Sample records for boosted basic catalysts

  1. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO₂-MgO catalysts.

    PubMed

    Angelici, Carlo; Velthoen, Marjolein E Z; Weckhuysen, Bert M; Bruijnincx, Pieter C A

    2014-09-01

    Silica-magnesia (Si/Mg=1:1) catalysts were studied in the one-pot conversion of ethanol to butadiene. The catalyst synthesis method was found to greatly influence morphology and performance, with materials prepared through wet-kneading performing best both in terms of ethanol conversion and butadiene yield. Detailed characterization of the catalysts synthesized through co-precipitation or wet-kneading allowed correlation of activity and selectivity with morphology, textural properties, crystallinity, and acidity/basicity. The higher yields achieved with the wet-kneaded catalysts were attributed to a morphology consisting of SiO2 spheres embedded in a thin layer of MgO. The particle size of the SiO2 catalysts also influenced performance, with catalysts with smaller SiO2 spheres showing higher activity. Temperature-programmed desorption (TPD) measurements showed that best butadiene yields were obtained with SiO2-MgO catalysts characterized by an intermediate amount of acidic and basic sites. A Hammett indicator study showed the catalysts' pK(a) value to be inversely correlated with the amount of dehydration by-products formed. Butadiene yields could be further improved by the addition of 1 wt% of CuO as promoter to give butadiene yields and selectivities as high as 40% and 53%, respectively. The copper promoter boosts the production of the acetaldehyde intermediate changing the rate-determining step of the process. TEM-energy-dispersive X-ray (EDX) analyses showed CuO to be present on both the SiO2 and MgO components. UV/Vis spectra of promoted catalysts in turn pointed at the presence of cluster-like CuO species, which are proposed to be responsible for the increased butadiene production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  3. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis

    DOE PAGES

    Bu, Lingzheng; Zhang, Nan; Guo, Shaojun; ...

    2016-12-16

    Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-­Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-­Omore » bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.« less

  4. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, Lingzheng; Zhang, Nan; Guo, Shaojun

    Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-­Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-­Omore » bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.« less

  5. Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride)

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; An, Qi; Luan, Xinglong; Huang, Hongwei; Li, Xiaowei; Meng, Zilin; Tong, Wangshu; Chen, Xiaodong; Chu, Paul K.; Zhang, Yihe

    2015-08-01

    A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03256c

  6. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis.

    PubMed

    Debecker, Damien P; Gaigneaux, Eric M; Busca, Guido

    2009-01-01

    Basic catalysis! The basic properties of hydrotalcites (see picture) make them attractive for numerous catalytic applications. Probing the basicity of the catalysts is crucial to understand the base-catalysed processes and to optimise the catalyst preparation. Various parameters can be employed to tune the basic properties of hydrotalcite-based catalysts towards the basicity demanded by each target chemical reaction.Hydrotalcites offer unique basic properties that make them very attractive for catalytic applications. It is of primary interest to make use of accurate tools for probing the basicity of hydrotalcite-based catalysts for the purpose of 1) fundamental understanding of base-catalysed processes with hydrotalcites and 2) optimisation of the catalytic performance achieved in reactions of industrial interest. Techniques based on probe molecules, titration techniques and test reactions along with physicochemical characterisation are overviewed in the first part of this review. The aim is to provide the tools for understanding how series of parameters involved in the preparation of hydrotalcite-based catalytic materials can be employed to control and adapt the basic properties of the catalyst towards the basicity demanded by each target chemical reaction. An overview of recent and significant achievements in that perspective is presented in the second part of the paper.

  7. Method for making polysilsesquioxanes and organohydridosilanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loy, Douglas A.; Rahimian, Kamyar

    2001-01-01

    A method for disproportionation of an oligohydridosiloxane to produce a polysilsesquioxane compound and an organohydridosilane compound when contacted with a basic catalyst. The basic catalyst can be a tetraalkylammonium hydroxide, an alkali metal hydroxide, and an alkali earth hydroxide. These basic catalysts are generally dissolved in an organic solvent for delivery. The hydroxide catalysts are attractive because many readily decompose by heating above 150.degree. C., thus being easily removed from the final materials. The oligohydridosiloxane is contacted with the basic catalyst under conditions effective to catalytically convert the oligohydridosiloxane into a polysilsesquioxane compound and an organohydridosilane compound. The reaction canmore » occur in either an inert or oxidative atmosphere and can occur without heating, at room temperature. Both polysilsesquioxane foams and gels of the formula (RSiO.sub.1.5).sub.n can be produced.« less

  8. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    PubMed

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  9. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ling; Wang, Rong; Zhang, Ming-Yi; Yuan, Yu-Peng; Xue, Can

    2015-10-01

    The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h-1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.

  10. Basic research on radiant burners. Semi-annual report, through July 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, J.D.

    1991-10-01

    Basic performance characteristics of radiant burners are explored in the broad-based study combining theoretical modeling and experimental validation of predictions. The work included fabrication of catalyzed substrates and fibers; incorporation of the catalysts into burners; testing of catalysts; and investigation of new catalyst sources. The progress of the study is detailed and further plans are outlined. A report on the preparation of palladium catalysts by Andre Blaise Kooh is included in the appendix.

  11. Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Pingbo; Han, Qiuju; Fan, Mingming; Jiang, Pingping

    2014-10-01

    A novel magnetic solid base catalyst CaO/CoFe2O4 was successfully prepared with CoFe2O4 synthesized by hydrothermal method as the magnetic core and applied to the transesterification of soybean oil for the production of biodiesel. The magnetic solid base catalysts were characterized by a series of techniques including CO2-TPD, powder XRD, TGA, TEM and the contact angle measurement of the water droplet. It was demonstrated that CaO/CoFe2O4 has stronger magnetic strength indicating perfect utility for repeated use and better basic strength. Compared with CaO/ZnFe2O4 and CaO/MnFe2O4, solid base catalyst CaO/CoFe2O4 has better catalytic performance, weaker hydroscopicity and stronger wettability, demonstrating that catalytic performance was relative to both basicity of catalyst and the full contact between the catalyst and the reactants, but the latter was a main factor in the catalytic system.

  12. Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production.

    PubMed

    Ran, Jingrun; Zhu, Bicheng; Qiao, Shi-Zhang

    2017-08-21

    Transitional metals are widely used as co-catalysts boosting photocatalytic H 2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn 0.8 Cd 0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. System for thermochemical hydrogen production

    DOEpatents

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  14. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn, E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x}more » particles are durable and active catalysts for photocatalytic H{sub 2} generation.« less

  15. Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties.

    PubMed

    Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Mingguan; Sun, Xiaoxu; Li, Junhua; Duan, Lei; Hao, Jiming

    2015-10-20

    A series of CeMoOx catalysts with different surface Ce/Mo ratios was synthesized by a coprecipitation method via changing precipitation pH value. The surface basicity on selective catalytic reduction (SCR) catalysts (CeMoOx and VMo/Ti) was characterized and correlated to the durability and activity of catalyst for simultaneous elimination of NOx and Hg(0). The pH value in the preparation process affected the surface concentrations of Ce and Mo, the Brunauer-Emmett-Teller (BET) specific surface area, and the acid-base properties over the CeMoOx catalysts. The O 1s X-ray photoelectron spectroscopy (XPS) spectra and CO2-temperature programmed desorption (TPD) suggested that the surface basicity increased as the pH value increased. The existence of strong basic sites contributed to the deactivation effect of HCl over the VMo/Ti and CeMoOx catalysts prepared at pH = 12. For the CeMoOx catalysts prepared at pH = 9 and 6, the appearance of surface molybdena species replaced the surface -OH, and the existence of appropriate medium-strength basic sites contributed to their resistance to HCl poisoning in the SCR reaction. Moreover, these sites facilitated the adsorption and activation of HCl and enhanced Hg(0) oxidation. On the other hand, the inhibitory effect of NH3 on Hg(0) oxidation was correlated with the competitive adsorption of NH3 and Hg(0) on acidic surface sites. Therefore, acidic surface sites may play an important role in Hg(0) adsorption. The characterization and balance of basicity and acidity of an SCR catalyst is believed to be helpful in preventing deactivation by acid gas in the SCR reaction and simultaneous Hg(0) oxidation.

  16. Aquivion Perfluorosulfonic Superacid as an Efficient Pickering Interfacial Catalyst for the Hydrolysis of Triglycerides.

    PubMed

    Shi, Hui; Fan, Zhaoyu; Hong, Bing; Pera-Titus, Marc

    2017-09-11

    Rational design of the surface properties of heterogeneous catalysts can boost the interfacial activity in biphasic reactions through the generation of Pickering emulsions. This concept, termed Pickering interfacial catalysis (PIC), has shown promising credentials in acid-catalyzed transesterification, ester hydrolysis, acetalization, etherification, and alkylation reactions. PIC has now been applied to the efficient, solvent-free hydrolysis of the triglyceride glyceryl trilaurate to lauric acid, catalyzed by Aquivion perfluorosulfonic superacid at mild conditions (100 °C and ambient pressure). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. BBD Optimization of K-ZnO Catalyst Modification Process for Heterogeneous Transesterification of Rice Bran Oil to Biodiesel

    NASA Astrophysics Data System (ADS)

    Kabo, K. S.; Yacob, A. R.; Bakar, W. A. W. A.; Buang, N. A.; Bello, A. M.; Ruskam, A.

    2016-07-01

    Environmentally benign zinc oxide (ZnO) was modified with 0-15% (wt.) potassium through wet impregnation and used in transesterification of rice bran oil (RBO) to form biodiesel. The catalyst was characterized by X-Ray powder Diffraction (XRD), its basic sites determined by back titration and Response Surface Methodology (RSM) Box-Behnken Design (BBD) was used to optimize the modification process variables on the basic sites of the catalyst. The transesterification product, biodiesel was analyzed by Nuclear Magnetic Resonance (NMR) spectroscopy. The result reveals K-modified ZnO with highly increased basic sites. Quadratic model with high regression R2 = 0.9995 was obtained from the ANOVA of modification process, optimization at maximum basic sites criterion gave optimum modification conditions of K-loading = 8.5% (wt.), calcination temperature = 480 oC and time = 4 hours with response and basic sites = 8.14 mmol/g which is in close agreement with the experimental value of 7.64 mmol/g. The catalyst was used and a value of 95.53% biodiesel conversion was obtained and effect of potassium leaching was not significant in the process

  18. Ticket to Work: Why Certificates Build Careers and Boost Economic Success

    ERIC Educational Resources Information Center

    Woods, Bob

    2012-01-01

    As community colleges cement their role as catalysts for the nation's economic recovery, administrators struggle to set the record straight about one long-standing misconception: that a large number of community college students leave without achieving their professional or academic goals. Now, a new policy brief from the American Association of…

  19. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Wang, Liangbing; Zhang, Wenbo; Zheng, Xusheng; Chen, Yizhen; Wu, Wenlong; Qiu, Jianxiang; Zhao, Xiangchen; Zhao, Xiao; Dai, Yizhou; Zeng, Jie

    2017-11-01

    Hydrogenation of CO2 into fuels and useful chemicals could help to reduce reliance on fossil fuels. Although great progress has been made over the past decades to improve the activity of catalysts for CO2 hydrogenation, more efficient catalysts, especially those based on non-noble metals, are desired. Here we incorporate N atoms into Co nanosheets to boost the catalytic activity toward CO2 hydrogenation. For the hydrogenation of CO2, Co4N nanosheets exhibited a turnover frequency of 25.6 h-1 in a slurry reactor under 32 bar pressure at 150 °C, which was 64 times that of Co nanosheets. The activation energy for Co4N nanosheets was 43.3 kJ mol-1, less than half of that for Co nanosheets. Mechanistic studies revealed that Co4N nanosheets were reconstructed into Co4NHx, wherein the amido-hydrogen atoms directly interacted with the CO2 to form HCOO* intermediates. In addition, the adsorbed H2O* activated amido-hydrogen atoms via the interaction of hydrogen bonds.

  20. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    PubMed

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation

    PubMed Central

    Zhou, Haiqing; Yu, Fang; Sun, Jingying; He, Ran; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2017-01-01

    Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel–iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm2 at an overpotential of 177 mV, 500 mA/cm2 at only 265 mV, and 1,705 mA/cm2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO2 catalyst. PMID:28507120

  2. Electronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets.

    PubMed

    Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Moonshiram, Dooshaye; Picón, Antonio; Monge, Pere; Batista, Victor S; Llobet, Antoni

    2017-09-20

    A molecular water oxidation catalyst based on the copper complex of general formula [(L py )Cu II ] 2- , 2 2- , (L py is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)Cu II ] 2- water oxidation catalyst, 1 2- (L is o-phenylenebis(oxamidate)). The catalytic performance of both catalysts has been comparatively studied in homogeneous phase and in heterogeneous phase by π-stacking anchorage to graphene-based electrodes. In the homogeneous system, the electronic perturbation provided by the pyrene functionality translates into a 150 mV lower overpotential for 2 2- with respect to 1 2- and an impressive increase in the k cat from 6 to 128 s -1 . Upon anchorage, π-stacking interactions with the graphene sheets provide further π-delocalization that improves the catalytic performance of both catalysts. In this sense, 2 2- turned out to be the most active catalyst due to the double influence of both the pyrene and the graphene, displaying an overpotential of 538 mV, a k cat of 540 s -1 and producing more than 5300 TONs.

  3. CO 2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands

    DOE PAGES

    Kanega, Ryoichi; Onishi, Naoya; Szalda, David J.; ...

    2017-08-21

    In an effort to design concepts for highly active catalysts for the hydrogenation of CO 2 to formate in basic water, we have prepared in this paper several catalysts with picolinic acid, picolinamide, and its derivatives, and we investigated their catalytic activity. The CO 2 hydrogenation catalyst having a 4-hydroxy-N-methylpicolinamidate ligand exhibited excellent activity even under ambient conditions (0.1 MPa, 25 °C) in basic water, exhibiting a TON of 14700, a TOF of 167 h –1, and producing a 0.64 M formate concentration. Finally, its high catalytic activity originates from strong electron donation by the anionic amide moiety in additionmore » to the phenolic O – functionality.« less

  4. SBA-15/hydrotalcite nanocomposite as an efficient support for the immobilization of heteropolyacid: A triply-hybrid catalyst for the synthesis of 2-amino-4H-pyrans in water

    NASA Astrophysics Data System (ADS)

    Sadjadi, Samahe; Heravi, Majid M.; Zadsirjan, Vahideh; Farzaneh, Vahid

    2017-12-01

    To circumvent the high solubility and low surface area of heteropolyacid and in attempt to develop a bi-functional heterogeneous catalyst for promoting organic transformations, heteropolyacid was embedded in functionalized SBA-15 and subsequently hybridized with layered double hydroxide. The catalyst could be considered as a bi-functional catalyst with both acidic and basic properties. The acidic properties emerged from the SBA-15 and heteropolyacid component while layered double hydroxide render the catalyst basic. The catalyst was characterized by using SEM/EDX, FT-IR, XRD, ICP-AES, BET and elemental mapping analysis. The catalytic activity of the catalyst was studied for promoting one-pot three-component condensation of aromatic aldehydes, malononitrile or ethyl cyanoacetate and C-H activated acidic molecules in aqueous media for the synthesis of 2-amino-4H-pyran derivatives. The catalyst exhibited high catalytic activity, which was superior to the previously reported ones. Moreover, the reusability of the catalyst was excellent and the leaching of heteropolyacid was dramatically suppressed. High yields, short reaction times, eco-friendly conditions, simplicity of the procedure, reusability of the catalyst and broad substrate scope are the merits of this protocol.

  5. Pd-Metalated Conjugated Nanoporous Polycarbazoles for Additive-Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation

    DOE PAGES

    Ding, Shunmin; Tian, Chengcheng; Zhu, Xiang; ...

    2017-03-23

    Transition-metal-catalyzed cyanation of aryl halides is a common route to benzonitriles, which are integral to many industrial procedures. However, traditional homogeneous catalysts for such processes are expensive and suffer poor recyclability, so a heterogeneous analogue is highly desired. A novel spatial modulation approach has been developed in this paper to fabricate a heterogeneous Pd-metalated nanoporous polymer, which catalyzes the cyanation of aryl halides without need for ligands. Finally, the catalyst displays high activity in the synthesis of benzonitriles, including high product yields, excellent stability and recycling, and broad functional-group tolerance.

  6. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation.

    PubMed

    Al-Kahtani, Abdullah A; Abou Taleb, Manal F

    2016-05-15

    CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H2O2 concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10mM H2O2 at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.

    PubMed

    Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie

    2010-12-01

    Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels. Published by Elsevier Ltd.

  8. Heterolytic Activation of Hydrogen Promoted by Ruthenium Nanoparticles immobilized on Basic Supports and Hydrogenation of Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Fang, Minfeng

    Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru/MgO catalyst significantly improves the catalytic efficiency for hydrogenation of a variety of N-/S-heteroaromatics and mono-/polycyclic aromatic hydrocarbons representative of components of petroleum-derived fuels. The catalyst is superior to the few other known supported noble metal catalysts for these reactions. Mechanistic studies also point to the ionic hydrogenation mechanism on the Ru/MgO surfaces. In addition, the Ru/MgO catalyst is highly recyclable and long-lived.

  9. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    NASA Technical Reports Server (NTRS)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  10. Directing Reaction Pathways through Controlled Reactant Binding at Pd-TiO2 Interfaces.

    PubMed

    Zhang, Jing; Wang, Bingwen; Nikolla, Eranda; Medlin, J Will

    2017-06-01

    Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO 2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinle

    In conclusion, we have for the first time developed a novel solid base catalyst, Ndoped MOF-253 derived porous carbons (Cz-MOF-253). Cz-MOF-253 is highly porous and exhibit high efficiency in Knoevenagel condensation reaction. Furthermore, Cz-MOF-253 is robust and can be reused up to five times. In comparison, the analogous nitrogen-free catalyst-Cz-DUT-5, and other nitrogen- MOFs derived carbon showed an inferior performance. Moreover, the high basicity and porous nature enable the design of bifunctional catalyst and facilitate tandem condensation-hydrogenation reactions. This work delineates the first attempt that demonstrates MOF-derived carbons as solid base catalyst and its potential application in tandem catalysis. Futuremore » work on exploring new catalytic reactions based on such porous Lewis basic MOF-derived carbons is currently underway.« less

  12. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

    PubMed

    Wang, Yanqun; Tang, Yizhen; Shao, Youxiang

    2017-09-01

    Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Generation of basic centers in high-silica zeolites and their application in gas-phase upgrading of bio-oil.

    PubMed

    Keller, Tobias C; Rodrigues, Elodie G; Pérez-Ramírez, Javier

    2014-06-01

    High-silica zeolites have been reported recently as efficient catalysts for liquid- and gas-phase condensation reactions because of the presence of a complementary source of basicity compared to Al-rich basic zeolites. Herein, we describe the controlled generation of these active sites on silica-rich FAU, BEA, and MFI zeolites. Through the application of a mild base treatment in aqueous Na2CO3, alkali-metal-coordinating defects are generated within the zeolite whereas the porous properties are fully preserved. The resulting catalysts were applied in the gas-phase condensation of propanal at 673 K as a model reaction for the catalytic upgrading of pyrolysis oil, for which an up to 20-fold increased activity compared to the unmodified zeolites was attained. The moderate basicity of these new sites leads to a coke resistance superior to traditional base catalysts such as CsX and MgO, and comparable activity and excellent selectivity is achieved for the condensation pathways. Through strategic acid and base treatments and the use of magic-angle spinning NMR spectroscopy, the nature of the active sites was investigated, which supports the theory of siloxy sites as basic centers. This contribution represents a key step in the understanding and design of high-silica base catalysts for the intermediate deoxygenation of crude bio-oil prior to the hydrotreating step for the production of second-generation biofuels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion.

    PubMed

    Azcarate, Iban; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel

    2016-12-28

    The starting point of this study of through-space substituent effects on the catalysis of the electrochemical CO 2 -to-CO conversion by iron(0) tetraphenylporphyrins is the linear free energy correlation between through-structure electronic effects and the iron(I/0) standard potential that we established separately. The introduction of four positively charged trimethylanilinium groups at the para positions of the tetraphenylporphyrin (TPP) phenyls results in an important positive deviation from the correlation and a parallel improvement of the catalytic Tafel plot. The assignment of this catalysis boosting effect to the Coulombic interaction of these positive charges with the negative charge borne by the initial Fe 0 -CO 2 adduct is confirmed by the negative deviation observed when the four positive charges are replaced by four negative charges borne by sulfonate groups also installed in the para positions of the TPP phenyls. The climax of this strategy of catalysis boosting by means of Coulombic stabilization of the initial Fe 0 -CO 2 adduct is reached when four positively charged trimethylanilinium groups are introduced at the ortho positions of the TPP phenyls. The addition of a large concentration of a weak acid-phenol-helps by cleaving one of the C-O bonds of CO 2 . The efficiency of the resulting catalyst is unprecedented, as can be judged by the catalytic Tafel plot benchmarking with all presently available catalysts of the electrochemical CO 2 -to-CO conversion. The maximal turnover frequency (TOF) is as high as 10 6 s -1 and is reached at an overpotential of only 220 mV; the extrapolated TOF at zero overpotential is larger than 300 s -1 . This catalyst leads to a highly selective formation of CO (practically 100%) in spite of the presence of a high concentration of phenol, which could have favored H 2 evolution. It is also very stable, showing no significant alteration after more than 80 h of electrolysis.

  15. Oxidative coupling of methane over supported La{sub 2}O{sub 3} and La-promoted MgO catalysts: Influence of catalyst-support interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.

    1997-06-01

    Methane-to-C{sub 2}-hydrocarbon conversion activity and selectivity (or yield) of MgO and La-promoted MgO catalysts in the oxidative coupling of methane and strong basicity of the catalysts are decreased appreciably when these catalysts are deposited on commonly used commercial low surface area porous catalyst carriers containing Al{sub 2}O{sub 3}, SiO{sub 2}, SiC, or ZrO{sub 2} + HfO{sub 2} as the main components. The decrease in the strong basicity and catalytic activity/selectivity or yield is mostly due to strong chemical interactions between the active catalyst component (viz., MgO and La{sub 2}O{sub 3}) and the reactive components of the catalyst support (viz., Al{submore » 2}O{sub 3} and SiO{sub 2}), resulting in the formation of catalytically inactive binary metal oxides on the support surface. However, the influence of support on the activity/selectivity of La{sub 2}O{sub 3} is relatively very small, and also the chemical interactions of La{sub 2}O{sub 3} with the supports (except that containing a high concentration of SiO{sub 2}) are almost absent. The catalyst-support interactions are thus found to be strongly dependent upon the nature (chemical composition) of both catalyst and support. For developing better supported catalysts for the oxidative coupling of methane, supported La{sub 2}O{sub 3} with some promoters shows high promise.« less

  16. Basic-functionalized recyclable ionic liquid catalyst: A solvent-free approach for Michael addition of 1,3-dicarbonyl compounds to nitroalkenes under ultrasound irradiation.

    PubMed

    Narayanaperumal, Senthil; da Silva, Rodrigo César; Feu, Karla Santos; de la Torre, Alexander Fernández; Corrêa, Arlene G; Paixão, Márcio Weber

    2013-05-01

    A task-specific ionic liquid (TSIL) has been introduced as a recyclable catalyst in Michael addition. A series of nitroalkenes and various C-based nucleophiles were reacted in the presence of 30mol% of recyclable basic-functionalized ionic liquid. Good to excellent yields were obtained in 30min under ultrasound irradiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. TiO2@TDI@DMAPA: an amine-modified nanoparticle, tailored to act as an economic basic heterogeneous nanocatalyst

    NASA Astrophysics Data System (ADS)

    Esfahanian, Farzane; Amoozadeh, Ali; Bitaraf, Mehrnoosh

    2018-06-01

    This study has represented an easy and inexpensive method for the synthesis of a new basic nanocatalyst. In this regard, 3-dimethylaminopropylamine (DMAPA), an economic, industrial, and readily obtainable basic compound, has been grafted onto nano-titania particles by the use of 2,4-toluene diisocyanate (TDI) as a bi-functional, inexpensive, and highly reactive linker. The prepared catalyst has been characterized using the spectroscopic FT-IR method, XRD, FE-SEM, EDX, and back titration. Furthermore, it was identified as an effective catalyst in the preparation of DHPM derivatives and pyranopyrazoles which results in high purity and high yields of products. Response surface methodology (RSM) based on a central composite design (CCD) was employed to reach the optimal conditions. The catalyst can be readily separated and recycled up to six times. [Figure not available: see fulltext.

  18. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu

    Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.

  19. Oxidative coupling of methane over SrO deposited on different commercial supports precoated with La{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.

    1998-06-01

    The influence of catalyst carrier or support (with different chemical compositions and surface properties), catalyst deposition method (viz., impregnation and coating), precursor for strontium oxide (SrO; Sr-nitrate, acetate, hydroxide, and carbonate), and loading of SrO and lanthanum oxide (La{sub 2}O{sub 3}; 0--25 wt%) on the surface properties and performance of catalyst in oxidative coupling of methane (OCM; at 850 C, gas hourly space velocity = 1.02 {times} 10{sup 5} cm{sup 3}/g{center_dot}h and CH{sub 4}/O{sub 2} = 4 or 16) was thoroughly investigated. The basicity, acidity, and O{sub 2} chemisorption of the catalysts were studied by the temperature programmed desorption (TPD)more » of CO{sub 2}, NH{sub 3}, and O{sub 2}, respectively, from 50 to 950 C. The total and strong basic sites, acidity, and OCM activity of the supported catalyst were strongly influenced by the support used and also by the La{sub 2}O{sub 3} loading on the support. The catalyst with a sintered low surface area porous silica-Alumina support and high (20 wt%) La{sub 2}O{sub 3} and SrO loadings showed the best performance in the OCM process. The OCM activity was influenced by SrO loading, but to a smaller extent, and also by the method of SrO deposition. The OCM activity of the supported catalysts could be related to their strong basic sites (measured in terms of the CO{sub 2} desorbed between 500 and 950 C).« less

  20. A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production.

    PubMed

    Lilić, Aleksandra; Wei, Tiantian; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-09-11

    The impact of acid/base properties (determined by adsorption microcalorimetry) of various catalysts on the cross-aldolization of acetaldehyde and formaldehyde leading to acrolein was methodically studied in oxidizing conditions starting from a mixture of methanol and ethanol. The aldol condensation and further dehydration to acrolein were carried out on catalysts presenting various acid/base properties (MgO, Mg-Al oxides, Mg/SiO 2 , NbP, and heteropolyanions on silica, HPA/SiO 2 ). Thermodynamic calculations revealed that cross-aldolization is always favored compared with self-aldolization of acetaldehyde, which leads to crotonaldehyde formation. The presence of strong basic sites is shown to be necessary, but a too high amount drastically increases CO x production. On strong acid sites, production of acrolein and carbon oxides (CO x ) does not increase with temperature. The optimal catalyst for this process should be amphoteric with a balanced acid/base cooperation of medium strength sites and a small amount (<100 μmol g -1 ) of very strong basic sites (Q diff >150 kJ mol -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Minimalist Design of Allosterically Regulated Protein Catalysts.

    PubMed

    Makhlynets, O V; Korendovych, I V

    2016-01-01

    Nature facilitates chemical transformations with exceptional selectivity and efficiency. Despite a tremendous progress in understanding and predicting protein function, the overall problem of designing a protein catalyst for a given chemical transformation is far from solved. Over the years, many design techniques with various degrees of complexity and rational input have been developed. Minimalist approach to protein design that focuses on the bare minimum requirements to achieve activity presents several important advantages. By focusing on basic physicochemical properties and strategic placing of only few highly active residues one can feasibly evaluate in silico a very large variety of possible catalysts. In more general terms minimalist approach looks for the mere possibility of catalysis, rather than trying to identify the most active catalyst possible. Even very basic designs that utilize a single residue introduced into nonenzymatic proteins or peptide bundles are surprisingly active. Because of the inherent simplicity of the minimalist approach computational tools greatly enhance its efficiency. No complex calculations need to be set up and even a beginner can master this technique in a very short time. Here, we present a step-by-step protocol for minimalist design of functional proteins using basic, easily available, and free computational tools. © 2016 Elsevier Inc. All rights reserved.

  2. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    DOE PAGES

    Hod, Idan; Deria, Pravas; Bury, Wojciech; ...

    2015-09-14

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm −2. In conclusion,more » although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst.« less

  3. Nanostructured material-based biofuel cells: recent advances and future prospects.

    PubMed

    Zhao, Cui-E; Gai, Panpan; Song, Rongbin; Chen, Ying; Zhang, Jianrong; Zhu, Jun-Jie

    2017-03-06

    During the past decade, biofuel cells (BFCs) have emerged as an emerging technology on account of their ability to directly generate electricity from biologically renewable catalysts and fuels. Due to the boost in nanotechnology, significant advances have been accomplished in BFCs. Although it is still challenging to promote the performance of BFCs, adopting nanostructured materials for BFC construction has been extensively proposed as an effective and promising strategy to achieve high energy production. In this review, we presented the major novel nanostructured materials applied for BFCs and highlighted the breakthroughs in this field. Based on different natures of the bio-catalysts and electron transfer process at the bio-electrode surfaces, the fundamentals of BFC systems, including enzymatic biofuel cells (EBFCs) and microbial fuel cells (MFCs), have been elucidated. In particular, the principle of electrode materials design has been detailed in terms of enhancing electrical communications between biological catalysts and electrodes. Furthermore, we have provided the applications of BFCs and potential challenges of this technology.

  4. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    PubMed Central

    Hod, Idan; Deria, Pravas; Bury, Wojciech; Mondloch, Joseph E.; Kung, Chung-Wei; So, Monica; Sampson, Matthew D.; Peters, Aaron W.; Kubiak, Cliff P.; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm−2. Although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst. PMID:26365764

  5. Highly efficient and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation, and cycloaddition reactions.

    PubMed

    Sarmah, Bhaskar; Satpati, Biswarup; Srivastava, Rajendra

    2017-05-01

    Crystalline mesoporous ZSM-5 zeolite was prepared in the presence of 1,4-diazabicyclo[2.2.2]octane derived multi-cationic structure directing agent. The calcined form of the mesoprous zeolite was treated with NH 4 OH to obtain basic mesoporous ZSM-5. Catalyst was characterized by the complementary combination of X-ray diffraction, N 2 -adsorption, electron microscopes, and temperature programme desorption techniques. Catalytic activity of the basic mesoporous ZSM-5 was systematically assessed using Knoevenagel condensation reaction for the synthesis a wide range of substituted styrene. Applications of the catalyst were investigated in the benzamide hydroxylation for the synthesis of carbinolamides and one-pot, multi-component condensation reaction for the synthesis of naphthopyrans. Finally, the catalyst was evaluated in the cycloaddition of CO 2 to epoxide for the synthesis of cyclic carbonates. Recycling study shows that no significant decrease in the catalytic activity was observed after five recycles. Copyright © 2017. Published by Elsevier Inc.

  6. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  7. Low cost heterogenous catalyst from (Achatina Fulica) snail shell and its application for biodiesel conversion via microwave irradiation

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Kurniastuti, E. A.; Basthiani, I. A.; Fakhri, A.

    2017-11-01

    Research on preparation of heterogenous catalyst from Achatina Fulica snail shell and its application biodiesel conversion has been investigation. Research aimed to obtain low cost and reusable catalyst for biodiesel production. The catalyst was prepared by grinding and calcining the snail shell at 900°C for 2 hours. The obtained solid was analysed by using XRD, SEM-EDX. FTIR, and also basicity measurement. Catalyst was used in the cenvertion of rice bran oil transesterification at varied volume of oil methanol ratio of 20-80 under microwave and reflux methode. The transesterification result were analyzed by using GCMS.

  8. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  9. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    DOEpatents

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  10. Analysis and design of a standardized control module for switching regulators

    NASA Astrophysics Data System (ADS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.; Kolecki, J. C.

    1982-07-01

    Three basic switching regulators: buck, boost, and buck/boost, employing a multiloop standardized control module (SCM) were characterized by a common small signal block diagram. Employing the unified model, regulator performances such as stability, audiosusceptibility, output impedance, and step load transient are analyzed and key performance indexes are expressed in simple analytical forms. More importantly, the performance characteristics of all three regulators are shown to enjoy common properties due to the unique SCM control scheme which nullifies the positive zero and provides adaptive compensation to the moving poles of the boost and buck/boost converters. This allows a simple unified design procedure to be devised for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt.

  11. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    PubMed

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Silver iodide microstructures of a uniform towerlike shape: morphology purification via a chemical dissolution, simultaneously boosted catalytic durability, and enhanced catalytic performances.

    PubMed

    Lei, Bin; Zhu, Mingshan; Chen, Penglei; Chen, Chuncheng; Ma, Wanhong; Li, Tiesheng; Liu, Minghua

    2014-03-26

    The fabrication of microstructures/nanostructures of a uniform yet well-defined morphology has attracted broad interest from a variety of fields of advanced functional materials, especially catalysts. Most of the conventional methods generally suffer from harsh synthesis conditions, requirement of bulky apparatus, or incapability of scalable production, etc. To meet these formidable challenges, it is strongly desired to develop a facile, cost-effective, scalable method to fulfill a morphology purification. By a precipitation reaction between AgNO3 and KI, we report that irregular AgI structures, or their mixture with towerlike AgI architectures could be fabricated. Compared to the former, the mixed structures exhibit enhanced catalytic reactivity toward the photodegradation of Methyl Orange pollutant. However, its catalytic durability, which is one of the most crucial criteria that are required by superior catalysts, is poor. We further show that the irregular structures could be facilely removed from the mixture via a KI-assisted chemical dissolution, producing AgI of a uniform towerlike morphology. Excitingly, after such simple morphology purification, our towerlike AgI displays not only a boosted catalytic durability but also an enhanced catalytic reactivity. Our chemical dissolution-based morphology purification protocol might be extended to other systems, wherein high-quality advanced functional materials of desired properties might be developed.

  13. CaO Nanocatalyst for Transesterification Reaction of Palm Oil to Biodiesel: Effect of Precursor’s Concentration on the Catalyst Behavior

    NASA Astrophysics Data System (ADS)

    Hassan, N.; Ismail, K. N.; Hamid, K. H. Ku; Hadi, Abdul

    2018-05-01

    Depletion of fossil fuel sources in a few decades due to industrialization and motorization has led to a keen interest in the production of alternative fuels like biodiesel. Research on the development and improvement of more efficient transesterification process for biodiesel production has attain great attention in the last decade. The using of low cost catalyst is one of the main focuses on the biodiesel production. As a basic heterogeneous catalyst, CaO has been examined in the transesterification of vegetable oils for biodiesel production. In this research, calcium oxide (CaO-X) catalysts were prepared by sol-gel method at different Ca2+ precursor concentration (X = 1.0, 1.5, 2.0 M). The crystalline structure and morphology of the synthesized catalysts were characterized by means of x-ray diffraction (XRD) and N2 adsorption-desorption analysis. All the synthesized catalysts were then applied to transesterification reaction of palm oil to produce biodiesel. The characterization by x-ray diffraction demonstrate CaO-1.0 was partially hydrated due to the incomplete reaction during synthesis. As a matter of fact, formation of H2O on the surface of CaO causes lower basic strength of the catalysts, thus responsible in lowering the catalytic activity. It is demonstrated that CaO-2.0 exhibits mesoporous structure with least chemisorb amount of H2O on the catalysts surface has a very active catalytic activity. It was found that 2.0M of calcium precursor has high catalytic activity and 81% FAME yield was obtained within 3h reaction.

  14. Steam Reforming of Methyl Fuel - Phase I

    DTIC Science & Technology

    1977-06-30

    best catalyst . 2.0 TEST DESCRIPTION 2.1 Technical Background The basic reactions occurring in steam reforming of methanol are CH3OH + H20 CO2 + 3H 2...chamber contains the test catalyst . The fuel feed tank was filled with premixed methanol /gasoline mixture. Fuel flow as well as water flow were measured...carbon-oxygen bond formation and therefore follows a different mechanism than the methanol reaction . Different catalysts promote these types of

  15. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process.

    PubMed

    Gusev, Andrey A; Psarras, Antonios C; Triantafyllidis, Konstantinos S; Lappas, Angelos A; Diddams, Paul A

    2017-10-21

    ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC) process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam), FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives) are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated) activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n -Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C 12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F) ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas) olefins as the nature (Brønsted-to-Lewis ratio) of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at higher conversion levels. Coke remained low with both fresh and steam-deactivated P/ZSM-5 additives.

  16. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure ofmore » zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.« less

  17. Effect of Hydrothermal Treatment on Structural and Catalytic Properties of [CTA]-MCM-41 Silica.

    PubMed

    Zapelini, Iago W; Silva, Laura L; Cardoso, Dilson

    2018-05-21

    The [CTA]-MCM-41 hybrid silica is a useful and simply prepared heterogeneous basic catalyst for the transesterification reaction. Here, the effect of hydrothermal treatment during catalyst preparation was investigated, with the aim of improving the structural stability of this catalyst during the reaction. It was observed that the hydrothermal step led to the formation of a material with a higher degree of organization and a greater wall thickness, which improved its structural stability. However, the catalyst prepared using this treatment presented lower catalytic activity, due to the presence of fewer active sites.

  18. On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions.

    PubMed

    Chieregato, Alessandro; Velasquez Ochoa, Juliana; Bandinelli, Claudia; Fornasari, Giuseppe; Cavani, Fabrizio; Mella, Massimo

    2015-01-01

    A common way to convert ethanol into chemicals is by upgrading it over oxide catalysts with basic features; this method makes it possible to obtain important chemicals such as 1-butanol (Guerbet reaction) and 1,3-butadiene (Lebedev reaction). Despite their long history in chemistry, the details of the close inter-relationship of these reactions have yet to be discussed properly. Our present study focuses on reactivity tests, in situ diffuse reflectance infrared Fourier transform spectroscopy, MS analysis, and theoretical modeling. We used MgO as a reference catalyst with pure basic features to explore ethanol conversion from its very early stages. Based on the obtained results, we formulate a new mechanistic theory able to explain not only our results but also most of the scientific literature on Lebedev and Guerbet chemistry. This provides a rational description of the intermediates shared by the two reaction pathways as well as an innovative perspective on the catalyst requirements to direct the reaction pathway toward 1-butanol or butadiene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Design and dSpace interfacing of current fed high gain dc to dc boost converter for low voltage applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Debraj; Das, Subhrajit; Arunkumar, G.; Elangovan, D.; Ragunath, G.

    2017-11-01

    In this paper a current fed interleaved DC - DC boost converter which has an isolated topology and used for high voltage step up is proposed. A basic DC to DC boost converter converts uncontrolled DC voltage into controlled DC voltage of higher magnitude. Whereas this topology has the advantages of lower input current ripple, lesser output voltage, lesser stress on switches, faster transient response, improved reliability and much lesser electromagnetic emission over the conventional DC to DC boost converter. Most important benefit of this interleaved DC to DC boost converter is much higher efficiency. The input current is divided into two paths, substantially ohmic loss (I2R) and inductor ac loss gets reduced and finally the system achieves much higher efficiency. With recent mandates on energy saving interleaved DC to DC boost converter may be used as a very powerful tool to maintain good power density keeping the input current manageable. Higher efficiency also allows higher switching frequency and as a result the topology becomes more compact and cost friendly. The proposed topology boosts 48v DC to 200 V DC. Switching frequency is 100 kHz and PSIM 9.1 Platform has been used for the simulation.

  20. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE PAGES

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori; ...

    2015-03-30

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  1. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  2. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts

    NASA Astrophysics Data System (ADS)

    Torres-García, E.; Canizal, G.; Velumani, S.; Ramírez-Verduzco, L. F.; Murrieta-Guevara, F.; Ascencio, J. A.

    2004-12-01

    Oil refinery related catalysis, particularly hydro desulfurization is viewed as a mature technology, but still we view that more efforts have to be made to boost the efficiency of the existing catalysts. So in this article we report the use of WOx/ZrO2 catalysts for the oxidation of dibenzothiophene (DBT) as a more effective material in nanometer scales. The WOx/ZrO2 samples were prepared by solid impregnation of ZrO2-x(OH)2x with ammonium metatungstate solution maintaining the pH at 10. Detailed structural and surface morphological analyses were carried out using Raman spectroscopy and Atomic force microscopy. In order to understand the catalytic activity which is largely influenced by the surface morphology, an interpretation based on the experimental results is given. The results showed an important correlation between the catalytic efficiency with the morphology of the surface which is identified as arrays of planes with steps of around 10 nm with the structures showing faceting with a preferential angle of 90°. It was established that when the number of W atoms in the surface increase the catalytic efficiency also increases. Thus we conclude that the material efficiency as a catalyst is directly related with the surface structure.

  3. Cathodic electrochemical activation of Co3O4 nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity.

    PubMed

    Yang, Li; Zhou, Huang; Qin, Xin; Guo, Xiaodong; Cui, Guanwei; Asiri, Abdullah M; Sun, Xuping

    2018-02-22

    Co(hydro)oxides show unsatisfactory catalytic activity for the hydrogen evolution reaction (HER) in alkaline media, and it is thus highly desirable but still remains a challenge to design and develop Co(hydro)oxide derived materials as superb hydrogen-evolving catalysts using a facile, rapid and less energy-intensive method. Here, we propose a cathodic electrochemical activation strategy toward greatly boosted HER activity of a Co 3 O 4 nanoarray via room-temperature cathodic polarization in sodium hypophosphite solution. After activation, the overpotential significantly decreases from 260 to 73 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 1.0 M KOH. Notably, this activated electrode also shows strong long-term electrochemical durability with the retention of its catalytic activity at 100 mA cm -2 for at least 40 h.

  4. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  5. The natural history of varicella zoster virus infection in Norway: Further insights on exogenous boosting and progressive immunity to herpes zoster

    PubMed Central

    Marangi, Luigi; Mirinaviciute, Grazina; Flem, Elmira; Scalia Tomba, Gianpaolo; Guzzetta, Giorgio; Freiesleben de Blasio, Birgitte; Manfredi, Piero

    2017-01-01

    We use age-structured models for VZV transmission and reactivation to reconstruct the natural history of VZV in Norway based on available pre-vaccination serological data, contact matrices, and herpes zoster incidence data. Depending on the hypotheses on contact and transmission patterns, the basic reproduction number of varicella in Norway ranges between 3.7 and 5.0, implying a vaccine coverage between 73 and 80% to effectively interrupt transmission with a 100% vaccine efficacy against infection. The varicella force of infection peaks during early childhood (3–5 yrs) and shows a prolonged phase of higher risk during the childbearing period, though quantitative variations can occur depending on contact patterns. By expressing the magnitude of exogenous boosting as a proportion of the force of infection, it is shown that reactivation is well described by a progressive immunity mechanism sustained by a large, though possibly below 100%, degree of exogenous boosting, in agreement with findings from other Nordic countries, implying large reproduction numbers of boosting. Moreover, magnitudes of exogenous boosting below 40% are robustly disconfirmed by data. These results bring further insight on the magnitude of immunity boosting and its relationship with reactivation. PMID:28545047

  6. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    NASA Astrophysics Data System (ADS)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  7. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    PubMed

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  8. An investigation into support cooperativity for the deoxygenation of guaiacol over nanoparticle Ni and Rh 2P

    DOE PAGES

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...

    2017-06-06

    Here, the production of hydrocarbon fuels from biomass pyrolysis requires the development of effective deoxygenation catalysts, and insight into how the properties of the support influence performance is critical for catalyst design. In this report, nanoparticles of Ni and Rh 2P were synthesized using solution-phase techniques and dispersed on high surface area supports. The supports included a relatively inert material (C), an acidic reducible metal-oxide (TiO 2), an acidic irreducible metal-oxide (Al 2O 3), and a basic irreducible metal-oxide (MgO). The eight active phase/support combinations were investigated for the deoxygenation of guaiacol, a pyrolysis vapor model compound, under ex situmore » catalytic fast pyrolysis conditions (350 °C, 0.44 MPa H 2). Compared to the baseline performance of the C-supported catalysts, Ni/TiO 2 and Rh 2P/TiO 2 exhibited higher guaiacol conversion and lower O : C ratios for C 5+ products, highlighting the enhanced activity and greater selectivity to deoxygenated products derived from the use of an acidic reducible metal-oxide support. The Al 2O 3-supported catalysts also exhibited higher conversion than the C-supported catalysts and promoted alkylation reactions, which improve carbon efficiency and increase the carbon number of the C 5+ products. However, Ni/Al 2O 3 and Rh 2P/Al 2O 3 were less selective towards deoxygenated products than the C-supported catalysts. The MgO-supported catalyst exhibited lower conversion and decreased yield of deoxygenated products compared to the C-supported catalysts. The results reported here suggest that basic metal-oxide supports may inhibit deoxygenation of phenolics under CFP conditions. Contrastingly, support acidity and reducibility were demonstrated to promote conversion and selectivity to deoxygenated products, respectively.« less

  9. Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.

    1981-01-01

    The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.

  10. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    NASA Astrophysics Data System (ADS)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  11. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    PubMed Central

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  12. Production of edible carbohydrates from formaldehyde in a spacecraft. pH variations in the calcium hydroxide catalyzed formose reaction. Final Report, 1 Jul. 1973 - 30 Jun. 1974. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.; Kohler, J. T.; John, T.

    1974-01-01

    The study of the calcium hydroxide catalyzed condensation of formaldehyde was extended to a batch reactor system. Decreases in pH were observed, often in the acid regime, when using this basic catalyst. This observation was shown to be similar to results obtained by others using less basic catalysts in the batch mode. The relative rates of these reactions are different in a batch reactor than in a continuous stirred tank reactor. This difference in relative rates is due to the fact that at any degree of advancement in the batch system, the products have a history of previous products, pH, and dissolved catalyst. The relative rate differences can be expected to yield a different nature of product sugars for the two types of reactors.

  13. Boosting the catalytic activity of natural magnetite for wet peroxide oxidation.

    PubMed

    Álvarez-Torrellas, Silvia; Munoz, Macarena; Mondejar, Victor; de Pedro, Zahara M; Casas, Jose A

    2018-06-02

    This work explores the modification of naturally occurring magnetite by controlled oxidation (200-400 °C, air atmosphere) and reduction (300-600 °C, H 2 atmosphere) treatments with the aim of boosting its activity in CWPO. The resulting materials were fully characterized by XRD, XPS, TGA, TPR, SEM, and magnetization measurements, allowing to confirm the development of core-shell type structures. The magnetite core of the solid remained unchanged upon the treatment whereas the Fe(II)/Fe(III) ratio of the shell was modified (e.g. 0.42, 0.11 and 0.63 values were calculated for pristine Fe 3 O 4 , Fe 3 O 4 -O400, and Fe 3 O 4 -R400, respectively). The performance of the catalysts was tested in the CWPO of sulfamethoxazole (SMX) (5 mg L -1 ) under ambient conditions and circumneutral pH (pH 0  = 5), using the stoichiometric dose of H 2 O 2 (25 mg L -1 ) and a catalyst load of 1 g L -1 . The key role of the ferrous species on the mineral shell was evidenced. Whereas the oxidation of magnetite led to significantly slower degradation rates of the pollutant, its reduction gave rise to a dramatic increase, achieving the complete removal of SMX in 1.5 h reaction time with the optimum catalyst (Fe 3 O 4 -R400) compared to the 3.5 h required with the pristine mineral. A reaction mechanism was proposed for SMX degradation, and a kinetic equation based on the Eley-Rideal model was accordingly developed. This model successfully fitted the experimental results. The stability of Fe 3 O 4 -R400 was evaluated upon five sequential runs. Finally, the versatility of the catalytic system was proved in real environmentally relevant water matrices.

  14. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  15. Synthesis of C4 and C8 Chemicals from Ethanol on MgO-Incorporated Faujasite Catalysts with Balanced Confinement Effects and Basicity.

    PubMed

    Zhang, Lu; Pham, Tu N; Faria, Jimmy; Santhanaraj, Daniel; Sooknoi, Tawan; Tan, Qiaohua; Zhao, Zheng; Resasco, Daniel E

    2016-04-07

    A new type of catalyst has been designed to adjust the basicity and level of molecular confinement of KNaX faujasites by controlled incorporation of Mg through ion exchange and precipitation of extraframework MgO clusters at varying loadings. The catalytic performance of these catalysts was compared in the conversion of C2 and C4 aldehydes to value-added products. The product distribution depends on both the level of acetaldehyde conversion and the fraction of magnesium as extraframework species. These species form rather uniform and highly dispersed nanostructures that resemble nanopetals. Specifically, the sample containing Mg only in the form of exchangeable Mg(2+) ions has much lower activity than those in which a significant fraction of Mg exists as extraframework MgO. Both the (C6+C8)/C4 and C8/C6 ratios increase with additional extraframework Mg at high acetaldehyde conversion levels. These differences in product distribution can be attributed to 1) higher basicity density on the samples with extraframework species, and 2) enhanced confinement inside the zeolite cages in the presence of these species. Additionally, the formation of linear or aromatic C8 aldehyde compounds depends on the position on the crotonaldehyde molecule from which abstraction of a proton occurs. In addition, catalysts with different confinement effects result in different C8 products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Szalda, David J.; ...

    2017-09-24

    Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less

  17. Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, David W.; Xie, Yan; Szalda, David J.

    Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less

  18. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    NASA Astrophysics Data System (ADS)

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  19. Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chengcheng; Zhu, Xiang; Abney, Carter W.

    The design and synthesis of metal-free heterogeneous catalysts for efficient hydrogenation remains a great challenge. Here we report a novel approach to create conjugated nanoporous polymers with efficient hydrogenation activities toward unsaturated ketones by leveraging the innate steric encumbrance. The steric bulk of the framework as well as the local sterics of the Lewis basic sites within the polymeric skeleton result in the generation of the putative catalyst. This approach opens up new possibilities for the development of innovative metal-free heterogeneous catalysts.

  20. Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation

    DOE PAGES

    Tian, Chengcheng; Zhu, Xiang; Abney, Carter W.; ...

    2016-09-08

    The design and synthesis of metal-free heterogeneous catalysts for efficient hydrogenation remains a great challenge. Here we report a novel approach to create conjugated nanoporous polymers with efficient hydrogenation activities toward unsaturated ketones by leveraging the innate steric encumbrance. The steric bulk of the framework as well as the local sterics of the Lewis basic sites within the polymeric skeleton result in the generation of the putative catalyst. Lastly, this approach opens up new possibilities for the development of innovative metal-free heterogeneous catalysts.

  1. Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chengcheng; Zhu, Xiang; Abney, Carter W.

    The design and synthesis of metal-free heterogeneous catalysts for efficient hydrogenation remains a great challenge. Here we report a novel approach to create conjugated nanoporous polymers with efficient hydrogenation activities toward unsaturated ketones by leveraging the innate steric encumbrance. The steric bulk of the framework as well as the local sterics of the Lewis basic sites within the polymeric skeleton result in the generation of the putative catalyst. Lastly, this approach opens up new possibilities for the development of innovative metal-free heterogeneous catalysts.

  2. Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohanraju, Karuppannan; Sreejith, Vasudevan; Ananth, Ramaiyan; Cindrella, Louis

    2015-06-01

    New catalysts of reduced graphene oxide (rGO) with poly aniline (PANI) and cobalt ferrite (CF) have been successfully prepared by simple chemical reduction method. Their electrocatalytic activity for oxygen reduction reaction (ORR) was evaluated. Semi-crystalline nature of CF was analyzed by X-ray diffraction (XRD) study. Surface morphology by HR-SEM showed features of CF particles and PANI film on graphene sheets. FT-IR studies revealed changes in C-N and Cdbnd N stretching vibrations of PANI confirming bonding of PANI to graphene sheets. Raman spectrum showed presence of PANI on distorted graphene layers. TG/DTA revealed thermal stability and extent of loading of CF in composite. ORR performance was studied using catalyst modified rotating disc electrode (RDE). A maximum kinetic current density of -3.46 mA cm-2 at -0.2 V was obtained for CF/PANI/rGO. Tafel slope, onset and half wave potentials for the catalyst were obtained from ORR response. Durability studies showed that synthesized electrocatalyst has better stability and methanol tolerance than commercial Pt/C catalyst. To the best of our knowledge, this is the first study aiming enhancement of ORR activity using PANI and CoFe2O4 on graphene support. A trace amount of Pt in the composite boosted the performance of single PEM fuel cell.

  3. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05033j

    PubMed Central

    Xu, Junyuan; Li, Junjie; Xiong, Dehua; Zhang, Bingsen; Liu, Yuefeng; Wu, Kuang-Hsu; Amorim, Isilda; Li, Wei

    2018-01-01

    Transition metal phosphides (TMPs) have recently emerged as a new class of pre-catalysts that can efficiently catalyze the oxygen evolution reaction (OER). However, how the OER activity of TMPs varies with the catalyst composition has not been systematically explored. Here, we report the alkaline OER electrolysis of a series of nanoparticulate phosphides containing different equimolar metal (M = Fe, Co, Ni) components. Notable trends in OER activity are observed, following the order of FeP < NiP < CoP < FeNiP < FeCoP < CoNiP < FeCoNiP, which indicate that the introduction of a secondary metal(s) to a mono-metallic TMP substantially boosts the OER performance. We ascribe the promotional effect to the enhanced oxidizing power of bi- and tri-metallic TMPs that can facilitate the formation of MOH and chemical adsorption of OH– groups, which are the rate-limiting steps for these catalysts according to our Tafel analysis. Remarkably, the tri-metallic FeCoNiP pre-catalyst exhibits exceptionally high apparent and intrinsic OER activities, requiring only 200 mV to deliver 10 mA cm–2 and showing a high turnover frequency (TOF) of ≥0.94 s–1 at the overpotential of 350 mV. PMID:29780476

  4. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.

    PubMed

    Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun

    2017-06-28

    Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.

  5. dc analysis and design of zero-voltage-switched multi-resonant converters

    NASA Astrophysics Data System (ADS)

    Tabisz, Wojciech A.; Lee, Fred C.

    Recently introduced multiresonant converters (MRCs) provide zero-voltage switching (ZVS) of both active and passive switches and offer a substantial reduction of transistor voltage stress and an increase of load range, compared to their quasi-resonant converter counterparts. Using the resonant switch concept, a simple, generalized analysis of ZVS MRCs is presented. The conversion ratio and voltage stress characteristics are derived for basic ZVS MRCs, including buck, boost, and buck/boost converters. Based on the analysis, a design procedure that optimizes the selection of resonant elements for maximum conversion efficiency is proposed.

  6. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Astrophysics Data System (ADS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-04-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  7. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  8. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    PubMed

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates.

    PubMed

    Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-05-25

    An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst.

  10. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    PubMed

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    PubMed

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  12. Operando Synchrotron X-ray Powder Diffraction and Modulated-Excitation Infrared Spectroscopy Elucidate the CO2 Promotion on a Commercial Methanol Synthesis Catalyst.

    PubMed

    Martin, Oliver; Mondelli, Cecilia; Cervellino, Antonio; Ferri, Davide; Curulla-Ferré, Daniel; Pérez-Ramírez, Javier

    2016-09-05

    Optimal amounts of CO2 are added to syngas to boost the methanol synthesis rate on Cu-ZnO-Al2 O3 in the industrial process. The reason for CO2 promotion is not sufficiently understood at the particle level due to the catalyst complexity and the high demands of characterization under true reaction conditions. Herein, we applied operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy on a commercial catalyst to gain insights into its morphology and surface chemistry. These studies unveiled that Cu and ZnO agglomerate and ZnO particles flatten under CO/H2 and/or CO2 /H2 . Under the optimal CO/CO2 /H2 mixture, sintering is prevented and ZnO crystals adopt an elongated shape due to the minimal presence of the H2 O byproduct, enhancing the water-gas shift activity and thus the methanol production. Our results provide a rationale to the CO2 promotion emphasizing the importance of advanced analytical methods to establish structure-performance relations in heterogeneous catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cat cracking technology with reduced discharge of harmful substances to the atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshin, A.I.; Aliev, R.R.; Solyar, B.Z.

    1995-11-01

    The operation of cat crackers creates a number of ecological problems involving pollution of the atmosphere. In the regeneration of coked catalyst, up to 10 tonnes/day of sulfur oxides are discharged to the atmosphere, along with catalyst dust in amounts up to 2 tonnes/day and carbon monoxide up to 120 tonnes/day. With increasingly severe requirements for environmental protection, the problem of reducing harmful discharges to the atmosphere has become more acute, necessitating either preliminary hydrotreating of the feed or scrubber cleanup of the stack gas to remove sulfur oxides. The high cost of these processes has provided the impetus formore » proposing various types of bifunctional cracking catalysts and effective catalyst additives to bind sulfur oxides directly in the regenerator. Basic oxides (of aluminum, magnesium, calcium, etc.) react with sulfur oxides to form stable sulfates that are then reduced to hydrogen sulfide in the reactor, while re-forming the basic oxide. Binding sulfur oxides in the regenerator is favored by the presence of an oxidizing agent or by the introduction of a promoter for afterburning carbon monoxide to dioxide. Compositions consisting mainly of aluminum oxide ({>=}90% by weight) have been patented as catalyst additives for binding sulfur oxides; other compositions that have been patented consist of Group II metal oxides and other oxides that have oxidizing properties. The additives are introduced into the catalyst charge in amounts of 5-10% by weight. On the basis of research, an aluminium oxide additive, PS-17, has been developed for binding sulfur oxides in the course of cracking.« less

  14. Chiral poly-rare earth metal complexes in asymmetric catalysis

    PubMed Central

    Shibasaki, Masakatsu

    2006-01-01

    Asymmetric catalysis is a powerful component of modern synthetic organic chemistry. To further broaden the scope and utility of asymmetric catalysis, new basic concepts for the design of asymmetric catalysts are crucial. Because most chemical reactions involve bond-formation between two substrates or moieties, high enantioselectivity and catalyst activity should be realized if an asymmetric catalyst can activate two reacting substrates simultaneously at defined positions. Thus, we proposed the concept of bifunctional asymmetric catalysis, which led us to the design of new asymmetric catalysts containing two functionalities (e.g. a Lewis acid and a Brønsted base or a Lewis acid and a Lewis base). These catalysts demonstrated broad reaction applicability with excellent substrate generality. Using our catalytic asymmetric reactions as keys steps, efficient total syntheses of pharmaceuticals and their biologically active lead natural products were achieved. PMID:25792774

  15. Co3 O4 Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization.

    PubMed

    Zhou, Dan; He, Liangbo; Zhang, Rong; Hao, Shuai; Hou, Xiandeng; Liu, Zhiang; Du, Gu; Asiri, Abdullah M; Zheng, Chengbin; Sun, Xuping

    2017-11-07

    It is highly desirable to develop a simple, fast and straightforward method to boost the alkaline water oxidation of metal oxide catalysts. In this communication, we report our recent finding that the generation of amorphous Co-borate layer on Co 3 O 4 nanowire arrays supported on Ti mesh (Co 3 O 4 @Co-Bi NA/TM) leads to significantly boosted OER activity. The as-prepared Co 3 O 4 @Co-Bi NA/TM demands overpotential of 304 mV to drive a geometrical current density of 20 mA cm -2 in 1.0 M KOH, which is 109 mV less than that for Co 3 O 4 NA/TM, with its catalytic activity being preserved for at least 20 h. It suggests that the existence of amorphous Co-Bi layer promotes more CoO x (OH) y generation on Co 3 O 4 surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  17. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF₂-MgO Carriers.

    PubMed

    Bonarowska, Magdalena; Wojciechowska, Maria; Zieliński, Maciej; Kiderys, Angelika; Zieliński, Michał; Winiarek, Piotr; Karpiński, Zbigniew

    2016-11-25

    Pd/MgO, Pd/MgF₂ and Pd/MgO-MgF₂ catalysts were investigated in the reaction of CCl₄ hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF₂-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C₂-C₅ hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF₂ is beneficial for shaping high activity of palladium catalysts. The MgO-MgF₂ support characterized by stronger Lewis acidity than MgF₂ contributes to very good catalytic activity for a relatively long reaction period (~5 h) but subsequent neutralization of stronger acid centers (by coking) eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO) are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  18. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides.

    PubMed

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-12-19

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu⁺ and Cu 2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β -hydroxysulfides compounds.

  19. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides

    PubMed Central

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-01-01

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu+ and Cu2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β-hydroxysulfides compounds. PMID:29257075

  20. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    PubMed

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    PubMed

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    PubMed

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  3. Modified silica-based heterogeneous catalysts for etherification of glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product.more » The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.« less

  4. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.

    PubMed

    Homsi, Doris; Rached, Jihane Abou; Aouad, Samer; Gennequin, Cédric; Dahdah, Eliane; Estephane, Jane; Tidahy, Haingomalala Lucette; Aboukaïs, Antoine; Abi-Aad, Edmond

    2017-04-01

    The performances of different 5Cu/Co x Mg 6-x Al 2 (x = 0; 2; 4; 6) catalysts prepared by the wet impregnation method were investigated in the ethanol steam-reforming reaction (ESR) at 450 °C during 4 h under a steam/ethanol ratio of 3 (S/E = 3). The best catalyst among the prepared solids was 5Cu/Co 6 Al 2 as it showed a complete ethanol conversion and the highest hydrogen and carbon dioxide productivities. However, following 50 h of aging, the catalyst deactivated due to the formation of a high amount of carbonaceous products detected by differential scanning calorimetry/thermogravimetry. On the other hand, the 5Cu/Co 2 Mg 4 Al 2 catalyst showed a much lower quantity of coke deposition with no deactivation due to the basic character conferred by the magnesium oxide phase.

  5. Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone

    PubMed Central

    Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David

    2018-01-01

    MgGa layered double hydroxides (Mg/Ga = 2–4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions. PMID:29881721

  6. Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone.

    PubMed

    Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David

    2018-01-01

    MgGa layered double hydroxides (Mg/Ga = 2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH 3 -TPD, CO 2 -TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO 2 -TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO 2 -TPD curve was attributed to the decomposition of carbonates newly formed by CO 2 interaction with interlayer carbonates rather than to CO 2 desorption from basic sites. Accordingly, CO 2 -TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.

  7. Physico-chemical properties of MgGa mixed oxides and reconstructed layered double hydroxides and their performance in aldol condensation of furfural and acetone

    NASA Astrophysics Data System (ADS)

    Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David

    2018-05-01

    MgGa layered double hydroxides (Mg/Ga=2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T=450 °C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.

  8. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.

    PubMed

    Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush; Mohamed, Abdul Rahman

    2018-01-01

    Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted.

  9. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

    PubMed Central

    Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush

    2018-01-01

    Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted. PMID:29719767

  10. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    PubMed

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Iridium clusters in KLTL zeolite: Structure and catalytic selectivity for n-hexane aromatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triantafillou, N.D.; Miller, J.T.; Gates, B.C.

    Catalysts consisting of Ir clusters in zeolite KLTL were prepared by reduction of [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2} in the zeolite with H{sub 2} at temperatures 300 or 500{degrees}C. The catalysts were tested for reactions of n-hexane and H{sub 2} at 400, 440 and 480{degrees}C and were characterized by temperature-programmed reduction, hydrogen chemisorption, transmission electron microscopy, infrared spectroscopy of adsorbed CO, and extended X-ray absorption fine structure spectroscopy. The clusters consist of 4 to 6 Ir atoms on average and are sufficiently small to reside within the pores of the zeolite. The infrared spectra characteristic of terminal CO suggest that themore » support environment is slightly basic and that the Ir clusters are electron rich relative to the bulk metal. Notwithstanding the small cluster size, the support basicity, and the confining geometry of the LTL zeolite pore structure, the catalytic performance is similar to those of other Ir catalysts, with a poor selectivity for aromatization and a high selectivity for hydrogenolysis. These results are consistent with the inference that the principal requirements for selective naphtha aromatization catalysts are both a nonacidic support and a metal with a low hydrogenolsis activity, i.e., Pt. 47 refs., 6 figs., 3 tabs.« less

  12. Oxidative coupling of methane over a Sr-promoted La{sub 2}O{sub 3} catalyst supported on a low surface area porous catalyst carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Uphade, B.S.; Mulla, S.A.R.

    1997-09-01

    Oxidative coupling of methane (OCM) to higher hydrocarbons over Sr-promoted La{sub 2}O{sub 3} supported on commercial low surface area porous catalyst carriers at 800 and 850 C and a space velocity of 102,000 cm{sup 3}/g{center_dot}h has been thoroughly investigated. Effects of support, catalyst particle size, linear gas velocity, Sr/La ratio, CH{sub 4}/O{sub 2} ratio in the feed, and catalyst dilution by inert solid particles on the conversion, yield, or selectivity and product ratios (C{sub 2}H{sub 4}/C{sub 2}H{sub 6} and CO/CO{sub 2}) in the OCM process have been studied. The catalysts have been characterized for their basicity, acidity, and oxygen chemisorptionmore » by the TPD of CO{sub 2}, ammonia, and oxygen, respectively, from 50 to 950 C and also characterized for their surface area. The supported catalysts showed better performance than the unsupported one. The best OCM results (obtained over Sr-La{sub 2}O{sub 3}/SA-5205 with a Sr/La ratio of 0.3 at a space velocity of 102,000 cm{sup 3}/g{center_dot}h) are 30.1% CH{sub 4} conversion with 65.6% selectivity for C{sub 2+} (or 19.7% C{sub 2+}-yield) at 850 C (CH{sub 4}/O{sub 2} = 16.0). The basicity is strongly influenced by the Sr/La ratio; the supported catalysts showed the best performance for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence on the OCM process. However, the influence of linear gas velocity and particle size is found to be small; it results mainly from the temperature gradient in the catalyst. The catalyst dilution has beneficial effects for achieving a higher C{sub 2}H{sub 4}/C{sub 2}H{sub 6} ratio and also for reducing the hazardous nature of the OCM process because of the coupling of the exothermic oxidative conversion reactions and the endothermic thermal cracking reactions and also due to the increased heat transfer area.« less

  13. Very Good Medicine: Indigenous Humor and Laughter

    ERIC Educational Resources Information Center

    Mala, Cynthia Lindquist

    2016-01-01

    Humor is not only instinctive and a basic human need, but it also is very good medicine. Laughter boosts the immune system, lowers blood pressure, reduces stress hormones, and is linked to healthy functioning organs. [This article was written with Mylo Redwater Smith.

  14. A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods

    PubMed Central

    Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter

    2017-01-01

    Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850

  15. Growing Platinum-Ruthenium-Tin ternary alloy nanoparticles on reduced graphene oxide for strong ligand effect toward enhanced ethanol oxidation reaction.

    PubMed

    Xia, Qing Qing; Zhang, Lian Ying; Zhao, Zhi Liang; Li, Chang Ming

    2017-11-15

    Uniform Pt 1 Ru 0.5 Sn 0.5 ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (Pt 1 Ru 0.5 Sn 0.5 -RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells. Copyright © 2017. Published by Elsevier Inc.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partridge Jr, William P.; Choi, Jae-Soon

    By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how themore » catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic reduction catalysts, oxidation catalysts, and particulate filters. The objective is to promote broader use and development of intracatalyst analytical methods, and thereby expand the insights resulting from this detailed perspective for advancing automotive catalyst technologies.« less

  17. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  18. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    PubMed Central

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  19. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  20. Robust Platinum-Based Electrocatalysts for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Coleman, Eric James

    Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and pioneering examination of how Pt surface passivation affects ORR dynamics is presented.

  1. Southeast Asia Report

    DTIC Science & Technology

    1987-03-19

    beats a masculine heart. Advocates of the women’s liberation movement never have been happier. It will even be a greater boost to feminists...carry out its "four modernizations" in hopes of rapidly becoming a superpower sufficiently strong to compete for world hegemony . China’s basic

  2. Helping Hands: A World of Manipulatives To Boost Handwriting Skills.

    ERIC Educational Resources Information Center

    Naus, June M.

    2000-01-01

    This article identifies possible causes of handwriting difficulties and suggests activities to facilitate the development of hand muscles and handwriting skills. It discusses handwriting readiness, wrist stability, hand development activities, pencil grasp, hand dominance, eye-hand coordination, basic strokes, general readiness skills, writing…

  3. Evaluation of malt spent rootlets biochar as catalyst for biodiesel production.

    NASA Astrophysics Data System (ADS)

    Pantiora, Dimitra

    2014-05-01

    Evaluation of malt spent rootlets biochar as catalyst for biodiesel production. Dimitra Pantiora1, Hrissi K. Karapanagioti1, Ioannis D. Manariotis2, Alexis Lycourghiotis1, Christos Kordulis1,3 (1) University of Patras, Department of Chemistry, GR 26500, Patras, Greece, (2) University of Patras, Department of Civil Engineering, Patras, Greece, (3) Institute of Chemical Engineering Science (FORTH/ ICE-HT), Stadiou Str., Platani, GR 26500, Patras, Greece Biodiesel is an attractive renewable fuel, environmentally friendly, and can readily be synthesized from the triglycerides found in animal fats and vegetable oils. It can be used in existing engines. Biodiesel consists of fatty acid alkyl esters. Conversion of triglycerides to biodiesel fuel is commonly achieved through a series of transesterification reactions involving the reaction of an alkoxy group of an ester (i.e., mono-, di-, or triglyceride) with that of a small alcohol (usually methanol). This reaction is traditionally catalyzed by homogeneous catalysts, such as bases or mineral acids. Basic catalysts have been proved to be much more active than acidic ones. However, due to environmental (waste water) and economic concerns (catalyst separation and product and by-product cleaning), heterogeneous catalysts are much more desirable. In the present study we have evaluated the use of biochar, produced from malt spent rootlets, as a potential basic catalyst, for transesterification of triglycerides using triacetin as a probe molecule. The biochar used in this study was prepared by heating malt spent rootlets in an oxygen-limited environment. It is a carbon rich material, containing 66% C, 22% O, 0.45% Mg, 0.86% Si, 5.7% K, 1.5% Cl, 0.61% Ca, and 2.4% P. Aqueous suspension of this material equilibrates at pH= 10. This is probably due to high K content. Furthermore, it exhibits high specific surface area (SSA= 183 m2g-1). The above described characteristics make this material very promising catalyst for transesterification reactions. Indeed, the corresponding catalytic tests showed that 100% transesterification of triacetin can be achieved into 0.5 hour. This activity was maintained at least for 4 successive catalytic runs.

  4. Study on the NO removal efficiency of the lignite pyrolysis coke catalyst by selective catalytic oxidation method

    PubMed Central

    Wen, Xin; Ma, Zhenhua; Zhang, Lei; Sha, Xiangling; He, Huibin; Zeng, Tianyou; Wang, Yusu; Chen, Jihao

    2017-01-01

    Selective catalytic oxidation (SCO) method is commonly used in wet denitration technology; NO after the catalytic oxidation can be removed with SO2 together by wet method. Among the SCO denitration catalysts, pyrolysis coke is favored by the advantages of low cost and high catalytic activity. In this paper, SCO method combined with pyrolysis coke catalyst was used to remove NO from flue gas. The effects of different SCO operating conditions and different pyrolysis coke catalyst made under different process conditions were studied. Besides, the specific surface area of the catalyst and functional groups were analyzed with surface area analyzer and Beohm titration. The results are: (1) The optimum operating conditions of SCO is as follows: the reaction temperature is 150°C and the oxygen content is 6%. (2) The optimum pyrolysis coke catalyst preparation processes are as follows: the pyrolysis final temperature is 750°C, and the heating rate is 44°C / min. (3) The characterization analysis can be obtained: In the denitration reaction, the basic functional groups and the phenolic hydroxyl groups of the catalyst play a major role while the specific surface area not. PMID:28793346

  5. A Recyclable Cu-MOF-74 Catalyst for the Ligand-Free O-Arylation Reaction of 4-Nitrobenzaldehyde and Phenol

    PubMed Central

    Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando

    2017-01-01

    The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C–O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K2CO3 base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven. PMID:28621710

  6. Production of saturated and unsaturated silahydrocarbon mixtures using rhodium catalyst, and to products produced thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onopchenki, A.; Sabourin, E.T.

    1986-02-25

    This patent describes a process for the production of a mixture of saturated and unstaurated silahydrocarbons. This process contacts an admixture consisting of (A) at least one alpha-olefin containing from 2 to about 20 carbon atoms per molecule, and (B) at least one alkylsilane selected from the group consisting of (i) a dialkylsilane (ii) a trialkylsilane (iii) mixtures thereof, with a catalyst consisting of a homogeneous monomeric rhodium-containing catalyst having a basicity substantially equal to or less than that provided by a rhodium-containing catalyst having a triphenyl phosphine ligand or a heterogeneous rhodium-containing catalyst in a halogen-free inert solvent. Themore » process conducted at a temperature of from about 30/sup 0/ to about 200/sup 0/C., a weight ratio of olefin to alkylsilane of from about 0.5 to about 20 to one and a catalyst concentration of from about 1 x 10-/sup 5/ to about 1 x 10-/sup 2/ millimoles of catalyst per millimole alkylsilane, to produce a mixture containing saturated silane hydrocarbons and an unsaturated silahydrocarbon. Inclusive with the proviso that the molecular weight of the unsaturated silane hydrocarbon is above 300.« less

  7. A Recyclable Cu-MOF-74 Catalyst for the Ligand-Free O-Arylation Reaction of 4-Nitrobenzaldehyde and Phenol.

    PubMed

    Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando

    2017-06-16

    The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C-O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K₂CO₃ base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven.

  8. Medium Effects are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron-porphyrin Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigsby, Matthew L.; Wasylenko, Derek J.; Pegis, Michael L.

    2015-04-08

    Several substituted iron porphyrin com-plexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for 4-electron re-duction to H2O vs. 2-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of ORR selectivity results need to be interpreted withmore » caution, as the catalysis is a property not just of the catalyst, but also of the larger mesoscale environment be-yond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e– path. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  9. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  10. Ultrasound accelerated Claisen Schmidt condensation: A green route to chalcones

    NASA Astrophysics Data System (ADS)

    Calvino, V.; Picallo, M.; López-Peinado, A. J.; Martín-Aranda, R. M.; Durán-Valle, C. J.

    2006-06-01

    Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This "green" method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy.

  11. Modeling of switching regulator power stages with and without zero-inductor-current dwell time

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Yu, Y.

    1979-01-01

    State-space techniques are employed to derive accurate models for the three basic switching converter power stages: buck, boost, and buck/boost operating with and without zero-inductor-current dwell time. A generalized procedure is developed which treats the continuous-inductor-current mode without dwell time as a special case of the discontinuous-current mode when the dwell time vanishes. Abrupt changes of system behavior, including a reduction of the system order when the dwell time appears, are shown both analytically and experimentally. Merits resulting from the present modeling technique in comparison with existing modeling techniques are illustrated.

  12. Preparation of CaO/Fly ash as a catalyst inhibitor for transesterification process off palm oil in biodiesel production

    NASA Astrophysics Data System (ADS)

    Helwani, Z.; Fatra, W.; Saputra, E.; Maulana, R.

    2018-03-01

    A palm fly ash supported calcium oxide (CaO) catalyst was prepared and used in transesterification from off-grade palm oil for biodiesel production. The catalyst synthesized by loading CaO of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) into fly ash through impregnation method. The optimum catalyst preparation conditions were determined by influence of calcination temperature and weight ratio of Ca(NO3)2.4H2O and fly ash. Catalyst with highest catalytic activity was achieved when calcined at 800 °C and proportion of Ca(NO3)2.4H2O to fly ash is 80:20. Under the conditions of oil : methanol ratio of 1:6, catalyst dosage of 6 wt% and temperature of 70 °C for 2 h, the biodiesel yield reaches to 71.77%. CaO, SiO2, Ca(OH)2 and Ca2SiO4 were found in the catalyst through X-ray diffraction (XRD) while the basic strength of the catalyst H_ in the range 9.3 – 11. Surface area of the developed catalyst is 24.342 m2/g through Brunauer-Emmett-Teller (BET). Characteristics of biodiesel such as density, kinematic viscosity, acid value, flash point has been matched with standard for biodiesel specification of Indonesia.

  13. Heterogeneous catalytic ozonation of hydroquinone using sewage sludge-derived carbonaceous catalysts.

    PubMed

    Xu, Jinglu; Yu, Yang; Ding, Kang; Liu, Zhiying; Wang, Lei; Xu, Yanhua

    2018-03-01

    This study converted sewage sludge into a carbonaceous catalyst via pyrolysis and employed it in the ozonation of hydroquinone. The catalyst was characterized by Mössbauer spectroscopy, X-ray photoelectron spectroscopy, temperature programmed desorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Intermediate products were detected by gas chromatography-mass spectrometry, and a pathway for hydroquinone degradation was proposed. The results showed that sludge pyrolyzed at 700 °C promoted hydroquinone degradation, compared with commercial activated carbon derived from coal. When the catalyst dose was 0.5 g/L, the hydroquinone (200 mg/L) removal rate reached 97.86% after exposure to ozone (the ozone concentration was 17 mg/L and the flow rate was 50 mL/min) for 60 min. The results indicated that basic groups contributed to the catalysis.

  14. Besting Testing Hysteria: Reasonable Preparation for Standardized Tests.

    ERIC Educational Resources Information Center

    Field, Sherry L.

    2000-01-01

    Explores the content of the Iowa Test of Basic Skills (ITBS) and describes similarities between the ITBS and the National Council for the Social Studies (NCSS) standards. Addresses three NCSS standards and how each may be represented on a standardized test. Provides eight confidence-boosting principles. (CMK)

  15. Determination of the dominant catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst system: Is it single-metal Rh₁Cp*-based, subnanometer Rh₄ cluster-based, or Rh(0) n nanoparticle-based cyclohexene hydrogenation catalysis at room temperature and mild pressures?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayram, Ercan; Linehan, John C.; Fulton, John L.

    Determining the kinetically dominant catalyst in a given catalytic system is a forefront topic in catalysis. The [RhCp*Cl₂]₂ (Cp* =[η⁵-C₅(CH₃)₅]) system pioneered by Maitlis and co-workers is a classic precatalyst system from which homogeneous mononuclear Rh₁, subnanometer Rh₄ cluster, and heterogeneous polymetallic Rh(0) n nanoparticle have all arisen as viable candidates for the true hydrogenation catalyst, depending on the precise substrate, H₂ pressure, temperature, and catalyst concentration conditions. Addressed herein is the question of whether the prior assignment of homogeneous, mononuclear Rh₁Cp*-based catalysis is correct, or are trace Rh₄ subnanometer clusters or possibly Rh(0) n nanoparticles the dominant, actualmore » cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm initial H₂ pressure? The observation herein of Rh₄ species by in operando-X-ray absorption fine structure (XAFS) spectroscopy, at the only slightly more vigorous conditions of 26 °C and 8.3 atm H₂ pressure, and the confirmation of Rh₄ clusters by ex situ mass spectroscopy raises the question of the dominant, room temperature, and mild pressure cyclohexene hydrogenation catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst pioneered by Maitlis and co-workers. Ten lines of evidence are provided herein to address the nature of the true room temperature and mild pressure cyclohexene hydrogenation catalyst derived from [RhCp*Cl₂]₂. Especially significant among those experiments are quantitative catalyst poisoning experiments, in the present case using 1,10-phenanthroline. Those poisoning studies allow one to distinguish mononuclear Rh₁, subnanometer Rh₄ cluster, and Rh(0) n nanoparticle catalysis hypotheses. The evidence obtained provides a compelling case for a mononuclear, Rh₁Cp*-based cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm H₂ pressure. The resultant methodology, especially the quantitative catalyst poisoning experiments in combination with in operando spectroscopy, is expected to be more broadly applicable to the study of other systems and the “what is the true catalyst?” question. The authors would like to thank Finke Group members and Prof. Saim Ö zkar for their valuable input as this work was proceeding. This work was supported at Colorado State University by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, vial DOE Grant SE-FG402-03ER15453. The work at PNNL was also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. XSD/PNC facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy, Basic Energy Sciences; a Major Resources Support Grant from NSERC; the University of Washington; the Canadian Light Source; and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory was supported by the U.S. DOE under Contract No. DE-AC02- 06CH11357.« less

  16. Biodiesel synthesis using calcined layered double hydroxide catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam

    2008-01-01

    The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sitesmore » active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.« less

  17. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass

    NASA Astrophysics Data System (ADS)

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-05-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  18. Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts.

    PubMed

    Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S

    2012-04-01

    Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  20. Zeolite-catalyzed hydrogenation of carbon dioxide and ethene.

    PubMed

    Chan, Bun; Radom, Leo

    2008-07-30

    Ab initio molecular orbital theory and density functional theory calculations have been used to study the three-stage zeolite-catalyzed hydrogenation of CO2 to methanol and the hydrogenation of C2H 4 to ethane, with the aim of designing an effective zeolite catalyst for these reactions. Both Brønsted acid (XH) and alkali metal (XM) sites in model zeolites (-X-Al-XH- or -X-Al-XM-) have been examined. It is found that appropriately designed zeolites can provide excellent catalysis for these reactions, particularly for the hydrogenation of CO2, HCO2H and CH2O, with uncatalyzed barriers of more than 300 kJ mol(-1) being reduced to as little as 17 kJ mol(-1) (in the case of CH2O). The reaction barrier depends on the acidity of the XH moiety or the nature of the metal cation M in the XM moiety, and the basicity of the adjacent X group in the catalyst. For a catalyst based on alkali metal zeolites (XM), the catalytic activity is relatively insensitive to the nature of X in the XM group. As a result, the catalytic activity for these types of zeolites increases as X becomes more basic. We propose that alkali metal zeolites with Ge and N incorporated into the framework could be very effective catalysts for hydrogenation processes.

  1. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introducemore » enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  2. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  3. Methanol production method and system

    DOEpatents

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  4. Ethanol production method and system

    DOEpatents

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  5. No Proof that Federal R&D Boosts Economy

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1977

    1977-01-01

    Reports that federal funds provided for basic and applied research have been found to provide only marginal or no contribution to increased productivity and economic growth. However, these results may be due to the lack of economic methodology capable of detecting the impact of research funds on growth. (SL)

  6. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Degradation of Orange II by Fenton reaction using ilmenite as catalyst.

    PubMed

    Pataquiva-Mateus, A Y; Zea, H R; Ramirez, J H

    2017-03-01

    This work deals with the degradation of the azo-dye Orange II (OII) by a heterogeneous process with dark Fenton. Natural and purified ilmenites from Colombian soil were used as catalysts. The catalysts have different physicochemical properties and are basically composed of TiO 2 and Fe 2 O 3 . Ilmenites (FeTiO 3 ), raw materials highly available at low cost, were studied by means of conventional metallography (polished grain mounts), as well as BET, XRD, and XRF in order to determine their possible source area and the factors that influence their use as a catalyst for OII degradation. The pH, the ilmenite amount, the initial CH 2 O 2 , and the temperature of the reaction system were studied. Complete degradation of dye was observed within 7 h, while 90 % of OII was removed in 7 h using Cumaribo Ilmenite. Graphical Abstract ᅟ.

  8. Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide.

    PubMed

    Doskocil, Eric J

    2005-02-17

    Sodium oxide (NaOx) impregnated Engelhard Titanosilicate-10 (ETS-10) molecular sieve catalysts were prepared to enhance the basicity associated with ETS-10 and subsequently investigated for the cycloaddition of carbon dioxide to propylene oxide to produce propylene carbonate. For dry NaOx-modified ETS-10 catalysts that contained no adsorbed water, a maximum yield of propylene carbonate was achieved at a loading of 2.0 excess NaOx species per unit cell. However, the greatest enhancements in the rate of reaction were observed when small amounts of water were adsorbed onto the unmodified ETS-10 catalyst immediately prior to reaction. Surface-bound water appears to enhance the surface Bronsted acidity of the unmodified ETS-10 catalyst via the formation of surface -OH groups at lower water loadings, producing a surface of better-tuned acid-base bifunctional characteristics for the cycloaddition reaction. At levels of hydration greater than 12.5% by mass, the yield of propylene carbonate was further enhanced, but at a smaller rate than that observed at lower rehydration levels, which is more indicative of an enhanced transport effect. Adsorption microcalorimetry of carbon dioxide indicated that, at loadings less than 2.0 NaOx per unit cell, the total uptake of the CO2 adsorption sites required for the reaction were less than in the parent ETS-10 material. However, at higher levels of NaOx occlusion, where the total uptake and strength of the adsorption sites exceeded those observed for the as-received ETS-10 material, the cycloaddition activity of this catalyst suffered due to the reduced pore volume and surface area. It appears that precise tuning of both the surface acidity and basicity is crucial in creating an effective acid-base bifunctional ETS-10 catalyst for the cycloaddition reaction investigated.

  9. Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    NASA Technical Reports Server (NTRS)

    Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel; Stanley, Christine M.; Paley, Steve

    2017-01-01

    Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, to scale catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.

  10. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE PAGES

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; ...

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H 2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H 2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  11. Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    NASA Technical Reports Server (NTRS)

    Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel J.; Stanley, Christine M.; Donovan, Dave N.; Palsey, Mark S.

    2017-01-01

    Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.

  12. Lignin Depolymerization with Nitrate-Intercalated Hydrotalcite Catalysts

    DOE PAGES

    Kruger, Jacob S.; Cleveland, Nicholas S.; Zhang, Shuting; ...

    2016-01-13

    Hydrotalcites (HTCs) exhibit multiple adjustable parameters to tune catalytic activity, including interlayer anion composition, metal hydroxide layer composition, and catalyst preparation methods. Here in this paper, we report the influence of several of these parameters on β-O-4 bond scission in a lignin model dimer, 2-phenoxy-1-phenethanol (PE), to yield phenol and acetophenone. We find that the presence of both basic and NO 3– anions in the interlayer increases the catalyst activity by 2–3-fold. In contrast, other anions or transition metals do not enhance catalytic activity in comparison to blank HTC. The catalyst is not active for C–C bond cleavage on ligninmore » model dimers and has no effect on dimers without an α-OH group. Most importantly, the catalyst is highly active in the depolymerization of two process-relevant lignin substrates, producing a significant amount of low-molecular-weight aromatic species. The catalyst can be recycled until the NO 3– anions are depleted, after which the activity can be restored by replenishing the NO 3– reservoir and regenerating the hydrated HTC structure. These results demonstrate a route to selective lignin depolymerization in a heterogeneous system with an inexpensive, earth-abundant, commercially relevant, and easily regenerated catalyst.« less

  13. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  14. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Kulis, M. J.; Psarras, P. C.; Ball, D. W.; Timko, M. T.; Wong, H.-W.; Peck, J.; Chianelli, R. R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these non-traditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and hydrogen) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tropsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activity are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  15. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOEpatents

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  16. Danish Universities in the Financial Crisis: Change and Trust

    ERIC Educational Resources Information Center

    Milthers, Pernille Meyn

    2011-01-01

    Universities have always been important to national economies, but since the financial crisis of 2007-08 they have become key economic actors. Because they supply highly skilled labour and undertake basic research that enable nations to engage in global competition, they are capable of boosting production and innovation. This article explores the…

  17. Lessons Learned in Starting and Running a Neighborhood Networks Center.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC.

    This guide shares information about setting up and operating Neighborhood Networks centers. (These centers operate in Department of Housing and Urban Development-assisted or -insured housing nationwide to help low-income people boost their basic skills and find good jobs, learn to use computers and the Internet, run businesses, improve their…

  18. Modeling and simulation of graphene/palladium catalyst reformer for hydrogen generation from waste of IC engine

    NASA Astrophysics Data System (ADS)

    Rahman, A.; Aung, K. M.

    2018-01-01

    A small amount of hydrogen made by on-board reformer is added to the normal intake air and gasoline mixture in the vehicle’s engine could improves overall combustion quality by allowing nearly twice as much air for a given amount of fuel introduced into the combustion chamber. This can be justified based on the calorific value of Hydrogen (H2) 141.9 MJ/kg while the gasoline (C6.4H11.8) is 47MJ/kg. Different weight % of Pd and GO uses for the reformer model and has conducted simulation by COMSOL software. The best result found for the composition of catalyst (palladium 30% and graphene 70%). The study shows that reformer yield hydrogen 23% for the exhaust temperature of 600-900°C and 20% for 80-90°C. Pumping hydrogen may boost the fuel atomization and vaporization at engine idle condition, which could enhances the fuel combustion efficiency. Thus, this innovative technology would be able to save fuel about 12% and reduce the emission about 35%.

  19. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    PubMed

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass.

    PubMed

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-12-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  1. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE PAGES

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang; ...

    2018-04-10

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  2. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  3. Metallic State FeS Anchored (Fe)/Fe3O4/N-Doped Graphitic Carbon with Porous Spongelike Structure as Durable Catalysts for Enhancing Bioelectricity Generation.

    PubMed

    Xu, Xin; Dai, Ying; Yu, Jia; Hao, Liang; Duan, Yaqiang; Sun, Ye; Zhang, Yanhong; Lin, Yuhui; Zou, Jinlong

    2017-03-29

    The critical issues in practical application of microbial fuel cells (MFCs) for wastewater treatment are the high cost and poor activity and durability of precious metal catalysts. To alleviate the activity loss and kinetic barriers for oxygen reduction reaction (ORR) on cathode, (Fe)/Fe 3 O 4 /FeS/N-doped graphitic carbon ((Fe)/Fe 3 O 4 /FeS/NGC) is prepared as ORR catalyst through a one-step method using waste pomelo skins as carbon source. Various characterization techniques and electrochemical analyses are conducted to illustrate the correlation between structural characteristics and catalytic activity. MFCs with Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode produces the maximum power density of 930 ± 10 mW m -2 (Pt/C of 489 mW m -2 ) and maintains a good long-term durability, which only declines 18% after 90 day operation. Coulombic efficiency (22.2%) obtained by Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode is significantly higher than that of Pt/C (17.3%). Metallic state FeS anchored in porous NGC skeleton can boost electron transport through the interconnected channels in spongelike structure to improve catalytic activity. Charge delocalization of C atoms can be strengthened by N atoms incorporation into carbon skeleton, which correspondingly contributes to the O 2 chemisorptions and O-O bond weakening during ORR. Energetically existed active components (Fe and N species) are more efficient than Pt to trap and consume electrons in catalyzing ORR in wastewater containing Pt-poisoning substances (bacterial metabolites). (Fe)/Fe 3 O 4 /FeS/NGC catalysts with the advantages of durable power outputs and environmental-friendly raw material can cover the shortages of Pt/C and provide an outlook for further applications of these catalysts.

  4. Course-Taking Patterns, Policies, and Practices in Developmental Education in the California Community Colleges. A Report to the California Community Colleges Chancellor's Office

    ERIC Educational Resources Information Center

    Perry, Mary; Bahr, Peter Riley; Rosin, Matthew; Woodward, Kathryn Morgan

    2010-01-01

    The visibility of developmental education--or basic skills education as it is called most often in California--has increased in recent years. One major catalyst was a comprehensive community college strategic planning process completed in 2004 that listed basic skills as a critical area of focus. Another was an increase in the system's minimum…

  5. A Base-Resistant Metalloporphyrin Metal–Organic Framework for C–H Bond Halogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xiu-Liang; Wang, Kecheng; Wang, Bin

    A base-resistant porphyrin metal–organic framework (MOF), namely PCN-602 has been constructed with 12-connected [Ni 8(OH) 4(H 2O) 2Pz 12] (Pz = pyrazolate) cluster and a newly designed pyrazolate-based porphyrin ligand, 5,10,15,20-tetrakis(4-(pyrazolate-4-yl)phenyl)porphyrin under the guidance of the reticular synthesis strategy. Besides its robustness in hydroxide solution, PCN-602 also shows excellent stability in aqueous solutions of F –, CO 3 2–, and PO 4 3– ions. Interestingly, the Mn 3+-porphyrinic PCN-602, as a recyclable MOF catalyst, presents high catalytic activity for the C–H bond halogenation reaction in a basic system, significantly outperforming its homogeneous counterpart. For the first time, a porphyrinic MOFmore » was thus used as an efficient catalyst in a basic solution with coordinating anions, to the best of our knowledge.« less

  6. Dispersed catalysts for co-processing and coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockrath, B.; Parfitt, D.; Miller, R.

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second areamore » of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.« less

  7. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost converters are discussed.

  8. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    PubMed Central

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  9. Energy industry

    NASA Astrophysics Data System (ADS)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  10. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap

    PubMed Central

    Karunagaran, Ramesh; Coghlan, Campbell; Gulati, Karan; Tung, Tran Thanh; Doonan, Christian

    2018-01-01

    Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas) into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR) in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF) and carbon microspheres (N-CMS) synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism. PMID:29382103

  11. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap.

    PubMed

    Karunagaran, Ramesh; Coghlan, Campbell; Shearer, Cameron; Tran, Diana; Gulati, Karan; Tung, Tran Thanh; Doonan, Christian; Losic, Dusan

    2018-01-28

    Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas) into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR) in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF) and carbon microspheres (N-CMS) synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

  12. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.

    PubMed

    Madhavan, Nandita; Jones, Christopher W; Weck, Marcus

    2008-09-01

    Supported catalysis is emerging as a cornerstone of transition metal catalysis, as environmental awareness necessitates "green" methodologies and transition metal resources become scarcer and more expensive. Although these supported systems are quite useful, especially in their capacity for transition metal catalyst recycling and recovery, higher activity and selectivity have been elusive compared with nonsupported catalysts. This Account describes recent developments in polymer-supported metal-salen complexes, which often surpass nonsupported analogues in catalytic activity and selectivity, demonstrating the effectiveness of a systematic, logical approach to designing supported catalysts from a detailed understanding of the catalytic reaction mechanism. Over the past few decades, a large number of transition metal complex catalysts have been supported on a variety of materials ranging from polymers to mesoporous silica. In particular, soluble polymer supports are advantageous because of the development of controlled and living polymerization methods that are tolerant to a wide variety of functional groups, including controlled radical polymerizations and ring-opening metathesis polymerization. These methods allow for tuning the density and structure of the catalyst sites along the polymer chain, thereby enabling the development of structure-property relationships between a catalyst and its polymer support. The fine-tuning of the catalyst-support interface, in combination with a detailed understanding of catalytic reaction mechanisms, not only permits the generation of reusable and recyclable polymer-supported catalysts but also facilitates the design and realization of supported catalysts that are significantly more active and selective than their nonsupported counterparts. These superior supported catalysts are accessible through the optimization of four basic variables in their design: (i) polymer backbone rigidity, (ii) the nature of the linker, (iii) catalyst site density, and (iv) the nature of the catalyst attachment. Herein, we describe the design of polymer supports tuned to enhance the catalytic activity or decrease, or even eliminate, decomposition pathways of salen-based transition metal catalysts that follow either a monometallic or a bimetallic reaction mechanism. These findings result in the creation of some of the most active and selective salen catalysts in the literature.

  13. Next-Generation CBE: Designing Competency-Based Education for Underprepared College Learners

    ERIC Educational Resources Information Center

    Girardi, Amy; Crew, Rachel

    2016-01-01

    Competency-based education (CBE) is widely viewed as an innovative alternative to traditional higher education, yet most programs serve only a narrow slice of the postsecondary population. Few are intended for adults who need to boost basic skills in order to succeed in college coursework. However, if designed with the needs of a broader range of…

  14. Thermal and photo-thermal PROX reaction over Ag/SiO2 catalysts

    NASA Astrophysics Data System (ADS)

    Sabinas-Hernández, S. A.; Romero-Núñez, A.; Díaz, G.

    2018-02-01

    The effect of plasmonic excitation of Ag/SiO2 catalysts was studied in the preferential CO oxidation in presence of H2 (PROX) at low temperature. Catalysts with 5 wt% silver loading were prepared by wet impregnation in aqueous and basic media. TEM analysis indicates the presence of Ag nanoparticles with a broad particle size distribution which can achieve both, good PROX activity at low temperature and plasmonic interaction with visible light. Photo-assisted reaction at 35 °C enhance CO and O2 conversions; however, the greater improvement was found for O2 conversion. The selectivity towards CO2 decrease when reaction took place under photo-thermal conditions. Occurrence of different silver species and particle size changed after reaction as evidenced by DRS-UV-vis and TEM.

  15. Macrokinetics of carbon nanotubes synthesis by the chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Rukhov, Artem; Dyachkova, Tatyana; Tugolukov, Evgeny; Besperstova, Galina

    2017-11-01

    A new approach to studying and developing basic processes which take place on the surface of a metal catalyst during the thermal decomposition of carbonaceous substances in the carbon nanotubes synthesis by the chemical vapor deposition method was proposed. In addition, an analysis was made of the interrelationships between these thermal, diffusion, hydrodynamic and other synthesis processes. A strong effect of the catalyst regeneration stage on the stage of nanotube formation has been shown. Based on the developed approach, a mathematical model was elaborated. Comparison of the calculation and the experiment carried out with the NiO-MgO catalyst at propane flow rate of 50 mL/min (standard conditions) and ethanol flow rate 0.3 mL/min (liq.) has revealed a discrepancy of less than 10%.

  16. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate.

    PubMed

    Brett, Gemma L; Miedziak, Peter J; He, Qian; Knight, David W; Edwards, Jennifer K; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J

    2013-10-01

    The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. VQS (vapor-quasiliquid-solid, vapor-quasisolid-solid) mechanism presents a unified foundation for the syntheses of nanotubes, primarily carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    2017-09-01

    Nanotubes are synthesized almost entirely by metal-catalyst-free and metal-catalyst-mediated non-eutectic mechanism(s). An investigation has been carried out to understand the basics of this mechanism. Various possible chemical and physical processes involved in nanotube synthesis have been researched. Various components and attributes of nanotube synthesis have been evaluated. Phase transitions, alloy formation, porosity, carrier transport and the fundamentals underlying them have been examined. Nanoparticle surfaces conducive to nanotube synthesis have been examined. The role of surface treatment, which includes oxidation, oxygenation, acid treatment, plasma treatment, water treatment, sputtering, etc in creating such surfaces, has been investigated. The role of surface treatment and phase transitions as functions of temperature, pressure, ambient, contaminants, surface amorphicity, etc in creating diffusion paths for the diffusion of growth species for supersaturation and nucleation has been explored. Interdiffusion of catalyst and source materials, and hence exchange of materials, on the nanoparticle surface, have been elucidated. This exchange of materials on catalyst surface appears to add a new dimension to the synthesis kinetics. Integrated together, they reveal a general mechanism for probably all metal-catalyst-free and metal-catalyst-mediated non-eutectic nanotube synthesis. Available experiments strongly support the proposed mechanism; they suggest that this mechanism has a broad appeal.

  18. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry

    PubMed Central

    Li, Panpan; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-01

    CH4 as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH4 catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO2 methanation reaction is one of the potent technologies for CO2 valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research. PMID:29385064

  19. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst.

    PubMed

    Gu, Jing; Yan, Yong; Young, James L; Steirer, K Xerxes; Neale, Nathan R; Turner, John A

    2016-04-01

    Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ∼9 mA cm(-2) at a potential of 0 V versus RHE under 1-sun illumination at pH 13. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9 s(-1). Bare GaInP2 shows a rapid current decay, whereas the GaInP2-TiO2-cobaloxime electrode shows ≤5% loss over 20 min, comparable to a GaInP2-TiO2-Pt catalyst particle-modified interface. The activity and corrosion resistance of the GaInP2-TiO2-cobaloxime photocathode in basic solution is made possible by an atomic layer-deposited TiO2 and an attached cobaloxime catalyst.

  20. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  2. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst.

    PubMed

    Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak

    2014-03-01

    Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  4. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  5. Optimizing conditions for utilization of an H 2 oxidation catalyst with outer coordination sphere functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Arnab; Ginovska, Bojana; Raugei, Simone

    2016-01-01

    Hydrogenase enzymes use abundant metals such as nickel and iron to efficiently interconvert H2 and protons. In this work, we demonstrate that a Ni-based catalyst can exceed the rates of enzymes with only slightly higher overpotentials using [Ni(PCy2Narginine2)2]7, containing an amino acid-based outer coordination sphere. Under conditions of high pressure, elevated temperature, and aqueous acidic solutions, conditions similar to those found in fuel cells, this electrocatalyst exhibits the fastest H2 oxidation reported to date for any homogeneous catalyst (TOF 1.1×106 s-1) operating at a moderate overpotential (240 mV). Control experiments demonstrate that both the appended outer coordination sphere and watermore » are important to achieve this impressive catalytic performance. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy, Office of Science, Office of Basic Energy Sciences (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JASR) located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.« less

  6. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.

    PubMed

    Muratsugu, Satoshi; Kityakarn, Sutasinee; Wang, Fei; Ishiguro, Nozomu; Kamachi, Takashi; Yoshizawa, Kazunari; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki

    2015-10-14

    Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. Supported Ru3(CO)12 clusters on K-doped Al2O3 were converted stepwise to Ru nanoparticles, which catalyzed the selective hydrogenation of nitriles to the corresponding primary amines via initial decarbonylation, the nucleation of the Ru cluster core, and the growth of metallic Ru nanoparticles on the surface. As a result, small Ru nanoparticles, with an average diameter of less than 2 nm, were formed on the support and acted as efficient catalysts for nitrile hydrogenation at 343 K under hydrogen at atmospheric pressure. The structure and catalytic performance of Ru catalysts depended strongly on the type of oxide support, and the K-doped Al2O3 support acted as a good oxide for the selective nitrile hydrogenation without basic additives like ammonia. The activation of nitriles on the modelled Ru catalyst was also investigated by DFT calculations, and the adsorption structure of a nitrene-like intermediate, which was favourable for high primary amine selectivity, was the most stable structure on Ru compared with other intermediate structures.

  7. Effect of one step KOH activation and CaO modified carbon in transesterification reaction

    NASA Astrophysics Data System (ADS)

    Yacob, Abd Rahim; Zaki, Muhammad Azam Muhammad

    2017-11-01

    In this work, one step activation was introduced using potassium hydroxide (KOH) and calcium oxide (CaO) modified palm kernel shells. Various concentration of calcium oxide was used as catalyst while maintaining the same concentration of potassium hydroxide to activate and impregnate the palm kernel shell before calcined at 500°C for 5 hours. All the prepared samples were characterized using Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM). FTIR analysis of raw palm kernel shell showed the presence of various functional groups. However, after activation, most of the functional groups were eliminated. The basic strength of the prepared samples were determined using back titration method. The samples were then used as base heterogeneous catalyst for the transesterification reaction of rice bran oil with methanol. Analysis of the products were performed using Gas Chromatography Flame Ionization Detector (GC-FID) to calculate the percentage conversion of the biodiesel products. This study shows, as the percentage of one step activation potassium and calcium oxide doped carbon increases thus, the basic strength also increases followed by the increase in biodiesel production. Optimization study shows that the optimum biodiesel production was at 8 wt% catalyst loading, 9:1 methanol: oil molar ratio at 65°C and 6 hours which gives a conversion up to 95%.

  8. Relating FTS Catalyst Properties to Performance

    NASA Technical Reports Server (NTRS)

    Ma, Wenping; Ramana Rao Pendyala, Venkat; Gao, Pei; Jermwongratanachai, Thani; Jacobs, Gary; Davis, Burton H.

    2016-01-01

    During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of ?-Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature than in the unpromoted catalyst. Nevertheless, the Co clusters remained slightly larger, on average, in comparison with the unpromoted 15%Co/Al2O3 reference catalyst. None of the promoted catalysts (i.e., with Cd, In, or Sn) exhibited surface Co0 site densities higher than that of the unpromoted catalyst. In activity testing, the activities were even much lower than what was expected from the H2-TPD results. Two possible explanations were proposed: (1) the promoters may be located on the surfaces of cobalt particles, blocking surface Co0 but being able to desorb hydrogen or (2) the promoters may facilitate Co oxidation during FTS, as previously observed by Huffman and coworkers when K was added to cobalt catalysts.

  9. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less

  10. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    A new physical principle has emerged to produce record voltages and efficiencies in photovoltaic cells, 'luminescence extraction.' This is exemplified by the mantra 'a good solar cell should also be a good LED.' Luminescence extraction is the escape of internal photons out of the front surface of a solar cell. Basic thermodynamics says that the voltage boost should be related to concentration ratio, C, of a resource by ..delta..V=(kT/q)ln{C}. In light trapping, (i.e. when the solar cell is textured and has a perfect back mirror) the concentration ratio of photons C={4n2}, so one would expect a voltage boost of ..delta..V=kTmore » ln{4n2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open circuit voltage boost of ..delta..V=(kT/q)ln{n2}, ..delta..V=(kT/q)ln{2n2}, or ..delta..V=(kT/q)ln{4n2}? What is responsible for this voltage ambiguity ..delta..V=(kT/q)ln{4}=36mVolts? We show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness the voltage boost falls in between; ln{n2}q..delta..V/kT)<;ln{4n2}.« less

  11. Radio-Frequency-Controlled Urea Dosing for NH₃-SCR Catalysts: NH₃ Storage Influence to Catalyst Performance under Transient Conditions.

    PubMed

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-11-28

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.

  12. Stable carbonous catalyst particles and method for making and utilizing same

    DOEpatents

    Ganguli, Partha S.; Comolli, Alfred G.

    2005-06-14

    Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr.sub.2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m.sup.2 /g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations. This invention also includes method steps for making the stable carbonous catalyst particles having improved particle strength and catalytic activity, and processes for utilizing the active stable carbonous carbon-coated catalysts such as for syn-gas reactions in ebullated/fluidized bed reactors for producing alcohol products and Fischer-Tropsch synthesis liquid products.

  13. Water Purification

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.

  14. Greener routes to organics and nanomaterials: Sustainable applications of nano-catalysts (JA)

    EPA Science Inventory

    Sustainable synthetic activity involving alternate energy input and greener reaction medium in aqueous or under solvent-free conditions is summarized. This includes the synthesis of heterocyclic compounds, coupling reactions, and a variety of reactions catalyzed by basic water o...

  15. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate.

    PubMed

    Liu, Hu; Yu, Yongsheng; Yang, Weiwei; Lei, Wenjuan; Gao, Manyi; Guo, Shaojun

    2017-07-13

    Controlling the surface defects of nanocrystals is a new way of tuning/boosting their catalytic properties. Herein, we report networked PdAg nanowires (NWs) with high-density defects as catalytic hot spots for efficient catalytic dehydrogenation of formic acid (FA) and catalytic reduction of nitrates. The networked PdAg NWs exhibit composition-dependent catalytic activity for the dehydrogenation reaction of FA without any additive, with Pd 5 Ag 5 NWs exhibiting the highest activity. They also show good durability, reflected by the retention of their initial activity during the dehydrogenation reaction of FA even after five cycles. Their initial TOF is 419 h -1 at 60 °C in water solution, much higher than those of the most Pd-based catalysts with a support. Moreover, they can efficiently reduce nitrates to alleviate nitrate pollution in water (conversion yield >99%). This strategy opens up a new green synthetic technique to design support-free heterogeneous catalysts with high-density defects as catalytic hot spots for efficient dehydrogenation catalysis of FA to meet the requirement of fuel cell applications and catalytic reduction of nitrates in water polluted with nitrates.

  16. Novel mesoporous MnCo2O4 nanorods as oxygen reduction catalyst at neutral pH in microbial fuel cells.

    PubMed

    Kumar, Ravinder; Singh, Lakhveer; Wahid, Zularisam Ab; Mahapatra, Durga Madhab; Liu, Hong

    2018-04-01

    The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo 2 O 4 nanorods (MCON) and single metal oxide nanorods i.e. Co 3 O 4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co 2+ /Co 3+ and Mn 3+ /Mn 4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an i o of 6.01 A/m 2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (R d ), activation (R act ) and ohmic resistance (R ohm ) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m 2 that was ∼29% higher than CON. Published by Elsevier Ltd.

  17. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    PubMed

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microemulsion and Sol-Gel Synthesized ZrO₂-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural.

    PubMed

    Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J

    2017-12-18

    Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.

  19. Greener Pathways to Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts(South Korea)

    EPA Science Inventory

    Sustainable chemical synthetic activity involving alternate energy input, and greener reaction medium in aqueous or solvent-free conditions will be summarized for heterocyclic compounds, coupling reactions, and a variety of name reactions; these reactions are catalyzed by basic w...

  20. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the support. The support is not stable under the reaction conditions, and alternatives should be explored to develop a heterogeneous base catalyst for the production of FAME.

  1. Mitigation of CO Poisoning on Functionalized Pt/TiN(001) Surface: A Fundamental Study of the Next-Generation Fuel Cell Technologies

    DTIC Science & Technology

    2014-05-27

    TiN(100) surface (Pt/TiN) could be a promising catalyst for proton exchange membrane fuel cells ( PEM FCs). The adsorption properties of molecules on Pt...under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells , density functional theory, density functional...poisoning on functionalized Pt/TiN surfaces under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells

  2. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil.

    PubMed

    Tahvildari, Kambiz; Anaraki, Yasaman Naghavi; Fazaeli, Reza; Mirpanji, Sogol; Delrish, Elham

    2015-01-01

    Fossil fuels' pollution and their non-renewability have motivated the search for alternative fuels. Some common example of seed oils are sunflower oil, date seed oil, soy bean oil. For instance, soy methyl and soy-based biodiesel are the main biodiesel. Biodiesel is a clean diesel fuel that can be produced through transesterification reaction. Recycled cooking oil, on the other hand, is one of the inexpensive, easily available sources for producing biodiesel. This article is aimed at production of biodiesel via trans-esterification method, Nano CaO synthesis using sol-gel method, and Nano MgO synthesis using sol-gel self-combustion. Two catalysts' combination affecting the reaction's efficacy was also discussed. Optimum conditions for the reaction in the presence of Nano CaO are 1.5 % weight fracture, 1:7 alcohol to oil proportion and 6 h in which biodiesel and glycerin (the byproduct) are produced. Moreover, the optimum conditions for this reaction in the presence of Nano CaO and Nano MgO mixture are 3 % weight fracture (0.7 g of Nano CaO and 0.5 g of Nano MgO), 1:7 alcohols to oil proportion and 6 h. Nano MgO is not capable of catalyzing the transesterification by itself, because it has a much weaker basic affinity but when used with Nano CaO due to its surface structure, the basic properties increase and it becomes a proper base for the catalyst so that CaO contact surface increases and transesterification reaction yield significantly increases as well. This study investigates the repeatability of transesterification reaction in the presence of these Nano catalysts as well.

  3. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  4. In Situ Fabrication of PtCo Alloy Embedded in Nitrogen-Doped Graphene Nanopores as Synergistic Catalyst for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xing; Wang, Lei; Zhou, Hu

    A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPGmore » for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less

  5. Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kang, SungYeon; Kim, HuiJung; Chung, Yong-Ho

    2018-04-01

    Developments of high efficient materials for electrocatalyst are significant topics of numerous researches since a few decades. Recent global interests related with energy conversion and storage lead to the expansion of efforts to find cost-effective catalysts that can substitute conventional catalytic materials. Especially, in the field of fuel cell, novel materials for oxygen reduction reaction (ORR) have been noticed to overcome disadvantages of conventional platinum-based catalysts. Various approaching methods have been attempted to achieve low cost and high electrochemical activity comparable with Pt-based catalysts, including reducing Pt consumption by the formation of hybrid materials, Pt-based alloys, and not-Pt metal or carbon based materials. To enhance catalytic performance and stability, numerous methods such as structural modifications and complex formations with other functional materials are proposed, and they are basically based on well-defined and well-ordered catalytic active sites by exquisite control at nanoscale. In this review, we highlight the development of nano-structured catalytic materials for ORR based on recent findings, and discuss about an outlook for the direction of future researches.

  6. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons

    PubMed Central

    Takahashi, Masaki; Koizumi, Hiromu; Chun, Wang-Jae; Kori, Makoto; Imaoka, Takane; Yamamoto, Kimihisa

    2017-01-01

    The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nm in diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time. PMID:28782020

  7. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    Over the past few years, the application of the physical principle, i.e., 'luminescence extraction,' has produced record voltages and efficiencies in photovoltaic cells. Luminescence extraction is the use of optical design, such as a back mirror or textured surfaces, to help internal photons escape out of the front surface of a solar cell. The principle of luminescence extraction is exemplified by the mantra 'a good solar cell should also be a good LED.' Basic thermodynamics says that the voltage boost should be related to concentration ratio C of a resource by ΔV = (kT/q) ln{C}. In light trapping (i.e., when the solar cell is textured and has a perfect back mirror), the concentration ratio of photons C = {4n 2}; therefore, one would expect a voltage boost of ΔV = (kT/q) ln{4n 2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open-circuit voltage boost of ΔV = (kT/q) ln{n 2}, ΔV = (kT/q) ln{2 n 2}, or ΔV = (kT/q) ln{4 n 2}? What is responsible for this voltage ambiguity ΔV = (kT/q) ln{4}more » $${\\asymp}$$ 36 mV? Finally, we show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness, the voltage boost falls in between: ln{n 2} < (qΔV/kT) < ln{4n 2}.« less

  8. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE PAGES

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    2016-07-01

    Over the past few years, the application of the physical principle, i.e., 'luminescence extraction,' has produced record voltages and efficiencies in photovoltaic cells. Luminescence extraction is the use of optical design, such as a back mirror or textured surfaces, to help internal photons escape out of the front surface of a solar cell. The principle of luminescence extraction is exemplified by the mantra 'a good solar cell should also be a good LED.' Basic thermodynamics says that the voltage boost should be related to concentration ratio C of a resource by ΔV = (kT/q) ln{C}. In light trapping (i.e., when the solar cell is textured and has a perfect back mirror), the concentration ratio of photons C = {4n 2}; therefore, one would expect a voltage boost of ΔV = (kT/q) ln{4n 2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open-circuit voltage boost of ΔV = (kT/q) ln{n 2}, ΔV = (kT/q) ln{2 n 2}, or ΔV = (kT/q) ln{4 n 2}? What is responsible for this voltage ambiguity ΔV = (kT/q) ln{4}more » $${\\asymp}$$ 36 mV? Finally, we show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness, the voltage boost falls in between: ln{n 2} < (qΔV/kT) < ln{4n 2}.« less

  9. Ultrafast Light-Driven Substrate Expulsion from the Active Site of a Photoswitchable Catalyst.

    PubMed

    Pescher, Manuel D; van Wilderen, Luuk J G W; Grützner, Susanne; Slavov, Chavdar; Wachtveitl, Josef; Hecht, Stefan; Bredenbeck, Jens

    2017-09-25

    The photoswitchable piperidine general base catalyst is a prototype structure for light control of catalysis. Its azobenzene moiety moves sterically shielding groups to either protect or expose the active site, thereby changing the basicity and hydrogen-bonding affinity of the compound. The reversible switching dynamics of the catalyst is probed in the infrared spectral range by monitoring hydrogen bond (HB) formation between its active site and methanol (MeOH) as HB donor. Steady-state infrared (IR) and ultrafast IR and UV/Vis spectroscopies are used to uncover ultrafast expulsion of MeOH from the active site within a few picoseconds. Thus, the force generated by the azobenzene moiety even in the final phase of its isomerization is sufficient to break a strong HB within 3 ps and to shut down access to the active site. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of geopolymer from rice husk ash for biodiesel production of Calophyllum inophyllum seed oil

    NASA Astrophysics Data System (ADS)

    Saputra, E.; Nugraha, M. W.; Helwani, Z.; Olivia, M.; Wang, S.

    2018-04-01

    In this work, geopolymer was prepared from rice husk ash (RHA) made into sodium silicate then synthesized by reacting metakaolin, NaOH, and water. The catalyst was characterized using Scanning Electron Microscopy (SEM), Energy-dispersive X-Ray analysis (EDX), Brunaeur Emmet Teller (BET), and basic strength. Then, the catalyst used for transesterification of Calophyllum inophyllum seed oil in order to produce biodiesel. The variation of process variables conducted to assess the effect on the yield of biodiesel. The highest yield obtained 87.68% biodiesel with alkyl ester content 99.29%, density 866 kg/m3, viscosity 4.13 mm2/s, the acid number of 0.42 mg-KOH/g biodiesel and the flash point 140 °C. Generally, variations of %w/w catalyst provides a dominant influence on the yield response of biodiesel. The physicochemical properties of the produced biodiesel comply with ASTM standard specifications.

  11. Radio-Frequency-Controlled Urea Dosing for NH3-SCR Catalysts: NH3 Storage Influence to Catalyst Performance under Transient Conditions

    PubMed Central

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip. PMID:29182589

  12. Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.

    PubMed

    Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun

    2018-01-01

    Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    PubMed Central

    Perosa, Alvise; Guidi, Sandro; Cattelan, Lisa

    2016-01-01

    Summary The use of ionic liquids (ILs) as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic) activation of reactants. PMID:27829898

  14. AlNbO oxides as new supports for hydrocarbon oxidation II. Catalytic properties of VO sub x -grafted AlNbO oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.

    1992-09-01

    Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less

  15. Photo-degradation of basic green 1 and basic red 46 dyes in their binary solution by La2O3-Al2O3nanocomposite using first-order derivative spectra and experimental design methodology.

    PubMed

    Fahimirad, Bahareh; Asghari, Alireza; Rajabi, Maryam

    2017-05-15

    In this work, the lanthanum oxide-aluminum oxide (La 2 O 3 -Al 2 O 3 ) nanocomposite is introduced as an efficient photocatalyst for the photo-degradation of the dyes basic green 1 (BG1) and basic red 46 (BR46) in their binary aqueous solution under the UV light irradiation. The properties of this catalyst are determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and UV-visible spectrophotometry. The first-order derivative spectra are used for the simultaneous analysis of the dyes in their binary solution. The screening investigations indicate that five parameters including the catalyst dosage, concentration of the dyes, irradiation time, and solution pH have significant effects on the photo-degradation of the dyes. The effects of these variables together with their interactions in the photo-degradation of the dyes are studied using the Box-Behnken design (BBD). Under the optimum experimental conditions, obtained via the desirability function, the photo-catalytic activities of La 2 O 3 -Al 2 O 3 and pure Al 2 O 3 are also investigated. The results obtained show an enhancement in the photo-catalytic activity when La 2 O 3 nanoparticles are loaded on the surface of Al 2 O 3 nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Catalyst for Carbon Monoxide Oxidation

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the catalyst composition in an amount of about 5 to 25 (especially 7) percent by weight, SnO2 is present in an amount of about 30 to 40 (especially 40) percent by weight, and silica gel is present in an amount of 45 to 55 (especially 50) percent by weight. The composition of this catalyst was suggested by preliminary experiments in which a Pt/SnO2 catalyst was needed for bound water to enhance its activity. These experimental results suggested that if the water were bound to the surface, this water would enhance and prolong catalyst activity for long time periods. Because the catalyst is to be exposed to a laser gas mixture, and because a CO2 laser can tolerate only a very small amount of moisture, a hygroscopic support for the catalyst would provide the needed H2O into the gas. Silica gel is considered to be superior because of its property to chemisorb water on its surface over a wide range of moisture content.

  17. Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations.

    PubMed

    He, Chiyang; Zhu, Zaifang; Gu, Congying; Lu, Joann; Liu, Shaorong

    2012-03-02

    Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet and outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (∼3100 psi). We further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations

    DOE PAGES

    He, Chiyang; Zhu, Zaifang; Gu, Congying; ...

    2012-01-09

    Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet andmore » outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (~3100 psi). Here, we further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides.« less

  19. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-06-01

    D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design. Copyright © 2012 Wiley Periodicals, Inc.

  20. Couplings

    NASA Astrophysics Data System (ADS)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  1. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. An investigation of biodiesel production from wastes of seafood restaurants.

    PubMed

    El-Gendy, Nour Sh; Hamdy, A; Abu Amr, Salem S

    2014-01-01

    This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.

  3. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    PubMed

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Basic Research Plan.

    DTIC Science & Technology

    1996-05-01

    detection, catalysts for enhancing and controlling energetic reactions, synthesis of new compounds (e.g., narrow band-gap materials and non-linear...design for synthesis of advanced materials Fabricate porous lightweight and resilient structural materials with novel properties and uses Demonstrate...elements for 10 nm computer memory elements Demonstrate enhanced propellants and explosives with nanoparticle surface chemistry Demonstrate sensing of

  5. Navigating the Power Dynamics between Institutions and Their Communities

    ERIC Educational Resources Information Center

    White, Byron P.

    2009-01-01

    The author's career experiences--as an impartial observer of community building, as an advocate working from within urban communities, and as a catalyst working from the outside--have given him a unique perspective into the dynamics of institutional/community engagement. "Basically, they have left me with three overriding convictions. First,…

  6. National Science Foundation FY 2004 Performance and Accountability Report.

    ERIC Educational Resources Information Center

    National Science Foundation, 2004

    2004-01-01

    The information provided in this report documents that the National Science Foundation (NSF) is a well-managed and effective organization with an outstanding staff dedicated to ensuring that America's future is secure and prosperous. Despite its small size, NSF is widely recognized as the catalyst for the advancement of basic research in America.…

  7. Flexible Work Schedules. A Catalyst Position Paper.

    ERIC Educational Resources Information Center

    Catalyst, New York, NY.

    Seven basic forms of part-time employment that are particularly well-adapted to the needs and abilities of college-educated women who wish to take on less than a full-time career responsibility, have been identified and found capable of yielding greater productivity, reduced absenteeism, and lower turnover and training costs: (1) Job Pairing, in…

  8. Now in Action: The Board-Mentor Service

    ERIC Educational Resources Information Center

    Shark, Alan R.

    1977-01-01

    The AGB Board-Mentor Service provides member boards with on-campus workshops to assess their organization and performance. The basic role is to serve as a catalyst to engage boards in discussions of the results of a self-study and matters of special concern. Names of the 32 board-mentors are listed. (LBH)

  9. Electroreduction of carbon monoxide over a copper nanocube catalyst: Surface structure and pH dependence on selectivity

    DOE PAGES

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    2016-02-16

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  10. Synthesis of Fe3O4@P4VP@ZIF-8 core-shell microspheres and their application in a Knoevenagel condensation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Zongcheng; Yang, Fengxia; Luan, Yi; Shu, Xin; Ramella, Daniele

    2017-12-01

    In this work, a core-shell magnetic composite Fe3O4@P4VP@ZIF-8 microspheres were successfully designed and synthesized. A polymerization approach on the surface of pre-made Fe3O4 microspheres was employed for the synthesis of Fe3O4@P4VP. The zinc-derived Zeolite Imidazolate Framework (ZIF) shell was introduced through a layer-by-layer strategy. The obtained Fe3O4@P4VP@ZIF-8 core-shell structure was employed as an efficient Knoevenagel condensation catalyst for a variety of aldehydes. Furthermore, the inner P4VP layer also served as a basic additive in the condensation reaction process, while much less homogeneous basic additive was used. High catalytic reaction efficiency was achieved when the P4VP layer was utilized in combination with a Lewis acidity bearing ZIF-8 layer. The Fe3O4@P4VP@ZIF-8 catalyst was tested for recyclability and no drop in the catalytic activity was observed after more than five cycles.

  11. Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Macia, Patricia; Dutta, Arnab; Lubitz, Wolfgang

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we’ve come in mimicking the impressive enzymatic performance. Here we directly compare the catalytic properties of the [Ni(PCy2NGly2)2]2+ complex with the [NiFe]-hydrogenase from Desulfobivrio vulgaris Miyazaki F (DvMF) immobilized to a functionalized electrode under identical conditions. At pH=7, the enzyme has higher performance in both activity and overpotential, and is more stable, whilemore » at low pH, the molecular catalyst outperforms the enzyme in all respects. The Ni complex also has increased tolerance to CO. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bioinspired complexes in fuel cells. AD and WJS acknowledge the Office of Science Early Career Research Program through the US Department of Energy (US DOE), Office of Science, Office of Basic Energy Sciences (BES), and Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE.« less

  12. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    NASA Astrophysics Data System (ADS)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  13. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells.

    PubMed

    Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2017-08-24

    Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    PubMed

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  15. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions

    PubMed Central

    2016-01-01

    Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts. PMID:27689804

  16. The electron Echo 6 mechanical deployment systems

    NASA Technical Reports Server (NTRS)

    Meyers, S. C.; Steffen, J. E.; Malcolm, P. R.; Winckler, J. R.

    1984-01-01

    The Echo 6 sounding rocket payload was flown on a Terrier boosted Black Brant vehicle on March 30, 1983. The experiment requirements resulted in the new design of a rocket propelled Throw Away Detector System (TADS) with onboard Doppler radar, a free-flyer forward experiment designated the Plasma Diagnostic Package (PDP), and numerous other basic systems. The design, developmental testing, and flight preparations of the payload and the mechanical deployment systems are described.

  17. Effectiveness of the BOOST-A™ online transition planning program for adolescents on the autism spectrum: a quasi-randomized controlled trial.

    PubMed

    Hatfield, Megan; Falkmer, Marita; Falkmer, Torbjorn; Ciccarelli, Marina

    2017-01-01

    The majority of existing transition planning programs are focused on people with a disability in general and may not meet the specific need of adolescents on the autism spectrum. In addition, these interventions focus on specific skills (e.g. job readiness or self-determination) rather than the overall transition planning process and there are methodological limitations to many of the studies determining their effectiveness. The Better OutcOmes & Successful Transitions for Autism (BOOST-A™) is an online program that supports adolescents on the autism spectrum to prepare for leaving school. This study aimed to determine the effectiveness of the BOOST-A™ in enhancing self-determination. A quasi-randomized controlled trial was conducted with adolescents on the autism spectrum enrolled in years 8 to 11 in Australian schools (N = 94). Participants had to have basic computer skills and the ability to write at a year 5 reading level. Participants were allocated to a control (n = 45) or intervention (n = 49) group and participants were blinded to the trial hypothesis. The intervention group used the BOOST-A™ for 12 months, while the control group participated in regular practice. Outcomes included self-determination, career planning and exploration, quality of life, environmental support and domain specific self-determination. Data were collected from parents and adolescents. There were no significant differences in overall self-determination between groups. Results indicated significant differences in favor of the intervention group in three areas: opportunity for self-determination at home as reported by parents; career exploration as reported by parents and adolescents; and transition-specific self-determination as reported by parents. Results provide preliminary evidence that the BOOST-A™ can enhance some career-readiness outcomes. Lack of significant outcomes related to self-determination at school and career planning may be due to the lack of face-to-face training and parents being the primary contacts in the study. Further research is needed to determine effectiveness of the BOOST-A™ related to post-secondary education and employment. Trial registration #ACTRN12615000119594.

  18. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.

    PubMed

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-02-15

    This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid-solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH=7 with a 2:1 liquid-solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03-0.1 min(-1)) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH=7.0 compared with ozonation alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Development of Pollution Prevention Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polle, Juergen; Sanchez-Delgado, Roberto

    2013-12-30

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies.more » Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts for reactions of relevance to the manufacture of cleaner fossil fuels and biodiesel, and to hydrogen storage in organic liquids. Specifically the catalysts are highly active in the hydrogenation of aromatic and heteroaromatic components of fossil fuels, the reduction of unsaturated C=C bonds in biodiesel, and the dehydrogenation of nitrogen heterocycles. In the course of our studies we identified a novel dual-site substrate-dependent hydrogenation mechanism that explains the activity and selectivity data obtained and the resistance of the new catalysts to poisoning. These results represent an important advance in basic catalytic science, regarding design and synthesis and reaction mechanisms. Additionally, this project allowed the enhancement of the laboratory facilities in the Chemistry Department of Brooklyn College for catalysis and energy research, and served as an excellent vehicle for the training of several young researchers at the undergraduate, graduate and postdoctoral level, to join the national scientific workforce.« less

  20. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen. Electronic supplementary information (ESI) available: Details in experimental and further characterization. See DOI: 10.1039/c3nr05604j

  1. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    NASA Astrophysics Data System (ADS)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  2. Activities of Combined TiO2 Semiconductor Nanocatalysts Under Solar Light on the Reduction of CO2.

    PubMed

    Liu, Hongfang; Dao, Anh Quang; Fu, Chaoyang

    2016-04-01

    The materials based on TiO2 semiconductors are a promising option for electro-photocatalytic systems working as solar energy low-carbon fuels exchanger. These materials' structures are modified by doping metals and metal oxides, by metal sulfides sensitization, or by graphene supported membrane, enhancing their catalytic activity. The basic phenomenon of CO2 reduction to CH4 on Pd modified TiO2 under UV irradiation could be enhanced by Pd, or RuO2 co-doped TiO2. Sensitization with metal sulfide QDs is effective by moving of photo-excited electron from QDs to TiO2 particles. Based on characteristics of the catalysts various combinations of catalysts are proposed in order to creat catalyst systems with good CO2 reduction efficiency. From this critical review of the CO2 reduction to organic compounds by converting solar light and CO2 to storable fuels it is clear that more studies are still attractive and needed.

  3. Chapter 19: Catalysis by Metal Carbides and Nitrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaidle, Joshua A; Nash, Connor P; Yung, Matthew M

    Early transition metal carbides and nitrides (ETMCNs), materials in which carbon or nitrogen occupies interstitial sites within a parent metal lattice, possess unique physical and chemical properties that motivate their use as catalysts. Specifically, these materials possess multiple types of catalytic sites, including metallic, acidic, and basic sites, and as such, exhibit reactivities that differ from their parent metals. Moreover, their surfaces are dynamic under reaction conditions. This chapter reviews recent (since 2010) experimental and computational investigations into the catalytic properties of ETMCN materials for applications including biomass conversion, syngas and CO2 upgrading, petroleum and natural gas refining, and electrocatalyticmore » energy conversion, energy storage, and chemicals production, and attempts to link catalyst performance to active site identity/surface structure in order to elucidate the present level of understanding of structure-function relationships for these materials. The chapter concludes with a perspective on leveraging the unique properties of these materials to design and develop improved catalysts through a dedicated, multidisciplinary effort.« less

  4. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  5. Self-assembled dopamine nanolayers wrapped carbon nanotubes as carbon-carbon bi-functional nanocatalyst for highly efficient oxygen reduction reaction and antiviral drug monitoring

    NASA Astrophysics Data System (ADS)

    Khalafallah, Diab; Akhtar, Naeem; Alothman, Othman Y.; Fouad, H.; Abdelrazek khalil, Khalil

    2017-09-01

    Oxygen reduction reaction (ORR) catalysts are the heart of eco-friendly energy resources particularly low temperature fuel cells. Although valuable efforts have been devoted to synthesize high performance catalysts for ORR, considerable challenges are extremely desirable in the development of energy technologies. Herein, we report a simple self-polymerization method to build a thin film of dopamine along the tubular nanostructures of multi-walled carbon nanotubes (CNT) in a weak alkaline solution. The dopamine@CNT hybrid (denoted as DA@CNT) reveals an enhanced electrocatalytic activity towards ORR with highly positive onset potential and cathodic current as a result of their outstanding features of longitudinal mesoporous structure, high surface area, and ornamentation of DA layers with nitrogen moieties, which enable fast electron transport and fully exposed electroactive sites. Impressively, the as-obtained hybrid afford remarkable electrochemical durability for prolonged test time of 60,000 s compared to benchmark Pt/C (20 wt%) catalyst. Furthermore, the developed DA@CNT electrode was successfully applied to access the quality of antiviral drug named Valacyclovir (VCR). The DA@CNT electrode shows enhanced sensing performance in terms of large linear range (3-75 nM), low limit of detection (2.55 nM) than CNT based electrode, indicating the effectiveness of the DA coating. Interestingly, the synergetic effect of nanostructured DA and CNT can significantly boost the electronic configuration and exposure level of active species for ORR and biomolecule recognition. Therefore, the existing carbon-based porous electrocatalyst may find numerous translational applications as attractive alternative to noble metals in polymer electrolyte membrane fuel cells and quality control assessment of pharmaceutical and therapeutic drugs.

  6. Application of adaptive boosting to EP-derived multilayer feed-forward neural networks (MLFN) to improve benign/malignant breast cancer classification

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Masters, Timothy D.; Lo, Joseph Y.; McKee, Dan

    2001-07-01

    A new neural network technology was developed for improving the benign/malignant diagnosis of breast cancer using mammogram findings. A new paradigm, Adaptive Boosting (AB), uses a markedly different theory in solutioning Computational Intelligence (CI) problems. AB, a new machine learning paradigm, focuses on finding weak learning algorithm(s) that initially need to provide slightly better than random performance (i.e., approximately 55%) when processing a mammogram training set. Then, by successive development of additional architectures (using the mammogram training set), the adaptive boosting process improves the performance of the basic Evolutionary Programming derived neural network architectures. The results of these several EP-derived hybrid architectures are then intelligently combined and tested using a similar validation mammogram data set. Optimization focused on improving specificity and positive predictive value at very high sensitivities, where an analysis of the performance of the hybrid would be most meaningful. Using the DUKE mammogram database of 500 biopsy proven samples, on average this hybrid was able to achieve (under statistical 5-fold cross-validation) a specificity of 48.3% and a positive predictive value (PPV) of 51.8% while maintaining 100% sensitivity. At 97% sensitivity, a specificity of 56.6% and a PPV of 55.8% were obtained.

  7. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  8. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGES

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  9. Ten-year results of accelerated hypofractionated adjuvant whole-breast radiation with concomitant boost to the lumpectomy cavity after conserving surgery for early breast cancer.

    PubMed

    Cante, Domenico; Petrucci, Edoardo; Sciacero, Piera; Piva, Cristina; Ferrario, Silvia; Bagnera, Silvia; Patania, Sebastiano; Mondini, Guido; Pasquino, Massimo; Casanova Borca, Valeria; Vellani, Giorgio; La Porta, Maria Rosa; Franco, Pierfrancesco

    2017-09-01

    Accelerated hypofractionated whole-breast radiotherapy (WBRT) is considered a standard therapeutic option for early breast cancer (EBC) in the postoperative setting after breast conservation (BCS). A boost to the lumpectomy cavity may further increase local control. We herein report on the 10-year results of a series of EBC patients treated after BCS with hypofractionated WBRT with a concomitant photon boost to the surgical bed over 4 weeks. Between 2005 and 2007, 178 EBC patients were treated with a basic course of radiotherapy consisting of 45 Gy to the whole breast in 20 fractions (2.25 Gy daily) with an additional boost dose of 0.25 Gy delivered concomitantly to the lumpectomy cavity, for an additional dose of 5 Gy. Median follow-up period was 117 months. At 10-year, overall, cancer-specific, disease-free survival and local control were 92.2% (95% CI 88.7-93.4%), 99.2% (95% CI 96.7-99.7%), 95.5% (95% CI 91.2-97.2%) and 97.3% (95% CI 94.5-98.9%), respectively. Only eight patients recurred. Four in-breast recurrences, two axillary node relapses and two metastatic localizations were observed. Fourteen patients died during the observation period due to other causes while breast cancer-related deaths were eight. At last follow-up, ≥G2 fibrosis and telangiectasia were seen in 7% and 5% of patients. No major lung and heart toxicities were observed. Cosmetic results were excellent/good in 87.8% of patients and fair/poor in 12.2%. Hypofractionated WBRT with concomitant boost to the lumpectomy cavity after BCS in EBC led to consistent clinical results at 10 years. Hence, it can be considered a valid treatment option in this setting.

  10. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has been designed for the power factor correction, and the simulation results show that the power factor has been improved.

  11. Community Participation in Quality Assurance (CPQA): A Catalyst in Enhancing Quality Basic Education Service Delivery in Nigeria

    ERIC Educational Resources Information Center

    Sofoluwe, Abayomi Olumade; Akinsolu, Abiodun Olatoun

    2015-01-01

    Nigeria, like most developing countries is having challenges in reaching the Millennium Development Goals, Education for All and national education goals within the globally agreed timeframe of 2015. While the widespread progress in enrolment figure is laudable due to social demand for it, there are persistent challenges of exclusion,…

  12. QCD for Postgraduates (5/5)

    ScienceCinema

    None

    2018-05-14

    We will introduce and discuss in some detail the two main classes of jets: cone type and sequential-recombination type. We will discuss their basic properties, as well as more advanced concepts such as jet substructure, jet filtering, ways of optimizing the jet radius, ways of defining the areas of jets, and of establishing the quality measure of the jet-algorithm in terms of discriminating power in specific searches. Finally we will discuss applications for Higgs searches involving boosted particles.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, A.

    Cyclohexane buyers, hit by a string of US plant closures, are breathing a sigh of relief at signs of an upswing in capacity. Phillips Petroleum has assured the future of a cyclohexane plant at its Guayama, PR site, while Kerr-McGee Chemical has confirmed it will acquire a mothballed 30-million gal/year unit from Unocal and restart it. Phillips deal is connected to an agreement to license Chevron Chemical's Aromax catalytic reforming technology for its Guayama refinery. The technology, which will cut the company's aromatics production costs, secures the future of Phillips petrochemical operations at the site, including the downstream 90-million gal/yearmore » cyclohexane plant. The Chevron process is said to boost yields of benzene, toluene, and xylene above those of conventional reforming processes. It relies on a zeolite catalyst to convert light paraffins into aromatics; conventional reforming converts higher-valued aromatic naphthas.« less

  14. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.

    PubMed

    Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen

    2016-11-16

    For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.

  15. Direct synthesis of acid-base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade reactions.

    PubMed

    Shang, Fanpeng; Sun, Jianrui; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-03-01

    A series of efficient acid-base bifunctionalized hexagonal mesoporous silica (HMS) catalysts contained aminopropyl and propanesulfonic acid have been synthesized through a simple co-condensation by protection of amino group. The results of small-angle XRD, TEM, and N(2) adsorption-desorption measurements show that the resultant materials have mesoscopic structures. X-ray photoelectron spectroscopies, elemental analysis (EA), back titration, (29)Si NMR and (13)C NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The resultant catalysts exhibit excellent acid-basic properties, which make them possess high activity for one-pot deacetalization-Knoevenagel and deacetalization-nitroaldol (Henry) reactions. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Construction of High Activity Titanium Dioxide Crystal Surface Heterostructures and Characterization of Its Basic Properties

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiao; Li, DanQi; Shen, Tingting; Lu, Cheng; Sun, Jing; Wang, Xikui

    2018-01-01

    Heterogeneous photocatalytic materials, which combine the advantages of photocatalytic materials and heterojunction, have been developed rapidly in the field of environmental pollution control. In this paper, TiO2 surface heterojunction catalysts with different catalytic activity were prepared by controlling the amount of HF, and their XRD characterization was also carried out. In addition, the optimum amount of HF was determined by photocatalytic degradation of simulated dye wastewater by methylene blue solution. And the optimal amount of catalyst and the optimal pH reaction conditions for degradation experiments were used to screen the highly reactive titania surface heterojunction system and its optimum application conditions. It provides the possibility of application in the degradation of industrial wastewater and environmental treatment.

  17. Ambient-temperature NO oxidation over amorphous CrOx-ZrO 2 mixed oxide catalysts: Significant promoting effect of ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Guo, Yanglong; Gao, Feng

    2017-03-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures are synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. Over best performing catalysts, 100% NO conversion can be maintained up to 30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure is found to be critical for these catalysts to maintain high activity and durability. Cr/M (M=Co, Femore » and Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature are important criteria for the synthesis of the highly active catalysts. This work was supported by National Basic Research Program of China (2013CB933200), National Natural Science Foundation of China (21577035, 21577034), Commission of Science and Technology of Shanghai Municipality (15DZ1205305) and 111 Project (B08021). Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle. FG and CHFP are supported by the U.S. DOE/Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.

    Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how densitymore » functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.« less

  19. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  20. The Role of Mg(OH)2 in the So-Called "Base-Free" Oxidation of Glycerol with AuPd Catalysts.

    PubMed

    Fu, Jile; He, Qian; Miedziak, Peter J; Brett, Gemma L; Huang, Xiaoyang; Pattisson, Samuel; Douthwaite, Mark; Hutchings, Graham J

    2018-02-16

    Mg(OH) 2 - and Mg(OH) 2 -containing materials can provide excellent performance as supports for AuPd nanoparticles for the oxidation of glycerol in the absence of base, which is considered to be a result of additional basic sites on the surface of the support. However, its influence on the reaction solution is not generally discussed. In this paper, we examine the relationship between the basic Mg(OH) 2 support and AuPd nanoparticles in detail using four types of catalyst. For these reactions, the physical interaction between Mg(OH) 2 and AuPd was adjusted. It was found that the activity of the AuPd nanoparticles increased with the amount of Mg(OH) 2 added under base-free conditions, regardless of its interaction with the noble metals. In order to investigate how Mg(OH) 2 affected the glycerol oxidation, detailed information about the performance of AuPd/Mg(OH) 2 , physically mixed (AuPd/C+Mg(OH) 2 ) and (AuPd/C+NaHCO 3 ) was obtained and compared. Furthermore, NaOH and Mg(OH) 2 were added during the reaction using AuPd/C. All these results indicate that the distinctive and outstanding performance of Mg(OH) 2 supported catalysts in base-free condition is in fact directly related to its ability to affect the pH during the reaction and as such, assists with the initial activation of the primary alcohol, which is considered to be the rate determining step in the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation, characterization and catalyst application of ternary interpenetrating networks of poly 4-methyl vinyl pyridinium hydroxide-SiO{sub 2}-Al{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalbasi, Roozbeh Javad, E-mail: rkalbasi@iaush.ac.ir; Kolahdoozan, Majid, E-mail: kolahdoozan@iaush.ac.ir; Vanani, Sedigheh Mozafari

    2011-08-15

    In this work, Al{sub 2}O{sub 3} was mixed with SiO{sub 2} and poly 4-vinylpyridine by the sol-gel method in order to make a composite which is used as a heterogeneous basic catalyst for Knoevenagel condensation reaction. The physical and chemical properties of the composite catalyst were investigated by XRD, FT-IR, TG, BET and SEM techniques. The catalytic performance of each material was determined for the Knoevenagel condensation reaction between carbonyl compound and malononitrile. The reactions were performed in solvent-free conditions and the product was obtained in high yield and purity after a simple work-up. The effects of the amount ofmore » catalyst, amount of monomer for the synthesis of composite and recyclability of the heterogeneous composite were investigated. The composite catalyst used for this synthetically useful transformation showed considerable level of reusability besides very good activity. - Graphical abstract: In this paper, we report the synthesis of poly 4-methyl vinyl pyridinium hydroxide-SiO{sub 2}-Al{sub 2}O{sub 3}. The novelty of this procedure is at easy preparation together with using inexpensive materials. Highlights: > P4MVPH-SiO{sub 2}-Al{sub 2}O{sub 3} composite was prepared as a novel polymer-inorganic hybrid. > The composite was prepared without using any bridged organosilanes compound. > SEM photograph showed that the composite is completely uniform. > P4MVPH-SiO{sub 2}-Al{sub 2}O{sub 3} could behave as a recyclable catalyst for Knoevenagel reaction.« less

  2. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts.

    PubMed

    Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Scown, Corinne D; Kim, Daeyoup; Ho, Christopher R; Bell, Alexis T

    2016-06-22

    1,3-Butadiene (1,3-BD) is a high-value chemical intermediate used mainly as a monomer for the production of synthetic rubbers. The ability to source 1,3-BD from biomass is of considerable current interest because it offers the potential to reduce the life-cycle greenhouse gas (GHG) impact associated with 1,3-BD production from petroleum-derived naphtha. Herein, we report the development and investigation of a new catalyst and process for the one-step conversion of ethanol to 1,3-BD. The catalyst is prepared by the incipient impregnation of magnesium oxide onto a silica support followed by the deposition of Au nanoparticles by deposition-precipitation. The resulting Au/MgO-SiO2 catalyst exhibits a high activity and selectivity to 1,3-BD and low selectivities to diethyl ether, ethylene, and butenes. Detailed characterization of the catalyst shows that the desirable activity and selectivity of Au/MgO-SiO2 are a consequence of a critical balance between the acidic-basic sites associated with a magnesium silicate hydrate phase and the redox properties of the Au nanoparticles. A process for the conversion of ethanol to 1,3-BD, which uses our catalyst, is proposed and analyzed to determine the life-cycle GHG impact of the production of this product from biomass-derived ethanol. We show that 1,3-BD produced by our process can reduce GHG emissions by as much as 155 % relative to the conventional petroleum-based production of 1,3-BD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    PubMed

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW -1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  4. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  5. NiXantphos: a deprotonatable ligand for room-temperature palladium-catalyzed cross-couplings of aryl chlorides.

    PubMed

    Zhang, Jiadi; Bellomo, Ana; Trongsiriwat, Nisalak; Jia, Tiezheng; Carroll, Patrick J; Dreher, Spencer D; Tudge, Matthew T; Yin, Haolin; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J

    2014-04-30

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd-NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp(2))-H arylations. The advantages and importance of the Pd-NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides.

  6. NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides

    PubMed Central

    2015-01-01

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd–NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp2)–H arylations. The advantages and importance of the Pd–NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides. PMID:24745758

  7. Metal-ligand cooperation in catalytic intramolecular hydroamination: a computational study of iridium-pyrazolato cooperative activation of aminoalkenes.

    PubMed

    Tobisch, Sven

    2012-06-04

    The present study comprehensively explores diverse mechanistic pathways for intramolecular hydroamination of prototype 2,2-dimethyl-4-penten-1-amine by Cp*Ir chloropyrazole (1; Cp*=pentamethylcyclopentadienyl) in the presence of KOtBu base with the aid of density functional theory (DFT) calculations. The most accessible mechanistic pathway for catalytic turnover commences from Cp*Ir pyrazolato (Pz) substrate adduct 2⋅S, representing the catalytically competent compound and proceeds via initial electrophilic activation of the olefin C=C bond by the metal centre. It entails 1) facile and reversible anti nucleophilic amine attack on the iridium-olefin linkage; 2) Ir-C bond protonolysis via stepwise transfer of the ammonium N-H proton at the zwitterionic [Cp*IrPz-alkyl] intermediate onto the metal that is linked to turnover-limiting, reductive, cycloamine elimination commencing from a high-energy, metastable [Cp*IrPz-hydrido-alkyl] species; and 3) subsequent facile cycloamine liberation to regenerate the active catalyst species. The amine-iridium bound 2 a⋅S likely corresponds to the catalyst resting state and the catalytic reaction is expected to proceed with a significant primary kinetic isotope. This study unveils the vital role of a supportive hydrogen-bonded network involving suitably aligned β-basic pyrazolato and cycloamido moieties together with an external amine molecule in facilitating metal protonation and reductive elimination. Cooperative hydrogen bonding thus appears pivotal for effective catalysis. The mechanistic scenario is consonant with catalyst performance data and furthermore accounts for the variation in performance for [Cp*IrPz] compounds featuring a β- or γ-basic pyrazolato unit. As far as the route that involves amine N-H bond activation is concerned, a thus far undocumented pathway for concerted amidoalkene → cycloamine conversion through olefin protonation by the pyrazole N-H concurrent with N-C ring closure is disclosed as a favourable scenario. Although not practicable in the present system, this pathway describes a novel mechanistic variant in late transition metal-ligand bifunctional hydroamination catalysis that can perhaps be viable for tailored catalyst designs. The insights revealed herein concerning the operative mechanism and the structure-reactivity relationships will likely govern the rational design of late transition metal-ligand bifunctional catalysts and facilitate further conceptual advances in the area. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.

    Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less

  9. One-Pot Synthesis of Mesoporous Ni-Ti-Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol.

    PubMed

    Gonçalves, Alexandre A S; Faustino, Patrícia B; Assaf, José M; Jaroniec, Mietek

    2017-02-22

    One-pot synthesis of nanostructured ternary oxides of Ni, Al, and Ti was designed and performed via evaporation induced self-assembly (EISA). For the purpose of comparison, analogous oxides were also prepared by the impregnation method. The resulting materials were applied in two catalytic reactions: steam reforming of ethanol (SRE) for H 2 production (subjected to prior activation with H 2 ) and ethanol dehydration (ED; used without prior activation), to in situ analyze carbon accumulation by ethylene depletion when ethanol interacts with acidic sites present on the support. Modification of Ni-Al mixed oxides with titania was shown to have several benefits. CO 2 , NH 3 , and propylamine sorption data indicate a decrease in the strength of acidic and basic sites after addition of titania, which in turn slowed down the carbon accumulation during the ED reaction. These changes in interactions between ethanol and byproducts with the support led to different reaction pathways in SRE, indicating that the catalysts obtained by EISA with titania addition showed higher ethylene selectivity and CO 2 /CO ratios. The opposite was observed for the impregnated catalysts, which were less coke-stable during ED reactions and showed no ethylene selectivity in SRE. Carbon formed during ED reactions was shown to be thermodynamically less favorable and easier to decompose in the presence of titania. All catalysts studied displayed similar and high selectivities (∼80%) and yields (∼5.3 mol H2 /mol ethanol ) toward H 2 , which place them among the most active and selective catalysts for SRE. These results indicate the importance of tailoring the support surface acidity to achieve high reforming performance and higher selectivity toward SRE, one of the key processes to produce cleaner and efficient fuels. For an efficient reforming process, the yield of byproducts is low but still they affect the catalyst stability in the long-run, thus this work may impact future studies toward development of near-zero coke catalysts.

  10. Interactions of platinum metals and their complexes in biological systems.

    PubMed Central

    LeRoy, A F

    1975-01-01

    Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed. PMID:50943

  11. Role of basic and acidic centers of MgO and modified MgO in catalytic transfer hydrogenation of ketones studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Szöllösi, György; Bartók, Mihály

    1999-05-01

    In this study our aim was to identify the active sites and the surface species responsible for deactivation of MgO during catalytic transfer hydrogenations (CTH) of ketones using alcohols as hydrogen donors. Our previous studies showed that deactivation of MgO could be prevented by previous treatment with chloromethanes. Therefore the surface species formed during the reaction were studied before and after treatment with chloroform or chloroform- d by in situ infrared spectroscopy (IR). As a result, it was concluded that the reaction requires the presence of surface basic and acidic centers. The presence of Lewis acid centers was not necessary, the reaction could proceed on weakly acidic surface Brönsted sites, as the alterations in intensity and position of the ν(OH) bands indicated. Modification with chloroform resulted also in the generation of surface OH groups with a proper acidity for the reaction. The shift in carbonyl vibrations led us to the conclusion that Lewis acid and base centers were responsible for the catalyst poisoning, so covering these acid sites by Cl - led to a stable catalyst.

  12. Covariant n/sup 2/-plet mass formulas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, A.

    Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a covariant n/sup 2/-plet mass operator. This operator is built as a scalar matrix in the (n;n*) representation, and its SU(n) breaking parameters are identified as intrinsic boost ones. Its basic properties are: covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n/sup 2/-1, 1 mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same generalized mass formula.

  13. Detecting opinion spams through supervised boosting approach.

    PubMed

    Hazim, Mohamad; Anuar, Nor Badrul; Ab Razak, Mohd Faizal; Abdullah, Nor Aniza

    2018-01-01

    Product reviews are the individual's opinions, judgement or belief about a certain product or service provided by certain companies. Such reviews serve as guides for these companies to plan and monitor their business ventures in terms of increasing productivity or enhancing their product/service qualities. Product reviews can also increase business profits by convincing future customers about the products which they have interest in. In the mobile application marketplace such as Google Playstore, reviews and star ratings are used as indicators of the application quality. However, among all these reviews, hereby also known as opinions, spams also exist, to disrupt the online business balance. Previous studies used the time series and neural network approach (which require a lot of computational power) to detect these opinion spams. However, the detection performance can be restricted in terms of accuracy because the approach focusses on basic, discrete and document level features only thereby, projecting little statistical relationships. Aiming to improve the detection of opinion spams in mobile application marketplace, this study proposes using statistical based features that are modelled through the supervised boosting approach such as the Extreme Gradient Boost (XGBoost) and the Generalized Boosted Regression Model (GBM) to evaluate two multilingual datasets (i.e. English and Malay language). From the evaluation done, it was found that the XGBoost is most suitable for detecting opinion spams in the English dataset while the GBM Gaussian is most suitable for the Malay dataset. The comparative analysis also indicates that the implementation of the proposed statistical based features had achieved a detection accuracy rate of 87.43 per cent on the English dataset and 86.13 per cent on the Malay dataset.

  14. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    PubMed

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  15. Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Ma, Zhen; Chen, Jianmin; Tang, Xingfu

    2017-02-21

    The involvement of a great amount of active oxygen species is a crucial requirement for catalytic oxidation of benzene, because complete mineralization of one benzene molecule needs 15 oxygen atoms. Here, we disperse single silver adatoms on nanostructured hollandite manganese oxide (HMO) surfaces by using a thermal diffusion method. The single-atom silver catalyst (Ag 1 /HMO) shows high catalytic activity in benzene oxidation, and 100% conversion is achieved at 220 °C at a high space velocity of 23 000 h -1 . The Mars-van Krevelen mechanism is valid in our case as the reaction orders for both benzene and O 2 approach one, according to reaction kinetics data. Data from H 2 temperature-programmed reduction and O core-level X-ray photoelectron spectra (XPS) reveal that Ag 1 /HMO possesses a great amount of active surface lattice oxygen available for benzene oxidation. Valence-band XPS and density functional theoretical calculations demonstrate that the single Ag adatoms have the upshifted 4d orbitals, thus facilitating the activation of gaseous oxygen. Therefore, the excellent activation abilities of Ag 1 /HMO toward both surface lattice oxygen and gaseous oxygen account for its high catalytic activity in benzene oxidation. This work may assist with the rational design of efficient metal-oxide catalysts for the abatement of volatile organic compounds such as benzene.

  16. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    NASA Astrophysics Data System (ADS)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.

  17. A Predictive Model of Daily Seismic Activity Induced by Mining, Developed with Data Mining Methods

    NASA Astrophysics Data System (ADS)

    Jakubowski, Jacek

    2014-12-01

    The article presents the development and evaluation of a predictive classification model of daily seismic energy emissions induced by longwall mining in sector XVI of the Piast coal mine in Poland. The model uses data on tremor energy, basic characteristics of the longwall face and mined output in this sector over the period from July 1987 to March 2011. The predicted binary variable is the occurrence of a daily sum of tremor seismic energies in a longwall that is greater than or equal to the threshold value of 105 J. Three data mining analytical methods were applied: logistic regression,neural networks, and stochastic gradient boosted trees. The boosted trees model was chosen as the best for the purposes of the prediction. The validation sample results showed its good predictive capability, taking the complex nature of the phenomenon into account. This may indicate the applied model's suitability for a sequential, short-term prediction of mining induced seismic activity.

  18. Beliefs about willpower determine the impact of glucose on self-control.

    PubMed

    Job, Veronika; Walton, Gregory M; Bernecker, Katharina; Dweck, Carol S

    2013-09-10

    Past research found that the ingestion of glucose can enhance self-control. It has been widely assumed that basic physiological processes underlie this effect. We hypothesized that the effect of glucose also depends on people's theories about willpower. Three experiments, both measuring (experiment 1) and manipulating (experiments 2 and 3) theories about willpower, showed that, following a demanding task, only people who view willpower as limited and easily depleted (a limited resource theory) exhibited improved self-control after sugar consumption. In contrast, people who view willpower as plentiful (a nonlimited resource theory) showed no benefits from glucose--they exhibited high levels of self-control performance with or without sugar boosts. Additionally, creating beliefs about glucose ingestion (experiment 3) did not have the same effect as ingesting glucose for those with a limited resource theory. We suggest that the belief that willpower is limited sensitizes people to cues about their available resources including physiological cues, making them dependent on glucose boosts for high self-control performance.

  19. Photocatalytic conversion of CO2 into value-added and renewable fuels

    NASA Astrophysics Data System (ADS)

    Yuan, Lan; Xu, Yi-Jun

    2015-07-01

    The increasing energy crisis and the worsening global climate caused by the excessive utilization of fossil fuel have boosted tremendous research activities about CO2 capture, storage and utilization. Artificial photosynthesis that uses solar light energy to convert CO2 to form value-added and renewable fuels such as methane or methanol has been consistently drawing increasing attention. It is like killing two birds with one stone since it can not only reduce the greenhouse effects caused by CO2 emission but also produce value added chemicals for alternative energy supplying. This review provides a brief introduction about the basic principles of artificial photosynthesis of CO2 and the progress made in exploring more efficient photocatalysts from the viewpoint of light harvesting and photogenerated charge carriers boosting. Moreover, the undergoing mechanisms of CO2 photoreduction are discussed with selected examples, in terms of adsorption of reactants, CO2 activation as well as the possible reaction pathways. Finally, perspectives on future research directions and open issues in CO2 photoreduction are outlined.

  20. Teaching personal initiative beats traditional training in boosting small business in West Africa.

    PubMed

    Campos, Francisco; Frese, Michael; Goldstein, Markus; Iacovone, Leonardo; Johnson, Hillary C; McKenzie, David; Mensmann, Mona

    2017-09-22

    Standard business training programs aim to boost the incomes of the millions of self-employed business owners in developing countries by teaching basic financial and marketing practices, yet the impacts of such programs are mixed. We tested whether a psychology-based personal initiative training approach, which teaches a proactive mindset and focuses on entrepreneurial behaviors, could have more success. A randomized controlled trial in Togo assigned microenterprise owners to a control group ( n = 500), a leading business training program ( n = 500), or a personal initiative training program ( n = 500). Four follow-up surveys tracked outcomes for firms over 2 years and showed that personal initiative training increased firm profits by 30%, compared with a statistically insignificant 11% for traditional training. The training is cost-effective, paying for itself within 1 year. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. All-fiber high-power monolithic femtosecond laser at 1.59 µm with 63-fs pulse width

    NASA Astrophysics Data System (ADS)

    Hekmat, M. J.; Omoomi, M.; Gholami, A.; Yazdabadi, A. Bagheri; Abdollahi, M.; Hamidnejad, E.; Ebrahimi, A.; Normohamadi, H.

    2018-01-01

    In this research, by adopting an alternative novel approach to ultra-short giant pulse generation which basically originated from difficulties with traditional employed methods, an optimized Er/Yb co-doped double-clad fiber amplifier is applied to boost output average power of single-mode output pulses to a high level of 2-W at 1.59-µm central wavelength. Output pulses of approximately 63-fs pulse width at 52-MHz repetition rate are obtained in an all-fiber monolithic laser configuration. The idea of employing parabolic pulse amplification for stretching output pulses together with high-power pulse amplification using Er/Yb co-doped active fibers for compressing and boosting output average power plays crucial role in obtaining desired results. The proposed configuration enjoys massive advantages over previously reported literature which make it well-suited for high-power precision applications such as medical surgery. Detailed dynamics of pulse stretching and compressing in active fibers with different GVD parameters are numerically and experimentally investigated.

  2. Ultrarelativistic boost of a black hole in the magnetic universe of Levi-Civita-Bertotti-Robinson

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Astorino, Marco

    2018-05-01

    We consider an exact Einstein-Maxwell solution constructed by Alekseev and Garcia, which describes a Schwarzschild black hole immersed in the magnetic universe of Levi-Civita, Bertotti, and Robinson (LCBR). After reviewing the basic properties of this spacetime, we study the ultrarelativistic limit in which the black hole is boosted to the speed of light, while sending its mass to 0. This results in a nonexpanding impulsive wave traveling in the LCBR universe. The wave front is a 2-sphere carrying two null point particles at its poles—a remnant of the structure of the original static spacetime. It is also shown that the obtained line element belongs to the Kundt class of spacetimes, and the relation with the known family of exact gravitational waves of finite duration propagating in the LCBR background is clarified. In the limit of a vanishing electromagnetic field, one point particle is pushed away to infinity and the single-particle Aichelburg-Sexl p p -wave propagating in Minkowski space is recovered.

  3. Beliefs about willpower determine the impact of glucose on self-control

    PubMed Central

    Job, Veronika; Walton, Gregory M.; Bernecker, Katharina; Dweck, Carol S.

    2013-01-01

    Past research found that the ingestion of glucose can enhance self-control. It has been widely assumed that basic physiological processes underlie this effect. We hypothesized that the effect of glucose also depends on people’s theories about willpower. Three experiments, both measuring (experiment 1) and manipulating (experiments 2 and 3) theories about willpower, showed that, following a demanding task, only people who view willpower as limited and easily depleted (a limited resource theory) exhibited improved self-control after sugar consumption. In contrast, people who view willpower as plentiful (a nonlimited resource theory) showed no benefits from glucose—they exhibited high levels of self-control performance with or without sugar boosts. Additionally, creating beliefs about glucose ingestion (experiment 3) did not have the same effect as ingesting glucose for those with a limited resource theory. We suggest that the belief that willpower is limited sensitizes people to cues about their available resources including physiological cues, making them dependent on glucose boosts for high self-control performance. PMID:23959900

  4. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions--a synthetic chemist's perspective.

    PubMed

    Kantchev, Eric Assen B; O'Brien, Christopher J; Organ, Michael G

    2007-01-01

    Palladium-catalyzed C-C and C-N bond-forming reactions are among the most versatile and powerful synthetic methods. For the last 15 years, N-heterocyclic carbenes (NHCs) have enjoyed increasing popularity as ligands in Pd-mediated cross-coupling and related transformations because of their superior performance compared to the more traditional tertiary phosphanes. The strong sigma-electron-donating ability of NHCs renders oxidative insertion even in challenging substrates facile, while their steric bulk and particular topology is responsible for fast reductive elimination. The strong Pd-NHC bonds contribute to the high stability of the active species, even at low ligand/Pd ratios and high temperatures. With a number of commercially available, stable, user-friendly, and powerful NHC-Pd precatalysts, the goal of a universal cross-coupling catalyst is within reach. This Review discusses the basics of Pd-NHC chemistry to understand the peculiarities of these catalysts and then gives a critical discussion on their application in C-C and C-N cross-coupling as well as carbopalladation reactions.

  5. New Insights into Reaction Mechanisms of Ethanol Steam Reforming on Co-ZrO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Mei, Donghai

    2015-01-01

    The reaction pathway of ethanol steam reforming on Co-ZrO2 has been identified and the active sites associated with each step are proposed. Ethanol is converted to acetaldehyde and then to acetone, followed by acetone steam reforming. More than 90% carbon was found to follow this reaction pathway. N2-Sorption, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), in situ X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy, as well as theoretical Density Functional Theory (DFT) calculations have been employed to identify the structure and functionality of the catalysts, which was further used to correlate their performance in ESR. It was found that metallicmore » cobalt is mainly responsible for the acetone steam reforming reactions; while, CoO and basic sites on the support play a key role in converting ethanol to acetone via dehydrogenation and condensation/ketonization reaction pathways. The current work provides fundamental understanding of the ethanol steam reforming reaction mechanisms on Co-ZrO2 catalysts and sheds light on the rational design of selective and durable ethanol steam reforming catalysts.« less

  6. Superior performance of borocarbonitrides, BxCyNz , as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chakraborty, Himanshu; Chhetri, Manjeet; Maitra, Somak; Waghmare, Umesh; Rao, C. N. R.

    We report superior hydrogen evolution activity of metal-free borocarbonitride (BCN) catalysts. The highly positive onset potential (-56 mV vs. RHE) and the current density of 10 mAcm2 at an overpotential of 70 mV exhibited by a carbon-rich BCN with the composition BC7N2 demonstrates the extraordinary electrocatalytic activity at par with Pt. Theoretical studies throw light on the cause of high activity of this composition. The high activity and good stability of BCN's surpass the characteristics of other metal-free catalysts reported in recent literature. an Energy Frontier Research Centre funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012575.

  7. Catalytic deoxygenation of microalgae oil to green hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chen; Bruck, Thomas; Lercher, Johannes A.

    2013-05-14

    Microalgae are high potential raw biomass material for triglyceride feedstock, due to their high oil content and rapid growth rate, and because algae cultivation does not compete with edible food on arable land. This review addresses first the microalgae cultivation with an overview of the productivity and growth of microalgae, the recovery of lipids from the microalgae, and chemical compositions of microalgae biomass and microalgal oil. Second, three basic approaches are discussed to downstream processing for the production of green gasoline and diesel hydrocarbons from microalgae oil, including cracking with zeolite, hydrotreating with supported sulfided catalysts and hydrodeoxygenation with non-sulfidemore » metal catalysts. For the triglyceride derived bio-fuels, only “drop-in” gasoline and diesel range components are discussed in this review.« less

  8. A systematic computational study of electronic effects on hydrogen sensitivity of olefin polymerization catalysts (abstract only).

    PubMed

    Coussens, Betty B; Budzelaar, Peter H M; Friederichs, Nic

    2008-02-13

    One of the important product parameters of polyolefins is their molecular weight (distribution). A common way to control this parameter is to add molecular hydrogen during the polymerization, which then acts as a chain transfer agent. The factors governing the hydrogen sensitivity of olefin polymerization catalysts are poorly understood and have attracted little attention from computational chemists. To explore the electronic factors determining hydrogen sensitivity we performed density functional calculations on a wide range of simple model systems including some metallocenes and a few basic models of heterogeneous catalysts. As a quantitative measure for hydrogen sensitivity we used the ratio of (i) the rate constant for chain transfer to hydrogen to (ii) the rate constant for ethene insertion, k(h)/k(p) (see the scheme below), and as a measure of electrophilicity we used the energy of complexation to the probe molecule ammonia. [Formula: see text] For isolated species in the gas phase, complexation energies appear to dominate the chemistry. Ethene complexes more strongly than hydrogen and with increasing electrophilicity of the metal centre this difference grows; the hydrogen sensitivity decreases accordingly. Although many factors (like catalyst dormancy and deactivation issues) complicate the comparison with experiment, this result seems to agree both in broad terms with the experimental lower hydrogen sensitivity of heterogeneous catalysts, and more specifically with the increased hydrogen sensitivity of highly alkylated or fused metallocenes. The opposite conclusion reached by Blom (see Blom et al 2002 Macromol. Chem. Phys. 203 381-7) is due to the use of a very different measure of electrophilicity, rather than to different experimental data.

  9. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation.

    PubMed

    Fitz, Daniel; Jakschitz, Thomas; Rode, Bernd M

    2008-12-01

    A starting phase of chemical evolution on our ancient Earth around 4 billion years ago was the formation of amino acids and their combination to peptides and proteins. The salt-induced peptide formation (SIPF) reaction has been shown to be appropriate for this condensation reaction under moderate and plausible primitive Earth conditions, forming short peptides from amino acids in aqueous solution containing sodium chloride and Cu(II) ions. In this paper we report results about the formation of dialanine and dilysine from their monomers in this reaction. The catalytic influence of l- and d-histidine dramatically increases dialanine yields when starting from lower alanine concentrations, but also dilysine formation is markedly boosted by these catalysts. Attention is paid to measurable preferences for one enantiomeric form of alanine and lysine in the SIPF reaction. Alanine, especially, shows stereospecific behaviour, mostly in favour of the l-form.

  10. Hierarchical ZIF-8 toward Immobilizing Burkholderia cepacia Lipase for Application in Biodiesel Preparation.

    PubMed

    Adnan, Miaad; Li, Kai; Wang, Jianhua; Xu, Li; Yan, Yunjun

    2018-05-10

    A hierarchical mesoporous zeolitic imidazolate framework (ZIF-8) was processed based on cetyltrimethylammonium bromide (CTAB) as a morphological regulating agent and amino acid (l-histidine) as assisting template agent. Burkholderia cepacia lipase (BCL) was successfully immobilized by ZIF-8 as the carrier via an adsorption method (BCL-ZIF-8). The immobilized lipase (BCL) showed utmost activity recovery up to 1279%, a 12-fold boost in its free counterpart. BCL-ZIF-8 was used as a biocatalyst in the transesterification reaction for the production of biodiesel with 93.4% yield. There was no significant lowering of conversion yield relative to original activity for BCL-ZIF-8 when continuously reused for eight cycles. This work provides a new outlook for biotechnological importance by immobilizing lipase on the hybrid catalyst (ZIF-8) and opens the door for its uses in the industrial field.

  11. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles.

    PubMed

    Lee, Hyosun; Lim, Juhyung; Lee, Changhwan; Back, Seoin; An, Kwangjin; Shin, Jae Won; Ryoo, Ryong; Jung, Yousung; Park, Jeong Young

    2018-06-08

    Despite numerous studies, the origin of the enhanced catalytic performance of bimetallic nanoparticles (NPs) remains elusive because of the ever-changing surface structures, compositions, and oxidation states of NPs under reaction conditions. An effective strategy for obtaining critical clues for the phenomenon is real-time quantitative detection of hot electrons induced by a chemical reaction on the catalysts. Here, we investigate hot electrons excited on PtCo bimetallic NPs during H 2 oxidation by measuring the chemicurrent on a catalytic nanodiode while changing the Pt composition of the NPs. We reveal that the presence of a CoO/Pt interface enables efficient transport of electrons and higher catalytic activity for PtCo NPs. These results are consistent with theoretical calculations suggesting that lower activation energy and higher exothermicity are required for the reaction at the CoO/Pt interface.

  12. Improving the engine power of a catalytic Janus-sphere micromotor by roughening its surface.

    PubMed

    Longbottom, Brooke W; Bon, Stefan A F

    2018-03-15

    Microspheres with catalytic caps have become a popular model system for studying self-propelled colloids. Existing experimental studies involve predominantly "smooth" particle surfaces. In this study we determine the effect of irregular surface deformations on the propulsive mechanism with a particular focus on speed. The particle surfaces of polymer microspheres were deformed prior to depositing a layer of platinum which resulted in the formation of nanoscopic pillars of catalyst. Self-propulsion was induced upon exposure of the micromotors to hydrogen peroxide, whilst they were dispersed in water. The topological surface features were shown to boost speed (~2×) when the underlying deformations are small (nanoscale), whilst large deformations afforded little difference despite a substantial apparent catalytic surface area. Colloids with deformed surfaces were more likely to display a mixture of rotational and translational propulsion than their "smooth" counterparts.

  13. Bluffing promotes overconfidence on social networks

    NASA Astrophysics Data System (ADS)

    Li, Kun; Cong, Rui; Wu, Te; Wang, Long

    2014-06-01

    The overconfidence, a well-established bias, in fact leads to unrealistic expectations or faulty assessment. So it remains puzzling why such psychology of self-deception is stabilized in human society. To investigate this problem, we draw lessons from evolutionary game theory which provides a theoretical framework to address the subtleties of cooperation among selfish individuals. Here we propose a spatial resource competition model showing that, counter-intuitively, moderate values rather than large values of resource-to-cost ratio boost overconfidence level most effectively. In contrast to theoretical results in infinite well-mixed populations, network plays a role both as a ``catalyst'' and a ``depressant'' in the spreading of overconfidence, especially when resource-to-cost ratio is in a certain range. Moreover, when bluffing is taken into consideration, overconfidence evolves to a higher level to counteract its detrimental effect, which may well explain the prosperity of this ``erroneous'' psychology.

  14. Islamic View of Nature and Values: Could These Be the Answer to Building Bridges between Modern Science and Islamic Science

    ERIC Educational Resources Information Center

    Faruqi, Yasmeen Mahnaz

    2007-01-01

    This paper discusses the basic tenets of Islam and the Islamic view of nature that were influential in the development of science in the so-called "Golden Age of Islam". These findings have been the catalyst for present day Muslim scholars, who have emphasized the importance of Islamic science, as the means of understanding Western…

  15. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  16. Enzymes: principles and biotechnological applications

    PubMed Central

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  17. Deploying a quantum annealing processor to detect tree cover in aerial imagery of California

    PubMed Central

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Mukhopadhyay, Supratik; Nemani, Ramakrishna R.

    2017-01-01

    Quantum annealing is an experimental and potentially breakthrough computational technology for handling hard optimization problems, including problems of computer vision. We present a case study in training a production-scale classifier of tree cover in remote sensing imagery, using early-generation quantum annealing hardware built by D-wave Systems, Inc. Beginning within a known boosting framework, we train decision stumps on texture features and vegetation indices extracted from four-band, one-meter-resolution aerial imagery from the state of California. We then impose a regulated quadratic training objective to select an optimal voting subset from among these stumps. The votes of the subset define the classifier. For optimization, the logical variables in the objective function map to quantum bits in the hardware device, while quadratic couplings encode as the strength of physical interactions between the quantum bits. Hardware design limits the number of couplings between these basic physical entities to five or six. To account for this limitation in mapping large problems to the hardware architecture, we propose a truncation and rescaling of the training objective through a trainable metaparameter. The boosting process on our basic 108- and 508-variable problems, thus constituted, returns classifiers that incorporate a diverse range of color- and texture-based metrics and discriminate tree cover with accuracies as high as 92% in validation and 90% on a test scene encompassing the open space preserves and dense suburban build of Mill Valley, CA. PMID:28241028

  18. Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Wang, Jiayuan; Du, Baobao; Wang, Yun; Xiong, Yang; Yang, Yiqiong; Zhang, Xiaodong

    2018-05-01

    3D hierarchically porous perovskites LaFe0.5M0.5O3-CA (M = Mn, Cu) were synthesized by a two-step method using PMMA as template and supporting with carbon aerogel, which were characterized with SEM, TEM, XRD, XPS and FT-IR spectroscopy. The as-prepared composites were used in microwave (MW) catalytic degradation of fuchsin basic (FB) dye wastewater. Batch experiment results showed that the catalytic degradation of FB could be remarkably improved by coating with CA. And LaFe0.5Cu0.5O3-CA exhibited higher catalytic performance than LaFe0.5Mn0.5O3-CA, which had a close connection with the activity of substitution metal ion in B site of the catalysts. The FB removal fit pseudo-first-order model and the degradation rate constant increased with initial pH value and MW powder while decreases with initial FB concentration. All catalysts presented favorable recycling and stability in the repeated experiment. Radical scavenger measurements indicated that hydroxyl radicals rather than surface peroxide and hole played an important role in the catalytic process, and its quantity determined the degradation of FB. Furthermore, both Cu and Fe species were involved in the formation of active species, which were responsible to the excellent performance of the LaFe0.5Cu0.5O3-CA/MW system. Therefore, LaFe0.5Cu0.5O3-CA/MW showed to be a promising technology for the removal of organic pollutants in wastewater treatment applications.

  19. Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NO{sub x} adsorption, soot combustion and simultaneous NO{sub x}-soot removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhongpeng; Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR; Yan, Xiaotong

    Graphical abstract: - Highlights: • The addition of La in Cu-based oxides increased the types of active oxygen. • NO{sub x} adsorption, soot oxidation and simultaneous NO{sub x}-soot removal were enhanced. • The possible catalytic mechanism was studied via in situ FTIR analysis. • Soot oxidation was promoted by the NO{sub 2} intermediate. - Abstract: La-promoted Cu-based hydrotalcites derived mixed oxides were prepared and their catalytic activities for NO{sub x} adsorption, soot oxidation, and simultaneous NO{sub x}-soot removal were investigated. The catalysts were characterized by XRD, DTG, BET, FTIR, H2-TPR, TPD and TPO techniques. The oxides catalysts exhibited mesoporous propertiesmore » with specific surface area of 45–160 m{sup 2}/g. The incorporation of La and Cu decreased the amount of basic sites due to the large decrease in surface areas. Under O{sub 2} atmosphere, La incorporation is dominant for soot oxidation activity, while Cu favors high selectivity to CO{sub 2} formation. A synergetic effect between La and Cu for catalyzed soot oxidation lies in the improved redox property and suitable basicity. The presence of NO in O{sub 2} significantly promoted soot oxidation on the catalysts with the ignition temperature decreased to about 300 °C. In O{sub 2}/NO atmosphere, NO{sub 2} acts as an intermediate which oxidizes soot to CO{sub 2} at a lower temperature with itself reduced to NO or N{sub 2}, contributing to the high catalytic performance in simultaneous removal of NO{sub x} and soot.« less

  20. Mild Deoxygenation of Sulfoxides over Plasmonic Molybdenum Oxide Hybrid with Dramatic Activity Enhancement under Visible Light.

    PubMed

    Kuwahara, Yasutaka; Yoshimura, Yukihiro; Haematsu, Kohei; Yamashita, Hiromi

    2018-06-17

    Harvesting solar light to boost commercially important organic synthesis still remains a challenge. Coupling of conventional noble metal catalysts with plasmonic oxide materials which exhibit intense plasmon absorption in the visible light region is a promising option for efficient solar energy utilization in catalysis. Herein we for the first time demonstrate that plasmonic hydrogen molybdenum bronze coupled with Pt nanoparticles (Pt/H x MoO 3-y ) shows a high catalytic performance in the deoxygenation of sulfoxides with 1 atm H 2 at room temperature, with dramatic activity enhancement under visible light irradiation relative to dark condition. The plasmonic molybdenum oxide hybrids with strong plasmon resonance peaks pinning at around 556 nm are obtained via a facile H-spillover process. Pt/H x MoO 3-y hybrid provides excellent selectivity for the deoxygenation of various sulfoxides as well as pyridine N-oxides, in which drastically improved catalytic efficiencies are obtained under the irradiation of visible light. Comprehensive analyses reveal that oxygen vacancies massively introduced via a H-spillover process are the main active sites, and reversible redox property of Mo atoms and strong plasmonic absorption play key roles in this reaction. The catalytic system works under extremely mild conditions and can boost the reaction by the assist of visible light, offering an ultimately greener protocol to produce sulfides from sulfoxides. Our findings may open up a new strategy for designing plasmon-based catalytic systems that can harness visible light efficiently.

  1. Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures.

    PubMed

    Schmitz, Simone; Rosenbaum, Miriam A

    2018-05-19

    Bioelectrochemical systems (BES) hold great promise for sustainable energy generation via a microbial catalyst from organic matter, for example, from wastewater. To improve current generation in BES, understanding the underlying microbiology of the electrode community is essential. Electron mediator producing microorganism like Pseudomonas aeruginosa play an essential role in efficient electricity generation in BES. These microbes enable even nonelectroactive microorganism like Enterobacter aerogenes to contribute to current production. Together they form a synergistic coculture, where both contribute to community welfare. To use microbial co-operation in BES, the physical and chemical environments provided in the natural habitats of the coculture play a crucial role. Here, we show that synergistic effects in defined cocultures of P. aeruginosa and E. aerogenes can be strongly enhanced toward high current production by adapting process parameters, like pH, temperature, oxygen demand, and substrate requirements. Especially, oxygen was identified as a major factor influencing coculture behavior and optimization of its supply could enhance electric current production over 400%. Furthermore, operating the coculture in fed-batch mode enabled us to obtain very high current densities and to harvest electrical energy for 1 month. In this optimized condition, the coulombic efficiency of the process was boosted to 20%, which is outstanding for mediator-based electron transfer. This study lays the foundation for a rationally designed utilization of cocultures in BES for bioenergy generation from specific wastewaters or for bioprocess sensing and for benefiting from their synergistic effects under controlled bioprocess condition. © 2018 Wiley Periodicals, Inc.

  2. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution

    PubMed Central

    Hartwig, John F.; Stanley, Levi M.

    2010-01-01

    Conspectus Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon–nitrogen, carbon–oxygen, carbon–carbon, and carbon–sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe an iridium precursor and a phosphoramidite ligand that catalyze reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields, with high branched-to-linear ratios and high enantioselectivities. Parallel mechanistic studies had revealed the metallacyclic structure of the active catalyst, and subsequent experiments with the purposefully formed metallacycle increased the reaction scope dramatically. Aromatic amines, azoles, ammonia, and amides and carbamates as ammonia equivalents all reacted with high selectivities and yields. Moreover, weakly basic enolates (such as silyl enol ethers) and enolate equivalents (such as enamines) also reacted, and other research groups have used this catalyst to conduct reactions of stabilized carbon nucleophiles in the absence of additional base. One hallmark of the reactions catalyzed by this iridium system is the invariably high enantioselectivity, which reflects a high stereoselectivity for formation of the allyl intermediate. Enantioselectivity typically exceeds 95%, regioselectivity for formation of branched over linear products is usually near 20:1, and yields generally exceed 75% and are often greater than 90%. Thus, the development of iridium catalysts for enantioselective allylic substitution shows how studies of reaction mechanism can lead to a particularly active and a remarkably general system for an enantioselective process. In this case, a readily accessible catalyst effects allylic substitution, with high enantioselectivity and regioselectivity complementary to that of the venerable palladium systems. PMID:20873839

  3. Kinetic Evaluation of Lipid Oils Conversion to Biofuel Using Layered Double Hydroxide Doped with Triazabicyclodece Catalyst

    NASA Astrophysics Data System (ADS)

    Nato Lopez, Frank D.

    Worldwide, there is an ever increasing need for sustainable, renewable fuels that will accommodate the rapidly increasing energy demand and provide independence from fossil fuels. The search for a sustainable alternative to petroleum based fuels has been a great challenge to the scientific community; therefore, great efforts are being made to overcome the fossil fuels dependence by exploring the prominent field of biofuels (bioethanol and biodiesel). Traditional biodiesel is produced from feedstocks such as vegetable oils and animal fats by converting the triglycerides with methanol in the presence of a homogeneous catalyst to produce fatty acid methyl esters (FAMEs). However, drawbacks of this process are the undesired glycerol byproduct and post reaction processing, including separation from reaction mixture, that results in high costs factors. In the present work, the reaction kinetics of a glycerol-free biodiesel method is studied. This method consists of the transesterification of a vegetable oil (i.e. canola oil) using dimethyl carbonate (DMC) as an alternative methylating agent in presence of layered double hydroxides doped with triazabicyclodecene catalyst (a basic organocatalyst). Furthermore, is theorized that this heterogeneous catalyst (TBD/LDH) simultaneously converts both FFAs and triglycerides due to acid sites formed by Al3+ active sites of the LDH structure. Additionally, the versatility of the Raman in situ technique was used as quantitative analysis tool to monitor the reaction kinetics and collect real time data.

  4. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols.

    PubMed

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-04-07

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 ± 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ∼0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h(-1)) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.

  5. Methanol-Water Aqueous-Phase Reforming with the Assistance of Dehydrogenases at Near-Room Temperature.

    PubMed

    Shen, Yangbin; Zhan, Yulu; Li, Shuping; Ning, Fandi; Du, Ying; Huang, Yunjie; He, Ting; Zhou, Xiaochun

    2018-03-09

    As an excellent hydrogen-storage medium, methanol has many advantages, such as high hydrogen content (12.6 wt %), low cost, and availability from biomass or photocatalysis. However, conventional methanol-water reforming usually proceeds at high temperatures. In this research, we successfully designed a new effective strategy to generate hydrogen from methanol at near-room temperature. The strategy involved two main processes: CH 3 OH→HCOOH→H 2 and NADH→HCOOH→H 2 . The first process (CH 3 OH→HCOOH→H 2 ) was performed by an alcohol dehydrogenase (ADH), an aldehyde dehydrogenase (ALDH), and an Ir catalyst. The second procedure (NADH→HCOOH→H 2 ) was performed by formate dehydrogenase (FDH) and the Ir catalyst. The Ir catalyst used was a previously reported polymer complex catalyst [Cp*IrCl 2 (ppy); Cp*=pentamethylcyclopentadienyl, ppy=polypyrrole] with high catalytic activity for the decomposition of formic acid at room temperature and is compatible with enzymes, coenzymes, and poisoning chemicals. Our results revealed that the optimum hydrogen generation rate could reach up to 17.8 μmol h -1  g cat -1 under weak basic conditions at 30 °C. This will have high impact on hydrogen storage, production, and applications and should also provide new inspiration for hydrogen generation from methanol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C

    2012-01-01

    This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

  7. Second central extension in Galilean covariant field theory

    NASA Astrophysics Data System (ADS)

    Hagen, C. R.

    2002-07-01

    The possibility of a connection between the second central extension of the planar Galilei group and the spin variable is considered. This idea is explored within the framework of local Galilean covariant field theory for free fields of arbitrary spin. It is shown that such systems generally display only a trivial realization of the second central extension. While it is possible to realize any desired value of the extension parameter by suitable redefinition of the boost operator, such an approach has no necessary connection to the spin of the basic underlying field.

  8. The Nike-Black Brant V development program

    NASA Technical Reports Server (NTRS)

    Sevier, H.; Payne, B.; Ott, R.; Montag, W.

    1976-01-01

    The Nike-Black Brant V represents a combined U.S.-Canadian program to achieve a 40 percent increase in apogee performance over that of the unboosted BBV, with minimum component modification and no meaningful increase in flight environment levels. The process of achieving these objectives is described, in particular optimization of sustainer coast period and roll history, and the techniques used to ensure good stage separation. Details of the structural test program and subsequent successful vehicle proving flight are provided. Basic performance data are preented, with an indication of the further potential offered by Terrier boost.

  9. Basics of Compounding: 3D Printing--Pharmacy Applications, Part 1.

    PubMed

    Allen, Loyd V

    2017-01-01

    Three-dimensional printing quickly became a standard tool in the automotive, aerospace, and consumer goods industries and, recently, has begun gaining traction in pharmaceutical manufacturing. 3D printing has steadily grown, introducing a new element into dosage form development, and has received a boost with U.S. Food and Drug Administration (FDA) approval of the 3D-printed orodispersible tablet, Spritam (levetiracetam). This part 1 of a 3-part article introduces 3D printing and its application to pharmacy. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  10. Bifunctional Iminophosphorane Organocatalysts for Enantioselective Synthesis: Application to the Ketimine Nitro-Mannich Reaction

    PubMed Central

    2013-01-01

    The design, synthesis, and development of a new class of modular, strongly basic, and tunable bifunctional Brønsted base/H-bond-donor organocatalysts are reported. These catalysts incorporate a triaryliminophosphorane as the Brønsted basic moiety and are readily synthesized via a last step Staudinger reaction of a chiral organoazide and a triarylphosphine. Their application to the first general enantioselective organocatalytic nitro-Mannich reaction of nitromethane to unactivated ketone-derived imines allows the enantioselective construction of β-nitroamines possessing a fully substituted carbon atom. The reaction is amenable to multigram scale-up, and the products are useful for the synthesis of enantiopure 1,2-diamine and α-amino acid derivatives. PMID:24107070

  11. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h-1·mol-catalyst-1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol-1.

  12. A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into a Carbon Lattice.

    PubMed

    Ding, Yuxiao; Huang, Xing; Yi, Xianfeng; Qiao, Yunxiang; Sun, Xiaoyan; Zheng, Anmin; Su, Dang Sheng

    2018-06-04

    Designing heterogeneous metal-free catalysts for hydrogenation is a long-standing challenge in catalysis. Nanodiamond-based carbon materials were prepared that are surface-doped with electron-rich nitrogen and electron-deficient boron. The two heteroatoms are directly bonded to each other to form unquenched Lewis pairs with infinite π-electron donation from the surrounding graphitic structure. Remarkably, these Lewis pairs can split H 2 to form H + /H - pairs, which subsequently serve as the active species for hydrogenation of different substrates. This unprecedented finding sheds light on the uptake of H 2 across carbon-based materials and suggests that dual Lewis acidity-basicity on the carbon surface may be used to heterogeneously activate a variety of small molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion

    DOE PAGES

    Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis; ...

    2017-10-09

    To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd-based materials for methane combustion.« less

  14. Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis

    To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd-based materials for methane combustion.« less

  15. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst.

    PubMed

    Surendranath, Yogesh; Lutterman, Daniel A; Liu, Yi; Nocera, Daniel G

    2012-04-11

    The mechanism of nucleation, steady-state growth, and repair is investigated for an oxygen evolving catalyst prepared by electrodeposition from Co(2+) solutions in weakly basic electrolytes (Co-OEC). Potential step chronoamperometry and atomic force microscopy reveal that nucleation of Co-OEC is progressive and reaches a saturation surface coverage of ca. 70% on highly oriented pyrolytic graphite substrates. Steady-state electrodeposition of Co-OEC exhibits a Tafel slope approximately equal to 2.3 × RT/F. The electrochemical rate law exhibits a first order dependence on Co(2+) and inverse orders on proton (third order) and proton acceptor, methylphosphonate (first order for 1.8 mM ≤ [MeP(i)] ≤ 18 mM and second order dependence for 32 mM ≤ [MeP(i)] ≤ 180 mM). These electrokinetic studies, combined with recent XAS studies of catalyst structure, suggest a mechanism for steady state growth at intermediate MeP(i) concentration (1.8-18 mM) involving a rapid solution equilibrium between aquo Co(II) and Co(III) hydroxo species accompanied with a rapid surface equilibrium involving electrolyte dissociation and deprotonation of surface bound water. These equilibria are followed by a chemical rate-limiting step for incorporation of Co(III) into the growing cobaltate clusters comprising Co-OEC. At higher concentrations of MeP(i) ([MeP(i)] ≥ 32 mM), MePO(3)(2-) equilibrium binding to Co(II) in solution is suggested by the kinetic data. Consistent with the disparate pH profiles for oxygen evolution electrocatalysis and catalyst formation, NMR-based quantification of catalyst dissolution as a function of pH demonstrates functional stability and repair at pH values >6 whereas catalyst corrosion prevails at lower pH values. These kinetic insights provide a basis for developing and operating functional water oxidation (photo)anodes under benign pH conditions. © 2012 American Chemical Society

  16. High-throughput heterogeneous catalyst research

    NASA Astrophysics Data System (ADS)

    Turner, Howard W.; Volpe, Anthony F., Jr.; Weinberg, W. H.

    2009-06-01

    With the discovery of abundant and low cost crude oil in the early 1900's came the need to create efficient conversion processes to produce low cost fuels and basic chemicals. Enormous investment over the last century has led to the development of a set of highly efficient catalytic processes which define the modern oil refinery and which produce most of the raw materials and fuels used in modern society. Process evolution and development has led to a refining infrastructure that is both dominated and enabled by modern heterogeneous catalyst technologies. Refineries and chemical manufacturers are currently under intense pressure to improve efficiency, adapt to increasingly disadvantaged feedstocks including biomass, lower their environmental footprint, and continue to deliver their products at low cost. This pressure creates a demand for new and more robust catalyst systems and processes that can accommodate them. Traditional methods of catalyst synthesis and testing are slow and inefficient, particularly in heterogeneous systems where the structure of the active sites is typically complex and the reaction mechanism is at best ill-defined. While theoretical modeling and a growing understanding of fundamental surface science help guide the chemist in designing and synthesizing targets, even in the most well understood areas of catalysis, the parameter space that one needs to explore experimentally is vast. The result is that the chemist using traditional methods must navigate a complex and unpredictable diversity space with a limited data set to make discoveries or to optimize known systems. We describe here a mature set of synthesis and screening technologies that together form a workflow that breaks this traditional paradigm and allows for rapid and efficient heterogeneous catalyst discovery and optimization. We exemplify the power of these new technologies by describing their use in the development and commercialization of a novel catalyst for the hydrodesulfurization of gasoline distillates having 50% more selectivity and 30% more activity for sulfur removal than the state-of-the-art commercial reference.

  17. In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials. II. On the mechanism of isomerization and hydrocracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, I.I.; Seirvert, M.; Pasau-Claerbout, A.

    {sup 13}C MAS NMR spectroscopy was performed in situ to investigate the mechanisms of n-hexane isomerization and hydrocracking on Pt and Pd supported on Al-stabilized magnesia (Pt/Mg(Al)O and Pd/Mg(Al)O), and Pt on KL zeolite (Pt/KL). All the catalysts had high metal dispersion, the metal particle sizes being 13, 11, and 18 {Angstrom}, respectively. n-Hexane 1-{sup 13}C was used for in situ label tracer experiments. {sup 13}C MAS NMR spectra were obtained during the time course of the reaction at 573 and 653 K. The NMR results were then quantified, and the reaction kinetics were studied. Identification of the primary andmore » secondary labeled reaction products led to the conclusion that both cyclic and bond-shift isomerization mechanisms operate on the three catalysts. In the case of Pt/Mg(Al)O, the cyclic mechanism accounts for 80% of the isomerization products. In the case of Pt/KL and Pd/Mg(Al)O, the contribution of bond-shift reactions increases due to restricted formation of the methylcyclopentane intermediate on the former and to suppressed hydrogenolysis of methylcyclopentane on the latter. A nonselective cyclic isomerization mechanism operates on magnesia catalysts, while on Pt/KL selective bisecondary bond rupturing occurs. Mechanistic pathways of bond-shift and hydrocracking reactions involve both 1,3- and 2,4-metallocyclobutane intermediates in the case of magnesia-supported catalysts, while in the case of the Pt/KL catalyst a 1,3-metallocyclobutane intermediate is preferentially formed. Only terminal scission occurs on Pt/KL. The Pd catalyst demonstrates enhanced activity in demethylation. The observed differences in the mechanistic pathways are explained on the basis of the specific properties of the metal and support. 64 refs., 14 figs., 6 tabs.« less

  18. Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.

    2016-04-01

    In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found tomore » produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between isobutene production and the ratio of basic/acidic sites was demonstrated. An optimized balance of active sites for isobutene production from acetone was obtained with a basic/acidic site ratio of ~2. This technology for the conversion of aqueous mixtures of C2+ mixed oxygenates provides significant advantages over other presently studied catalysts in that its unique properties permit the utilization of a variety of feeds in a consistently selective manner.« less

  19. Photocatalytic characteristics of single phase Fe-doped anatase TiO{sub 2} nanoparticles sensitized with vitamin B{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozlou, Mehrnaz, E-mail: gharagozlou@icrc.ac.ir; Bayati, R.

    Highlights: • Anatase TiO{sub 2}/B{sub 12} hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B{sub 12}-anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO{sub 2}. XRD and Ramanmore » studies revealed formation of a single-phase anatase TiO{sub 2} where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO{sub 2} nanoparticles with vitamin B{sub 12}. TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B{sub 12} and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility.« less

  20. Lanthanum(III)-catalyzed disproportionation of hydrogen peroxide: a heterogeneous generator of singlet molecular oxygen-1O2 (1Deltag)-in near-neutral aqueous and organic media for peroxidation of electron-rich substrates.

    PubMed

    Nardello, Véronique; Barbillat, Jacques; Marko, Jean; Witte, Peter T; Alsters, Paul L; Aubry, Jean-Marie

    2003-01-20

    The decomposition of hydrogen peroxide into singlet molecular oxygen-(1)O(2) ((1)Delta(g))-in the presence of lanthanum(iii) salts was studied by monitoring its characteristic IR luminescence at 1270 nm. The process was found to be heterogeneously catalyzed by La(III), provided that the heterogeneous catalyst is generated in situ. The yield of (1)O(2) generation was assessed as 45+/-5 % both in water and in methanol. The pH-dependence on the rate of (1)O(2) generation corresponds to a bell-shaped curve from pH 4.5 to 13 with a maximum around pH 8. The study of the influence of H(2)O(2) showed that the formation of (1)O(2) begins as soon as one equivalent of H(2)O(2) is introduced. It then increases drastically up to two equivalents and more smoothly above. Unlike all other metal salt catalyst systems known to date for H(2)O(2) disproportionation, this chemical source of (1)O(2) is able to generate (1)O(2) not only in basic media, but also under neutral and slightly acidic conditions. In addition, this La-based catalyst system has a very low tendency to induce unwanted oxygenating side reactions, such as epoxidation of alkenes. These two characteristics of the heterogeneous lanthanum catalyst system allow non-photochemical (i.e., "dark") singlet oxygenation of substrate classes that cannot be peroxidized successfully with conventional molybdate catalysts, such as allylic alcohols and alkenyl amines.

  1. Aromatization of n-hexane by platinum-containing molecular sieves. 2. n-Hexane reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielczarski, E.; Suk Bong Hong; Davis, M.E.

    Pt/KL, Pt/BaKL, Pt/KBaKL, Pt/NaY, Pt/CsNaY, Pt/NaFAU(C), Pt/hex, Pt/SSZ-24, Pt/silica, and Pt/carbon were tested as catalysts for the aromatization of n-hexane at 460-510 C and atmospheric total pressure in order to study the influence of Pt cluster size and support acidity/basicity, microstructure, and chemical composition on activity and selectivity. Analysis of the catalytic and NH{sub 3} temperature-programmed desorption results from Pt/KL, Pt/BaKL, and Pt/KBaKL reveals that the presence of any acidity increases hydrogenolysis at the expense of benzene production. In addition, no increase in aromatization selectivity is observed by the addition of base sites to a Pt/zeolite catalyst, confirming that aromatizationmore » of n-hexane over Pt clusters on nonacidic carriers is monofunctional. High selectivity to benzene over most of the zeolite samples demonstrates that support microstructure does not contribute directly to the aromatization selectivity over Pt catalysts. High selectivity to benzene is observed for a Pt/carbon catalyst suggesting that a zeolitic support is not necessary for good performance. In fact, similar reactivity is obtained from microporous (Pt/SSZ-24) and nonmicroporous (Pt/silica) silica supported platinum catalysts with similar H/Pt values. A clear trend of increasing benzene selectivity with decreasing Pt cluster size is found. These observations suggest that the exceptional reactivity of Pt/KL for the aromatization of n-hexane results from the lack of any acidity in the support and the ability of zeolite L to stabilize the formation of extremely small Pt clusters.« less

  2. Internal gas and liquid distributor for electrodeionization device

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Henry, Michael P.; Datta, Saurav

    2016-05-17

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.

  3. Beyond δ : Tailoring marked statistics to reveal modified gravity

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2018-01-01

    Models that seek to explain cosmic acceleration through modifications to general relativity (GR) evade stringent Solar System constraints through a restoring, screening mechanism. Down-weighting the high-density, screened regions in favor of the low density, unscreened ones offers the potential to enhance the amount of information carried in such modified gravity models. In this work, we assess the performance of a new "marked" transformation and perform a systematic comparison with the clipping and logarithmic transformations, in the context of Λ CDM and the symmetron and f (R ) modified gravity models. Performance is measured in terms of the fractional boost in the Fisher information and the signal-to-noise ratio (SNR) for these models relative to the statistics derived from the standard density distribution. We find that all three statistics provide improved Fisher boosts over the basic density statistics. The model parameters for the marked and clipped transformation that best enhance signals and the Fisher boosts are determined. We also show that the mark is useful both as a Fourier and real-space transformation; a marked correlation function also enhances the SNR relative to the standard correlation function, and can on mildly nonlinear scales show a significant difference between the Λ CDM and the modified gravity models. Our results demonstrate how a series of simple analytical transformations could dramatically increase the predicted information extracted on deviations from GR, from large-scale surveys, and give the prospect for a much more feasible potential detection.

  4. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.

    PubMed

    Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide

    2016-05-01

    A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Defining a Materials Database for the Design of Copper Binary Alloy Catalysts for Electrochemical CO2 Conversion.

    PubMed

    Lee, Chan Woo; Yang, Ki Dong; Nam, Dae-Hyun; Jang, Jun Ho; Cho, Nam Heon; Im, Sang Won; Nam, Ki Tae

    2018-01-24

    While Cu electrodes are a versatile material in the electrochemical production of desired hydrocarbon fuels, Cu binary alloy electrodes are recently proposed to further tune reaction directionality and, more importantly, overcome the intrinsic limitation of scaling relations. Despite encouraging empirical demonstrations of various Cu-based metal alloy systems, the underlying principles of their outstanding performance are not fully addressed. In particular, possible phase segregation with concurrent composition changes, which is widely observed in the field of metallurgy, is not at all considered. Moreover, surface-exposed metals can easily form oxide species, which is another pivotal factor that determines overall catalytic properties. Here, the understanding of Cu binary alloy catalysts for CO 2 reduction and recent progress in this field are discussed. From the viewpoint of the thermodynamic stability of the alloy system and elemental mixing, possible microstructures and naturally generated surface oxide species are proposed. These basic principles of material science can help to predict and understand metal alloy structure and, moreover, act as an inspiration for the development of new binary alloy catalysts to further improve CO 2 conversion and, ultimately, achieve a carbon-neutral cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching.

    PubMed

    Han, Lijuan; Tang, Pengyi; Reyes-Carmona, Álvaro; Rodríguez-García, Bárbara; Torréns, Mabel; Morante, Joan Ramon; Arbiol, Jordi; Galan-Mascaros, Jose Ramon

    2016-12-14

    The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt-iron Prussian blue-type thin films, formed by chemical etching of Co(OH) 1.0 (CO 3 ) 0.5 ·nH 2 O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.

  7. Factors affecting activated carbon-based catalysts for selective hydrogen sulfide oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huixing; Monnell, J.D.; Alvin, M.A.

    2008-09-01

    The primary product of coal gasification processes is synthesis gas (syngas), a mixture of CO, H2, CO2, H2O and a number of minor components. Among the most significant minor components in syngas is hydrogen sulfide (H2S). In addition to its adverse environmental impact, H2S poisons the catalysts and hydrogen purification membranes, and causes severe corrosion in gas turbines. Technologies that can remove H2S from syngas and related process streams are, therefore, of considerable practical interest. To meet this need, we work towards understanding the mechanism by which prospective H2S catalysts perform in simulated fuel gas conditions. Specifically, we show thatmore » for low-temperature gas clean-up (~1408C) using activated carbon fibers and water plays a significant role in H2S binding and helps to prolong the lifetime of the material. Basic surface functional groups were found to be imperative for significant conversion of H2S to daughter compounds, whereas metal oxides (La and Ce) did little to enhance this catalysis. We show that although thermal regeneration of the material is possible, the regenerated material has a substantially lower catalytic and sorption capacity.« less

  8. Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.

    PubMed

    Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing

    2017-10-10

    A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

  9. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes.

    PubMed

    Scofield, Megan E; Liu, Haiqing; Wong, Stanislaus S

    2015-08-21

    The rising interest in fuel cell vehicle technology (FCV) has engendered a growing need and realization to develop rational chemical strategies to create highly efficient, durable, and cost-effective fuel cells. Specifically, technical limitations associated with the major constituent components of the basic proton exchange membrane fuel cell (PEMFC), namely the cathode catalyst and the proton exchange membrane (PEM), have proven to be particularly demanding to overcome. Therefore, research trends within the community in recent years have focused on (i) accelerating the sluggish kinetics of the catalyst at the cathode and (ii) minimizing overall Pt content, while simultaneously (a) maximizing activity and durability as well as (b) increasing membrane proton conductivity without causing any concomitant loss in either stability or as a result of damage due to flooding. In this light, as an example, high temperature PEMFCs offer a promising avenue to improve the overall efficiency and marketability of fuel cell technology. In this Critical Review, recent advances in optimizing both cathode materials and PEMs as well as the future and peculiar challenges associated with each of these systems will be discussed.

  10. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO2 to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles.

    PubMed

    Mori, Kohsuke; Sano, Taiki; Kobayashi, Hisayoshi; Yamashita, Hiromi

    2018-06-22

    The hydrogenation of carbon dioxide (CO 2 ) to formic acid (FA; HCOOH), a renewable hydrogen storage material, is a promising means of realizing an economical CO 2 -mediated hydrogen energy cycle. The development of reliable heter-ogeneous catalysts is an urgent yet challenging task associated with such systems, although precise catalytic site design protocols are still lacking. In the present study, we demonstrate that PdAg alloy nanoparticles (NPs) supported on TiO 2 promote the efficient selective hydrogenation of CO 2 to give FA even under mild reaction conditions (2.0 MPa, 100 °C). Specimens made using surface engineering with atomic precision reveal a strong correlation between increased cata-lytic activity and decreased electron density of active Pd atoms resulting from a synergistic effect of alloying with Ag atoms. The isolated and electronically promoted surface-exposed Pd atoms in Pd@Ag alloy NPs exhibit a maximum turnover number of 14,839 based on the quantity of surface Pd atoms, which represents a more than ten-fold increase compared to the activity of monometallic Pd/TiO 2 . Kinetic and density functional theory (DFT) calculations show that the attack on the C atom in HCO 3 - by a dissociated H atom over an active Pd site is the rate-determining step during this reaction, and this step is boosted by PdAg alloy NPs having a low Pd/Ag ratio.

  11. Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water

    PubMed Central

    T. Weller, Mark

    2018-01-01

    Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO2N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO2N photoanodes. Structural, morphological, and photoelectrochemical (PEC) properties of the modified ZnTaO2N photoanodes are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible (UV−Vis) diffuse reflectance spectroscopy, and electrochemical techniques. The presence of the CoPi layer significantly improved the PEC performance of water oxidation in an alkaline sulphate solution. The photocurrent-voltage behavior of the CoPi-modified ZnTaO2N anodes was improved, with the influence being more prominent at lower oxidation potentials. A stable photocurrent density of about 2.3 mA·cm−2 at 1.23 V vs. RHE was attained upon visible light illumination. Relative to the ZnTaO2N photoanodes, an almost three-fold photocurrent increase was achieved at the CoPi/ZnTaO2N photoelectrode. Perovskite-based oxynitrides are modified using an oxygen-evolution co-catalyst of CoPi, and provide a new dimension for enhancing the photoactivity of oxygen evolution in solar-assisted water-splitting reactions. PMID:29346306

  12. Chemical rules on the assessment of antioxidant potential in food and food additives aimed at reducing oxidative stress and neurodegeneration.

    PubMed

    Franco, Rafael; Martínez-Pinilla, Eva

    2017-11-15

    Antioxidants (aOXs) enlarge the useful life of products consumed by humans. Life requires oxidation of glucose/fatty acids and, therefore, "antioxidant" becomes an oxymoron when trying to define benefits in organisms living in an oxygen-rich atmosphere. According to basic physico-chemical principles, the in vivo aOX potential of food supplements is negligible when compared with the main aOX molecules in the animal Kingdom: glucose and fatty acids. Thus, the aOX assumption to improve life-quality is misleading as oxidative stress and exacerbation occur when oxidant foods (e.g. fava beans) are consumed. Evolution produced potent detoxification mechanisms to handle these situations. When age/genetic/environmental factors negatively impact on detoxification mechanisms, nutrition helps on providing metabolites/precursors needed for boosting innate resources. Ambiguous techniques that attempt to measure in vivo aOX power, should give way to measuring the level of supplements and their metabolites in body fluids/tissues, and to measure the efficacy on antioxidant boosting REDOX pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis† †Electronic supplementary information (ESI) available: Detailed procedures for each method, catalytic performance, STEM-EDX images, detailed characterization. See DOI: 10.1039/c6sc02382g Click here for additional data file.

    PubMed Central

    Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-ichiro; Yamamoto, Tomokazu; Matsumura, Syo

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber–Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr2O3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr2O3. Furthermore, CO2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 N bond. We expect that the use of this catalyst will be a starting point for achieving efficient ammonia synthesis. PMID:28451216

  14. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    PubMed

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  15. The Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics

    PubMed Central

    Fors, Brett P.; Buchwald, Stephen L.

    2009-01-01

    An efficient Pd-catalyst for the transformation of aryl chlorides, triflates and nonaflates to nitroaromatics has been developed. This reaction proceeds under weekly basic conditions and displays a broad scope and excellent functional group compatibility. Moreover, this method allows for the synthesis of aromatic nitro compounds that cannot be accessed efficiently via other nitration protocols. Mechanistic insight into the trasmetallation step of the catalytic process is also reported. PMID:19737014

  16. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    NASA Astrophysics Data System (ADS)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  17. Teacher autonomy support reduces adolescent anxiety and depression: An 18-month longitudinal study.

    PubMed

    Yu, Chengfu; Li, Xian; Wang, Shujun; Zhang, Wei

    2016-06-01

    Grounded in stage-environment fit theory, this study adopts a longitudinal design to examine the contribution of autonomy support from teachers to reducing adolescent anxiety and depression. A total of 236 Chinese adolescents (57.38% females, Mage = 14.34) completed questionnaires on teacher autonomy support, basic psychological needs satisfaction, school engagement, anxiety, and depression in the fall and spring semesters of their 7th and 8th grade years. The results showed that teacher autonomy support in the fall of 7th grade boosted basic psychological needs satisfaction in the spring of 7th grade; this, in turn, increased school engagement in the fall of 8th grade, which subsequently decreased anxiety and depression in the spring of 8th grade. These findings demonstrated the significant effect of teacher autonomy support on reducing adolescent anxiety and depression; furthermore, it highlighted the mediating roles of basic psychological needs satisfaction and school engagement in this relationship. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Catalysis, nanostructure and macroscopic property triangle in bioactive calcium-containing ceramic systems.

    PubMed

    Meiszterics, Anikó; Havancsák, Károly; Sinkó, Katalin

    2013-04-01

    Calcium silicate ceramics are intended for application as long-term implant materials. In the present work, attention was paid to understand the correlations between the nanostructure (aggregate size, crystallinity, porosity) and the macroscopic properties (solubility in water and simulated body fluids, SBF; hardness) varying the chemical composition. Varying the catalyst (from a base to various acids) during the chemical synthesis was shown to significantly impact on the pore size, crystallinity and mechanical properties. The basic catalyst yields the ceramics with the highest mechanical strength. Ammonia used in 1.0 or 10.0 molar ratio results in bulk ceramics with parameters required for a biomedical application, good hardness (180-200 HV) and low solubility (1-3%) in water and in SBF. The fine porosity (~50 nm) and homogeneous amorphous structure induce good mechanical character. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Hot-Fire Testing of a 1N AF-M315E Thruster

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  20. Directional synthesis of ethylbenzene through catalytic transformation of lignin.

    PubMed

    Fan, Minghui; Jiang, Peiwen; Bi, Peiyan; Deng, Shumei; Yan, Lifeng; Zhai, Qi; Wang, Tiejun; Li, Quanxin

    2013-09-01

    Transformation of lignin to ethylbenzene can provide an important bulk raw material for the petrochemical industry. This work explored the production of ethylbenzene from lignin through the directional catalytic depolymerization of lignin into the aromatic monomers followed by the selective alkylation of the aromatic monomers. For the first step, the aromatics selectivity of benzene derived from the catalytic depolymerization of lignin reached about 90.2 C-mol% over the composite catalyst of Re-Y/HZSM-5 (25). For the alkylation of the aromatic monomers in the second step, the highest selectivity of ethylbenzene was about 72.3 C-mol% over the HZSM-5 (25) catalyst. The reaction pathway for the transformation of lignin to ethylbenzene was also addressed. Present transformation potentially provides a useful approach for the production of the basic petrochemical material and development of high-end chemicals utilizing lignin as the abundant natural aromatic resource. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values.

    PubMed

    Zou, Xiaoxin; Huang, Xiaoxi; Goswami, Anandarup; Silva, Rafael; Sathe, Bhaskar R; Mikmeková, Eliška; Asefa, Tewodros

    2014-04-22

    Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts-which also play crucial roles in the overall water-splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co(2+) -embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2 ). The materials' efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spinoff 2011

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.

  3. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.

    We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less

  4. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex

    DOE PAGES

    Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.; ...

    2015-07-30

    We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less

  5. TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge.

    PubMed

    Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea

    2016-01-01

    A collaborative consortium, named "TRANSAUTOPHAGY," has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications.

  6. TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge

    PubMed Central

    Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea

    2016-01-01

    abstract A collaborative consortium, named “TRANSAUTOPHAGY,” has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications. PMID:27046256

  7. Cost effectiveness and efficiency in assistive technology service delivery.

    PubMed

    Warren, C G

    1993-01-01

    In order to develop and maintain a viable service delivery program, the realities of cost effectiveness and cost efficiency in providing assistive technology must be addressed. Cost effectiveness relates to value of the outcome compared to the expenditures. Cost efficiency analyzes how a provider uses available resources to supply goods and services. This paper describes how basic business principles of benefit/cost analysis can be used to determine cost effectiveness. In addition, basic accounting principles are used to illustrate methods of evaluating a program's cost efficiency. Service providers are encouraged to measure their own program's effectiveness and efficiency (and potential viability) in light of current trends. This paper is meant to serve as a catalyst for continued dialogue on this topic.

  8. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  9. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  10. Geoscience Training for NASA Astronaut Candidates

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  11. Obama Indicates Strong Support for Science

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-05-01

    In remarks delivered at the U.S. National Academy of Sciences (NAS) annual meeting on 27 April, U.S. President Barack Obama indicated his administration's strong support for science and for pursuing a clean energy economy. He also announced a goal that the United States “will devote more than 3% of our [gross domestic product] to research and development.” “This represents the largest commitment to scientific research and innovation in American history,” Obama said, noting that the American Recovery and Reinvestment Act already is providing the nation with its largest single boost to investment in basic research.

  12. Collection time again.

    PubMed

    Elder, D L

    1984-01-01

    Looking forward to your next round of collection calls? Few of us do, yet collections play a vital role in every group practice, large or small. This crop of practical collection tips is guaranteed to boost the morale of everyone involved in the collection process. Not only are the basics of a good collection call set down, but result-getting responses to frequent debtor excuses are provided. Telephoning the debtor patient need not be a dreaded task. Just have confidence, keep in mind that the patient does owe you for services rendered in good faith, and pick up the phone--it's a snap!

  13. Vanadium Oxide Deposited on Strontium Titanate and Related Supports: Structural, Redox, and Catalytic Properties in Oxidative Dehydrogenation Reactions

    NASA Astrophysics Data System (ADS)

    McCarthy, James A.

    The field of heterogeneous catalysis has advanced largely through the understanding of structure-function relationships, and novel support materials constitute one possible strategy to further this knowledge through the determination of support effects. To this end, the synthesis, characterization, and reactivity of a new catalytic system are reported herein. Vanadium oxide supported on SrTiO3 (VOx/STO) was prepared by atomic layer deposition, and its activity was investigated in various oxidative dehydrogenation (ODH) reactions. In cyclohexane and propane ODH experiments at 500 °C, selectivity toward COx was found to decrease with greater VOx density and minimal STO surface exposure. This indicates that the support itself is an effective total oxidation catalyst, which complicates VOx performance measurements. In the propane studies, VOx/STO achieved lower turnover frequency (TOF) and propylene yield compared to conventional supported VO x materials. The lower activity of VOx/STO catalysts was correlated with their VOx species being less easily reducible, as determined by temperature-programmed reduction (TPR). The suppressed reducibility is attributed to the stronger surface basicity of STO, which is induced by the presence of relatively electropositive Sr2+ within the perovskite lattice. Studies of cyclohexene ODH at 300 °C were conducted to minimize intrinsic conversion from the supports. The VOx/STO catalysts were mostly found to be less active than VOx/TiO2 and VOx/Al 2O3, in accordance with reducibility measurements. However, one sample containing 0.75% vanadium on STO was particularly active, achieving a TOF greater than 0.01 s-1, while maintaining almost 90% dehydrogenation selectivity. In general, VOx/STO materials were found to be more selective for 1,3-cyclohexadiene compared to traditional catalysts. Other titanates of the form A2+TiO3 were also investigated as supports, and the reducibility of VOx was found to trend with the electronegativity of the A-site cation and the basicity of the titanate. When applied to cyclohexene ODH however, no discernable relationship between reducibility and TOF could be observed, implying that other factors play a major role in this reaction. Through this work, a deeper understanding has been developed concerning the impact of titanate supports on VOx redox and catalytic properties. These findings demonstrate the ability of novel support materials to reveal new insights into structure-function relationships.

  14. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.

    PubMed

    Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin

    2015-08-18

    The search for new catalysts for more efficient, selective chemical transformations and for the synthesis of new functional materials has been a long-standing research subject in both academia and industry. To develop new generations of catalysts that are superior or complementary to the existing ones, exploring the potential of untapped elements is an important strategy. Rare-earth elements, including scandium, yttrium, and the lanthanides (La-Lu), constitute one important frontier in the periodic table. Rare-earth elements possess unique chemical and physical properties that are different from those of main-group and late-transition metals. The development of rare-earth-based catalysts by taking the advantage of these unique properties is of great interest and importance. The most stable oxidation state of rare-earth metals is 3+, which is difficult to change under many reaction conditions. The oxidative addition and reductive elimination processes often observed in catalytic cycles involving late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than the electron numbers) of the ligands. In the lanthanide series (La-Lu), the ionic radius gradually decreases with increasing atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C-C bond affinity of the 3+ metal ions, can make rare-earth metals unique candidates for the formation of excellent single-site catalysts. This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization, carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2 with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes and alkynes through insertion of the unsaturated C-C bond into the metal-alkyl bond followed by transmetalation between the resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C-H bond activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of alkenes into the resulting new metal-carbon bond can lead to catalytic C-H bond alkylation of the organic substrates. Most of these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of late-transition-metal catalysts.

  15. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.

    PubMed

    Lai, Jianping; Guo, Shaojun

    2017-12-01

    Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    PubMed Central

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  17. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach

    PubMed Central

    Lee, Hiang Kwee; Koh, Charlynn Sher Lin; Lee, Yih Hong; Liu, Chong; Phang, In Yee; Han, Xuemei; Tsung, Chia-Kuang; Ling, Xing Yi

    2018-01-01

    Electrochemical nitrogen-to-ammonia fixation is emerging as a sustainable strategy to tackle the hydrogen- and energy-intensive operations by Haber-Bosch process for ammonia production. However, current electrochemical nitrogen reduction reaction (NRR) progress is impeded by overwhelming competition from the hydrogen evolution reaction (HER) across all traditional NRR catalysts and the requirement for elevated temperature/pressure. We achieve both excellent NRR selectivity (~90%) and a significant boost to Faradic efficiency by 10 percentage points even at ambient operations by coating a superhydrophobic metal-organic framework (MOF) layer over the NRR electrocatalyst. Our reticular chemistry approach exploits MOF’s water-repelling and molecular-concentrating effects to overcome HER-imposed bottlenecks, uncovering the unprecedented electrochemical features of NRR critical for future theoretical studies. By favoring the originally unfavored NRR, we envisage our electrocatalytic design as a starting point for high-performance nitrogen-to-ammonia electroconversion directly from water vapor–abundant air to address increasing global demand of ammonia in (bio)chemical and energy industries. PMID:29536047

  18. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles.

    PubMed

    Bai, Shuxing; Shao, Qi; Wang, Pengtang; Dai, Qiguang; Wang, Xingyi; Huang, Xiaoqing

    2017-05-24

    Carbon dioxide (CO 2 ) hydrogenation to ethanol (C 2 H 5 OH) is considered a promising way for CO 2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO 2 hydrogenation to C 2 H 5 OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO 2 hydrogenation to C 2 H 5 OH was well optimized with Pd 2 Cu NPs/P25 exhibiting high selectivity to C 2 H 5 OH of up to 92.0% and the highest turnover frequency of 359.0 h -1 . Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C 2 H 5 OH production and selectivity of Pd 2 Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO 2 hydrogenation to C 2 H 5 OH.

  19. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    DOE PAGES

    Wang, Deli; Liu, Sufen; Wang, Jie; ...

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. Themore » uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.« less

  20. Translating the Immunogenicity of Prime-boost Immunization With ChAd63 and MVA ME-TRAP From Malaria Naive to Malaria-endemic Populations

    PubMed Central

    Kimani, Domtila; Jagne, Ya Jankey; Cox, Momodou; Kimani, Eva; Bliss, Carly M; Gitau, Evelyn; Ogwang, Caroline; Afolabi, Muhammed O; Bowyer, Georgina; Collins, Katharine A; Edwards, Nick; Hodgson, Susanne H; Duncan, Christopher J A; Spencer, Alexandra J; Knight, Miguel G; Drammeh, Abdoulie; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Soipei, Peninah; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Chilengi, Roma; Bojang, Kalifa; Flanagan, Katie L; Hill, Adrian V S; Urban, Britta C; Ewer, Katie J

    2014-01-01

    To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4+ and CD8+ T cells with the frequency of CD8+ IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population. PMID:24930599

  1. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.

    PubMed

    Qi, Wei; Yan, Pengqiang; Su, Dang Sheng

    2018-03-20

    Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the possibility for the fair comparisons of different nanocarbon catalysts and the consequent structure-function relation regularity. Surface modification and heteroatom doping are proved as the most effective strategies to adjust the catalytic property (activity and product selectivity etc.) of the nanocarbon catalysts. Nanocarbon is actually a proper candidate platform helping us to understand the classical catalytic reaction mechanism better, since there is no lattice oxygen and all the catalytic process happens on nanocarbon surface. This Account also exhibits the importance of the in situ structural characterizations for heterogeneous nanocarbon catalysis. The research strategy and methods proposed for carbon catalysts may also shed light on other complicated catalytic systems or fields concerning the applications of nonmetallic materials, such as energy storage and environment protection etc.

  2. Controlling Proton Delivery through Catalyst Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Allan Jay P.; Ginovska, Bojana; Kumar, Neeraj

    The fastest synthetic molecular catalysts for production and oxidation of H2 emulate components of the active site of natural hydrogenases. The role of controlled structural dynamics is recognized as a critical component in the catalytic performance of many enzymes, including hydrogenases, but is largely neglected in the design of synthetic molecular cata-lysts. In this work, the impact of controlling structural dynamics on the rate of production of H2 was studied for a series of [Ni(PPh2NC6H4-R2)2]2+ catalysts including R = n-hexyl, n-decyl, n-tetradecyl, n-octadecyl, phenyl, or cyclohexyl. A strong correlation was observed between the ligand structural dynamics and the rates ofmore » electrocatalytic hydrogen production in acetonitrile, acetonitrile-water, and protic ionic liquid-water mixtures. Specifically, the turnover frequencies correlate inversely with the rates of ring inversion of the amine-containing ligand, as this dynamic process dictates the positioning of the proton relay in the second coordination sphere and therefore governs protonation at either catalytically productive or non-productive sites. This study demonstrates that the dynamic processes involved in proton delivery can be controlled through modifications of the outer coordination sphere of the catalyst, similar to the role of the protein architecture in many enzymes. The present work provides new mechanistic insight into the large rate enhancements observed in aqueous protic ionic liquid media for the [Ni(PPh2NR2)]2+ family of catalysts. The incorporation of controlled structural dynamics as a design parameter to modulate proton delivery in molecular catalysts has enabled H2 production rates that are up to three orders of magnitude faster than the [Ni(PPh2NPh2)]2+complex. The observed turnover frequencies are up to 106 s-1 in acetonitrile-water, and over 107 s-1 in protic ionic liquid-water mixtures, with a minimal increase in overpotential. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less

  3. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal

    PubMed Central

    2017-01-01

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6′-dihydroxybipyridine (6,6′-dhbp)) for both their proton-responsive features and for metal–ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N-heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR)Cl]OTf complexes where R = tBu (1), H (2), or Me (3). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ir) or methoxy (5Ir); 4Ir was reported previously, but 5Ir is new. The analogous ruthenium complexes were also tested using [(η6-cymene)Ru(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ru) or methoxy (5Ru); 4Ru and 5Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1, 2, 3, 5Ir, and for two [Ag(NHC-pyOR)2]OTf complexes 6 (R = tBu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1–5. In general, NHC-pyOR complexes 1–3 were modest precatalysts for both reactions. NHC complexes 1–3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3, we trapped a product of its transformation, 3SP, which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy (4Ir) is 5–8 times more active than x = methoxy (5Ir). Notably, ruthenium complex 4Ru showed 95% of the activity of 4Ir. For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4Ir ≫ 4Ru and 4Ir ≈ 5Ir. Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6′-dhbp are deprotonated and alkali metals can bind and help to activate CO2. Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO2 hydrogenation and formic acid dehydrogenation. PMID:29540958

  4. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal.

    PubMed

    Siek, Sopheavy; Burks, Dalton B; Gerlach, Deidra L; Liang, Guangchao; Tesh, Jamie M; Thompson, Courtney R; Qu, Fengrui; Shankwitz, Jennifer E; Vasquez, Robert M; Chambers, Nicole; Szulczewski, Gregory J; Grotjahn, Douglas B; Webster, Charles Edwin; Papish, Elizabeth T

    2017-03-27

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO 2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N -heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-py OR )Cl]OTf complexes where R = t Bu ( 1 ), H ( 2 ), or Me ( 3 ). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ir ) or methoxy ( 5 Ir ); 4 Ir was reported previously, but 5 Ir is new. The analogous ruthenium complexes were also tested using [(η 6 -cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ru ) or methoxy ( 5 Ru ); 4 Ru and 5 Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1 , 2 , 3 , 5 Ir , and for two [Ag(NHC-py OR ) 2 ]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO 2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1 - 5 . In general, NHC-py OR complexes 1 - 3 were modest precatalysts for both reactions. NHC complexes 1 - 3 all underwent transformations under basic CO 2 hydrogenation conditions, and for 3 , we trapped a product of its transformation, 3 SP , which we characterized crystallographically. For CO 2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy ( 4 Ir ) is 5-8 times more active than x = methoxy ( 5 Ir ). Notably, ruthenium complex 4 Ru showed 95% of the activity of 4 Ir . For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4 Ir ≫ 4 Ru and 4 Ir ≈ 5 Ir . Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6'-dhbp are deprotonated and alkali metals can bind and help to activate CO 2 . Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO 2 hydrogenation and formic acid dehydrogenation.

  5. Highly productive CNN pincer ruthenium catalysts for the asymmetric reduction of alkyl aryl ketones.

    PubMed

    Baratta, Walter; Chelucci, Giorgio; Magnolia, Santo; Siega, Katia; Rigo, Pierluigi

    2009-01-01

    Chiral pincer ruthenium complexes of formula [RuCl(CNN)(Josiphos)] (2-7; Josiphos = 1-[1-(dicyclohexylphosphano)ethyl]-2-(diarylphosphano)ferrocene) have been prepared by treating [RuCl(2)(PPh(3))(3)] with (S,R)-Josiphos diphosphanes and 1-substituted-1-(6-arylpyridin-2-yl)methanamines (HCNN; substituent = H (1 a), Me (1 b), and tBu (1 c)) with NEt(3). By using 1 b and 1 c as a racemic mixture, complexes 4-7 were obtained through a diastereoselective synthesis promoted by acetic acid. These pincer complexes, which display correctly matched chiral PP and CNN ligands, are remarkably active catalysts for the asymmetric reduction of alkyl aryl ketones in basic alcohol media by both transfer hydrogenation (TH) and hydrogenation (HY), achieving enantioselectivities of up to 99 %. In 2-propanol, the enantioselective TH of ketones was accomplished by using a catalyst loading as low as 0.002 mol % and afforded a turnover frequency (TOF) of 10(5)-10(6) h(-1) (60 and 82 degrees C). In methanol/ethanol mixtures, the CNN pincer complexes catalyzed the asymmetric HY of ketones with H(2) (5 atm) at 0.01 mol % relative to the complex with a TOF of approximately 10(4) h(-1) at 40 degrees C.

  6. Effect of Oxygen Defects on the Catalytic Performance of VOx/CeO2 Catalysts for Oxidative Dehydrogenation of Methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan; Wei, Zhehao; Gao, Feng

    2015-05-01

    In this work, CeO2 nanocubes with controlled particle size and dominating (100) facets are synthesized as supports for VOx catalysts. Combined TEM, SEM, XRD, and Raman study reveals that the oxygen vacancy density of CeO2 supports can be tuned by tailoring the particle sizes without altering the dominating facets, where smaller particle sizes result in larger oxygen vacancy densities. At the same vanadium coverage, the VOx catalysts supported on small-sized CeO2 supports with higher oxygen defect densities exhibit promoted redox property and lower activation energy for methoxyl group decomposition, as evidenced by H2-TPR and methanol TPD study. These results furthermore » confirm that the presence of oxygen vacancies plays an important role in promoting the activity of VOx species in methanol oxidation. We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle.« less

  7. Small-Sized Mg–Al LDH Nanosheets Supported on Silica Aerogel with Large Pore Channels: Textural Properties and Basic Catalytic Performance after Activation

    PubMed Central

    Wang, Yusen; Wang, Xiaoxia; Feng, Xiaolan; Ye, Xiao; Fu, Jie

    2018-01-01

    Layered double hydroxides (LDHs) have been widely used as an important subset of solid base catalysts. However, developing low-cost, small-sized LDH nanoparticles with enhanced surface catalytic sites remains a challenge. In this work, silica aerogel (SA)-supported, small-sized Mg–Al LDH nanosheets were successfully prepared by one-pot coprecipitation of Mg and Al ions in an alkaline suspension of crushed silica aerogel. The supported LDH nanosheets were uniformly dispersed in the SA substrate with the smallest average radial diameter of 19.2 nm and the thinnest average thickness of 3.2 nm, both dimensions being significantly less than those of the vast majority of LDH nanoparticles reported. The SA/LDH composites also showed large pore volume (up to 1.3 cm3·g) and pore diameter (>9 nm), and therefore allow efficient access of reactants to the edge catalytic sites of LDH nanosheets. In a base-catalyzed Henry reaction of benzaldehyde with nitromethane, the SA/LDH catalysts showed high reactant conversions and favorable stability in 6 successive cycles of reactions. The low cost of the SA carrier and LDH precursors, easy preparation method, and excellent catalytic properties make these SA/LDH composites a competitive example of solid-base catalysts. PMID:29462941

  8. Small-Sized Mg-Al LDH Nanosheets Supported on Silica Aerogel with Large Pore Channels: Textural Properties and Basic Catalytic Performance after Activation.

    PubMed

    Wang, Lijun; Wang, Yusen; Wang, Xiaoxia; Feng, Xiaolan; Ye, Xiao; Fu, Jie

    2018-02-16

    Layered double hydroxides (LDHs) have been widely used as an important subset of solid base catalysts. However, developing low-cost, small-sized LDH nanoparticles with enhanced surface catalytic sites remains a challenge. In this work, silica aerogel (SA)-supported, small-sized Mg-Al LDH nanosheets were successfully prepared by one-pot coprecipitation of Mg and Al ions in an alkaline suspension of crushed silica aerogel. The supported LDH nanosheets were uniformly dispersed in the SA substrate with the smallest average radial diameter of 19.2 nm and the thinnest average thickness of 3.2 nm, both dimensions being significantly less than those of the vast majority of LDH nanoparticles reported. The SA/LDH composites also showed large pore volume (up to 1.3 cm3·g) and pore diameter (>9 nm), and therefore allow efficient access of reactants to the edge catalytic sites of LDH nanosheets. In a base-catalyzed Henry reaction of benzaldehyde with nitromethane, the SA/LDH catalysts showed high reactant conversions and favorable stability in 6 successive cycles of reactions. The low cost of the SA carrier and LDH precursors, easy preparation method, and excellent catalytic properties make these SA/LDH composites a competitive example of solid-base catalysts.

  9. Screening of Catalyst and Important Variable for The Esterification of Acrylic Acid with 2 Ethylhexanol

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A. A.; Chin, S. Y.

    2017-06-01

    The global demand of 2-ethylhexyl acrylate (2EHA) market has witnessed a significant growth in the past few years and this growth is anticipated to increase in the coming years. 2EHA is one of the basic organic building blocks that mainly used in the production of coatings, adhesives, superabsorbents, thickeners and plastic additives. Homogenous acid-catalysed esterification of acrylic acid (AA) with 2-ethylhexanol (2EH) is commonly used for the production of 2EHA. The homogeneous catalysts such as sulfuric and para-toluene sulfonic acid have resulted the costly and complicated downstream process that generates acidic, corrosive and non-environmental friendly waste. Therefore, it is importance to develop a cheaper process that employing heterogeneous catalysts and alternative raw material from wastewater containing acrylic acid. In this research, the study for the esterification of AA with 2EH catalysed by ion-exchange resin was conducted. The best sulfonic acid functional cation-exchange resin among SK104, SK1B, PK208, PK216, PK228, RCP145, and RCP160 was screened. PK208 outperformed the other resins and it was used subsequently in the parametric studies. The effect of important parameters (initial concentration of acrylic acid (AA), temperature, molar ratio of reactant (AA and 2EH), catalyst loading, and polymerisation inhibitor loading) was studied using 2 factorial design to determine the significant parameters to the esterification. It was found that the initial concentration of AA and temperature were most significantly affecting the esterification of AA with 2EH.

  10. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    NASA Astrophysics Data System (ADS)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third topic in this thesis presents studies of ethane oxydehydrogenation (ODH) in the presence of CO2 over the octahedral molecular sieve (OMS-2) catalyst. Conversion of CO2 into organic compounds has been studied intensively. Ethane catalytic oxydehydrogenation in the presence of CO2 offers an attractive route for converting CO2. In this study, using OMS-2 as the catalyst in C2H6 dehydrogenation in the presence of CO2 is an example where extreme conditions are used to drive high conversions of ethane (> 70%) and CO2 (up to 56%) with high selectivity towards ethylene (87%) with a short contact time (0.6 s). This inexpensive material also showed high stability during the process, and the presence of CO2 removed coke depositions throughout the catalyst. The results obtained from this study open up new possibilities for olefin dehydrogenations in the presence of CO2, a perfect feedstock for any process involving ethylene carbonylation with the recycling of the greenhouse gas. The fourth part of this thesis presents a ZnO/La2O2CO 3 composite prepared by a new and easy method and discusses the use of these materials as heterogeneous catalysts for ultra-fast microwave biodiesel production at low temperatures. The search for solid state materials with high catalytic activities is one of the key steps toward reducing the cost of producing biodiesel. We present a high biodiesel yield (> 95%) in less than 5 minutes under mild reaction conditions (< 100°C) on a ZnO/La 2O2CO3 heterogeneous catalyst, showing no Zn and La leaching into the reaction medium. The catalyst has a higher reaction rate than the homogeneous KOH catalyst with the assistance of microwave irradiation. All of these results promote the industrial application of the synthesized ZnO/La2O2CO3 as a potential heterogeneous catalyst for fast biodiesel production, avoiding many of the issues found in both commercial and independently published catalysts. Following the fourth part of this thesis, the fifth part presents the synthesis and characterization of a series of rare earth Ln2O 2CO3 (Ln = La, Eu, Nd, and Sm) layered materials as novel basic materials for the biodiesel production. Reports on rare earth oxycarbonate Ln2O2CO3 (Ln = rare earths) layered materials as heterogeneous basic catalysts having novel low temperature catalytic activities are rare. In this thesis I successfully synthesized active rare earth (Ln = La, Nd, Eu, and Sm) metal oxycarbonate based layered materials to catalyze the transesterification process under mild conditions (< 85°C), obtaining a high fatty acid methyl ester (FAME) yield (> 95%) in a short reaction time (< 20 minutes). The results of low temperature activities and short reaction times with minimum energy consumption show them to have solid potential as alkali metal hydroxide/alkoxide alternatives for industrial applications.

  11. Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution.

    PubMed

    Fang, Zhiwei; Peng, Lele; Qian, Yumin; Zhang, Xiao; Xie, Yujun; Cha, Judy J; Yu, Guihua

    2018-04-18

    Seeking earth-abundant electrocatalysts with high efficiency and durability has become the frontier of energy conversion research. Mixed-transition-metal (MTM)-based electrocatalysts, owing to the desirable electrical conductivity, synergistic effect of bimetal atoms, and structural stability, have recently emerged as new-generation hydrogen evolution reaction (HER) electrocatalysts. However, the correlation between anion species and their intrinsic electrocatalytic properties in MTM-based electrocatalysts is still not well understood. Here we present a novel approach to tuning the anion-dependent electrocatalytic characteristics in MTM-based catalyst for HER, using holey Ni/Co-based phosphides/selenides/oxides (Ni-Co-A, A = P, Se, O) as the model materials. The electrochemical results, combined with the electrical conductivity measurement and DFT calculation, reveal that P substitution could modulate the electron configuration, lower the hydrogen adsorption energy, and facilitate the desorption of hydrogen on the active sites in Ni-Co-A holey nanostructures, resulting in superior HER catalytic activity. Accordingly we fabricate the NCP holey nanosheet electrocatalyst for HER with an ultralow onset overpotential of nearly zero, an overpotential of 58 mV, and long-term durability, along with an applied potential of 1.56 V to boost overall water splitting at 10 mA cm -2 , among the best electrocatalysts reported for non-noble-metal catalysts to date. This work not only presents a deeper understanding of the intrinsic HER electrocatalytic properties for MTM-based electrocatalyst with various anion species but also offers new insights to better design efficient and durable water-splitting electrocatalysts.

  12. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition.

    PubMed

    Wang, Jian; Ciucci, Francesco

    2017-04-01

    The addition of transition metals, even in a trace amount, into heteroatom-doped carbon (M-N/C) is intensively investigated to further enhance oxygen reduction reaction (ORR) activity. However, the influence of metal decoration on the electrolysis of the reverse reaction of ORR, that is, oxygen evolution reaction (OER), is seldom reported. Moreover, further improving the bifunctional activity and corrosion tolerance for carbon-based materials remains a big challenge, especially in OER potential regions. Here, bimetal-decorated, pyridinic N-dominated large-size carbon tubes (MM'-N/C) are proposed for the first time as highly efficient and durable ORR and OER catalysts. FeFe-N/C, CoCo-N/C, NiNi-N/C, MnMn-N/C, FeCo-N/C, NiFe-N/C, FeMn-N/C, CoNi-N/C, MnCo-N/C, and NiMn-N/C are systematically investigated in terms of their structure, composition, morphology, surface area, and active site densities. In contrast to conventional monometal and N-decorated carbon, small amounts of bimetal (≈2 at%) added during the one-step template-free synthesis contribute to increased pyridinic N content, much longer and more robust carbon tubes, reduced metal particle size, and stronger coupling between the encapsulated metals and carbon support. The synergy of those factors accounts for the dramatically improved ORR and OER activity and stability. By comparison, NiFe-N/C and MnCo-N/C stand out and achieve superior bifunctional oxygen catalytic performance, exceeding most of state-of-the-art catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. One-Pot Synthesis of Fused Pyrroles via a Key Gold Catalysis-Triggered Cascade

    PubMed Central

    Zheng, Zhitong; Tu, Huangfei

    2014-01-01

    A two-step, one-pot synthesis of fused pyrroles is realized by firstly condensing N-alkynylhydroxammonium salt with readily enolizable ketone under mild basic condition and then subjecting the reaction mixture to a gold catalyst, which triggers a cascade reaction featured by a facile initial 3.3-sigmatropic rearrangement of the gold catalysis product, i.e., an N,O-dialkenylhydroxamine. The reaction provides a facile access to polycyclic pyrroles in moderate to good yields. PMID:24482098

  14. Metal-organic-framework-derived carbons: Applications as solid-base catalyst and support for Pd nanoparticles in tandem catalysis

    DOE PAGES

    Li, Xinle; Zhang, Biying; Fang, Yuhui; ...

    2017-02-11

    Here, the facile pyrolysis of a bipyridyl metal-organic framework, MOF-253, produces N-doped porous carbons (Cz-MOF-253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen-containing MOF-derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz-MOF-253-supported Pd nanoparticles (Pd/Cz-MOF-253-800) show excellent performance in a one-pot sequential Knoevenagel condensation-hydrogenation reaction.

  15. Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.

    PubMed

    Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra

    2014-08-11

    A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.

  16. Defense Acquisitions: How DOD Acquires Weapon Systems and Recent Efforts to Reform the Process

    DTIC Science & Technology

    2009-07-10

    and Joint Staff; the Unified Combatant Commands ( UCCs ); the Defense Agencies; and DOD field activities. 18 If there is a conflict between DOD’s top...fair share , or more, of the military contracts there were to be won.71 Congress appeared to have been aware of issues relating to such a basic...However for this establishment to occur, there had to be a market for its products as a catalyst; this market was born when the comparatively small

  17. Five- and six-membered ring opening of pyroglutamic diketopiperazine.

    PubMed

    Parrish, Dennis A; Mathias, Lon J

    2002-03-22

    A variety of ring-opening reactions of pyroglutamic diketopiperazine at both the five-membered and six-membered rings is described. Mild, basic conditions facilitate nucleophilic attack by amines at the diketopiperazine carbonyls giving pyroglutamides in excellent yield. Reaction with nucleophiles under acidic conditions give bis-glutamate derivatives of 2,5-diketopiperazine (DKP). These reactions provide simple, two-step sequences to pyroglutamides and symmetrical diketopiperazines from commercial pyroglutamic acid with control of product dictated by reaction conditions, catalyst, and nucleophile.

  18. Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Vogel, B.; Hübner, P.

    The reforming of natural gas to produce hydrogen for fuel cells is described, including the basic concepts (steam reforming or autothermal reforming) and the mechanisms of the chemical reactions. Experimental work has been done with a compact steam reformer, and a prototype of an experimental reactor for autothermal reforming was tested, both containing a Pt-catalyst on metallic substrate. Experimental results on the steam reforming system and a comparison of the steam reforming process with the autothermal process are given.

  19. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    NASA Astrophysics Data System (ADS)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be recovered in the form of their polymerized counterparts as a result of condensation polymerization subsequent to completion of the transesterification reaction.

  20. Ultrasound assisted two-stage biodiesel synthesis from non-edible Schleichera triguga oil using heterogeneous catalyst: Kinetics and thermodynamic analysis.

    PubMed

    Sarve, Antaram N; Varma, Mahesh N; Sonawane, Shriram S

    2016-03-01

    Present work deals with the ultrasound-assisted biodiesel production from low cost, substantial acid value kusum (Schleichera triguga) oil using a two-step method of esterification in presence of acid (H2SO4) catalyst followed by transesterification using a basic heterogeneous barium hydroxide (Ba(OH)2) catalyst. The initial acid value of kusum oil was reduced from 21.65 to 0.84 mg of KOH/g of oil, by acid catalyzed esterification with 4:1 methanol to oil molar ratio, catalyst concentration 1% (v/v), ultrasonic irradiation time 20 min at 40 °C. Then, Ba(OH)2 concentration of 3% (w/w), methanol to oil molar ratio of 9:1, ultrasonic irradiation time of 80 min, and temperature of 50 °C was found to be the optimum conditions for transesterification step and triglyceride conversion of 96.8% (wt) was achieved. This paper also examined the kinetics as well as the evaluation of thermodynamic parameters for both esterification and transesterification reactions. The lower value of activation energy and higher values of kinetic constants indicated a fast rate of reaction, which could be attributed to the physical effect of emulsification, in which the microturbulence generated due to radial motion of bubbles, creates an intimate mixing of the immiscible reactants causing the increase in the interfacial area, giving faster reaction kinetics. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that both the esterification and transesterification were non-spontaneous, endothermic and endergonic reactions. Therefore, the present work has not only established the escalation obtained due to ultrasonication but also exemplified the two-step approach for synthesis of biodiesel from non-edible kusum oil based on the use of heterogeneous catalyst for the transesterification step. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells

    PubMed Central

    Kramm, Ulrike I.; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M.; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-01-01

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950°C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ion in low (D1), medium (D2) or high spin state (D3), and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x≤2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥ 0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− site−1 s−1 at 0.8V vs RHE. Moreover, all D1 sites and between 1/2 to 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials. PMID:22824866

  2. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells.

    PubMed

    Kramm, Ulrike I; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-09-07

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by (57)Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH(3) at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN(4)-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (Fe(x)N, with x≤ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN(4)-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e(-) per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials.

  3. Boosting productivity: a framework for professional/amateur collaborative teamwork

    NASA Astrophysics Data System (ADS)

    Al-Shedhani, Saleh S.

    2002-11-01

    As technology advances, remote operation of telescopes has paved the way for joint observational projects between Astronomy clubs. Equipped with a small telescope, a standard CCD, and a networked computer, the observatory can be set up to carry out several photometric studies. However, most club members lack the basic training and background required for such tasks. A collaborative network between professionals and amateurs is proposed to utilize professional know-how and amateurs' readiness for continuous observations. Working as a team, various long-term observational projects can be carried out using small telescopes. Professionals can play an important role in raising the standards of astronomy clubs via specialized training programs for members on how to use the available technology to search/observe certain events (e.g. supernovae, comets, etc.). Professionals in return can accumulate a research-relevant database and can set up an early notification scheme based on comparative analyses of the recently-added images in an online archive. Here we present a framework for the above collaborative teamwork that uses web-based communication tools to establish remote/robotic operation of the telescope, and an online archive and discussion forum, to maximize the interactions between professionals and amateurs and to boost the productivity of small telescope observatories.

  4. Exploration of the Chaotic Behaviour in a Buck-Boost Converter Depending on the Converter and Load Elements

    NASA Astrophysics Data System (ADS)

    Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol

    2016-08-01

    In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.

  5. Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode.

    PubMed

    Hung, Pao Chen; Chi, Kai Hsien; Chen, Mei Lien; Chang, Moo Been

    2012-01-30

    The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in the flue gas of a Waelz plant operated in acid and basic modes, respectively. To abate (PCDD/F) and other pollutants, the plant operates with a post-treatment of flue gases by activated carbon injection and subsequent filtration. Relatively high PCDD/F discharge by fly ashes is found with acid kiln mode of the Waelz process. Therefore, basic kiln mode of the Waelz process is investigated and compared in this plant. With the adsorbent injection rate of 7 kg/h (95 mg/Nm(3)), the PCDD/F concentration in stack gas was measured as 0.123 ng I-TEQ/Nm(3) in the basic operating mode. The added Ca(OH)(2) reacted with metal catalysts and HCl((g)) in the flue gas and thus effectively suppressed the formation of PCDD/Fs. PCDD/F concentrations in fly ashes sampled from the dust settling chamber, cyclone, primary filter and secondary filter in basic kiln mode were significantly lower than that in acid kiln mode. Total PCDD/F emission on the basis of treating one kg of electric arc furnace dust in the basic operation mode was 269 ng I-TEQ/kg EAF-dust treated which was significantly lower than that in acid mode (640 ng I-TEQ/kg EAF-dust treated). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Computer simulations of optimum boost and buck-boost converters

    NASA Technical Reports Server (NTRS)

    Rahman, S.

    1982-01-01

    The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  7. Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage.

    PubMed

    Li, Daohao; Lv, Chunxiao; Liu, Long; Xia, Yanzhi; She, Xilin; Guo, Shaojun; Yang, Dongjiang

    2015-08-26

    Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10-40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g(-1) at 1 A g(-1), good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g(-1) at 1 A g(-1) and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage.

  8. Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage

    PubMed Central

    2015-01-01

    Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10–40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g–1 at 1 A g–1, good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g–1 at 1 A g–1 and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage. PMID:27162980

  9. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    PubMed

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine ecosystem is avoided. © 2017 Elsevier Inc. All rights reserved.

  10. FY 1984 Science Budget overview

    NASA Astrophysics Data System (ADS)

    Astronomy, engineering, and the physical sciences as a whole were among the best funded programs in the fiscal 1984 budget that President Ronald Reagan sent to Congress last week. In addition, science education got a shot in the arm: The Reagan proposal includes plans for the nation's universities to upgrade scientific instrumentation and to attract and support high caliber scientists and engineers.Reagan proposes that federal funding for research and development, including R&D facilities, total $47 billion in fiscal 1984, up 17% from the fiscal 1983 level. Defense research and development programs would be increased 29%; nondefense R&D would be increased 0.4%. Total basic research would be boosted 10%.

  11. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.

    PubMed

    Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; Hirose, Takuji; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2017-03-22

    A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two -OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h -1 and a turnover number of 7280 at 25 °C, which are higher than ever reported. Moreover, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2 -storage system in water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient hydrogen storage and production using a catalyst with an imidazoline-based, proton-responsive ligand

    DOE PAGES

    Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; ...

    2016-12-28

    A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two –OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h –1 and a turnovermore » number of 7280 at 25 °C, which are higher than ever reported. Furthermore, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2-storage system in water.« less

  13. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    PubMed

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.

  14. Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes.

    PubMed

    Kast, Matthew G; Enman, Lisa J; Gurnon, Nicholas J; Nadarajah, Athavan; Boettcher, Shannon W

    2014-12-24

    Protecting Si photocathodes from corrosion is important for developing tandem water-splitting devices operating in basic media. We show that textured commercial Si-pn(+) photovoltaics protected by solution-processed semiconducting/conducting oxides (plausibly suitable for scalable manufacturing) and coupled to thin layers of Ir yield high-performance H2-evolving photocathodes in base. They also serve as excellent test structures to understand corrosion mechanisms and optimize interfacial electrical contacts between various functional layers. Solution-deposited TiO2 protects Si-pn(+) junctions from corrosion for ∼24 h in base, whereas junctions protected by F:SnO2 fail after only 1 h of electrochemical cycling. Interface layers consisting of Ti metal and/or the highly doped F:SnO2 between the Si and TiO2 reduce Si-emitter/oxide/catalyst contact resistance and thus increase fill factor and efficiency. Controlling the oxide thickness led to record photocurrents near 35 mA cm(-2) at 0 V vs RHE and photocathode efficiencies up to 10.9% in the best cells. Degradation, however, was not completely suppressed. We demonstrate that performance degrades by two mechanisms, (1) deposition of impurities onto the thin catalyst layers, even from high-purity base, and (2) catastrophic failure via pinholes in the oxide layers after several days of operation. These results provide insight into the design of hydrogen-evolving photoelectrodes in basic conditions, and highlight challenges.

  15. Cost-effectiveness assessment of lumpectomy cavity boost in elderly women with early stage estrogen receptor positive breast cancer receiving adjuvant radiotherapy.

    PubMed

    Lester-Coll, Nataniel H; Rutter, Charles E; Evans, Suzanne B

    2016-04-01

    Breast radiotherapy (RT) for elderly women with estrogen receptor positive early stage breast cancer (ER+ESBC) improves local recurrence (LR) rates without benefitting overall survival. Breast boost is a common practice, although the absolute benefit decreases with age. Consequently, an analysis of its cost-effectiveness in the elderly ESBC populations is warranted. A Markov model was used to compare cost-effectiveness of RT with or without a boost in elderly ER+ESBC patients. The ten-year probability of LR with boost was derived from the CALGB 9343 trial and adjusted by the hazard ratio for LR from boost radiotherapy trial data, yielding the LR rate without boost. Remaining parameters were estimated using published data. Boost RT was associated with an increase in mean cost ($7139 vs $6193) and effectiveness (5.66 vs 5.64 quality adjusted life years; QALYs) relative to no boost. The incremental cost-effectiveness ratio (ICER) for boost was $55,903 per QALY. On one-way sensitivity analysis, boost remained cost-effective if the hazard ratio of LR with boost was <0.67. Boost RT for ER+ESBC patients was cost-effective over a wide range of assumptions and inputs over commonly accepted willingness-to pay-thresholds, but particularly in women at higher risk for LR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Energy Beam Highways Through the Skies

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.

    1996-01-01

    The emergence of Energy Beam Flight Transportation Systems could dramatically change the way we travel in the 21st Century. A framework for formulating 'Highways of Light' and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent 'motors' -- instead of the traditional autonomous 'engines' with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., 'Acorn', 'Toy Top', and 'Disc.' Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the 'emerging technologies' that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.

  17. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.« less

  18. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.« less

  19. Palladium complexes with simple iminopyridines as catalysts for polyketone synthesis.

    PubMed

    Rosar, V; Dedeic, D; Nobile, T; Fini, F; Balducci, G; Alessio, E; Carfagna, C; Milani, B

    2016-10-07

    Four iminopyridines (N-N') differing in the nature of the substituents on the iminic carbon and on the ortho positions of the aryl ring (H or CH3) on the iminic nitrogen were used for the synthesis of neutral and monocationic palladium(ii) complexes of general formulae [Pd(CH3)Cl(N-N')] and [Pd(CH3)(NCCH3)(N-N')][PF6]. The detailed NMR characterization in solution highlighted that: (i) for both series of complexes, the Pd-CH3 signal is progressively shifted to a lower frequency on increasing the number of methyl groups on the ligand skeleton; (ii) for the neutral derivatives, the chemical shift of the (15)N NMR signals, determined through {(1)H,(15)N}-HMBC spectra, is significantly affected by the coordination to palladium; (iii) the coordination induced shift (CIS) of the nitrogen atom trans to the CH3 ligand is smaller than the other. The structure in the solid state for the neutral derivatives with all the four ligands was solved, pointing out that: (iv) the Pd-C bond distance increases with the basicity of the nitrogen-donor ligand; (v) the Pd-N bond distance correlates well with the CIS value. The combining of the solution and solid state structural features allows stating that: (vi) the Pd-CH3 singlet is a good probe for the electron donor capability of the ligand; (vii) the CIS value might be used as a probe for the strength of the Pd-N bond. All monocationic complexes generated active catalysts for the CO/vinyl arene copolymerization, leading to prevailingly syndiotactic polyketones. The catalyst performances, both in terms of catalyst productivity and polymer molecular weight, correlate well with the precatalyst structural features.

  20. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lili; Schobert, Harold H.; Song, Chunshan

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. Formore » convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.« less

  1. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  2. Metal-organic frameworks as selectivity regulators for hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-01

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe3+, Cr3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design strategy will allow the development of other selective heterogeneous catalysts for important yet challenging transformations.

  3. Metal-organic frameworks as selectivity regulators for hydrogenation reactions.

    PubMed

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-03

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe 3+ , Cr 3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design strategy will allow the development of other selective heterogeneous catalysts for important yet challenging transformations.

  4. Can you boost your metabolism?

    MedlinePlus

    Weight-loss boost metabolism; Obesity - boost metabolism; Overweight - boost metabolism ... Cowley MA, Brown WA, Considine RV. Obesity. In: Jameson JL, De Groot ... and Pediatric . 7th ed. Philadelphia, PA: Elsevier Saunders; ...

  5. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  6. Chemistry and catalysis of coal liquefaction catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, July-September 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, W.H.

    1981-02-01

    Studies on the basic properties of supported sulfide catalysts showed that different supports have a profound influence on catalytic activities of CoMo catalysts. The three functions of hydrodesulfurization, hydrogenation and cracking were differently affected depending on the support used and the manner of preparation of the catalyst. Also, incorporation of additives to the support showed that the different catalytic functions can be selectively affected. A systematic study concerned with catalytic cracking of coal-derived liquids, viz., an SRC-II middle-heavy distillate and four hydrotreated SRC-II products was carried out in the range of 375 to 500/sup 0/C (LHSV, 0.2 to 3.9 h/supmore » -1/). Hydrotreatment, even to a limited extent, results in a remarkable improvement in the yield of gasoline-range products from the SRC-II distillate. This improvement is ascribed to: (a) hydrogenolysis reactions leading to lower molecular weight feedstock components and (b) limited hydrogenation of aromatic rings leading to polycyclic feed components with sufficient concentration of hydroaromatic rings needed for effective cracking. The results with model compounds and the data on hydrogen consumption during hydrotreatment of SRC-II liquids indicate that for tricyclic, tetracyclic, and pentacyclic coal-liquid components the optimal concentration of hydroaromatic rings for effective subsequent cracking is at least two rings per molecule.« less

  7. The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H2O, CH3OH and CH3OAc adsorption

    NASA Astrophysics Data System (ADS)

    Montero, J. M.; Isaacs, M. A.; Lee, A. F.; Lynam, J. M.; Wilson, K.

    2016-04-01

    An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 - sites to OH- and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C-H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.

  8. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  9. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  10. Achieving high-powered Zn/air fuel cell through N and S co-doped hierarchically porous carbons with tunable active-sites as oxygen electrocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Qiaowei; Wang, Luming; Wu, Mingjie; Xu, Nengneng; Jiang, Lei; Qiao, Jinli

    2017-10-01

    Electrochemical reduction of oxygen is the heart of the next-generation energy technologies to fuel cells and metal-air batteries, of which the reference catalysts suffer from two critical bottlenecks lying in their insufficient electroactivities and unclear active site structures. Herein, we introduce the effectively hierarchically porous carbons (HPCs) as the active-sites enriched platform for oxygen electroreduction. Three quaternized copolymers (PUB, PAADDA and PICP) with different chemical structures are used to pursue Fe/N/S-tailored ORR electrocatalysts. The most efficient one prepared by PAADDA gives the onset potential of 0.94 V and a half-wave potential of 0.85 V in basic solution, as well as superb electroactivities of low H2O2% and high electron transfer number in both alkaline and acidic medium. Surprisingly, they all display high discharge power density as applied to Zn-air fuel cells, and the HPCs-PAADDA catalyst thrillingly reaches 516.3 mW cm-2 when catalyst loading is optimized to 5.0 mg cm-2. The results elucidate that the polymer with long aliphatic chain is propitious to trap metals to create active sites and enwrap silica template to construct uniform pore structure. Only two kinds of nitrogen configuration (pyridinic-N and graphitic-N) are found with distinct structure in these HPCs, which happens to be active sites.

  11. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonakou, E.V.; Kalogiannis, K.G.; Stephanidis, S.D.

    Highlights: • Thermal and catalytic pyrolysis is a powerful method for recycling of WEEEs. • Liquid products obtained from the pyrolysis of PC or HIPS found in waste CDs are very different. • Mainly phenols are obtained from pyrolysis PC based wastes while aromatics from HIPS. • Use of MgO catalyst increases the amount of phenols from CD recycling compared to ZSM-5. • Use of MgO or ZSM-5 catalysts reduces the amount of styrene recovered from HIPS. - Abstract: Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or variousmore » useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.« less

  12. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    PubMed Central

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K

    2015-01-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g−1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of −0.045 V and a half-wave potential of −0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ∼5% as compared to ∼14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance. PMID:27877746

  13. Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Mei, Donghai; Karim, Ayman M.

    2013-06-01

    Fundamental understanding and control of chemical transformations are essential to the development of technically feasible and economically viable catalytic processes for efficient conversion of biomass to fuels and chemicals. Using an integrated experimental and theoretical approach, we report high hydrogen selectivity and catalyst durability of acetone steam reforming (ASR) on inert carbon supported Co nanoparticles. The observed catalytic performance is further elucidated on the basis of comprehensive first-principles calculations. Instead of being considered as an undesired intermediate prone for catalyst deactivation during bioethanol steam reforming (ESR), acetone is suggested as a key and desired intermediate in proposed two-stage ESR processmore » that leads to high hydrogen selectivity and low methane formation on Co-based catalysts. The significance of the present work also sheds a light on controlling the chemical transformations of key intermediates in biomass conversion such as ketones. We gratefully acknowledge the financial support from U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Laboratory directed research and development (LDRD) project of Pacific Northwest National Laboratory (PNNL). Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at PNNL, and sponsored by the U.S. DOE’s Office of Biological and Environmental Research.« less

  14. A PIPO Boost Converter with Low Ripple and Medium Current Application

    NASA Astrophysics Data System (ADS)

    Bandri, S.; Sofian, A.; Ismail, F.

    2018-04-01

    This paper presents a Parallel Input Parallel Output (PIPO) boost converter is proposed to gain power ability of converter, and reduce current inductors. The proposed technique will distribute current for n-parallel inductor and switching component. Four parallel boost converters implement on input voltage 20.5Vdc to generate output voltage 28.8Vdc. The PIPO boost converter applied phase shift pulse width modulation which will compare with conventional PIPO boost converters by using a similar pulse for every switching component. The current ripple reduction shows an advantage PIPO boost converter then conventional boost converter. Varies loads and duty cycle will be simulated and analyzed to verify the performance of PIPO boost converter. Finally, the unbalance of current inductor is able to be verified on four area of duty cycle in less than 0.6.

  15. Hydrogen storage and evolution catalysed by metal hydride complexes.

    PubMed

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  16. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    PubMed

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  17. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  18. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  19. Investor Outlook: Focus on Upcoming LCA2 Gene Therapy Phase III Results.

    PubMed

    Schimmer, Joshua; Breazzano, Steven

    2015-09-01

    Investor interest in gene therapy has increased substantially over the past few years, and the next major catalyst for the field is likely to be Spark Therapeutics's phase III trial for the treatment of visual impairment caused by RPE65 gene mutations (often referred to as Leber congenital amaurosis type 2, or LCA2, but may include other retinal disorders). Analysis of the approach from the basic genetics, underlying visual mechanisms, clinical data, and commercialization considerations helps frame investor expectations and the potential implications for the broader field.

  20. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained from the development of this chemistry allowed for the rational design of a similarly E-styrenyl selective classical Heck reaction using aryldiazonium salts and a broad range of alkene substrates. The key mechanistic findings from the development of these reactions provide new insight into how to predictably impart catalyst control in organometallic processes that would otherwise afford complex product mixtures. Given our new understanding, we are optimistic that reactions that introduce increased complexity relative to simple classical processes may now be developed based on our ability to predict the selectivity-determining nucleopalladation and β-hydride elimination steps through catalyst design. PMID:22111756

  1. Persistence, immune specificity, and functional ability of murine mutant ras epitope-specific CD4(+) and CD8(+) T lymphocytes following in vivo adoptive transfer.

    PubMed

    Bristol, J A; Schlom, J; Abrams, S I

    1999-05-25

    Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T-cell transfer was more obligatory than exogenous IL-2 treatment to sustain adoptively transferred T cells in vivo. Ag-specific T-cell responses were weak in mice that either received IL-2 alone or did not receive the cognate peptide boost after T-cell transfer. The T-cell clones were also monitored by flow cytometry or RT-PCR based on expression of the T-cell receptor Vbeta-chain, which was previously characterized. Ag-specific T cells were recovered from both spleens and lungs of recipient mice, demonstrating that the T-cell clones could localize to both lymphoid and nonlymphoid tissues. This study demonstrates that both uncultured and in vitro-cloned T lymphocytes can migrate to lymphoid tissues and nonlymphoid (e.g., lung) tissues in recipient hosts and that their functional activities can be maintained at these sites after transfer, if they are exposed to peptide Ag in vivo. Copyright 1999 Academic Press.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, N; Khan, F; Sharp, G

    Purpose: To determine the dose level and timing of the boost in locally advanced lung cancer patients with confirmed tumor recurrence by comparing different boosting strategies by an impact of dose escalation in improvement of the therapeutic ratio. Methods: We selected eighteen patients with advanced NSCLC and confirmed recurrence. For each patient, a base IMRT plan to 60 Gy prescribed to PTV was created. Then we compared three dose escalation strategies: a uniform escalation to the original PTV, an escalation to a PET-defined target planned sequentially and concurrently. The PET-defined targets were delineated by biologically-weighed regions on a pre-treatment 18F-FDGmore » PET. The maximal achievable dose, without violating the OAR constraints, was identified for each boosting method. The EUD for the target, spinal cord, combined lung, and esophagus was compared for each plan. Results: The average prescribed dose was 70.4±13.9 Gy for the uniform boost, 88.5±15.9 Gy for the sequential boost and 89.1±16.5 Gy for concurrent boost. The size of the boost planning volume was 12.8% (range: 1.4 – 27.9%) of the PTV. The most prescription-limiting dose constraints was the V70 of the esophagus. The EUD within the target increased by 10.6 Gy for the uniform boost, by 31.4 Gy for the sequential boost and by 38.2 for the concurrent boost. The EUD for OARs increased by the following amounts: spinal cord, 3.1 Gy for uniform boost, 2.8 Gy for sequential boost, 5.8 Gy for concurrent boost; combined lung, 1.6 Gy for uniform, 1.1 Gy for sequential, 2.8 Gy for concurrent; esophagus, 4.2 Gy for uniform, 1.3 Gy for sequential, 5.6 Gy for concurrent. Conclusion: Dose escalation to a biologically-weighed gross tumor volume defined on a pre-treatment 18F-FDG PET may provide improved therapeutic ratio without breaching predefined OAR constraints. Sequential boost provides better sparing of OARs as compared with concurrent boost.« less

  3. Boosting ORR Catalytic Activity by Integrating Pyridine-N Dopants, a High Degree of Graphitization, and Hierarchical Pores into a MOF-Derived N-Doped Carbon in a Tandem Synthesis.

    PubMed

    Liu, Dandan; Li, Liangjun; Xu, Huanfei; Dai, Pengcheng; Wang, Ying; Gu, Xin; Yan, Liting; Zhao, Guoming; Zhao, Xuebo

    2018-05-18

    N-doped carbon materials represent promising metal-free electrocatalysts for the oxygen reduction reaction (ORR), the cathode reaction in fuel cells, metal-air batteries, and so on. A challenge for optimizing the ORR catalytic activities of these electrocatalysts is to tune their local structures and chemical compositions in a rational and controlled way that can achieve the synergistic function of each factor. Herein, we report a tandem synthetic strategy that integrates multiple contributing factors into an N-doped carbon. With an N-containing MOF (ZIF-8) as the precursor, carbonization at higher temperatures leads to a higher degree of graphitization. Subsequent NH 3 etching of this highly graphitic carbon enabled the introduction of a higher content of pyridine-N sites and higher porosity. By optimizing these three factors, the resultant carbon materials displayed ORR activity that was far superior to that of carbon derived from a one-step pyrolysis. The onset potential of 0.955 V versus a reversible hydrogen electrode (RHE) and the half-wave potential of 0.835 V versus RHE are among the top ranks of metal-free ORR catalysts and are comparable to commercial Pt/C (20 wt %) catalysts. Kinetic studies revealed lower H 2 O 2 yields, higher electron-transfer numbers, and lower Tafel slopes for these carbon materials compared with that derived from a one-step carbonization. These findings verify the effectiveness of this tandem synthetic strategy to enhance the ORR activity of N-doped carbon materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1

  5. Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route

    NASA Astrophysics Data System (ADS)

    Lei, Yonggang; Hou, Jianhua; Wang, Fang; Ma, Xiaohua; Jin, Zhiliang; Xu, Jing; Min, Shixiong

    2017-10-01

    Low-crystalline or amorphous molybdenum sulfides (MoSx), bearing abundant unsaturated active sites, have been identified as efficient catalysts for electrocatalytic and photocatalytic H2 evolution reactions, however, their intrinsic activity is still low and need to be further improved for large-scale applications. In this paper, we report that low-crystalline MoSx doped with Co (Co-MoSx) as efficient cocatalysts could be loaded on CdS nanoparticles through a facile and controllable photochemical reduction method and showed high performances in catalyzing H2 evolution under visible light irradiation (≥420 nm). The photochemical loading of Co-MoSx was accomplished by using an in-situ formed molecular complex precursor and photogenerated electrons on CdS as reductants under mild conditions. The optimized CdS/Co-MoSx (Co:Mo = 1:4, 2 mol% loading) photocatalyst exhibited a catalytic H2 evolution rate of 535 μmol h-1, which is 1.8 times higher than that of CdS/MoSx, and an apparent quantum efficiency (AQE) of 23.5% was achieved over CdS/Co-MoSx photocatalyst at 420 nm. Co-MoSx catalyst also shows a long-term stability without noticeable activity degradation. Notably, Co-MoSx cocatalyst was found more efficient than that of noble metals in catalyzing photocatalytic H2 evolution on CdS. The formation of CoMoS phase, the enhanced electrocatalytic activity as well as reduced electron transfer resistance due to the doping effects of Co ions, account for the enhanced catalytic activity of this Co-MoSx cocatalyst.

  6. Milne boost from Galilean gauge theory

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Mukherjee, Pradip

    2018-03-01

    Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.

  7. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.

  8. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    NASA Astrophysics Data System (ADS)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM for morphology. Substituting some of the Al for ferric ion resulted in enhanced basicity and enhanced reactivity towards transesterification of seed oil and the model compound triacetin. Substituting some of the Mg for cupric ion resulted in a transfer hydrogenation catalyst capable of single pot dehydrogenation of methanol and hydrogenation of the model compound dihydrobenzofuran.

  9. Sunlight-assisted Fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions.

    PubMed

    Navalon, Sergio; Martin, Roberto; Alvaro, Mercedes; Garcia, Hermenegildo

    2011-05-23

    Gold nanoparticles supported on Fenton-treated diamond nanoparticles (Au/DNPs) have been reported as one of the most efficient solid catalysts effecting the Fenton reaction, achieving a turnover number (TON) as high as 321,000. However, at room temperature the main limitation for the catalytic activity of Au/DNPs is the pH of the solution, which should be less than 5. In this paper, we report that exposure of Au/DNPs to sunlight enhances the catalytic activity of Au/DNPs up to the point that it can promote the Fenton reaction at room temperature even at slightly basic pH values. Also, in addition to performing a deep Fenton treatment and considering that the excess of H(2)O(2) used in the process should be minimized, we have achieved in our study, using a mild Fenton reaction promoted by Au/DNPs under sunlight irradiation, an optimum in the biodegradability, a minimum in the ecotoxicity, and no toxicity for the Vibrio fischeri test. The results have shown that, by using an H(2)O(2) -to-phenol molar ratio of 5.5 or higher, it is possible to achieve a high biodegradability as well as a complete lack of ecotoxicity and of Vibrio fischeri toxicity. The stability of Au/DNPs was confirmed by analyzing the gold leached to the solution and by performing four consecutive reuses of the catalyst with initial pH values ranging from 4 to 8. It was observed that, after finishing the reaction and exhaustive washings with basic aqueous solutions, the initial reaction rate of the used catalyst is recovered to the value exhibited by the fresh solid. Overall, our study shows that the synergism between catalysis and photocatalysis can overcome the limitations found for dark catalytic reactions and that the reaction parameters can be optimized to effect mild Fenton reactions aimed at increasing biodegradability in biorecalcitrant waste waters. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Scientific bases of biomass processing into basic component of aviation fuel

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.

    2016-11-01

    A combination of feedstock pyrolysis and the cracking of the volatile pyrolysis products on the charcoal at 1000 °C allows to obtain a tarless synthesis gas which contains 90 vol% or more of carbon monoxide and hydrogen in approximately equal proportions. Basic component of aviation fuel was synthesized in a two-stage process from gas obtained by pyrolytic processing of biomass. Methanol and dimethyl ether can be efficiently produced in a two-layer loading of methanolic catalyst and γ-Al2O3. The total conversion of CO per pass was 38.2% using for the synthesis of oxygenates a synthesis gas with adverse ratio of H2/CO = 0.96. Conversion of CO to CH3OH was 15.3% and the conversion of CO to dimethyl ether was 20.9%. A high yield of basic component per oxygenates mass (44.6%) was obtained during conversion. The high selectivity of the synthesis process for liquid hydrocarbons was observed. An optimal recipe of aviation fuel B-92 based on a synthesized basic component was developed. The prototype of aviation fuel meets the requirements for B-92 when straight fractions of 50-100 °C (up to 35 wt%), isooctane (up to 10 wt%) and ethyl fluid (2.0 g/kg calculated as tetraethyl lead) is added to the basic component.

  11. Robust boosting via convex optimization

    NASA Astrophysics Data System (ADS)

    Rätsch, Gunnar

    2001-12-01

    In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems? Boosting methods are originally designed for classification problems. To extend the boosting idea to regression problems, we use the previous convergence results and relations to semi-infinite programming to design boosting-like algorithms for regression problems. We show that these leveraging algorithms have desirable theoretical and practical properties. o Can boosting techniques be useful in practice? The presented theoretical results are guided by simulation results either to illustrate properties of the proposed algorithms or to show that they work well in practice. We report on successful applications in a non-intrusive power monitoring system, chaotic time series analysis and a drug discovery process. --- Anmerkung: Der Autor ist Träger des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2001/2002. In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugehörigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. Die Arbeit behandelt folgende Sachverhalte: o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Abschätzung der Vorhersagequalität auf ungesehenen Mustern. Kürzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalität der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt. o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung? Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu lösen, deren Lösung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien für eine große Familie von Boosting-ähnlichen Algorithmen zu geben. o Kann man Boosting robust gegenüber Meßfehlern und Ausreissern in den Daten machen? Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivität gegenüber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting übertragen. Das führt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen. o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern? Boosting-Methoden wurden ursprünglich für Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-ähnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben. o Ist Boosting praktisch anwendbar? Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tatsächlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-Überwachungssystem und bei der Entwicklung neuer Medikamente illustriert.

  12. Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases

    DTIC Science & Technology

    2006-08-01

    of these cells by boosting. DNA vaccines are good priming agents since they are internalised by antigen presenting cells and can induce antigen...presentation via both MHC class I and class II, thereby inducing both cytotoxic T lymphocytes and type 1-helper T lymphocytes. Successful boosting agents ...assessing prime-boost vaccine combinations for protection against infectious agents . • In a number of prime - boost studies, the inclusion of growth

  13. [Advances in peroxide-based decontaminating technologies].

    PubMed

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants.

  14. High-surface-area architectures for improved charge transfer kinetics at the dark electrode in dye-sensitized solar cells.

    PubMed

    Hoffeditz, William L; Katz, Michael J; Deria, Pravas; Martinson, Alex B F; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2014-06-11

    Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.

  15. Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungsten-doped Bismuth Vanadate Photoanodes.

    PubMed

    Zhang, Bingqing; Shi, Jingying; Ding, Chunmei; Chong, Ruifeng; Zhang, Bao; Wang, Zhiliang; Li, Ailong; Liang, Zhenxing; Liao, Shijun; Li, Can

    2015-12-07

    The photo fuel cell (PFC) is a promising technology for simultaneously converting solar energy and bioenergy into electricity. Here, we present a miniature air-breathing PFC that uses either BiVO4 or W-doped BiVO4 as the photoanode and a Pt/C catalyst as the air-breathing cathode. The PFC exhibited excellent performance under solar illumination and when fed with several types of biomaterial. We found the PFC performance could be significantly enhanced using W-doping into the BiVO4 photoanode. With glucose as the fuel and simulated sunlight (AM 1.5 G) as the light source, the open-circuit voltage increased from 0.74 to 0.92 V, the short-circuit current density rose from 0.46 to 1.62 mA cm(-2) , and the maximum power density was boosted from 0.05 to 0.38 mW cm(-2) , compared to a PFC using undoped BiVO4 as the anode. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting.

    PubMed

    Monguzzi, Angelo; Oertel, Amadeus; Braga, Daniele; Riedinger, Andreas; Kim, David K; Knüsel, Philippe N; Bianchi, Alberto; Mauri, Michele; Simonutti, Roberto; Norris, David J; Meinardi, Francesco

    2017-11-22

    Upconversion is a photon-management process especially suited to water-splitting cells that exploit wide-bandgap photocatalysts. Currently, such catalysts cannot utilize 95% of the available solar photons. We demonstrate here that the energy-conversion yield for a standard photocatalytic water-splitting device can be enhanced under solar irradiance by using a low-power upconversion system that recovers part of the unutilized incident sub-bandgap photons. The upconverter is based on a sensitized triplet-triplet annihilation mechanism (sTTA-UC) obtained in a dye-doped elastomer and boosted by a fluorescent nanocrystal/polymer composite that allows for broadband light harvesting. The complementary and tailored optical properties of these materials enable efficient upconversion at subsolar irradiance, allowing the realization of the first prototype water-splitting cell assisted by solid-state upconversion. In our proof-of concept device the increase of the performance is 3.5%, which grows to 6.3% if concentrated sunlight (10 sun) is used. Our experiments show how the sTTA-UC materials can be successfully implemented in technologically relevant devices while matching the strict requirements of clean-energy production.

  17. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance.

    PubMed

    Pan, Zhong-Hua; Tao, Yun-Wen; He, Quan-Feng; Wu, Qiao-Yu; Cheng, Li-Ping; Wei, Zhan-Hua; Wu, Ji-Huai; Lin, Jin-Qing; Sun, Di; Zhang, Qi-Chun; Tian, Dan; Luo, Geng-Geng

    2018-06-12

    Inspired by the metal active sites of [NiFeSe]-hydrogenases, a dppf-supported nickel(II) selenolate complex (dppf=1,1'-bis(diphenylphosphino)ferrocene) shows high catalytic activity for electrochemical proton reduction with a remarkable enzyme-like H 2 evolution turnover frequency (TOF) of 7838 s -1 under an Ar atmosphere, which markedly surpasses the activity of a dppf-supported nickel(II) thiolate analogue with a low TOF of 600 s -1 . A combined study of electrochemical experiments and DFT calculations shed light on the catalytic process, suggesting that selenium atom as a bio-inspired proton relay plays a key role in proton exchange and enhancing catalytic activity of H 2 production. For the first time, this type of Ni selenolate-containing electrocatalyst displays a high degree of O 2 and H 2 tolerance. Our results should encourage the development of the design of highly efficient oxygen-tolerant Ni selenolate molecular catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin; You, Ning; Yu, Zhe

    Two-dimensional (2D) materials, especially the inorganic 2D nanosheets (NSs), are of particular interest due to their unique structural and electronic properties, which are favorable for photoelectronic applications such as photocatalysis. Here, we design and fabricate the ultrathin 2D ZnO NSs decorated with Au nanoparticles (AuNPs), though molecular modelling 2D hydrothermal growth and followed by surface modification are used as an effective photocatalyst for photocatalytic organic dye degradation and hydrogen production. The ultrathin 2D nature enables ultrahigh atom ratio near surface to proliferate the active sites, and the Au plasmon plays a promoting role in the visible-light absorption and photogenerated chargemore » separation, thus integrating the synergistic benefits to boost the redox reactions at catalyst/electrolyte interface. The AuNPs-decorated ZnO NSs yield the impressive photocatalytic activities such as the dye degradation rate constant of 7.69 × 10{sup −2} min{sup −1} and the hydrogen production rate of 350 μmol h{sup −1} g{sup −1}.« less

  19. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.

    PubMed

    Lizundia, E; Vilas, J L; León, L M

    2015-06-05

    In this work, crystallization, structural relaxation and thermal degradation kinetics of neat Poly(L-lactide) (PLLA) and its nanocomposites with cellulose nanocrystals (CNC) and CNC-grafted-PLLA (CNC-g-PLLA) have been studied. Although crystallinity degree of nanocomposites remains similar to that of neat homopolymer, results reveal an increase on the crystallization rate by 1.7-5 times boosted by CNC, which act as nucleating agents during the crystallization process. In addition, structural relaxation kinetics of PLLA chains has been drastically reduced by 53% and 27% with the addition of neat and grafted CNC, respectively. The thermal degradation activation energy (E) has been determined from thermogravimetric analysis in the light of Kissinger's and Ozawa-Flynn-Wall theoretical models. Results reveal a reduction on the thermal stability when in presence of CNC-g-PLLA, while raw CNC slightly increases the thermal stability of PLLA. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy results confirm that the presence of residual catalyst in CNC-g-PLLA plays a pivotal role in the thermal degradation behavior of nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g-C₃N₄ Composite for Hydrocarbon Oxidation.

    PubMed

    Chen, Ke; Chai, Zhigang; Li, Cong; Shi, Liurong; Liu, Mengxi; Xie, Qin; Zhang, Yanfeng; Xu, Dongsheng; Manivannan, Ayyakkannu; Liu, Zhongfan

    2016-03-22

    Mass production of high-quality graphene flakes is important for commercial applications. Graphene microsheets have been produced on an industrial scale by chemical and liquid-phase exfoliation of graphite. However, strong-interaction-induced interlayer aggregation usually leads to the degradation of their intrinsic properties. Moreover, the crystallinity or layer-thickness controllability is not so perfect to fulfill the requirement for advanced technologies. Herein, we report a quartz-powder-derived chemical vapor deposition growth of three-dimensional (3D) high-quality graphene flakes and demonstrate the fabrication and application of graphene/g-C3N4 composites. The graphene flakes obtained after the removal of growth substrates exhibit the 3D curved microstructure, controllable layer thickness, good crystallinity, as well as weak interlayer interactions suitable for preventing the interlayer stacking. Benefiting from this, we achieved the direct synthesis of g-C3N4 on purified graphene flakes to form the uniform graphene/g-C3N4 composite, which provides efficient electron transfer interfaces to boost its catalytic oxidation activity of cycloalkane with relatively high yield, good selectivity, and reliable stability.

  1. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis

    PubMed Central

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Amara, Rama Rao; Plikaytis, Bonnie B.; Posey, James E.; Sable, Suraj B.

    2016-01-01

    Heterologous prime–boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32–52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime–Apa-subunit-boost strategy compared to Apa-subunit-prime–BCG-boost approach. However, parenteral BCG-prime–Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime–boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime–boost regimens against tuberculosis in humans. PMID:27173443

  2. Science& Technology Review November 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D

    2003-11-01

    This issue of Science & Technology Review covers the following topics: (1) We Will Always Need Basic Science--Commentary by Tomas Diaz de la Rubia; (2) When Semiconductors Go Nano--experiments and computer simulations reveal some surprising behavior of semiconductors at the nanoscale; (3) Retinal Prosthesis Provides Hope for Restoring Sight--A microelectrode array is being developed for a retinal prosthesis; (4) Maglev on the Development Track for Urban Transportation--Inductrack, a Livermore concept to levitate train cars using permanent magnets, will be demonstrated on a 120-meter-long test track; and (5) Power Plant on a Chip Moves Closer to Reality--Laboratory-designed fuel processor gives powermore » boost to dime-size fuel cell.« less

  3. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  4. Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.

    PubMed

    Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael

    2006-05-01

    In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.

  5. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benaouadj, M.; Aboubou, A.; Bahri, M.

    2016-07-25

    In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to developmore » an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.« less

  6. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizesmore » Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetterly, Brandon Michael

    Nitric acid has been shown to be a weak acid in acetonitrile. It is conceivable that a nitrate salt of a weakly Lewis acidic cation could furnish a ''naked'' nitrate anion as a basic catalyst in a variety of reactions in non-aqueous solvents. Such a nitrate salt could also be bound to a polymeric support via the cation, thereby allowing for reclamation and recycling of the nitrate ion. This subject is dealt with in Chapter 2, wherein my contributions consisted of performing all the reactions with the polymer supported catalyst and carrying out the experiments necessary to shed light onmore » the reaction mechanisms. Chapter 3 contains a description of the structure and catalytic properties of an azidoproazaphosphatrane. This compound is an air-stable versatile catalyst that has proven useful not only homogeneously, but also when bound to a solid support. The synthesis of a polymer bound proazaphosphatrane containing a trivalent phosphorus is presented in Chapter 4. Such a compound has been sought after by our group for a number of years. Not only does the synthesis I have accomplished for it allow for easier separation of proazaphosphatrane catalysts from reaction mixtures, but recycling of the base is made much simpler. Proazaphosphatranes are useful homogeneous catalysts that activate atoms in other reagents, thus enhancing their reactivity. The next chapters deal with two such reactions with aldehydes and ketones, namely silylcyanations with trialkylsilylcyanides (Chapters 5 and 6) and reductions with poly(methylhydrosiloxane), in Chapter 7. In Chapter 5, Zhigang Wang performed the initial optimization and scoping of the reaction, while repetitions of the scoping experiments for reproducibility, determination of diastereomeric ratios, and experiments aimed at elucidating aspects of the mechanism were performed by me. The proazaphosphatrane coordinates to the silicon atom in both cases, thereby allowing the aforementioned reactions to proceed under much milder conditions. Proazaphosphatranes are also effective Broensted-Lowry bases. This is illustrated in Chapter 8 wherein a wide variety of conjugate addition reactions are catalyzed by proazaphosphatranes. In that chapter, repetitions of the nitroalkane addition reactions for reproducibility, improved spectral data for the products and comparisons of literature yields of all reactions were performed by the author.« less

  8. Influence of copper on nickel-based catalysts in the conversion of glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Barbara C.; Chimentao, Ricardo J.; Szanyi, Janos

    2015-05-01

    The catalytic transformation of glycerol to value-added compounds was investigated over bimetallic Ni-Cu/γ-Al2O3 catalysts with Ni/Cu atomic ratios of 8/1, 4/1, 2/1, 1/1, 1/2, 1/4, and 1/8. XPS analysis revealed that the surface composition of the catalyst exhibited progressive enrichment of Cu as its content in the catalyst increased. H2-chemisorption indicated that the total number of exposed Ni atoms decreased as the Cu content increased. As a result, deep hydrogenolysis to produce CH4 was inhibited by the addition of Cu to the Ni catalyst, yielding higher selectivity towards the dehydration products of glycerol such as hydroxyacetone. FTIR spectra of adsorbedmore » CO reveals that Cu asserts both geometric and electronic effects on the adsorption properties of Ni. The geometrical effect is visualized by the progressive disappearance of the bridge-bound adsorbed CO on metallic Ni by the incorporation of Cu. This suggests that the deep hydrogenolysis of glycerol to CH4 formation requires an ensemble of adjacent active Ni atoms. The electronic effect of Cu on Ni is indicated by the red shift of the IR peak of adsorbed CO as the Cu content increases. The electronic interaction between Cu and Ni species was also substantiated by XANES results. HTREM revealed metal particles very well distributed on the support with particle size of 1.5 to 5 nm. The Ni-Cu samples were not a total intermetallic alloys. We also gratefully acknowledge the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work. The research related to the FTIR of adsorption of CO (Proposal 48209) was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  10. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  11. HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine.

    PubMed

    Shen, Xiaoying; Basu, Rahul; Sawant, Sheetal; Beaumont, David; Kwa, Sue Fen; LaBranche, Celia; Seaton, Kelly E; Yates, Nicole L; Montefiori, David C; Ferrari, Guido; Wyatt, Linda S; Moss, Bernard; Alam, S Munir; Haynes, Barton F; Tomaras, Georgia D; Robinson, Harriet L

    2017-12-15

    An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4 + T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4 + T cell responses. IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with recombinant gp120 protein or MVA-expressed gp140 to enhance antibody responses elicited by the GOVX-B11 DNA prime-MVA boost vaccine. We found that both types of immunogen boosts enhanced potentially protective antibody responses, whereas the gp120 protein boosts also increased CD4 + T cell responses. Our data provide important information for HIV vaccine designs that aim for effective and balanced humoral and T cell responses. Copyright © 2017 Shen et al.

  12. Variable Thrust, Multiple Start Hybrid Motor Solutions for Missile and Space Applications

    DTIC Science & Technology

    2010-06-01

    considered: I. Boost/Sustain/Boost. Simulating a tactical solid rocket motor profile with another boost at the end to demonstrate a "throttle up", this...of tactical solid rocket motors were tested with 75%, 50%, and lower sustain-to- boost chamber pressure ratios with rapid throttle-up achieved... solid rocket motors were tested with 75%, 50%, and lower sustain-to-boost chamber pressure ratios with rapid throttle-up achieved following the sustain

  13. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    PubMed

    Zheng, Qi; Grice, Elizabeth A

    2016-10-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  14. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  15. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  16. Nonlinear program based optimization of boost and buck-boost converter designs

    NASA Astrophysics Data System (ADS)

    Rahman, S.; Lee, F. C.

    The facility of an Augmented Lagrangian (ALAG) multiplier based nonlinear programming technique is demonstrated for minimum-weight design optimizations of boost and buck-boost power converters. Certain important features of ALAG are presented in the framework of a comprehensive design example for buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight and loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  17. Indole synthesis by conjugate addition of anilines to activated acetylenes and an unusual ligand-free copper(II)-mediated intramolecular cross-coupling.

    PubMed

    Gao, Detian; Back, Thomas G

    2012-11-12

    A versatile new synthesis of indoles was achieved by the conjugate addition of N-formyl-2-haloanilines to acetylenic sulfones, ketones, and esters followed by a copper-catalyzed intramolecular C-arylation. The conjugate addition step was conducted under exceptionally mild conditions at room temperature in basic, aqueous DMF. Surprisingly, the C-arylation was performed most effectively by employing copper(II) acetate as the catalyst in the absence of external ligands, without the need for protection from air or water. An unusual feature of this process, for the case of acetylenic ketones, is the ability of the initial conjugate-addition product to serve as a ligand for the catalyst, which enables it to participate in the catalysis of its further transformation to the final indole product. Mechanistic studies, including EPR experiments, indicated that copper(II) is reduced to the active copper(I) species by the formate ion that is produced by the base-catalyzed hydrolysis of DMF. This process also served to recycle any copper(II) that was produced by the adventitious oxidation of copper(I), thereby preventing deactivation of the catalyst. Several examples of reactions involving acetylenic sulfones attached to a modified Merrifield resin demonstrated the feasibility of solid-phase synthesis of indoles by using this protocol, and tricyclic products were obtained in one pot by employing acetylenic sulfones that contain chloroalkyl substituents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  19. Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.

    A critical scientific challenge for utilization of CO2 is the development of catalyst systems that do not depend upon expensive or environmentally unfriendly reagents, such as precious metals, strong organic bases, and organic solvents. We have used thermodynamic insights to predict and demonstrate that the HCoI(dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strongmore » organic base was eliminated by performing catalysis in water due to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity. The research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  20. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor.

    PubMed

    Vallet, Ana; Besson, Michèle; Ovejero, Gabriel; García, Juan

    2012-08-15

    Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550°C. An increase in the reaction temperature (120-180°C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.7 mL min(-1)) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min(-1) and 180°C under 5 MPa air. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Blending Cr 2O 3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; ...

    2015-08-24

    The rising H 2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr 2O 3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr 2O 3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr 2O 3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalystmore » enables an alkaline electrolyzer operating at 20 mA cm –2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  2. Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum.

    PubMed

    Huang, Jun; Zhang, Jianbo; Eikerling, Michael

    2018-05-07

    Rapid conversion of oxygen into water is crucial to the operation of polymer electrolyte fuel cells and other emerging electrochemical energy technologies. Chemisorbed oxygen species play double-edged roles in this reaction, acting as vital intermediates on one hand and site-blockers on the other. Any attempt to decipher the oxygen reduction reaction (ORR) must first relate the formation of oxygen intermediates to basic electronic and electrostatic properties of the catalytic surface, and then link it to parameters of catalyst activity. An approach that accomplishes this feat will be of great utility for catalyst materials development and predictive model formulation of electrode operation. Here, we present a theoretical framework for the multiple interrelated surface phenomena and processes involved, particularly, by incorporating the double-layer effects. It sheds light on the roles of oxygen intermediates and gives out the Tafel slope and exchange current density as continuous functions of electrode potential. Moreover, it develops the concept of a rate determining term, which should replace the concept of a rate determining step for multielectron reactions, and offers a new perspective on the volcano relation of the ORR.

  3. Evaluating molecular cobalt complexes for the conversion of N2 to NH3.

    PubMed

    Del Castillo, Trevor J; Thompson, Niklas B; Suess, Daniel L M; Ung, Gaël; Peters, Jonas C

    2015-10-05

    Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest and are currently limited to systems featuring molybdenum or iron. This report details the synthesis of a molecular cobalt complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to those of previously described iron and molybdenum systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, a comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential precatalysts is. These studies enable consideration of the structural and electronic effects that are likely relevant to N2 conversion activity, including the π basicity, charge state, and geometric flexibility.

  4. Dynamic Kinetic Resolution Enabled by Intramolecular Benzoin Reaction: Synthetic Applications and Mechanistic Insights.

    PubMed

    Zhang, Guoxiang; Yang, Shuang; Zhang, Xiaoyan; Lin, Qiqiao; Das, Deb K; Liu, Jian; Fang, Xinqiang

    2016-06-29

    The highly enantio-, diastereo-, and regioselective dynamic kinetic resolution of β-ketoesters and 1,3-diketones was achieved via a chiral N-heterocyclic carbene catalyzed intramolecular cross-benzoin reaction. A variety of tetralone derivatives bearing two contiguous stereocenters and multiple functionalities were liberated in moderate to excellent yields and with high levels of stereoselectivity (>95% ee and >20:1 dr in most cases). In addition, the excellent regioselectivity control for aryl/alkyl 1,3-diketones, and the superior electronic differentiation of 1,3-diarylketones were highlighted. Moreover, a set of new mechanistic rationale that differs with the currently widely accepted understanding of intramolecular benzoin reactions was established to demonstrate the superior preference of benzoin over aldol transformation: (1) A coexistence of competitive aldol and benzoin reactions was detected, but a retro-aldol-irreversible benzoin process performs a vital role in the generation of predominant benzoin products. (2) The most essential role of an N-electron-withdrawing substituent in triazolium catalysts was revealed to be accelerating the rate of the benzoin transformation, rather than suppressing the aldol process through reducing the inherent basicity of the catalyst.

  5. Chemistry of personalized solar energy.

    PubMed

    Nocera, Daniel G

    2009-11-02

    Personalized energy (PE) is a transformative idea that provides a new modality for the planet's energy future. By providing solar energy to the individual, an energy supply becomes secure and available to people of both legacy and nonlegacy worlds and minimally contributes to an increase in the anthropogenic level of carbon dioxide. Because PE will be possible only if solar energy is available 24 h a day, 7 days a week, the key enabler for solar PE is an inexpensive storage mechanism. HY (Y = halide or OH(-)) splitting is a fuel-forming reaction of sufficient energy density for large-scale solar storage, but the reaction relies on chemical transformations that are not understood at the most basic science level. Critical among these are multielectron transfers that are proton-coupled and involve the activation of bonds in energy-poor substrates. The chemistry of these three italicized areas is developed, and from this platform, discovery paths leading to new hydrohalic acid- and water-splitting catalysts are delineated. The latter water-splitting catalyst captures many of the functional elements of photosynthesis. In doing so, a highly manufacturable and inexpensive method for solar PE storage has been discovered.

  6. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  7. Breast conserving treatment for breast cancer: dosimetric comparison of sequential versus simultaneous integrated photon boost.

    PubMed

    Van Parijs, Hilde; Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark

    2014-01-01

    Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine.

  8. Breast Conserving Treatment for Breast Cancer: Dosimetric Comparison of Sequential versus Simultaneous Integrated Photon Boost

    PubMed Central

    Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark

    2014-01-01

    Background. Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. Methods. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. Results. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. Conclusions. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine. PMID:25162031

  9. Radiotherapy Breast Boost With Reduced Whole-Breast Dose Is Associated With Improved Cosmesis: The Results of a Comprehensive Assessment From the St. George and Wollongong Randomized Breast Boost Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, Eric, E-mail: helloerico@yahoo.com; Browne, Lois H.; Khanna, Sam

    Purpose: To evaluate comprehensively the effect of a radiotherapy boost on breast cosmetic outcomes after 5 years in patients treated with breast-conserving surgery. Methods: The St. George and Wollongong trial (NCT00138814) randomized 688 patients with histologically proven Tis-2, N 0-1, M0 carcinoma to the control arm of 50 Gy in 25 fractions (342 patients) and the boost arm of 45 Gy in 25 fractions to the whole breast followed by a 16 Gy in 8 fraction electron boost (346 patients). Five-year cosmetic outcomes were assessed by a panel subjectively in 385 patients and objectively using pBRA (relative breast retraction assessment).more » A subset of patients also had absolute BRA measurements. Clinician assessment and patient self-assessment of overall cosmetic and specific items as well as computer BCCT.core analysis were also performed. Results: The boost arm had improved cosmetic overall outcomes as scored by the panel and BCCT.core software with 79% (p = 0.016) and 81% (p = 0.004) excellent/good cosmesis respectively compared with 68% in no-boost arm. The boost arm also had lower pBRA and BRA values with a mean difference of 0.60 and 1.82 mm, respectively, but was not statistically significant. There was a very high proportion of overall excellent/good cosmetic outcome in 95% and 93% in the boost and no-boost arms using patient self-assessment. However, no difference in overall and specific items scored by clinician assessment and patient self-assessment was found. Conclusion: The results show the negative cosmetic effect of a 16-Gy boost is offset by a lower whole-breast dose of 45 Gy.« less

  10. A Study of 4-level DC-DC Boost Inverter with Passive Component Reduction Consideration

    NASA Astrophysics Data System (ADS)

    Kasiran, A. N.; Ponniran, A.; Harimon, M. A.; Hamzah, H. H.

    2018-04-01

    This study is to analyze design principles of boost inductor and capacitor used in the 4-level DC-DC boost converter to realize size reduction of passive component referring to their attributes. The important feature of this circuit is that most of the boost-up energy is transferred from the capacitor-clamped to the output side which the small inductance can be used at the input side. The inductance of the boost inductor is designed by referring the inductor current ripple. On the other hand, the capacitance of the capacitor-clamped is designed by considering voltage stress on semiconductor devices and also the used switching frequency. Besides that, according to the design specifications, the required inductance in 4-level DC-DC boost converter is decreased compared to a conventional conventional DC-DC boost converter. Meanwhile, voltage stress on semiconductor device is depending on the maximum voltage ripple of the capacitor-clamped. A 50 W 4-level DC-DC boost converter prototype has been constructed. The results show that the inductor current ripple was 1.15 A when the inductors, 1 mH and 0.11 mH were used in the conventional and 4-level DC-DC boost converters, respectively. Thus, based on the experimental results, it shows that the reduction of passive components by referring to their attributes in 4-level DC-DC boost converter is achieved. Moreover, the decreasing of voltage stress on the semiconductor devices is an advantage for the selection of low ON-resistance of the devices which will contribute to the reduction of the semiconductor conduction loss. The integration result of boost converter and H-bridge inverter is also shown.

  11. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    NASA Astrophysics Data System (ADS)

    Maluangnont, Tosapol; Arsa, Pornanan; Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong; Gotoh, Kazuma; Sooknoi, Tawan

    2016-06-01

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O2- sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K0.8Zn0.4Ti1.6O4 as an example. The low basicity (0.04 mmol CO2/g) and low desorption temperature (50-300 °C) shown by CO2- TPD suggests that O2- sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO2. The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C16 acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O2- sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast 1H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C31 ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at TiIV sites was also illustrated.

  12. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity.

    PubMed

    Thomas, John Meurig; Raja, Robert

    2008-06-01

    In the mid-1990s, it became possible to prepare high-area silicas having pore diameters controllably adjustable in the range ca. 20-200 Å. Moreover, the inner walls of these nanoporous solids could be functionalized to yield single-site, chiral, catalytically active organometallic centers, the precise structures of which could be determined using in situ X-ray absorption and FTIR and multinuclear magic angle spinning (MAS) NMR spectroscopy. This approach opened up the prospect of performing heterogeneous enantioselective conversions in a novel manner, under the spatial restrictions imposed by the nanocavities within which the reactions occur. In particular, it suggested an alternative method for preparing pharmaceutically and agrochemically useful asymmetric products by capitalizing on the notion, initially tentatively perceived, that spatial confinement of prochiral reactants (and transition states formed at the chiral active center) would provide an altogether new method of boosting the enantioselectivity of the anchored chiral catalyst. Initially, we anchored chiral single-site heterogeneous catalysts to nanopores covalently via a ligand attached to Pd(II) or Rh(I) centers. Later, we employed a more convenient and cheaper electrostatic method, relying in part on strong hydrogen bonding. This Account provides many examples of these processes, encompassing hydrogenations, oxidations, and aminations. Of particular note is the facile synthesis from methyl benzoylformate of methyl mandelate, which is a precursor in the synthesis of pemoline, a stimulant of the central nervous system; our procedure offers several viable methods for reducing ketocarboxylic acids. In addition to relying on earlier (synchrotron-based) in situ techniques for characterizing catalysts, we have constructed experimental procedures involving robotically controlled catalytic reactors that allow the kinetics of conversion and enantioselectivity to be monitored continually, and we have access to sophisticated, high-sensitivity chiral chromatographic facilities and automated high-throughput combinatorial test rigs so as to optimize the reaction conditions (e.g., H(2) pressure, temperature, time on-stream, pH, and choice of ligand and central metal ion) for high enantioselectivity. This Account reports our discoveries of selective hydrogenations and aminations of synthetic, pharmaceutical, and biological significance, and the findings of other researchers who have achieved similar success in oxidations, dehydrations, cyclopropanations, and hydroformylations. Although the practical advantages and broad general principles governing the enhancement of enantioselectivity through spatial confinement are clear, we require a deeper theoretical understanding of the details pertaining to the phenomenology involved, particularly through molecular dynamics simulations. Ample scope exists for the general exploitation of nanospace in asymmetric hydrogenations with transition metal complexes and for its deployment for the formation of C-N, C-C, C-O, C-S, and other bonds.

  13. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  14. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  15. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  16. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  17. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  18. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  19. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  20. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  1. Boosted one dimensional fermionic superfluids on a lattice

    NASA Astrophysics Data System (ADS)

    Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.

    2017-09-01

    We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.

  2. Disulphide bond exchange inhibited by air - kinetic and thermodynamic products in a library of macrocyclic cysteine derivatives.

    PubMed

    Cholewiak, Agnieszka; Dobrzycki, Łukasz; Jurczak, Janusz; Ulatowski, Filip

    2018-04-04

    In this paper we present the synthesis and reactivity of dithiols comprising of two cysteine moieties attached to a dipicolinic acid core. Oxidation of these thiols provides oligomeric macrocycles. Monomers with 13-membered rings are kinetic products which are, however, strained and readily transform into higher oligomers under basic conditions or elevated temperature via a disulphide exchange reaction. Dimers, which are the most stable thermodynamic products, equilibrate only under inert conditions with thiolate as a catalyst. Under aerobic conditions, the thiols are oxidised before the equilibrium is reached.

  3. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D [Albuquerque, NM; Shah, Pratik B [Albuquerque, NM; Singh, Seema [Rio Rancho, NM; Brinker, C Jeffrey [Albuquerque, NM

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  4. New cytotoxic diterpenylnaphthohydroquinone derivatives obtained from a natural diterpenoid.

    PubMed

    Miguel Del Corral, José M; Castro, M Angeles; Lucena Rodri Guez, M; Chamorro, Pablo; Cuevas, Carmen; San Feliciano, Arturo

    2007-09-01

    Diterpenylquinone/hydroquinone derivatives were prepared through Diels-Alder cycloaddition between natural myrcecommunic acid or its methyl ester and p-benzoquinone (p-BQ), using BF(3).Et(2)O as catalyst or under microwave (Mw) irradiation. Acetyl, methyl and benzyl derivatives of several diterpenylnaphthohydroquinone were prepared from cycloadducts following two basic synthetic strategies, either protection before aromatisation or viceversa. Some of them were further functionalised at the B-ring of the decaline core. Most of the new compounds were evaluated and some of them resulted cytotoxic against several tumour cell lines with IC(50) values under the microM level.

  5. NFP Investor Conference. Growth is back in sight.

    PubMed

    Haugh, Richard

    2002-06-01

    In a whirlwind of high-stakes meetings in New York City in mid-May, two dozen of the nation's largest hospitals and health systems strutted their stuff with a single goal: securing their future. Their message was clear: back-to-basics works, and now it's time to grow the business. Executives from 23 providers outlined their work on increasing revenue, boosting margins and shoring up balance sheets. They presented their market positions, strategic initiatives and financial results for investment analysts, credit raters and bond traders. The third annual Non-Profit Healthcare Investor Conference was co-sponsored by the American Hospital Association, Health Forum, the Healthcare Financial Management Association and Salomon Smith Barney. The focus on growth doesn't come without challenges Several common themes emerged from the presentations, among them pressure on reimbursement, workforce shortages, liability insurance issues and capacity constraints. Yet executives agree: it all comes down to the basics, and building the strength to keep their missions alive. As Thomas Meier, vice president and treasurer of Oakland, Calif.-based Kaiser Permanente, put it: "No margin, no mission, no más."

  6. Financial statistics for public health dispensary decisions in Nigeria: insights on standard presentation typologies.

    PubMed

    Agundu, Prince Umor C

    2003-01-01

    Public health dispensaries in Nigeria in recent times have demonstrated the poise to boost corporate productivity in the new millennium and to drive the nation closer to concretising the lofty goal of health-for-all. This is very pronounced considering the face-lift giving to the physical environment, increase in the recruitment and development of professionals, and upward review of financial subventions. However, there is little or no emphasis on basic statistical appreciation/application which enhances the decision making ability of corporate executives. This study used the responses from 120 senior public health officials in Nigeria and analyzed them with chi-square statistical technique. The results established low statistical aptitude, inadequate statistical training programmes, little/no emphasis on statistical literacy compared to computer literacy, amongst others. Consequently, it was recommended that these lapses be promptly addressed to enhance official executive performance in the establishments. Basic statistical data presentation typologies have been articulated in this study to serve as first-aid instructions to the target group, as they represent the contributions of eminent scholars in this area of intellectualism.

  7. RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING

    PubMed Central

    Liu, Meizhu; Vemuri, Baba C.

    2011-01-01

    Boosting is a versatile machine learning technique that has numerous applications including but not limited to image processing, computer vision, data mining etc. It is based on the premise that the classification performance of a set of weak learners can be boosted by some weighted combination of them. There have been a number of boosting methods proposed in the literature, such as the AdaBoost, LPBoost, SoftBoost and their variations. However, the learning update strategies used in these methods usually lead to overfitting and instabilities in the classification accuracy. Improved boosting methods via regularization can overcome such difficulties. In this paper, we propose a Riemannian distance regularized LPBoost, dubbed RBoost. RBoost uses Riemannian distance between two square-root densities (in closed form) – used to represent the distribution over the training data and the classification error respectively – to regularize the error distribution in an iterative update formula. Since this distance is in closed form, RBoost requires much less computational cost compared to other regularized Boosting algorithms. We present several experimental results depicting the performance of our algorithm in comparison to recently published methods, LP-Boost and CAVIAR, on a variety of datasets including the publicly available OASIS database, a home grown Epilepsy database and the well known UCI repository. Results depict that the RBoost algorithm performs better than the competing methods in terms of accuracy and efficiency. PMID:21927643

  8. Novel catalysts and photoelectrochemical system for solar fuel production

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption spectroscopy (XAS). The photocatalytic activities of as-made nanoparticles were investigated using a well-studied visible light driven [Ru(bpy)3]2+-persulfate system. In both Clark electrode and reactor/gas chromatography (GC) systems, Mn-substituted Co3O 4 nanoparticles exhibited the highest turnover frequency (TOF) among all the three kinds of catalysts. The data presented in this paper suggest that the photocatalytic oxygen evolution activity of Co3O 4 spinel catalyst can be further enhanced by Mn3+ substitution at the octahedral sites. The second part of this piece of work was carried out to further investigate cobalt oxide based photocatalytic oxygen evolution catalyst. A new strategy was developed to synthesize nonsupported cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO 3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.0023 per second per cobalt in photocatalytic oxygen evolution reaction. X-ray absorption results suggested that a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen atoms and hydroxide groups in an octahedral arrangement to form 8 Co4O4 cubanes, may be responsible for the exceptionally high oxygen evolution catalysis activity. This thesis work is completed with the development of a photoanode-driven photoelectrochemical cell for CO2 reduction. A NiOx decorated Si photoanode and nanoporous Ag cathode were employed. With an external bias of 2.0 V, a current density at cathode of 10 mA/cm2 and Faradaic efficiency of 70% for CO2 to CO was achieved. Compared to a normal electrochemical cell, the photoelectrochemical cell saves 0.4 V electrical energy by absorbing photo-energy. In addition, post-test photoanodes were carefully characterized by SEM, XAS, and XPS analysis.

  9. Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools

    NASA Astrophysics Data System (ADS)

    Ouyang, Qin; Chen, Quansheng; Zhao, Jiewen

    2016-02-01

    The approach presented herein reports the application of near infrared (NIR) spectroscopy, in contrast with human sensory panel, as a tool for estimating Chinese rice wine quality; concretely, to achieve the prediction of the overall sensory scores assigned by the trained sensory panel. Back propagation artificial neural network (BPANN) combined with adaptive boosting (AdaBoost) algorithm, namely BP-AdaBoost, as a novel nonlinear algorithm, was proposed in modeling. First, the optimal spectra intervals were selected by synergy interval partial least square (Si-PLS). Then, BP-AdaBoost model based on the optimal spectra intervals was established, called Si-BP-AdaBoost model. These models were optimized by cross validation, and the performance of each final model was evaluated according to correlation coefficient (Rp) and root mean square error of prediction (RMSEP) in prediction set. Si-BP-AdaBoost showed excellent performance in comparison with other models. The best Si-BP-AdaBoost model was achieved with Rp = 0.9180 and RMSEP = 2.23 in the prediction set. It was concluded that NIR spectroscopy combined with Si-BP-AdaBoost was an appropriate method for the prediction of the sensory quality in Chinese rice wine.

  10. CO{sub 2} Reuse in Petrochemical Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Trembly; Brian Turk; Maruthi Pavani

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals andmore » fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.« less

  11. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion.

    PubMed

    Ng, Siauw H; Shi, Yu; Heshka, Nicole E; Zhang, Yi; Little, Edward

    2016-09-02

    The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr(-1), 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2's, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.

  12. Why Paid Family and Medical Leave Matters for the Future of America's Families, Businesses and Economy.

    PubMed

    Rowe-Finkbeiner, Kristin; Martin, Ruth; Abrams, Brett; Zuccaro, Anna; Dardari, Yasmina

    2016-11-01

    Paid family and medical leave are vital public policies for promoting large-scale improvements in maternal and child health that can boost our national economy. That is why MomsRising-a national on-the-ground and online grassroots organization with over a million members across the United States-is thrilled by the growing momentum for paid family and medical leave. We are not the least bit surprised that support for this critical policy is growing. The United States is the only industrialized nation in the world without paid family and medical leave, and the fact that these basic workplace protections are missing hurts America's global competitiveness, businesses, economy, and, most importantly, infant and maternal mortality rates.

  13. A system for tracking and recognizing pedestrian faces using a network of loosely coupled cameras

    NASA Astrophysics Data System (ADS)

    Gagnon, L.; Laliberté, F.; Foucher, S.; Branzan Albu, A.; Laurendeau, D.

    2006-05-01

    A face recognition module has been developed for an intelligent multi-camera video surveillance system. The module can recognize a pedestrian face in terms of six basic emotions and the neutral state. Face and facial features detection (eyes, nasal root, nose and mouth) are first performed using cascades of boosted classifiers. These features are used to normalize the pose and dimension of the face image. Gabor filters are then sampled on a regular grid covering the face image to build a facial feature vector that feeds a nearest neighbor classifier with a cosine distance similarity measure for facial expression interpretation and face model construction. A graphical user interface allows the user to adjust the module parameters.

  14. AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Dawam, A. H. A.; Muhamad, M.

    2018-03-01

    This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.

  15. Comparison of composite prostate radiotherapy plan doses with dependent and independent boost phases.

    PubMed

    Narayanasamy, Ganesh; Avila, Gabrielle; Mavroidis, Panayiotis; Papanikolaou, Niko; Gutierrez, Alonso; Baacke, Diana; Shi, Zheng; Stathakis, Sotirios

    2016-09-01

    Prostate cases commonly consist of dual phase planning with a primary plan followed by a boost. Traditionally, the boost phase is planned independently from the primary plan with the risk of generating hot or cold spots in the composite plan. Alternatively, boost phase can be planned taking into account the primary dose. The aim of this study was to compare the composite plans from independently and dependently planned boosts using dosimetric and radiobiological metrics. Ten consecutive prostate patients previously treated at our institution were used to conduct this study on the Raystation™ 4.0 treatment planning system. For each patient, two composite plans were developed: a primary plan with an independently planned boost and a primary plan with a dependently planned boost phase. The primary plan was prescribed to 54 Gy in 30 fractions to the primary planning target volume (PTV1) which includes prostate and seminal vesicles, while the boost phases were prescribed to 24 Gy in 12 fractions to the boost planning target volume (PTV2) that targets only the prostate. PTV coverage, max dose, median dose, target conformity, dose homogeneity, dose to OARs, and probabilities of benefit, injury, and complication-free tumor control (P+) were compared. Statistical significance was tested using either a 2-tailed Student's t-test or Wilcoxon signed-rank test. Dosimetrically, the composite plan with dependent boost phase exhibited smaller hotspots, lower maximum dose to the target without any significant change to normal tissue dose. Radiobiologically, for all but one patient, the percent difference in the P+ values between the two methods was not significant. A large percent difference in P+ value could be attributed to an inferior primary plan. The benefits of considering the dose in primary plan while planning the boost is not significant unless a poor primary plan was achieved.

  16. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework

    PubMed Central

    Zheng, Qi; Grice, Elizabeth A.

    2016-01-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155

  17. "Mind the gap"--the impact of variations in the duration of the treatment gap and overall treatment time in the first UK Anal Cancer Trial (ACT I).

    PubMed

    Glynne-Jones, Rob; Sebag-Montefiore, David; Adams, Richard; McDonald, Alec; Gollins, Simon; James, Roger; Northover, John M A; Meadows, Helen M; Jitlal, Mark

    2011-12-01

    The United Kingdom Coordinating Committee on Cancer Research anal cancer trial demonstrated the benefit of combined modality treatment (CMT) using radiotherapy (RT), infusional 5-fluorouracil, and mitomycin C over RT alone. The present study retrospectively examines the impact of the recommended 6-week treatment gap and local RT boost on long-term outcome. A total of 577 patients were randomly assigned RT alone or CMT. After a 6-week gap responders received a boost using either additional external beam radiotherapy (EBRT) (15 Gy) or iridium-192 implant (25 Gy). The effect of boost, the gap between initial treatment (RT alone or CMT) and boost (Tgap), and overall treatment time (OTT) were examined for their impact on outcome. Among the 490 good responders, 436 (89%) patients received a boost after initial treatment. For boosted patients, the risk of anal cancer death decreased by 38% (hazard ratio [HR]: 0.62, 99% CI 0.35-1.12; p=0.04), but there was no evidence this was mediated via a reduction in locoregional failure (LRF) (HR: 0.90, 99% CI 0.48-1.68; p=0.66). The difference in Tgap was only 1.4 days longer for EBRT boost, compared with implant (p=0.51). OTT was longer by 6.1 days for EBRT (p=0.006). Tgap and OTT were not associated with LRF. Radionecrosis was reported in 8% of boosted, compared with 0% in unboosted patients (p=0.03). These results question the benefit of a radiotherapy boost after a 6-week gap. The higher doses of a boost may contribute more to an increased risk of late morbidity, rather than local control. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glynne-Jones, Rob, E-mail: rob.glynnejones@nhs.net; Sebag-Montefiore, David; Adams, Richard

    Purpose: The United Kingdom Coordinating Committee on Cancer Research anal cancer trial demonstrated the benefit of combined modality treatment (CMT) using radiotherapy (RT), infusional 5-fluorouracil, and mitomycin C over RT alone. The present study retrospectively examines the impact of the recommended 6-week treatment gap and local RT boost on long-term outcome. Methods and Materials: A total of 577 patients were randomly assigned RT alone or CMT. After a 6-week gap responders received a boost using either additional external beam radiotherapy (EBRT) (15 Gy) or iridium-192 implant (25 Gy). The effect of boost, the gap between initial treatment (RT alone ormore » CMT) and boost (Tgap), and overall treatment time (OTT) were examined for their impact on outcome. Results: Among the 490 good responders, 436 (89%) patients received a boost after initial treatment. For boosted patients, the risk of anal cancer death decreased by 38% (hazard ratio [HR]: 0.62, 99% CI 0.35-1.12; p = 0.04), but there was no evidence this was mediated via a reduction in locoregional failure (LRF) (HR: 0.90, 99% CI 0.48-1.68; p = 0.66). The difference in Tgap was only 1.4 days longer for EBRT boost, compared with implant (p = 0.51). OTT was longer by 6.1 days for EBRT (p = 0.006). Tgap and OTT were not associated with LRF. Radionecrosis was reported in 8% of boosted, compared with 0% in unboosted patients (p = 0.03). Conclusions: These results question the benefit of a radiotherapy boost after a 6-week gap. The higher doses of a boost may contribute more to an increased risk of late morbidity, rather than local control.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Philip; Lambert, Christine, E-mail: christine.lambert@muhc.mcgill.ca; Agnihotram, Ramanakumar V.

    Purpose: Local recurrence (LR) of ductal carcinoma in situ (DCIS) is reduced by whole-breast irradiation after breast-conserving surgery (BCS). However, the benefit of adding a radiotherapy boost to the surgical cavity for DCIS is unclear. We sought to determine the impact of the boost on LR in patients with DCIS treated at the McGill University Health Centre. Methods and Materials: A total of 220 consecutive cases of DCIS treated with BCS and radiotherapy between January 2000 and December 2006 were reviewed. Of the patients, 36% received a radiotherapy boost to the surgical cavity. Median follow-up was 46 months for themore » boost and no-boost groups. Kaplan-Meier survival analyses and Cox regression analyses were performed. Results: Compared with the no-boost group, patients in the boost group more frequently had positive and <0.1-cm margins (48% vs. 8%) (p < 0.0001) and more frequently were in higher-risk categories as defined by the Van Nuys Prognostic (VNP) index (p = 0.006). Despite being at higher risk for LR, none (0/79) of the patients who received a boost experienced LR, whereas 8 of 141 patients who did not receive a boost experienced an in-breast LR (log-rank p = 0.03). Univariate analysis of prognostic factors (age, tumor size, margin status, histological grade, necrosis, and VNP risk category) revealed only the presence of necrosis to significantly correlate with LR (log-rank p = 0.003). The whole-breast irradiation dose and fractionation schedule did not affect LR rate. Conclusions: Our results suggest that the use of a radiotherapy boost improves local control in DCIS and may outweigh the poor prognostic effect of necrosis.« less

  20. Recombinant BCG prime and PPE protein boost provides potent protection against acute Mycobacterium tuberculosis infection in mice.

    PubMed

    Yang, Enzhuo; Gu, Jin; Wang, Feifei; Wang, Honghai; Shen, Hongbo; Chen, Zheng W

    2016-04-01

    Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top