesenchymal stem cells in vitro, but does not need co-encapsulation of cells in alginate bead scaffolds for osteogeneration in vivo. Osteogenic differentiation by PEDF in vitro was confirmed with immunoblotting and immunocytochemical staining for bone markers (alkaline phosphatase, osteocalcin, osteopontin, collagen I), calcified mineral deposition, and assay for alkaline phosphatase activity. PEDF-mediated bone formation in a muscle pocket in vivo model was confirmed by microcomputed tomography (microCT), histology (haematoxylin and eosin, Alcian blue staining), immunostaining for bone markers and for collagen I-processing proteins (heat shock protein 47 and membrane type I matrix metalloproteinase). PEDF therefore presents itself as a promising biological for osteogeneration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. The Effects of Tissue-Nonspecific Alkaline Phosphatase Gene Therapy on Craniosynostosis and Craniofacial Morphology in the FGFR2C342Y/+ Mouse Model of Crouzon Craniosynostosis

    PubMed Central

    Wang, E; Nam, HK; Liu, J; Hatch, NE

    2015-01-01

    Objectives Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-nonspecific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Material & Methods Neonatal Crouzon (FGFRC342Y/+) and wild type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at four weeks post-natal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology was assessed by micro-computed tomography. Results Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphologic analysis revealed craniofacial form differences for inferior surface (p=.023) and cranial height (p=.014) regions between TNAP lentivirus injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=.068). Conclusion These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. PMID:25865549

  20. The Relevance of Osteoclastic and Osteoblastic Activity Markers Follow-Up in Patients on Antiresorptive Osteoporosis Treatment.

    PubMed

    Smilic, Tanja N; Novakovic, Tatjana R; Markovic-Jovanovic, Snezana R; Smilic, Ljiljana L J; Mitic, Javorka S; Radunovic, Miodrag L

    2017-11-02

    In general, markers of bone formation and markers of bone resorption are changing synergistically, so the monitoring of any osteoclastic and any osteoblastic marker should reflect the rate of bone transformation. The aim of the study is to monitor the bone metabolism markers in postmenopausal women with osteoporosis and osteopenia along with the variations caused by the effects of bisphosphonate therapy. The study involved 55 women of average age of 57.95 years, with osteopenia or osteoporosis. The patients with osteoporosis were treated with bisphosphonates (75 mg once a week); the laboratory tests were performed before the treatment and 6 months later. Patients with osteopenia were evaluated at the first assessment and 6 months later. The tests included bone densitometry, dual-energy X-ray absorptiometry, osteocalcin, alkaline phosphatase, collagen 1 N-terminal pro-peptide (P1NP), and beta C telopeptide of type I collagen (CTX). The mean T-score was -2.80 ± 0.63 before therapy and -2.64 ± 0.45 6 months later (p < 0.001). Women with osteoporosis had elevated levels of osteocalcin and P1NP at the first assessment, whereas the alkaline phosphatase level did not change with the treatment. After the introduction of antiresorptive therapy, the levels of osteocalcin and P1NP significantly decreased (p < 0.001). In the group with osteopenia, the biochemical markers activity were increased in both assessments. In patients with osteoporosis, Beta-CTX was increased in the first evaluation, and decreased after treatment (p = 0.001). The results indicate that the assessment of biochemical markers of bone metabolism show excellent results in the assessment of prognosis, monitoring the course and the response to various treatment regimens of osteoporosis and evince strong correlation with standard densitometry and dual-energy X-ray absorptiometry procedures. P1NP and CTX show better diagnostic applicability compared with osteocalcin and alkaline phosphatase. The analysis of the activity of biochemical markers may obtain early information on the therapeutic response, before definitive assessment by bone density measurements. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  1. The effect of different amounts of calcium intake on bone metabolism and arterial calcification in ovariectomized rats.

    PubMed

    Agata, Umon; Park, Jong-Hoon; Hattori, Satoshi; Iimura, Yuki; Ezawa, Ikuko; Akimoto, Takayuki; Omi, Naomi

    2013-01-01

    Low calcium (Ca) intake is the one of risk factors for both bone loss and medial elastocalcinosis in an estrogen deficiency state. To examine the effect of different amounts of Ca intake on the relationship between bone mass alteration and medial elastocalcinosis, 6-wk-old female SD rats were randomized into ovariectomized (OVX) control or OVX treated with vitamin D(3) plus nicotine injection (VDN) groups. The OVX treated with VDN group was then divided into 5 groups depending on the different Ca content in their diet, 0.01%, 0.1%, 0.6%, 1.2%, and 2.4% Ca intakes. After 8 wk of experimentation, the low Ca intake groups of 0.01% and 0.1% showed a low bone mineral density (BMD) and bone properties significantly different from those of the other groups, whereas the high Ca intake groups of 1.2% and 2.4% showed no difference compared with the OVX control. Only in the 0.01% Ca intake group, a significantly higher Ca content in the thoracic artery was found compared with that of the OVX control. Arterial tissues of the 0.01% Ca intake group showed an increase of bone-specific alkaline phosphatase (BAP) activity, a marker of bone mineralization, associated with arterial Ca content. However, the high Ca intake did not affect arterial Ca content nor arterial BAP activity. These results suggested that a low Ca intake during periods of rapid bone loss caused by estrogen deficiency might be one possible cause for the complication of both bone loss and medial elastocalcinosis.

  2. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties.

    PubMed

    Changotade, S Igondjo Tchen; Korb, G; Bassil, J; Barroukh, B; Willig, C; Colliec-Jouault, S; Durand, P; Godeau, G; Senni, K

    2008-12-01

    In this work, we first tested the influence of low-molecular-weight (LMW) fucoidan extracted from pheophicae cell wall on bidimensional cultured normal human osteoblasts' behaviors. Second, by impregnation procedure with LMW fucoidan of bone biomaterial (Lubboc), we explored in this bone extracellular matrix context its capabilities to support human osteoblastic behavior in 3D culture. In bidimensionnal cultures, we evidenced that LMW fucoidan promotes human osteoblast proliferation and collagen type I expression and favors precocious alkaline phosphatase activity. Furthermore, with LMW fucoidan, von Kossa's staining was positive at 30 days and positive only at 45 days in the absence of LMW fucoidan. In our three-dimensional culture models with the biomaterial pretreated with LMW fucoidan, osteoblasts promptly overgrew the pretreated biomaterial. We also evidenced that osteoblasts increased proliferation with pretreated biomaterial when compared with untreated biomaterial. Osteoblasts secreted osteocalcin and expressed BMP2 receptor on control material as well as with LMW fucoidan impregnated biomaterial. In conclusion, in our experimental conditions, LMW fucoidan stimulated expression of osteoblastic markers differentiation such as alkaline phosphatase activity, collagen type I expression, and mineral deposition; furthermore, cell proliferation was favored. These findings suggest that fucoidan could be clinically useful for bone regeneration and bone substitute design. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  3. BIOCHEMICAL ANALYSIS AND BONE REMODELING IN RESPONSE TO OOPHORECTOMY AND AQUATIC TRAINING

    PubMed Central

    SOUZA, HELENA RIBEIRO; GIROL, ANA PAULA; SCHIAVETO, ADRIANA PAULA SANCHEZ; GEROMEL, MAIRTO ROBERIS; IYOMASA, MELINA MIZUSAKI; ARRUDA, MAURÍCIO FERRAZ DE

    2016-01-01

    ABSTRACT Objective: To investigate whether swimming could prevent bone loss and could be indicated to assist in treatment of osteoporosis. Methods: Female rats were divided into 4 groups (n=6), two of them were oophorectomized. Animals from two groups, one oophorectomized and another not oophorectomized, underwent aquatic training for eight weeks. After training, the animals were sacrificed and their blood was collected for calcium and alkaline phosphatase serum dosage; the femur was removed and subjected to radiological and histological densitometry analysis to assess bone loss and osteoclast counting on femoral head and neck. Results: Increase in serum calcium was not observed. There was an increasing activity of alkaline phosphatase in the oophorectomized groups. The radiographs suggest that there was a greater bone mass density in the trained groups. Concerning histology, the trained groups had better tissue structural organization than the sedentary groups. In the oophorectomized and sedentary group, higher presence of osteoclasts was observed a. Conclusion: Exercise and oophorectomy did not promote changes in serum calcium levels. The decrease of sex steroids caused by oophorectomy was responsible for severe bone loss, but swimming exercise was able to reduce this loss. Oophorectomy promoted the proliferation of osteoclasts and the exercise proved to be able to diminish it. Level of Evidence I, Experimental Study. PMID:28149187

  4. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women.

    PubMed

    Arjmandi, Bahram H; Lucas, Edralin A; Khalil, Dania A; Devareddy, Latha; Smith, Brenda J; McDonald, Jennifer; Arquitt, Andrea B; Payton, Mark E; Mason, Claudia

    2005-02-23

    Although soy protein and its isoflavones have been reported to reduce the risk of osteoporosis in peri- and post-menopausal women, most of these studies are of short duration (i.e. six months). The objective of this study was to examine if one year consumption of soy-containing foods (providing 25 g protein and 60 mg isoflavones) exerts beneficial effects on bone in postmenopausal women. Eighty-seven eligible postmenopausal women were randomly assigned to consume soy or control foods daily for one year. Bone mineral density (BMD) and bone mineral content (BMC) of the whole body, lumbar (L1-L4), and total hip were measured using dual energy x-ray absorptiometry at baseline and after one year. Blood and urine markers of bone metabolism were also assessed. Sixty-two subjects completed the one-year long study. Whole body and lumbar BMD and BMC were significantly decreased in both the soy and control groups. However, there were no significant changes in total hip BMD and BMC irrespective of treatment. Both treatments positively affected markers of bone formation as indicated by increased serum bone-specific alkaline phosphatase (BSAP) activity, insulin-like growth factor-I (IGF-I), and osteocalcin (BSAP: 27.8 and 25.8%, IGF-I: 12.8 and 26.3%, osteocalcin: 95.2 and 103.4% for control and soy groups, respectively). Neither of the protein supplements had any effect on urinary deoxypyridinoline excretion, a marker of bone resorption. Our findings suggest that although one year supplementation of 25 g protein per se positively modulated markers of bone formation, this amount of protein was unable to prevent lumbar and whole body bone loss in postmenopausal women.

  5. Influence of high-altitude grazing on bone metabolism of growing sheep.

    PubMed

    Liesegang, A; Hüttenmoser, D; Risteli, J; Leiber, F; Kreuzer, M; Wanner, M

    2013-02-01

    The objective of this study was to identify the effect of high alpine grazing, associated with varying pasture grass qualities and more pronounced exercise on typically steep slopes, on bone metabolism by improving bone density and enhancing bone turnover in growing sheep. Twenty-four 5-month-old sheep were randomly assigned to two groups. One group was kept at high altitude (HA; 2000-2200 m a.s.l.) for 3 months, and the other group (C; control) remained in the lowlands (400 m a.s.l.). Both groups were kept in grazing pastures with access to good-quality swards. Before the start of the experiment, blood samples were taken, the sheep were weighed, and the left metatarsus of each animal was analysed by quantitative computer tomography. After 1 month, blood samples were taken and body weight was measured, followed by biweekly sampling. Finally, the animals were slaughtered, and the bones were collected for analysis of various bone parameters. Body weight development did not differ between the groups. Concentrations of 25-OH-Vitamin D, carboxy-terminal telopeptide of type I collagen and activities of bone-specific alkaline phosphatase were always higher in the HA group than in the C group, except on the last two sampling dates. Bone mineral content and density increased in both groups during the experiment, but more intensively in the HA group. In addition, the cortical thickness of the HA group increased. The present study demonstrates an increase in bone turnover and mineral content of the bones of the growing sheep grazing in high alpine pastures. The factors associated with HA grazing, therefore, clearly seem to improve bone composition. © 2011 Blackwell Verlag GmbH.

  6. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface of the femoral head.

    PubMed

    Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo

    2016-12-01

    To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.

  7. A case of severe osteomalacia caused by Tubulointerstitial nephritis with Fanconi syndrome in asymptomotic primary biliary cirrhosis.

    PubMed

    Yamaguchi, Shintaro; Maruyama, Tatsuya; Wakino, Shu; Tokuyama, Hirobumi; Hashiguchi, Akinori; Tada, Shinichiro; Homma, Koichiro; Monkawa, Toshiaki; Thomas, James; Miyashita, Kazutoshi; Kurihara, Isao; Yoshida, Tadashi; Konishi, Konosuke; Hayashi, Koichi; Hayashi, Matsuhiko; Itoh, Hiroshi

    2015-11-11

    Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease, characterized by increased concentrations of serum IgM and the presence of circulating anti-mitochondrial antibodies. Although bone diseases such as osteoporosis or osteodystrophy are commonly associated with PBC, osteomalacia which is caused by abnormal vitamin D metabolism, mineralization defects, and phosphate deficiency has not been recognized as a complication of PBC. We report the case of a 49-year-old Japanese woman who complained of multiple fractures. Hypophosphatemic osteomalacia was diagnosed from a low serum phosphorus level, 1,25-dihydroxyvitamin D3 level, high levels of bone specific alkaline phosphatase and the findings of bone scintigraphy, although a bone biopsy was not performed. Twenty four hour urine demonstrated a low renal fractional tubular reabsorption of phosphate, increased fractional excretion of uric acid and generalized aminoaciduria. An intravenous bicarbonate loading test suggested the presence of proximal renal tubular acidosis (RTA). These biochemical data indicated Fanconi syndrome with proximal RTA. A kidney biopsy demonstrated the features of tubulointerstitial nephritis (TIN). The patient was also suspected as having primary biliary cirrhosis (PBC) because of high levels of alkaline phosphatase, IgM and the presence of anti-mitochondrial M2 antibody, though biochemical liver function was normal. Sequential liver biopsy was compatible with PBC and the diagnosis of PBC was definite. After administration of 1,25 dihydroxyvitamin D3, neutral potassium phosphate, sodium bicarbonate for osteomalacia and subsequent predonizolone for TIN, symptoms of fractures were relieved and renal function including Fanconi syndrome was ameliorated. In this case, asymptomatic PBC was shown to induce TIN with Fanconi syndrome with dysregulation of electrolytes and vitamin D metabolism, which in turn led to osteomalacia with multiple fractures. Osteomalacia has not been recognized as a result of the renal involvement of PBC. PBC and its rare complication of TIN with Fanconi syndrome should be considered in adult patients with unexplained osteomalacia even in the absence of liver dysfunction.

  8. What is the cause of benign transient hyperphosphatasemia? A study of 35 cases.

    PubMed

    Crofton, P M

    1988-02-01

    In a study of 35 children with benign transient hyperphosphatasemia, I found a marked seasonal clustering of cases after the summer months. Furthermore, plasma 25-hydroxyvitamin D concentrations were almost twice those of controls matched for age and time of year. Many children had evidence of weight loss and one had idiopathic hypercalcemia of infancy. Activities both of liver and bone isoenzymes of alkaline phosphatase (EC 3.1.3.1) in plasma were increased. The liver and (to a lesser extent) bone isoenzymes had enhanced electrophoretic mobility, and both showed increased binding to wheat-germ lectin by affinity electrophoresis. For the liver (and probably also the bone) isoenzyme, these changes were due to an increased content of sialic acid. A possible etiology for the condition is proposed involving (a) increased synthesis of alkaline phosphatase, mediated by vitamin D metabolites, and (b) decreased hepatic clearance caused by the high sialic acid content and exacerbated in some cases by the effects of some drugs on the liver.

  9. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

    PubMed

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J

    2011-12-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.

  10. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    PubMed Central

    Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.

    2011-01-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis. PMID:22009723

  11. Effects of seasonal vitamin D deficiency and respiratory acidosis on bone metabolism markers in submarine crewmembers during prolonged patrols.

    PubMed

    Holy, Xavier; Collombet, Jean-Marc; Labarthe, Frédéric; Granger-Veyron, Nicolas; Bégot, Laurent

    2012-02-01

    The aim of the study was to determine the seasonal influence of vitamin D status on bone metabolism in French submariners over a 2-mo patrol. Blood samples were collected as follows: prepatrol and patrol days 20, 41, and 58 on crewmembers from both a winter (WP; n = 20) and a summer patrol (SP; n = 20), respectively. Vitamin D status was evaluated for WP and SP. Moreover, extended parameters for acid-base balance (Pco(2), pH, and bicarbonate), bone metabolism (bone alkaline phosphatase and COOH-terminal telopeptide of type I collagen), and mineral homeostasis (parathyroid hormone, ionized calcium and phosphorus) were scrutinized. As expected, SP vitamin D status was higher than WP vitamin D status, regardless of the considered experimental time. A mild chronic respiratory acidosis (CRA) was identified in both SP and WP submariners, up to patrol day 41. Such an occurrence paired up with an altered bone remodeling coupling (decreased bone alkaline phosphatase-to-COOH-terminal telopeptide of type I collagen ratio). At the end of the patrol (day 58), a partial compensation of CRA episode, combined with a recovered normal bone remodeling coupling, was observed in SP, not, however, in WP submariners. The mild CRA episode displayed over the initial 41-day submersion period was mainly induced by a hypercapnia resulting from the submarine-enriched CO(2) level. The correlated impaired bone remodeling may imply a physiological attempt to compensate this acidosis via bone buffering. On patrol day 58, the discrepancy observed in terms of CRA compensation between SP and WP may result from the seasonal influence on vitamin D status.

  12. Icaritin, a novel plant-derived osteoinductive agent, enhances the osteogenic differentiation of human bone marrow- and human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Wu, Tao; Shu, Tao; Kang, Le; Wu, Jinhui; Xing, Jianzhou; Lu, Zhiqin; Chen, Shuxiang; Lv, Jun

    2017-04-01

    For the treatment of diseases affecting bones using bone regenerative medicine, there is an urgent need to develop safe, inexpensive drugs that can strongly induce bone formation. In the present study, we systematically investigated the effects of icaritin, a metabolic product of icariin, on the osteogenic differentiation of human bone marrow‑derived mesenchymal stem cells (hBMSCs) and human adipose tissue‑derived stem cells (hADSCs) in vitro. After treatment with icaritin at concentrations of 10‑8-10‑5 M, hBMSCs and hADSCs were examined for alkaline phosphatase activity, osteocalcin (OC) secretion, matrix mineralization and expression levels of bone‑related mRNA and proteins. Data showed that icaritin at concentrations 10‑7-10‑5 M significantly increased alkaline phosphatase activity, OC secretion at different time points, and calcium deposition at day 21. In addition, icaritin upregulated the mRNA expression of genes for bone morphogenetic proteins (BMP‑2, ‑4 and ‑7), bone transcription factors (Runx2 and Dlx5) and bone matrix proteins (ALP, OC and Col‑1). Moreover, icaritin increased the protein levels of BMPs, Runx2 and OC, as detected by western blot analysis. These findings suggest that icaritin enhances the osteogenic differentiation of hBMSCS and hADSCs. Icaritin exerts its potent osteogenic effect possibly by directly stimulating the production of BMPs. Although the osteogenic activity of icaritin in vitro was inferior to that of rhBMP‑2, icaritin displayed better results than icariin. Moreover, the low cost, simple extraction procedure, and an abundance of icaritin make it appealing as a bone regenerative medicine.

  13. Serial serum alkaline phosphatase as an early biomarker for osteopenia of prematurity.

    PubMed

    Abdallah, Enas A A; Said, Reem N; Mosallam, Dalia S; Moawad, Eman M I; Kamal, Naglaa M; Fathallah, Mohammed G E-D

    2016-09-01

    Metabolic bone disease of prematurity is a condition characterized by reduction in bone mineral content (osteopenia). It is a problem faced by very low birth weight (VLBW) infants because of lack of fetal mineralization during the last trimester. Our aim was to assess serum alkaline phosphatase (ALP) level as an early biomarker for osteopenia in premature infants and to estimate an optimal cutoff value of serum ALP at which osteopenia is detected radiologically in premature newborns.This prospective study was conducted on a cohort of 120 newborn infants of both sex of ≤34 weeks' gestational age and <1500 g birth weight. Two blood samples, from each infant on at least 2 consecutive weeks, were reported for calcium, phosphorus, and ALP. Evidence of osteopenia was evaluated radiologically by performing wrist/knee x-ray.Sixteen infants (13.3%) had evidence of osteopenia in x-ray, whereas 104 infants (86.7%) were nonosteopenic and all the osteopenic infants were <1000-g birth weight. Birth weight and gestational age were significantly inversely related to serum ALP levels. Both samples showed statistically significantly higher mean ALP level in osteopenic than nonosteopenics (P < 0.001, and P < 0.001 respectively). There was no constant value of serum ALP related to radiologic evidence of osteopenia. However, the optimal cutoff value of serum ALP at which osteopenia is detected is 500 IU/L with 100% sensitivity and 80.77% specificity.High levels of ALP can be considered a reliable biomarker to predict the status of bone mineralization and the need for radiological evaluation in premature infants particularly those <1000-g birth weight and <32 weeks' gestation.

  14. Increased serum alkaline phosphatase levels correlate with high disease activity and low bone mineral density in patients with axial spondyloarthritis.

    PubMed

    Kang, Kwi Young; Hong, Yeon Sik; Park, Sung-Hwan; Ju, Ji Hyeon

    2015-10-01

    Recent studies report an association between serum alkaline phosphatase (ALP) levels and inflammation. The present study examined the relationship between ALP and disease activity, bone mineral density (BMD), and radiological damage in axial spondyloarthritis (SpA). A total of 115 patients who fulfilled the ASAS axial SpA criteria were enrolled. Serum ALP, bone-specific ALP (BALP), serum cross-linked telopeptide of type-I collagen (sCTX), and inflammatory markers were measured. Clinical parameters, BMD, grade of sacroiliitis, and the modified Stoke AS Spinal Score (mSASSS) were also assessed. The Ankylosing Spondylitis Disease Activity Score (ASDAS) was also calculated. The associations between serum ALP, disease activity score, BMD, and radiologic damage were evaluated. The mean serum ALP level was 77 ± 26 U/l. Serum ALP levels increased in 14 patients (13%). Serum ALP levels increased along with ASDAS-CRP after adjusting for age and sex (p = 0.004), and were significantly correlated with ASDAS-ESR and ASDAS-CRP (p = 0.001 and p < 0.001, respectively), negatively correlated with BMD in the lumbar spine and femoral neck (p = 0.003 and 0.046, respectively), and positively correlated with sacroiliitis grade and the mSASSS (p < 0.001 and p < 0.002, respectively). BALP and sCTX were not associated with disease activity or BMD. Multivariate analysis showed that serum ALP was independently associated with ASDAS-CRP (p = 0.010). Increased serum ALP levels were associated with high disease activity, low BMD, and higher structural damage scores in SpA patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Analysis of human bone alkaline phosphatase isoforms: comparison of isoelectric focusing and ion-exchange high-performance liquid chromatography.

    PubMed

    Sharp, Christopher A; Linder, Cecilia; Magnusson, Per

    2007-04-01

    Several isoforms of alkaline phosphatase (ALP) can be identified in human tissues and serum after separation by anion-exchange HPLC and isoelectric focusing (IEF). We purified four soluble bone ALP (BALP) isoforms (B/I, B1x, B1 and B2) from human SaOS-2 cells, determined their specific pI values by broad range IEF (pH 3.5-9.5), compared these with commercial preparations of bone, intestinal and liver ALPs and established the effects of neuraminidase and wheat germ lectin (WGA) on enzyme activity. Whilst the isoforms B1x (pI=4.48), B1 (pI=4.32) and B2 (pI=4.12) resolved as well-defined bands, B/I resolved as a complex (pI=4.85-6.84). Neuraminidase altered the migration of all BALP isoforms to pI=6.84 and abolished their binding to the anion-exchange matrix, but increased their enzymatic activities by 11-20%. WGA precipitated the BALP isoforms in IEF gels and the HPLC column and attenuated their enzymatic activities by 54-73%. IEF resolved the commercial BALP into 2 major bands (pI=4.41 and 4.55). Migration of BALP isoforms is similar in IEF and anion-exchange HPLC and dependent on sialic acid content. HPLC is preferable in smaller scale research applications where samples containing mixtures of BALP isoforms are analysed. Circulating liver ALP (pI=3.85) can be resolved from BALP by either method. IEF represents a simpler approach for routine purposes even though some overlapping of the isoforms may occur.

  16. Eluted zinc ions stimulate osteoblast differentiation and mineralization in human dental pulp stem cells for bone tissue engineering.

    PubMed

    Yusa, Kazuyuki; Yamamoto, Osamu; Iino, Mitsuyoshi; Takano, Hiroshi; Fukuda, Masayuki; Qiao, Zhiwei; Sugiyama, Toshihiro

    2016-11-01

    Zinc is an essential element for proliferation, differentiation and survival in various cell types. In a previous study, we found that zinc ions released from zinc-modified titanium surfaces (eluted zinc ions; EZ) stimulate cell viability, osteoblast marker gene expression and calcium deposition in human bone marrow-derived mesenchymal cells (hBMCs). The aim of the present study was to investigate the effects of EZ on osteoblast differentiation among dental pulp stem cells (DPSCs) in vitro. In this study, we evaluated the effects of EZ on osteogenesis in DPSCs. Osteoblast and osteoclast marker gene expression was evaluated by real-time PCR. We also evaluated alkaline phosphatase (ALP) staining and calcium deposition. We found that EZ stimulated osteoblast marker gene (type I collagen, alkaline phosphatase (ALP), osteocalcin (OCN) and Runx2) expression, vascular endothelial growth factor A (VEGF-A), and TGF-beta signaling pathway-related gene expression after 7days of incubation. Osteoclastogenesis occurs in a receptor for activated nuclear-factor kappa B ligand (RANKL)/osteoprotegerin (OPG)-independent manner. Real-time PCR analysis revealed that EZ did not affect RANKL or OPG mRNA expression. It was also revealed that EZ induced alkaline phosphatase (ALP) staining and calcium deposition in DPSCs. Collectively, these results demonstrate the potential for clinical application to prospective treatment of bone diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that seen in infants with HPP, including true bony craniosynostosis in the context of severely diminished bone mineralization. Future studies will be required to determine if TNAP deficiency and other forms of rickets promote craniosynostosis directly through abnormal calvarial cell behavior, or indirectly due to deficient growth of the cranial base. PMID:25014884

  18. [Updates on rickets and osteomalacia: etiology and pathophysiology of osteomalacia].

    PubMed

    Suzuki, Hisanori; Takeuchi, Yasuhiro

    2013-10-01

    Impairment of bone mineralization causes rickets and osteomalacia. Rickets develops with impaired mineralization of bone prior to epiphyseal closure, and so does osteomalacia after the closure of epiphyses. Pain in lower extremities and back and bone pain are usually observed in patients with osteomalacia. Chronic hypophosphatemia and/or impairment of vitamin D action are involved in the development of osteomalacia. It is of great importance to suspect osteomalacia from clinical symptoms and laboratory data, such as hypophosphatemia and/or high serum alkaline phosphatase level.

  19. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    PubMed

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  20. Infantile hypophosphatasia combined with vitamin B6-responsive seizures and reticular formation lesions on magnetic resonance imaging: A case report.

    PubMed

    Fukazawa, Mitsuharu; Tezuka, Junichiro; Sasazuki, Momoko; Masumoto, Natsuko; Baba, Haruhisa; Doi, Takehiko; Tsutsumi, Yasushi; Mizuno, Yuji; Mihara, Futoshi; Nakayama, Hideki

    2018-02-01

    Hypophosphatasia (HPP) is a rare genetic disorder characterized by rachitic bone manifestations and a low serum alkaline phosphatase (ALP) level. It is caused by mutations in the tissue non-specific alkaline phosphatase (TNSALP) gene, which encodes the tissue non-specific isozyme of ALP. HPP patients exhibit various presentations depending on their age at onset, such as infantile HPP combined with vitamin B6-responsive seizures. A newborn with infantile HPP presented with tonic convulsions from day 5 after birth and received intravenous vitamin B6 (10mg/kg/day pyridoxal phosphate). Eleven days later, frequent apneic episodes occurred, and head magnetic resonance imaging (MRI) showed bilateral reticular formation lesions in the brain stem, including the medulla oblongata. After the pyridoxal phosphate dose was increased (to 40mg/kg/day), the patient's seizures and apnea resolved, and her MRI findings also improved. Genetic testing revealed that she was homozygous for the 1559delT mutation of TNSALP. High-dose pyridoxal phosphate is a useful treatment for HPP-induced seizures and might improve reticular formation lesions. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Induction of DNA-strand breaks after X-irradiation in murine bone cells of various differentiation capacities

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hellweg, Christine E.; Kirchner, Simone; Baumstark-Khan, Christa

    During longterm space missions, astronauts suffer from the loss of minerals especially from weightbearing bones due to prolonged sojourn under microgravity. In addition to weightlessness, exposure to cosmic ionization radiation is another space related factor endangering health and productivity of astronauts. In order to elucidate changes in bone cell metabolism induced by ionizing radiation, ground-based bone cell models have been developed. The differentiation level of the bone cells may influence their radiation sensitivity. Therefore, our cell model comprises a collection of immortalized murine pre-osteoblast, osteoblast and osteocyte cell lines representing discrete stages of differentiation: the subclones 4 and 24 of the osteoblast cell line MC3T3-E1, the osteoblast cell line OCT-1 and the osteocyte cell line MLO-Y4 display varying potential to produce mineralized bone matrix upon incubation with ascorbic acid and β-glycerophosphate (osteogenic medium). The MLO-Y4 cells showed the highest and subclone 24 the lowest proliferation rate. The most intense von Kossa reaction after culture in osteogenic medium was observed in subclone 4, indicating mineralized bone matrix. The bone cell markers alkaline phosphatase and osteocalcin were determined to further characterize the differentiation stage. All cell lines expressed osteocalcin, as determined by reverse transcriptase polymerase chain reaction. The activity of alkaline phosphatase was highest in the cell line OCT-1 and very low in MLO-Y4 and S4. The peculiarity of the markers suggests a characterization of OCT-1 and S24 as preosteoblast, S4 as (mature) osteoblast, and MLO-Y4 as osteocyte. Survival after exposure to X-rays was determined using the colony forming ability test. The resulting dose-effect relationships revealed normal radiation sensitivity (compared to human fibroblasts). Cell clone specific variations (subclones 4 and 24) in the radiation sensitivity may be due to the differentiation level. The survival curve of MLO-Y4 shows a broad shoulder, suggesting a high repair capacity or a high DNA damage or misrepair tolerance. The quantitative acquisition of DNA-strand breaks was performed by fluorescent analysis of DNA unwinding and revealed a high level of DNA damage immediately after X-irradiation, which increases dose dependently. In conclusion, the cell line with the highest differentiation level (MLO-Y4) displays lower radiation sensitivity, regarding the shoulder width of the dose-effect curve, compared to the less differentiated osteoblast cell lines.

  2. Stimulation of Bone Formation in Cortical Bone of Mice Treated with a Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-binding Peptide That Possesses Osteoclastogenesis Inhibitory Activity

    PubMed Central

    Furuya, Yuriko; Inagaki, Atsushi; Khan, Masud; Mori, Kaoru; Penninger, Josef M.; Nakamura, Midori; Udagawa, Nobuyuki; Aoki, Kazuhiro; Ohya, Keiichi; Uchida, Kohji; Yasuda, Hisataka

    2013-01-01

    To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors. PMID:23319583

  3. Skeletogenesis in the swell shark Cephaloscyllium ventriosum.

    PubMed

    Eames, B Frank; Allen, Nancy; Young, Jonathan; Kaplan, Angelo; Helms, Jill A; Schneider, Richard A

    2007-05-01

    Extant chondrichthyans possess a predominantly cartilaginous skeleton, even though primitive chondrichthyans produced bone. To gain insights into this peculiar skeletal evolution, and in particular to evaluate the extent to which chondrichthyan skeletogenesis retains features of an osteogenic programme, we performed a histological, histochemical and immunohistochemical analysis of the entire embryonic skeleton during development of the swell shark Cephaloscyllium ventriosum. Specifically, we compared staining properties among various mineralizing tissues, including neural arches of the vertebrae, dermal tissues supporting oral denticles and Meckel's cartilage of the lower jaw. Patterns of mineralization were predicted by spatially restricted alkaline phosphatase activity earlier in development. Regarding evidence for an osteogenic programme in extant sharks, a mineralized tissue in the perichondrium of C. ventriosum neural arches, and to a lesser extent a tissue supporting the oral denticle, displayed numerous properties of bone. Although we uncovered many differences between tissues in Meckel's cartilage and neural arches of C. ventriosum, both elements impart distinct tissue characteristics to the perichondral region. Considering the evolution of osteogenic processes, shark skeletogenesis may illuminate the transition from perichondrium to periosteum, which is a major bone-forming tissue during the process of endochondral ossification.

  4. Thyroid hormone independent associations between serum TSH levels and indicators of bone turnover in cured patients with differentiated thyroid carcinoma.

    PubMed

    Heemstra, Karen A; van der Deure, Wendy M; Peeters, Robin P; Hamdy, Neveen A; Stokkel, Marcel P; Corssmit, Eleonora P; Romijn, Johannes A; Visser, Theo J; Smit, Johannes W

    2008-07-01

    It has been proposed that TSH has thyroid hormone-independent effects on bone mineral density (BMD) and bone metabolism. This concept is still controversial and has not been studied in human subjects in detail. We addressed this question by studying relationships between serum TSH concentration and indicators of bone turnover, after controlling for triiodothyronine (T(3)), free thyroxine (FT(4)), and non-thyroid factors relevant to BMD and bone metabolism. We also studied the contribution of the TSH receptor (TSHR)-Asp727Glu polymorphism to these relationships. We performed a cross-sectional study with 148 patients, who had been thyroidectomized for differentiated thyroid carcinoma. We measured BMD of the femoral neck and lumbar spine. FT(4), T(3), TSH, bone-specific alkaline phosphatase, procollagen type 1 aminoterminal propeptide levels, C-cross-linking terminal telopeptide of type I collagen, and urinary N-telopeptide of collagen cross-links were measured. Genotypes of the TSHR-Asp727Glu polymorphism were determined by Taqman assay. We found a significant, inverse correlation between serum TSH levels and indicators of bone turnover, which was independent of serum FT(4) and T(3) levels as well as other parameters influencing bone metabolism. We found that carriers of the TSHR-Asp727Glu polymorphism had an 8.1% higher femoral neck BMD, which was, however, no longer significant after adjusting for body mass index. We conclude that in this group of patients, serum TSH was related to indicators of bone remodeling independently of thyroid hormone levels. This may point to a functional role of the TSHR in bone in humans. Further research into this mechanism needs to be performed.

  5. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep.

    PubMed

    Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J

    2009-11-01

    To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.

  6. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.

    PubMed

    Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael

    2013-04-01

    Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.

  7. A single measurement of biochemical markers of bone turnover has limited utility in the individual person.

    PubMed

    Beck-Jensen, J E; Kollerup, G; Sørensen, H A; Pors Nielsen, S; Sørensen, O H

    1997-07-01

    Biochemical markers of bone turnover are used to estimate the rate of bone loss in the individual osteoporotic patient. During recent years it has become increasingly clear that the biological variability of biochemical bone markers has to be taken into consideration in the evaluation of their usefulness in the clinical setting. Eleven premenopausal, 8 perimenopausal and 11 postmenopausal healthy women were included. We assessed the analytical and the biological components of variation for a number of resorptive and formative bone markers: u-hydroxyproline, u-pyridinoline, and u-deoxypyridinoline together with u-calcium and u-creatinine, s-total alkaline phosphatases and s-osteocalcin. Blood and urine samples were collected five times with 7-day intervals. Urinary parameters were expressed as outputs and corrected for creatinine in fasting night urines and second void fasting morning urines. The absolute values differed with a tendency towards increasing values in the postmenopausal women, but the biological variations in relation to menopausal status were not different. The biological variability was much higher for the urinary resorptive markers than for the formative markers in the blood. The critical difference expressing the difference needed between two serial results from the same person to be significant at a 5% level was 15% for s-alkaline phosphatases, 18% for s-osteocalcin, and lowest in the second void fasting morning urines with values of 28% and 34% for u-pyridinoline/creatinine and u-deoxypyridinoline/creatinine, and 50% and 112% for u-hydroxyproline/creatinine and u-calcium/creatinine, respectively. The index of individuality, denoting the individual variation divided by the variation between subjects, was in the range from 0.19 for s-alkaline phosphatases to 1.23 for u-hydroxyproline/minute in second void fasting morning urine making the use of conventional reference intervals difficult. Low indices, however, indicate high test performance and offer the possibility of stratification of persons within a range. The number of samples required to determine the true individual mean value +/- 5% for the single person, ranged from 5 for s-total alkaline phosphatases, 6 for s-osteocalcin, 23 for u-deoxypyridinoline/creatinine in the fasting morning urine to over two hundred for u-calcium analytes. It is concluded that, due to high biological variation, a single measurement of biochemical markers of bone turnover is of limited utility in the individual person. We recommend that routine clinical use of biochemical markers should be restricted until further evidence justifies it.

  8. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  9. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  10. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats.

    PubMed

    Felice, Juan Ignacio; Gangoiti, María Virginia; Molinuevo, María Silvina; McCarthy, Antonio Desmond; Cortizo, Ana María

    2014-02-01

    The aims of this study were: first, to evaluate the possible effects of a fructose rich diet (FRD)-induced metabolic syndrome (MS) on different aspects of long bone histomorphometry in young male rats; second, to investigate the effects of this diet on bone tissue regeneration; and third, to correlate these morphometric alterations with changes in the osteogenic/adipogenic potential and expression of specific transcription factors, of marrow stromal cells (MSC) isolated from rats with fructose-induced MS. MS was induced in rats by treatment with a FRD for 28 days. Halfway through treatment, a parietal wound was made and bone healing was evaluated 14 days later. After treatments, histomorphometric analysis was performed in dissected femoral and parietal bones. MSC were isolated from the femora of control or fructose-treated rats and differentiated either to osteoblasts (evaluated by type 1 collagen, Alkaline phosphatase and extracellular nodule mineralization) or to adipocytes (evaluated by intracellular triglyceride accumulation). Expression of Runx2 and PPARγ was assessed by Western blot. Fructose-induced MS induced deleterious effects on femoral metaphysis microarchitecture and impaired bone regeneration. Fructose treatment decreased the osteogenic potential of MSC and Runx2 expression. In addition, it increased the adipogenic commitment of MSC and PPARγ expression. Fructose-induced MS is associated with deleterious effects on bone microarchitecture and with a decrease in bone repair. These alterations could be due to a deviation in the adipogenic/osteogenic commitment of MSC, probably by modulation of the Runx2/PPARγ ratio. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans.

    PubMed

    Hansen, Tue H; Madsen, Marie T B; Jørgensen, Niklas R; Cohen, Arieh S; Hansen, Torben; Vestergaard, Henrik; Pedersen, Oluf; Allin, Kristine H

    2018-01-23

    A vegan diet has been associated with increased bone fracture risk, but the physiology linking nutritional exposure to bone metabolism has only been partially elucidated. This study investigated whether a vegan diet is associated with increased bone turnover and altered calcium homeostasis due to insufficient intake of calcium and vitamin D. Fractionated and total 25-hydroxyvitamin D (25(OH)-D), parathyroid hormone (PTH), calcium, and four bone turnover markers (osteocalcin, N-terminal propeptide of type I procollagen (PINP), bone-specific alkaline phosphatase (BAP), and C-terminal telopeptide of type I collagen (CTX)) were measured in serum from 78 vegans and 77 omnivores. When adjusting for seasonality and constitutional covariates (age, sex, and body fat percentage) vegans had higher concentrations of PINP (32 [95% CI: 7, 64]%, P = 0.01) and BAP (58 [95% CI: 27, 97]%, P < 0.001) compared to omnivores, whereas CTX (30 [95% CI: -1, 72]%, P = 0.06) and osteocalcin (21.8 [95% CI: -9.3, 63.7]%, P = 0.2) concentrations did not differ between the two groups. Vegans had higher serum PTH concentration (38 [95% CI: 19, 60]%; P < 0.001) and lower 25(OH)-D serum concentration (-33 [95% CI: -45, -19]%; P < 0.001), but similar serum calcium concentration (-1 [95% CI: -3, 1]%, P = 0.18 compared to omnivores. Vegans have higher levels of circulating bone turnover markers compared to omnivores, which may in the long-term lead to poorer bone health. Differences in dietary habits including intake of vitamin D and calcium may, at least partly, explain the observed differences.

  12. Reduced bone resorption by intake of dietary vitamin D and K from tailor-made Atlantic salmon: a randomized intervention trial

    PubMed Central

    Graff, Ingvild Eide; Øyen, Jannike; Kjellevold, Marian; Frøyland, Livar; Gjesdal, Clara Gram; Almås, Bjørg; Rosenlund, Grethe; Lie, Øyvind

    2016-01-01

    Suboptimal vitamin D status is common among humans, and might increase bone resorption with subsequent negative effects on bone health. Fatty fish, including Atlantic salmon, is an important dietary vitamin D source. However, due to a considerable change in fish feed composition, the contribution of vitamin D from salmon fillet has been reduced. The main objective was to investigate if intake of vitamin D3 enriched salmon or vitamin D3 tablets decreased bone biomarkers (urinary N-telopeptides, deoxypyridinoline, serum bone-specific alkaline phosphatase, and osteocalcin) compared to a low vitamin D3 intake. The 122 healthy postmenopausal women included in this 12 weeks intervention trial were randomized into four groups: three salmon groups (150 grams/two times/week) and one tablet group (800 IU vitamin D and 1000 mg calcium/day). The salmon groups also received calcium supplements. The salmon had three different vitamin D3/vitamin K1 combinations: high D3+high K1, low D3+high K1, or high D3+low K1. Increased intake of salmon containing high levels of vitamin D3 (0.35-0.38 mg/kg/fillet) and supplements with the same weekly contribution had a positive influence on bone health as measured by bone biomarkers in postmenopausal women. Consequently, an increased level of vitamin D3 at least to original level in feed for salmonids will contribute to an improved vitamin D3 status and may improve human bone health. PMID:27542236

  13. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    NASA Astrophysics Data System (ADS)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: p<0.02; hypocaloric: p<0.005). UCaV increased significantly over time (p<0.01) but no difference between HDBR or hypocaloric nutrition or both (p<0.26) occurred. Both CTX and NTX excretion significantly increased with HDBR (CTX: p<0.05; NTX: p<0.05), but were unaffected by hypocaloric nutrition in ambulatory and HDBR phases. In conclusion, moderate energy restriction did not exaggerate bone resorption during HDBR.

  14. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... differentiate chronic granulocytic leukemia (a malignant disease characterized by excessive overgrowth of granulocytes in the bone marrow) and reactions that resemble true leukemia, such as those occuring in severe...

  15. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... differentiate chronic granulocytic leukemia (a malignant disease characterized by excessive overgrowth of granulocytes in the bone marrow) and reactions that resemble true leukemia, such as those occuring in severe...

  16. Effects of Resistive Vibration Exercise Combined with Whey Protein and KHCO3 on Bone Tturnover Markers in Head-down Tilt Bed Rest (MTBR-MNX Study)

    NASA Technical Reports Server (NTRS)

    Graf, Sonja; Baecker, Natalie; Buehlmeier, Judith; Fischer, Annelie; Smith, Scott M.; Heer, Martina

    2014-01-01

    High protein intake further increases bone resorption markers in head-down tilt bed rest (HDBR), most likely induced by low-grade metabolic acidosis. Adding an alkaline salt to a diet with high protein content prevents this additional rise of bone resorption markers in HDBR. In addition, high protein intake, specifically whey protein, increases muscle protein synthesis and improves glucose tolerance, which both are affected by HDBR. Resistive vibration exercise (RVE) training counteracts the inactivity-induced bone resorption during HDBR. To test the hypothesis that WP plus alkaline salt (KHCO3) together with RVE during HDBR will improve bone turnover markers, we conducted a randomized, three-campaign crossover design study with 12 healthy, moderately fit male subjects (age 34+/-8 y, body mass [BM] 70 +/- 8 kg). All study campaigns consisted of a 7-d ambulatory period, 21days of -6 deg. head-down tilt bed rest (HDBR), and a 6-d recovery period. Diet was standardized and identical across phases. In the control (CON) campaign, subjects received no supplement or RVE. In the intervention campaigns, subjects received either RVE alone or combined with WP and KHCO3 (NEX). WP was applied in 3 doses per day of 0.6 g WP/kg BM together with 6 doses of 15 mmol KHCO3 per day. Eleven subjects completed the RVE and CON campaign, 8 subjects completed all three campaigns. On day 21 of HDBR excretion of the bone resorption marker C-telopeptide (CTX) was 80+/-28% (p<0.001) higher than baseline, serum calcium concentrations increased by 12 +/- 29% (p<0.001) and serum osteocalcin concentrations decreased by 6+/-12% (p=0.001). Urinary CTX excretion was 11+/- 25% (p=0.02) lower on day 21 of HDBR in the RVE- and tended to decrease by 3+/- 22% (p=0.06) in the NEX campaign compared to CON. Urinary calcium excretion was higher on day 21 in HDBR in the RVE and NEX (24+/- 43% p=0.01; 25+/- 37% p=0.03) compared to the CON campaign. We conclude that combination of RVE with WP/KHCO3 was not superior to RVE alone in any of these results.

  17. Therapeutic effect of icariin combined with stem cells on postmenopausal osteoporosis in rats.

    PubMed

    Tang, Dao; Ju, Cuiling; Liu, Yanjie; Xu, Fei; Wang, Zhengguang; Wang, Dongbo

    2018-03-01

    Osteoporosis is characterized by skeletal fragility and microarchitectural deterioration. The side effects of drugs to treat osteoporosis will negatively affect the health of patients. This study aimed to investigate the therapeutic effects of icariin combined with adipose-derived stem cells on osteoporosis in a postmenopausal osteoporosis model after ovariectomy in rats. After ovariectomy the rats were treated with icariin combined with adipose-derived stem cell transplantation. The levels of alkaline phosphatase, tartrate-resistant acid phosphatase, osteoprotegerin, and bone γ-carboxyglutamate protein in serum were determined by ELISA. The bone mineral density was measured by dual-energy X-ray absorptiometry. The mechanical properties were determined by a three-point bending test. The kidney functions were evaluated by an automatic analyzer and a diagnostic kit. Icariin combined with stem cells significantly reduced body weight gain caused by ovariectomy, significantly decreased alkaline phosphatase, tartrate-resistant acid phosphatase, and bone γ-carboxyglutamate protein content in serum, significantly increased osteoprotegerin content, significantly elevated bone mineral density of the lumbar spine, left femur, and right femur, and enhanced bone biomechanical properties of the femur, including maximum bending load, bending rigidity, and fracture energy, in osteoporotic rats. In addition, icariin combined with stem cells substantially decreased the damage to the liver and kidney in osteoporotic rats. Icariin combined with stem cells can not only ameliorate reduction of bone mass and disruption of the microarchitectural structure of bone tissue caused by osteoporosis in a rat model but can also have a beneficial effect on organ functions, such as those of the liver and kidney.

  18. [Bone metabolism, biochemical markers of bone resorption and formation processes and interleukine 6 cytokin level during coeliac disease].

    PubMed

    Fekih, Monia; Sahli, Hela; Ben Mustapha, Nadia; Mestiri, Imen; Fekih, Moncef; Boubaker, Jalel; Kaabachi, Naziha; Sellami, Mohamed; Kallel, Lamia; Filali, Azza

    2013-01-01

    Celiac disease (CD) is characterized by a malabsorption syndrom. The bone anomalies are one of the principal complications of this disease. The osteoporosis frequency is high: 3.4% among patients having with CD versus 0.2% in the general population. To study the bone mineral density during the CD, to compare it to a control group and to determine the anomalies of biochemical markers of bone turn over and level of interleukin 6 cytokin (IL6) in these patients. All patients with CD have a measurement of bone mineral density by dual-energy x-ray absorptiometry (DXA), a biological exam with dosing calcemia, vitamin D, parathormone (PTH), the osteoblastic bone formation markers (serum osteocalcin, ALP phosphates alkaline), bone osteoclastic activity (C Télopeptide: CTX) and of the IL6. 42 patients were included, with a median age of 33.6 years. 52. 8% of the patients had a low level of D vitamine associated to a high level of PTH. An osteoporosis was noted in 21.5% of patients. No case of osteoporosis was detected in the control group. The mean level of the CTX, ostéocalcine and the IL6 was higher among patients having an osteoporosis or ostéopenia compared to patients with normal bone (p = 0,017). The factors associated with an bone loss (osteopenia or osteoporosis) were: an age > 30 years, a weight <50 kg, a level of ALP phosphates alkaline > 90 UI/ml, an hypo albuminemia < 40 g/l and a level of CTX higher than 1.2. Our study confirms the impact of the CD on the bone mineral statute. The relative risk to have an osteopenia or an osteoporosis was 5 in our series. The measurement of the osseous mineral density would be indicated among patients having a CD.

  19. Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo.

    PubMed

    Gao, Peng; Zhang, Haoqiang; Liu, Yun; Fan, Bo; Li, Xiaokang; Xiao, Xin; Lan, Pingheng; Li, Minghui; Geng, Lei; Liu, Dong; Yuan, Yulin; Lian, Qin; Lu, Jianxi; Guo, Zheng; Wang, Zhen

    2016-03-22

    The drawbacks of traditional bone-defect treatments have prompted the exploration of bone tissue engineering. This study aimed to explore suitable β-tricalcium phosphate (β-TCP) granules for bone regeneration and identify an efficient method to establish β-TCP-based osteo-regenerators. β-TCP granules with diameters of 1 mm and 1-2.5 mm were evaluated in vitro. The β-TCP granules with superior osteogenic properties were used to establish in vivo bioreactors, referred to as osteo-regenerators, which were fabricated using two different methods. Improved proliferation of bone mesenchymal stem cells (BMSCs), glucose consumption and ALP activity were observed for 1-2.5 mm β-TCP compared with 1-mm granules (P < 0.05). In addition, BMSCs incubated with 1-2.5 mm β-TCP expressed significantly higher levels of the genes for runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 and the osteogenesis-related proteins alkaline phosphatase, collagen type-1 and runt-related transcription factor-2 compared with BMSCs incubated with 1 mm β-TCP (P < 0.05). Fluorochrome labelling, micro-computed tomography and histological staining analyses indicated that the osteo-regenerator with two holes perforating the femur promoted significantly greater bone regeneration compared with the osteo-regenerator with a periosteum incision (P < 0.05). This study provides an alternative to biofunctionalized bioreactors that exhibits improved osteogenesis.

  20. Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo

    PubMed Central

    Gao, Peng; Zhang, Haoqiang; Liu, Yun; Fan, Bo; Li, Xiaokang; Xiao, Xin; Lan, Pingheng; Li, Minghui; Geng, Lei; Liu, Dong; Yuan, Yulin; Lian, Qin; Lu, Jianxi; Guo, Zheng; Wang, Zhen

    2016-01-01

    The drawbacks of traditional bone-defect treatments have prompted the exploration of bone tissue engineering. This study aimed to explore suitable β-tricalcium phosphate (β-TCP) granules for bone regeneration and identify an efficient method to establish β-TCP-based osteo-regenerators. β-TCP granules with diameters of 1 mm and 1–2.5 mm were evaluated in vitro. The β-TCP granules with superior osteogenic properties were used to establish in vivo bioreactors, referred to as osteo-regenerators, which were fabricated using two different methods. Improved proliferation of bone mesenchymal stem cells (BMSCs), glucose consumption and ALP activity were observed for 1–2.5 mm β-TCP compared with 1-mm granules (P < 0.05). In addition, BMSCs incubated with 1–2.5 mm β-TCP expressed significantly higher levels of the genes for runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 and the osteogenesis-related proteins alkaline phosphatase, collagen type-1 and runt-related transcription factor-2 compared with BMSCs incubated with 1 mm β-TCP (P < 0.05). Fluorochrome labelling, micro-computed tomography and histological staining analyses indicated that the osteo-regenerator with two holes perforating the femur promoted significantly greater bone regeneration compared with the osteo-regenerator with a periosteum incision (P < 0.05). This study provides an alternative to biofunctionalized bioreactors that exhibits improved osteogenesis. PMID:27000963

  1. Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement

    PubMed Central

    Farahani, Mohammad; Safavi, Seyed Mohammadreza; Dianat, Omid; Khoramian Tusi, Somayeh; Younessian, Farnaz

    2015-01-01

    Statement of the Problem The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. Purpose The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. Materials and Method An upper canines from twelve patients (mean age: 14±2 years) undergoing extraction orthodontic treatment for distal movement served as the test tooth (DC), and its contralateral (CC) and antagonist (AC) canines were used as controls. The CC was included in orthodontic appliance without orthodontic force; the AC was free from any orthodontic appliance. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance placement (T0), and 14 (T2) and 28 days (T3) after it and ALP and ACP concentration were determined spectrophotometrically. Results ALP concentration was elevated significantly in DC and CC groups at days 14 and 28 compared with the AC. In DC group, the ALP was significantly greater in mesial sites than distal site, while no significant changes were found between both sites of CC. The peak level of ALP was observed in mesial sites of DC at T2. Regarding ACP, significant elevation of this enzyme was seen in DC group both in mesial and distal sites at T2 and T3. The peak level of this enzyme was seen at T2. Conclusion Monitoring simultaneous changes of ALP and ACP levels in GCF can reflect the tissue responses occur in periodontium during bone formation and bone resorption during orthodontic tooth movement, respectively. PMID:26535403

  2. [Osteogenic potential of bone marrow mesenchymal stem cells from ovariectomied osteoporotic rat].

    PubMed

    Li, Dong-ju; Ge, Dong-xia; Wu, Wen-chao; Wu, Jiang; Li, Liang

    2005-05-01

    To investigate the difference of osteogenic potential of bone marrow mesenchymal stem cells (MSCs) between healthy rats and osteoporotic rats. We established the animal model of osteoporosis by performing ovariectom on the 3-month-old female Sprague-Dawley rats. Bone marrow mesenchymal stem cells(MSCs) were isolated from the rats of control group and of ovariectomized (ovx) group by means of the density-gradient centrifugation method, and the 3rd-4th passage MSCs were used in all the experiments. The experiments comprised 4 groups: (1) Marrow mesenchymal stem cells control group (MSCs control group); (2) Marrow mesenchymal stem cells ovx group (MSCs ovx group); (3) Osteogenesis induction control group (OSI control group); (4) Osteogenesis induction ovx group (OSI ovx group). Cell cycle and proliferation index (PI) of MSCs were detected by flow cytometry. The expression of alkaline phosphatase (ALP) was detected by dynamics method with substrate of phosphoric acid para-Nitro benzene. The levels of osteocalcin were detected with the isotope labelling method. (1) PI of MSCs was lower in MSCs ovx group than in MSCs control group. (2) The expression of alkaline phosphatase (ALP) was much higher in OSI control group than in the MSCs control group; the expression of alkaline phosphatase (ALP) was much higher in the OSI control group than in OSI ovx group after 7-day and 14-day osteogenic induction. (3) The level of osteocalcin was much higher in the OSI control group than in the MSCs control group after 14-day, 21-day, 28-day osteogenic induction. The level of osteocalcin was much higher in the OSI control group than in the OSI ovx group. Both the proliferative potential and the osteogenic potential of bone marrow mesenchymal stem cells (MSCs) from the ovariectomized osteoporotic rat are decreased.

  3. Alkaline phosphatase activity-guided isolation of active compounds and new dammarane-type triterpenes from Cissus quadrangularis hexane extract.

    PubMed

    Pathomwichaiwat, Thanika; Ochareon, Pannee; Soonthornchareonnon, Noppamas; Ali, Zulfiqar; Khan, Ikhlas A; Prathanturarug, Sompop

    2015-02-03

    The stem of Cissus quadrangularis L. (CQ) is used in traditional medicine to treat bone fractures and swelling. Anti-osteoporotic activity of CQ hexane extract has been reported, but the active compounds in this extract remain unknown. Thus, we aimed to identify the active compounds in CQ hexane extract using bioassay-guided isolation. The CQ hexane extract was fractionated sequentially with benzene, dichloromethane, ethyl acetate, and methanol. The examination of CQ extract and its fractions was guided by bioassays for alkaline phosphatase (ALP) activity during the differentiation of MC3T3-E1 osteoblastic cells. The cells were treated with or without the CQ extract and its fractions for a period of time, and then the stimulatory effect of the alkaline phosphatase enzyme, a bone differentiation marker, was investigated. The compounds obtained were structurally elucidated using spectroscopic techniques and re-evaluated for activity during bone differentiation. A total of 29 compounds were isolated, viz., triterpenes, fatty acid methyl esters, glycerolipids, steroids, phytols, and cerebrosides. Four new dammarane-type triterpenes were isolated for the first time from nature, and this report is the first to identify this group of compounds from the Vitaceae family. Seven compounds, viz., glycerolipids and squalene, stimulated ALP activity at a dose of 10μg/mL. Moreover, the synergistic effect of these compounds on bone formation was demonstrated. This report describes, for the first time, the isolation of active compounds from CQ hexane extract; these active compounds will be useful for the quality control of extracts from this plant used to treat osteoporosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibitedmore » the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.« less

  5. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5nr01580d

  6. Imaging of Alkaline Phosphatase Activity in Bone Tissue

    PubMed Central

    Gade, Terence P.; Motley, Matthew W.; Beattie, Bradley J.; Bhakta, Roshni; Boskey, Adele L.; Koutcher, Jason A.; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with 19Flourine magnetic resonance spectroscopic imaging (19FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using 19Fluorine magnetic resonance spectroscopy (19FMRS) and 19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. 19FMRS and 19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. 19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized 19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of 19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, 19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  7. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes.

    PubMed

    Zinman, Bernard; Haffner, Steven M; Herman, William H; Holman, Rury R; Lachin, John M; Kravitz, Barbara G; Paul, Gitanjali; Jones, Nigel P; Aftring, R Paul; Viberti, Giancarlo; Kahn, Steven E

    2010-01-01

    An increase in bone fractures has been observed in women taking thiazolidinediones. The objective of the study was to examine whether changes in circulating bone biomarkers provide insight into the underlying mechanisms responsible for the increase in bone fractures in female participants randomized to rosiglitazone in A Diabetes Outcome Progression Trial (ADOPT). Paired stored baseline and 12-month serum samples were available from 1605 participants (689 women, 916 men) in ADOPT, a long-term clinical trial comparing the effects of rosiglitazone, glyburide, and metformin on glycemic control in patients with type 2 diabetes. This subset was well matched to the total ADOPT study population. In women a marker of osteoclast activity, C-terminal telopeptide (for type 1 collagen), increased by 6.1% with rosiglitazone compared with reductions of 1.3% (P = 0.03 vs. rosiglitazone) and 3.3% (P = 0.002 vs. rosiglitazone) with metformin and glyburide, respectively. In men, C-terminal telopeptide was unchanged on rosiglitazone (-1.0%) and fell on metformin (-12.7%; P < 0.001) and glyburide (-4.3%, P = NS). Markers of osteoblast activity, procollagen type 1 N-propeptide (P1NP) and bone alkaline phosphatase, were reduced for women and men in almost all treatment groups, with the greatest changes in the metformin group (P1NP in females, -14.4%; P1NP in males, -19.3%), intermediate for rosiglitazone (P1NP in females, -4.4%; P1NP in males, -14.4%), and smallest for glyburide (P1NP in males, +0.2%; bone alkaline phosphatase in females, -11.6%). Commonly measured bone biomarkers suggest that changes in bone resorption may be partly responsible for the increased risk of fracture in women taking thiazolidinediones.

  8. Biochemical Markers of Bone Turnover in Percutaneous Vertebroplasty for Osteoporotic Compression Fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komemushi, Atsushi, E-mail: kome64@yo.rim.or.jp; Tanigawa, Noboru; Kariya, Shuji

    Purpose. To evaluate relationships between biochemical markers of bone turnover, bone mineral density, and new compression fractures following vertebroplasty. Methods. Initially, we enrolled 30 consecutive patients with vertebral compression fractures caused by osteoporosis. Twenty-three of the 30 patients visited our hospital for follow-up examinations for more than 4 weeks after vertebroplasty. The patients were divided into two groups: patients with new fractures (group F) and patients with no new fractures (group N). We analyzed differences in the following parameters between these two groups: serum bone alkaline phosphatase, urinary crosslinked N-telopeptide of type I collagen, urinary deoxypyridinoline, and bone mineral density.more » Next, the patients were divided into another two groups: patients with higher risk (group H: urinary crosslinked N-telopeptide of type I collagen >54.3 nmol BCE/mmol Cr or urinary deoxypyridinoline >7.6 nmol/mmol Cr, and serum bone alkaline phosphatase <29.0 U/l) and patients with lower risk (group L). We analyzed the difference in the rate of new fractures between these two groups. Results. We identified 9 new fractures in 7 patients. There were no significant differences between groups F and N. We identified 5 new fractures in 3 of the 4 patients in group H, and 4 new fractures in 4 of the 19 patients in group L. There was a significant difference in the rate of new fractures between groups H and L. Conclusions. A combination of high levels of bone resorption markers and normal levels of bone formation markers may be associated with increased risk of new recurrent fractures after percutaneous vertebroplasty.« less

  9. Evaluating the oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol in periodontal regeneration using periodontal ligament stem cells and alveolar bone healing models.

    PubMed

    Lee, Jin-Sun; Kim, EunJi; Han, Seonggu; Kang, Kyung Lhi; Heo, Jung Sun

    2017-12-06

    Oxysterols, oxygenated by-products of cholesterol biosynthesis, play roles in various physiological and pathological systems. However, the effects of oxysterols on periodontal regeneration are unknown. This study investigated the effects of the specific oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol (SS) on the regeneration of periodontal tissues using in-vitro periodontal ligament stem cells (PDLSCs) and in-vivo models of alveolar bone defect. To evaluate the effects of the combined oxysterols on PDLSC biology, we studied the SS-induced osteogenic differentiation of PDLSCs by assessing alkaline phosphatase activity, intracellular calcium levels [Ca 2+ ] i , matrix mineralization, and osteogenic marker mRNA expression and protein levels. To verify the effect of oxysterols on alveolar bone regeneration, we employed tooth extraction bone defect models. Oxysterols increased the osteogenic activity of PDLSCs compared with the control group. The expression of liver X receptor (LXR) α and β, the nuclear receptors for oxysterols, and their target gene, ATP-binding cassette transporter A1 (ABCA1), increased significantly during osteogenesis. Oxysterols also increased protein levels of the hedgehog (Hh) receptor Smo and the transcription factor Gli1. We further confirmed the reciprocal reaction between the LXRs and Hh signaling. Transfection of both LXRα and LXRβ siRNAs decreased Smo and Gli1 protein levels. In contrast, the inhibition of Hh signaling attenuated the LXRα and LXRβ protein levels. Subsequently, SS-induced osteogenic activity of PDLSCs was suppressed by the inhibition of LXRs or Hh signaling. The application of SS also enhanced bone formation in the defect sites of in-vivo models, showing equivalent efficacy to recombinant human bone morphogenetic protein-2. These findings suggest that a specific combination of oxysterols promoted periodontal regeneration by regulating PDLSC activity and alveolar bone regeneration.

  10. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Severalmore » recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a novel CBP could be a useful candidate for regenerating bone and treating osteoporosis, which result from an imbalance in osteogenesis and adipogenesis differentiation.« less

  11. Comparative effects of dried plum and dried apple on bone in postmenopausal women.

    PubMed

    Hooshmand, Shirin; Chai, Sheau C; Saadat, Raz L; Payton, Mark E; Brummel-Smith, Kenneth; Arjmandi, Bahram H

    2011-09-01

    Aside from existing drug therapies, certain lifestyle and nutritional factors are known to reduce the risk of osteoporosis. Among the nutritional factors, dried plum or prunes (Prunus domestica L.) is the most effective fruit in both preventing and reversing bone loss. The objective of the present study was to examine the extent to which dried plum reverses bone loss in osteopenic postmenopausal women. We recruited 236 women, 1-10 years postmenopausal, not on hormone replacement therapy or any other prescribed medication known to influence bone metabolism. Qualified participants (n 160) were randomly assigned to one of the two treatment groups: dried plum (100 g/d) or dried apple (comparative control). Participants received 500 mg Ca plus 400 IU (10 μg) vitamin D daily. Bone mineral density (BMD) of lumbar spine, forearm, hip and whole body was assessed at baseline and at the end of the study using dual-energy X-ray absorptiometry. Blood samples were collected at baseline, 3, 6 and 12 months to assess bone biomarkers. Physical activity recall and 1-week FFQ were obtained at baseline, 3, 6 and 12 months to examine physical activity and dietary confounders as potential covariates. Dried plum significantly increased BMD of ulna and spine in comparison with dried apple. In comparison with corresponding baseline values, only dried plum significantly decreased serum levels of bone turnover markers including bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase-5b. The findings of the present study confirmed the ability of dried plum in improving BMD in postmenopausal women in part due to suppressing the rate of bone turnover.

  12. Synergistic antiosteoporotic effect of Lepidium sativum and alendronate in glucocorticoid-induced osteoporosis in Wistar rats.

    PubMed

    Elshal, Mohamed F; Almalki, Abdulrahman L; Hussein, Hussein K; Khan, Jalal A

    2013-01-01

    Alendronate belongs to a class of drugs called bisphosphonates. Bisphosphonates (BP) therapy is a vital option to reduce the risk of bone fracture in people who suffer from osteoporosis. Yet, bisphosphonate have displayed several side effects. Lepidium sativum (LS) seeds have been used in traditional folk medicine to heal fractured bones. However, there is a dearth of information on the impact of LS on bone metabolism especially in cases of glucocorticoids induced osteoporosis. Therefore, the aim of the study was to compare the biochemical bone markers and histological responses of LS alone (6 g of LS seeds in diet daily, n=8), ALD (alendronate, 70 mg/kg s.c.; n=8) alone, or LS and ALD combined in a rat model of glucocorticoid-induced osteoporosis (GIO) by injecting rats with methylprednisolone 3.5 mg/kg per day for 4 weeks. Serum calcium (Ca), albumin, phosphorus (P), bone-specific alkaline phosphatase (b-ALP), and tartrate-resistant acid phosphatase (TRAP) were measured 4 weeks after induction of GIO. GIO-group showed significantly increased serum TRAP and decreased b-ALP. GIO-group also showed significantly decreased serum P and unaltered Ca concentrations. Histological examination of GIO-group tibia bones indicated an osteoporotic change and a concomitant decrease in percentage of trabecular area or bone marrow area (PTB) in the proximal femoral epiphysis. Treatment with either LS and/or ALD ameliorated the above mentioned changes with variable degrees, with a net results of enhanced serum calcium, bone architecture, PTB, b-ALP and decreased TRAP in LS and LS+ALD groups compared to that of animals treated with alendronate alone. In conclusion, our findings present evidence supporting the potential benefits of LS in reducing the burden of GCs on bone health.

  13. High bone turnover elevates the risk of denosumab-induced hypocalcemia in women with postmenopausal osteoporosis

    PubMed Central

    Ishikawa, Koji; Nagai, Takashi; Sakamoto, Keizo; Ohara, Kenji; Eguro, Takeshi; Ito, Hiroshi; Toyoshima, Yoichi; Kokaze, Akatsuki; Toyone, Tomoaki; Inagaki, Katsunori

    2016-01-01

    Hypocalcemia is the most common major adverse event in patients with osteoporosis receiving the bone resorption inhibitor denosumab; however, limited information is available regarding risk factors of hypocalcemia. Therefore, this study aimed to identify the risk factors of hypocalcemia induced by denosumab treatment for osteoporosis. We retrospectively reviewed the records of patients who had received initial denosumab supplemented with activated vitamin D for osteoporosis. Serum levels of the following bone turnover markers (BTMs) were measured at baseline: bone-specific alkaline phosphatase (BAP), total N-terminal propeptide of type 1 procollagen (P1NP), tartrate-resistant acid phosphatase 5b (TRACP-5b), and urinary cross-linked N-telopeptide of type 1 collagen (NTX). Of the 85 denosumab-treated patients with osteoporosis studied, 22 (25.9%) developed hypocalcemia. Baseline serum total P1NP, TRACP-5b, and urinary NTX were significantly higher in patients with hypocalcemia than in those with normocalcemia following denosumab administration (all P<0.01). Multivariate logistic regression analysis revealed that patients with total P1NP >76.5 μg/L, TRACP-5b >474 mU/dL, or urinary NTX >49.5 nmol bone collagen equivalent/mmol creatinine had a higher risk of hypocalcemia (P<0.01). Our study suggests that denosumab may have a greater impact on serum calcium levels in patients with postmenopausal osteoporosis with higher baseline bone turnover than in patients with postmenopausal osteoporosis with normal baseline bone turnover, because maintenance of normal serum calcium in this subgroup is more dependent on bone resorption. Close monitoring of serum calcium levels is strongly recommended for denosumab-treated patients with high bone turnover, despite supplementation with activated vitamin D and oral calcium. PMID:27980413

  14. The effect of carprofen on selected markers of bone metabolism in dogs with chronic osteoarthritis.

    PubMed

    Liesegang, A; Limacher, S; Sobek, A

    2007-08-01

    The purpose of this study was to investigate the effect of the nonsteroidal anti-inflammatory drug carprofen on bone turnover and to monitor the progress of chronic osteoarthritic dogs by measuring different bone markers and radiographic evalutation of the corresponding joints. For this purpose 20 dogs of different ages and weight were devided into 2 groups. Ten dogs were assigned to Group R, treated with carprofen, and ten dogs to Group C, which had no treatment. Radiographs of the affected joints were reviewed initially and six months later at the end of the experiment. Blood was taken 8 times from each dog. Four bone markers (Osteocalcin (OC), bone-specific alkaline phosphatase (bAP), carboxyterminal telopeptide of type I collagen (ICTP), serum CrossLaps (CTX) as well as 1,25-(OH)2-Vitamin D and parathyroid hormone (PTH) were monitored for 6 months. No significant group effects on bone markers were notied. In Group R a decrease in ICTP concentrations during the first three months and a significant decrease in CTX concentrations in the first two months of the study were observed. The bone formation marker bAP revealed a significant decrease throughout the experiment. Three dogs of Group C and one dog of Group R showed osteoarthritic progression in the radiographs. The significant decrease of CTX indicates that carprofentreatment could have a retarding effect on the progression of osteoarthritis. Radiological findings suggest that carprofen may delay osteophyte formation. The monitoring of focal metabolic processes as in bone of a osteoarthrotic joint is difficult, since the bone mass is very active and metabolic processes may have an influence on the monitoring.

  15. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo.

    PubMed

    Johnson, Jared S; Meliton, Vicente; Kim, Woo Kyun; Lee, Kwang-Bok; Wang, Jeffrey C; Nguyen, Khanhlinh; Yoo, Dongwon; Jung, Michael E; Atti, Elisa; Tetradis, Sotirios; Pereira, Renata C; Magyar, Clara; Nargizyan, Taya; Hahn, Theodore J; Farouz, Francine; Thies, Scott; Parhami, Farhad

    2011-06-01

    Stimulation of bone formation by osteoinductive materials is of great clinical importance in spinal fusion surgery, repair of bone fractures, and in the treatment of osteoporosis. We previously reported that specific naturally occurring oxysterols including 20(S)-hydroxycholesterol (20S) induce the osteogenic differentiation of pluripotent mesenchymal cells, while inhibiting their adipogenic differentiation. Here we report the characterization of two structural analogues of 20S, Oxy34 and Oxy49, which induce the osteogenic and inhibit the adipogenic differentiation of bone marrow stromal cells (MSC) through activation of Hedgehog (Hh) signaling. Treatment of M2-10B4 MSC with Oxy34 or Oxy49 induced the expression of osteogenic differentiation markers Runx2, Osterix (Osx), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN), as well as ALP enzymatic activity and robust mineralization. Treatment with oxysterols together with PPARγ activator, troglitazone (Tro), inhibited mRNA expression for adipogenic genes PPARγ, LPL, and aP2, and inhibited the formation of adipocytes. Efficacy of Oxy34 and Oxy49 in stimulating bone formation in vivo was assessed using the posterolateral intertransverse process rat spinal fusion model. Rats receiving collagen implants with Oxy 34 or Oxy49 showed comparable osteogenic efficacy to BMP2/collagen implants as measured by radiography, MicroCT, and manual inspection. Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopedic indications requiring local bone formation. Copyright © 2011 Wiley-Liss, Inc.

  16. Short-term variations in bone remodeling markers of an oral contraception formulation containing 3 mg of drospirenone plus 30 microg of ethinyl estradiol: observational study in young postadolescent women.

    PubMed

    Paoletti, Anna Maria; Orrù, Marisa; Lello, Stefano; Floris, Stefano; Ranuzzi, Francesca; Etzi, Rossella; Zedda, Pierina; Guerriero, Stefano; Fratta, Stefania; Sorge, Roberto; Mallarini, Giorgio; Melis, Gian Benedetto

    2004-10-01

    The clinical study of treated subjects and nontreated controls was made in healthy eumenorrheic young postadolescent women volunteers in the Department of Obstetrics and Gynaecology at Cagliari University, to investigate whether an oral contraceptive (OC) containing drospirenone (3 mg) plus ethinyl estradiol (30 microg) (DRSP+EE) can affect bone metabolism. Control group (n = 26) and OC group (n = 28) women did not differ in age, body mass index, waist-to-hip ratio and main outcome measures [urinary levels of deoxypyridinoline and pyridinoline, serum levels of osteocalcin, bone specific alkaline phosphatase (bSAP), total testosterone (total-T), sex hormone-binding globulin (SHBG), progesterone and bone mineral density (BMD) at the heel]. The control group was studied at the luteal phase (LP) during both the first and the sixth menstrual cycle; the OC group was studied during the first cycle at the LP, and on days 16-18 of the sixth cycle of DRSP+EE treatment. At the sixth cycle, in the control group, the main outcome measures did not change compared to baseline. In the OC group, deoxypyridinoline, pyridinoline, osteocalcin, bSAP, total-T and progesterone levels were reduced, whereas SHBG levels were increased. The BMD was unchanged compared to baseline. The results suggest that 6-month DRSP+EE treatment decreases bone turnover. Copyright 2004 Elsevier Inc.

  17. Long-term effects of intermittent equine parathyroid hormone fragment (ePTH-1-37) administration on bone metabolism in healthy horses.

    PubMed

    Weisrock, Katharina U; Winkelsett, Sarah; Martin-Rosset, William; Forssmann, Wolf-Georg; Parvizi, Nahid; Coenen, Manfred; Vervuert, Ingrid

    2011-11-01

    Intermittent administration of parathyroid hormone (PTH) is an anabolic therapy for osteoporotic conditions in humans. This study evaluated the effects of equine PTH fragment (ePTH-1-37) administration on bone metabolism in 12 healthy horses. Six horses each were treated once daily for 120days with subcutaneous injections of 0.5μg/kg ePTH-1-37 or placebo. Blood was collected to determine ionized calcium (Ca(++)), total Ca (Ca(T)), inorganic phosphorus, serum equine osteocalcin (eOC), carboxy-terminal telopeptide of type I collagen (ICTP), bone-specific alkaline phosphatase, and carboxy-terminal cross-linked telopeptide of type I collagen. Bone mineral density (BMD) was determined with dual X-ray absorptiometry of the metacarpus and calcaneus. Significantly higher blood Ca(++) and plasma Ca(T) concentrations were measured 5h after ePTH-1-37 administration compared to placebo. Higher serum eOC concentrations were found for ePTH-1-37 treatment at days 90 (P<0.05) and 120 (P=0.05). Significantly higher serum ICTP levels were observed with ePTH-1-37 treatment at days 60 and 90. For both study groups, BMD increased significantly in the calcaneus. Long-term use of ePTH-1-37 seemed to have no negative effects on bone metabolism in healthy horses. The absence of undesirable side effects is the premise to ensure safety for further clinical investigations in horses with increased bone resorption processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Serum cathepsin K levels are not suitable to differentiate women with chronic bone disorders such as osteopenia and osteoporosis from healthy pre- and postmenopausal women.

    PubMed

    Adolf, Daniela; Wex, Thomas; Jahn, Oliver; Riebau, Christian; Halangk, Walter; Klose, Silke; Westphal, Sabine; Amthauer, Holger; Winckler, Stephan; Piatek, Stefan

    2012-02-01

    Cathepsin K (CatK) is expressed in high levels in osteoplasts and therefore plays an important role in bone resorption. Thus CatK serum levels may be useful in the diagnosis of chronic bone disorders such as osteopenia and osteoporosis. Therefore we aimed at studying CatK levels in women putatively free of known skeletal disorders. In total, 121 voluntary women, 27 premenopausal women aged between 20 and 45 years, and 94 postmenopausal women aged 59-81 years, all free of known skeletal disorders were included. All women underwent bone density measurement, routine labor parameter and measurement of serum CatK levels. Based on WHO criteria, women were stratified in four groups (premenopausal: healthy; postmenopausal: healthy, osteopenia, osteoporosis), and their CatK levels were statistically analyzed. Using WHO criteria 21 postmenopausal women had normal bone mineral density (BMD), 49 had osteopenia and 24 had osteoporosis. All 27 premenopausal women had normal BMD. There were no significant differences in CatK between these groups. ROC analysis resulted in poor diagnostic validity of CatK, where the area under curve was 0.544. There was no correlation neither between CatK and other biomarkers as C-telopeptide crosslaps (CTX) or bone-specific alkaline phosphatase (BAP) nor between CatK and age. Serum levels of CatK are not suitable to differentiate women with osteoporosis from healthy subjects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. A case report of disabling bone pain after long-term kidney transplantation.

    PubMed

    Myint, T M M; Vucak-Dzumhur, M; Ebeling, P R; Elder, G J

    2014-02-01

    A 77-year-old man, who received a renal transplant 13 years before for IgA glomerulonephritis, was referred after he developed bilateral mid-tibial aching pain that did not improve with simple analgesia. He had recently been changed from low-dose cyclosporine to tacrolimus, but the pain did not improve when this was reversed. He had a history of focal prostatic adenocarcinoma, cryptococcal lung infection, osteoporosis treated with alendronate for 2 years and multiple squamous cell carcinomas, including one requiring left neck dissection and radiotherapy. Upon physical examination, he had gouty tophi and marked bilateral tibial tenderness but had no other clinical findings. Laboratory investigations included an elevated intact parathyroid hormone value of 7.9 pmol/L (1.6 to 6.9), bone specific alkaline phosphatase of 22 µg/L (3.7 to 20.9), urinary deoxypyridinoline/creatinine ratio of 7.2 nmol/mmol (2.5 to 5.4) and C-reactive protein. Chest X-ray and tibial X-rays were normal, but there was marrow oedema and a prominent periosteal reaction on magnetic resonance imaging. A radionuclide bone scan showed increased symmetrical, linear uptake in both tibiae and the left femur, and uptake was also noted in both clinically asymptomatic humeri. Tibial bone biopsy disclosed small deposits of poorly differentiated metastatic cancer and a follow-up chest CT revealed a lung lesion. It was concluded that the bone pain and periostitis was caused by primary lung cancer with metastatic disease to bone, and an associated hypertrophic osteoarthropathy.

  20. Efficacy and Safety of Risedronate in Osteoporosis Subjects with Comorbid Diabetes, Hypertension, and/or Dyslipidemia: A Post Hoc Analysis of Phase III Trials Conducted in Japan.

    PubMed

    Inoue, Daisuke; Muraoka, Ryoichi; Okazaki, Ryo; Nishizawa, Yoshiki; Sugimoto, Toshitsugu

    2016-02-01

    Many osteoporotics have comorbid diabetes mellitus (DM), hypertension (HT), and dyslipidemia (DL). However, whether such comorbidities alter response to anti-osteoporotic treatment is unknown. We did post hoc analyses of combined data from three risedronate Japanese phase III trials to determine whether the presence of DM, HT, or DL affects its efficacy and safety. Data from 885 subjects who received 48-week treatment with risedronate were collected and combined from the three phase III trials. They were divided into two groups by the presence or absence of comorbidities: DM (n = 53) versus non-DM (n = 832); HT (n = 278) versus non-HT (n = 607); and DL (n = 292) versus non-DL (n = 593). Bone mineral density (BMD), urinary type 1 collagen N-telopeptide (uNTX), and serum bone-specific alkaline phosphatase (BAP) were measured at baseline and sequentially until 48 weeks. BMD or bone markers were not different between any of the two groups. Overall, BMD was increased by 5.52%, and uNTX and BAP were decreased by 35.4 and 33.8%, respectively. Some bone markers were slightly lower in DM and DL subjects, but the responses to risedronate were not significantly different. Statin users had lower uNTX and BAP, but showed no difference in the treatment response. All the other medications had no apparent effect. Adverse event incidence was marginally higher in DL compared with non-DL (Relative risk 1.06; 95% confidence interval 1.01-1.11), but was not related to increase in any specific events. Risedronate shows consistent safety and efficacy in suppressing bone turnover and increasing BMD in osteoporosis patients with comorbid DM, HT, and/or DL.

  1. Roles of Zinc and Iron on Bone Health in a Rat Model of Osteoporosis

    NASA Astrophysics Data System (ADS)

    Yan, Danhua

    Bone is one of the most vital organs in animals, serving as both structural and protective functions. Remodeling of bone is an important indicator of bone health, and disorders in bone remodeling may lead to bone diseases such as osteoporosis. Osteoporosis increases risk of bone fracture and even death, and much more preferable to be happened in postmenopausal women due to great changes in hormones. Micronutrients, such as Zinc (Zn) and Iron (Fe), would as well influence bone health in different manners. That Zn would promote bone health is widely accepted, for the reasons Zn increases osteoblast cell proliferation and differentiation, inhibits osteoclast cell activities, and forms alkaline phosphatase that does help to maintain bone metabolism. Diseases caused by Fe overload is usually related to osteoporosis. Ferric ion could facilitate osteoclast differentiation, inhibit osteoblast and alkaline phosphatase activities, and interfere with hydroxyapatite crystal growth and depositions. However, changes of concentrations and distributions for Zn and Fe in osteoporotic bones are seldom studied. In this thesis, ovariectomized rat femur bones are used as a model of postmenopausal osteoporosis. Rats from different ages and health conditions are categorized as 6 AM (6-month age matched control), 6 OVX (6-month ovariectomized control), 12 AM (12-month age matched control), 12 OVX (12-month ovariectomized control). The trace elements Zn and Fe is studied through Synchrotron Radiation X-Ray Fluorescence (SRXRF). Elemental maps are used to observe changes in distribution, and further quantitative analysis is used to discover changes in concentration among different animal groups. Both the decrease of Zn and the increase of Fe are significant from healthy to osteoporotic bones (p<0.05). In the meanwhile, accumulation of Zn (p<0.05) and Fe (p>0.1) is also observed over age in healthy groups. Both elements show changes in distribution, that healthy animals present a more even distribution while in OVX groups the tendency of aggregation is observed. These results agree with most of the predictions and add evidence for effects of Zn and Fe on bone health. Hypothesis is further made to rationalize the changing trend observed and explain mechanisms behind.

  2. The effects of improved metabolic risk factors on bone turnover markers after 12 weeks of simvastatin treatment with or without exercise.

    PubMed

    Jiang, Jun; Boyle, Leryn J; Mikus, Catherine R; Oberlin, Douglas J; Fletcher, Justin A; Thyfault, John P; Hinton, Pamela S

    2014-11-01

    Emerging evidence supports an association between metabolic risk factors and bone turnover. Statins and exercise independently improve metabolic risk factors; however whether improvements in metabolic risk factor affects bone turnover is unknown. The purpose of the present study was to: 1) evaluate the relationship between metabolic risk factors and bone turnover; and 2) determine if improvements in metabolic risk factors after 12 weeks of statin treatment, exercise or the combination affect bone turnover. Fifty participants with ≥2 metabolic syndrome defining characteristics were randomly assigned to one of three groups: statin (STAT: simvastatin, 40 mg/day), exercise (EX: brisk walking and/or slow jogging, 45 minutes/day, 5 days/week), or the combination (STAT+EX). Body composition and whole body bone mineral density were measured with dual energy X-ray absorptiometry. Serum markers of bone formation (bone specific alkaline phosphatase, BAP; osteocalcin, OC), resorption (C-terminal peptide of type I collagen, CTX) and metabolic risk factors were determined. Two-factor (time, group) repeated-measures ANCOVA was used to examine changes of metabolic risk factors and bone turnover. General linear models were used to determine the effect of pre-treatment metabolic risk factors on post-treatment bone turnover marker outcomes. Participants with ≥4 metabolic syndrome defining characteristics had lower pre-treatment OC than those with 3 or fewer. OC was negatively correlated with glucose, and CTX was positively correlated with cholesterol. STAT or STAT+EX lowered total and LDL cholesterol. The OC to CTX ratio decreased in all groups with no other significant changes in bone turnover. Higher pre-treatment insulin or body fat predicted a greater CTX reduction and a greater BAP/CTX increase. Metabolic risk factors were negatively associated with bone turnover markers. Short-term statin treatment with or without exercise lowered cholesterol and all treatments had a small effect on bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Gene therapy improves dental manifestations in hypophosphatasia model mice.

    PubMed

    Okawa, R; Iijima, O; Kishino, M; Okawa, H; Toyosawa, S; Sugano-Tajima, H; Shimada, T; Okada, T; Ozono, K; Ooshima, T; Nakano, K

    2017-06-01

    Hypophosphatasia is a rare inherited skeletal disorder characterized by defective bone mineralization and deficiency of tissue non-specific alkaline phosphatase (TNSALP) activity. The disease is caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL) encoding TNSALP. Early exfoliation of primary teeth owing to disturbed cementum formation, periodontal ligament weakness and alveolar bone resorption are major complications encountered in oral findings, and discovery of early loss of primary teeth in a dental examination often leads to early diagnosis of hypophosphatasia. Although there are no known fundamental treatments or effective dental approaches to prevent early exfoliation of primary teeth in affected patients, several possible treatments have recently been described, including gene therapy. Gene therapy has also been applied to TNSALP knockout mice (Alpl -/- ), which phenocopy the infantile form of hypophosphatasia, and improved their systemic condition. In the present study, we investigated whether gene therapy improved the dental condition of Alpl -/- mice. Following sublethal irradiation (4 Gy) at the age of 2 d, Alpl -/- mice underwent gene therapy using bone marrow cells transduced with a lentiviral vector expressing a bone-targeted form of TNSALP injected into the jugular vein (n = 3). Wild-type (Alpl +/+ ), heterozygous mice (Alpl +/- ) and Alpl -/- mice were analyzed at 9 d of age (n = 3 of each), while Alpl +/+ mice and treated or untreated Alpl -/- mice were analyzed at 1 mo of age (n = 3 of each), and Alpl +/- mice and Alpl -/- mice with gene therapy were analyzed at 3 mo of age (n = 3 of each). A single mandibular hemi-section obtained at 1 mo of age was analyzed using a small animal computed tomography machine to assess alveolar bone formation. Other mandibular hemi-sections obtained at 9 d, 1 mo and 3 mo of age were subjected to hematoxylin and eosin staining and immunohistochemical analysis of osteopontin, a marker of cementum. Immunohistochemical analysis of osteopontin, a marker of acellular cementum, revealed that Alpl -/- mice displayed impaired formation of cementum and alveolar bone, similar to the human dental phenotype. Cementum formation was clearly present in Alpl -/- mice that underwent gene therapy, but did not recover to the same level as that in wild-type (Alpl +/+ ) mice. Micro-computed tomography examination showed that gene therapy improved alveolar bone mineral density in Alpl -/- mice to a similar level to that in Alpl +/+ mice. Our results suggest that gene therapy can improve the general condition of Alpl -/- mice, and induce significant alveolar bone formation and moderate improvement of cementum formation, which may contribute to inhibition of early spontaneous tooth exfoliation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Association between bone turnover, micronutrient intake, and blood lead levels in pre- and postmenopausal women, NHANES 1999-2002.

    PubMed

    Jackson, Leila W; Cromer, Barbara A; Panneerselvamm, Ashok

    2010-11-01

    Blood lead levels (BLLs) have been shown to increase during periods of high bone turnover such as pregnancy and menopause. We examined the associations between bone turnover and micronutrient intake with BLLs in women 20-85 years of age (n = 2,671) participating in the National Health and Nutrition Examination Survey, 1999-2002. Serum bone-specific alkaline phosphatase (BAP) and urinary cross-linked N-telopeptides (NTx) were measured as markers of bone formation and resorption, respectively. Lead was quantified in whole blood. The association between tertiles of BAP and NTx, and BLLs was examined using linear regression with natural log transformed BLLs as the dependent variable and interpreted as the percent difference in geometric mean BLLs. In adjusted analyses, mean BLLs among postmenopausal women in the upper tertiles of NTx and BAP were 34% [95% confidence interval (CI), 23%-45%] and 30% (95% CI, 17%-43%) higher than BLLs among women in the lowest tertiles of NTx and BAP, respectively. These associations were weaker, but remained statistically significant, among premenopausal women (NTx: 10%; 95% CI, 0.60%-19%; BAP: 14%; 95% CI, 6%-22%). Within tertiles of NTx and BAP, calcium intake above the Dietary Reference Intake (DRI), compared with below the DRI, was associated with lower mean BLLs among postmenopausal women but not premenopausal women, although most of the associations were not statistically significant. We observed similar associations for vitamin D supplement use. Bone resorption and bone formation were associated with a significant increase in BLLs among pre- and postmenopausal women.

  5. Protein kinase D1 is essential for bone acquisition during pubertal growth.

    PubMed

    Ford, Jeffery J; Yeh, Lee-Chuan C; Schmidgal, Eric C; Thompson, Jason F; Adamo, Martin L; Lee, John C

    2013-11-01

    Bone formation and maintenance represents the summation of the balance of local and endocrine hormonal stimuli within a complex organ. Protein kinase D (PKD) is a member of the Ca(2+)/calmodulin-dependent kinase superfamily of serine/threonine kinases and has been described as the crossroads for the bone morphogenetic protein (BMP)-IGF-I signaling axis, which plays a major role in bone formation. The current study exploits the PKD1-deficient mouse model to examine the role of PKD in vivo in the skeleton. Dual-energy x-ray absorptiometry scan analysis of male and female pubescent mice demonstrated significantly decreased bone mineral density in the whole body and femoral bone compartments of PKD1 (+/-) mice, compared with their wild-type littermates. The body weight, nasal-anal length, and percentage body fat of the mice were not significantly different from their wild-type littermates. Cultured bone marrow stromal cells from PKD1 (+/-) mice demonstrated lower alkaline phosphatase activity in early differentiating osteoblasts and decreased mineralized nodule formation in mature osteoblasts. Quantitative RT-PCR analysis of osteoblast differentiation markers and osteoclast markers exhibited lower levels of expression in PKD1 (+/-) male mice than wild type. In female mice, however, only markers of osteoblast differentiation were reduced. PKD1 (+/-) mice also demonstrated a profound reduction in mRNA expression levels of BMP type II receptor and IGF-I receptor and in BMP-7 responsiveness in vitro. Together these data suggest that in mice, PKD1 action contributes to the regulation of osteoblastogenesis by altering gene expression with gender-specific effects on osteoclastogenesis, subsequently affecting skeletal matrix acquisition during puberty.

  6. [Biochemical markers of bone remodeling: pre-analytical variations and guidelines for their use. SFBC (Société Française de Biologie Clinique) Work Group. Biochemical markers of bone remodeling].

    PubMed

    Garnero, P; Bianchi, F; Carlier, M C; Genty, V; Jacob, N; Kamel, S; Kindermans, C; Plouvier, E; Pressac, M; Souberbielle, J C

    2000-01-01

    Biochemical markers of bone turnover have been developed over the past 20 years that are more specific for bone tissue than conventional ones such as total alkaline phosphatase and urinary hydroxyproline. They have been widely used in clinical research and in clinical trials of new therapies as secondary end points of treatment efficacy. Most of the interest has been devoted to their use in postmenopausal osteoporosis, a condition characterized by subtle modifications of bone metabolism that cannot be detected readily by conventional markers of bone turnover. Although several recent studies have suggested that biochemical markers may be used for the management of the individual patient in routine clinical practice, this has not been clearly defined and is a matter of debate. Because of the crucial importance to clarify this issue, the Société Francaise de Biologie Clinique prompted an expert committee to summarize the available data and to make recommendations. The following paper includes a review on the biochemical and analytical aspects of the markers of bone formation and resorption and on the sources of variability such as sex, age, menstrual cycle, pregnancy and lactation, physical activity, seasonal variation and effects of diseases and treatments. We will also describe the effects of pre-analytical factors on the measurements of the different markers. Finally based on that review, we will make practical recommendations for the use of these markers in order to minimize the variability of the measurements and improve the clinical interpretation of the data.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herring, G. M.; Vaughan, Janet; Williamson, Margaret

    Characteristics of bone surfaces are discussed in relation to the uptake of bone-seeking isotopes. The alkaline earths are concentrated behind the osteoid border of active surfaces. Yttrium, americium, and plutonium are concentrated on quiescent and resorbing surfaces; traces only occur in and beneath the osteoid border. In view of evidence of mucoproteins at sites where the latter elemerts are found in concentration, a separation of the mucoproteins in cortical bone was undertaken. Mucosubstances have been isolated which give the same reaction with certain reagents as the bone surfaces in question. One of these, a sialoprotein, might be expected, in viewmore » of its acidic nature, to be capable of metal binding.« less

  8. 21 CFR 862.1520 - 5′-Nucleotidase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... intended to measure the activity of the enzyme 5′-nucleotidase in serum and plasma. Measurements of 5... liver and bone diseases in the presence of elevated serum alkaline phosphatase activity. (b...

  9. 21 CFR 862.1520 - 5′-Nucleotidase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... intended to measure the activity of the enzyme 5′-nucleotidase in serum and plasma. Measurements of 5... liver and bone diseases in the presence of elevated serum alkaline phosphatase activity. (b...

  10. Effects of Focused Extracorporeal Shock Waves on Bone Marrow Mesenchymal Stem Cells in Patients with Avascular Necrosis of the Femoral Head.

    PubMed

    Zhai, Lei; Sun, Nan; Zhang, Bo; Liu, Shui-Tao; Zhao, Zhe; Jin, Hai-Chao; Ma, Xin-Long; Xing, Geng-Yan

    2016-03-01

    To observe the effect of extracorporeal shock waves (ESWs) on bone marrow mesenchymal stem cells (MSCs) in patients with avascular necrosis of the femoral head, we collected bone marrow donated by patients and then cultivated and passaged MSCs in vitro using density gradient centrifugation combined with adherence screening methods. The P3 generation MSCs were divided into the ESW group and the control group. The cell counting kit for MSCs detected some proliferation differences. Cytochemistry, alkaline phosphatase staining and Alizarin red staining were used to determine alkaline phosphatase content. Simultaneously, real-time polymerase factor α1, osteocalcin and peroxisome proliferator-activated receptor γ. Together, the results of our study first indicate that moderate ESW intensity, which is instrumental in enhancing MSC proliferation, inducing conversion of MSCs into osteoblasts, and inhibiting differentiation of MSCs into adipocytes from MSCs, is one of the effective mechanisms for treating avascular necrosis of the femoral head. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Kbus/Idr, a mutant mouse strain with skeletal abnormalities and hypophosphatemia: identification as an allele of 'Hyp'.

    PubMed

    Moriyama, Kenji; Hanai, Atsuko; Mekada, Kazuyuki; Yoshiki, Atsushi; Ogiwara, Katsueki; Kimura, Atsushi; Takahashi, Takayuki

    2011-08-20

    The endopeptidase encoded by Phex (phosphate-regulating gene with homologies to endopeptidases linked to the X chromosome) is critical for regulation of bone matrix mineralization and phosphate homeostasis. PHEX has been identified from analyses of human X-linked hypophosphatemic rickets and Hyp mutant mouse models. We here demonstrated a newly established dwarfism-like Kbus/Idr mouse line to be a novel Hyp model. Histopathological and X-ray examination with cross experiments were performed to characterize Kbus/Idr. RT-PCR-based and exon-directed PCR screening performed to identify the presence of genetic alteration. Biochemical assays were also performed to evaluate activity of alkaline phosphatase. Kbus/Idr, characterized by bone mineralization defects, was found to be inherited in an X chromosome-linked dominant manner. RT-PCR experiments showed that a novel mutation spanning exon 16 and 18 causing hypophosphatemic rickets. Alkaline phosphatase activity, as an osteoblast marker, demonstrated raised levels in the bone marrow of Kbus/Idr independent of the age. Kbus mice should serve as a useful research tool exploring molecular mechanisms underlying aberrant Phex-associated pathophysiological phenomena.

  12. Tissue sources of serum alkaline phosphatase in 34 hyperthyroid cats: a qualitative and quantitative study.

    PubMed

    Foster, D J; Thoday, K L

    2000-02-01

    The concentration of serum alkaline phosphatase (SALP) is commonly elevated in hyperthyroid cats. Agarose gel electrophoresis, in tris -barbital-sodium barbital buffer, with and without the separation enhancer neuraminidase, was used to investigate the sources of the constituent isoenzymes of SALP in serum samples from 34 hyperthyroid cats, comparing them to sera from five healthy cats and to tissue homogenates from liver, kidney, bone and duodenum. Contrary to previous reports, treatment of serum with neuraminidase made differentiation of the various isoenzymes more difficult to achieve. A single band corresponding to the liver isoenzyme (LALP) was found in 100 per cent of healthy cats. Eighty-eight per cent of the hyperthyroid cats showed two bands, corresponding to the liver and bone (BALP) isoenzymes while 12 per cent showed a LALP band alone. In hyperthyroid cats, there was a significant correlation between the serum L-thyroxine concentrations and the SALP concentrations. These findings suggest pathological changes in both bone and liver in most cases of feline thyrotoxicosis. Copyright 2000 Harcourt Publishers LtdCopyright 2000 Harcourt Publishers Ltd.

  13. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    PubMed

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  14. Artificial Gravity: Effects on Bone Turnover

    NASA Technical Reports Server (NTRS)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  15. Alkaline phosphatase in nasal secretion of cattle: biochemical and molecular characterisation.

    PubMed

    Ghazali, M Faizal; Koh-Tan, H H Caline; McLaughlin, Mark; Montague, Paul; Jonsson, Nicholas N; Eckersall, P David

    2014-09-05

    Nasal secretion (NS) was investigated as a source of information regarding the mucosal and systemic immune status of cattle challenged by respiratory disease. A method for the collection of substantial volumes (~12 ml) of NS from cattle was developed to establish a reference range of analytes that are present in the NS of healthy cattle. Biochemical profiles of NS from a group of 38 healthy Holstein-Friesian cows revealed high alkaline phosphatase (AP) activity of up to 2392 IU/L. The character and source of the high activity of AP in bovine NS was investigated. Histochemical analysis confirmed the localization of the AP enzyme activity to epithelial cells and serous glands of the nasal respiratory mucosa. Analysis of mRNA levels from nasal mucosa by end point RT-PCR and PCR product sequencing confirmed that the AP was locally produced and is identical at the nucleotide level to the non-specific AP splice variant found in bovine liver, bone and kidney. Analysis by isoelectric focussing confirmed that AP was produced locally at a high level in nasal epithelium demonstrating that AP from nasal secretion and nasal mucosa had similar pI bands, though differing from those of the liver, kidney, bone and intestine, suggesting different post-translational modification (PTM) of AP in these tissues. A nasal isozyme of AP has been identified that is present at a high activity in NS, resulting from local production and showing distinctive PTM and may be active in NS as an anti-endotoxin mediator.

  16. Is vaccenic acid (18:1t n-7) associated with an increased incidence of hip fracture? An explanation for the calcium paradox.

    PubMed

    Hamazaki, Kei; Suzuki, Nobuo; Kitamura, Kei-Ichiro; Hattori, Atsuhiko; Nagasawa, Tetsuro; Itomura, Miho; Hamazaki, Tomohito

    2016-06-01

    High calcium intake may increase hip fracture (HF) incidence. This phenomenon, known as the calcium paradox, might be explained by vaccenic acid (18:1t n-7, VA), the highly specific trans fatty acid (TFA) present in dairy products. First, we ecologically investigated the relationship between 18:1 TFA intake and HF incidence using data from 12 to 13 European countries collected before 2000; then we measured the effects of VA and elaidic acid (18:1t n-9, EA) on osteoblasts from goldfish scales (tissues very similar to mammalian bone), with alkaline phosphatase as a marker; and finally we measured the effect of VA on mRNA expression in the scales for the major bone proteins type I collagen and osteocalcin. HF incidence was significantly correlated with 18:1 TFA intake in men (r=0.57) and women (r=0.65). Incubation with 1μmol/L VA and EA for 48h significantly decreased alkaline phosphatase activity by 25% and 21%, respectively. Incubation of scales with 10μmol/L VA for 48h significantly decreased mRNA expression for type I collagen and osteocalcin (by about 50%). In conclusion, VA may be causatively related to HF and could explain the calcium paradox. It may be prudent to reduce 18:1 TFA intake, irrespective of trans positions, to prevent HF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Construction of an alkaline phosphatase-specific two-photon probe and its imaging application in living cells and tissues.

    PubMed

    Zhang, Huatang; Xiao, Peng; Wong, Yin Ting; Shen, Wei; Chhabra, Mohit; Peltier, Raoul; Jiang, Yin; He, Yonghe; He, Jun; Tan, Yi; Xie, Yusheng; Ho, Derek; Lam, Yun-Wah; Sun, Jinpeng; Sun, Hongyan

    2017-09-01

    Alkaline phosphatase (ALP) is a family of enzymes involved in the regulation of important biological processes such as cell differentiation and bone mineralization. Monitoring the activity of ALP in serum can help diagnose a variety of diseases including bone and liver diseases. There has been growing interest in developing new chemical tools for monitoring ALP activity in living systems. Such tools will help further delineate the roles of ALP in biological and pathological processes. Previously reported fluorescent probes has a number of disadvantages that limit their application, such as poor selectivity and short-wavelength excitation. In this work, we report a new two-photon fluorescent probe (TP-Phos) to selectively detect ALP activity. The probe is composed of a two-photon fluorophore, a phosphate recognition moiety, and a self-cleavable adaptor. It offers a number of advantages over previously reported probes, such as fast reaction kinetics, high sensitivity and low cytotoxicity. Experimental results also showed that TP-Phos displayed improved selectivity over DIFMUP, a commonly utilized ALP probe. The selectivity is attributed to the utilization of an ortho-functionalised phenyl phosphate group, which increases the steric hindrance of the probe and the active site of phosphatases. Moreover, the two-photon nature of the probe confers enhanced imaging properties such as increased penetration depth and lower tissue autofluorescence. TP-Phos was successfully used to image the endogenous ALP activity of hippocampus, kidney and liver tissues from rat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    PubMed

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  19. Decreased bone turnover markers in children on long-term parenteral nutrition (PN) for intestinal failure (IF).

    PubMed

    Derepas, Charlène; Kosar, Christina; Avitzur, Yaron; Wales, Paul W; Courtney-Martin, Glenda

    2015-01-01

    Metabolic bone disease (MBD) is a well-recognized but poorly understood complication of long-term parenteral nutrition (PN). Bone histomorphometry in adults has provided useful information but does not provide quantitative measures of bone resorption and is to invasive for children. Measurement of bone turnover markers provides an alternative less invasive approach. We therefore aimed to measure bone turnover markers in children on long-term PN for intestinal failure (IF), and to compare them to age- and gender-matched controls. Serum concentrations of osteocalcin (OC), bone-specific alkaline phosphatase (BSAP), and c-telopeptide (CTx) were measured in IF patients treated at a multidisciplinary intestinal rehabilitation and home PN program at the Hospital for Sick Children, Toronto, Canada. Age- and gender-matched control participants were recruited for comparison. A total of 13 IF patients and 20 control participants were recruited. IF patients had lower serum OC and CTx concentrations when compared with controls: 42.43 ± 11.54 vs 68.39 ± 20.95 µg/L (P < .01) and 7.454 ± 2.17 vs 9.246 ± 1.92 (P < .05; mean ± SD) µg/L for OC and CTx, respectively. In a subgroup of 9 IF patients for whom BMD was available, OC and CTx concentration were negatively correlated to BMD (g/cm(2)) and BMD z score. Bone turnover markers may be useful indicators for identifying children on long-term PN at risk of MBD. Further studies are needed to validate the current results and determine the factors that influence the occurrence and evolution of MBD in children on PN. © 2013 American Society for Parenteral and Enteral Nutrition.

  20. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats.

    PubMed

    Shen, Chwan-Li; Yeh, James K; Rasty, Jahan; Li, Yong; Watkins, Bruce A

    2006-03-01

    This study evaluated the effect of a fat blend containing long-chain (LC) n-3 PUFA on bone mineral density (BMD) and bone metabolism in gonad-intact middle-aged male rats (12 months old, n 28). Seven rats were killed on day 0 of dietary intervention to determine the baseline BMD. The remaining rats (seven per group) were fed a diet with one of the following dietary lipid treatments (g/kg diet): 167 g safflower oil + 33 g menhaden oil (N6 + N3 diet, control), 200 g safflower oil (N6 diet, almost devoid of LC n-3 PUFA), or 190 g menhaden oil + 10 g corn oil (N3 diet, rich in LC n-3 PUFA) for 20 weeks. After 20 weeks, all dietary treatment groups had a lower BMD compared with the baseline reference. However, rats fed the N3 diet had the highest bone mineral content and cortical + subcortical BMD compared with those fed the N6 and control N6 + N3 diet. Compared with the control (N6 + N3) group, rats fed the N3 diet had higher values for serum insulin-like growth factor-I, parathyroid hormone, 1,25-(OH)2 vitamin D3 and bone-specific alkaline phosphatase activity, but lower bone NO production and urinary Ca, whereas rats fed the N6 diet had higher bone prostaglandin E2 production and serum pyridinoline. These findings indicate a protective action of LC n-3 PUFA on ageing-induced bone loss in gonad-intact middle-aged male rats through a modulation of local factors and systemic calcitrophic hormones.

  1. Biochemical bone turnover markers in diabetes mellitus - A systematic review.

    PubMed

    Starup-Linde, Jakob; Vestergaard, Peter

    2016-01-01

    Diabetes mellitus is associated with an increased risk of fractures, which is not explained by bone mineral density. Other markers as bone turnover markers (BTMs) may be useful. To assess the relationship between BTMs, diabetes, and fractures. A systematic literature search was conducted in August 2014. The databases searched were Medline at Pubmed and Embase. Medline at Pubmed was searched by "Diabetes Mellitus" (MESH) and "bone turnover markers" and Embase was searched using the Emtree by "Diabetes Mellitus" and "bone turnover", resulting in 611 studies. The eligibility criteria for the studies were to assess BTM in either type 1 diabetes (T1D) or type 2 diabetes (T2D) patients. Of the 611 eligible studies, removal of duplicates and screening by title and abstract lead to 114 potential studies for full-text review. All these studies were full-text screened for eligibility and 45 studies were included. Two additional studies were added from other sources. Among the 47 studies included there were 1 meta-analysis, 29 cross-sectional studies, 13 randomized controlled trials, and 4 longitudinal studies. Both T1D and T2D were studied. Most studies reported fasting BTM and excluded renal disease. Markers of bone resorption and formation seem to be lower in diabetes patients. Bone specific alkaline phosphatase is normal or increased, which suggests that the matrix becomes hypermineralized in diabetes patients. The BTMs: C-terminal cross-link of collagen, insulin-like growth factor-1, and sclerostin may potentially predict fractures, but longitudinal trials are needed. This article is part of a Special Issue entitled Bone and diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.

    PubMed

    Nah, H D; Pacifici, M; Gerstenfeld, L C; Adams, S L; Kirsch, T

    2000-03-01

    Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can be expressed in specific in vitro and in vivo microenvironments.

  3. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites.

    PubMed

    Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning

    2018-04-01

    The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.

  4. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  5. Bone Mineral Density, Bone Turnover, and Systemic Inflammation in Non-cirrhotics with Chronic Hepatitis C.

    PubMed

    Lai, Jennifer C; Shoback, Dolores M; Zipperstein, Jacob; Lizaola, Blanca; Tseng, Samuel; Terrault, Norah A

    2015-06-01

    Whether chronic HCV, a disease characterized by systemic inflammation, impacts bone mineral density (BMD) independent of cirrhosis is unknown. We aimed to evaluate the association between BMD, systemic inflammation, and markers of bone turnover in chronic HCV without cirrhosis. Non-cirrhotics, 40-60 years old, with chronic HCV underwent measurement of: (1) BMD by dual-energy X-ray absorptiometry scan and (2) serum markers of systemic inflammation and bone turnover. By Chi-squared or t test, we compared those with normal versus low BMD. Of the 60 non-cirrhotics, 53 % were female and 53 % Caucasian. Mean (SD) age was 53.3 years (5.7), total bilirubin 0.7 mg/dL (0.3), creatinine 0.8 mg/dL (0.2), and body mass index 28.4 kg/m(2) (6.5). Low BMD was observed in 42 %: 30 % had osteopenia, 12 % had osteoporosis. Elevated tumor necrosis factor α, interleukin-6, and C-reactive protein levels were found in 26, 32, and 5 %, respectively, but did not differ by BMD group (p > 0.05). Patients with low BMD had higher serum phosphorus (4.1 vs. 3.5 mg/dL) and pro-peptide of type 1 collagen (P1NP; 73.1 vs. 47.5 ng/mL) [p < 0.05], but similar bone-specific alkaline phosphatase, serum C-telopeptide, and parathyroid hormone levels. Low BMD is prevalent in 40- to 60-year-old non-cirrhotics with chronic HCV, but not associated with systemic inflammatory markers. Elevated P1NP levels may help to identify those at increased risk of bone complications in this population. Chronic HCV should be considered a risk factor for bone loss, prompting earlier BMD assessments in both men and women.

  6. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.

    PubMed

    He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. High Serum Retinol as a Relevant Contributor to Low Bone Mineral Density in Postmenopausal Osteoporotic Women.

    PubMed

    Navarro-Valverde, Cristina; Caballero-Villarraso, Javier; Mata-Granados, José M; Casado-Díaz, Antonio; Sosa-Henríquez, Manuel; Malouf-Sierra, Jorge; Nogués-Solán, Xavier; Rodríguez-Mañas, Leocadio; Cortés-Gil, Xavier; Delgadillo-Duarte, Joaquín; Quesada-Gómez, José Manuel

    2018-06-01

    There is controversial information about the impact of vitamin A on bone. Some epidemiological studies show that excessive intake of vitamin A, or an excess of serum vitamin A, has related with adverse impact on bone mass; however, other studies did not find these links, and some authors have proposed that this vitamin might promote a better bone health. The present work aims to contribute to clarify the real role of vitamin A in bone tissue. For this purpose, a cross-sectional study of 154 osteoporotic non-treated postmenopausal women (> 65 years old) was carried out. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. We assessed concentrations of serum retinol, osteocalcin, parathyroid hormone, alkaline phosphatase, calcium, and phosphorus. We also studied demographic and anthropometric parameters. Spearman's correlations between retinol levels and other variables found negative correlations with BMD in both lumbar spine (R = - 0.162, P < 0.01) and femoral neck (R = - 0.182, P < 0.01), as well as alkaline phosphatase (R = - 0.110; P < 0.05) and phosphorus (R = - 0.110; P < 0.05). A positive correlation between retinol and fertile window was observed (R = 0.158; P < 0.01). After multivariable adjustment, we still found a negative correlation between serum retinol and BMD, both at the lumbar spine (R = - 0.210; P < 0.01) and at the femoral neck (R = - 0.324, P < 0.001). It is concluded that elevated serum-retinol levels are associated with an increased risk of low bone mass and thus with osteoporotic fractures. Therefore, osteoporosis-risk assessment should include quantification of serum metabolite of vitamin A.

  8. EFFECTS OF LONG-TERM ALENDRONATE TREATMENT ON A LARGE SAMPLE OF PEDIATRIC PATIENTS WITH OSTEOGENESIS IMPERFECTA.

    PubMed

    Lv, Fang; Liu, Yi; Xu, Xiaojie; Wang, Jianyi; Ma, Doudou; Jiang, Yan; Wang, Ou; Xia, Weibo; Xing, Xiaoping; Yu, Wei; Li, Mei

    2016-12-01

    Osteogenesis imperfecta (OI) is a group of inherited diseases characterized by reduced bone mass, recurrent bone fractures, and progressive bone deformities. Here, we evaluate the efficacy and safety of long-term treatment with alendronate in a large sample of Chinese children and adolescents with OI. In this prospective study, a total of 91 children and adolescents with OI were included. The patients received 3 years' treatment with 70 mg alendronate weekly and 500 mg calcium daily. During the treatment, fracture incidence, bone mineral density (BMD), and serum levels of the bone turnover biomarkers (alkaline phosphatase [ALP] and cross-linked C-telopeptide of type I collagen [β-CTX]) were evaluated. Linear growth speed and parameters of safety were also measured. After 3 years of treatment, the mean annual fracture incidence decreased from 1.2 ± 0.8 to 0.2 ± 0.3 (P<.01). BMD at the lumbar spine and femoral neck significantly increased by 74.6% and 39.5%, with their BMD Z-score increasing from -3.0 to 0.1 and from -4.2 to -1.3, respectively (both P<.01 vs. baseline). In addition, serum ALP and β-CTX levels decreased by 35.6% and 44.3%, respectively (both P<.05 vs. baseline). Height significantly increased, but without an obvious increase in its Z-score. Patient tolerance of alendronate was good. Three years' treatment with alendronate was demonstrated for the first time to significantly reduce fracture incidence, increase lumbar spine and femoral neck BMD, and decrease bone turnover biomarkers in Chinese children and adolescents with OI. ALP = alkaline phosphatase β-CTX = cross-linked C-telopeptide of type I collagen BMD = bone mineral density BP = bisphosphonate DXA = dual-energy X-ray absorptiometry 25OHD = 25-hydroxyvitamin D OI = osteogenesis imperfecta PTH = parathyroid hormone.

  9. Detection of alkaline phosphatase in canine cells previously stained with Wright-Giemsa and its utility in differentiating osteosarcoma from other mesenchymal tumors.

    PubMed

    Ryseff, Julia K; Bohn, Andrea A

    2012-09-01

    Osteosarcoma (OSA) is a common primary bone tumor in dogs. Demonstration of alkaline phosphatase (ALP) reactivity by tumor cells on unstained slides is useful in differentiating osteosarcoma from other types of sarcoma. However, unstained slides are not always available. The objectives of this study were to evaluate the diagnostic utility of detecting ALP expression in differentiating osteosarcoma from other sarcomas in dogs using cytologic material previously stained with Wright-Giemsa stain and to assess the sensitivity and specificity of ALP expression for diagnosing osteosarcoma using a specific protocol. Archived aspirates of histologically confirmed sarcomas in dogs that had been previously stained with Wright-Giemsa stain were treated with 5-bromo, 4-chloro, 3-indolyl phosphate/nitroblue tetrazolium (BCIP/NBT) as a substrate for ALP. Cells were evaluated for expression of ALP after incubation with BCIP/NBT for 1 hour. Sensitivity and specificity of ALP expression for diagnosis of OSA were calculated. In samples from 83 dogs, cells from 15/17 OSAs and from 4/66 tumors other than OSA (amelanotic melanoma, gastrointestinal stromal tumor, collision tumor, and anaplastic sarcoma) expressed ALP. Sensitivity and specificity of ALP expression detected using BCIP/NBT substrate applied to cells previously stained with Wright-Giemsa stain for OSA were 88 and 94%, respectively. ALP expression detected using BCIP/NBT substrate applied to previously stained cells is useful in differentiating canine OSA from other mesenchymal neoplasms. © 2012 American Society for Veterinary Clinical Pathology.

  10. Effect of autogenous and fresh-frozen bone grafts on osteoblast differentiation.

    PubMed

    Ferraz, E P; Xavier, S P; Azevedo, F G; de Oliveira, F S; Beloti, M M; Rosa, A L

    2015-01-01

    Fresh-frozen bone allograft (FFBA) is an alternative to autogenous bone (AB) for reconstructing maxillary bone. Despite the promising clinical results, cell responses to FFBA and AB were not evaluated. Thus, our aim was to compare cells harvested from maxillary reconstructed sites with either AB or FFBA in terms of osteoblast differentiation and to evaluate the effect of culturing cells in contact with FFBA. Cells harvested from three patients submitted to bilateral maxillary reconstruction with AB and FFBA were cultured to evaluate: proliferation, alkaline phosphatase activity, extracellular matrix mineralization and gene expression of osteoblastic markers. The effect of FFBA on osteoblast differentiation was studied by culturing cells harvested from AB in contact with FFBA and evaluating the same parameters. Data were compared using either two-way ANOVA followed by Tukey-b test or Student's t test (p≤0.05). Cell proliferation was higher in cultures from AB grafted sites and extracellular matrix mineralization was higher in cultures derived from FFBA grafted sites. The gene expression of alkaline phosphatase, RUNX2, bone sialoprotein and osteocalcin was higher in cells derived from FFBA compared with cells from AB grafted sites. However, the exposure of cells derived from AB to FFBA particles did not have any remarkable effect on osteoblast differentiation. These results indicate the higher osteogenic activity of cells derived from FFBA compared with AB reconstructed sites, offering an explanation at cellular level of why FFBA could be a suitable alternative to AB for reconstructing maxillary bone defects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins.

    PubMed

    Zwart, Sara R; Hargens, Alan R; Lee, Stuart M C; Macias, Brandon R; Watenpaugh, Donald E; Tse, Kevin; Smith, Scott M

    2007-02-01

    Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined this potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest and on bed rest days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated-measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P<0.001); parathyroid hormone (P=0.06), bone-specific alkaline phosphatase (P=0.06), and 1,25-dihydroxyvitamin D (P=0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 in the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers.

  12. IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes.

    PubMed

    Moyer-Mileur, Laurie J; Slater, Hillarie; Jordan, Kristine C; Murray, Mary A

    2008-12-01

    Children and adolescents with poorly controlled type 1 diabetes mellitus (T1DM) are at risk for decreased bone mass. Growth hormone (GH) and its mediator, IGF-1, promote skeletal growth. Recent observations have suggested that children and adolescents with T1DM are at risk for decreased bone mineral acquisition. We examined the relationships between metabolic control, IGF-1 and its binding proteins (IGFBP-1, -3, -5), and bone mass in T1DM in adolescent girls 12-15 yr of age with T1DM (n = 11) and matched controls (n = 10). Subjects were admitted overnight and given a standardized diet. Periodic blood samples were obtained, and bone measurements were performed. Serum GH, IGFBP-1 and -5, glycosylated hemoglobin (HbA(1c)), glucose, and urine magnesium levels were higher and IGF-1 values were lower in T1DM compared with controls (p < 0.05). Whole body BMC/bone area (BA), femoral neck areal BMD (aBMD) and bone mineral apparent density (BMAD), and tibia cortical BMC were lower in T1DM (p < 0.05). Poor diabetes control predicted lower IGF-1 (r(2) = 0.21) and greater IGFBP-1 (r(2) = 0.39), IGFBP-5 (r(2) = 0.38), and bone-specific alkaline phosphatase (BALP; r(2) = 0.41, p < 0.05). Higher urine magnesium excretion predicted an overall shorter, lighter skeleton, and lower tibia cortical bone size, mineral, and density (r(2) = 0.44-0.75, p < 0.05). In the T1DM cohort, earlier age at diagnosis was predictive of lower IGF-1, higher urine magnesium excretion, and lighter, thinner cortical bone (r(2) >or=0.45, p < 0.01). We conclude that poor metabolic control alters the GH/IGF-1 axis, whereas greater urine magnesium excretion may reflect subtle changes in renal function and/or glucosuria leading to altered bone size and density in adolescent girls with T1DM.

  13. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins

    PubMed Central

    Zwart, Sara R.; Hargens, Alan R.; Lee, Stuart M. C.; Macias, Brandon R.; Watenpaugh, Donald E.; Tse, Kevin; Smith, Scott M.

    2007-01-01

    Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined the potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest (BR) and on BR days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism, and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P < 0.001); parathyroid hormone (P = 0.06), bone-specific alkaline phosphatase (P = 0.06), and 1,25-dihydroxyvitamin D (P = 0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 for the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously-published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers. PMID:17070743

  14. Alterations of bone microstructure and strength in end-stage renal failure.

    PubMed

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  15. Home-based resistance training improves femoral bone mineral density in women on hormone therapy.

    PubMed

    Judge, James Oat; Kleppinger, Alison; Kenny, Anne; Smith, Jo-Anne; Biskup, Brad; Marcella, Glenn

    2005-09-01

    This study tested whether moderate resistance training would improve femoral bone mineral density (BMD) in long-term users of hormone therapy with low BMD. The study was a 2-year randomized, controlled, trial (RCT) of moderate resistance training of either the lower extremity or the upper extremity. Eighty-five women participated in a 6-month observation period. The setting was center-based and home-based training. The participants were 189 women aged 59-78 years, with total femur T-scores from -0.8 to -2.8 and on hormone therapy (HT) for a minimum of 2 years (mean 11.8 years); 153 completed the trial. Lower extremity training used weight belts (mean 7.8 kg) in step-ups and chair rises; upper extremity training used elastic bands and dumbbells. Measurements were BMD and body composition [dual-energy X-ray absorptiometry (DXA)], bone turnover markers. Total femoral BMD showed a downward trend during the observation period: 0.35%+/-0.18% (P=0.14). The response to training was similar in the upper and lower groups in the primary outcomes. At 2 years, total femoral BMD increased 1.5% (95% CI 0.8%-2.2%) in the lower group and 1.8% (95% CI 1.1%-2.5%) in the upper group. Trochanter BMD increased 2.4% (95% CI 1.3%-3.5%) in the lower group and 2.5% (95% CI 1.4%-3.6%) in the upper group (for both analyses time effect P<0.001). At 1 year, a bone resorption marker (C-telopeptide) decreased 9% (P=0.04). Bone formation markers, bone-specific alkaline phosphatase, decreased 5% (P<0.001), and N-terminal type I procollagen peptide decreased 7% (P=0.01). Body composition (percent lean and percent body fat) was maintained in both groups. We concluded that long-term moderate resistance training reversed bone loss, decreased bone turnover, increased femur BMD, and maintained body composition. The similarity of response in upper and lower groups supports a systemic response rather than a site-specific response to moderate resistance training.

  16. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring.

    PubMed

    Garnero, Patrick

    2008-01-01

    Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increased risk of fracture. While the level of bone mass can be estimated by measuring bone mineral density (BMD) using dual X-ray absorptiometry (DXA), its measurement does not capture all the risk factors for fracture. Quantitative changes in skeletal turnover can be assessed easily and non-invasively by the measurement of serum and urinary biochemical markers; the most sensitive markers include serum osteocalcin, bone specific alkaline phosphatase, the N-terminal propeptide of type I collagen for bone formation, and the crosslinked C- (CTX) and N- (NTX) telopeptides of type I collagen for bone resorption. Advances in our knowledge of bone matrix biochemistry, most notably of post-translational modifications in type I collagen, are likely to lead to the development of new biochemical markers that reflect changes in the material property of bone, an important determinant of bone strength. Among those, the measurement of the urinary ratio of native (alpha) to isomerized (beta) CTX - an index of bone matrix maturation - has been shown to be predictive of fracture risk independently of BMD and bone turnover. In postmenopausal osteoporosis, levels of bone resorption markers above the upper limit of the premenopausal range are associated with an increased risk of hip, vertebral, and nonvertebral fracture, independent of BMD. Therefore, the combined use of BMD measurement and biochemical markers is helpful in risk assessment, especially in those women who are not identified as at risk by BMD measurement alone. Levels of bone markers decrease rapidly with antiresorptive therapies, and the levels reached after 3-6 months of therapy have been shown to be more strongly associated with fracture outcome than changes in BMD. Preliminary studies indicate that monitoring changes of bone formation markers could also be useful to monitor anabolic therapies, including intermittent parathyroid hormone administration and, possibly, to improve adherence to treatment. Thus, repeated measurements of bone markers during therapy may help improve the management of osteoporosis in patients.

  17. The effects of a 6-month resistance training and dried plum consumption intervention on strength, body composition, blood markers of bone turnover, and inflammation in breast cancer survivors.

    PubMed

    Simonavice, Emily; Liu, Pei-Yang; Ilich, Jasminka Z; Kim, Jeong-Su; Arjmandi, Bahram; Panton, Lynn B

    2014-06-01

    The purpose of this study was to examine the effects of resistance training (RT) and dried plum (DP) consumption on strength, body composition, blood markers of bone, and inflammation in breast cancer survivors (BCS). Twenty-three BCS (RT, n = 12; RT+DP, n = 11), aged 64 ± 7 years, were evaluated at baseline and after 6 months of intervention on the following: muscular strength (chest press and leg extension) via 1-repetition maximums (1RMs); body composition, specifically bone mineral density (BMD) by dual energy X-ray absorptiometry; biochemical markers of bone turnover (bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP-5b)); and inflammation (C-reactive protein (CRP)). Target RT prescription was 2 days/week of 10 exercises, including 2 sets of 8-12 repetitions at ∼60%-80% of 1RM. RT+DP also consumed 90 g of DP daily. There were no baseline differences between groups or any group-by-time interactions for any of the variables. BCS increased upper (p < 0.05) (RT: 64 ± 14 to 80 ± 17 kg; RT+DP: 72 ± 23 to 91 ± 20 kg) and lower (p < 0.05) (RT: 69 ± 20 to 87 ± 28 kg; RT+DP: 78 ± 19 to 100 ± 21 kg) body strength. Body composition and BMD improvements were not observed. TRAP-5b decreased in the RT group (p < 0.05) (4.55 ± 1.57 to 4.04 ± 1.63 U/L) and the RT+DP group (p = 0.07) (5.10 ± 2.75 to 4.27 ± 2.03 U/L). Changes in BAP and CRP were not observed. RT was effective for improving biochemical markers of bone turnover and muscular strength in BCS. A longer and higher intensity intervention may be needed to reveal the true effects of RT and DP on body composition and biochemical markers of inflammation.

  18. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.

    PubMed

    Kim, I S; Song, Y M; Lee, B; Hwang, S J

    2012-12-01

    Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.

  19. Skeletogenesis in the swell shark Cephaloscyllium ventriosum

    PubMed Central

    Eames, B Frank; Allen, Nancy; Young, Jonathan; Kaplan, Angelo; Helms, Jill A; Schneider, Richard A

    2007-01-01

    Extant chondrichthyans possess a predominantly cartilaginous skeleton, even though primitive chondrichthyans produced bone. To gain insights into this peculiar skeletal evolution, and in particular to evaluate the extent to which chondrichthyan skeletogenesis retains features of an osteogenic programme, we performed a histological, histochemical and immunohistochemical analysis of the entire embryonic skeleton during development of the swell shark Cephaloscyllium ventriosum. Specifically, we compared staining properties among various mineralizing tissues, including neural arches of the vertebrae, dermal tissues supporting oral denticles and Meckel's cartilage of the lower jaw. Patterns of mineralization were predicted by spatially restricted alkaline phosphatase activity earlier in development. Regarding evidence for an osteogenic programme in extant sharks, a mineralized tissue in the perichondrium of C. ventriosum neural arches, and to a lesser extent a tissue supporting the oral denticle, displayed numerous properties of bone. Although we uncovered many differences between tissues in Meckel's cartilage and neural arches of C. ventriosum, both elements impart distinct tissue characteristics to the perichondral region. Considering the evolution of osteogenic processes, shark skeletogenesis may illuminate the transition from perichondrium to periosteum, which is a major bone-forming tissue during the process of endochondral ossification. PMID:17451531

  20. Comparison of Correlates of Bone Mineral Density in Individuals Adhering to Lacto-Ovo, Vegan, or Omnivore Diets: A Cross-Sectional Investigation

    PubMed Central

    Knurick, Jessica R.; Johnston, Carol S.; Wherry, Sarah J.; Aguayo, Izayadeth

    2015-01-01

    Vegetarian diets are associated with factors that may not support bone health, such as low body mass and low intakes of protein; yet, these diets are alkaline, a factor that favors bone mineral density (BMD). This study compared the correlates of BMD in young, non-obese adults consuming meat-based (n = 27), lacto-ovo vegetarian (n = 27), or vegan (n = 28) diets for ≥1 year. A 24 h diet recall, whole body DXA scan, 24 h urine specimen, and fasting blood sample were collected from participants. BMD did not differ significantly between groups. Protein intake was reduced ~30% in individuals consuming lacto-ovo and vegan diets as compared to those consuming meat-based diets (68 ± 24, 69 ± 29, and 97 ± 47 g/day respectively, p = 0.006); yet dietary protein was only associated with BMD for those following vegan diets. Urinary pH was more alkaline in the lacto-ovo and vegan groups versus omnivores (6.5 ± 0.4, 6.7 ± 0.4, and 6.2 ± 0.4 respectively, p = 0.003); yet urinary pH was associated with BMD in omnivores only. These data suggest that plant-based diets are not detrimental to bone in young adults. Moreover, diet prescriptions for bone health may vary among diet groups: increased fruit and vegetable intake for individuals with high meat intakes and increased plant protein intake for individuals who follow a vegetarian diet plan. PMID:25970147

  1. Comparison of correlates of bone mineral density in individuals adhering to lacto-ovo, vegan, or omnivore diets: a cross-sectional investigation.

    PubMed

    Knurick, Jessica R; Johnston, Carol S; Wherry, Sarah J; Aguayo, Izayadeth

    2015-05-11

    Vegetarian diets are associated with factors that may not support bone health, such as low body mass and low intakes of protein; yet, these diets are alkaline, a factor that favors bone mineral density (BMD). This study compared the correlates of BMD in young, non-obese adults consuming meat-based (n = 27), lacto-ovo vegetarian (n = 27), or vegan (n = 28) diets for ≥1 year. A 24 h diet recall, whole body DXA scan, 24 h urine specimen, and fasting blood sample were collected from participants. BMD did not differ significantly between groups. Protein intake was reduced ~30% in individuals consuming lacto-ovo and vegan diets as compared to those consuming meat-based diets (68 ± 24, 69 ± 29, and 97 ± 47 g/day respectively, p = 0.006); yet dietary protein was only associated with BMD for those following vegan diets. Urinary pH was more alkaline in the lacto-ovo and vegan groups versus omnivores (6.5 ± 0.4, 6.7 ± 0.4, and 6.2 ± 0.4 respectively, p = 0.003); yet urinary pH was associated with BMD in omnivores only. These data suggest that plant-based diets are not detrimental to bone in young adults. Moreover, diet prescriptions for bone health may vary among diet groups: increased fruit and vegetable intake for individuals with high meat intakes and increased plant protein intake for individuals who follow a vegetarian diet plan.

  2. Endochondral bone formation in embryonic mouse pre-metatarsals

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1992-01-01

    Long term exposure to a reduced gravitational environment has a deleterious effect on bone. The developmental events which occur prior to initial bone deposition will provide insight into the regulation of mature bone physiology. We have characterized a system in which the events preceding bone formation take place in an isolated in vitro organ culture environment. We show that cultured pre-metatarsal tissue parallels development of pre-metatarsal tissue in the embryo. Both undergo mesenchyme differentiation and morphogenesis to form a cartilage rod, which resembles the future bone, followed by terminal chondrocyte differentiation in a definite morphogenetic pattern. These sequential steps occur prior to osteoblast maturation and bone matrix deposition in the developing organism. Alkaline phosphatase (ALP) activity is a distinctive enzymatic marker for mineralizing tissues. We have measured this activity throughout pre-metatarsal development and show (a) where in the tissue it is predominantly found, and (b) that this is indeed the mineralizing isoform of the enzyme.

  3. Bone marrow adipocytes: a neglected target tissue for growth hormone.

    PubMed

    Gevers, Evelien F; Loveridge, Nigel; Robinson, Iain C A F

    2002-10-01

    Bone marrow (BM) contains numerous adipocytes. These share a common precursor with osteoblasts and chondrocytes, but their function is unknown. It is unclear what regulates the differentiation of these three different cell types, though their subsequent metabolic activity is under hormonal regulation. GH and estrogen stimulate bone growth and mineralization, by direct effects on chondrocytes and osteoblasts. GH also stimulates lipolysis in subcutaneous and visceral adipocytes. However, adipocytes in BM have largely been ignored as potential targets for GH or estrogen action. We have addressed this by measuring BM adipocyte number, perimeter and area as well as bone area and osteoblast activity in GH-deficient dwarf (dw/dw), normal, or ovariectomized (Ovx) rats, with or without GH, IGF-1, PTH, or estrogen treatment or high fat feeding. Marrow adipocyte numbers were increased 5-fold (P < 0.001) in dw/dw rats, and cell size was also increased by 20%. These values returned toward normal in dw/dw rats given GH but not when given IGF-1. Cancellous bone area and osteoblast number were significantly (P < 0.005) lower in dw/dw rats, though alkaline phosphatase (ALP) activity in individual osteoblasts was unchanged. GH treatment increased % osteoblast covered bone surface without affecting individual cell ALP activity. Ovariectomy in normal or dw/dw rats had no affect on marrow adipocyte number nor size, although estrogen treatment in ovariectomized (Ovx) normal rats did increase adipocyte number. Ovx decreased tibial cancellous bone area in normal rats (64%; P < 0.05) and decreased osteoblast ALP-activity (P < 0.01) but did not affect the percentage of osteoblast-covered bone surface. Estrogen replacement reversed these changes. While treatment with PTH by continuous sc infusion decreased cancellous bone (P < 0.05) and high fat feeding increased the size of BM adipocytes (P < 0.01), they did not affect BM adipocyte number. These results suggest that GH has a specific action on BM adipocytes that is not simply due to altered bone or fat metabolism. We conclude that the marrow adipocyte lineage is an important and specific target for GH action. The inverse relationship between adipocyte number and osteoblast covered bone surface, together with the well-known effects of GH on epiphysial chondrocytes leads us to propose that GH plays two important roles on cells of all three lineages. During differentiation, it regulates the numbers of each cell type that are maintained from the common precursor lineage. Subsequently it has cell-specific effects on the metabolic activities of the differentiated cells. In the case of marrow adipocytes, GH-dependent lipolysis could provide an important hormonally regulated local high energy source in bone.

  4. A case report of osteomalacia unmasking primary biliary cirrhosis.

    PubMed

    Pawlowska, M; Kapeluto, J E; Kendler, D L

    2015-07-01

    Osteomalacia, a metabolic bone disease characterized by the inability to mineralize new osteoid, can be caused by vitamin D deficiency. We report a patient with symptomatic, biochemical, and imaging evidence of osteomalacia due to vitamin D deficiency, who as a result of work up for bone disease was diagnosed with early primary biliary cirrhosis. Osteomalacia was treated with high-dose vitamin D and serial bone density scans showed evidence of increasing bone mineral density suggesting osteoid mineralization in response to treatment. The diagnosis of cholestatic liver disease should be considered in all patients presenting with osteomalacia due to vitamin D deficiency, particularly if other cholestatic liver enzymes are elevated in addition to alkaline phosphatase.

  5. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    PubMed Central

    2010-01-01

    Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue. PMID:20942943

  6. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features.

    PubMed

    Wehrhan, Falk; Hyckel, Peter; Ries, Jutta; Stockmann, Phillip; Nkenke, Emeka; Schlegel, Karl A; Neukam, Friedrich W; Amann, Kerstin

    2010-10-13

    Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue.

  7. Osteopetrosis, hypophosphatemia, and phosphaturia in a young man: a case presentation and differential diagnosis.

    PubMed

    Mitri, Zahi; Tangpricha, Vin

    2012-01-01

    We report the case of a 30-year-old African-American male with osteopetrosis and hypophosphatemia, presenting with diffuse myalgias. Laboratory evaluation performed revealed a low serum phosphorus level with urinary phosphate wasting, low calcium, and 25-hydroxyvitamin D concentrations, as well as elevated alkaline phosphatase. Skull and pelvic radiographs revealed high bone density consistent with high bone mass found on bone mineral density reports. PHEX gene mutation analysis was negative. Patient was started on calcium and phosphorus replacement, and he clinically improved. This paper will review the different subtypes of osteopetrosis, and the evaluation of hypophosphatemia.

  8. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    NASA Astrophysics Data System (ADS)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  9. Alkaline Phosphatase, an Unconventional Immune Protein.

    PubMed

    Rader, Bethany A

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.

  10. Effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise on markers of bone metabolism, microarchitecture and turnover in obese Zucker rats.

    PubMed

    Nebot, Elena; Aparicio, Virginia A; Coll-Risco, Irene; Camiletti-Moirón, Daniel; Schneider, Johannes; Kapravelou, Garyfallia; Heimel, Patrick; Martínez, Rosario; Andrade, Ana; Slezak, Paul; Redl, Heinz; Porres, Jesús M; López-Jurado, María; Pietschmann, Peter; Aranda, Pilar

    2016-11-01

    Weight loss is a public health concern in obesity-related diseases such as metabolic syndrome, and the protein level of the diets seem to be crucial for the development and maintenance of bone. The nature of exercise and whether exercise in combination with moderately high-protein dietary interventions could protect against potential bone mass deficits remains unclear. To investigate the effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise (IASE) protocol on bone status, and to assess potential interaction effects (i.e. diet*IASE). Male Zucker fatty rats were randomized distributed into 4 groups (n=8): normoprotein+sedentary; normoprotein+exercise; moderately high-protein+sedentary, and moderately high-protein+exercise. Training groups conducted an IASE program, 5days/week for 2months. Markers of bone metabolism were measured in plasma. Parameters of bone mass and 3D outcomes for trabecular and cortical bone microarchitecture were assessed by micro-computed tomography. Femur length, plasma osteocalcin, sclerostin, osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, insulin, leptin, PTH, uric acid and urinary phosphorus levels were lower in the moderately high-protein compared to the normoprotein groups (all, p<0.05), whereas plasma alkaline phosphatase, aspartate aminotransferase, alanine transaminase, and urinary uric acid concentrations, and cortical total volume (TV) and bone volume (BV) were higher in the moderately high-protein (all, p<0.01). Final body weight and alkaline phosphatase levels were lower in the exercise compared to the sedentary (both, p<0.05), whereas femur length and weight, aminoterminal propeptides of type I procollagen and C-terminal telopeptides of type I collagen concentrations, and cortical TV and BV were higher in the exercise compared to the sedentary groups (all, p<0.05). The combination of interventions may be effective to enhance trabecular bone microarchitecture and BMD, and has a partial impact on cortical bone in obese rats. Nevertheless, they do not induce any alteration on the bone turnover markers. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Bone mass density estimation: Archimede’s principle versus automatic X-ray histogram and edge detection technique in ovariectomized rats treated with germinated brown rice bioactives

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Binti; Esmaile, Maher Faik; Zuki, Abu Bakar Zakaria

    2013-01-01

    Background Bone mass density is an important parameter used in the estimation of the severity and depth of lesions in osteoporosis. Estimation of bone density using existing methods in experimental models has its advantages as well as drawbacks. Materials and methods In this study, the X-ray histogram edge detection technique was used to estimate the bone mass density in ovariectomized rats treated orally with germinated brown rice (GBR) bioactives, and the results were compared with estimated results obtained using Archimede’s principle. New bone cell proliferation was assessed by histology and immunohistochemical reaction using polyclonal nuclear antigen. Additionally, serum alkaline phosphatase activity, serum and bone calcium and zinc concentrations were detected using a chemistry analyzer and atomic absorption spectroscopy. Rats were divided into groups of six as follows: sham (nonovariectomized, nontreated); ovariectomized, nontreated; and ovariectomized and treated with estrogen, or Remifemin®, GBR-phenolics, acylated steryl glucosides, gamma oryzanol, and gamma amino-butyric acid extracted from GBR at different doses. Results Our results indicate a significant increase in alkaline phosphatase activity, serum and bone calcium, and zinc and ash content in the treated groups compared with the ovariectomized nontreated group (P < 0.05). Bone density increased significantly (P < 0.05) in groups treated with estrogen, GBR, Remifemin®, and gamma oryzanol compared to the ovariectomized nontreated group. Histological sections revealed more osteoblasts in the treated groups when compared with the untreated groups. A polyclonal nuclear antigen reaction showing proliferating new cells was observed in groups treated with estrogen, Remifemin®, GBR, acylated steryl glucosides, and gamma oryzanol. There was a good correlation between bone mass densities estimated using Archimede’s principle and the edge detection technique between the treated groups (r2 = 0.737, P = 0.004). Conclusion Our study shows that GBR bioactives increase bone density, which might be via the activation of zinc formation and increased calcium content, and that X-ray edge detection technique is effective in the measurement of bone density and can be employed effectively in this respect. PMID:24187491

  12. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    PubMed

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  13. Classification, imaging, biopsy and staging of osteosarcoma

    PubMed Central

    Kundu, Zile Singh

    2014-01-01

    Osteosarcoma is the most common primary osseous malignancy excluding malignant neoplasms of marrow origin (myeloma, lymphoma and leukemia) and accounts for approximately 20% of bone cancers. It predominantly affects patients younger than 20 years and mainly occurs in the long bones of the extremities, the most common being the metaphyseal area around the knee. These are classified as primary (central or surface) and secondary osteosarcomas arising in preexisting conditions. The conventional plain radiograph is the best for probable diagnosis as it describes features like sun burst appearance, Codman's triangle, new bone formation in soft tissues along with permeative pattern of destruction of the bone and other characteristics for specific subtypes of osteosarcomas. X-ray chest can detect metastasis in the lungs, but computerized tomography (CT) scan of the thorax is more helpful. Magnetic resonance imaging (MRI) of the lesion delineates its extent into the soft tissues, the medullary canal, the joint, skip lesions and the proximity of the tumor to the neurovascular structures. Tc99 bone scan detects the osseous metastases. Positron Emission Tomography (PET) is used for metastatic workup and/or local recurrence after resection. The role of biochemical markers like alkaline phosphatase and lactate dehydrogenase is pertinent for prognosis and treatment response. The biopsy confirms the diagnosis and reveals the grade of the tumor. Enneking system for staging malignant musculoskeletal tumors and American Joint Committee on Cancer (AJCC) staging systems are most commonly used for extremity sarcomas. PMID:24932027

  14. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices

    PubMed Central

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø.; Sikorski, Pawel

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering. PMID:25769043

  15. The conclusiveness of less-invasive imaging techniques (computer tomography, X-ray) with regard to their identification of bone diseases in a primate model (Callithrix jacchus).

    PubMed

    Grohmann, J; Taetzner, S; Theuss, T; Kuehnel, F; Buchwald, U; Einspanier, A

    2012-04-01

    Although common marmosets seem to be appropriate animal models to examine bone diseases, no data about the conclusiveness of less-invasive techniques are available. Therefore, the aim was to combine different techniques to analyse changes in bone metabolism of common marmosets with bone diseases. Five monkeys were examined by X-ray, computer tomography (CT), histology and immunohistochemistry (IHC). Monkeys with lowest bone mineral density (BMD) showed increased bone marrow, decreased cancellous bone and decreased contrast in X-ray. Highest alkaline phosphatase (AP)-levels were detected in bones with low elastic modulus. Expression of osteopontin (OPN), osteocalcin (OC) and runt-related transcriptions factor 2 (RUNX 2) was detected in bones with high modulus. No expression was present in bones with lower modulus. Collagen type I and V were found in every bone. In conclusion, CT, X-ray and AP are useful techniques to detect bone diseases in common marmosets. These observations could be confirmed by IHC. © 2012 John Wiley & Sons A/S.

  16. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training.

    PubMed

    Lester, Mark E; Urso, Maria L; Evans, Rachel K; Pierce, Joseph R; Spiering, Barry A; Maresh, Carl M; Hatfield, Disa L; Kraemer, William J; Nindl, Bradley C

    2009-10-01

    Prescribing exercise based on intensity, frequency, and duration of loading may maximize osteogenic responses in bone, but a model of the osteogenic potential of exercise has not been established in humans. In rodents, an osteogenic index (OI) has been used to predict the osteogenic potential of exercise. The current study sought to determine whether aerobic, resistance, or combined aerobic and resistance exercise programs conducted over eight weeks and compared to a control group could produce changes in biochemical markers of bone turnover indicative of bone formation. We further sought to determine whether an OI could be calculated for each of these programs that would reflect observed biochemical changes. We collected serum biomarkers [bone-specific alkaline phosphatase (BAP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide fragment of type I collagen (CTx), deoxypyridinoline (DPD), 25-hydroxy vitamin D (25(OH)D), and parathyroid hormone (PTH)] in 56 women (20.3+/-1.8 years) before, during and after eight weeks of training. We also measured bone mineral density (BMD) at regional areas of interest using DXA and pQCT. Biomarkers of bone formation (BAP and osteocalcin) increased in the Resistance and Combined groups (p<0.05), while biomarkers of bone resorption (TRAP and DPD) decreased and increased, respectively, after training (p<0.05) in all groups. Small changes in volumetric and areal BMD (p<0.05) were observed in the distal tibia in the Aerobic and Combined groups, respectively. Mean weekly OIs were 16.0+/-1.9, 20.6+/-2.2, and 36.9+/-5.2 for the Resistance, Aerobic, and Combined groups, respectively. The calculated osteogenic potential of our programs did not correlate with the observed changes in biomarkers of bone turnover. The results of the present study demonstrate that participation in an eight week physical training program that incorporates a resistance component by previously inactive young women results in alterations in biomarkers of bone remodeling indicative of increased formation without substantial alterations in markers of resorption.

  17. Bone Status Among Patients With Nonsurgical Hypoparathyroidism, Autosomal Dominant Hypocalcaemia, and Pseudohypoparathyroidism: A Cohort Study.

    PubMed

    Underbjerg, Line; Malmstroem, Sofie; Sikjaer, Tanja; Rejnmark, Lars

    2018-03-01

    Nonsurgical hypoparathyroidism (Ns-HypoPT) and pseudohypoparathyroidism (PHP) are both rare diseases, characterized by hypocalcemia. In Ns-HypoPT, PTH levels are low, whereas patients with PHP often have very high levels due to receptor-insensitivity to PTH (PTH-resistance). Accordingly, we hypothesized that indices of bone turnover and bone mineralization/architecture are similar in Ns-HypoPT and PHP despite marked differences in PTH levels. We studied 62 patients with Ns-HypoPT and 31 with PHP as well as a group of age- and sex-matched healthy controls. We found a significantly higher areal BMD (aBMD) by DXA among patients with Ns-HypoPT, both compared with PHP and the background population. Compared with Ns-HypoPT, PHP patients had significantly lower total and trabecular volumetric BMD (vBMD) assessed by quantitative computed tomography (QCT) scans at the spine and hip. High-resolution peripheral quantitative computed tomography (HRpQCT) scans showed a lower trabecular area and vBMD as well as a lower trabecular number at the tibia in PHP compared to Ns-HypoPT and matched controls. In PHP, PTH levels correlated with levels of markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, P1NP), and bone resorption (CTx). In adult males, levels of bone markers were significantly higher in PHP compared with Ns-HypoPT. Levels of procalcitonin and calcitonin were significantly higher in PHP compared with Ns-HypoPT. In conclusion, indices of bone turnover, density, and microarchitecture differ between patients with Ns-HypoPT and PHP. Our data suggest that patients with PHP do not have a complete skeletal resistance to PTH and that the effects of chronically high PTH levels in PHP are mostly confined to the trabecular tissue. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  18. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J.

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase weremore » concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.« less

  19. Influence of different calcium concentrations in the diet on bone metabolism in growing dairy goats and sheep.

    PubMed

    Liesegang, A; Risteli, J

    2005-01-01

    The purpose of this study was to investigate, if different Ca concentrations in diets have an influence on bone mineral metabolism in growing goats and sheep. Twelve growing goats and sheep were divided into two groups. The two control groups received 6.1 g calcium/day (nG) and 6.7 g calcium/day (nS) for goat and sheep respectively. The other two groups were fed 17.7 g calcium/day (hG) and 18.5 g calcium/day (hS). Blood samples were taken 2, 4, 5 and 6 weeks after the start of the experiment. In serum Ca and vitamin D were determined and bone metabolism was measured using crosslinked carboxyterminal telopeptide of type I collagen (ICTP), crosslaps, bone-specific alkaline phosphatase and osteocalcin (OC). Bone mineral density (BMD) was quantified using quantitative computed tomography. Bone resorption marker (ICTP) concentrations were significantly different between both groups control sheep/control goat and hS/hG, but no significant differences were evident in the different feeding groups within one species. OC concentrations showed a similar course to ICTP. The goats had significantly higher concentrations compared with sheep. The 1,25 dihydroxyvitamin D (VITD) concentrations in both hCa groups were significantly lower than in the control groups. BMD increased in the hCa groups compared with the control groups with the time, but significant differences were only evident in sheep in week 2. The hCa diet did not induce differences between the groups within one species for all bone markers. The control Ca diet seems to improve the active Ca absorption via VITD whereas the hCa diet leads to a higher amount of Ca apparently digested. Higher BMD was only observed in group hS compared with nS.

  20. Hypocalcaemia in patients with metastatic bone disease treated with denosumab.

    PubMed

    Body, Jean-Jacques; Bone, Henry G; de Boer, Richard H; Stopeck, Alison; Van Poznak, Catherine; Damião, Ronaldo; Fizazi, Karim; Henry, David H; Ibrahim, Toni; Lipton, Allan; Saad, Fred; Shore, Neal; Takano, Toshimi; Shaywitz, Adam J; Wang, Huei; Bracco, Oswaldo L; Braun, Ada; Kostenuik, Paul J

    2015-09-01

    This analysis was performed to further characterise treatment-emergent hypocalcaemia in patients with bone metastases receiving denosumab. Laboratory abnormalities and adverse events of hypocalcaemia in patients with metastatic bone disease were analysed using data from three identically designed phase 3 trials of subcutaneous denosumab 120 mg (n = 2841) versus intravenous zoledronic acid 4 mg (n = 2836). The overall incidence of laboratory events of hypocalcaemia grade ⩾ 2 was higher with denosumab (12.4%) than with zoledronic acid (5.3%). Hypocalcaemia events were primarily grade 2 in severity and usually occurred within the first 6 months of treatment. Patients who reported taking calcium and/or vitamin D supplements had a lower incidence of hypocalcaemia. Prostate cancer or small-cell lung cancer, reduced creatinine clearance and higher baseline bone turnover markers of urinary N-telopeptide of type I collagen (uNTx; > 50 versus ⩽ 50 nmol/mmol) and bone-specific alkaline phosphatase (BSAP; > 20.77 μg/L [median] versus ⩽ 20.77 μg/L) values were important risk factors for developing hypocalcaemia. The risk associated with increased baseline BSAP levels was greater among patients who had > 2 bone metastases at baseline versus those with ⩽ 2 bone metastases at baseline. Hypocalcaemia was more frequent with denosumab versus zoledronic acid, consistent with denosumab's greater antiresorptive effect. Low serum calcium levels and potential vitamin D deficiency should be corrected before initiating treatment with a potent osteoclast inhibitor, and corrected serum calcium levels should be monitored during treatment. Adequate calcium and vitamin D intake appears to substantially reduce the risk of hypocalcaemia. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Bone health in long-term gastric cancer survivors: A prospective study of high-dose vitamin D supplementation using an easy administration scheme.

    PubMed

    Climent, Marta; Pera, Manuel; Aymar, Isabel; Ramón, José M; Grande, Luis; Nogués, Xavier

    2018-07-01

    Bone disease in long-term survivors after gastric cancer resection has received little research attention. This study aimed to investigate bone health after curative resection of gastric cancer and the consequences of high-dose vitamin D supplementation in patients with low levels of 25-(OH)-vitamin D. Disease-free patients at least 24 months after gastric cancer resection represented the study cohort. Serum markers of bone metabolism were assessed at baseline and at 3 and 12 months. Bone mineral density and presence of fractures were assessed by X-ray at baseline. Patients with 25-(OH)-vitamin D ≤30 ng/mL at baseline received 16,000 IU of vitamin D3 every 10 days during the 1-year follow-up. Forty patients were included in the study. Mean time from surgery was 48.9 (24-109) months. Vitamin D insufficiency and secondary hyperparathyroidism were observed in 38 and 20 patients, respectively. Densitometry showed osteoporosis in 14 women and seven men and prevalent fractures in 12 women and six men at baseline. After 3 months of vitamin D supplementation, 35 patients reached values of 25-(OH)-vitamin D over 30 ng/mL. After 12 months, 38 patients were in the normal range of 25-(OH)-vitamin D. At the same time, iPTH levels and markers of bone turnover (C-terminal cross-linked telopeptide of type-I collagen, serum concentrations of bone-specific alkaline phosphatase and osteocalcin) significantly decreased after vitamin D intervention. Oral administration of high doses of vitamin D is easily implemented and restored 25-(OH)-vitamin D and iPTH values, which are frequently disturbed after gastric cancer resection.

  2. Association between Bone Turnover, Micronutrient Intake, and Blood Lead Levels in Pre-and Postmenopausal Women, NHANES 1999–2002

    PubMed Central

    Jackson, Leila W.; Cromer, Barbara A.; Panneerselvamm, Ashok

    2010-01-01

    Background Blood lead levels (BLLs) have been shown to increase during periods of high bone turnover such as pregnancy and menopause. Objectives We examined the associations between bone turnover and micronutrient intake with BLLs in women 20–85 years of age (n = 2,671) participating in the National Health and Nutrition Examination Survey, 1999–2002. Methods Serum bone-specific alkaline phosphatase (BAP) and urinary cross-linked N-telopeptides (NTx) were measured as markers of bone formation and resorption, respectively. Lead was quantified in whole blood. The association between tertiles of BAP and NTx, and BLLs was examined using linear regression with natural log-transformed BLLs as the dependent variable and interpreted as the percent difference in geometric mean BLLs. Results In adjusted analyses, mean BLLs among postmenopausal women in the upper tertiles of NTx and BAP were 34% [95% confidence interval (CI), 23%–45%] and 30% (95% CI, 17%–43%) higher than BLLs among women in the lowest tertiles of NTx and BAP, respectively. These associations were weaker, but remained statistically significant, among premenopausal women (NTx: 10%; 95% CI, 0.60%–19%; BAP: 14%; 95% CI, 6%–22%). Within tertiles of NTx and BAP, calcium intake above the Dietary Reference Intake (DRI), compared with below the DRI, was associated with lower mean BLLs among postmenopausal women but not premenopausal women, although most of the associations were not statistically significant. We observed similar associations for vitamin D supplement use. Conclusions Bone resorption and bone formation were associated with a significant increase in BLLs among pre-and postmenopausal women. PMID:20688594

  3. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration.

    PubMed

    Wang, Guilin; Kucharski, Cezary; Lin, Xiaoyue; Uludağ, Hasan

    2010-09-01

    A polymeric conjugate of polyethyleneimine-graft-poly(ethylene glycol) and 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (PEI-PEG-thiolBP) was prepared and used for surface coating of bovine serum albumin (BSA) nanoparticles (NPs) designed for bone-specific delivery of bone morphogenetic protein-2 (BMP-2). The NP coating was achieved with a dialysis and an evaporation method, and the obtained NPs were characterized by particle size, zeta-potential, morphology, and cytotoxicity in vitro. The particle size and surface charge of the NPs could be effectively tuned by the PEG and thiolBP substitution ratios of the conjugate, the coating method, and the polymer concentration used for coating. The PEG modification on PEI reduced the toxicity of PEI and the coated NPs, based on in vitro assessment with human C2C12 cells and rat bone marrow stromal cells. On the basis of an alkaline phosphatase (ALP) induction assay, the NP-encapsulated BMP-2 displayed full retention of its bioactivity, except for BMP-2 in PEI-coated NPs. By encapsulating (125)I-labeled BMP-2, the polymer-coated NPs were assessed for hydroxyapatite (HA) affinity; all NP-encapsulated BMP-2 showed significant affinity to HA as compared with free BMP-2 in vitro, and the PEI-PEG-thiolBP coated NPs improved the in vivo retention of BMP-2 compared with uncoated NPs. However, the biodistribution of NPs after intravenous injection in a rat model indicated no beneficial effects of thiolBP-coated NPs for bone targeting. Our results suggested that the BP-conjugated NPs are useful for localized delivery of BMP-2 in bone repair and regeneration, but they are not effective for bone targeting after intravenous administration.

  4. Interruption or deferral of antiretroviral therapy reduces markers of bone turnover compared with continuous therapy: the SMART Body Composition Substudy

    PubMed Central

    Hoy, Jennifer; Grund, Birgit; Roediger, Mollie; Ensrud, Kristine E.; Brar, Indira; Colebunders, Robert; De Castro, Nathalie; Johnson, Margaret; Sharma, Anjali; Carr, Andrew

    2013-01-01

    Bone mineral density (BMD) declines significantly in HIV patients on antiretroviral therapy (ART). We compared the effects of intermittent versus continuous ART on markers of bone turnover in the Body Composition substudy of the Strategies for Management of AntiRetroviral Therapy (SMART) trial and determined whether early changes in markers predicted subsequent change in BMD. For 202 participants (median age 44 years, 17% female, 74% on ART) randomised to continuous or intermittent ART, plasma markers of inflammation and bone turnover were evaluated at baseline, months 4 and 12; BMD at the spine (dual X-ray absorptiometry [DXA] and computed tomography) and hip (DXA) was evaluated annually. Compared to the continuous ART group, mean bone-specific alkaline phosphatase (bALP), osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), N-terminal cross-linking telopeptide of type 1 collagen (NTX), and C-terminal cross-linking telopeptide of type 1 collagen (βCTX) decreased significantly in the intermittent ART group, whereas RANKL and the RANKL:osteoprotegerin (OPG) ratio increased (all p≤0.002 at month 4 and month 12). Increases in bALP, osteocalcin, P1NP, NTX, and βCTX at month 4 predicted decrease in hip BMD at month 12, while increases in RANKL and the RANKL:OPG ratio at month 4 predicted increase in hip and spine BMD at month 12. This study has shown that compared with continuous ART, interruption of ART results in a reduction in markers of bone turnover and increase in BMD at hip and spine, and that early changes in markers of bone turnover predict BMD changes at 12 months. PMID:23299909

  5. Effects of Curcumin on Bone Loss and Biochemical Markers of Bone Turnover in Patients with Spinal Cord Injury.

    PubMed

    Hatefi, Masoud; Ahmadi, Mohammad Reza Hafezi; Rahmani, Asghar; Dastjerdi, Masoud Moghadas; Asadollahi, Khairollah

    2018-06-01

    Osteoporosis is one of the most common problems of patients with spinal cord injuries (SCIs). The current study aimed to evaluate the antiosteoporotic effects of curcumin on densitometry parameters and biomarkers of bone turnovers among patients with SCI. The current controlled clinical trial was conducted among 100 patients with SCI referred to an outpatient clinic of rehabilitation in Ilam City, Iran, in 2013-2015. The intervention group received 110/mg/kg/day curcumin for 6 months and the control group received placebo. Bone mineral density (BMD) was measured in all patients. The level of procollagen type I N-terminal propeptide, serum carboxy-terminal telopeptide of type I collagen, osteocalcin, and bone-specific alkaline phosphates were compared before and after study. BMD indicators of lumbar, femoral neck, and total hip in the control group significantly decreased compared with the beginning of study. However, in the curcumin group, a significant increase was observed in BMD indicators of lumbar, femoral neck, and hip at the end of study compared with the beginning. There was also a significant difference between interventional and control groups for the mean BMD of femoral neck and hip at the end of study (0.718 ± 0.002 g/cm 2 vs. 0.712 ± 0.003 g/cm 2 and 0.742 ± 0.031 g/cm 2 vs. 0.692 ± 0.016 g/cm 2 , respectively). Curcumin, via modulation of densitometry indices and bone resorption markers, showed inhibitory effects on the process of osteoporosis. Treatment with curcumin was significantly associated with a decrease in the osteoporosis progression and bone turnover markers of patients with SCI after 6 months. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Hyperparathyroidism Mimicking Metastatic Bone Disease: A Case Report and Review of Literature.

    PubMed

    Gupta, Monica; Singhal, Lalita; Kumar, Akshay

    2018-06-01

    Multiple osteolytic lesions are usually associated with metastatic involvement of the bone; however, metabolic bone diseases should also be included in the differential diagnosis. In this study, we describe a case of primary hyperparathyroidism (PHPT) with multiple osteolytic lesions that was diagnosed initially as having metastatic bone involvement. The laboratory results showed hypercalcemia and raised alkaline phosphatase along with fibrosis in the bone marrow biopsy with no increase in tumor markers and normal serum protein electrophoresis. The parathyroid hormone levels were high, which pointed toward a diagnosis of PHPT. Sestamibi scan revealed uptake at the level of the left inferior pole of the thyroid gland, which was suggestive of parathyroid adenoma. The possibility of hyperparathyroidism should be kept in mind when a patient presents with multiple osteolytic lesions and hypercalcemia.

  7. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  8. Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice

    PubMed Central

    Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2016-01-01

    Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to Rankl ratio in bone tissue in the TG mice compared with WT littermates. Our data indicate that WNT16 is critical for positive regulation of both cortical and trabecular bone mass and structure and that this molecule might be targeted for therapeutic interventions to treat osteoporosis. PMID:26584014

  9. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  10. Effects of "vitex agnus castus" extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture.

    PubMed

    Eftekhari, Mohammad Hassan; Rostami, Zahra Hassanzadeh; Emami, Mohammad Jafar; Tabatabaee, Hamid Reza

    2014-01-01

    The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnus castus) plus 250 mg magnesium oxide (VAC + Mg group (n = 10)), 2) one Agnugol tablet plus placebo (VAC group (n = 15)), 3) placebo plus 250 mg magnesium oxide (Mg group (n = 12)), or 4) placebo plus placebo (placebo group (n = 14)) per day for 8 weeks. At baseline and endpoint of the trial, serum alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) were measured together with radiological bone assessment. There were no significant differences in the characteristic aspects of concern between the four groups at baseline. Despite the increased level of alkaline phosphatase in the VAC group (188.33 ± 16.27 to 240.40 ± 21.49, P = 0.05), administration of VAC + Mg could not increase alkaline phosphatase activity. However, treatment with VAC + Mg significantly enhanced the osteocalcin level. The serum concentration of VEGF was increased in the VAC group (269.04 ± 116.63 to 640.03 ± 240.16, P < 0.05). Callus formation in the VAC + Mg group was higher than the other groups but the differences between the four groups were not significant (P = 0.39). No relevant side effect was observed in patients in each group. Our results suggest that administration of vitex agnus castus plus magnesium may promote fracture healing. However, more studies need to further explore the roles of vitex agnus castus in fracture repair processes.

  11. Effects of “vitex agnus castus” extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture

    PubMed Central

    Eftekhari, Mohammad Hassan; Rostami, Zahra Hassanzadeh; Emami, Mohammad Jafar; Tabatabaee, Hamid Reza

    2014-01-01

    Background: The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. Material and Methods: In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnus castus) plus 250 mg magnesium oxide (VAC + Mg group (n = 10)), 2) one Agnugol tablet plus placebo (VAC group (n = 15)), 3) placebo plus 250 mg magnesium oxide (Mg group (n = 12)), or 4) placebo plus placebo (placebo group (n = 14)) per day for 8 weeks. At baseline and endpoint of the trial, serum alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) were measured together with radiological bone assessment. Results: There were no significant differences in the characteristic aspects of concern between the four groups at baseline. Despite the increased level of alkaline phosphatase in the VAC group (188.33 ± 16.27 to 240.40 ± 21.49, P = 0.05), administration of VAC + Mg could not increase alkaline phosphatase activity. However, treatment with VAC + Mg significantly enhanced the osteocalcin level. The serum concentration of VEGF was increased in the VAC group (269.04 ± 116.63 to 640.03 ± 240.16, P < 0.05). Callus formation in the VAC + Mg group was higher than the other groups but the differences between the four groups were not significant (P = 0.39). No relevant side effect was observed in patients in each group. Conclusion: Our results suggest that administration of vitex agnus castus plus magnesium may promote fracture healing. However, more studies need to further explore the roles of vitex agnus castus in fracture repair processes. PMID:24672557

  12. Final Environmental Planning Technical Report

    DTIC Science & Technology

    1984-01-01

    or mildly alkaline (pH 7.3 to 7.8). Soils with a pH of less than 6.3 have been found to be too acidic for bone preservation (Hole and Heizer 1965...230; Heizer and Graham 1967:125). On the other hand, a pH of 6.0 has been said to be the highest level tolerated by pollen (Moore and Webb 1978:15...however, this cutoff point may be as high as 7.0 in arid or semiarid climates (Hole and Heizer 1965:282). The generally dry, neutral, or alkaline soil

  13. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.

    PubMed

    Cheng, Alice; Humayun, Aiza; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2014-10-07

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.

  14. Promotion of osteoblast differentiation in 3D biomaterial micro-chip arrays comprising fibronectin-coated poly(methyl methacrylate) polycarbonate.

    PubMed

    Altmann, Brigitte; Steinberg, Thorsten; Giselbrecht, Stefan; Gottwald, Eric; Tomakidi, Pascal; Bächle-Haas, Maria; Kohal, Ralf-Joachim

    2011-12-01

    Due to the architecture of solid body tissues including bone, three-dimensional (3D) in vitro microenvironments appear favorable, since herein cell growth proceeds under more physiological conditions compared to conventional 2D systems. In the present study we show that a 3D microenvironment comprising a fibronectin-coated PMMA/PC-based micro-chip promotes differentiation of primary human osteoblasts as reflected by the densely-packed 3D bone cell aggregates and expression of biomarkers indicating osteoblast differentiation. Morphogenesis and fluorescence dye-based live/dead staining revealed homogenous cell coverage of the microcavities of the chip array, whereat cells showed high viability up to 14 days. Moreover, Azur II staining proved formation of uniform sized multilayered aggregates, exhibiting progressive intracellular deposition of extracellular bone matrix constituents comprising fibronectin, osteocalcin and osteonectin from day 7 on. Compared to 2D monolayers, osteoblasts grown in the 3D chip environment displayed differential mostly higher gene expression for osteocalcin, osteonectin, and alkaline phosphatase, while collagen type I remained fairly constant in both culture environments. Our results indicate that the 3D microenvironment, based on the PMMA biomaterial chip array promotes osteoblast differentiation, and hereby renders a promising tool for tissue-specific in vitro preconditioning of osteoblasts designated for clinically-oriented bone augmentation or regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites

    PubMed Central

    Lee, Jong Ho; Shin, Yong Cheol; Lee, Sang-Min; Jin, Oh Seong; Kang, Seok Hee; Hong, Suck Won; Jeong, Chang-Mo; Huh, Jung Bo; Han, Dong-Wook

    2015-01-01

    Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis. PMID:26685901

  16. The characteristics of bone turnover in the second decade in relation to age and puberty development in healthy Japanese male and female subjects--Japanese Population-based Osteoporosis Study.

    PubMed

    Matsukura, T; Kagamimori, S; Nishino, H; Yamagami, T; Iki, M; Kajita, E; Kagawa, Y; Yoneshima, H; Matsuzaki, T; Marumo, F

    2003-01-01

    There are few studies that clarify the characteristics of bone turnover in children and adolescents. Furthermore, little has been published on changes in urinary CrossLaps(TM) (CTx) in Japanese subjects. To investigate biochemical markers of bone turnover in subjects, in relation to age and puberty development. We measured serum bone specific alkaline phosphatase (B-Alp) and CTx in 1207 Japanese subjects aged 9-18 years. As an indicator of puberty development, the age that pubic hair appeared in males and menstruation started in females was obtained from questionnaires. B-Alp and CTx/Cr (creatinine) had high values before and just after the indicators and was lower thereafter, reaching a plateau in both genders. There was no significant difference in these values in males 5-6 years, or 7 years and more after the appearance of pubic hair. B-Alp and CTx/Cr values 7 years and more after menarche were significantly lower than those 5-6 years after menarche, however the differences were relatively small. Subjects in the second decade can be divided into three groups: 'before the appearance of pubic hair for males and menarche for females', 'up to and including 3-4 years after them' and '5-6 years and more after them'.

  17. Activation of the mitogen-activated protein kinase pathway by bone sialoprotein regulates osteoblast differentiation.

    PubMed

    Gordon, Jonathan A R; Hunter, Graeme K; Goldberg, Harvey A

    2009-01-01

    Bone sialoprotein (BSP) is an abundant protein in the extracellular matrix of bone that has been suggested to have several different physiological functions, including the nucleation of hydroxyapatite (HA), promotion of cell attachment and binding of collagen. Studies in our lab have demonstrated that increased expression of BSP in osteoblast cells can increase expression of the osteoblast-related genes Runx2 and Osx as well as alkaline phosphatase and osteocalcin and increase matrix mineralization. To determine the molecular mechanisms responsible for the BSP-mediated increase in osteoblastic differentiation, several functional domain mutants of BSP were expressed in primary rat bone osteoblastic cells, including the contiguous glutamic acid sequences (polyGlu) and the arginine-glycine-aspartic acid (RGD) motif. Markers of osteoblast differentiation, including matrix mineralization and alkaline phosphatase staining, were increased in cells expressing BSP mutants of the polyGlu sequences but not in cells expressing RGD-mutated BSP. We also determined the dependence on integrin-associated pathways in promoting BSP-mediated differentiation responses in osteoblasts by demonstrating the activation of focal adhesion kinase, MAP kinase-associated proteins ERK1/2, ribosomal s6 kinase 2 and the AP-1 protein cFos. Thus, the mechanism regulating osteoblast differentiation by BSP was determined to be dependent on integrin-mediated intracellular signaling pathways. Copyright 2008 S. Karger AG, Basel.

  18. Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase: Potential Co-regulators of Bone Mineralization.

    PubMed

    Halling Linder, Cecilia; Ek-Rylander, Barbro; Krumpel, Michael; Norgård, Maria; Narisawa, Sonoko; Millán, José Luis; Andersson, Göran; Magnusson, Per

    2017-07-01

    Phosphorylated osteopontin (OPN) inhibits hydroxyapatite crystal formation and growth, and bone alkaline phosphatase (BALP) promotes extracellular mineralization via the release of inorganic phosphate from the mineralization inhibitor inorganic pyrophosphate (PPi). Tartrate-resistant acid phosphatase (TRAP), produced by osteoclasts, osteoblasts, and osteocytes, exhibits potent phosphatase activity towards OPN; however, its potential capacity as a regulator of mineralization has not previously been addressed. We compared the efficiency of BALP and TRAP towards the endogenous substrates for BALP, i.e., PPi and pyridoxal 5'-phosphate (PLP), and their impact on mineralization in vitro via dephosphorylation of bovine milk OPN. TRAP showed higher phosphatase activity towards phosphorylated OPN and PPi compared to BALP, whereas the activity of TRAP and BALP towards PLP was comparable. Bovine milk OPN could be completely dephosphorylated by TRAP, liberating all its 28 phosphates, whereas BALP dephosphorylated at most 10 phosphates. OPN, dephosphorylated by either BALP or TRAP, showed a partially or completely attenuated phosphorylation-dependent inhibitory capacity, respectively, compared to native OPN on the formation of mineralized nodules. Thus, there are phosphorylations in OPN important for inhibition of mineralization that are removed by TRAP but not by BALP. In conclusion, our data indicate that both BALP and TRAP can alleviate the inhibitory effect of OPN on mineralization, suggesting a potential role for TRAP in skeletal mineralization. Further studies are warranted to explore the possible physiological relevance of TRAP in bone mineralization.

  19. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.

    PubMed

    Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W

    2014-03-01

    This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effect of Magnolol on the Function of Osteoblastic MC3T3-E1 Cells

    PubMed Central

    Kwak, Eun Jung; Lee, Young Soon; Choi, Eun Mi

    2012-01-01

    Objectives. In the present study, the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to stimulate osteoblast function and inhibit the release of bone-resorbing mediators was investigated in osteoblastic MC3T3-E1 cells. Methods. Osteoblast function was measured by cell growth, alkaline phosphatase activity, collagen synthesis, and mineralization. Glutathione content was also measured in the cells. Bone-resorbing cytokines, receptor activator of nuclear factor-κB ligand (RANKL), TNF-α, and IL-6 were measured with an enzyme immunoassay system. Results. Magnolol caused a significant elevation of cell growth, alkaline phosphatase activity, collagen synthesis, mineralization, and glutathione content in the cells (P < 0.05). Skeletal turnover is orchestrated by a complex network of regulatory factors. Among cytokines, RANKL, TNF-α, and IL-6 were found to be key osteoclastogenetic molecules produced by osteoblasts. Magnolol significantly (P < 0.05) decreased the production of osteoclast differentiation inducing factors such as RANKL, TNF-α, and IL-6 in the presence of antimycin A, which inhibits mitochondrial electron transport and has been used as an ROS generator. Conclusion. Magnolol might be a candidate as an agent for the prevention of bone disorders such as osteoporosis. PMID:22474400

  1. Water exercise prevents femur density loss associated with ovariectomy in the retired breeder rat.

    PubMed

    Melton, Sheri A; Hegsted, Maren; Keenan, Michael J; Morris, G Stephen; O'Neil, Carol E; Zablah-Pimentel, Erika M

    2004-08-01

    The effect of non-weight-bearing exercise on skeletal bone remains controversial. The objective of this pilot study was to examine the effects of water exercise training on femur density and serum alkaline phosphatase activity in ovariectomized and sham-operated (ovaries left intact) retired breeder rats. Exercised animals swam at progressively increasing duration from 5 minutes to 75 min.d(-1), 5 d.wk(-1), for a 6-week conditioning period. Exercised rats had greater (p < 0.02) soleus muscle citrate synthase activity than sedentary rats, confirming an aerobic training effect. Femur density (g.cm(-3)) was greater (p < 0.0007) for exercised rats than sedentary rats but lower (p < 0.01) for ovariectomized rats compared to sham rats. Serum alkaline phosphatase activity tended (p < 0.06) to be greater for exercised rats compared to sedentary rats. These results indicate that dynamic water-flotation exercise prevents the femur bone loss associated with ovariectomy in rats. We conclude that this form of exercise could be beneficial in maintaining bone density in hormone-deficient postmenopausal women, especially the elderly who may not be able to perform weight-bearing activities.

  2. Vitamin B-12 supplementation of rural Mexican women changes biochemical vitamin B-12 status indicators but does not affect hematology or a bone turnover marker.

    PubMed

    Shahab-Ferdows, Setareh; Anaya-Loyola, Miriam A; Vergara-Castañeda, Haydé; Rosado, Jorge L; Keyes, William R; Newman, John W; Miller, Joshua W; Allen, Lindsay H

    2012-10-01

    A high prevalence of low serum vitamin B-12 concentrations has been reported in studies and surveys in Latin America including Mexico, but the functional consequences are unknown. This randomized controlled trial assessed the response to a high-dose vitamin B-12 supplementation of women in rural Querétaro, Mexico. Participants aged 20-59 y were stratified at baseline to deficient, marginal, and adequate status groups (serum vitamin B-12, 75-148, 149-220, and >220 pmol/L, respectively), and each group was randomized to vitamin B-12 treatment (single dose of 1 mg i.m. then 500 μg/d orally for 3 mo, n = 70) or placebo (n = 62). Measures at baseline and 3 mo included: complete blood count, serum vitamin B-12, holotranscobalamin (holoTC), folate, ferritin, C-reactive protein (CRP), bone alkaline phosphatase, and methylmalonic acid (MMA) and plasma total homocysteine (tHcy). At baseline, 11% of the women were vitamin B-12 deficient and 22% had marginal status. HoloTC was low (<35 pmol/L) in 23% and correlated with serum vitamin B-12 (r = 0.7; P < 0.001). Elevated MMA (>271 nmol/L) and tHcy (>12 μmol/L) occurred in 21 and 31%, respectively, and correlated with serum vitamin B-12 (r = -0.28, P < 0.0007 and r = -0.20, P < 0.01, respectively). Supplementation increased serum vitamin B-12 and holoTC and lowered MMA and tHcy, normalizing all values except for elevated tHcy in 21% of the women. Supplementation did not affect hematology or bone-specific alkaline phosphatase. Vitamin B-12 supplementation normalized biochemical indicators of vitamin B-12 status in the treatment group but did not affect the functional outcomes measured.

  3. Acemannan sponges stimulate alveolar bone, cementum and periodontal ligament regeneration in a canine class II furcation defect model.

    PubMed

    Chantarawaratit, P; Sangvanich, P; Banlunara, W; Soontornvipart, K; Thunyakitpisal, P

    2014-04-01

    Periodontal disease is a common infectious disease, found worldwide, causing the destruction of the periodontium. The periodontium is a complex structure composed of both soft and hard tissues, thus an agent applied to regenerate the periodontium must be able to stimulate periodontal ligament, cementum and alveolar bone regeneration. Recent studies demonstrated that acemannan, a polysaccharide extracted from Aloe vera gel, stimulated both soft and hard tissue healing. This study investigated effect of acemannan as a bioactive molecule and scaffold for periodontal tissue regeneration. Primary human periodontal ligament cells were treated with acemannan in vitro. New DNA synthesis, expression of growth/differentiation factor 5 and runt-related transcription factor 2, expression of vascular endothelial growth factor, bone morphogenetic protein-2 and type I collagen, alkaline phosphatase activity, and mineralized nodule formation were determined using [(3)H]-thymidine incorporation, reverse transcription-polymerase chain reaction, enzyme-linked immunoabsorbent assay, biochemical assay and alizarin red staining, respectively. In our in vivo study, premolar class II furcation defects were made in four mongrel dogs. Acemannan sponges were applied into the defects. Untreated defects were used as a negative control group. The amount of new bone, cementum and periodontal ligament formation were evaluated 30 and 60 d after the operation. Acemannan significantly increased periodontal ligament cell proliferation, upregulation of growth/differentiation factor 5, runt-related transcription factor 2, vascular endothelial growth factor, bone morphogenetic protein 2, type I collagen and alkaline phosphatase activity, and mineral deposition as compared with the untreated control group in vitro. Moreover, acemannan significantly accelerated new alveolar bone, cementum and periodontal ligament formation in class II furcation defects. Our data suggest that acemannan could be a candidate biomolecule for periodontal tissue regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The impact of LRP5 polymorphism (rs556442) on calcium homeostasis, bone mineral density, and body composition in Iranian children.

    PubMed

    Ashouri, Elham; Meimandi, Elham Mahmoodi; Saki, Forough; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Bakhshayeshkaram, Marzieh

    2015-11-01

    Failure to achieve optimal bone mass in childhood is the primary cause of decreased adult bone mineral density (BMD) and increased bone fragility in later life. Activating and inactivating LRP5 gene mutations has been associated with extreme bone-related phenotypes. Our aim was to investigate the role of LRP5 polymorphism on BMD, mineral biochemical parameters, and body composition in Iranian children. This cross-sectional study was performed on 9-18 years old children (125 boys, 137 girls). The serum level of calcium, phosphorous, alkaline phosphatase, and vitamin D parameters were checked. The body composition and BMD variables were measured by the Hologic system DXA. The rs566442 (V1119V) coding polymorphism in exon 15 of LRP5 was performed using PCR-RFLP method. Linear regression analysis, with adjustment for age, gender, body size parameters, and pubertal status was used to determine the association between LRP5 polymorphism (rs556442) and bone and body composition parameters. The allele frequency of the rs566442 gene was 35.5 % A and 63.9 % G. Our study revealed that LRP5 (rs556442) has not any significant influence on serum calcium, phosphorus, 25OHvitD, and serum alkaline phosphatase (P > 0.05). Total lean mass was greater in GG genotype (P = 0.028). Total body less head area (P = 0.044), spine BMD (P = 0.04), and total femoral BMC (P = 0.049) were lower in AG heterozygote genotype. This study show LRP5 polymorphism may associate with body composition and BMD in Iranian children. However, further investigations should be done to evaluate the role of other polymorphism.

  5. Controlled-release of tetracycline and lovastatin by poly(d,l-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs

    PubMed Central

    Lee, Bor-Shiunn; Lee, Chien-Chen; Wang, Yi-Ping; Chen, Hsiao-Jan; Lai, Chern-Hsiung; Hsieh, Wan-Ling; Chen, Yi-Wen

    2016-01-01

    Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studies suggested that lovastatin has a significant role in new bone formation; however, the local delivery of lovastatin might enhance its therapeutic effects. A number of local delivery devices have been developed recently, including poly(d,l-lactide-co-glycolide acid) (PLGA) nanoparticles. The aim of this study was to develop a local delivery device, PLGA-lovastatin-chitosan-tetracycline nanoparticles, which allows the sequential release of tetracycline and lovastatin to effectively control local infection and promote bone regeneration in periodontitis. The size and microstructure of nanoparticles were examined by transmission electron microscopy, Nanoparticle Size Analyzer, and Fourier transform infrared spectroscopy. The release of tetracycline and lovastatin was quantified using a UV-Vis spectrophotometer. Furthermore, the cytotoxic effect and alkaline phosphatase activity of the nanoparticles in osteoblast cell cultures as well as antibacterial activity against periodontal pathogens were investigated. Finally, the bone regeneration potential of PLGA nanoparticles in three-walled defects in beagle dogs was investigated. The results indicated that PLGA-lovastatin-chitosan-tetracycline nanoparticles showed good biocompatibility, antibacterial activity, and increased alkaline phosphatase activity. The volumetric analysis from micro-CT revealed significantly increased new bone formation in defects filled with nanoparticles in dogs. This novel local delivery device might be useful as an adjunctive treatment in periodontal regenerative therapy. PMID:26848264

  6. Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs.

    PubMed

    Lee, Bor-Shiunn; Lee, Chien-Chen; Wang, Yi-Ping; Chen, Hsiao-Jan; Lai, Chern-Hsiung; Hsieh, Wan-Ling; Chen, Yi-Wen

    2016-01-01

    Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studies suggested that lovastatin has a significant role in new bone formation; however, the local delivery of lovastatin might enhance its therapeutic effects. A number of local delivery devices have been developed recently, including poly(D,L-lactide-co-glycolide acid) (PLGA) nanoparticles. The aim of this study was to develop a local delivery device, PLGA-lovastatin-chitosan-tetracycline nanoparticles, which allows the sequential release of tetracycline and lovastatin to effectively control local infection and promote bone regeneration in periodontitis. The size and microstructure of nanoparticles were examined by transmission electron microscopy, Nanoparticle Size Analyzer, and Fourier transform infrared spectroscopy. The release of tetracycline and lovastatin was quantified using a UV-Vis spectrophotometer. Furthermore, the cytotoxic effect and alkaline phosphatase activity of the nanoparticles in osteoblast cell cultures as well as antibacterial activity against periodontal pathogens were investigated. Finally, the bone regeneration potential of PLGA nanoparticles in three-walled defects in beagle dogs was investigated. The results indicated that PLGA-lovastatin-chitosan-tetracycline nanoparticles showed good biocompatibility, antibacterial activity, and increased alkaline phosphatase activity. The volumetric analysis from micro-CT revealed significantly increased new bone formation in defects filled with nanoparticles in dogs. This novel local delivery device might be useful as an adjunctive treatment in periodontal regenerative therapy.

  7. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    NASA Astrophysics Data System (ADS)

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  8. Rapid restoration of bone mass after surgical management of hyperthyroidism: A prospective case control study in Southern India.

    PubMed

    Karunakaran, Poongkodi; Maharajan, Chandrasekaran; Mohamed, Kamaludeen N; Rachamadugu, Suresh V

    2016-03-01

    The rate and the extent of bone remineralization at cancellous versus cortical sites after treatment of hyperthyroidism is unclear. Few studies have examined the effect of operative management of hyperthyroidism on recovery of bone mass. To evaluate prospectively the bone mineral density (BMD), bone mineral content (BMC), and bone areal size at the spine, hip, and forearm before and after total thyroidectomy. A prospective case control observational study from August 2011 to July 2014 in a single center. This study evaluated 40 overt hyperthyroid patients and 31 age-matched euthyroid controls who were operative candidates. Bone indices were measured at baseline and 6-month postoperatively using dual energy x-ray absorptiometry. Serum levels of alkaline phosphatase and 25-hydroxy vitamin D3 (25OHD) were assessed. Baseline BMD of hyperthyroid subjects at the spine, hip, and forearm were less than euthyroid controls (P = .001) with concomitant increases in serum alkaline phosphatase (mean ± SD, 143 ± 72 vs 72 ± 23 IU/L control; P < .001). The 25OHD level was 24.3 ± 10.6 and 26.1 ± 14.6 ng/mL in patients and controls, respectively. Among hyperthyroid patients, posttreatment BMD expressed as g/cm(2) were 0.97 ± 0.12 (vs pretreatment 0.91 ± 0.14; P = .001) at the spine, 0.87 ± 0.12 (vs pretreatment 0.80 ± 0.13; P = .001) at the hip, and 0.67 ± 0.09 (vs pretreatment 0.64 ± 0.11; P = .191) at the forearm. The percent change in BMD was greatest at spine (8.3%) followed by the hip (7.6%) and forearm (3.0%). Operative management with total thyroidectomy improved the bone loss associated with hyperthyroidism as early as 6 months postoperatively at the hip and spine despite concomitant vitamin D deficiency. Delayed recovery of bone indices at the forearm, a cortical bone, requires further long-term evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing.

    PubMed

    Wang, Tao; Wang, Yongmei; Menendez, Alicia; Fong, Chak; Babey, Muriel; Tahimic, Candice G T; Cheng, Zhiqiang; Li, Alfred; Chang, Wenhan; Bikle, Daniel D

    2015-09-01

    Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1R(flox/flox) /2.3-kb α1(1)-collagen-Cre (KO) and IGF1R(flox/flox) (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation during fracture repair, but it plays an important role in coordinating chondrocyte, osteoclast, and endothelial responses that all contribute to the endochondral bone formation required for normal fracture repair. © 2015 American Society for Bone and Mineral Research.

  10. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    PubMed Central

    Liskova, Jana; Babchenko, Oleg; Varga, Marian; Kromka, Alexander; Hadraba, Daniel; Svindrych, Zdenek; Burdikova, Zuzana; Bacakova, Lucie

    2015-01-01

    Nanocrystalline diamond (NCD) films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination) or oxygen atoms (O-termination). Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix mineralization, and this is promising for better osteoconductivity of potential bone implant coatings. PMID:25670900

  11. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla.

    PubMed

    Wang, Sainan; Mu, Jinquan; Fan, Zhipeng; Yu, Yan; Yan, Ming; Lei, Gang; Tang, Chunbo; Wang, Zilu; Zheng, Yangyu; Yu, Jinhua; Zhang, Guangdong

    2012-05-01

    Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    PubMed

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  13. Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats

    PubMed Central

    ORRISS, ISABEL R.; HAJJAWI, MARK O.R.; HUESA, CARMEN; MACRAE, VICKY E.; ARNETT, TIMOTHY R.

    2014-01-01

    The in vitro culture of calvarial osteoblasts from neonatal rodents remains an important method for studying the regulation of bone formation. The widespread use of transgenic mice has created a particular need for a reliable, simple method that allows the differentiation and bone-forming activity of murine osteoblasts to be studied. In the present study, we established such a method and identified key differences in optimal culture conditions between mouse and rat osteoblasts. Cells isolated from neonatal rodent calvariae by collagenase digestion were cultured for 14–28 days before staining for tissue non-specific alkaline phosphatase (TNAP) and bone mineralisation (alizarin red). The reliable differentiation of mouse osteoblasts, resulting in abundant TNAP expression and the formation of mineralised ‘trabecular-shaped’ bone nodules, occurred only following culture in α minimum essential medium (αMEM) and took 21–28 days. Dexamethasone (10 nM) inhibited bone mineralisation in the mouse osteoblasts. By contrast, TNAP expression and bone formation by rat osteoblasts were observed following culture in both αMEM and Dulbecco’s modified Eagle’s medium (DMEM) after approximately 14 days (although ~3-fold more effectively in αMEM) and was strongly dependent on dexamethasone. Both the mouse and rat osteoblasts required ascorbate (50 μg/ml) for osteogenic differentiation and β-glycerophosphate (2 mM) for mineralisation. The rat and mouse osteoblasts showed similar sensitivity to the well-established inhibitors of mineralisation, inorganic pyrophosphate (PPi) and adenosine triphosphate (ATP; 1–100 μM). The high efficiency of osteogenic differentiation observed following culture in αMEM, compared with culture in DMEM possibly reflects the richer formulation of the former. These findings offer a reliable technique for inducing mouse osteoblasts to form bone in vitro and a more effective method for culturing bone-forming rat osteoblasts. PMID:25200658

  14. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer

    PubMed Central

    Rao, S R; Snaith, A E; Marino, D; Cheng, X; Lwin, S T; Orriss, I R; Hamdy, F C; Edwards, C M

    2017-01-01

    Background: Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL, the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease progression. Methods: Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed from published PCa data sets, and correlated with disease-free survival and metastasis. Results: ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL expression was associated with a significant reduction in disease-free survival. Conclusions: Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression. PMID:28006818

  15. The short-term effects of cisplatin chemotherapy on bone turnover.

    PubMed

    Young, D R; Virolainen, P; Inoue, N; Frassica, F J; Chao, E Y

    1997-11-01

    Cisplatin is an effective agent in the treatment of osteosarcoma of bone but little is known of its effects on normal bone turnover. Twenty-four dogs divided into three study groups were used to study the effect of cisplatin on normal bone turnover at the distant site of surgery. Group 1 served as the control group, group 2 received four cycles of cisplatin every 3 weeks before the surgery, and group 3 received four cycles postoperatively. The bone turnover rate was evaluated by measuring levels of systemic bone markers, osteocalcin, alkaline phospohatase, urine pyridinoline cross-links, and by determination histomorphometric indices. Histomorphological analysis showed poor correlation on bone formation with systemic bone markers at distant sites of surgery. Histomorphometrically normal bone turnover was affected by administration of cisplatin, but the effect was temporary, late, and less significant than what occurred at the surgical site. Our data showed that significant effects of cisplatin are observed at the site of active cellular induction and proliferation, such as implant-host interface, and less effects are seen at the sites of normal bone turnover.

  16. Resveratrol Increases Osteoblast Differentiation In Vitro Independently of Inflammation.

    PubMed

    Ornstrup, Marie Juul; Harsløf, Torben; Sørensen, Lotte; Stenkjær, Liselotte; Langdahl, Bente Lomholt; Pedersen, Steen Bønløkke

    2016-08-01

    Low-grade inflammation negatively affects bone. Resveratrol is a natural compound proven to possess both anti-inflammatory and bone protective properties. However, it is uncertain if the bone effects are mediated though anti-inflammatory effects. Firstly, we investigated if resveratrol affects proliferation and differentiation of human bone marrow-derived mesenchymal stem cells. Secondly, we investigated if inflammation negatively affects proliferation and differentiation, and if resveratrol counteracts this through anti-inflammatory effects. Mesenchymal stem cells were obtained from bone marrow aspiration in 13 healthy individuals and cultured towards the osteoblast cell lineage. The cells were stimulated with resveratrol, lipopolysaccharide (LPS), LPS + resveratrol, or vehicle (control) for 21 days. Compared to control, resveratrol decreased cell number by 35 % (p < 0.05) and induced differentiation (a 3-fold increase in alkaline phosphatase (p < 0.002), while P1NP and OPG showed similar trends). LPS induced inflammation with a 44-fold increase in interleukin-6 (p < 0.05) and an extremely prominent increase in interleukin-8 production (p < 0.05) relative to control. In addition, LPS increased cell count (p < 0.05) and decreased differentiation (a reduction in P1NP production (p < 0.02)). Co-stimulation with LPS + resveratrol did not reduce interleukin-6 or interleukin-8, but nonetheless, cell count was reduced (p < 0.05) and alkaline phosphatase, P1NP, and OPG increased (p < 0.05 for all). Thus, resveratrol stimulates osteoblast differentiation independently of inflammation.

  17. [Effects of the combined calcitonin and sodium etidronate therapy in Paget's disease of bone].

    PubMed

    Nuti, R; Turchetti, V; Righi, G; Vattimo, A

    1982-03-03

    The therapy of Paget's bone disease is essentially based on the use of calcitonin and diphosphonates: both drugs, if used in large doses for long periods, have shown themselves able to provoke particular side-effects. It was, therefore, decided to study the therapeutic efficacy of combined low-dosage treatment using synthetic salmon calcitonin and sodium-etidronate on a group of patients with Paget's osteodystrophy. A clear evident diminution in plasma alkaline phosphatase, hydroxyprolinuria and whole body retention (WBR) of MDP-Tc99m was observed, demonstrating a reduction of metabolic turnover in the bone. No changes in the bone mass (BMC), evaluated by bone mineral detector, were observed at the end of treatment. With this treatment the plateau effect was shown to be appreciably less than normally occurs when either calcitonin or sodium etidronate are used alone.

  18. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    PubMed

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly decreased the expression of Tribbles homolog 3 ( TRIB3), a repressor of adipogenic differentiation. Y15, a specific inhibitor of FAK activity, was used to inhibit the activity of FAK under normal gravity; Y15 decreased protein expression of TRIB3. Therefore, it appears that space microgravity decreased FAK activity and thereby reduced TRIB3 expression and derepressed AKT activity. Under space microgravity, the increase in p38 MAPK activity and the derepression of AKT activity seem to synchronously lead to the activation of the signaling pathway specifically promoting adipogenesis.-Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., Wang, J. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

  19. Bone Markers, Calcium Metabolism, and Calcium Kinetics During Extended-Duration Space Flight on the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; O'Brien, Kimberly O.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Davis-Street, Janis E.; Oganov, Victor; Shackelford, Linda C.

    2005-01-01

    Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption. INTRODUCTION: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. MATERIALS AND METHODS: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p < 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 +/- 130 versus 427 +/- 153 mg/day; p < 0.001) and clearly documented that true intestinal calcium absorption was significantly lower during flight compared with preflight values (233 +/- 87 versus 460 +/- 47 mg/day; p < 0.01). Weightlessness had a detrimental effect on the balance in bone turnover such that the daily difference in calcium retention during flight compared with preflight values approached 300 mg/day (-234 +/- 102 versus 63 +/- 75 mg/day; p < 0.01). CONCLUSIONS: These bone marker and calcium kinetic studies indicated that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption.

  20. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  1. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  2. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    NASA Technical Reports Server (NTRS)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  3. Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals

    PubMed Central

    de OLIVEIRA, Danila; HASSUMI, Jaqueline Suemi; GOMES-FERREIRA, Pedro Henrique da Silva; POLO, Tárik Ocon Braga; FERREIRA, Gabriel Ramalho; FAVERANI, Leonardo Perez; OKAMOTO, Roberta

    2017-01-01

    Abstract Sodium alendronate is a bisphosphonate drug that exerts antiresorptive action and is used to treat osteoporosis. Objective The aim of this study was to evaluate the bone repair process at the bone/implant interface of osteoporotic rats treated with sodium alendronate through the analysis of microtomography, real time polymerase chain reactions and immunohistochemistry (RUNX2 protein, bone sialoprotein (BSP), alkaline phosphatase, osteopontin and osteocalcin). Material and Methods A total of 42 rats were used and divided in to the following experimental groups: CTL: control group (rats submitted to fictitious surgery and fed with a balanced diet), OST: osteoporosis group (rats submitted to a bilateral ovariectomy and fed with a low calcium diet) and ALE: alendronate group (rats submitted to a bilateral ovariectomy, fed with a low calcium diet and treated with sodium alendronate). A surface treated implant was installed in both tibial metaphyses of each rat. Euthanasia of the animals was conducted at 14 (immunhostochemistry) and 42 days (immunohistochemistry, micro CT and PCR). Data were subjected to statistical analysis with a 5% significance level. Results Bone volume (BV) and total pore volume were higher for ALE group (P<0.05). Molecular data for RUNX2 and BSP proteins were significantly expressed in the ALE group (P<0.05), in comparison with the other groups. ALP expression was higher in the CTL group (P<0.05). The immunostaining for RUNX2 and osteopontin was positive in the osteoblastic lineage cells of neoformed bone for the CTL and ALE groups in both periods (14 and 42 days). Alkaline phosphatase presented a lower staining area in the OST group compared to the CTL in both periods and the ALE at 42 days. Conclusion There was a decrease of osteocalcin precipitation at 42 days for the ALE and OST groups. Therefore, treatment with short-term sodium alendronate improved bone repair around the implants installed in the tibia of osteoporotic rats. PMID:28198975

  4. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice

    PubMed Central

    Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP in maintaining proper periodontal function and alveolar bone remodeling and point to dental dysfunction as causative factor of skeletal defects observed in Bsp-/- mice. PMID:26130257

  5. Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase.

    PubMed

    Jafary, F; Hanachi, P; Gorjipour, K

    2017-01-01

    In tissue engineering, scaffold characteristics play an important role in the biological interactions between cells and the scaffold. Cell adhesion, proliferation, and activation depend on material properties used for the fabrication of scaffolds. In the present investigation, we used collagen with proper characteristics including mechanically stability, biodegradability and low antigenicity. Optimization of the scaffold was done by immobilization of alkaline phosphatase on the collagen surface via cross-linking method, because this enzyme is one of the most important markers of osteoblast, which increases inorganic phosphate concentration and promote mineralization of bone formation. Alkaline phosphatase was immobilized on a collagen surface by 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, as a reagent. Then, rat mesenchymal stem cells were cultured in osteogenic medium in control and treated groups. The osteogenesis-related genes were compared between treatments (differentiated cells with immobilized alkaline phosphatase/collagen scaffold) and control groups (differentiated cells on collagen surface without alkaline phosphatase) on days 3 and 7 by quantitative real-time PCR (QIAGEN software). Several genes, including alkaline phosphatase, collagen type I and osteocalcine associated with calcium binding and mineralization, showed upregulation in expression during the first 3 days, whereas tumor necrosis factor-α, acting as an inhibitor of differentiation, was down-regulated during osteogenesis. Collagen scaffold with immobilized alkaline phosphatase can be utilized as a good candidate for enhancing the differentiation of osteoblasts from mesenchymal stem cells.

  6. High intake of milk, but not meat, decreases bone turnover in prepubertal boys after 7 days.

    PubMed

    Budek, A Z; Hoppe, C; Michaelsen, K F; Mølgaard, C

    2007-08-01

    To compare the short-term effect of a high milk and a high meat intake, identical in protein amount, on bone turnover during prepuberty. A University department. From 28, randomly recruited, 8-year-old boys, first 14 were assigned to the milk group and next 14 to the meat group. In each group, 12 boys finished the dietary intervention. Milk (1.5 l/day) and meat (250 g/d), both containing approximately 53 g of protein, were given together with the habitual diet for 7 days. At baseline and day-7, serum osteocalcin (s-OC), bone-specific alkaline phosphatase (s-BAP) and C-terminal telopeptides of type I collagen (s-CTX) were measured (immunoassay) and dietary intake was estimated (a 3-day weighted food record). Baseline s-OC, s-BAP and s-CTX were not significantly different between the groups. After 7 days, the average protein intake increased in both groups by 47.5 g; the milk group had higher (P<0.0001) calcium intake; s-OC and s-CTX decreased (P< or =0.04) in the milk group (-30.9%; -18.7%, respectively) compared with the meat group (+6.4%; -1.0%, respectively) and s-BAP decreased (P=0.06) both in the milk (-3.9%) and the meat group (-7.5%). At the equal protein intake, milk, but not meat, decreased bone turnover in prepubertal boys after 7 days. This effect was probably due to some milk-derived compounds, rather than to the total protein intake. Future studies should elucidate the mechanism(s) of milk-related decline of bone turnover and its relevance for peak bone mass during growth. University PhD scholarships.

  7. Effects of various forms of calcium on body weight and bone turnover markers in women participating in a weight loss program.

    PubMed

    Wagner, Ginger; Kindrick, Shirley; Hertzler, Steven; DiSilvestro, Robert A

    2007-10-01

    This study examined the effects of calcium intake on body weight, body fat, and markers of bone turnover in pre-menopausal adult women undergoing a 12 week weight loss program of diet and exercise. Subjects were prescribed a 12 week diet with a 500 Kcal restriction containing about 750 mg calcium/day, exercised 3 times/week, and were given either placebo capsules, capsules of calcium lactate or calcium phosphate (daily dose about 800 mg calcium), or low fat milk (daily dose about 800 mg calcium). Subjects completed and returned daily diet diaries weekly. Daily calcium intake in mg from diet records + supplement assignment was: 788 +/- 175 (placebo), 1698 +/- 210 (Ca lactate), 1566 +/- 250 (Ca phosphate), 1514 +/- 225 (milk)(no significant differences among the calcium and milk groups). Each group had statistically significant changes in body weight (p < 0.01), but there were no significant differences among groups for the weight loss: 5.8 +/- 0.8 kg (placebo), 4.1 +/- 0.7 kg (Ca lactate), 5.4 +/- 1.3 kg (Ca phosphate), 4.2 +/- 0.8 kg (milk). Body fat was changed significantly in each group (p < 0.01), with milk group showing a little less change than the other groups. Serum bone specific alkaline phophatase activity, a bone synthesis marker, increased similarly in all groups (p < 0.001 within groups, no significance for changes among groups). In contrast, the Ca lactate group, but not other groups, had a drop in urine values for alpha helical peptide, a bone resorption marker (p < 0.05). For the conditions of this study, increased calcium intake, by supplement or milk, did not enhance loss of body weight or fat, though calcium lactate supplementation lowered values for a marker of bone degradation.

  8. Nutrititional Status Assessment of International Space Station Crew Members

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Block, G.; Rice, B. I.; Davis-Street, J. F.

    2005-01-01

    Defining optimal nutrient requirements is imperative to ensure crew health on long-duration space exploration missions. To date, nutrient requirement data have been extremely limited because of small sample sizes and difficulties associated with collecting biological samples. In this study, we examined changes in body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals after long-duration (128-195 d) space flight aboard the International Space Station. Crew members consumed an average of 80% of the recommended energy intakes, and on landing day their body weight had decreased (P=0.051). After flight, hematocrit was less, and serum femtin was greater than before flight (P<0.01). Serum iron, ferritin saturation, and transferrin had decreased after flight. The finding that other acute-phase proteins, including ceruloplasmin, retinol binding protein, transthyretin, and albumin were not changed after flight suggests that the changes in iron metabolism may not be strictly due to an inflammatory response. Urinary 8- hydroxy-2'-deoxyguanosine concentration was greater and superoxide dismutase was less after flight, indicating that oxidative damage had increased (P<0.05). Despite the reported use of vitamin D supplements during flight, serum 25-hydroxyvitamin D was significantly decreased after flight (P<0.01). Bone resorption was increased after flight, as indicated by several urinary markers of bone resorption. Bone formation, assessed by serum concentration of bone-specific alkaline phosphatase, was elevated only in crew members who landed in Russia, probably because of the longer time lapse between landing and sample collection. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage remain critical concerns for long-duration space flight.

  9. Reduced bone mineral density in Japanese premenopausal women with systemic lupus erythematosus treated with glucocorticoids.

    PubMed

    Banno, S; Matsumoto, Y; Naniwa, T; Hayami, Y; Sugiura, Y; Yoshinouchi, T; Ueda, R

    2002-12-01

    Abstract We evaluated bone mineral density (BMD) in Japanese female patients with systemic lupus erythematosus (SLE) and assessed the influence of the use of glucocorticoids. Lumbar BMD was measured by dual x-ray absorptiometry (DXA) in 60 premenopausal females who previously had been receiving glucocorticoid therapy. Therapeutic- and disease-related variables for SLE were analyzed and bone resorption or formation markers were measured. Osteoporosis was defined as a T-score below 2.5 SD by DXA; 12 patients (20%) showed osteoporosis, and 30 (50%) had osteopenia. Compared with the nonosteoporotic group (n = 48), the osteoporotic group (n = 12) had a significantly longer duration of glucocorticoid treatment (P = 0.01), a cumulative prednisolone dose (P = 0.002), and an SLE damage index (SLICC/ACR). There was no difference in the incidence of osteoporosis either with or without the previous use of methyl-prednisolone pulse or immunosuppressive drugs. There was a significant positive correlation between urinary type I collagen cross-linked N-telopeptides (NTx) and serum bone-specific alkaline phosphatase (BAP) (r = 0.404, P = 0.002), but these bone metabolic markers showed no difference between the osteoporotic and nonosteoporotic groups. A good significant negative correlation was shown between BMD and the cumulative glucocorticoid dose (r = -0.351, P = 0.007). Stepwise logistic regression analysis showed that the cumulative glucocorticoid intake was independently associated with osteoporosis. Glucocorticoid-induced osteoporosis was frequently observed in Japanese SLE patients, as in Caucasian populations. The cumulative glucocorticoid dose was associated with an increased risk for osteoporosis. Bone metabolic markers such as NTx and BAP were not influenced by glucocorticoid treatment and could not predict current osteoporosis in SLE patients.

  10. Relationship between bone turnover and left ventricular function in primary hyperparathyroidism: The EPATH trial.

    PubMed

    Verheyen, Nicolas; Fahrleitner-Pammer, Astrid; Belyavskiy, Evgeny; Gruebler, Martin R; Dimai, Hans Peter; Amrein, Karin; Ablasser, Klemens; Martensen, Johann; Catena, Cristiana; Pieske-Kraigher, Elisabeth; Colantonio, Caterina; Voelkl, Jakob; Lang, Florian; Alesutan, Ioana; Meinitzer, Andreas; März, Winfried; Brussee, Helmut; Pieske, Burkert; Pilz, Stefan; Tomaschitz, Andreas

    2017-01-01

    Observational studies suggested a link between bone disease and left ventricular (LV) dysfunction that may be pronounced in hyperparathyroid conditions. We therefore aimed to test the hypothesis that circulating markers of bone turnover correlate with LV function in a cohort of patients with primary hyperparathyroidism (pHPT). Cross-sectional data of 155 subjects with pHPT were analyzed who participated in the "Eplerenone in Primary Hyperparathyroidism" (EPATH) Trial. Multivariate linear regression analyses with LV ejection fraction (LVEF, systolic function) or peak early transmitral filling velocity (e', diastolic function) as dependent variables and N-terminal propeptide of procollagen type 1 (P1NP), osteocalcin (OC), bone-specific alkaline phosphatase (BALP), or beta-crosslaps (CTX) as the respective independent variable were performed. Analyses were additionally adjusted for plasma parathyroid hormone, plasma calcium, age, sex, HbA1c, body mass index, mean 24-hours systolic blood pressure, smoking status, estimated glomerular filtration rate, antihypertensive treatment, osteoporosis treatment, 25-hydroxy vitamin D and N-terminal pro-brain B-type natriuretic peptide. Independent relationships were observed between P1NP and LVEF (adjusted β-coefficient = 0.201, P = 0.035) and e' (β = 0.188, P = 0.042), respectively. OC (β = 0.192, P = 0.039) and BALP (β = 0.198, P = 0.030) were each independently related with e'. CTX showed no correlations with LVEF or e'. In conclusion, high bone formation markers were independently and paradoxically related with better LV diastolic and, partly, better systolic function, in the setting of pHPT. Potentially cardio-protective properties of stimulated bone formation in the context of hyperparathyroidism should be explored in future studies.

  11. Low bone mineral density and vitamin d deficiency correlated with genetics and other bone markers in female Turkish immigrants in Germany.

    PubMed

    Tastan, Yasemin; Kann, Peter Herbert; Tinneberg, Hans-Rudolf; Hadji, Peyman; Müller-Ladner, Ulf; Lange, Uwe

    2016-11-01

    Patients with osteoporosis have a low bone mass resulting in an increased risk for bone fractures, morbidity and mortality. One hundred thirty-one female pre-menopausal participants (98 Turkish immigrants living in Germany in comparison with 33 age-matched healthy Germans) were recruited for this study which explored vitamin D deficiency and specific genetic modifications of bone metabolism. The subjects were investigated for their femoral and lumbar bone mineral density (BMD) by dual-energy X-ray absorptiometry (DEXA) of the right total femur and the lumbar spine. Serum levels of osteologic parameters were determined: parathormone (PTH), calcium (Ca), osteocalcin (OC), phosphate (P), alkaline phosphatase (AP), beta-crossLaps (CL), tartrate-resistant acid phosphatase isoform 5b (TRAP5b), and 25-vitamin D 3 (25-OH D 3 ). The Bsml- and Fokl-polymorphisms of the vitamin D receptor (VDR) gene and the collagen type I alpha 1 (COLIA1)-gene polymorphism were also genotyped. An extremely high prevalence of vitamin D deficiency could be found in the immigrant cohort (87.8 %). Osteoporosis but not osteopenia was more prevalent in this group. Among immigrants with osteoporosis, TRAP5b was elevated in 42.9 % and beta-CL in 28.6 %. Only the Fokl FF-genotype of the VDR polymorphism was significantly more prevalent among the Turkish women, Ff-genotyped immigrants showed significantly decreased BMD. A significant correlation between the COLIA1-gene polymorphism and BMD could not be identified in the two groups. Vitamin D deficiency and osteoporosis appear to be dominant and unrecognized problem among female Turkish immigrants in Germany. Therefore, in this population, osteologic parameters and BMD should be routinely analyzed and deficiencies be treated immediately.

  12. Effect of Daily Exposure to an Isolated Soy Protein Supplement on Body Composition, Energy and Macronutrient Intake, Bone Formation Markers, and Lipid Profile in Children in Colombia.

    PubMed

    Mejía, Wilson; Córdoba, Diana; Durán, Paola; Chacón, Yersson; Rosselli, Diego

    2018-01-16

    A soy protein-based supplement may optimize bone health, support physical growth, and stimulate bone formation. This study aimed to assess the effect of a daily soy protein supplement (SPS) on nutritional status, bone formation markers, lipid profile, and daily energy and macronutrient intake in children. One hundred seven participants (62 girls), ages 2 to 9, started the study and were randomly assigned to lunch fruit juice with (n = 57, intervention group) or without (n = 50, control group) addition of 45 g (230 Kcal) of a commercial SPS during 12 months; 84 children (51 girls, 33 boys) completed the study (45 and 39 intervention and control, respectively). Nutritional assessment included anthropometry and nutrient intakes; initial and final blood samples were taken; insulin-like growth factor-I (IGF-I), osteocalcin, bone specific alkaline phosphatase (BAP), insulin-like growth factor binding protein-3 (IGFBP-3), cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were analyzed. Statistically significant changes (p < .05) in body mass index and weight for age Z scores were observed between groups while changes in body composition were not. Changes in energy, total protein, and carbohydrate intakes were significantly higher in the intervention group (p < .01). Calorie intake changes were statistically significant between groups (p < .001), and BAP decreased in both groups, with values within normal ranges. Osteocalcin, IGFBP-3, and lipid profile were not different between groups. IGF-I levels and IGF/IGFBP-3 ratio increased significantly in both groups. In conclusion, changes in macronutrient and energy intake and nutritional status in the intervention group compared to control group may ensure harmonious and adequate bone health and development.

  13. The effect of body composition and BMI on 25(OH)D response in vitamin D-supplemented athletes

    PubMed Central

    CASSITY, EVAN P.; REDZIC, MAJA; TEAGER, CASSIDY R.; THOMAS, D. TRAVIS

    2016-01-01

    Fat mass is inversely associated with vitamin D status, and athletes with the most adipose tissue may have the greatest risk for insufficient (25(OH)D 20–32 ng mL−1) or deficient (25(OH)D < 20 ng ml−1) status. The effects of fat and lean mass on 25 (OH)D change in response to vitamin D supplementation have yet to be elucidated in athletes. In addition, vitamin D has a known role in bone health yet a link between short-term changes in 25(OH)D and bone turnover in indoor athletes have not yet been described. Thirty-two collegiate swimmers and divers (19 male, 13 female; 19 (1) years) participated in a 6-month randomized controlled trial and consumed either 4000 IU d−1 of vitamin D3 (n = 19) or placebo (PLA; n = 13). Anthropometry and blood collection of 25(OH)D, bone-specific alkaline phosphatase (B-ALP) and N-terminal telopeptide (NTx) occurred at three time points. Dual-energy X-ray absorptiometry measured body composition analysis at baseline and endpoint. In the vitamin D group, BMI was negatively correlated with 6-month 25(OH)D change (R =−0.496; P = .03) and a stronger predictor of 25(OH)D change (P = .04) than ultraviolet B exposure and fat mass change.Athletes in the high bone turnover group showed significantly greater losses of 25(OH)D over 6-months compared to athletes in the low bone turnover group (P = .03). These results suggest athletes within the normal BMI category experience a diminished response to 4000 IU d−1 of vitamin D3 supplementation, and periods of high bone turnover may be an additional risk factor for developing compromised vitamin D status in athletes. PMID:26698109

  14. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/β-Catenin Dependent Mechanism

    PubMed Central

    Wannenes, Francesca; Papa, Vincenza; Greco, Emanuela A.; Fornari, Rachele; Marocco, Chiara; Di Luigi, Luigi; Donini, Lorenzo M.; Lenzi, Andrea

    2014-01-01

    Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by obesity and sarcopenia (OS), and (4) affected by obesity, sarcopenia, and low BMD (OOS) as compared to subjects with normal body weight and normal BMD (CTL). Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis. PMID:24963291

  15. Blocking the expression of both bone sialoprotein (BSP) and osteopontin (OPN) impairs the anabolic action of PTH in mouse calvaria bone.

    PubMed

    Bouleftour, Wafa; Bouet, Guenaelle; Granito, Renata Neves; Thomas, Mireille; Linossier, Marie-Thérèse; Vanden-Bossche, Arnaud; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc

    2015-03-01

    Osteopontin (OPN) and bone sialoprotein (BSP) are coexpressed in osteoblasts and osteoclasts, and display overlapping properties. We used daily injection of parathyroid hormone 1-84 (iPTH) over the calvaria of BSP knockout (-/-) mice to investigate further their functional specificity and redundancy. iPTH stimulated bone formation in both +/+ and -/- mice, increasing to the same degree periosteum, osteoid and total bone thickness. Expression of OPN, osterix, osteocalcin (OCN) and DMP1 was also increased by iPTH in both genotypes. In contrast to +/+, calvaria cell cultures from -/- mice revealed few osteoblast colonies, no mineralization and little expression of OCN, MEPE or DMP1. In contrast, OPN levels were 5× higher in -/- versus +/+ cultures. iPTH increased alkaline phosphatase (ALP) activity in cell cultures of both genotypes, with higher OCN and the induction of mineralization in -/- cultures. siRNA blocking of OPN expression did not alter the anabolic action of the hormone in BSP +/+ calvaria, while it blunted iPTH effects in -/- mice, reduced to a modest increase in periosteum thickness. In -/- (not +/+) cell cultures, siOPN blocked the stimulation by iPTH of ALP activity and OCN expression, as well as the induction of mineralization. Thus, full expression of either OPN or BSP is necessary for the anabolic effect of PTH at least in the ectopic calvaria injection model. This suggests that OPN may compensate for the lack of BSP in the response to this hormonal challenge, and provides evidence of functional overlap between these cognate proteins. © 2014 Wiley Periodicals, Inc., A Wiley Company.

  16. Changes in Inflammatory and Bone Turnover Markers After Periodontal Disease Treatment in Patients With Diabetes.

    PubMed

    Izuora, Kenneth E; Ezeanolue, Echezona E; Neubauer, Michael F; Gewelber, Civon L; Allenback, Gayle L; Shan, Guogen; Umpierrez, Guillermo E

    2016-06-01

    The underlying mechanisms for increased osteopenia and fracture rates in patients with diabetes are not well understood, but may relate to chronic systemic inflammation. We assessed the effect of treating periodontal disease (POD), a cause of chronic inflammation, on inflammatory and bone turnover markers in patients with diabetes. Using an investigator-administered questionnaire, we screened a cross-section of patients presenting for routine outpatient diabetes care. We recruited 22 subjects with POD. Inflammatory and bone turnover markers were measured at baseline and 3 months following POD treatment (scaling, root planing and subantimicrobial dose doxycycline). There were nonsignificant reductions in high-sensitivity C-reactive protein (6.34-5.52mg/L, P = 0.626) and tumor necrosis factor-alpha (10.37-10.01pg/mL, P = 0.617). There were nonsignificant increases in urinary C-terminal telopeptide (85.50-90.23pg/mL, P = 0.684) and bone-specific alkaline phosphatase (7.45-8.79pg/mL, P = 0.074). Patients with >90% adherence with doxycycline were 6.4 times more likely to experience reduction in tumor necrosis factor-alpha (P = 0.021) and 2.8 times more likely to experience reductions in high-sensitivity C-reactive protein (P = 0.133). Treatment of POD in patients with diabetes resulted in nonsignificant lowering of inflammatory markers and nonsignificant increase in bone turnover markers. However, adherence to doxycycline therapy resulted in better treatment effects. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  17. Thioaptamer Diagnostic System (TDS)

    NASA Technical Reports Server (NTRS)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  18. Isolation of fish skin and bone gelatin from tilapia (Oreochromis niloticus): Response surface approach

    NASA Astrophysics Data System (ADS)

    Arpi, N.; Fahrizal; Novita, M.

    2018-03-01

    In this study, gelatin from fish collagen, as one of halal sources, was extracted from tilapia (Oreochromis niloticus) skin and bone, by using Response Surface Methodology to optimize gelatin extraction conditions. Concentrations of alkaline NaOH and acid HCl, in the pretreatment process, and temperatures in extraction process were chosen as independent variables, while dependent variables were yield, gel strength, and emulsion activity index (EAI). The result of investigation showed that lower NaOH pretreatment concentrations provided proper pH extraction conditions which combine with higher extraction temperatures resulted in high gelatin yield. However, gelatin emulsion activity index increased proportionally to the decreased in NaOH concentrations and extraction temperatures. No significant effect of the three independent variables on the gelatin gel strength. RSM optimization process resulted in optimum gelatin extraction process conditions using alkaline NaOH concentration of 0.77 N, acid HCl of 0.59 N, and extraction temperature of 66.80 °C. The optimal solution formula had optimization targets of 94.38%.

  19. Bone morphogenetic protein 7 (BMP-7) influences tendon-bone integration in vitro.

    PubMed

    Schwarting, Tim; Lechler, Philipp; Struewer, Johannes; Ambrock, Marius; Frangen, Thomas Manfred; Ruchholtz, Steffen; Ziring, Ewgeni; Frink, Michael

    2015-01-01

    Successful graft ingrowth following reconstruction of the anterior cruciate ligament is governed by complex biological processes at the tendon-bone interface. The aim of this study was to investigate in an in vitro study the effects of bone morphogenetic protein 7 (BMP-7) on tendon-bone integration. To study the biological effects of BMP-7 on the process of tendon-bone-integration, two independent in vitro models were used. The first model involved the mono- and coculture of bovine tendon specimens and primary bovine osteoblasts with and without BMP-7 exposure. The second model comprised the mono- and coculture of primary bovine osteoblasts and fibroblasts. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lactate and osteocalcin (OCN) were analyzed by ELISA. Histological analysis and electron microscopy of the tendon specimens were performed. In both models, positive effects of BMP-7 on ALP enzyme activity were observed (p<0.001). Additionally, similar results were noted for LDH activity and lactate concentration. BMP-7 stimulation led to a significant increase in OCN expression. Whereas the effects of BMP-7 on tendon monoculture peaked during an early phase of the experiment (p<0.001), the cocultures showed a maximal increase during the later stages (p<0.001). The histological analysis showed a stimulating effect of BMP-7 on extracellular matrix formation. Organized ossification zones and calcium carbonate-like structures were only observed in the BMP-stimulated cell cultures. This study showed the positive effects of BMP-7 on the biological process of tendon-bone integration in vitro. Histological signs of improved mineralization were paralleled by increased rates of osteoblast-specific protein levels in primary bovine osteoblasts and fibroblasts. Our findings indicated a role for BMP-7 as an adjuvant therapeutic agent in the treatment of ligamentous injuries, and they emphasized the importance of the transdifferentiation process of tendinous fibroblasts at the tendon-bone interface.

  20. Characteristics of bone turnover in the long bone metaphysis fractured patients with normal or low Bone Mineral Density (BMD).

    PubMed

    Wölfl, Christoph; Schweppenhäuser, Daniela; Gühring, Thorsten; Takur, Caner; Höner, Bernd; Kneser, Ulrich; Grützner, Paul Alfred; Kolios, Leila

    2014-01-01

    The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD.

  1. Relationship between serum leptin concentrations and bone mineral density as well as biochemical markers of bone turnover in women with postmenopausal osteoporosis.

    PubMed

    Shaarawy, Mohamed; Abassi, Asmaa Farid; Hassan, Hany; Salem, Mahmoud E

    2003-04-01

    To determine whether leptin is involved in bone remodeling in patients with postmenopausal osteoporosis. Cross-sectional study. Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University. Ninety postmenopausal osteoporotic women (37 obese and 53 nonobese) and 30 healthy premenopausal women from the same clinic served as controls. Lumbar spine bone mineral density (LS-BMD) of osteoporotic patients was more than 2.5 SD below the normal mean of healthy premenopausal women. Serum levels of leptin, osteocalcin (OC), bone alkaline phosphatase (B-ALP), urinary deoxypyridinoline (DPyr), and N-telopeptide of type 1 collagen (NTX) as well as LS-BMD using dual energy X-ray absorptiometry (DEXA). The serum leptin level in obese postmenopausal osteoporotic patients was significantly increased compared with nonobese osteoporotic patients. There were no significant differences of bone formation markers (B-ALP, OC), bone resorption markers (DPyr, NTX), or LS-BMD between the obese and nonobese groups. There were no significant correlations between serum leptin and any biomarkers of bone turnover and BMD. In postmenopausal osteoporotic patients with increased bone turnover, serum leptin concentration is not correlated with BMD or with the biomarkers of bone formation or bone resorption.

  2. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.

    PubMed

    Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H

    2001-02-01

    Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.

  3. Effect of swimming on bone metabolism in adolescents.

    PubMed

    Derman, Orhan; Cinemre, Alphan; Kanbur, Nuray; Doğan, Muhsin; Kiliç, Mustafa; Karaduman, Erdem

    2008-01-01

    Physical activity has been shown to have a positive effect on bone metabolism among adolescents. The objective of this study was to determine the effect of swimming on bone metabolism during adolescence. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. We studied whether swimming is associated with a higher peak bone mass. Forty swimmers (males aged 10-17 years and females aged 9-16 years) were studied. The control group consisted of the same number of adolescents aged between 10-16 years who did not swim; distribution of male and female gender was similar in the non-swimming control group compared to the swimming group. Adolescents were matched for age, gender and pubertal stages based on Tanner staging. All subjects underwent combined measurement of bone mineral metabolism by dual-energy X-ray absorptiometry of total body calcium content, and specific biochemical markers of turnover including osteocalcin, calcium, phosphorus and alkaline phosphatase. Bone age (determined by Greulich and Pyle's Radiographic Atlas of Skeletal Development of the Hand and Wrist), weight, height, ideal body weight, ideal body weight ratio, body mass index, Tanner classification (rated by examiner), diet, history of tobacco and alcohol exposure, exercise, socioeconomic status and history of chronic illness and medications were recorded to evaluate potential mediators that would affect bone metabolism. Tanner staging was used to assess puberty, and diet was evaluated based on reported consumption of milk, yogurt and cheese and cola/caffeine beverage consumption daily. There was significant difference in bone mineral content between adolescent male swimmers and the control group males. Consumption of cola beverages were significantly higher among the control group compared with the swimmer group. Ideal body weight ratio was significantly high among the female control group compared with female swimmers. Milk consumption was significantly higher for both male and female swimmer groups, whereas yogurt consumption was only significantly higher in the male swimmer group compared with control group. These results indicate that a highly active nonimpact sport such as swimming may lead to increased bone mineral content only for male swimmers. However, dietary behaviors may be more important than swimming on bone metabolism among adolescents.

  4. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry.

    PubMed

    Smith, Scott M; Heer, Martina A; Shackelford, Linda C; Sibonga, Jean D; Ploutz-Snyder, Lori; Zwart, Sara R

    2012-09-01

    Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the "interim resistive exercise device" (iRED), which allowed loads of up to 297 lb(f) (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lb(f) (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions. Copyright © 2012 American Society for Bone and Mineral Research.

  5. Reduced bone mineral density is not associated with significantly reduced bone quality in men and women practicing long-term calorie restriction with adequate nutrition.

    PubMed

    Villareal, Dennis T; Kotyk, John J; Armamento-Villareal, Reina C; Kenguva, Venkata; Seaman, Pamela; Shahar, Allon; Wald, Michael J; Kleerekoper, Michael; Fontana, Luigi

    2011-02-01

    Calorie restriction (CR) reduces bone quantity but not bone quality in rodents. Nothing is known regarding the long-term effects of CR with adequate intake of vitamin and minerals on bone quantity and quality in middle-aged lean individuals. In this study, we evaluated body composition, bone mineral density (BMD), and serum markers of bone turnover and inflammation in 32 volunteers who had been eating a CR diet (approximately 35% less calories than controls) for an average of 6.8 ± 5.2 years (mean age 52.7 ± 10.3 years) and 32 age- and sex-matched sedentary controls eating Western diets (WD). In a subgroup of 10 CR and 10 WD volunteers, we also measured trabecular bone (TB) microarchitecture of the distal radius using high-resolution magnetic resonance imaging. We found that the CR volunteers had significantly lower body mass index than the WD volunteers (18.9 ± 1.2 vs. 26.5 ± 2.2 kg m(-2) ; P = 0.0001). BMD of the lumbar spine (0.870 ± 0.11 vs. 1.138 ± 0.12 g cm(-2) , P = 0.0001) and hip (0.806 ± 0.12 vs. 1.047 ± 0.12 g cm(-2) , P = 0.0001) was also lower in the CR than in the WD group. Serum C-terminal telopeptide and bone-specific alkaline phosphatase concentration were similar between groups, while serum C-reactive protein (0.19 ± 0.26 vs. 1.46 ± 1.56 mg L(-1) , P = 0.0001) was lower in the CR group. Trabecular bone microarchitecture parameters such as the erosion index (0.916 ± 0.087 vs. 0.877 ± 0.088; P = 0.739) and surface-to-curve ratio (10.3 ± 1.4 vs. 12.1 ± 2.1, P = 0.440) were not significantly different between groups. These findings suggest that markedly reduced BMD is not associated with significantly reduced bone quality in middle-aged men and women practicing long-term calorie restriction with adequate nutrition.

  6. Effects of electromagnetic pulse on bone metabolism of mice in vivo.

    PubMed

    Li, Kang-Chu; Ma, Shi-Rong; Ding, Gui-Rong; Guo, Yao; Guo, Guo-Zhen

    2009-12-01

    To study the effects of electromagnetic pulse (EMP) on bone metabolism of mice in vivo. Twenty-four male BALB/c mice were divided into a control group and 2 experimental groups (n=8). The whole-body of mice in experimental groups were exposed to 50 kV/m and 400kV/m EMP, 400 pulses daily for 7 consecutive days at 2 seconds intervals. Alkaline phosphotase (ALP) activity, serum calcium concentration and osteocalcin level and trabecular bone volume (BV/TV, %) were measured immediately after EMP exposure by biochemical, ELISA and morphological methods. The ALP activity, serum calcium concentration and osteocalcin level and BV/TV in experimental groups remained unchanged after EMP exposure. Conclusion Under our experimental conditions, EMP exposure cannot affect bone metabolism of mice in vivo.

  7. Bone scintigraphy and secondary osteomalacia due to nephrotoxicity in a chronic hepatitis B patient treated with tenofovir.

    PubMed

    Gómez Martinez, M V; Gallardo, F G; Pirogova, T; García-Samaniego, J

    2014-01-01

    Tenofovir is a nucleotide analogue used for the treatment of chronic hepatitis B and HIV infection. The safety of tenofovir is high but it has been described that tenofovir produces tubular toxicity and Fanconi's syndrome in some HIV-infected patients. To our knowledge this is the first documented case of bone involvement in Fanconi's syndrome in a patient treated with tenofovir for chronic hepatitis B without HIV coinfection. Bone scintigraphy has proven to be very useful for the diagnosis of secondary osteomalacia. Normalization of the bone scan after the withdrawal of the drug and the decline in alkaline phosphatase and phosphate serum levels reinforce the cause-effect relationship. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  8. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal during reambulation. Thus, under the conditions of this study, the human skeleton appears to respond to unloading by a rapid and sustained increase in bone resorption and a more subtle decrease in bone formation.

  9. Detecting rickets in premature infants and treating them with calcitriol: experience from two cases.

    PubMed

    Chen, Hung-Yi; Chiu, Li-Chien; Yek, Yung-Lee; Chen, Yi-Ling

    2012-08-01

    A premature infant is a baby born before 37 weeks of gestation. Rickets is a bone disease characterized by growth retardation due to the expansion of the hypertrophic chondrocyte layer of the growth plate and a failure to mineralize bone. Consequently, the bone is soft and permits marked bending and distortion. Although the incidence of rickets in preterm infants is lower due to improvements in health care and nutrition, there are still infants at high risk for this disease. However, few reports are available regarding the treatment of rickets in premature infants. Furthermore, published case studies on experiences with using calcitriol as a potential therapeutic for rickets in premature infants are very rare. Herein, we describe the detection of rickets in premature infants and our experience with calcitriol treatment in two premature infants. We recommended the use of oral calcitriol at a dose of 0.03-0.125 μg/kg/day, in addition to an appropriate formula that provides an adequate amount of calcium and phosphate intake. One patient was prescribed calcitriol for 40 days and the other for 37 days. The two infants gradually recovered and were discharged without any obvious side effects. It is recommended that alkaline phosphatase levels be monitored within 1 month after birth in premature infants with a birth weight of <1000 g. Infants presenting with high alkaline phosphatase levels are candidates for a long bone survey. Copyright © 2012. Published by Elsevier B.V.

  10. Magnesium ions facilitate integrin alpha 2- and alpha 3-mediated proliferation and enhance alkaline phosphatase expression and activity in hBMSCs.

    PubMed

    Leem, Yea-Hyun; Lee, Kang-Sik; Kim, Jung-Hwa; Seok, Hyun-Kwang; Chang, Jae-Suk; Lee, Dong-Ho

    2016-10-01

    Magnesium metal and its alloys have been proposed as a novel class of bone implant biomaterials because of their biodegradability and mechanical properties. The purpose of this study was to determine whether magnesium ions, which are released abundantly from alloys, affect proliferation and differentiation of human bone marrow-derived stromal cells (hBMSCs). High levels of magnesium ions did not induce cytotoxicity in hBMSCs, but treatment with 2.5-10 mm magnesium ions for 48-72 h significantly increased hBMSC proliferation. The expression of integrins α2 and α3, but not β1, was upregulated compared with the control and shifted from α3 to α2 in hBMSCs treated with magnesium ions. Knockdown of integrins α2 and/or α3 significantly reduced magnesium-induced proliferation of hBMSCs. Magnesium exposure profoundly enhanced alkaline phosphatase (ALP) gene expression and activity even at a relatively low magnesium concentration (2.5 mm). Exposure to magnesium ions facilitated hBMSC proliferation via integrin α2 and α3 expression and partly promoted differentiation into osteoblasts via the alteration of ALP expression and activity. Accordingly, magnesium could be a useful biomaterial for orthopaedic applications such as bone implant biomaterials for repair and regeneration of bone defects in orthopaedic and dental fields. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  11. The Rachitic Tooth

    PubMed Central

    Nociti, Francisco H.; Somerman, Martha J.

    2014-01-01

    Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoproteinmore » II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.« less

  13. Bone and mineral metabolism in adult celiac disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.

    1988-03-01

    Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significantmore » modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.« less

  14. Ethanol inhibits human bone cell proliferation and function in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friday, K.E.; Howard, G.A.

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less

  15. Citrus juice modulates bone strength in male senescent rat model of osteoporosis.

    PubMed

    Deyhim, Farzad; Garica, Kristy; Lopez, Erica; Gonzalez, Julia; Ino, Sumiyo; Garcia, Michelle; Patil, Bhimanagouda S

    2006-05-01

    An experiment evaluated the effect of citrus juice on enhancing serum antioxidant status and on osteoporosis prevention in orchidectomized rats. Thirty-six 1-y-old male rats were randomized to two groups: a sham-control group (n = 9) and an orchidectomized group (n = 27). The orchidectomized group was divided into three groups of nine and assigned to one of the following treatments: orchidectomy, orchidectomy plus orange juice, and orchidectomy plus grapefruit juice. Sixty days after initiation of the study, all rats were killed, blood was collected, and serum was harvested for total antioxidant status and indices of bone formation and resorption. Femoral density and biomechanical properties were monitored. Orchidectomy decreased (P < 0.05) total antioxidant capacity, femoral density, and biomechanical properties and increased (P < 0.05) alkaline phosphatase, acid phosphatase, and urinary excretion of hydroxyproline compared with the sham-control group. In contrast to orchidectomy, orchidectomy plus orange juice and orchidectomy plus grapefruit juice reversed (P < 0.05) orchidectomy-induced antioxidant suppression, decreased (P < 0.05) alkaline phosphatase and acid phosphatase activities, moderately restored (P = 0.07) femoral density, increased (P < 0.05) femoral strength, significantly delayed time-induced femoral fracture, and decreased (P < 0.05) urinary excretion of hydroxyproline. The present study supports the supposition in that drinking citrus juice positively affects serum antioxidant status and bone strength.

  16. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing

    PubMed Central

    Wang, Tao; Wang, Yongmei; Menendez, Alicia; Fong, Chak; Babey, Muriel; Tahimic, Candice GT; Cheng, Zhiqiang; Li, Alfred; Chang, Wenhan; Bikle, Daniel D.

    2017-01-01

    Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1Rflox/flox/2.3-kb α1(1)-collagen-Cre (KO) and IGF1Rflox/flox (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation during fracture repair, but it plays an important role in coordinating chondrocyte, osteoclast, and endothelial responses that all contribute to the endochondral bone formation required for normal fracture repair. PMID:25801198

  17. Microporous nanofibrous fibrin-based scaffolds for craniofacial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Osathanon, Thanaphum

    The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds and immobilized alkaline phosphatase fibrin scaffolds with tightly controllable pore size, pore interconnection has been investigated. Microporous, nanofibrous fibrin scaffolds (FS) were fabricated using sphere-templating method. Calcium phosphate/fibrin composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds (MFS) exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to FS and nHA incorporated fibrin scaffolds (nHA/FS). These fibrin-based scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2. The second approach was to immobilize alkaline phosphatase (ALP) on fibrin scaffolds. ALP enzyme was covalently immobilized on the microporous nanofibrous fibrin scaffolds using 1-ethyl-3-(dimethylaminopropyl)carbodiimide hydrochloride (EDC). The SEM results demonstrated mineral deposition on immobilized ALP fibrin scaffolds (ALP/FS) when incubated in medium supplemented with beta-glycerophosphate, suggesting that the immobilized ALP enzyme was active. Mineral deposition was also observed in cells seeded on immobilized ALP/FS. Furthermore, cells seeded on immobilized ALP/FS exhibited higher osteoblast marker gene expression compared to those on control FS. Upon implantation in mouse calvarial defect, the immobilized ALP/FS treated group had slightly higher bone volume in the defect compared to empty defect control and FS alone. In conclusion, the enhanced biological responses both in vitro and in vivo demonstrated the potential application of these novel microporous nanofibrous fibrin-based scaffolds for bone tissue engineering.

  18. High fat diet promotes achievement of peak bone mass in young rats.

    PubMed

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R; Bhat, Manoj Kumar

    2014-12-05

    The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  19. Additively Manufactured 3D Porous Ti-6Al-4V Constructs Mimic Trabecular Bone Structure and Regulate Osteoblast Proliferation, Differentiation and Local Factor Production in a Porosity and Surface Roughness Dependent Manner

    PubMed Central

    Cheng, Alice; Humayun, Aiza; Cohen, David J.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopaedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2063–2954 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity (ALP), an early differentiation marker, decreased as porosity increased, while osteocalcin (OCN), a late differentiation marker, as well as osteoprotegerin (OPG), vascular endothelial growth factor (VEGF) and bone morphogenetic proteins 2 and 4 (BMP2, BMP4) increased with increasing porosity. 3D constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. PMID:25287305

  20. Effect of vitamin D therapy on bone turnover markers in postmenopausal women with osteoporosis and osteopenia.

    PubMed

    Tanzy, Margaret E; Camacho, Pauline M

    2011-01-01

    To (1) assess the rate of reduction in bone turnover with vitamin D and bisphosphonate therapies and (2) evaluate the clinical utility of bone-specific alkaline phosphatase (BSAP) in monitoring treatment response. We retrospectively reviewed medical records of patients with newly diagnosed osteopenia and osteoporosis from 2002 to 2009 at Loyola University Medical Center. A cohort of postmenopausal women with hip or spine T-scores of less than -1, normal serum creatinine, and no prior vitamin D or bisphosphonate therapy was divided into vitamin D-deficient (n = 29) and vitamin D-sufficient (n = 13) groups. Vitamin D-deficient patients received high-dose vitamin D, whereas vitamin D-sufficient patients received orally administered bisphosphonates. BSAP levels at baseline and 1 year were compared. Vitamin D therapy in the group with vitamin D deficiency led to a 26.7% decrease in BSAP (P<.01). Bisphosphonate therapy in the vitamin D-sufficient group led to a 32.7% decrease in BSAP (P = .01). The magnitude of BSAP change in the 2 study groups (6.74 ± 6.48 μg/L and 8.72 ± 9.94 μg/L) did not differ significantly (P = .45). The results of this study suggest that correction of vitamin D deficiency in patients with osteopenia and osteoporosis can lead to a decrease in bone turnover as measured by BSAP and that the magnitude of this reduction is similar to that achieved with orally administered bisphosphonates.

  1. The Cooccurrence of Obesity, Osteoporosis, and Sarcopenia in the Ovariectomized Rat: A Study for Modeling Osteosarcopenic Obesity in Rodents.

    PubMed

    Ezzat-Zadeh, Zahra; Kim, Jeong-Su; Chase, P Bryant; Arjmandi, Bahram H

    2017-01-01

    Obesity, osteoporosis, and sarcopenia may individually occur due to age-related gradual alterations in body composition. This study investigates the cooccurrence of these age-related diseases in female animals with low levels of ovarian hormone in the absence of complex multifactorial process of chronological aging. Thirty-six 5- and 10-month-old female rats were chosen to model pre- and postmenopausal women, respectively. Rats were divided into three treatment groups in each age category-sham, ovariectomized (ovx), and ovx + E 2 (17 β -estradiol, 10  μ g/kg)-and were pair-fed. Volunteer wheel running activity, body composition, bone microstructure, serum C-telopeptides of type I collagen, bone specific alkaline phosphatase, E 2 , and gastrocnemius and soleus muscles were analyzed. The cooccurrence of osteoporosis, sarcopenia, and obesity was observed in the older ovx rats associated with a significant ( p < 0.05) increased fat mass (30%), bone loss (9.6%), decreased normalized muscle mass-to-body-weight ratio (10.5%), and a significant decrease in physical activity (57%). The ratio of tibial bone mineral density to combined muscle mass was significantly decreased in both ovx age categories. Ovariectomized rat could be used as an experimental model to examine the effect of loss of ovarian hormones, while controlling for energy intake and expenditure, to conduct obesity and body composition translational research in females without the confounding effect of genetic background.

  2. Degradable Segmented Polyurethane Elastomers for Bone Tissue Engineering: Effect of Polycaprolactone Content

    PubMed Central

    Kavlock, Katherine D.; Whang, Kyumin; Guelcher, Scott A.; Goldstein, Aaron S.

    2016-01-01

    Segmented polyurethanes (PURs) – consisting of degradable poly(α-hydroxy ester) soft segments and amino acid-derived chain extenders – are biocompatible elastomers with tunable mechanical and degradative properties suitable for a variety of tissue engineering applications. In this study, a family of linear PURs synthesized from poly(ε-caprolactone) (PCL) diol, 1,4-diisocyanobutane and tyramine with theoretical PCL contents of 65 to 80 wt% were processed into porous foam scaffolds and evaluated for their ability to support osteoblastic differentiation in vitro. Differential scanning calorimetry and mechanical testing of the foams indicated increasing polymer crystallinity and compressive modulus with increasing PCL content. Next, bone marrow stromal cells (BMSCs) were seeded into PUR scaffolds – as well as poly(lactic-co-glycolic acid) (PLGA) scaffolds – and maintained under osteogenic conditions for 14 and 21 days. Analysis of cell number indicated a systematic decrease in cell density with increasing PUR stiffness at both 14 and 21 days in culture. However, at these same time points the relative mRNA expression for the bone-specific proteins osteocalcin and the growth factors bone morphogenetic protein-2 and vascular endothelial growth factor gene expression were similar among the PURs. Finally, prostaglandin E2 production, alkaline phosphatase activity, and osteopontin mRNA expression were highly elevated on the most-crystalline PUR scaffold as compared to the PLGA and PUR scaffolds. These results suggest that both the modulus and crystallinity of the PUR scaffolds influence cell proliferation and the expression of osteoblastic proteins. PMID:22304961

  3. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.

    PubMed

    Morsczeck, C

    2006-02-01

    Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.

  4. Widespread differential maternal and paternal genome effects on fetal bone phenotype at mid-gestation.

    PubMed

    Xiang, Ruidong; Lee, Alice M C; Eindorf, Tanja; Javadmanesh, Ali; Ghanipoor-Samami, Mani; Gugger, Madeleine; Fitzsimmons, Carolyn J; Kruk, Zbigniew A; Pitchford, Wayne S; Leviton, Alison J; Thomsen, Dana A; Beckman, Ian; Anderson, Gail I; Burns, Brian M; Rutley, David L; Xian, Cory J; Hiendleder, Stefan

    2014-11-01

    Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p < 0.0001) and limb length (PC3, p < 0.05). Partitioning of variation explained by parental genomes revealed strong maternal genome effects on bone wet weight (74.1%, p < 0.0001) and axial skeletal growth (93.5%, p < 0.001), whereas paternal genome controlled limb ossification (95.1%, p < 0.0001). Histomorphometric data revealed strong maternal genome effects on growth plate height (98.6%, p < 0.0001) and trabecular thickness (85.5%, p < 0.0001) in distal femur. Parental genome effects on fetal bone were mirrored by maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p < 0.001) and paternal genome effects on alkaline phosphatase (90.0%, p < 0.001) and their correlations with maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p < 0.0001) and negatively with muscle H19 expression (r = -0.34 and -0.31, p < 0.01). Because imprinted maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors. © 2014 American Society for Bone and Mineral Research.

  5. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted polyphosphate species were detected by Raman and IR spectroscopy. The oxygen isotope data of the reactants and products will also be presented. The possibility that carbonate acts as an intermediate reagent, transferring the oxygen from water to phosphate in biological apatite mineral formation may explain why biological apatite exhibits a significant carbonate content, and how this mineral is formed with an insignificant hydroxyl content. 1 Kohn, M.J., and Cerling, T.E. Rev Mineral Geochem 2002 (48) 455 2 Kolodny, Y., Luz, B., Navon, O. Earth Planet Sci Lett 1983 (64) 398 3 Blake, R.E., O'Neil, J.R., Garcia, G.A. Geochim et Cosmochim Acta 1997 (61) 4411 4 Blake, R.E., Alt, J.C., and Martini, A.M. PNAS 2001 (98) 2148-2153 5 Liang, Y., and Blake, R.E. Geochim Cosmochim Acta 2009 (73) 3782) 6 Pasteris, J.D. et al. Biomaterials 2004 (35) 229 7 Omelon et al., PLoS ONE 2009 4(5), e5634

  6. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    NASA Astrophysics Data System (ADS)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants. Electronic supplementary information (ESI) available: Calculation of roughness parameters Rz, Rz,max, and Rz, prom. Nano-HAp powder degradation after immersion in phosphate buffer (pH = 7.4). Optical phase contrast microphotographs of MSC adhesion on nano-HAp and nano-HAp/Co I coatings at different concentrations. Laser scanning confocal microphotographs of MSCs' α-SMA expression spreading on large amounts of nano-HAp (MI) coatings. Immunofluorescence microphotograph analysis by image software. See DOI: 10.1039/c5nr04850h

  7. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH.

    PubMed

    Fliefel, Riham; Popov, Cvetan; Tröltzsch, Matthias; Kühnisch, Jan; Ehrenfeld, Michael; Otto, Sven

    2016-06-01

    Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. Effect of taurine feeding on bone mineral density and bone markers in rats.

    PubMed

    Choi, Mi-Ja; Seo, Ji-Na

    2013-01-01

    The purpose of this study was to investigate the effect of dietary taurine supplementation on bone mineral density (BMD) and bone mineral content (BMC) in rats. Twenty Sprague-Dawley male rats (body weight 200 ± 10 g) were divided into two groups, control and taurine group (2% taurine-supplemented diet). All rats were fed on experimental diet and deionized water and libitum for 6 weeks. Serum alkaline phosphatase (ALP) activity, osteocalcin, PTH, and urinary deoxypyridinoline cross-links value were measured as markers of bone formation and resorption. BMD and BMC were measured using PIXImus (GE Lunar Co., Wisconsin) in spine and femur. The effect of diet on ALP, osteocalcine, and PTH was not significant. There were no significant differences in ALP, osteocalcine, and PTH concentration. Urinary calcium excretion was lower in taurine group than in control group. Femur BMC/weight of taurine group was significantly higher than control group. The results of this study showed the possible role of taurine in bone metabolism in male rats.

  9. Effect of chromium on vertebrae, femur and calvaria of adult male rats.

    PubMed

    Sankaramanivel, S; Jeyapriya, R; Hemalatha, D; Djody, S; Arunakaran, J; Srinivasan, N

    2006-06-01

    Alloys of chromium have a long history of success in the surgical treatment of many orthopaedic defects. Nonetheless, prostheses loosening are commonly found around arthoplasties due to corrosion of metals. On this basis, it is hypothesized that chromium accumulation interferes with remodeling of bone. The present study aims to analyse the toxic effects of chromium on bone phosphatases in various regions of the bone in rats. Rats were treated with chromium intraperitoneally (0.5 mg/kg) in the form of potassium dichromate for 5 days. The accumulation of chromium is approximately 5.2-fold in the vertebrae, 8.9-fold in the femur and 8.7-fold in the calvaria, when compared to control. Chromium administration significantly reduced the activity of enzymes, eg, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP). The study revealed a significant increase in the concentration of calcium, altered bone formation rate and bone morphology in the femur, vertebrae and calvaria. The interesting findings of the current study suggest altered bone turnover.

  10. Effect of Korean Red Ginseng on radiation-induced bone loss in C3H/HeN mice

    PubMed Central

    Lee, Jin-Hee; Lee, Hae-June; Yang, Miyoung; Moon, Changjong; Kim, Jong-Choon; Bae, Chun-Sik; Jo, Sung-Kee; Jang, Jong-Sik; Kim, Sung-Ho

    2013-01-01

    This study investigated the effects of Korean Red Ginseng (KRG) on radiation-induced bone loss in C3H/HeN mice. C3H/HeN mice were divided into sham and irradiation (3 Gy, gamma-ray) groups. The irradiated mice were treated for 12 wk with vehicle, KRG (per os, p.o.) or KRG (intraperitoneal). Serum alkaline phosphatase (ALP), tartrate-resistant acid phosphatase, estradiol level, and biomechanical properties were measured. Tibiae were analyzed using micro-computed tomography. Treatment of KRG (p.o., 250 mg/kg of body weight/d) significantly preserved trabecular bone volume, trabecular number, structure model index, and bone mineral density of proximal tibia metaphysic, but did not alter the uterus weight of the mice. Serum ALP level was slightly reduced by KRG treatment. However, grip strength, mechanical property, and cortical bone architecture did not differ among the experimental groups. The results indicate that KRG can prevent radiation-induced bone loss in mice. PMID:24233384

  11. Low temperature setting polymer-ceramic composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sethuraman, Swaminathan

    Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo study of these novel bone cements in a 5mm unicortical defect in New Zealand white rabbits showed that the implants were osteoconductive, and osteointegrative. In conclusion, the various studies that have been carried out in this thesis to study the feasibility of a bone cement system have shown that these materials are promising candidates for various orthopaedic applications. Overall I believe that these next generation bone cements are promising bone graft substitutes in the armamentarium to treat bone defects.

  12. In Vivo Overexpression of Tissue-Nonspecific Alkaline Phosphatase Increases Skeletal Mineralization and Affects the Phosphorylation Status of Osteopontin

    PubMed Central

    Narisawa, Sonoko; Yadav, Manisha C.; Millán, José Luis

    2013-01-01

    Functional ablation of tissue-nonspecific alkaline phosphatase (TNAP) (Alpl−/− mice) leads to hypophosphatasia, characterized by rickets/osteomalacia attributable to elevated levels of extracellular inorganic pyrophosphate, a potent mineralization inhibitor. Osteopontin (OPN) is also elevated in the plasma and skeleton of Alpl−/− mice. Phosphorylated OPN is known to inhibit mineralization, however, the phosphorylation status of the increased OPN found in Alpl−/− mice is unknown. Here, we generated a transgenic mouse line expressing human TNAP under control of an osteoblast-specific Col1a1 promoter (Col1a1-Tnap). The transgene is expressed in osteoblasts, periosteum, and cortical bones, and plasma levels of TNAP in mice expressing Col1a1-Tnap are 10-20 times higher than those of wild-type mice. The Col1a1-Tnap animals are healthy and exhibit increased bone mineralization by microCT analysis. Crossbreeding of Col1a1-Tnap transgenic mice to Alpl−/− mice rescues the lethal hypophosphatasia phenotype characteristic of this disease model. Osteoblasts from [Col1a1-Tnap] mice mineralize better than non-transgenic controls and osteoblasts from [Col1a1-Tnap+/−; Alpl−/−] mice are able to mineralize to the level of Alpl+/− heterozygous osteoblasts, while Alpl−/− osteoblasts show no mineralization. We found that the increased levels of OPN in bone tissue of Alpl−/− mice are comprised of phosphorylated forms of OPN while WT and [Col1a1-Tnap+/−; Alpl−/−] mice had both phosphorylated and dephosphorylated forms of OPN. OPN from [Col1a1-Tnap] osteoblasts were more phosphorylated than non-transgenic control cells. Titanium dioxide-liquid chromatography and tandem mass spectrometry analysis revealed that OPN peptides derived from Alpl−/− bone and osteoblasts yielded a higher proportion of phosphorylated peptides than samples from WT mice, and at least two phosphopeptides, p(S174FQVS178DEQY182PDAT186DEDLT191)SHMK and FRIp(S299HELES304S305S306S307)EVN, with one non-localized site each, appear to be preferred sites of TNAP action on OPN. Our data suggest that the pro-mineralization role of TNAP may be related not only to its accepted pyrophosphatase activity but also to its ability to modify the phosphorylation status of OPN. PMID:23427088

  13. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    PubMed Central

    2010-01-01

    Background Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05. Results Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and -3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-κB ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation. Conclusions PEMF exposure of differentiating human BMSCs enhanced mineralization and seemed to induce differentiation at the expense of proliferation. The osteogenic stimulus of PEMF was confirmed by the up-regulation of several osteogenic marker genes in the PEMF treated group, which preceded the deposition of mineral itself. These findings indicate that PEMF can directly stimulate osteoprogenitor cells towards osteogenic differentiation. This supports the theory that PEMF treatment may recruit these cells to facilitate an osteogenic response in vivo. PMID:20731873

  14. Vector-averaged gravity-induced changes in cell signaling and vitamin D receptor activity in MG-63 cells are reversed by a 1,25-(OH)2D3 analog, EB1089

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Smith, C. L.; Weigel, N. L.

    2002-01-01

    Skeletal unloading in an animal hindlimb suspension model and microgravity experienced by astronauts or as a result of prolonged bed rest causes site-specific losses in bone mineral density of 1%-2% per month. This is accompanied by reductions in circulating levels of 1,25-(OH)(2)D(3), the active metabolite of vitamin D. 1,25-(OH)(2)D(3), the ligand for the vitamin D receptor (VDR), is important for calcium absorption and plays a role in differentiation of osteoblasts and osteoclasts. To examine the responses of cells to activators of the VDR in a simulated microgravity environment, we used slow-turning lateral vessels (STLVs) in a rotating cell culture system. We found that, similar to cells grown in microgravity, MG-63 cells grown in the STLVs produce less osteocalcin, alkaline phosphatase, and collagen Ialpha1 mRNA and are less responsive to 1,25-(OH)(2)D(3). In addition, expression of VDR was reduced. Moreover, growth in the STLV caused activation of the stress-activated protein kinase pathway (SAPK), a kinase that inhibits VDR activity. In contrast, the 1,25-(OH)(2)D(3) analog, EB1089, was able to compensate for some of the STLV-associated responses by reducing SAPK activity, elevating VDR levels, and increasing expression of osteocalcin and alkaline phosphatase. These studies suggest that, not only does simulated microgravity reduce differentiation of MG-63 cells, but the activity of the VDR, an important regulator of bone metabolism, is reduced. Use of potent, less calcemic analogs of 1,25-(OH)(2)D(3) may aid in overcoming this defect. Copyright 2002 Elsevier Science Inc.

  15. The levels of bone alkaline phosphatase (BALP) and soluble epidermal growth factor receptor-2 (ECD/HER-2) in pediatric patients with osteosarcoma during clinical treatment.

    PubMed

    Rychłowska-Pruszyńska, Magdalena; Gajewska, Joanna; Ambroszkiewicz, Jadwiga; Karwacki, Marek; Szamotulska, Katarzyna

    2018-01-01

    Aim: The aim of this study was to assess the usefulness of bone-specific alkaline phosphatase (BALP) and the extracelluar domain of human epidermal growth factor receptor 2 (ECD/HER-2) measurements in pediatric patients with osteosarcoma as prospective prognostic and predictive markers for monitoring the treatment and early detection of disease recurrence. Material and methods: We studied 22 patients (5 girls, 17 boys) aged 7-20 years with osteosarcoma (OS) treated at the Institute of Mother and Child in Warsaw. All the patients were evaluated for the serum levels of BALP and ECD/HER-2 before treatment, during pre- and postoperative chemotherapy and after the completion of treatment. Healthy children (n=22) were the reference group. The levels of BALP and ECD/HER-2 were measured using immunoenzymatic methods. Results: The values of BALP and ECD/HER-2 proteins were higher (p<0.01; p<0.05, respectively) in patients with osteosarcoma at the time of diagnosis compared with the control group. The values of both markers significantly decreased during chemotherapy in most patients with remission. In contrast to ECD/HER-2, the value of BALP after therapy was higher in patients with progression than with remission (p<0.001). Conclusions: Our results demonstrate the different pattern of BALP and ECD/HER-2 proteins during clinical treatment in patients with osteosarcoma. Higher values of BALP may characterize the progression of the disease and unfavourable prognosis. Further longitudinal studies are necessary to confirm the prognostic values of BALP and ECD/HER-2 proteins in this group of patients.

  16. Four Novel Mutations in the ALPL Gene in Chinese patients with Odonto, Childhood and Adult Hypophosphatasia.

    PubMed

    Xu, Lijun; Pang, Qianqian; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiaoping; Xia, Weibo

    2018-05-03

    Background and purpose: Hypophosphatasiais (HPP) is a rare inherited disorder characterized by defective bone and/or dental mineralization, and decreased serum alkaline phosphatase activity. ALPL , the only gene related with HPP, encodes tissue non-specific alkaline phosphatase (TNSALP). Few studies were carried out in ALPL gene mutations in the Chinese population with HPP. The purpose of this study is to elucidate the clinical and genetic characteristics of HPP in 5 unrelated Chinese families and 2 sporadic patients. Methods : 10 clinically diagnosed HPP patients from 5 unrelated Chinese families and 2 sporadic patients and 50 healthy controls were genetic investigated. All 12 exons and exon-intron boundaries of the ALPL gene were amplified by polymerase chain reaction and directly sequenced. The laboratory and radiological investigations were conducted simultaneously in these 10 HPP patients. A three-dimensional model of the TNSALP was used to predict the dominant negative effect of identified missense mutations. Results : 3 odonto, 3 childhood and 4 adult types of HPP were clinically diagnosed. 10 mutations were identified in 5 unrelated Chinese families and 2 sporadic patients, including 8 missense mutations and 2 frameshift mutations. Of which, 4 were novel: 1 frameshift mutation (p.R138Pfsx45); 3 missense mutations (p.C201R, p.V459A, p.C497S). No identical mutations and any other new ALPL mutations were found in unrelated 50 healthy controls. Conclusions : Our study demonstrated that the ALPL  gene mutations are responsible for HPP in these Chinese families. These findings will be useful for clinicians to improve understanding of this heritable bone disorder. ©2018 The Author(s).

  17. Response Of Mineralizing And Non-Mineralizing Bone Cells To Fluid Flow: An In Vitro Model For Mechanotransruction

    NASA Technical Reports Server (NTRS)

    Makuch, Lauren A.

    2004-01-01

    Humans reach peak bone mass at age 30. After this point, we lose 1 to 2 percent of bone mass each decade. In the microgravity environment of space, astronauts lose bone mass at an accelerated rate of 1 to 2 percent each month. When astronauts travel to Mars, they may be in space for as long as 3 years. During this time, they may lose about half of their bone mass from weight-bearing bones. This loss may be irreversible. The drastic loss in bone that astronauts experience in space makes them much more vulnerable to fractures. In addition, the corresponding removal of calcium from bone results in higher levels of calcium in the blood, which increases the risk of developing kidney stones. Currently, studies are being conducted which investigate factors governing bone adaptation and mechanotransduction. Bone is constantly adapting in response to mechanical stimuli. Increased mechanical loading stimulates bone formation and suppresses bone resorption. Reduction in mechanical loading caused by bedrest, disuse, or microgravity results in decreased bone formation and possibly increased bone resorption. Osteoblasts and osteoclasts are the two main cell types that participate in bone remodeling. Osteoblasts are anabolic (bone-forming) cells and osteoclasts are catabolic (bone-resorbing) cells. In microgravity, the activity of osteoblasts slows down and the activity of osteoclasts may speed up, causing a loss of bone density. Mechanotransduction, the molecular mechanism by which mechanical stimuli are converted to biochemical signals, is not yet understood. Exposure of cells to fluid flow imposes a shear stress on the cells. Several studies have shown that the shear stress that results from fluid flow induces a cellular response similar to that induced by mechanical loading. Thus, fluid flow can be used as an in vitro model to simulate the mechanical stress that bone cells experience in vivo. Previous in vitro studies have shown that fluid flow induces several responses in osteoblasts, including increased proliferation, osteoblastic differentiation, alkaline phosphatase activity, and production of nitric oxide, prostaglandins, and osteopontin. Several proteins have been implicated in osteoblastic mechanotransduction including Bone Morphogenetic Protein-2 (BMP-2), parathyroid hormone, 1,25-dihydroxyvitamin D3 receptor, osteopontin (OPN), osteoprotegerin (OPG), and alkaline phosphatase (AP). We will characterize relative levels of each protein in mineralizing or non-mineralizing MC3T3 osteoblastic cells that have been exposed to fluid flow compared to non-fluid flow using immunofluorescent staining and two- photon laser microscopy as well as western blotting. Because calcium-mediated pathways are important in osteoblastic signaling, we will transfect MC3T3 cells with cameleon probes for Ca2+ containing YFP and CFP. Results will be analyzed using FRET/FLIM to study differential release of intracellular Ca(2+) in response to fluid flow and conditions inducing matrix mineralization. In addition, we plan to conduct several microarray experiments to determine differential gene expression in MC3T3 cells in response to fluid flow and conditions inducing mineralization.

  18. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.

    PubMed

    Wientroub, S; Reddi, A H

    1988-04-01

    Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed.

  19. Aqueous extract of Peperomia pellucida (L.) HBK accelerates fracture healing in Wistar rats.

    PubMed

    Florence, Ngueguim Tsofack; Huguette, Sakouong Talle Suewellyne; Hubert, Donfack Jean; Raceline, Gounoue Kamkumo; Desire, Dzeufiet Djomeni Paul; Pierre, Kamtchouing; Theophile, Dimo

    2017-04-04

    Peperomia pellucida (L.) HBK is consumed as vegetable and used in Cameroonian traditional medicine for the management of diseases and for fracture healing. Therefore the aim of this study was to evaluate the effects of the aqueous whole plant extract of Peperomia pellucida on fracture healing in female Wistar rats. A drill hole injury was created by inserting a drill bit inthe diaphysis of the femur. The aqueous extract of the whole plant of Peperomia pellucida was administered orally at the doses of 100, 200 and 400 mg/kg to adult female Wistar rats. The vehicle (distilled water) was given to the control. Besides these rats, one group of rats without fracture received the extract (400 mg/kg). After 14 days of treatment, the rats were sacrificed under anesthesia and the effects of the extract were evaluated on body weight, the relative weights of organs (femurs, uteri and ovaries) and on hematology. Bone (calcium, phosphorus, alkaline phosphatase) and serum biochemical parameters (calcium, phosphorus, alkaline phosphatase) were also evaluated. Radiological and histological tests were carried out on the femurs. The mineral content of the plant extract was also investigated. The extract induced an increase in body weight at high dose and in WBCs count at low doses. Aqueous extract from Peperomia pellucida increased bone calcium at lowest dose but maintained this parameter at normal range at high dose in fractured rat. Alkaline phophatase and phosphorus concentrations reduced significantly (p < 0.01) at the dose of 400 mg/kg as compared to fractured rats. Moreover, radiological tests revealed a dose dependent formation of callus at the level of the fracture gap, confirmed by the formation of a highly dense and compact fibrocartilagenous callus. The mineral content of the plant extract revealed the presence of calcium, phosphorus, magnesium, sodium and potassium. The aqueous extract of P. pellucida accelerates bone healing due partly to the mineral content of the extract. These results confirm its traditional use in the treatment of bone fractures.

  20. [Interaction between fluorine and zinc after long-term oral administration into the digestive system of rats].

    PubMed

    Mazurek-Mochol, Małgorzata

    2002-01-01

    Drug interactions are the side effect of administration of two or more drugs or a drug-food combination. Although some drug interactions are intentional and beneficial to the patient, the majority are unintentional and associated with a potentially harmful effect. The aim of this study was to search for interactions in rats between fluoride and zinc administered orally for 12 weeks and to elucidate any potential toxicological and therapeutic consequences. 60 male Wistar rats were divided into six groups of ten rats each and exposed to: 1. controls (distilled water); 2. sodium fluoride (NaF); 3. low-dose zinc (Zn); 4. high-dose zinc; 5. NaF + low-dose Zn; 6. NaF + high-dose Zn. At the end of the experiment the content of F- and Zn+ in serum, urine, incisors, femur and mandible was measured and densitometry of femoral bones was performed. Serum alkaline phosphatase, alanine and aspartate aminotransferase activities, as well as bilirubin and creatinine concentrations were determined to confirm non-toxicity of fluoride dose. Animals receiving NaF only demonstrated higher content of fluorine in serum, urine bones and teeth. Zinc concentrations in serum, urine, bones and teeth were elevated in rats receiving zinc with or without NaF. Fluorine accumulation in bones and teeth was reduced by Zn, but in general the effect lacked statistical significance. Zinc slightly reduced the concentrations of fluorine in serum and urine. Sodium fluoride slightly reduced the concentration of zinc in serum and urine. Bone mineral content (BMC) was significantly increased by NaF and was not further increased by co-administration of zinc. No changes in serum alkaline phosphatase, alanine and aspartate aminotransferase activities, bilirubin and creatinine concentrations were detected. In conclusion, simultaneous administration of fluorine and zinc may be beneficial for prevention and treatment of pathologic conditions in bones and teeth and is not accompanied by an increase in fluorine levels which could be responsible for toxicological symptoms.

  1. [Effects of nandrolone decanoate on bone mineral content and intestinal absorption of calcium].

    PubMed

    Nuti, R; Righi, G A; Turchetti, V; Vattimo, A

    1984-01-28

    To evaluate the effects of a long-term treatment with nandrolone decanoate on metabolism of the skeleton, a double-blind randomized study was carried out in women with joint diseases without metabolic bone derangement. Ten patients were treated with 50 mg of nandrolone decanoate every three weeks for two years; in six subjects a treatment with placebo was performed. As it concerns plasma calcium and phosphate, serum alkaline phosphatase, urinary excretion of calcium, phosphate, hydroxyproline and cAMP, as parathyroid index, it was not observed significant differences in the two examined groups. While in placebo group at the end of the study the intestinal radiocalcium remained unchanged and bone mineral content showed a slight decrease, on the contrary nandrolone decanoate treatment promoted a significant improvement in intestinal calcium absorption and an increase in bone mineral content.

  2. Effects of a triphasic combination oral contraceptive containing norgestimate/ethinyl estradiol on biochemical markers of bone metabolism in young women with osteopenia secondary to hypothalamic amenorrhea.

    PubMed

    Grinspoon, S K; Friedman, A J; Miller, K K; Lippman, J; Olson, W H; Warren, M P

    2003-08-01

    This multicenter, double-blind, placebo-controlled, randomized study of 45 patients evaluated the short-term effects of an oral contraceptive [Ortho Tri-Cyclen, 180-250 micro g of norgestimate (NGM) and 35 microg of ethinyl estradiol (EE)] on biochemical markers of bone resorption, formation, and osteoprotegerin in young women (mean age +/- SD, 26.5 +/- 6.3 yr) with hypothalamic amenorrhea and osteopenia. Body fat, endocrine, and cognitive function were evaluated as secondary endpoints. Biomarkers of bone metabolism were measured at baseline and after three cycles of NGM/EE or placebo. There were significant decreases in mean values of N-telopeptide [mean (SD), -13.4 (13.4) vs. 1.2 (23.8) nmol bone collagen equivalents (BCE)/mmol creatinine (Cr); P = 0.001] and deoxypyridinoline [-1.2 (2.9) vs. -0.5 (1.5) nmol deoxypyridinoline/mmol Cr; P = 0.021] as well as significant decreases in bone specific alkaline phosphatase [-5.1 (3.5) vs. 0.4 (3.1) ng/ml; P < 0.001], osteocalcin [-5.9 (3.6) vs. -2.9 (3.7); P = 0.016], and procollagen of type I propeptide [-35.2 (44.6) vs. -0.2 (30.0) ng/ml; P = 0.025], but not osteoprotegerin [0.39 (1.46) vs. -0.2 (0.49) pmol/liter; P = 0.397] in the NGM/EE vs. placebo group. There were no significant differences between groups with respect to changes in cognitive function, mood, body weight, body mass index, body fat, percentage of body fat, and all endocrine levels except FSH, [-3.7 (3.8) vs. -0.6 (2.1) IU/liter; P < 0.001, NGM/EE vs. placebo]. No serious adverse events were reported in either group. These results suggest that NGM/EE decreases bone turnover in osteopenic premenopausal women with hypothalamic amenorrhea. Further studies are needed to determine whether estrogen will increase bone density in this population.

  3. Reciprocal regulation of adipocyte and osteoblast differentiation of mesenchymal stem cells by Eupatorium japonicum prevents bone loss and adiposity increase in osteoporotic rats.

    PubMed

    Kim, Min-Ji; Jang, Woo-Seok; Lee, In-Kyoung; Kim, Jong-Keun; Seong, Ki-Seung; Seo, Cho-Rong; Song, No-Joon; Bang, Min-Hyuk; Lee, Young Min; Kim, Haeng Ran; Park, Ki-Moon; Park, Kye Won

    2014-07-01

    Pathological increases in adipogenic potential with decreases in osteogenic differentiation occur in osteoporotic bone marrow cells. Previous studies have shown that bioactive materials isolated from natural products can reciprocally regulate adipogenic and osteogenic fates of bone marrow cells. In this study, we showed that Eupatorium japonicum stem extracts (EJE) suppressed lipid accumulation and inhibited the expression of adipocyte markers in multipotent C3H10T1/2 and primary bone marrow cells. Conversely, EJE stimulated alkaline phosphatase activity and induced the expression of osteoblast markers in C3H10T1/2 and primary bone marrow cells. Daily oral administration of 50 mg/kg of EJE for 6 weeks to ovariectomized rats prevented body weight increase and bone mineral density decrease. Finally, activity-guided fractionation led to the identification of coumaric acid and coumaric acid methyl ester as bioactive anti-adipogenic and pro-osteogenic components in EJE. Taken together, our data indicate a promising possibility of E. japonicum as a functional food and as a therapeutic intervention for preventing osteoporosis and bone fractures.

  4. Insulin antagonises pigment epithelium-derived factor (PEDF)-induced modulation of lineage commitment of myocytes and heterotrophic ossification.

    PubMed

    Carnagarin, Revathy; Elahy, Mina; Dharmarajan, Arun M; Dass, Crispin R

    2017-12-16

    Extensive bone defects arising as a result of trauma, infection and tumour resection and other bone pathologies necessitates the identification of effective strategies in the form of tissue engineering, gene therapy and osteoinductive agents to enhance the bone repair process. PEDF is a multifunctional glycoprotein which plays an important role in regulating osteoblastic differentiation and bone formation. PEDF treatment of mice and human skeletal myocytes at physiological concentration inhibited myogenic differentiation and activated Erk1/2 MAPK- dependent osteogenic transdifferentiation of myocytes. In mice, insulin, a promoter of bone regeneration, attenuated PEDF-induced expression of osteogenic markers such as osteocalcin, alkaline phosphatase and mineralisation for bone formation in the muscle and surrounding adipose tissue. These results provide new insights into the molecular aspects of the antagonising effect of insulin on PEDF-dependent modulation of the differentiation commitment of musculoskeletal environment into osteogenesis, and suggest that PEDF may be developed as an effective clinical therapy for bone regeneration as its heterotopic ossification can be controlled via co-administration of insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pleiotrophin Commits Human Bone Marrow Mesenchymal Stromal Cells towards Hypertrophy during Chondrogenesis

    PubMed Central

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC. PMID:24516627

  6. Bone vs. fat: Embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts

    PubMed Central

    Wiren, Kristine M.; Hashimoto, Joel G.; Semirale, Anthony A.; Zhang, Xiao-Wei

    2011-01-01

    Although androgen is considered an anabolic hormone, the consequences of androgen receptor (AR) overexpression in skeletally-targeted AR-transgenic lines highlight the detrimental effect of enhanced androgen sensitivity on cortical bone quality. A compartment-specific anabolic response is observed only in male but not female AR3.6-transgenic (tg) mice, with increased periosteal bone formation and calvarial thickening. To identify anabolic signaling cascades that have the potential to increase bone formation, qPCR array analysis was employed to define expression differences between AR3.6-tg and wild-type (WT) periosteal tissue. Notably, categories that were significantly different between the two genotypes included axonal guidance, CNS development and negative regulation of Wnt signaling with a node centered on stem cell pathways. Further, fine mapping of AR3.6-tg calvaria revealed that anabolic thickening in vivo is not uniform across the calvaria, occurring only in frontal but not parietal bones. Multipotent fraction 1 progenitor populations from both genotypes were cultured separately as frontal bone neural crest stem-like cells (fNCSC) and parietal bone mesenchymal stem-like cells (pMSC). Both osteoblastic and adipogenic differentiation in these progenitor populations was influenced by embryonic lineage and by genotype. Adipogenesis was enhanced in WT fNCSC compared to pMSC, but transgenic cultures showed strong suppression of lipid accumulation only in fNCSC cells. Osteoblastogenesis was significantly increased in transgenic fNCSC cultures compared to WT, with elevated alkaline phosphatase (ALP) activity and induction of mineralization and nodule formation assessed by alizarin red and von Kossa staining. Osteocalcin (OC) and ALP mRNA levels were also increased in fNCSC cultures from AR3.6-tg vs. WT, but in pMSC cultures ALP mRNA levels, mineralization and nodule formation were decreased in AR3.6-tg cells. Expression differences identified by array in long bone periosteal tissue from AR3.6-tg vs. WT were recapitulated in the fNCSC samples while pMSCs profiles reflected cortical expression. These observations reveal the opposing effects of androgen signaling on lineage commitment and osteoblast differentiation that is enhanced in cells derived from a neural crest origin but inhibited in cells derived from a mesodermal origin, consistent with in vivo compartment-specific responses to androgen. Combined, these results highlight the complex action of androgen in the body that is dependent on the embryonic lineage and developmental origin of the cell. Further, these data these data suggest that the periosteum surrounding long bone is derived from neural crest. PMID:21704206

  7. Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering.

    PubMed

    Rauh, Juliane; Jacobi, Angela; Stiehler, Maik

    2015-02-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs.

  8. Identification of Stable Reference Genes for Gene Expression Analysis of Three-Dimensional Cultivated Human Bone Marrow-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering

    PubMed Central

    Rauh, Juliane; Jacobi, Angela

    2015-01-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan® assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs. PMID:25000821

  9. Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs.

    PubMed

    Bühler, K; Liesegang, A; Bucher, B; Wenk, C; Broz, J

    2010-10-01

    In 2 simultaneous experiments (Exp. 1 and Exp. 2), the effects of benzoic acid (BA) and phytase (Phy) in low-P diets on bone metabolism, bone composition, and bone stability in growing and growing-finishing pigs were examined. Experiment 1 was conducted with 16 crossbred gilts in the BW range of 25 to 66 kg of BW, whereas in Exp. 2, 32 crossbred gilts (25 to 108 kg of BW) were used. All pigs were individually housed in pens and restrictively fed 1 of 4 diets throughout the experiment. Total P content of the wheat-soybean diets was 4 g/kg (all values on an as-fed basis). The experimental diets were 1) unsupplemented control diet; 2) control diet with 0.5% BA; 3) Phy diet with 750 Phy units (FTU) of Phy/kg and no BA; and 4) PhyBA, control diet with 750 FTU of Phy/kg and 0.5% BA. Blood samples were taken at the beginning of the experiment, wk 3 (only for pigs in Exp. 1), wk 6, and before slaughter to determine P and Ca in serum and concentrations of total alkaline phosphatase, serum crosslaps (marker for bone resorption), and osteocalcin (marker for bone formation). Ash, P, and Ca contents of bones and bone stability were examined using the left metatarsal bones and tibia of the pigs after slaughter. Benzoic acid did not influence any of the blood variables (P > 0.09). The addition of Phy increased (P < or =0.03) P concentration in serum from 2.71 +/- 0.08 to 3.03 +/- 0.07 mmol/L at wk 3 and content of serum crosslaps from 0.39 +/- 0.02 to 0.45 +/- 0.02 ng/mL at wk 6 and decreased (P < 0.05) osteocalcin at wk 6 by 160 ng/mL. No long-term effect of diets on serum mineral concentrations, alkaline phosphatase, and bone markers in serum could be detected. Benzoic acid negatively affected (P < or = 0.03) Ca content in bones and distal bone mineral density, especially in the younger pigs. In the control diet with 0.5% BA and the control diet with 750 FTU of Phy/kg and 0.5% BA, the CA content in bones and distal bone mineral density were reduced by 6 and 11%, respectively. Throughout the whole growing and finishing period, Phy increased (P < or =0.02) ash, P, and Ca contents in bones by 29.4, 4.8, and 11.6 g/kg of DM, respectively. Bone mineral density and bone mineral content were greater in diets with Phy (P < or = 0.03), as well as breaking strength of tibia (+22%) and metatarsal bones (+27%; P < 0.01). The results of this study indicate that for a healthy skeleton, BA should not be used in low-P diets without the addition of Phy.

  10. A Comparative Analysis of the In Vitro Effects of Pulsed Electromagnetic Field Treatment on Osteogenic Differentiation of Two Different Mesenchymal Cell Lineages

    PubMed Central

    Ceccarelli, Gabriele; Bloise, Nora; Mantelli, Melissa; Gastaldi, Giulia; Fassina, Lorenzo; De Angelis, Maria Gabriella Cusella; Ferrari, Davide; Imbriani, Marcello

    2013-01-01

    Abstract Human mesenchymal stem cells (MSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications. Exposure of MSCs to physical stimuli favors early and rapid activation of the tissue repair process. In this study we investigated the in vitro effects of pulsed electromagnetic field (PEMF) treatment on the proliferation and osteogenic differentiation of bone marrow MSCs (BM-MSCs) and adipose-tissue MSCs (ASCs), to assess if both types of MSCs could be indifferently used in combination with PEMF exposure for bone tissue healing. We compared the cell viability, cell matrix distribution, and calcified matrix production in unstimulated and PEMF-stimulated (magnetic field: 2 mT, amplitude: 5 mV) mesenchymal cell lineages. After PEMF exposure, in comparison with ASCs, BM-MSCs showed an increase in cell proliferation (p<0.05) and an enhanced deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p<0.05). Calcium deposition was 1.5-fold greater in BM-MSC–derived osteoblasts (p<0.05). The immunofluorescence related to the deposition of bone matrix proteins and calcium showed their colocalization to the cell-rich areas for both types of MSC-derived osteoblast. Alkaline phosphatase activity increased nearly 2-fold (p<0.001) and its protein content was 1.2-fold higher in osteoblasts derived from BM-MSCs. The quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis revealed up-regulated transcription specific for bone sialoprotein, osteopontin, osteonectin, and Runx2, but at a higher level for cells differentiated from BM-MSCs. All together these results suggest that PEMF promotion of bone extracellular matrix deposition is more efficient in osteoblasts differentiated from BM-MSCs. PMID:23914335

  11. Dry Extract of Matricaria recutita L. (Chamomile) Prevents Ligature-Induced Alveolar Bone Resorption in Rats via Inhibition of Tumor Necrosis Factor-α and Interleukin-1β.

    PubMed

    Guimarães, Mariana Vasconcelos; Melo, Iracema Matos; Adriano Araújo, Vilana Maria; Tenazoa Wong, Deizy Viviana; Roriz Fonteles, Cristiane Sá; Moreira Leal, Luzia Kalyne Almeida; Ribeiro, Ronaldo Albuquerque; Lima, Vilma

    2016-06-01

    Matricaria recutita L. (chamomile) has demonstrated anti-inflammatory activity. Accordingly, the ability of the Matricaria recutita extract (MRE) to inhibit proinflammatory cytokines and its influence on alveolar bone resorption (ABR) in rats. Wistar rats were subjected to ABR by ligature with nylon thread in the second upper-left molar, with contralateral hemiarcade as control. Rats received polysorbate TW80 (vehicle) or MRE (10, 30, and 90 mg/kg) 1 hour before ligature and daily until day 11. The periodontium was analyzed by macroscopy, histometry, histopathology, and immunohistochemistry for the receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG), and tartrate-resistant acid phosphatase (TRAP). The gingival tissue was used to quantify the myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels by enzyme-linked immunosorbent assay. Blood samples were collected to evaluate bone-specific alkaline phosphatase (BALP), leukogram, and dosages of aspartate and alanine transaminases, urea, and creatinine. Aspects of liver, kidneys, spleen, and body mass variations were also evaluated. The 11 days of ligature induced bone resorption, low levels of BALP, leukocyte infiltration; increase of MPO, TNF-α, and IL-1β; immunostaining increase for RANKL and TRAP; reduction of OPG and leukocytosis, which were significantly prevented by MRE, except for the low levels of BALP and the leukocytosis. Additionally, MRE did not alter organs or body weights of rats. MRE prevented the inflammation and ABR by reducing TNF-α and IL-1β, preventing the osteoclast activation via the RANKL-OPG axis, without interfering with bone anabolism.

  12. Effect of low-magnitude different-frequency whole-body vibration on subchondral trabecular bone microarchitecture, cartilage degradation, bone/cartilage turnover, and joint pain in rabbits with knee osteoarthritis.

    PubMed

    Junbo, Wang; Sijia, Liu; Hongying, Chen; Lei, Liu; Pu, Wang

    2017-06-15

    Whole-body vibration(WBV) has been suggested for the prevention of subchondral bone loss of knee osteoarthritis (OA) . This study examined the effects of different frequency of whole-body vibration on subchondral trabecular bone microarchitecture, cartilage degradation and metabolism of the tibia and femoral condyle bone, and joint pain in an anterior cruciate ligament transection (ACLT)-induced knee osteoarthritisrabbit model. Ninety adult rabbits were divided into six groups: all groups received unilateral ACLT; Group 1, ACLT only; Group 2, 5 Hz WBV; Group 3, 10 Hz WBV; Group 4, 20 Hz WBV; Group 5, 30 Hz WBV; and Group 6, 40 Hz WBV. Pain was tested via weight-bearing asymmetry. Subchondral trabecular bone microarchitecture was examined using in vivo micro-computed tomography. Knee joint cartilage was evaluated by gross morphology, histology, and ECM gene expression level (aggrecan and type II collagen [CTX-II]). Serum bone-specific alkaline phosphatase, N-mid OC, cartilage oligometric protein, CPII, type I collagen, PIIANP, G1/G2 aggrecan levels, and urinary CTX-II were analyzed. After 8 weeks of low-magnitude WBV, the lower frequency (10 Hz and 20 Hz) WBV treatment decreased joint pain and cartilage resorption, accelerated cartilage formation, delayed cartilage degradation especially at the 20 Hz regimen. However, the higher frequencies (30 Hz and 40 Hz) had worse effects, with worse limb function and cartilage volume as well as higher histological scores and cartilage resorption. In contrast, both prevented loss of trabeculae and increased bone turnover. No significant change was observed in the 5 Hz WBV group. Our data demonstrate that the lower frequencies (10 Hz and 20 Hz) of low-magnitude WBV increased bone turnover, delayed cartilage degeneration, and caused a significant functional change of the OA-affected limb in ACLT-induced OA rabbit model but did not reverse OA progression after 8 weeks of treatment.

  13. Vitamins D3 and K2 may partially counterbalance the detrimental effects of pentosidine in ex vivo human osteoblasts.

    PubMed

    Sanguineti, R; Monacelli, F; Parodi, A; Furfaro, A L; Borghi, R; Pacini, D; Pronzato, M A; Odetti, P; Molfetta, L; Traverso, N

    2016-01-01

    Osteoporosis is a metabolic multifaceted disorder, characterized by insufficient bone strength. It has been recently shown that advanced glycation end products (AGEs) play a role in senile osteoporosis, through bone cell impairment and altered biomechanical properties. Pentosidine (PENT), a wellcharacterized AGE, is also considered a biomarker of bone fracture. Adequate responses to various hormones, such as 1,25-dihydroxyvitamin D 3 , are prerequisites for optimal osteoblasts functioning. Vitamin K 2 is known to enhance in vitro and in vitro vitamin D-induced bone formation. The aim of the study was to assess the effects of Vitamins D 3 and K 2 and PENT on in vitro osteoblast activity, to convey a possible translational clinical message. Ex vivo human osteoblasts cultured, for 3 weeks, with vitamin D 3 and vitamin K 2 were exposed to PENT, a well-known advanced glycoxidation end product for the last 72 hours. Experiments with PENT alone were also carried out. Gene expression of specific markers of bone osteoblast maturation [alkaline phosphatase, ALP; collagen I, COL Iα1; and osteocalcin (bone-Gla-protein) BGP] was measured, together with the receptor activator of nuclear factor kappa-B ligand/osteoproteregin (RANKL/OPG) ratio to assess bone remodeling. Expression of RAGE, a well-characterized receptor of AGEs, was also assessed. PENT+vitamins slightly inhibited ALP secretion while not affecting gene expression, indicating hampered osteoblast functional activity. PENT+vitamins up-regulated collagen gene expression, while protein secretion was unchanged. Intracellular collagen levels were partially decreased, and a significant reduction in BGP gene expression and intracellular protein concentration were both reported after PENT exposure. The RANKL/OPG ratio was increased, favouring bone reabsorption. RAGE gene expression significantly decreased. These results were confirmed by a lower mineralization rate. We provided in vitro evidence that glycoxidation might interfere with the maturation of osteoblasts, leading to morphological modifications, cellular malfunctioning, and inhibition of the calcification process. However, these processes may be all partially counterbalanced by vitamins D 3 and K 2 . Therefore, detrimental AGE accumulation in bone might be attenuated and/or reversed by the presence or supplementation of vitamins D 3 and K 2 .

  14. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on β-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro.

    PubMed

    An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin

    2015-05-01

    The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.

  15. Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass In Vivo

    PubMed Central

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J.; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling. PMID:23951127

  16. Bone conditioned media (BCM) improves osteoblast adhesion and differentiation on collagen barrier membranes.

    PubMed

    Fujioka-Kobayashi, Masako; Caballé-Serrano, Jordi; Bosshardt, Dieter D; Gruber, Reinhard; Buser, Daniel; Miron, Richard J

    2016-07-04

    The use of autogenous bone chips during guided bone regeneration procedures has remained the gold standard for bone grafting due to its excellent combination of osteoconduction, osteoinduction and osteogenesis. Recent protocols established by our group have characterized specific growth factors and cytokines released from autogenous bone that have the potential to be harvested and isolated into bone conditioned media (BCM). Due to the advantageous osteo-promotive properties of BCM, the aims of the present study was to pre-coat collagen barrier membranes with BCM and investigate its effect on osteoblast adhesion, proliferation and differentiation for possible future clinical use. Scanning electron microscopy (SEM) was first used to qualitative assess BCM protein accumulation on the surface of collagen membranes. Thereafter, undifferentiated mouse ST2 stromal bone marrow cells were seeded onto BioGide porcine derived collagen barrier membranes (control) or barrier membranes pre-coated with BCM (test group). Control and BCM samples were compared for cell adhesion at 8 h, cell proliferation at 1, 3 and 5 days and real-time PCR at 5 days for osteoblast differentiation markers including Runx2, alkaline phosphatase (ALP), osteocalcin (OCN) and bone sialoprotein (BSP). Mineralization was further assessed with alizarin red staining at 14 days post seeding. SEM images demonstrated evidence of accumulated proteins found on the surface of collagen membranes following coating with BCM. Analysis of total cell numbers revealed that the additional pre-coating with BCM markedly increased cell attachment over 4 fold when compared to cells seeded on barrier membranes alone. No significant difference could be observed for cell proliferation at all time points. BCM significantly increased mRNA levels of osteoblast differentiation markers including ALP, OCN and BSP at 5 days post seeding. Furthermore, barrier membranes pre-coated with BCM demonstrated a 5-fold increase in alizarin red staining at 14 days. The results from the present study suggest that the osteoconductive properties of porcine-derived barrier membranes could be further improved by BCM by significantly increasing cell attachment, differentiation and mineralization of osteoblasts in vitro. Future animal testing is required to fully characterize the additional benefits of BCM for guided bone regeneration.

  17. Influence of zinc on growth and bone maturation in children with end stage renal disease (ESRD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, D.; Fleischmann, L.; Schemmel, R.A.

    1986-03-05

    Children with ESRD, age 5-19 years, were supplemented with zinc acetate (2 mg/kg BW, maximum 40 mg/da/child) to determine if zinc supplements (ZS) would improve growth and bone maturation. Twelve children completed the study. Three of the 12 did not receive ZS. Seven of the 9 ZS children were followed for 1 year pre- and 1 yr during-ZS. Two subjects were followed for shorter periods of time. Heights, weights, and hand wrist radiographs were taken at the beginning of the study, just pre-ZS, and at the end of the study. Blood was analyzed for serum alkaline phosphatase and albumin monthly.more » Alkaline phosphatase was elevated in 7 of 12 subjects pre-ZS and in 5 of 9 subjects post-ZS. Albumin levels were below normal in 7 subjects pre-ZS and 4 subjects post-ZS. Mean plasma Zn and Cu levels, 97+/-17 and 164+/-42 mcg/dl, pre-ZS, and 102+/-30 and 173+/-46 mcg/dl post-ZS, respectively, were similar. Growth velocity in males (4.1+/-2.2 cm/yr, 3.0+/-2.3 cm/yr) and females (3.9+/-0.7, 3.3+/-2.1 cm/yr) pre- and post-ZS, respectively, were similar. Bone maturation per chronological age improved after ZS in 4 of 6 subjects, 1 matured at the same rate, and one at a slower rate. It appears that ZS of children with ESRD increased the rate of bone maturation but not linear growth.« less

  18. Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study

    PubMed Central

    Tat, Steeve Kwan; Pelletier, Jean-Pierre; Vergés, Josep; Lajeunesse, Daniel; Montell, Eulàlia; Fahmi, Hassan; Lavigne, Martin; Martel-Pelletier, Johanne

    2007-01-01

    Early in the pathological process of osteoarthritis (OA), subchondral bone remodelling, which is related to altered osteoblast metabolism, takes place. In the present study, we explored in human OA subchondral bone whether chondroitin sulfate (CS), glucosamine sulfate (GS), or both together affect the major bone biomarkers, osteoprotegerin (OPG), receptor activator of nuclear factor-kappa B ligand (RANKL), and the pro-resorptive activity of OA osteoblasts. The effect of CS (200 μg/mL), GS (50 and 200 μg/mL), or both together on human OA subchondral bone osteoblasts, in the presence or absence of 1,25(OH)2D3 (vitamin D3) (50 nM), was determined on the bone biomarkers alkaline phosphatase and osteocalcin, on the expression (mRNA) and production (enzyme-linked immunosorbent assay) of bone remodelling factors OPG and RANKL, and on the pro-resorptive activity of these cells. For the latter experiments, human OA osteoblasts were incubated with differentiated peripheral blood mononuclear cells on a sub-micron synthetic calcium phosphate thin film. Data showed that CS and GS affected neither basal nor vitamin D3-induced alkaline phosphatase or osteocalcin release. Interestingly, OPG expression and production under basal conditions or vitamin D3 treatment were upregulated by CS and by both CS and GS incubated together. Under basal conditions, RANKL expression was significantly reduced by CS and by both drugs incubated together. Under vitamin D3, these drugs also showed a decrease in RANKL level, which, however, did not reach statistical significance. Importantly, under basal conditions, CS and both compounds combined significantly upregulated the expression ratio of OPG/RANKL. Vitamin D3 decreased this ratio, and GS further decreased it. Both drugs reduced the resorption activity, and statistical significance was reached for GS and when CS and GS were incubated together. Our data indicate that CS and GS do not overly affect cell integrity or bone biomarkers. Yet CS and both compounds together increase the expression ratio of OPG/RANKL, suggesting a positive effect on OA subchondral bone structural changes. This was confirmed by the decreased resorptive activity for the combination of CS and GS. These data are of major significance and may help to explain how these two drugs exert a positive effect on OA pathophysiology. PMID:17996099

  19. Influence of phytase added to a vegetarian diet on bone metabolism in pregnant and lactating sows.

    PubMed

    Liesegang, A; Loch, L; Bürgi, E; Risteli, J

    2005-01-01

    The purpose of the study was to find out if the supplementation of phytase to a diet of gestating and lactating sows has any effects on performance and bone parameters of the animals. Forty primiparous gilts were assigned into four groups: group A with phytase [4.2 g total phosphorus (P)/kg (gestation) and 4.5 g total P/kg (lactation)], group B without phytase (with phytase supplementation in diet for rearing) and same P content as group A, group C without phytase and higher P contents [5.0 g total P/kg (gestation) and 5.5 g total P/kg (lactation)] and group D with the same diet as group B (no phytase during the rearing). A 6-phytase was used in this trial (750 FTU/kg diet). The four diets were fed during gestation and lactation. Faeces were collected to determine apparent digestibility of minerals. Blood samples were taken to analyse minerals and bone markers. After weaning the sows were slaughtered and the bones of one hind leg were prepared to measure bone mineral density (BMD) and bone mineral content (BMC) of the tibia. Bone ash and mineral content of the phalanx III were determined. Mean P concentrations in serum decreased during gestation and lactation. But there were no significant differences between the groups. Bone formation marker bone-specific alkaline phosphatase decreased at the beginning of lactation whereas bone resorption marker serum crosslaps increased. The BMD and BMC of the tibia were slightly higher in the groups fed higher concentrations of P and phytase. The ash and mineral contents of the phalanx were the highest for the group fed the highest concentration of P. The apparent digestibility of P increased during gestation mostly in group A (57%--> 69%). In conclusion, high P content and addition of phytase to the diet induced a slightly higher ash content of the bones. It is of high importance, that sows during gestation absorb enough P, to avoid lamenesses and sudden fractures. As not many studies with phytase have been performed during gestation and lactation in sows yet, we can recommend, that phytase as supplement can be used to keep P in the diet at a lower level without negative consequences for bone health.

  20. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells.

    PubMed

    Jiang, Jia; Hao, Wei; Li, Yuzhuo; Yao, Jinrong; Shao, Zhengzhong; Li, Hong; Yang, Jianjun; Chen, Shiyi

    2013-04-01

    A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.

  1. Changes in tibial bone microarchitecture in female recruits in response to 8 weeks of U.S. Army Basic Combat Training.

    PubMed

    Hughes, Julie M; Gaffney-Stomberg, Erin; Guerriere, Katelyn I; Taylor, Kathryn M; Popp, Kristin L; Xu, Chun; Unnikrishnan, Ginu; Staab, Jeffery S; Matheny, Ronald W; McClung, James P; Reifman, Jaques; Bouxsein, Mary L

    2018-08-01

    U.S. Army Basic Combat Training (BCT) is a physically-demanding program at the start of military service. Whereas animal studies have shown that increased mechanical loading rapidly alters bone structure, there is limited evidence of changes in bone density and structure in humans exposed to a brief period of unaccustomed physical activity. We aimed to characterize changes in tibial bone density and microarchitecture and serum-based biochemical markers of bone metabolism in female recruits as a result of 8 weeks of BCT. We collected high-resolution peripheral quantitative computed tomographic images of the distal tibial metaphysis and diaphysis (4% and 30% of tibia length from the distal growth plate, respectively) and serum markers of bone metabolism before and after BCT. Linear mixed models were used to estimate the mean difference for each outcome from pre- to post-BCT, while controlling for race/ethnicity, age, and body mass index. 91 female BCT recruits volunteered and completed this observational study (age = 21.5 ± 3.3 yrs). At the distal tibial metaphysis, cortical thickness, trabecular thickness, trabecular number, bone volume/total volume, and total and trabecular volumetric bone density (vBMD) increased significantly by 1-2% (all p < 0.05) over the BCT period, whereas trabecular separation, cortical tissue mineral density (TMD), and cortical vBMD decreased significantly by 0.3-1.0% (all p < 0.05). At the tibial diaphysis, cortical vBMD and cortical TMD decreased significantly (both -0.7%, p < 0.001). Bone strength, estimated by micro finite element analysis, increased by 2.5% and 0.7% at the distal tibial metaphysis and diaphysis, respectively (both p < 0.05). Among the biochemical markers of bone metabolism, sclerostin decreased (-5.7%), whereas bone alkaline phosphatase, C-telopeptide cross-links of type 1 collagen, tartrate-resistance acid phosphatase, and 25(OH)D increased by 10-28% (all p < 0.05). BCT leads to improvements in trabecular bone microarchitecture and increases in serum bone formation markers indicative of new bone formation, as well as increases in serum bone resorption markers and decreases in cortical vBMD consistent with intracortical remodeling. Together, these results demonstrate specific changes in trabecular and cortical bone density and microarchitecture following 8 weeks of unaccustomed physical activity in women. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An age dependent model for radium metabolism in man.

    PubMed

    Johnson, J R

    1983-01-01

    The model developed by a Task Group of Committee 2 of ICRP to describe Alkaline Earth Metabolism in Adult Man (ICRP Publication 20) has been modified so that recycling is handled explicitly, and retention in mineral bone is represented by second compartments rather than by the product of a power function and an exponential. This model has been extended to include all ages from birth to adult man, and has been coupled with modified "ICRP" lung and G.I. tract models so that activity in organs can be calculated as functions of time during or after exposures. These activities, and age dependent "specific effective energy" factors, are then used to calculate age dependent dose rates, and dose commitments. This presentation describes this work, with emphasis on the model parameters and results obtained for radium.

  3. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sushmita; Kirkham, Jennifer; NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g.more » ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed a difference in the temporal expression of chondrogenic markers which were up regulated in chondrogenic medium compared to levels in basal medium. Of the three cell types studied, adult chondrocytes offer a more promising cell source for cartilage tissue engineering. This comparative study revealed differences between the microenvironment of all three cell types and provides useful information to inform cell-based therapies for cartilage regeneration.« less

  4. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms

    PubMed Central

    Linder, Cecilia Halling; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-01-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD10, a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PPi), pyridoxal 5′-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The kcat/KM was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD10 was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin-binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP-flag and the sALP-FcD10 isoforms faithfully mimic the biological properties of the human BALP isoforms in vivo validating the use of these recombinant enzymes in studies aimed at dissecting the pathophysiology and treating hypophosphatasia. PMID:19631305

  5. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

    PubMed

    Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-11-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP-flag and the sALP-FcD(10) isoforms faithfully mimic the biological properties of the human BALP isoforms in vivo validating the use of these recombinant enzymes in studies aimed at dissecting the pathophysiology and treating hypophosphatasia.

  6. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Pei, Peng; Zhu, Min; Du, Xiaoyu; Xin, Chen; Zhao, Shichang; Li, Xiaolin; Zhu, Yufang

    2017-02-01

    In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the effect of CSH/MBG scaffolds on bone regeneration in vivo. The in vitro results showed that CSH/MBG scaffolds stimulated the adhesion, proliferation, alkaline phosphatase (ALP) activity and osteogenesis-related gene expression of hBMSCs. In vivo results showed that CSH/MBG scaffolds could significantly enhance new bone formation in calvarial defects compared to CSH scaffolds. Thus 3D printed CSH/MBG scaffolds would be promising candidates for promoting bone regeneration.

  7. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds

    NASA Astrophysics Data System (ADS)

    di Luca, Andrea; Ostrowska, Barbara; Lorenzo-Moldero, Ivan; Lepedda, Antonio; Swieszkowski, Wojcech; van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-03-01

    Small fractures in bone tissue can heal by themselves, but in case of larger defects current therapies are not completely successful due to several drawbacks. A possible strategy relies on the combination of additive manufactured polymeric scaffolds and human mesenchymal stromal cells (hMSCs). The architecture of bone tissue is characterized by a structural gradient. Long bones display a structural gradient in the radial direction, while flat bones in the axial direction. Such gradient presents a variation in bone density from the cancellous bone to the cortical bone. Therefore, scaffolds presenting a gradient in porosity could be ideal candidates to improve bone tissue regeneration. In this study, we present a construct with a discrete gradient in pore size and characterize its ability to further support the osteogenic differentiation of hMSCs. Furthermore, we studied the behaviour of hMSCs within the different compartments of the gradient scaffolds, showing a correlation between osteogenic differentiation and ECM mineralization, and pore dimensions. Alkaline phosphatase activity and calcium content increased with increasing pore dimensions. Our results indicate that designing structural porosity gradients may be an appealing strategy to support gradual osteogenic differentiation of adult stem cells.

  8. Bone metabolism and arterial stiffness after renal transplantation.

    PubMed

    Cseprekál, Orsolya; Kis, Eva; Dégi, Arianna A; Kerti, Andrea; Szabó, Attila J; Reusz, György S

    2014-01-01

    To assess the relationship between bone and vascular disease and its changes over time after renal transplantation. Metabolic bone disease (MBD) is common in chronic kidney disease (CKD) and is associated with cardiovascular (CV) disease. Following transplantation (Tx), improvement in CV disease has been reported; however, data regarding changes in bone disease remain controversial. Bone turnover and arterial stiffness (pulse wave velocity (PWV)) were assessed in 47 Tx patients (38 (3-191) months after Tx). Bone alkaline phosphatase (BALP), osteocalcin (OC) and beta-crosslaps were significantly higher in Tx patients, and decreased significantly after one year. There was a negative correlation between BALP, OC and steroid administered (r = -0.35; r = -0.36 respectively). PWV increased in the Tx group (1.15 SD). In patients with a follow up of <24 months, PWV was correlated with BALP and beta-crosslaps (r=0.53; r = 0.69 respectively) while in the ≥24 months group, PWV was correlated with cholesterol (r=0.38). Increased bone turnover and arterial stiffness are present following kidney transplantation. While bone turnover decreases with time, arterial stiffness correlates initially with bone turnover, after which the influence of cholesterol becomes significant. Non-invasive estimation of bone metabolism and arterial stiffness may help to assess CKD-MBD following renal transplantation.

  9. Uranium in bone: metabolic and autoradiographic studies in the rat.

    PubMed

    Priest, N D; Howells, G R; Green, D; Haines, J W

    1982-03-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.

  10. Tissue Nonspecific Alkaline Phosphatase (TNAP) Regulates Cranial Base Growth and Synchondrosis Maturation

    PubMed Central

    Nam, Hwa K.; Sharma, Monika; Liu, Jin; Hatch, Nan E.

    2017-01-01

    Hypophosphatasia is a rare heritable disorder caused by inactivating mutations in the gene (Alpl) that encodes tissue nonspecific alkaline phosphatase (TNAP). Hypophosphatasia with onset in infants and children can manifest as rickets. How TNAP deficiency leads to bone hypomineralization is well explained by TNAP's primary function of pyrophosphate hydrolysis when expressed in differentiated bone forming cells. How TNAP deficiency leads to abnormalities within endochondral growth plates is not yet known. Previous studies in hypophosphatemic mice showed that phosphate promotes chondrocyte maturation and apoptosis via MAPK signaling. Alpl−/− mice are not hypophosphatemic but TNAP activity does increase local levels of inorganic phosphate. Therefore, we hypothesize that TNAP influences endochondral bone development via MAPK. In support of this premise, here we demonstrate cranial base bone growth deficiency in Alpl−/− mice, utilize primary rib chondrocytes to show that TNAP influences chondrocyte maturation, apoptosis, and MAPK signaling in a cell autonomous manner; and demonstrate that similar chondrocyte signaling and apoptosis abnormalities are present in the cranial base synchondroses of Alpl−/− mice. Micro CT studies revealed diminished anterior cranial base bone and total cranial base lengths in Alpl−/− mice, that were prevented upon injection with mineral-targeted recombinant TNAP (strensiq). Histomorphometry of the inter-sphenoidal synchondrosis (cranial base growth plate) demonstrated significant expansion of the hypertrophic chondrocyte zone in Alpl−/− mice that was minimized upon treatment with recombinant TNAP. Alpl−/− primary rib chondrocytes exhibited diminished chondrocyte proliferation, aberrant mRNA expression, diminished hypertrophic chondrocyte apoptosis and diminished MAPK signaling. Diminished apoptosis and VEGF expression were also seen in 15 day-old cranial base synchondroses of Alpl−/− mice. MAPK signaling was significantly diminished in 5 day-old cranial base synchondroses of Alpl−/− mice. Together, our data suggests that TNAP is essential for the later stages of endochondral bone development including hypertrophic chondrocyte apoptosis and VEGF mediated recruitment of blood vessels for replacement of cartilage with bone. These changes may be mediated by diminished MAPK signaling in TNAP deficient chondrocytes due to diminished local inorganic phosphate production. PMID:28377728

  11. Carprofen simultaneously reduces progression of morphological changes in cartilage and subchondral bone in experimental dog osteoarthritis.

    PubMed

    Pelletier, J P; Lajeunesse, D; Jovanovic, D V; Lascau-Coman, V; Jolicoeur, F C; Hilal, G; Fernandes, J C; Martel-Pelletier, J

    2000-12-01

    To examine the effect of a nonsteroidal antiinflammatory drug, carprofen, on the structure and metabolism of cartilage and subchondral bone in the experimental osteoarthritic (OA) canine model. Experimental Groups 1 and 2 received a sectioning of the anterior cruciate ligament (ACL) of the right stifle joint, and were administered carprofen (2.2 and 4.4 mg/kg/twice daily/po, respectively) for 8 weeks beginning 4 weeks postsurgery. Group 3 received ACL sectioning and no treatment. Group 4 was composed of unoperated normal dogs. Cartilage macroscopic lesions were assessed, and their histological severity was graded. Specimens of subchondral bones were fixed, decalcified, and stained with hematoxylin/eosin. The level of metalloprotease (MMP) activity in cartilage was measured. Osteoblast cells were prepared from the subchondral bone. The level of synthesis of osteoblast biomarkers (osteocalcin, alkaline phosphatase), as well as urokinase plasminogen activator (uPA) activity and insulin-like growth factor (IGF-1) in the culture medium, was estimated. Carprofen treatment decreased the width of osteophytes (p < 0.01), the size of cartilage lesions, and the histologic severity of cartilage lesions (p < 0.008). There was no difference in the levels of MMP activity in cartilage between OA and carprofen treated groups. In OA dogs, the subchondral bone plate was thinner and was the site of an extensive remodeling process with numerous lacunae. Dogs treated with carprofen showed a marked decrease in the remodeling activity with normal plate thickness, and subchondral bone morphology resembling that of normal dogs. Osteoblasts from untreated OA dogs showed slightly higher alkaline phosphatase activities and osteocalcin release that reverted back to normal upon carprofen treatment. Moreover, uPA activity and IGF-1 levels were increased in OA dogs and were significantly reduced in carprofen treated dogs. Under therapeutic conditions, treatment with carprofen could reduce the progression of early structural changes in experimental OA. Carprofen treatment also delays and/or prevents the abnormal metabolism of subchondral osteoblasts in this model. The hypothesis of a possible link between the protective effect of carprofen and its effect on subchondral bone is of interest in the context of therapeutic intervention.

  12. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption

    USDA-ARS?s Scientific Manuscript database

    Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system particularly in older individuals with declining renal function. We sought to determine whether adding an alkaline salt, potassium bicar...

  13. Effects of concanavalin A on chondrocyte hypertrophy and matrix calcification.

    PubMed

    Yan, W; Pan, H; Ishida, H; Nakashima, K; Suzuki, F; Nishimura, M; Jikko, A; Oda, R; Kato, Y

    1997-03-21

    Resting chondrocytes do not usually undergo differentiation to the hypertrophic stage and calcification. However, incubating these cells with concanavalin A resulted in 10-100-fold increases in alkaline phosphatase activity, binding of 1,25(OH)2-vitamin D3, type X collagen synthesis, 45Ca incorporation into insoluble material, and calcium content. On the other hand, other lectins tested (including wheat germ agglutinin, lentil lectin, pea lectin, phytohemagglutinin-L, and phytohemagglutinin-E) marginally affected alkaline phosphatase activity, although they activate lymphocytes. Methylmannoside reversed the effect of concanavalin A on alkaline phosphatase within 48 h. Concanavalin A did not increase alkaline phosphatase activity in articular chondrocyte cultures. In resting chondrocyte cultures, succinyl concanavalin A was as potent as concanavalin A in increasing alkaline phosphatase activity, the incorporation of [35S]sulfate, D-[3H]glucosamine, and [3H]serine into proteoglycans, and the incorporation of [3H]serine into protein, although concanavalin A, but not succinyl concanavalin A, induced a rapid change in the shape of the cells from flat to spherical. These findings suggest that concanavalin A induces a switch from the resting, to the growth-plate stage, and that this action of concanavalin A is not secondary to changes in the cytoskeleton. Chondrocytes exposed to concanavalin A may be useful as a novel model of endochondral bone formation.

  14. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.

    PubMed

    Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed

    2018-05-01

    Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.

  15. Effects of an 8-Month Ashtanga-Based Yoga Intervention on Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Study

    PubMed Central

    Kim, SoJung; Bemben, Michael G.; Knehans, Allen W.; Bemben, Debra A.

    2015-01-01

    Although Yoga has the potential to be an alternative physical activity to enhance bone health, there is a lack of high quality evidence for this type of intervention. The purpose of this randomized controlled trial was to examine the effects of a progressive 8-month Ashtanga-based Yoga program on bone turnover markers (BTM), areal bone mineral density (aBMD) and volumetric bone characteristics in premenopausal women. Thirty-four premenopausal women (35-50 years) were randomly assigned either to a Yoga group (YE, n = 16) or a control group (CON, n = 18). Participants in YE group performed 60 minutes of an Ashtanga-based Yoga series 2 times/week with one day between sessions for 8 months, and the session intensity was progressively increased by adding the number of sun salutations (SS). Participants in CON were encouraged to maintain their normal daily lifestyles monitored by the bone specific physical activity questionnaire (BPAQ) at 2 month intervals for 8 months. Body composition was measured by dual energy x-ray absorptiometry (DXA). Bone formation (bone alkaline phosphatase, Bone ALP) and bone resorption (Tartrate-Resistant Acid Phosphatase-5b, TRAP5b) markers were assessed at baseline and after 8 months. aBMD of total body, lumbar spine and dual proximal femur and tibia bone characteristics were measured using DXA and peripheral Quantitative Computed Tomography (pQCT), respectively. We found that the serum Bone ALP concentrations were maintained in YE, but significantly (p = 0.005) decreased in CON after the 8 month intervention, and there were significant (p = 0.002) group differences in Bone ALP percent changes (YE 9.1 ± 4.0% vs. CON -7.1 ± 2.3%). No changes in TRAP5b were found in either group. The 8-month Yoga program did not increase aBMD or tibia bone strength variables. Body composition results showed no changes in weight, fat mass, or % fat, but small significant increases in bone free lean body mass occurred in both groups. The findings of this study suggest that regular long-term Ashtanga Yoga had a small positive effect on bone formation but did not alter aBMD or tibia bone characteristics in premenopausal women. Key points Regular long-term Ashtanga-based Yoga program had a small positive effect on bone formation, but no effects were found on bone resorption. None of the bone density or geometry variables were changed by the 8-month Ashtanga-based Yoga intervention. Future Yoga interventions should focus on longer duration and greater frequency to elicit improvements in bone mineral density. PMID:26664272

  16. Effects of alkaloids from Sophora flavescens on osteoblasts infected with Staphylococcus aureus and osteoclasts.

    PubMed

    Wang, Xuping; Zheng, Rongzong; Huang, Xiaowen; Mao, Zhujun; Wang, Nani; Li, Hongyu; Wen, Chengping; Shou, Dan

    2018-03-25

    Chronic osteomyelitis is primarily caused by infection with Staphylococcus aureus (S. aureus). Antibiotics are commonly administered; however, it is a challenge to promote bone healing. The aim of this study was to investigate the in vitro effects of alkaloids from the herbal remedy Sophora flavescens (ASF) on rat calvarial osteoblasts (ROBs) infected with S. aureus and healthy osteoclasts. Cell proliferation and alkaline phosphatase, interleukin-6, and tumour necrosis factor-α activity was measured in infected ROBs; tartrate-resistant acid phosphatase was evaluated in osteoclasts via enzyme-linked immunosorbent assay. The mRNA and protein expression levels of bone morphogenetic protein 2, runt-related transcription factor 2, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand were assessed in infected ROBs through reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Results indicated that ASF increased the viability of uninfected ROBs and infected ROBs treated with vancomycin via regulation of bone morphogenetic protein 2, runt-related transcription factor, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand mRNA and protein expression levels. In addition, the secretion of the inflammatory factor tumour necrosis factor-α was decreased and alkaline phosphatase activity was increased, inhibiting the viability of osteoclasts and tartrate-resistant acid phosphatase activity. Therefore, the herbal remedy ASF has potential as a new treatment for chronic osteomyelitis. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Bone Tissue Engineering with Premineralized Silk Scaffolds

    PubMed Central

    Kim, Hyeon Joo; Kim, Ung-Jin; Kim, Hyun Suk; Li, Chunmei; Wada, Masahisa; Leisk, Gary G.; Kaplan, David L.

    2009-01-01

    Silks fibroin biomaterials are being explored as novel protein-based systems for cell and tissue culture. In the present study, biomimetic growth of calcium phosphate on porous silk fibroin polymeric scaffolds was explored to generate organic/inorganic composites as scaffolds for bone tissue engineering. Aqueous-derived silk fibroin scaffolds were prepared with the addition of polyaspartic acid during processing, followed by the controlled deposition of calcium phosphate by exposure to CaCl2 and Na2HPO4. These mineralized protein-composite scaffolds were subsequently seeded with human bone marrow stem cells (hMSC) and cultured in vitro for 6 weeks under osteogenic conditions with or without BMP-2. The extent of osteoconductivity was assessed by cell numbers, alkaline phosphatase and calcium deposition, along with immunohistochemistry for bone related outcomes. The results suggest increased osteoconductive outcomes with an increase in initial content of apatite and BMP-2 in the silk fibroin porous scaffolds. The premineralization of these highly porous silk fibroin protein scaffolds provided enhanced outcomes for the bone tissue engineering. PMID:18387349

  18. [Metabolic bone disease osteomalacia].

    PubMed

    Reuss-Borst, M A

    2014-05-01

    Osteomalacia is a rare disorder of bone metabolism leading to reduced bone mineralization. Underlying vitamin D deficiency and a disturbed phosphate metabolism (so-called hypophosphatemic osteomalacia) can cause the disease. Leading symptoms are dull localized or generalized bone pain, muscle weakness and cramps as well as increased incidence of falls. Rheumatic diseases, such as polymyalgia rheumatica, rheumatoid arthritis, myositis and fibromyalgia must be considered in the differential diagnosis. Alkaline phosphatase (AP) is typically elevated in osteomalacia while serum phosphate and/or 25-OH vitamin D3 levels are reduced. The diagnosis of osteomalacia can be confirmed by an iliac crest bone biopsy. Histological correlate is reduced or deficient mineralization of the newly synthesized extracellular matrix. Treatment strategies comprise supplementation of vitamin D and calcium and for patients with intestinal malabsorption syndromes vitamin D and calcium are also given parenterally. In renal phosphate wasting syndromes substitution of phosphate is the treatment of choice, except for tumor-induced osteomalacia when removal of the tumor leads to a cure in most cases.

  19. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.

    PubMed

    Kim, Sung Eun; Yun, Young-Pil; Shim, Kyu-Sik; Kim, Hak-Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2016-09-29

    The aim of this study was to evaluate the in vitro osteogenic effects and in vivo new bone formation of three-dimensional (3D) printed alendronate (Aln)-releasing poly(caprolactone) (PCL) (Aln/PCL) scaffolds in rat tibial defect models. 3D printed Aln/PCL scaffolds were fabricated via layer-by-layer deposition. The fabricated Aln/PCL scaffolds had high porosity and an interconnected pore structure and showed sustained Aln release. In vitro studies showed that MG-63 cells seeded on the Aln/PCL scaffolds displayed increased alkaline phosphatase (ALP) activity and calcium content in a dose-dependent manner when compared with cell cultures in PCL scaffolds. In addition, in vivo animal studies and histologic evaluation showed that Aln/PCL scaffolds implanted in a rat tibial defect model markedly increased new bone formation and mineralized bone tissues in a dose-dependent manner compared to PCL-only scaffolds. Our results show that 3D printed Aln/PCL scaffolds are promising templates for bone tissue engineering applications.

  20. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis

    NASA Astrophysics Data System (ADS)

    Mencía Castaño, Irene; Curtin, Caroline M.; Duffy, Garry P.; O'Brien, Fergal J.

    2016-06-01

    Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.

  1. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  2. Negative effect of serotonin-norepinephrine reuptake inhibitor therapy on rat bone tissue after orchidectomy.

    PubMed

    Fekete, Sona; Simko, Julius; Mzik, Martin; Karesova, Iva; Zivna, Helena; Zivny, Pavel; Pavliková, Ladislava; Palicka, Vladimir

    2015-08-15

    Our goal was to determine if venlafaxine has a negative effect on bone metabolism. Rats were divided into three groups. The sham-operated control group (SHAM), the control group after orchidectomy (ORX), and the experimental group after orchidectomy received venlafaxine (VEN ORX) in standard laboratory diet (SLD) for 12 weeks. Bone mineral content (BMC) was measured by dual energy X-ray absorptiometry (DXA). Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), amino-terminal propeptide of procollagen type I (P1NP), bone alkaline phosphatase (BALP), sclerostin and bone morphogenetic protein 2 (BMP-2) were examined in bone homogenate. The femurs were used for biomechanical testing. Compared to the ORX group we found lower BMD in the diaphysis area of the femur in the VEN ORX group, suggesting a preferential effect on cortical bone. Of the bone metabolism markers, there was significant decrease (ORX control group versus VEN ORX experimental group) in BALP levels and increase in sclerostin and CTX-I levels, suggesting a decrease in osteoid synthesis and increased bone resorption. The results suggest that the prolonged use of venlafaxine may have a negative effect on bone metabolism. Further studies are warranted to establish whether venlafaxine may have a clinically significant adverse effect on bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  4. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  5. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  6. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  7. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  8. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  9. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  10. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  11. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  12. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  13. Effect of clinostat rotation on differentiation of embryonic bone in vitro

    NASA Astrophysics Data System (ADS)

    Al-Ajmi, N.; Braidman, I. P.; Moore, D.

    We have investigated the effect of changes in the gravity vector on osteoblast behaviour, using the clinostat set at 8 rpm. Two sources of osteoblasts were used: secondary cultures of fetal rat bone cells, and the rat osteosarcoma line 17/2.8 (ROS). Cell number was determined by incubation with 3-(4,dimethyl-2yl)-2,3 diphenyl) tetrazolium bromide (MTT) and measurement of optical density at 570 nm (OD). Alkaline phosphatase activity was detected by standard cytochemical methods. Dividing cells were localised by labelling dividing nuclei with Bromodeoxyuridine (BrdU), detected by immunofluorescence. Cell culture was initiated at densities between 1-4x10^4 cells ml^-1. Growth rates in all cultures during the first 48 hours exposure to clinostat rotation were less than in stationary controls. After 3 days, ROS cell numbers were 35% lower, and calvarial cells 39% lower than their respective controls. Alkaline phosphatase activity in calvarial control cultures was uniformly present in characteristically polygonal cells, but after culture in the clinostat the enzyme was present sporadically, and the cells were cuboid. There was also no BrdU uptake in nuclei, but it was present in cell cytoplasms. We conclude that the clinostat decreases cell numbers and cell division. Both cell shape and the distribution of alkaline phosphatase activity in calvarial cell cultures were also affected. This implies that changes in the gravity vector can affect osteoblasts directly, without interaction with other cell types.

  14. The effects of first gestation and lactation on bone metabolism in dairy goats and milk sheep.

    PubMed

    Liesegang, A; Risteli, J; Wanner, M

    2006-06-01

    The goal of the present study was to compare mobilization rate of calcium (Ca) from bone in pregnant and lactating goats and sheep. Blood samples were collected from goats and sheep monthly during pregnancy and at 1, 2, and 4 weeks postpartum (pp) and monthly during lactation until 6 months after parturition. Total bone mineral content (BMC) and total bone mineral density (BMD) were quantified using peripheral quantitative computed tomography at the same intervals as the blood was taken. Bone resorption was assessed by immunoassays quantitating two epitopes of the carboxyterminal telopeptide of type I collagen (ICTP, CTX). Bone formation was estimated by quantifying serum osteocalcin (OC) and bone-specific alkaline phosphatase (bAP). In addition, Ca and 1,25-dihydroxy vitamin D (1,25-VITD) concentrations were determined in serum. Mean ICTP and CTX concentrations of both animal species increased the first week after parturition. By the second week pp, the concentrations of both markers had decreased toward early gestation levels. In contrast, mean OC concentrations continually decreased until the 1st week pp. By the 2nd week pp, the mean concentrations of OC started to increase again. Mean bAP activities decreased during gestation and reached a nadir in the first week pp in goats and 4 weeks pp in sheep. Afterwards, mean bAP activities increased again in goats and sheep. 1,25-VITD concentrations peaked the first week pp and returned to early gestation values thereafter. Total BMC and BMD decreased from the 4th month of pregnancy until the 1st week pp in both species. Afterwards, BMC increased throughout the first month pp in goats and the first 3 months pp in sheep. BMD levels of sheep and goats returned to prepartum levels during lactation. The resorptive phase of bone remodeling is accelerated at parturition and in early lactation and is uncoupled from the process of bone formation. This allows the animal to achieve Ca homeostasis at the expense of bone. Increased bone remodeling during lactation may represent physiological mechanisms to help replace the maternal skeleton lost as the animal adapted to enormously increased Ca losses to the fetus and milk in late gestation and early lactation.

  15. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  16. Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells.

    PubMed

    Bergante, Sonia; Torretta, Enrica; Creo, Pasquale; Sessarego, Nadia; Papini, Nadia; Piccoli, Marco; Fania, Chiara; Cirillo, Federica; Conforti, Erika; Ghiroldi, Andrea; Tringali, Cristina; Venerando, Bruno; Ibatici, Adalberto; Gelfi, Cecilia; Tettamanti, Guido; Anastasia, Luigi

    2014-03-01

    Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically (3)H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.

  17. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole

    PubMed Central

    Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae

    2015-01-01

    Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing. PMID:26491693

  18. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole.

    PubMed

    Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae

    2015-01-01

    Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.

  19. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    PubMed Central

    Eskildsen, Tilde; Taipaleenmäki, Hanna; Stenvang, Jan; Abdallah, Basem M.; Ditzel, Nicholas; Nossent, Anne Yael; Bak, Mads; Kauppinen, Sakari; Kassem, Moustapha

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators of diverse biological processes by mediating translational repression or mRNA degradation of their target genes. Here, we show that miRNA-138 (miR-138) modulates osteogenic differentiation of hMSCs. miRNA array profiling and further validation by quantitative RT-PCR (qRT-PCR) revealed that miR-138 was down-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3′ UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central role in promoting osteoblast differentiation, as a bona fide target of miR-138. We show that miR-138 attenuates bone formation in vivo, at least in part by inhibiting the focal adhesion kinase signaling pathway. Our findings suggest that pharmacological inhibition of miR-138 by antimiR-138 could represent a therapeutic strategy for enhancing bone formation in vivo. PMID:21444814

  20. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.

    PubMed

    Wu, Chengtie; Miron, Richard; Sculean, Anton; Kaskel, Stefan; Doert, Thomas; Schulze, Renate; Zhang, Yufeng

    2011-10-01

    Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus

    2014-01-01

    Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin, it completely suppressed Twist. Thus, in the treatment of avascular osteonecrosis or painful bone marrow edema, the undesirable effects of indomethacin might be counterbalanced by iloprost. PMID:25382306

  2. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats

    NASA Technical Reports Server (NTRS)

    Smith, Brenda J.; King, Jarrod B.; Lucas, Edralin A.; Akhter, Mohammed P.; Arjmandi, Bahram H.; Stoecker, Barbara J.

    2002-01-01

    This study was designed to examine the skeletal response to copper depletion and mechanical unloading in mature animals. In a 2 x 2 experimental design, 5.5-mo-old male Sprague-Dawley rats (n = 36) consumed either the control (AIN-93M) or Cu-depletion ((-)Cu) diet beginning 21 d before suspension and throughout the remainder of the study. Half of the rats in each dietary treatment group were either tail-suspended (TS) or kept ambulatory (AMB) for 28 d. Lower bone mineral densities (BMD) of 5th lumbar vertebra (L5) (P < 0.05) and femur were observed with (-)Cu and TS, but no differences were noted in the BMD of the humerus. Mechanical strength in the femur and vertebra decreased in response to TS, but were unaffected by copper depletion. Urinary deoxypyridinoline, an index of bone resorption, was significantly greater in TS rats, but unaltered by (-)Cu. No changes in serum or bone alkaline phosphatase activity, an indicator of bone formation, were observed. Our findings suggest that TS and (-)Cu decreased BMD in unloaded femur and vertebra but had no effect on normally loaded humerus. Bone loss with TS appeared to be related to accelerated bone resorption. Alterations in bone metabolism and bone mechanical properties in the mature skeleton resulting from (-)Cu warrant further investigation.

  3. Effects of antiepileptic drugs on bone mineral density and bone metabolism in children: a meta-analysis*

    PubMed Central

    Zhang, Ying; Zheng, Yu-xin; Zhu, Jun-ming; Zhang, Jian-min; Zheng, Zhe

    2015-01-01

    Objective: The aim of our meta-analysis was to assess the effects of antiepileptic drugs on bone mineral density and bone metabolism in epileptic children. Methods: Searches of PubMed and Web of Science were undertaken to identify studies evaluating the association between antiepileptic drugs and bone mineral density and bone metabolism. Results: A total of 22 studies with 1492 subjects were included in our research. We identified: (1) a reduction in bone mineral density at lumbar spine (standardized mean difference (SMD)=−0.30, 95% confidence interval (CI) [−0.61, −0.05]), trochanter (mean difference (MD)=−0.07, 95% CI [−0.10, −0.05]), femoral neck (MD=−0.05, 95% CI [−0.09, −0.02]), and total body bone mineral density (MD=−0.33, 95% CI [−0.51, −0.15]); (2) a reduction in 25-hydroxyvitamin D (MD=−3.37, 95% CI [−5.94, −0.80]) and an increase in serum alkaline phosphatase (SMD=0.71, 95% CI [0.38, 1.05]); (3) no significant changes in serum parathyroid hormone, calcium, or phosphorus. Conclusions: Our meta-analysis suggests that treatment with antiepileptic drugs may be associated with decreased bone mineral density in epileptic children. PMID:26160719

  4. Effects of Amplitude and Frequency of Mechanical Vibration Stimulation on Cultured Osteoblasts

    NASA Astrophysics Data System (ADS)

    Shikata, Tetsuo; Shiraishi, Toshihiko; Morishita, Shin; Takeuchi, Ryohei; Saito, Tomoyuki

    Mechanical stimulation to bones affects bone formation such as decrease of bone mass of astronauts under zero gravity, walking rehabilitation to bone fracture and fracture repair with ultrasound devices. Bone cells have been reported to sense and response to mechanical stimulation at cellular level morphologically and metabolically. In the view of mechanical vibrations, bone cells are deformed according to mechanical stimulation and their mechanical characteristics. In this study, sinusoidal inertia force was applied to cultured osteoblasts, which are a kind of bone cells, and effects of frequency and acceleration amplitude of mechanical vibration on the cells were investigated in respect of the cell proliferation, bone matrix generation and alkaline phosphatase (ALP) gene expression. The results to be obtained are as follows. The significant difference of cell density and bone mass generation between the non-vibrating and vibrating groups is found. ALP gene expression shows a peak to frequency at 50 Hz and the value of it is approximately 4.5 times as high as that of the non-vibrating group in the case of the acceleration amplitude of 0.5 G. ALP gene expression at 0.5 G is significantly larger than at 0, 0.125 or 0.25 G in the case of the frequency of 50 Hz.

  5. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  6. Antiosteoclastic activity of milk thistle extract after ovariectomy to suppress estrogen deficiency-induced osteoporosis.

    PubMed

    Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee

    2013-01-01

    Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor- κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.

  7. Antiosteoclastic Activity of Milk Thistle Extract after Ovariectomy to Suppress Estrogen Deficiency-Induced Osteoporosis

    PubMed Central

    Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee

    2013-01-01

    Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss. PMID:23781510

  8. Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet?

    PubMed

    Parsons, T J; van Dusseldorp, M; Seibel, M J; van Staveren, W A

    2001-01-01

    Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by higher levels of serum osteocalcin and alkaline phosphatase and lower levels of urinary cross-links. Group differences in calciotropic hormones and mineral excretion were also investigated. Bone measurements, blood, and urine samples were obtained from 69 macrobiotic (34 girls, 35 boys) and 99 control (57 girls, 42 boys) subjects, aged 9-15. Bone turnover markers and 1,25(OH)2D reached maximal levels at pubertal stages 3-4, and decreased thereafter. After adjusting for puberty, age, and lean body mass, no group differences were found in markers of bone turnover, 1,25(OH)2D, PTH, or calcium excretion, but phosphate excretion was 23% lower in macrobiotic girls. After adjustment for puberty, 1,25(OH)2D was positively related to osteocalcin. In summary, we found no evidence for group differences in bone turnover, or catch up in relative bone mass, which might be due to the fact that 60% of subjects were still in early stages of puberty.

  9. Increasing fruits and vegetables in midlife women: a feasibility study.

    PubMed

    Gunn, Caroline A; Weber, Janet L; Coad, Jane; Kruger, Marlena C

    2013-07-01

    The positive link between bone health and fruit/vegetable consumption has been attributed to the lower renal acid load of a diet high in alkaline-forming fruit/vegetables. Other important dietary determinants of bone health include micronutrients and bioactives found in fruit/vegetables. We hypothesized that increased intake of fruit/vegetables to 9 or more servings a day would lower net endogenous acid production (NEAP) significantly (~20 mEq/d) and increase urine pH (0.5 pH units). This 8-week feasibility study investigated if 21 midlife women (age, 40-65 years) currently consuming 5 or less servings a day of fruit/vegetables could increase their intake to 9 or more servings a day to substantially lower NEAP and include specific vegetables daily. Three-day diet diaries were completed at baseline and the end of the study and assessed for NEAP (estimated) and number of servings from all food groups. Urine pH dipsticks were provided for the participants to assess and record their fasting urine pH daily (second void). Seventy-six percent of women achieved the study aim, which was to increase to 9 or more servings of fruit/vegetables for at least 5 d/wk. There was a reduction in the number of bread/cereal servings. Net endogenous acid production (estimated) was reduced significantly, with a mean urine pH increase of 0.68 pH units (95% confidence interval, 0.46-1.14); however, daily urine pH measures showed high variability. This study demonstrated that a group of midlife women can change their diet for 8 weeks by significantly increasing fruit/vegetable servings and include specific "bone friendly" vegetables daily, resulting in a significant decrease in estimated dietary NEAP and an increase in urine pH. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Mechanical factors and vitamin D deficiency in schoolchildren with low back pain: biochemical and cross-sectional survey analysis

    PubMed Central

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S

    2017-01-01

    Objective This study was designed to evaluate the role of vitamin D, muscle fatigue biomarkers, and mechanical factors in the progression of low back pain (LBP) in schoolchildren. Background Children and adolescents frequently suffer from LBP with no clear clinical causes, and >71% of schoolchildren aged 12–17 years will show at least one episode of LBP. Materials and methods A total of 250 schoolchildren aged 12–16 years were randomly enrolled in this study. For all schoolchildren height, weight, percentage of daily sun exposure and and areas of skin exposed to sun, method of carrying the bag, and bag weight and type were recorded over a typical school week. Pain scores, physical activity (PA), LBP, serum vitamin 25(OH)D level, serum bone-specific alkaline phosphatase, creatine kinase (CK), and lactate dehydrogenase (LDH) activities and calcium (Ca) concentrations were estimated using prevalidated Pain Rating Scale, modified Oswestry Low Back Pain Disability Questionnaire, short-form PA questionnaire, and colorimetric and immunoassay techniques. Results During the period of October 2013–May 2014, LBP was estimated in 52.2% of the schoolchildren. It was classified into moderate (34%) and severe (18%). Girls showed a higher LBP (36%) compared with boys (24%). In schoolchildren with moderate and severe LBP significantly higher (P=0.01) body mass index, waist, hip, and waist-to-hip ratio measurements were observed compared with normal schoolchildren. LBP significantly correlated with less sun exposure, lower PA, sedentary activity (TV/computer use), and overloaded school bags. In addition, schoolchildren with severe LBP showed lower levels of vitamin 25(OH)D and Ca and higher levels of CK, LDH, and serum bone-specific alkaline phosphatase compared with moderate and healthy schoolchildren. Stepwise regression analysis revealed that age, gender, demographic parameters, PA, vitamin D levels, Ca, CK, and LDH associated with ~56.8%–86.7% of the incidence of LBP among schoolchildren. Conclusion In children and adolescents, LBP was shown to be linked with limited sun exposure, inadequate vitamin D diets, adiposity, lower PA, sedentary lifestyles, vitamin 25 (OH) D deficiency, and lower levels of Ca, CK, and LDH. PMID:28442927

  11. Mechanical factors and vitamin D deficiency in schoolchildren with low back pain: biochemical and cross-sectional survey analysis.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S

    2017-01-01

    This study was designed to evaluate the role of vitamin D, muscle fatigue biomarkers, and mechanical factors in the progression of low back pain (LBP) in schoolchildren. Children and adolescents frequently suffer from LBP with no clear clinical causes, and >71% of schoolchildren aged 12-17 years will show at least one episode of LBP. A total of 250 schoolchildren aged 12-16 years were randomly enrolled in this study. For all schoolchildren height, weight, percentage of daily sun exposure and and areas of skin exposed to sun, method of carrying the bag, and bag weight and type were recorded over a typical school week. Pain scores, physical activity (PA), LBP, serum vitamin 25(OH)D level, serum bone-specific alkaline phosphatase, creatine kinase (CK), and lactate dehydrogenase (LDH) activities and calcium (Ca) concentrations were estimated using prevalidated Pain Rating Scale, modified Oswestry Low Back Pain Disability Questionnaire, short-form PA questionnaire, and colorimetric and immunoassay techniques. During the period of October 2013-May 2014, LBP was estimated in 52.2% of the schoolchildren. It was classified into moderate (34%) and severe (18%). Girls showed a higher LBP (36%) compared with boys (24%). In schoolchildren with moderate and severe LBP significantly higher ( P =0.01) body mass index, waist, hip, and waist-to-hip ratio measurements were observed compared with normal schoolchildren. LBP significantly correlated with less sun exposure, lower PA, sedentary activity (TV/computer use), and overloaded school bags. In addition, schoolchildren with severe LBP showed lower levels of vitamin 25(OH)D and Ca and higher levels of CK, LDH, and serum bone-specific alkaline phosphatase compared with moderate and healthy schoolchildren. Stepwise regression analysis revealed that age, gender, demographic parameters, PA, vitamin D levels, Ca, CK, and LDH associated with ~56.8%-86.7% of the incidence of LBP among schoolchildren. In children and adolescents, LBP was shown to be linked with limited sun exposure, inadequate vitamin D diets, adiposity, lower PA, sedentary lifestyles, vitamin 25 (OH) D deficiency, and lower levels of Ca, CK, and LDH.

  12. Supplementing with Opuntia ficus-indica Mill and Dioscorea nipponica Makino extracts synergistically attenuates menopausal symptoms in estrogen-deficient rats.

    PubMed

    Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Ryuk, Jin Ah; Park, Sunmin

    2014-08-08

    Prickly pear cactus grown in Korea (Opuntia ficus-indica Mill, KC) and Buchema (Dioscorea nipponica Makino, B) have been traditionally used in East Asia and South America to treat various metabolic diseases. The aim of the present study was to determine whether the extracts of KC, B, and KC+B can prevent the impairments of energy, glucose, lipid and bone homeostasis in estrogen-deficient ovariectomized (OVX) rats and to explore their mechanisms. OVX rats were divided into 4 groups and fed high fat diets supplemented with either 3% dextrin (control), 3% KC, 3% B or 1.5% KC+1.5% B. Sham rats were fed 3% dextrin. After 12 weeks of diet consumption, energy, lipid, glucose and bone metabolisms were analyzed and Wnt signaling in the femur and hepatic signaling were determined. OVX impaired energy, glucose and lipid metabolism and decreased uterine and bone masses. B and KC+B prevented the decrease in energy expenditure, especially from fat oxidation, in OVX rats, but did not affect food intake. KC+B and B reduced body weight and visceral fat levels, as compared to the OVX-control, by decreasing fat synthesis and inhibiting FAS and SREBP-1c expression. KC+B and B prevented the increases in serum lipid levels and insulin resistance by improving hepatic insulin signaling (pIRS→pAkt→pGSK-3β). KC and KC+B also prevented decreases in bone mineral density (BMD) in the femur and lumbar spine in OVX rats. This was related to decreased expressions of bone turnover markers such as serum osteocalcin, alkaline phosphatase (ALP) and bone-specific ALP levels, and increased serum P levels. KC and KC+B upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, but suppressed the expression of dickkopf-related protein 1. B alone improved energy, lipid and glucose homeostasis, but not bone loss, whereas KC alone enhanced BMD, but not energy, lipid or glucose homeostasis. KC+B synergistically attenuated impairments of bone, energy, lipid and glucose metabolism by OVX, suggesting potential efficacy of the combination for alleviating menopausal symptoms. Copyright © 2014. Published by Elsevier Ireland Ltd.

  13. Retrospective Study of Serum Sclerostin Measurements in Bed Rest Subjects

    NASA Technical Reports Server (NTRS)

    Spatz, J. M.; Fields, E. E.; Yu, E. W.; Divieti, Pajevic P.; Bouxsein, M. L.; Sibonga, M. L.; Zwart, S. R.; Smith, S. M.

    2011-01-01

    Animal models and human studies suggest that osteocytes regulate the skeleton s response to mechanical unloading at the cellular level in part by an increase in sclerostin, an inhibitor of the anabolic Wnt pathway. However, few studies have reported changes in serum sclerostin in humans exposed to reduced mechanical loading. Thus, we determined changes in serum sclerostin and bone turnover markers in healthy adult men who participated in a controlled bed rest study. Seven healthy adult men (31 +/- 3 yrs old) underwent 90-day six-degree head down tilt bed rest at the University of Texas Medical Branch in Galveston's Institute for Translational Sciences - Clinical Research Center (ITS-CRC). Serum sclerostin, PTH, serum markers of bone turnover (bone specific alkaline phosphatase, RANKL/OPG, and osteocalcin), urinary calcium and phosphorus excretion, and 24 hour pooled urinary markers of bone resorption (NTX, DPD, PYD) were evaluated pre-bed rest (BL), bed rest day 28 (BR-28), bed rest day 60 (BR-60), and bed rest day 90 (BR-90). In addition, bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry (DXA) at BL, BR-60, and post bed rest day 5 (BR+5). Data are reported as mean +/- standard deviation. We used repeated measures ANOVA to compare baseline values to BR-28, BR-60, and BR-90. RESULTS Consistent with prior reports, BMD declined significantly (1-2% per month) at weight-bearing skeletal sites (spine, hip, femur neck, and calcaneus). Serum sclerostin levels were elevated above BL at BR-28 (+29% +/- 20%, p = 0.003), BR-60 (+42% +/- 31%, p < 0.001), and BR-90 (22% +/- 21%, p = 0.07). Serum PTH levels were reduced at BR-28 (-17% +/- 16%, p = 0.02), BR-60 (-24% +/- 14%, p = 0.03), and returned to baseline at BR-90 (-21% +/- 21%, p = 0.14). Serum bone turnover markers did not change, however urinary bone resorption markers and calcium were significantly elevated following bed rest (p < 0.01). CONCLUSION We observed an increase of serum sclerostin associated with decreased serum PTH and elevated bone resorption markers in otherwise healthy men subjected to long-term immobilization.

  14. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    PubMed

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  15. Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: in vitro and docking studies.

    PubMed

    Iqbal, Jamshed; El-Gamal, Mohammed I; Ejaz, Syeda Abida; Lecka, Joanna; Sévigny, Jean; Oh, Chang-Hyun

    2018-12-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an important isozyme of alkaline phosphatases, which plays different pivotal roles within the human body. Most importantly, it is responsible for maintaining the balanced ratio of phosphate and inorganic pyrophosphate, thus regulates the extracellular matrix calcification during bone formation and growth. The elevated level of TNAP has been linked to vascular calcification and end-stage renal diseases. Consequently, there is a need to search for highly potent and selective inhibitors of alkaline phosphatases (APs) for treatment of disorders associated with the over-expression of APs. Herein, a series of tricyclic coumarin sulphonate 1a-za with known antiproliferative activity, was evaluated for AP inhibition against human tissue nonspecific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). The methylbenzenesulphonate derivative 1f (IC 50  = 0.38 ± 0.01 μM) was found to be the most active h-TNAP inhibitor. Another 4-fluorobenzenesulphonate derivative 1i (IC 50  = 0.45 ± 0.02 μM) was found as the strongest inhibitor of h-IAP. Some of the derivatives were also identified as highly selective inhibitors of APs. Detailed structure-activity relationship (SAR) was investigated to identify the functional groups responsible for the effective inhibition of AP isozymes. The study was also supported by the docking studies to rationalise the most possible binding site interactions of the identified inhibitors with the targeted enzymes.

  16. Effects of active acromegaly on bone mRNA and microRNA expression patterns.

    PubMed

    Belaya, Zhanna; Grebennikova, Tatiana; Melnichenko, Galina; Nikitin, Alexey; Solodovnikov, Alexander; Brovkina, Olga; Grigoriev, Andrey; Rozhinskaya, Liudmila; Lutsenko, Alexander; Dedov, Ivan

    2018-04-01

    To evaluate the response of bone to chronic long-term growth hormone (GH) and insulin-like growth factor-1 (IGF1) excess by measuring the expression of selected mRNA and microRNA (miR) in bone tissue samples of patients with active acromegaly. Case-control study. Bone tissue samples were obtained during transsphenoidal adenomectomy from the sphenoid bone (sella turcica) from 14 patients with clinically and biochemically confirmed acromegaly and 10 patients with clinically non-functioning pituitary adenoma (NFPA) matched by sex and age. Expression of genes involved in the regulation of bone remodeling was studied using quantitative polymerase chain reaction (qPCR). Of the genes involved in osteoblast and osteoclast activity, only alkaline phosphatase (ALP) mRNA was 50% downregulated in patients with acromegaly. GH excess caused increased expression of the Wnt signaling antagonists ( DKK1) and agonists ( WNT10B) and changes in the levels of miR involved in mesenchymal stem cell commitment to chondrocytes (miR-199a-5p) or adipocytes (miR-27-5p, miR-125b-5p, miR-34a-5p, miR-188-3p) P  < 0.05; q  < 0.1. Relevant compensatory mechanisms were found through the changes in miR involved in osteoblastogenesis (miR-210-5p, miR-135a-5p, miR-211, miR-23a-3p, miR-204-5p), but the expression of TWIST1 was 50% downregulated and RUNX2 was unchanged. Acromegaly had minimal effects on tested mRNAs specific to osteoblast or osteoclast function except for downregulated ALP expression. The expressions of miR known to be involved in mesenchymal stem cell commitment and downregulated TWIST1 expression suggest acromegaly has a negative effect on osteoblastogenesis. © 2018 European Society of Endocrinology.

  17. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study.

    PubMed

    Fayyazbakhsh, Fateme; Solati-Hashjin, Mehran; Keshtkar, Abbas; Shokrgozar, Mohammad Ali; Dehghan, Mohammad Mehdi; Larijani, Bagher

    2017-07-01

    Developing porous biodegradable scaffolds through simple methods is one of the main approaches of bone tissue engineering (BTE). In this work, a novel BTE composite containing layered double hydroxides (LDH), hydroxyapatite (HA) and gelatin (GEL) was fabricated using co-precipitation and solvent-casting methods. Physiochemical characterizations showed that the chemical composition and microstructure of the scaffolds were similar to the natural spongy bone. Interconnected macropores ranging over 100 to 600μm were observed for both scaffolds while the porosity of 90±0.12% and 92.11±0.15%, as well as, Young's modulus of 19.8±0.41 and 12.5±0.35GPa were reported for LDH/GEL and LDH-HA/GEL scaffolds, respectively. The scaffolds were degraded in deionized water after a month. The SEM images revealed that between two scaffolds, the LDH-HA/GEL with needle-like secondary HA crystals showed better bioactivity. According to the alkaline phosphatase activity and Alizarin red staining results, LDH-HA/GEL scaffolds demonstrated better bone-specific activities comparing to LDH/Gel scaffold as well as control sample (P<0.05). The rabbit adipose stem cells (ASCs) were extracted and cultured, then seeded on the LDH-HA/GEL scaffolds after confluence. Three groups of six adult rabbits were prepared: the scaffold+ASCs group, the empty scaffold group and the control group. The critical defects were made on the left radius and the scaffolds with or without ASCs were implanted there while the control group was left without any treatment. All animals were sacrificed after 12weeks. Histomorphometric results showed that the regeneration of defects was accelerated by scaffold implantation but ASC-seeding significantly improved the quality of new bone formation (P<0.05). The results confirmed the good performance of LDH-HA/GEL scaffold to induce bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems.

    PubMed

    Mandatori, Domitilla; Penolazzi, Letizia; Pipino, Caterina; Di Tomo, Pamela; Di Silvestre, Sara; Di Pietro, Natalia; Trevisani, Sara; Angelozzi, Marco; Ucci, Mariangela; Piva, Roberta; Pandolfi, Assunta

    2018-02-01

    Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Vitamin D Supplementation in Elderly Black Women Does Not Prevent Bone Loss, a Randomized Controlled Trial.

    PubMed

    Aloia, John F; Fazzari, Melissa; Islam, Shahidul; Mikhail, Mageda; Katumuluwa, Subhashini; Dhaliwal, Ruban; Stolberg, Alexandra; Usera, Gianina; Ragolia, Louis

    2018-06-15

    Black Americans have lower levels of serum 25(OH)D but superior bone health compared to white Americans. There is controversy over whether they should be screened for vitamin D deficiency and have higher vitamin D requirements than recommended by the Institute of Medicine (IOM). The purpose of this trial was to determine whether Vitamin D supplementation in elderly black women prevents bone loss. 260 healthy black American women, 60 years of age and older were recruited to take part in a two arm, double-dummy 3 year RCT of vitamin D 3 vs. placebo. The study was conducted in an ambulatory clinical research center. Vitamin D 3 dose was adjusted to maintain serum 25(OH)D above 75 nmol/L. Bone mineral density (BMD) and serum were measured for [parathyroid hormone (PTH), C-terminal crosslink telopeptide (CTX) and bone specific alkaline phosphatase (BSAP) every 6 months. Baseline serum 25(OH)D 3 was 54.8 ± 16.8 nmol/L. There was no group xtime interaction effect for any BMD measurement. For all BMD measurements, except for total body and spine, there was a statistically significant negative effect of time (P < 0.001). An equivalency analysis showed that the treatment group was equivalent to the control group. Serum PTH and BSAP declined, with a greater decline of PTH in the treatment group. The rate of bone loss with serum 25(OH)D above 75 nmol/L is comparable to the rate of loss with serum 25(OH)D at the RDA of 50 nmol/L. Black Americans should have the same exposure to vitamin D as white Americans. The trial was registered at clinical trials.gov: NCT01153568. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Short-term effects on bone turnover of replacing milk with cola beverages: a 10-day interventional study in young men.

    PubMed

    Kristensen, Mette; Jensen, Marlene; Kudsk, Jane; Henriksen, Marianne; Mølgaard, Christian

    2005-12-01

    In the Western world, increased consumption of carbonated soft drinks combined with a decreasing intake of milk may increase the risk of osteoporosis. This study was designed to reflect the trend of replacing milk with carbonated beverages in a group of young men on a low-calcium diet and studies the effects of this replacement on calcium homeostasis and bone turnover. This controlled crossover intervention study included 11 healthy men (22-29 years) who were given a low-calcium basic diet in two 10-day intervention periods with an intervening 10-day washout. During one period, they drank 2.5 l of Coca Cola per day and during the other period 2.5 l of semi-skimmed milk. Serum concentrations of calcium, phosphate, 25-hydroxycholecalciferol, 1,25-dihydroxycholecalciferol (1,25(OH)2D), osteocalcin, bone-specific alkaline phosphatase (B-ALP) and cross-linked C-telopeptides (CTX), plasma intact parathyroid hormone (PTH) and urinary cross-linked N-telopeptides (NTX) were determined at baseline and endpoint of each intervention period. An increase in serum phosphate (P<0.001), 1,25(OH)2D (P<0.001), PTH (P=0.046) and osteocalcin (P<0.001) was observed in the cola period compared to the milk period. Also, bone resorption was significantly increased following the cola period, seen as increased serum CTX (P<0.001) and urinary NTX (P<0.001) compared to the milk period. No changes were observed in serum concentrations of calcium or B-ALP. This study demonstrates that over a 10-day period high intake of cola with a low-calcium diet induces increased bone turnover compared to a high intake of milk with a low-calcium diet. Thus, the trend towards a replacement of milk with cola and other soft drinks, which results in a low calcium intake, may negatively affect bone health as indicated by this short-term study.

Top