Science.gov

Sample records for boosted fast flux

  1. Boosted Fast Flux Loop Alternative Cooling Assessment

    SciTech Connect

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  2. Boosted Fast Flux Loop Final Report

    SciTech Connect

    Boosted Fast Flux Loop Project Staff

    2009-09-01

    The Boosted Fast Flux Loop (BFFL) project was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Originally called the Gas Test Loop (GTL) project, the activity included (1) determination of requirements that must be met for the GTL to be responsive to potential users, (2) a survey of nuclear facilities that may successfully host the GTL, (3) conceptualizing designs for hardware that can support the needed environments for neutron flux intensity and energy spectrum, atmosphere, flow, etc. needed by the experimenters, and (4) examining other aspects of such a system, such as waste generation and disposal, environmental concerns, needs for additional infrastructure, and requirements for interfacing with the host facility. A revised project plan included requesting an interim decision, termed CD-1A, that had objectives of' establishing the site for the project at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), deferring the CD 1 application, and authorizing a research program that would resolve the most pressing technical questions regarding GTL feasibility, including issues relating to the use of booster fuel in the ATR. Major research tasks were (1) hydraulic testing to establish flow conditions through the booster fuel, (2) mini-plate irradiation tests and post-irradiation examination to alleviate concerns over corrosion at the high heat fluxes planned, (3) development and demonstration of booster fuel fabrication techniques, and (4) a review of the impact of the GTL on the ATR safety basis. A revised cooling concept for the apparatus was conceptualized, which resulted in renaming the project to the BFFL. Before the subsequent CD-1 approval request could be made, a decision was made in April 2006

  3. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  4. Fast Flux Watch: A mechanism for online detection of fast flux networks.

    PubMed

    Al-Duwairi, Basheer N; Al-Hammouri, Ahmad T

    2014-07-01

    Fast flux networks represent a special type of botnets that are used to provide highly available web services to a backend server, which usually hosts malicious content. Detection of fast flux networks continues to be a challenging issue because of the similar behavior between these networks and other legitimate infrastructures, such as CDNs and server farms. This paper proposes Fast Flux Watch (FF-Watch), a mechanism for online detection of fast flux agents. FF-Watch is envisioned to exist as a software agent at leaf routers that connect stub networks to the Internet. The core mechanism of FF-Watch is based on the inherent feature of fast flux networks: flux agents within stub networks take the role of relaying client requests to point-of-sale websites of spam campaigns. The main idea of FF-Watch is to correlate incoming TCP connection requests to flux agents within a stub network with outgoing TCP connection requests from the same agents to the point-of-sale website. Theoretical and traffic trace driven analysis shows that the proposed mechanism can be utilized to efficiently detect fast flux agents within a stub network.

  5. Fast Flux Watch: A mechanism for online detection of fast flux networks

    PubMed Central

    Al-Duwairi, Basheer N.; Al-Hammouri, Ahmad T.

    2014-01-01

    Fast flux networks represent a special type of botnets that are used to provide highly available web services to a backend server, which usually hosts malicious content. Detection of fast flux networks continues to be a challenging issue because of the similar behavior between these networks and other legitimate infrastructures, such as CDNs and server farms. This paper proposes Fast Flux Watch (FF-Watch), a mechanism for online detection of fast flux agents. FF-Watch is envisioned to exist as a software agent at leaf routers that connect stub networks to the Internet. The core mechanism of FF-Watch is based on the inherent feature of fast flux networks: flux agents within stub networks take the role of relaying client requests to point-of-sale websites of spam campaigns. The main idea of FF-Watch is to correlate incoming TCP connection requests to flux agents within a stub network with outgoing TCP connection requests from the same agents to the point-of-sale website. Theoretical and traffic trace driven analysis shows that the proposed mechanism can be utilized to efficiently detect fast flux agents within a stub network. PMID:25685515

  6. Fast Flux Test Facility (FFTF) maintenance provisions

    SciTech Connect

    Marshall, J.L.

    1981-05-01

    The Fast Flux Test Facility (FFTF) was designed with maintainability as a primary parameter, and facilities and provisions were designed into the plant to accommodate the maintenance function. This paper describes the FFTF and its systems. Special maintenance equipment and facilities for performing maintenance on radioactive components are discussed. Maintenance provisions designed into the plant to enhance maintainability are also described.

  7. Fast flux test facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-10-24

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  8. Fast flux module detection using matroid theory.

    PubMed

    Reimers, Arne C; Bruggeman, Frank J; Olivier, Brett G; Stougie, Leen

    2015-05-01

    Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by Müller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks.

  9. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  10. Adaptive Control of Fast-Scale Bifurcation in Peak Current Controlled Buck-Boost Inverter via One-Cycle Compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Shuai; Guan, Weimin; Yi, Chuanzhi; He, Bo

    In this paper, one-cycle compensation (OCC) method is proposed to realize adaptive control of fast-scale bifurcation in the peak current controlled buck-boost inverter because the proposed control method can adjust the slope of the integrator’s output voltage automatically through extracting a sinusoidal signal from the absolute value of the reference voltage. In order to reveal their underlying mechanisms of fast-scale bifurcations, a modified averaged model which can capture the sample-and-hold effect is derived in detail to describe the fast-scale dynamics of the buck-boost inverter. Based on the proposed model, a theoretical analysis is performed to identify both the fast-scale period-doubling bifurcation and the fast-scale Hopf one by judging in what way the poles loci move. It has been shown that the OCC method can be used not only to discover the unknown dynamical behaviors (i.e. fast-scale Hopf bifurcation), but also to enlarge the stable region in peak current controlled buck-boost inverter. In addition, the critical bifurcation angles and the parameter behavior boundary are given to verify the effectiveness of the adaptive bifurcation control method. Finally, PSpice circuit experiments are performed to verify the above theoretical and numerical results.

  11. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  12. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    PubMed

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  13. Five years operating experience at the Fast Flux Test Facility

    SciTech Connect

    Baumhardt, R. J.; Bechtold, R. A.

    1987-04-01

    The Fast Flux Test Facility (FFTF) is a 400 Mw(t), loop-type, sodium-cooled, fast neutron reactor. It is operated by the Westinghouse Hanford Company for the United States Department of Energy at Richland, Washington. The FFTF is a multipurpose test reactor used to irradiate fuels and materials for programs such as Liquid Metal Reactor (LMR) research, fusion research, space power systems, isotope production and international research. FFTF is also used for testing concepts to be used in Advanced Reactors which will be designed to maximize passive safety features and not require complex shutdown systems to assure safe shutdown and heat removal. The FFTF also provides experience in the operation and maintenance of a reactor having prototypic components and systems typical of large LMR (LMFBR) power plants. The 5 year operational performance of the FFTF reactor is discussed in this report. 6 refs., 10 figs., 2 tabs.

  14. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  15. Fast Flux Test Facility core restraint system performance

    SciTech Connect

    Hecht, S.L.; Trenchard, R.G.

    1990-02-01

    Characterizing Fast Flux Test Facility (FFTF) core restraint system performance has been ongoing since the first operating cycle. Characterization consists of prerun analysis for each core load, in-reactor and postirradiation measurements of subassembly withdrawal loads and deformations, and using measurement data to fine tune predictive models. Monitoring FFTF operations and performing trend analysis has made it possible to gain insight into core restraint system performance and head off refueling difficulties while maximizing component lifetimes. Additionally, valuable information for improved designs and operating methods has been obtained. Focus is on past operating experience, emphasizing performance improvements and avoidance of potential problems. 4 refs., 12 figs., 2 tabs.

  16. FFTF (Fast Flux Test Facility) cobalt test assembly results

    SciTech Connect

    Rawlins, J.A.; Wootan, D.W.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1987-10-01

    A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal to produce Co-60, and a set of 4 pins with europium oxide to produce Gd-153, a radioisotope used in detection of the bone disease Osteoporosis. Post-irradiation examination of the cobalt pins determined the Co-60 produced with an accuracy of about 5%. The measured Co-60 spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average Co-60 measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes Eu-152 and Eu-154 to an absolute accuracy of about 10%. The measured europium radioisotope and Gd-153 concentrations were within 20% of calculated values. In conclusion, the hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate that the calculational methods developed by the Westinghouse Hanford Company are very accurate. 4 refs., 3 figs., 1 tab.

  17. Analysis of Fast-Scale Bifurcation in Peak Current Controlled Buck-Boost Inverter Based on Unified Averaged Model

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Shuai; Guan, Weimin; Liu, Ye

    In this paper, a unified averaged modeling method is proposed to investigate the fast-scale period-doubling bifurcation of a full-bridge integrated buck-boost inverter with peak current control. In order to increase the resolution of the conventional classic averaged model to half the switching frequency, sample-and-hold effect of inductor current is absorbed into the averaged model, i.e. the proposed unified averaged model can capture the high-frequency dynamical characteristics of the buck-boost inverter, which is both an extension and a modification of conventional averaged model. Based on the unified mode, fast-scale bifurcation is identified, and the corresponding bifurcation point is predicted with the help of the locus movement of all the poles, and their underlying mechanisms are revealed. Detailed analysis shows that the occurrence of high-frequency oscillation means fast-scale bifurcation, while the occurrence of low-frequency oscillation leads to slow-scale bifurcation. Finally, it is demonstrated that the unified averaged model can provide not only a general method to investigate both the slow- and fast-scale bifurcations in a unified framework but also a quite straightforward design-oriented method which can be directly applicable.

  18. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N.

    2013-07-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  19. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  20. Fast Flux Test Facility Asbestos Location Tracking Program

    SciTech Connect

    REYNOLDS, J.A.

    1999-04-13

    Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

  1. Operational safety at the fast flux test facility

    SciTech Connect

    Bennett, C.L.; Baird, Q.L.; Franz, G.R.

    1986-01-01

    The safety organization within Westinghouse Hanford Company (WHC) provides the independent review and appraisal of reactor facilities at the Hanford Engineering Development Laboratory (HEDL) in accordance with US Department of Energy (DOE) Order 5480.1A, Chapter V. The safety organization functions primarily in an advisory capacity to the line organization and reports through a management organization independent of all reactor operations to the president of WHC. However, safety is a line responsibility, and neither review nor subsequent approval by the safety staff releases line management from its responsibility for the safety of people and equipment. The purpose of this paper is to describe the operational safety program at HEDL associated with the operation of the Fast Flux Test Facility (FFTF). These activities include: (1) operational reactor safety surveillance; (2) change review of safety documentation; (3) cycle readiness assessments; (4) FFTF technical specification upgrade; (5) interim examination and maintenance cell and fuel storage facility safety review.

  2. Fast time variations of supernova neutrino fluxes and their detectability

    SciTech Connect

    Lund, Tina; Marek, Andreas; Janka, Hans-Thomas; Lunardini, Cecilia; Raffelt, Georg

    2010-09-15

    In the delayed explosion scenario of core-collapse supernovae, the accretion phase shows pronounced convective overturns and a low-multipole hydrodynamic instability, the standing accretion shock instability. These effects imprint detectable fast time variations on the emerging neutrino flux. Among existing detectors, IceCube is best suited to this task, providing an event rate of {approx}1000 ms{sup -1} during the accretion phase for a fiducial SN distance of 10 kpc, comparable to what could be achieved with a megaton water Cherenkov detector. If the standing accretion shock instability activity lasts for several hundred ms, a Fourier component with an amplitude of 1% of the average signal clearly sticks out from the shot noise. We analyze in detail the output of axially symmetric hydrodynamical simulations that predict much larger amplitudes up to frequencies of a few hundred Hz. If these models are roughly representative for realistic SNe, fast time variations of the neutrino signal are easily detectable in IceCube or future megaton-class instruments. We also discuss the information that could be deduced from such a measurement about the physics in the SN core and the explosion mechanism of the SN.

  3. The Fast Flux Test Facility shutdown program plan

    SciTech Connect

    Guttenberg, S.; Jones, D.H.; Midgett, J.C.; Nielsen, D.L.

    1995-01-01

    The Fast Flux Test Facility (FFTF) is a 400 MWt sodium-cooled research reactor owned by the US Department of Energy (DOE) and operated by the Westinghouse Hanford Company (WHC) on the Hanford Site in southeastern Washington State. The decision was made by the DOE in December, 1993, to initiate shutdown of the FFTF. This paper describes the FFTF Transition Project Plan (1) (formerly the FFTF Shutdown Program Plan) which provides the strategy, major elements, and project baseline for transitioning the FFTF to an industrially and radiologically safe shutdown condition. The Plan, and its resource loaded schedule, indicate this transition can be achieved in a period of six to seven years at a cost of approximately $359 million. The transition activities include reactor defueling, fuel offload to dry cask storage, sodium drain and reaction, management of sodium residuals, shutdown of auxiliary systems, and preparation of appropriate environmental and regulatory documentation. Completion of these activities will involve resolution of many challenging and unique issues associated with shutdown of a large sodium reactor facility. At the conclusion of these activities, the FFTF will be in a safe condition for turnover to the Hanford Site Environmental Restoration Contractor for a long term surveillance and maintenance phase and decommissioning.

  4. Fast Flux Test Facility final safety analysis report. Amendment 72

    SciTech Connect

    Gantt, D. A.

    1992-08-01

    This document provides the Final Safety Analysis Report (FSAR) Amendment 72 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set. This amendment change incorporates Engineering Change Notices issued subsequent to Amendment 71 and approved for incorporation before June 24, 1992. These include changes in: Chapter 2, Site Characteristics; Chapter 3, Design Criteria Structures, Equipment, and Systems; Chapter 5B, Reactor Coolant System; Chapter 7, Instrumentation and Control Systems; Chapter 8, Electrical Systems - The description of the Class 1E, 125 Vdc systems is updated for the higher capacity of the newly installed, replacement batteries; Chapter 9, Auxiliary Systems - The description of the inert cell NASA systems is corrected to list the correct number of spare sample points; Chapter 11, Reactor Refueling System; Chapter 12, Radiation Protection and Waste Management; Chapter 13, Conduct of Operations; Chapter 16, Quality Assurance; Chapter 17, Technical Specifications; Chapter 19, FFTF Fire Specifications for Fire Detection, Alarm, and Protection Systems; Chapter 20, FFTF Criticality Specifications; and Appendix B, Primary Piping Integrity Evaluation.

  5. Fast Flux Test Facility (FFTF) Briefing Book 1 Summary

    SciTech Connect

    WJ Apley

    1997-12-01

    This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

  6. Knowledge Management at the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.

    2013-06-01

    One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. The FFTF knowledge management program includes a disciplined and orderly approach to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  7. Maintenance implementation plan for the Fast Flux Test Facility

    SciTech Connect

    Boyd, J.A.

    1997-01-30

    This plan implements the U.S. Department of Energy (DOE) 4330.4B, Maintenance Management Program (1994), at the Fast Flux Test Facility (FFTF). The FFTF is a research and test reactor located near Richland, Washington, and is operated under contract for the DOE by the B&W Hanford Company (BWHC). The intent of this Maintenance Implementation Plan (MIP) is to describe the manner in which the activities of the maintenance function are executed and controlled at the FFTF and how this compares to the requirements of DOE 4330.4B. The MIP ii a living document that is updated through a Facility Maintenance Self- Assessment Program. During the continuing self-assessment program, any discrepancies found are resolved to meet DOE 4330.4B requirements and existing practices. The philosophy of maintenance management at the FFTF is also describe within this MIP. This MIP has been developed based on information obtained from various sources including the following: * A continuing self-assessment against the requirements of the Conduct of Maintenance Order * In-depth reviews conducted by the members of the task team that assembled this MIP * Inputs from routine audits and appraisals conducted at the facility The information from these sources is used to identify those areas in which improvements could be made in the manner in which the facility conducts maintenance activities. The action items identified in Rev. 1 of the MIP have been completed. The MIP is arranged in six sections. Section I is this Executive Summary. Section 2 describes the facility and its 0683 history. Section 3 describes the philosophy of the graded approach and how it is applied at FFTF. Section 3 also discusses the strategy and the basis for the prioritizing resources. Section 4 contains the detailed discussion of `the elements of DOE 4330.4B and their state of implementation. Section 5 is for waivers and requested deviations from the requirements of the order. Section 6 contains a copy of the Maintenance

  8. Homogeneous fast-flux isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

  9. Landau Damping of Transverse Waves in the Exosphere by Fast Particle Fluxes

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.; Jaggi, R. K.

    1962-01-01

    We have investigated the Landau damping of transverse waves propagating in the thermal exospheric plasma, by fast particle fluxes which also exist in these regions. The most intense non-thermal fluxes so far detected are those of the auroral producing electrons and protons measured by McIlwain. We find that these fluxes may considerably damp the propagation of whistler modes through some regions. The damping of hydromagnetic waves in the exosphere by this mechanism is negligible.

  10. Fast tokamak plasma flux and electron density reconstruction technique

    SciTech Connect

    Chiang, K.L.; Hallock, G.A.; Wootton, A.J.; Wang, L.

    1997-01-01

    Density profiles in TEXT-U are obtained using a vertical viewing far-infrared (FIR) interferometer. To obtain the local (inverted) density, we have developed a simple analytic model of the plasma equilibrium configuration which is faster than EFIT (a flux surface reconstruction program) and can be easily computed between discharges. This analytic solution of the Grad{endash}Shafranov equation is valid as long as the pressure p is a function of poloidal flux {psi}, i.e., p=p({psi}). The procedure incorporates both magnetic and FIR density data to solve the Grad{endash}Shafranov equation, and provides a density profile which is self-consistent with the reconstructed equilibrium flux surfaces. Examples are presented. {copyright} {ital 1997 American Institute of Physics.}

  11. A fast recognition method of warhead target in boost phase using kinematic features

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Shiyou; Tian, Biao; Wu, Jianhua; Chen, Zengping

    2015-12-01

    The radar targets number increases from one to more when the ballistic missile is in the process of separating the lower stage rocket or casting covers or other components. It is vital to identify the warhead target quickly among these multiple targets for radar tracking. A fast recognition method of the warhead target is proposed to solve this problem by using kinematic features, utilizing fuzzy comprehensive method and information fusion method. In order to weaken the influence of radar measurement noise, an extended Kalman filter with constant jerk model (CJEKF) is applied to obtain more accurate target's motion information. The simulation shows the validity of the algorithm and the effects of the radar measurement precision upon the algorithm's performance.

  12. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death.

    PubMed

    Antunes, Fernanda; Corazzari, Marco; Pereira, Gustavo; Fimia, Gian Maria; Piacentini, Mauro; Smaili, Soraya

    2017-03-25

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF(V600E) melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumor cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS.

  13. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models

    PubMed Central

    Saa, Pedro A.; Nielsen, Lars K.

    2016-01-01

    Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155

  14. Nonlinear fast sausage waves in homogeneous magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, Badma B.; Ruderman, Michael S.

    2015-12-01

    > We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.

  15. Measuring fast-neutron flux by track-etch technique

    SciTech Connect

    Not Available

    1981-01-01

    The method covers the measurement of neutron flux by the use of fissionable materials. Fission fragments emitted by the fissionable materials during neutron bombardment penetrate a suitable recording medium, such as plastic, glass, or mica, that is in contact with the fissionable material. Appropriate etching techniques render the path of the fragment in the recording medium visible under an optical microscope. Since measurement of the decay of radioisotopes is not involved in this method, irradiation times are limited only by the maximum number of fission fragment tracks that can be clearly distinguished without pile up: approximately 2 x 10/sup 5//cm/sup 2/. The method includes a discussion of apparatus, reagents and materials, procedure, calculations, precision, and accuracy. (JMT)

  16. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  17. Criticality experiments with fast flux test facility fuel pins

    SciTech Connect

    Bierman, S.R.

    1990-11-01

    A United States Department of Energy program was initiated during the early seventies at the Hanford Critical Mass Laboratory to obtain experimental criticality data in support of the Liquid Metal Fast Breeder Reactor Program. The criticality experiments program was to provide basic physics data for clean well defined conditions expected to be encountered in the handling of plutonium-uranium fuel mixtures outside reactors. One task of this criticality experiments program was concerned with obtaining data on PuO{sub 2}-UO{sub 2} fuel rods containing 20--30 wt % plutonium. To obtain this data a series of experiments were performed over a period of about twelve years. The experimental data obtained during this time are summarized and the associated experimental assemblies are described. 8 refs., 7 figs.

  18. FFTF (Fast Flux Test Facility) as an irradiation test bed for fusion materials and components

    SciTech Connect

    Greenslade, D.L.; Puigh, R.J.; Hollenberg, G.W.; Grover, J.M.

    1986-03-01

    The relatively large irradiation volume, instrumentation capabilities, and fast neutron flux associated with the Fast Flux Test Facility (FFTF) make this reactor an ideal test bed for fusion materials and components irradiations. Significant fusion materials irradiations are presently being performed in the Materials Open Test Assembly (MOTA) in FFTF. The MOTA is providing a controlled temperature and high neutron flux environment for such materials as the low activation alloys, copper alloys, ceramic insulators, and high heat flux materials. Conceptual designs utilizing the versatile MOTA irradiation vehicle have been developed to investigate irradiation effects on the mechanical and tritium breeding behaviors of solid breeder materials. More aggressive conceptual designs have also been developed to irradiate solid breeder blanket submodules in the FFTF. These specific component test designs will be presented and their potential roles in the development of fusion technology discussed.

  19. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  20. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    SciTech Connect

    Scott, S.W.

    1997-08-29

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  1. Fast Flux Test Facility: the first three years, 1982-1985

    SciTech Connect

    Not Available

    1985-01-01

    General information is provided concerning the Fast Flux Test Facility. Topics discussed include: mission and major accomplishments; background information; major construction milestones; acceptance testing; plant performance; plant operation; fuel performance; interim examination and maintenance cell; environmental effects; and future plans for the FFTF. (JDB)

  2. Operator awareness of system status during Fast Flux Test Facility transition to standby

    SciTech Connect

    Gibson, J.L.

    1994-04-01

    A facility in transition, due to a change in its mission or its operating status, begins to depart from a previously well-defined normal mode of operation. The equipment becomes reconfigured or deactivated. In an environment of transition, the Fast Flux Test Facility (FFTF) has employed methods to enhance operator awareness of system status. These methods are described in this report.

  3. A fast and compact θ-pinch electromagnetic flux-compression generator

    NASA Astrophysics Data System (ADS)

    Novac, B. M.; Smith, I. R.; Rankin, D. F.; Hubbard, M.

    2004-11-01

    Ultrahigh magnetic fields up to 300 T (3 MG) have been generated by electromagnetic flux compression using only 63 kJ from a fast capacitor bank to implode aluminium liners, with 14.7 kJ from a slow capacitor bank needed to provide an initial magnetic field. With no initial field present, pulses of magnetic flux density having a time rate-of-change exceeding 3 × 108 T s-1 have been produced and measured, opening the way for a range of dynamic transformer applications. The outcome of the work suggests that, when using fast multi-MA banks, flux compression can be viewed as an alternative to the single-turn coil technique that will move the boundary of the magnetic fields well beyond 300 T without the need for significant additional investments.

  4. Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Dwivedi, B. N.

    2006-11-01

    aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.

  5. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  6. Installation of concrete expansion anchors at the Fast Flux Test Facility

    SciTech Connect

    Clark, G.L.

    1980-01-01

    Installation criteria utilized at the Fast Flux Test Facility for concrete expansion anchors are presented. Static and dynamic load capabilities of various anchor types are discussed in relation to design loads, with particular emphasis placed on the yield load (the proportional limit). Effects of several variables (i.e., installation torque, hole diameter) are also investigated. Resolution and documentation of field problems (e.g., improper spacing, embedment, angularity) are also described. Recommendations for improving and controlling future installations are given.

  7. Fast electron flux driven by lower hybrid wave in the scrape-off layer

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wang, H. Q.; Wan, B. N.; Chen, R.; Wang, L.; Gan, K. F.; Yang, J. H.; Zhang, X. J.; Liu, S. C.; Li, M. H.; Ding, S.; Yan, N.; Zhang, W.; Hu, G. H.; Liu, Y. L.; Shao, L. M.; Li, J.; Chen, L.; Zhao, N.; and others

    2015-02-15

    The fast electron flux driven by Lower Hybrid Wave (LHW) in the scrape-off layer (SOL) in EAST is analyzed both theoretically and experimentally. The five bright belts flowing along the magnetic field lines in the SOL and hot spots at LHW guard limiters observed by charge coupled device and infrared cameras are attributed to the fast electron flux, which is directly measured by retarding field analyzers (RFA). The current carried by the fast electron flux, ranging from 400 to 6000 A/m{sup 2} and in the direction opposite to the plasma current, is scanned along the radial direction from the limiter surface to the position about 25 mm beyond the limiter. The measured fast electron flux is attributed to the high parallel wave refractive index n{sub ||} components of LHW. According to the antenna structure and the LHW power absorbed by plasma, a broad parallel electric field spectrum of incident wave from the antennas is estimated. The radial distribution of LHW-driven current density is analyzed in SOL based on Landau damping of the LHW. The analytical results support the RFA measurements, showing a certain level of consistency. In addition, the deposition profile of the LHW power density in SOL is also calculated utilizing this simple model. This study provides some fundamental insight into the heating and current drive effects induced by LHW in SOL, and should also help to interpret the observations and related numerical analyses of the behaviors of bright belts and hot spots induced by LHW.

  8. Gas dynamic theory of flight of fast electron flux in plasma

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.

    The one-dimensional flight of a fast electron flux in plasma is investigated taking into account generation and absorption of plasma waves. The transition from the kinetic description to the gas dynamics is made. The closed set of gas dynamic equations for electrons and plasmons is derived and an automodel solution is obtained in the case of instantaneous injection. This solution represents the beam-plasma formation on natural oscillations in the system electrons+plasmons is considered.

  9. Irradiation performance of Fast Flux Test Facility drivers using D9 alloy

    SciTech Connect

    Pitner, A.L.; Gneiting, B.C.; Bard, F.E.

    1995-11-01

    In comparison with the Fast Flux Test Facility Type 316 stainless steel driver design, six test assemblies employing D9 alloy in place of stainless steel for duct, cladding, and wire wrap material were irradiated to demonstrate the improved performance and lifetime capability of an advanced D9 alloy driver design. A single pinhole-type breach occurred in one of the high-exposure tests after a peak fuel burnup of 155 MWd/kg metal (M) and peak fast neutron fluence of 25 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV). Postirradiation examinations were performed on four of the test assemblies and measured results were compared with analytical evaluations. A revised swelling correlation for D9 alloy was developed to provide improved agreement between calculated and measured cladding deformation results. A fuel pin lifetime design criterion of 5% calculated hoop strain was derived from these results. Alternatively, fuel pin lifetimes were developed for two irradiation parameters using statistical failure analyses. For a 99.99% reliability, the analyses indicated a peak fast-fluence lifetime of 21.0 {times} 10{sup 22} n/cm{sup 2}, or a peak fuel burnup >120 MWd/kg M. In comparison with the Fast Flux Test Facility reference driver design, the extended lifetime capability of D9 alloy would reduce fuel supply requirements for the liquid-metal reactor by a third.

  10. Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf

    NASA Astrophysics Data System (ADS)

    Melling, Humfrey; Haas, Christian; Brossier, Eric

    2015-02-01

    Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.

  11. Lactate flux and gluconeogenesis in fasting, weaned northern elephant seals (Mirounga angustirostris).

    PubMed

    Tavoni, Stephen K; Champagne, Cory D; Houser, Dorian S; Crocker, Daniel E

    2013-05-01

    Elephant seals maintain rates of endogenous glucose production (EGP) typical of post-absorptive mammals despite enduring prolonged periods of food deprivation concurrent with low rates of glucose oxidation. These high rates of EGP suggest extensive glucose recycling during fasting. We investigated lactate metabolism in fasting elephant seals to assess its role in glucose recycling. Whole-animal glucose and lactate fluxes were measured as the rates of appearance of glucose and lactate (Ra gluc and Ra lac, respectively) using a primed constant infusion of [U-(14)C] lactate and [6-(3)H] glucose, and we calculated the minimum contribution of lactate to gluconeogenesis (GNG lac). Ra lac was high compared to resting values in other species (3.21 ± 0.71 mmol min(-1)* kg(-1)), did not change between 14 ± 1 and 31 ± 8 days of fasting and varied directly with Ra glu. The minimum GNG lac was 44.6 ± 6.0% of EGP, varied directly with plasma lactate levels, and did not change over the fast. Ra lac and Ra glu both varied directly with plasma insulin concentrations. These data suggest that lactate is the predominant gluconeogenic precursor in fasting elephant seals and that high rates of glucose recycling through Cori cycle activity contribute to the maintenance of EGP during fasting. High levels of Cori cycle activity and EGP may be important components of metabolic adaptations that maintain glucose production while avoiding ketosis during extended fasting or are related to sustained metabolic alterations associated with extended breath-holds in elephant seals.

  12. Uncertainty in fast task-irrelevant perceptual learning boosts learning of images in women but not men.

    PubMed

    Leclercq, Virginie; Cohen Hoffing, Russell; Seitz, Aaron R

    2014-10-23

    A key tenet of models of reinforcement learning is that learning is most desirable in the times of maximum uncertainty. Here we examine the role of uncertainty in the paradigm of fast task-irrelevant perceptual learning (fast-TIPL), where stimuli that are consistently presented at relevant points in times (e.g., with task targets or rewards) are better encoded than when presented at other times. We manipulated two forms of uncertainty, expected uncertainty and unexpected uncertainty (Yu & Dayan, 2005), and compared fast-TIPL under uncertainty with fast-TIPL under no uncertainty. Results indicate a larger fast-TIPL effect under uncertainty than under no uncertainty without a difference between expected and unexpected uncertainty. However, interestingly, this effect of uncertainty on fast-TIPL was found in women but not in men. In men, equivalent fast-TIPL was observed under no uncertainty and uncertainty, whereas in women, confirming previous results (Leclercq & Seitz, 2012b), no fast-TIPL was observed in the no-uncertainty condition, but fast-TIPL was observed in the uncertainty conditions. We discuss how these results imply differences in attention or neuromodulatory processes between men and women.

  13. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  14. A decade of radiological and shielding experience at the Fast Flux Test Facility

    SciTech Connect

    Bunch, W.L.

    1990-11-01

    The Fast Flux Test Facility (FFTF) has operated for almost a decade after first going critical during February 1980. Based on about 2,000 effective full-power days of operation, it is concluded that radiological safety can be achieved in large liquid metal-cooled fast reactors. The collective dose equivalents received by operating personnel are significantly lower than those received at commercial light water reactors. No major contamination problems have been encountered in operating and maintaining the plant, and release of radioactive materials to the environment has been well below acceptable limits. All shields have performed satisfactorily and in agreement with design calculations. The experience derived from the design, construction, and operation of the FFTF should be of inestimable value in supporting future development of liquid metal reactors. 26 refs., 2 tabs.

  15. Analyses of eigenvalue bias and control rod worths in FFTF (Fast Flux Test Facility)

    SciTech Connect

    Nelson, J.V.; Dobbin, K.D.; Wootan, D.W.; Campbell, L.R.

    1987-01-01

    The Fast Flux Test Facility (FFTF) core loading during its ninth operating cycle was significantly different from that of previous cycles because of the presence of the Core Demonstration Experiment (CDE). The CDE consists of a number of axially blanketed fuel assemblies and internal blankets prototypic of advanced oxide cores in Liquid Metal Reactors (LMR). In preparation for the Cycle 9 reload design effort, a careful assessment of control rod worth and reactivity calculations for Cycles 1 through 8 was made. The goal of this study was to establish calculational biases and reduce uncertainties factored into the reload design calculations. These analyses helped assure that the operational objectives for Cycle 9 were met.

  16. FFTF (Fast Flux Test Facility) fuel handling experience (1979--1986)

    SciTech Connect

    Romrell, D M; Art, D M; Redekopp, R D; Waldo, J B

    1987-05-01

    The Fast Flux Test Facility (FFTF)is a 400 MW (th) sodium-cooled fast flux test reactor located on the Hanford Site in southeastern Washington State. The FFTF is operated by the Westinghouse Hanford Company for the United States Department of Energy. The FFTF is a three loop plant designed primarily for the purpose of testing full-scale core components in an environment prototypic of future liquid metal reactors. The plant design emphasizes features to enhance this test capability, especially in the area of the core, reactor vessel, and refueling system. Eight special test positions are provided in the vessel head to permit contact instrumented experiments to be installed and irradiated. These test positions effectively divide the core into three sectors. Each sector requires its own In-Vessel Handling Machine (IVHM) to access all the core positions. Since the core and the in-vessel refueling components are submerged under sodium, all handling operations must be performed blind. This puts severe requirements on the positioning ability are reliability of the refueling components. This report addresses the operating experience with the fuel handling system from initial core loading in November, 1979 through 1986. This includes 9 refueling cycles. 2 refs., 8 figs.

  17. Analytical solution and computer program (FAST) to estimate fluid fluxes from subsurface temperature profiles

    NASA Astrophysics Data System (ADS)

    Kurylyk, Barret L.; Irvine, Dylan J.

    2016-02-01

    This study details the derivation and application of a new analytical solution to the one-dimensional, transient conduction-advection equation that is applied to trace vertical subsurface fluid fluxes. The solution employs a flexible initial condition that allows for nonlinear temperature-depth profiles, providing a key improvement over most previous solutions. The boundary condition is composed of any number of superimposed step changes in surface temperature, and thus it accommodates intermittent warming and cooling periods due to long-term changes in climate or land cover. The solution is verified using an established numerical model of coupled groundwater flow and heat transport. A new computer program FAST (Flexible Analytical Solution using Temperature) is also presented to facilitate the inversion of this analytical solution to estimate vertical groundwater flow. The program requires surface temperature history (which can be estimated from historic climate data), subsurface thermal properties, a present-day temperature-depth profile, and reasonable initial conditions. FAST is written in the Python computing language and can be run using a free graphical user interface. Herein, we demonstrate the utility of the analytical solution and FAST using measured subsurface temperature and climate data from the Sendia Plain, Japan. Results from these illustrative examples highlight the influence of the chosen initial and boundary conditions on estimated vertical flow rates.

  18. Estimation method of planetary fast neutron flux by a Ge gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hareyama, M.; Fujibayashi, Y.; Yamashita, Y.; Karouji, Y.; Nagaoka, H.; Kobayashi, S.; Reedy, R. C.; Gasnault, O.; Forni, O.; d'Uston, C.; Kim, K. J.; Hasebe, N.

    2016-08-01

    An intensity map of lunar fast neutrons (LFNs) and their temporal variation has been estimated by fitting "sawtooth" peaks in the energy spectra of lunar gamma rays observed by the Kaguya (SELENE) Gamma Ray Spectrometer (GRS) consisting of a high-purity germanium (HPGe) detector with a BGO scintillator. While an ordinary peak in the spectrum is produced by only gamma ray lines, the sawtooth peak is produced by gamma ray lines and recoil nuclei in the detector by Ge(n ,n‧ γ) reaction. We develop a model for the shape of the sawtooth peak and apply it to fit sawtooth peaks together with ordinary peaks in actual observed spectra on the Moon. The temporal variation of LFNs is synchronous with that of galactic cosmic rays (GCRs), and the global distribution of fast neutrons on the lunar surface agrees well with the past observation reported by the Neutron Spectrometer aboard Lunar Prospector. Based on these results, a new method is established to estimate the flux of fast neutrons by fitting sawtooth peaks on the gamma ray spectrum observed by the HPGe detector.

  19. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations.

  20. Fast Flux Test Facility interim examination and maintenance cell: Past, present, and future

    SciTech Connect

    Vincent, J.R.

    1990-09-01

    The Fast Flux Test Facility Interim Examination and Maintenance Cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The Interim Examination and Maintenance Cell equipment developed and used for the first ten years of operation has been primarily devoted to the disassembly and examination of core component test assemblies. While no major reactor equipment has required remote repair or maintenance, the Interim Examina Examination and Maintenance Cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished. The Interim Examination and Maintenance Cell's demonstrated versatility has shown its capability to support a challenging future. 12 refs., 9 figs.

  1. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS

    SciTech Connect

    FARABEE, O.A.

    2006-02-24

    In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

  2. Inference of physical phenomena from FFTF (Fast Flux Test Facility) noise analysis

    SciTech Connect

    Thie, J.A.; Damiano, B.; Campbell, L.R.

    1989-01-01

    The source of features observed in noise spectra collected by an automated data collection system operated by the Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF) can be identified using a methodology based on careful data observation and intuition. When a large collection of data is available, as in this case, automatic pattern recognition and parameter storage and retrieval using a data base can be used to extract useful information. However, results can be limited to empirical signature comparison monitoring unless an effort is made to determine the noise sources. This paper describes the identification of several FFTF noise data phenomena and suggests how this understanding may lead to new or enhanced monitoring. 13 refs., 4 figs.

  3. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    SciTech Connect

    Bowman, B.R.

    1994-09-30

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design.

  4. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    SciTech Connect

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  5. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    PubMed

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  6. Closure of the Fast Flux Test Facility: current status and future plans

    SciTech Connect

    Lesperance, C. P.; Doebler, S. V.; Burke, T. M.

    2007-07-01

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been de-fueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D and D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D and D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009. (authors)

  7. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect

    LESPERANCE, C.P.

    2007-05-23

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

  8. Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility

    SciTech Connect

    Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

    1989-05-01

    The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

  9. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    NASA Astrophysics Data System (ADS)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  10. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  11. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles.

    PubMed

    Feldman, W C; Maurice, S; Binder, A B; Barraclough, B L; Elphic, R C; Lawrence, D J

    1998-09-04

    Maps of epithermal- and fast-neutron fluxes measured by Lunar Prospector were used to search for deposits enriched in hydrogen at both lunar poles. Depressions in epithermal fluxes were observed close to permanently shaded areas at both poles. The peak depression at the North Pole is 4.6 percent below the average epithermal flux intensity at lower latitudes, and that at the South Pole is 3.0 percent below the low-latitude average. No measurable depression in fast neutrons is seen at either pole. These data are consistent with deposits of hydrogen in the form of water ice that are covered by as much as 40 centimeters of desiccated regolith within permanently shaded craters near both poles.

  12. A survey of the cusp ion outflow's kinetic energy flux measured by Polar and FAST during conjunction events

    NASA Astrophysics Data System (ADS)

    Tian, S.; Wygant, J. R.; Cattell, C. A.; Scudder, J. D.; McFadden, J. P.; Mozer, F.; Russell, C. T.

    2014-12-01

    Polar and FAST conjunction events are selected from Polar cusp crossings in 1997. These conjunction events reveal a common pattern in which Polar observed significant ion kinetic energy flux in the upward direction at mid-altitudes (below 6 Re). Depending on the magnetic activity level, the maximum ion kinetic energy flux is on the order of 10-100 mW/m^2, when mapped to the ionosphere. It is an order of magnitude or more larger than the ion kinetic energy flux observed by FAST in conjunction at altitudes of <1 Re. Therefore, the ion outflows are significantly energized within the mid-latitude cusp. Also shown in the conjunction events is that the downward Poynting flux has enough wave energy to power the ion energization. The observed pattern suggests that the cusp at ionosphere altitudes is not a simple mapping of higher altitude particles. Instead, the mid-latitude cusp receives significant downward Poynting flux from higher altitude due to the solar wind/magnetosphere coupling. Within the mid-altitude cusp, the Poynting flux then supplies energy to power the ionosphere/magnetosphere coupling. Ion outflows are triggered and energized, forming a planetary wind that feeds the magnetosphere with ionospheric ions. During southward IMF, the wind convects anti-sunward and can affect the tail lobe, the nightside auroral region and the nightside plasma sheet.

  13. Fast Flux Test Facility interim examination and maintenance cell - past, present, and future

    SciTech Connect

    Vincent, J.R.

    1990-01-01

    The Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The first 10 yr of operation were mainly devoted to the disassembly and examination of core component test assemblies. While some maintenance was performed on reactor support equipment, such as the closed-loop ex-vessel machine (CLEM) sodium-wetted grapple, 90% of IEM cell availability has been devoted to core component tests. Some test assemblies originally considered for processing in the IEM cell have not been irradiated; others, not originally planned, have been designed, irradiated, and processed. While no major reactor equipment has required remote repair or maintenance, the IEM cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished and are described.

  14. Burnup Predictions for Metal Fuel Tests in the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Nelson, Joseph V.

    2012-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The FFTF operated successfully from initial startup in 1980 through the end of the last operating cycle in March, 1992. A variety of fuel tests were irradiated in FFTF to provide performance data over a range of conditions. The MFF-3 and MFF-5 tests were U10Zr metal fuel tests with HT9 cladding. The MFF-3 and MFF-5 tests were both aggressive irradiation tests of U10Zr metal fuel pins with HT9 cladding that were prototypic of full scale LMR designs. MFF-3 was irradiated for 726 Effective Full Power Days (EFPD), starting from Cycle 10C1 (from November 1988 through March 1992), and MFF-5 was irradiated for 503 EFPD starting from Cycle 11B1 (from January 1990 through March 1992). A group of fuel pins from these two tests are undergoing post irradiation examination at the Idaho National Laboratory (INL) for the Fuel Cycle Research and Development Program (FCRD). The generation of a data package of key information on the irradiation environment and current pin detailed compositions for these tests is described. This information will be used in interpreting the results of these examinations.

  15. Status of fuel, blanket, and absorber testing in the Fast Flux Test Facility

    SciTech Connect

    Baker, R.B.; Bard, F.E.; Leggett, R.D.; Pitner, A.L.

    1992-11-01

    Over 67,000 fuel, blanket and absorber pins have been irradiated in the Fast Flux Test Facility (FFTF) during its first 12 years of operation. Tests are run in highly controlled and monitored environments with core components similar in size to those in commercial liquid metal reactor (LMR) designs. While primary emphasis was placed on mixed oxide fuels, significant development programs have included metallic fuels, UO[sub 2] blankets, B[sub 4]C absorbers, and other fuels and materials of interest. Irradiation programs for mixed oxides have included progressively lower swelling cladding and duct alloys (e.g., 316 SS, D9 SS, and the ferritic HT9), which also have application to other core components. In many instances the current exposure levels of the advanced FFTF tests are the highest attained and reported in the literature. This paper summarizes the status of irradiation experience at the facility, presents some general conclusions, and reviews the potential for obtaining additional significant data.

  16. Status of fuel, blanket, and absorber testing in the Fast Flux Test Facility

    SciTech Connect

    Baker, R.B.; Bard, F.E.; Leggett, R.D.; Pitner, A.L.

    1992-11-01

    Over 67,000 fuel, blanket and absorber pins have been irradiated in the Fast Flux Test Facility (FFTF) during its first 12 years of operation. Tests are run in highly controlled and monitored environments with core components similar in size to those in commercial liquid metal reactor (LMR) designs. While primary emphasis was placed on mixed oxide fuels, significant development programs have included metallic fuels, UO{sub 2} blankets, B{sub 4}C absorbers, and other fuels and materials of interest. Irradiation programs for mixed oxides have included progressively lower swelling cladding and duct alloys (e.g., 316 SS, D9 SS, and the ferritic HT9), which also have application to other core components. In many instances the current exposure levels of the advanced FFTF tests are the highest attained and reported in the literature. This paper summarizes the status of irradiation experience at the facility, presents some general conclusions, and reviews the potential for obtaining additional significant data.

  17. Fast measurements of the electron temperature and parallel heat flux in ELMy H-mode on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Seidl, J.; Komm, M.; Weinzettl, V.; Panek, R.; Stöckel, J.; Hron, M.; Hacek, P.; Imrisek, M.; Vondracek, P.; Horacek, J.; Devitre, A.; the COMPASS Team

    2017-02-01

    We report the latest results on fast measurements of the electron temperature and parallel heat flux in the COMPASS tokamak scrape-off layer (SOL) and divertor region during ELMy H-mode plasmas. The system of ball-pen and Langmuir probes installed on the divertor target, the horizontal reciprocating manipulator and the fast data-acquisition system with sampling frequency rate f  =  5 MSa s-1 allow us to measure the electron temperature and parallel heat flux during inter-ELM and ELM periods with high temporal resolution. The filamentary structure of the electron temperature and parallel heat flux was observed during ELMs in the SOL as well as in the divertor region. The position of the filaments within ELMs is not regular and therefore the resulting conditionally averaged ELM neglects the peak values of the electron temperature and parallel heat flux. We have found a substantial difference between the value of the radial power decay length in the inter-ELM period λ q,inter  =  2.5 mm and the decay length of the peak ELM heat flux λ q,ELM  =  13.1 mm. The decay length of the ELM energy density was found to be λ E,ELM  =  5.4 mm.

  18. Measurement of N{sub 2}O fluxes from fertilized grassland using a fast response tunable diode laser spectrometer

    SciTech Connect

    Wienhold, F.G.; Frahm, H.; Harris, G.W.

    1994-08-20

    Measurements of nitrous oxide flux from fertilized agricultural grasslands is important in explaining and predicting the relationship of emissions of this gas to global warming. The nitrous oxide flux from agricultural grasslands was measured using micrometeorological techniques at a site near Stirling, Scotland. Emission levels were measured using a fast response tunable diode laser spectrometer. Measurements were made by both eddy correlation and concentration gradient techniques. This paper describes the results of this experiment and discusses information obtained that may be used for the characterization of the spatial variability in nitrous oxide emissions. 20 refs., 8 figs, 1 tab.

  19. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  20. Snubber reduction analysis of secondary hot leg in Fast Flux Test Facility

    SciTech Connect

    Chen, W.W.; Lindquist, M.R.

    1995-01-01

    This paper describes analyses to qualify the structural integrity of the secondary hot leg (SHL) dump heat exchanger(DHX) piping system of the Fast Flux Test Facility (FFTF) under seismic loading after the deletion of a number of seismic snubbers. A baseline geometric model was developed, with ADLPIPE computer code, Version 2ElA, 1984. Several seismic analyses were performed by iteration with the maximum number of snubbers reduced to obtain a support configuration having acceptable anchor and support loads as well as acceptable piping stresses. A thermal analysis was performed at an operating temperature of 965{degrees}F (518{degrees}C) to qualify the piping system following the replacement of some seismic snubbers with rigid supports. A series of displacements from flow- or pump-induced vibration were measured. These vibrations, on the order of tens of seconds or minutes apart, were not continuous and steady, but rather of a series of forced displacements that rapidly damped out to zero. A scoping evaluation of the effect of the vibration found that the calculated stress is within limits. Results of the stress analysis of the piping with snubber reduction are qualified in accordance with ASME, Section III, Class 1, requirements. Nearly 67% of the snubbers in loop 1 of the SHL piping system may be eliminated or replaced with rigid struts at the same location and orientation. The effects of inelastic strain accumulation, creep-fatigue damage and interaction, and elastic follow-up are evaluated by comparison to the results of inelastic analysis. Revised anchor and hanger loads also were evaluated by comparison to those from the original seismic analysis.

  1. A fast, magnetics-free flux surface estimation and q-profile reconstruction algorithm for feedback control of plasma profiles

    NASA Astrophysics Data System (ADS)

    Hommen, G.; de Baar, M.; Citrin, J.; de Blank, H. J.; Voorhoeve, R. J.; de Bock, M. F. M.; Steinbuch, M.; contributors, JET-EFDA

    2013-02-01

    The flux surfaces' layout and the magnetic winding number q are important quantities for the performance and stability of tokamak plasmas. Normally, these quantities are iteratively derived by solving the plasma equilibrium for the poloidal and toroidal flux. In this work, a fast, non-iterative and magnetics-free numerical method is proposed to estimate the shape of the flux surfaces by an inward propagation of the plasma boundary shape, as can be determined for example by optical boundary reconstruction described in Hommen (2010 Rev. Sci. Instrum. 81 113504), toward the magnetic axis, as can be determined independently with the motional Stark effect (MSE) diagnostic. Flux surfaces are estimated for various plasma regimes in the ITER, JET and MAST tokamaks and are compared with results of CRONOS reconstructions and simulations, showing agreement to within 1% of the minor radius for almost all treated plasmas. The availability of the flux surface shapes combined with the pitch angles measured using MSE allow the reconstruction of the plasma q-profile, by evaluating the contour-integral over the flux surfaces of the magnetic field pitch angle. This method provides a direct and exact measure of the q-profile for arbitrary flux surface shapes, which does not rely on magnetic measurements. Results based on estimated flux surface shapes show agreement with CRONOS q-profiles of better than 10%. The impact of the shape of the flux surfaces on the q-profile, particularly the profiles of elongation and Shafranov shift, and offsets in plasma boundary and the magnetic axis are assessed. OFIT+ was conceived for real-time plasma profile control experiments and advanced tokamak operation, and provides quickly and reliably the mapping of actuators and sensors to the minor radius as well as the plasma q-profile, independent of magnetic measurements.

  2. Heat flux of fast electrons to the limiter in lower hybrid current drive plasma on WT-3

    NASA Astrophysics Data System (ADS)

    Maekawa, T.; Nakamura, M.; Komatsu, T.; Kishino, T.; Kishigami, Y.; Makino, K.; Maehara, T.; Minami, T.; Hanada, K.; Iida, M.; Terumichi, Y.; Tanaka, S.

    1992-10-01

    The heat flux of fast electrons to the local limiter in LHCD plasmas in WT-3 has been investigated by thermal measurement of the limiter. The amount of the heat flux (PFE) is found to be about on third of the net radiofrequency power (Prf) injected into the plasma for various discharge conditions. The results combined with other measurements show that the confinement of fast electrons deteriorates as Prf increases. This direct loss of fast electrons is one of the causes of the degradation of the current drive efficiency. Heat transport of the bulk electrons is also found to increase as Prf increases. Experimental results indicate that a significant part of the remaining RF power (2Prf/3) flows to the bulk electrons. The slowing down power of fast electrons in the energy range above several tens of keV is estimated to be quite small compared with 2Prf/3, suggesting that a significant part of the remaining power flows to the bulk electrons via other channels. A plausible channel is the absorption of RF power via lower energy electrons by an upshift of the parallel refractive index of the injected lower hybrid waves. This seems to be another cause of the degradation of the current drive efficiency

  3. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  4. DIRECT EVIDENCE FOR A FAST CORONAL MASS EJECTION DRIVEN BY THE PRIOR FORMATION AND SUBSEQUENT DESTABILIZATION OF A MAGNETIC FLUX ROPE

    SciTech Connect

    Patsourakos, S.; Vourlidas, A.; Stenborg, G.

    2013-02-20

    Magnetic flux ropes play a central role in the physics of coronal mass ejections (CMEs). Although a flux-rope topology is inferred for the majority of coronagraphic observations of CMEs, a heated debate rages on whether the flux ropes pre-exist or whether they are formed on-the-fly during the eruption. Here, we present a detailed analysis of extreme-ultraviolet observations of the formation of a flux rope during a confined flare followed about 7 hr later by the ejection of the flux rope and an eruptive flare. The two flares occurred during 2012 July 18 and 19. The second event unleashed a fast (>1000 km s{sup -1}) CME. We present the first direct evidence of a fast CME driven by the prior formation and destabilization of a coronal magnetic flux rope formed during the confined flare on July 18.

  5. Intercomparison of six fast-response sensors for the eddy-covariance flux measurement of nitrous oxide over agricultural grassland

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko; Famulari, Daniela; Ibrom, Andreas; Vermeulen, Alex; Hensen, Arjan; van den Bulk, Pim; Loubet, Benjamin; Laville, Patricia; Mammarella, Ivan; Haapanala, Sami; Lohila, Annalea; Laurila, Tuomas; Eva, Rabot; Laborde, Marie; Cowan, Nicholas; Anderson, Margaret; Helfter, Carole

    2015-04-01

    Nitrous oxide (N2O) is the third most important greenhouse gas and its terrestrial budget remains poorly constraint, with bottom up and top down estimates of country emissions often disagreeing by more than a factor of two. Whilst the measurements of the biosphere / atmosphere exchange of CO2 with micrometeorological methods is commonplace, emissions of CH4 and N2O are more commonly measured with enclosure techniques due to limitations in fast-response sensors with good signal-to-noise characteristics. Recent years have seen the development of a range of instruments based on optical spectroscopy. This started in the early 1990s with instruments based on lead salt lasers, which had temperamental long-term characteristics. More recent developments in quantum cascade lasers has lead to increasingly stable instruments, initially based on pulsed, later on continuous wave lasers. Within the context of the European FP7 Infrastructure Project InGOS ('Integrated non-CO2 Greenhouse gas Observing System'), we conducted an intercomparison of six fast response sensors for N2O: three more or less identical instruments based on off-axis Integrated Cavity Optical Spectrocopy (ICOS) (Los Gatos Research Inc.) and three instruments based on quantum cascade laser absorption spectrometry (Aerodyne Research Inc.): one older generation pulsed instrument (p-QCL) and two of the latest generation of compact continuous wave instruments (cw-QCL), operating at two different wavelengths. One of the ICOS instruments was operated with an inlet drier. In addition, the campaign was joined by a relaxed eddy-accumulation system linked to a FTIR spectrometer (Ecotech), a gradient system based on a home-built slower QCL (INRA Orleans) and a fast chamber system. Here we present the results of the study and a detailed examination of the various corrections and errors of the different instruments. Overall, with the exception of the older generation QCL, the average fluxes based on the different fast

  6. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.

    PubMed

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field.

  7. Measuring Fast-Temporal Sediment Fluxes with an Analogue Acoustic Sensor: A Wind Tunnel Study

    PubMed Central

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field. PMID:24058512

  8. Nuclear Data Library Effects on Fast to Thermal Flux Shapes Around PWR Control Rod Tips

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.; Ferroukhi, H.; Zhu, T.; Pautz, A.

    2014-04-01

    The development of a high-fidelity computational scheme to estimate the accumulated fluence at the tips of PWR control rods (CR) has been initiated at the Paul Scherrer Institut (PSI). Both the fluence from high-energy (E>1 MeV) neutrons as well as for the thermal range (E<0.625 eV) are required as these affect the CR integrity through stresses/strains induced by coupled clad embrittlement / absorber swelling phenomena. The concept of the PSI scheme under development is to provide from validated core analysis models, the volumetric neutron source to a full core MCNPX model that is then used to compute the neutron fluxes. A particular aspect that needs scrutiny is the ability of the MCNPX-based calculation methodology to accurately predict the flux shapes along the control rod surfaces, especially for fully withdrawn CRs. In that case, the tip is located a short distance above the core/reflector interface and since this situation corresponds to a large part of reactor operation, the accumulated fluence will highly depend on the achieved calculation accuracy and precision in this non-fueled zone. The objective of the work presented in this paper is to quantify the influence of nuclear data on the calculated fluxes at the CR tips by (1) conducting a systematic comparison of modern neutron cross-section libraries, including JENDL-4.0, JEFF-3.1.1 and ENDF/B-VII.0, and (2) by quantifying the uncertainties in the neutron flux calculations with the help of available neutron cross-section variances/covariances data. For completeness, the magnitude of these nuclear data-based uncertainties is also assessed in relation to the influence from other typical sources of modeling uncertainties/biases.

  9. Fast two-stream method for computing diurnal-mean actinic flux in vertically inhomogeneous atmospheres

    NASA Technical Reports Server (NTRS)

    Filyushkin, V. V.; Madronich, S.; Brasseur, G. P.; Petropavlovskikh, I. V.

    1994-01-01

    Based on a derivation of the two-stream daytime-mean equations of radiative flux transfer, a method for computing the daytime-mean actinic fluxes in the absorbing and scattering vertically inhomogeneous atmosphere is suggested. The method applies direct daytime integration of the particular solutions of the two-stream approximations or the source functions. It is valid for any duration of period of averaging. The merit of the method is that the multiple scattering computation is carried out only once for the whole averaging period. It can be implemented with a number of widely used two-stream approximations. The method agrees with the results obtained with 200-point multiple scattering calculations. The method was also tested in runs with a 1-km cloud layer with optical depth of 10, as well as with aerosol background. Comparison of the results obtained for a cloud subdivided into 20 layers with those obtained for a one-layer cloud with the same optical parameters showed that direct integration of particular solutions possesses an 'analytical' accuracy. In the case of the source function interpolation, the actinic fluxes calculated above the one-layer and 20-layer clouds agreed within 1%-1.5%, while below the cloud they may differ up to 5% (in the worst case). The ways of enhancing the accuracy (in a 'two-stream sense') and computational efficiency of the method are discussed.

  10. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2014-08-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring till winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinaceae, L.), a perennial bioenergy crop in Eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O/CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emission, lasting for about two weeks after fertilization in late May, was characterised by an up to two orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.1 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O/CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced cumulatively highest N2O estimates (with 29% higher value during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reason for these episodic higher and lower estimates by the two instruments is not currently known, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and, in particular, simultaneous accurate determination of water vapour concentration due to its large impact on small N2O fluxes through spectroscopic and dilution corrections. The instrument CW-TILDAS-CS was characterised by the lowest noise level (std around 0.12 ppb at 10 Hz sampling rate), as compared to N2O/CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). Both instruments based on Continuous-Wave Quantum Cascade Lasers, CW-TILDAS-CS and N2O/CO-23d, were able to determine

  11. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2015-01-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring until winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinacea, L.), a perennial bioenergy crop in eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O / CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emissions, lasting for about 2 weeks after fertilization in late May, was characterized by an up to 2 orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.01 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O / CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced the cumulatively highest N2O estimates (with 29% higher values during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reasons for systematic differences were not identified, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and any other factors that can systematically affect the accuracy of flux measurements. The instrument CW-TILDAS-CS was characterized by the lowest noise level (with a standard deviation of around 0.12 ppb at 10 Hz sampling rate) as compared to N2O / CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). We identified that for all instruments except CW-TILDAS-CS the random error due to instrumental noise was an important source of uncertainty at the 30 min averaging level and the total stochastic error was frequently

  12. (13)C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300.

    PubMed

    Cordova, Lauren T; Antoniewicz, Maciek R

    2016-01-01

    Thermophiles are increasingly used as versatile hosts in the biotechnology industry. One of the key advantages of thermophiles is the potential to achieve high rates of feedstock conversion at elevated temperatures. The recently isolated Geobacillus strain LC300 grows extremely fast on xylose, with a doubling time of less than 30 min. In the accompanying paper, the genome of Geobacillus LC300 was sequenced and annotated. In this work, we have experimentally validated the metabolic network model using parallel (13)C-labeling experiments and applied (13)C-metabolic flux analysis to quantify precise metabolic fluxes. Specifically, the complete set of singly labeled xylose tracers, [1-(13)C], [2-(13)C], [3-(13)C], [4-(13)C], and [5-(13)C]xylose, was used for the first time. Isotopic labeling of biomass amino acids was measured by gas chromatography mass spectrometry (GC-MS). Isotopic labeling of carbon dioxide in the off-gas was also measured by an on-line mass spectrometer. The (13)C-labeling data was then rigorously integrated for flux elucidation using the COMPLETE-MFA approach. The results provided important new insights into the metabolism of Geobacillus LC300, its efficient xylose utilization pathways, and the balance between carbon, redox and energy fluxes. The pentose phosphate pathway, glycolysis and TCA cycle were found to be highly active in Geobacillus LC300. The oxidative pentose phosphate pathway was also active and contributed significantly to NADPH production. No transhydrogenase activity was detected. Results from this work provide a solid foundation for future studies of this strain and its metabolic engineering and biotechnological applications.

  13. Excitation of fast waves and global oscillations in a post-eruption laboratory arched magnetic flux rope*

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Gekelman, W. N.

    2012-12-01

    Arched magnetic flux ropes (AMFRs) are arch-shaped, magnetoplasma structures that carry electrical current. In a laboratory plasma experiment, eruption of solar AMFRs is simulated by careful scaling of the solar plasma parameters and precisely controlling the boundary conditions. The experiment runs continuously with a 0.5 Hz repetition rate. Hence, evolution of the plasma parameters is recorded with a good spatiotemporal resolution using computer-controlled movable probes. A lanthanum hexaboride (LaB6) plasma source produces the AMFR (n ~ 1013 cm-3, Te ~ 10 eV, L = 0.5 m, I = 100 A, B ~ 1 kG at footpoints) in presence of an arched vacuum magnetic field. The AMFR evolves in a large magnetoplasma (n ~ 1012 cm-3, Te ~ 4 eV, B0 = 20-100 G) produced by another LaB6 source in a cylindrical vacuum chamber (5 m long, 1 m diameter). The ambient magnetic field B0 is normal to the symmetry plane of the AMFR evolution. By changing the direction of the ambient magnetic field, the JxB force can be arranged to either accelerate the AMFR expansion or inhibit the expansion. During the initial phase of the AMFR formation, in presence of an ambient magnetic field (20-60 G) that inhibits the expansion, global oscillations of the AMFR are recorded in the density and magnetic-field measurements. Frequency of the oscillation (f ~ 10 kHz-150 kHz) critically depends on the ambient magnetic field and AMFR current. On application of a strong ambient magnetic field (> 60 G), the global oscillations disappear and the AMFR plasma is released to the background forming a large flux rope on a slow time scale (~50.Alfven transit times tA). In another experiment, dense plasma and magnetic flux (produced by two laser plasma sources) are injected in the AMFR on a fast time scale (~2.tA), which drives the impulsive eruption of the AMFR. In the post-eruption AMFR, low frequency global oscillations (f ~ 200 kHz) appear concurrently with high-frequency fast waves (f ~ 5 MHz) that propagate in all

  14. Boosting Lyα and He II λ1640 Line Fluxes from Population III Galaxies: Stochastic IMF Sampling and Departures from Case-B

    NASA Astrophysics Data System (ADS)

    Mas-Ribas, Lluís; Dijkstra, Mark; Forero-Romero, Jaime E.

    2016-12-01

    We revisit calculations of nebular hydrogen Lyα and He ii λ1640 line strengths for Population III (Pop III) galaxies, undergoing continuous, and bursts of, star formation. We focus on initial mass functions (IMFs) motivated by recent theoretical studies, which generally span a lower range of stellar masses than earlier works. We also account for case-B departures and the stochastic sampling of the IMF. In agreement with previous work, we find that departures from case-B can enhance the Lyα flux by a factor of a few, but we argue that this enhancement is driven mainly by collisional excitation and ionization, and not due to photoionization from the n = 2 state of atomic hydrogen. The increased sensitivity of the Lyα flux to the high-energy end of the galaxy spectrum makes it more subject to stochastic sampling of the IMF. The latter introduces a dispersion in the predicted nebular line fluxes around the deterministic value by as much as a factor of ∼4. In contrast, the stochastic sampling of the IMF has less impact on the emerging Lyman Werner photon flux. When case-B departures and stochasticity effects are combined, nebular line emission from Pop III galaxies can be up to one order of magnitude brighter than predicted by “standard” calculations that do not include these effects. This enhances the prospects for detection with future facilities such as the James Webb Space Telescope and large, ground-based telescopes.

  15. Eddy Covariance Measurements of Methane Flux at Remote Sites with New Low-Power Lightweight Fast Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad

    2010-05-01

    Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses <10W of power, and can easily be run on solar panel, or with small portable generator, while present technologies require 300-1500 Watts of the grid power. The proposed extremely low-power technology would allows placing methane Eddy Covariance stations in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power. This could significantly expand the Eddy Covariance CH4 flux measurements coverage, and possibly, significantly improve the budget estimates of world CH4 emissions and budget. Various prototypes of the LI-7700 were field-tested for three seasons at the remote site in middle of Everglades National Park (Florida, USA) using solar panels, at three stationary and several mobile sites during three seasons at remote Arctic wetlands near Barrow (Alaska, USA), in the tropical mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the

  16. Irradiation performance of Fast Flux Test Facility drivers using D9 alloy

    SciTech Connect

    Pitner, A.L.; Gneiting, B.C.; Bard, F.E.

    1994-06-01

    Six test assemblies similar in design to the FFTF driver assembly but employing the advanced alloy D9 in place of Type 316 stainless steel for duct, cladding, and wire wrap material were irradiated to demonstrate the improved performance and lifetime capability of this design. A single pinhole-type breach was incurred in one of the high exposure tests after a peak fuel burnup of 155 MWd/kgM and peak fast neutron fluence of 25 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV). Postirradiation examinations were performed on four of the test assemblies and measured results were compared to analytical evaluations. A revised swelling correlation for D9 Alloy was developed to provide improved agreement between calculated and measured cladding deformation results. A fuel pin lifetime design criterion of 5% calculated hoop strain was derived. Alternatively, fuel pin lifetimes were developed for two irradiation parameters using statistical failure analyses. For a 99.99% reliability, the analyses indicated a peak fast fluence lifetime of 21.0 {times} 10{sup 22} n/cm{sup 2}, or a peak fuel burnup greater than 120 MWd/kgM. The extended lifetime capability of this design would reduce fuel supply requirements for the FFTF by a third relative to the reference driver design.

  17. Fast estimation of defect profiles from the magnetic flux leakage signal based on a multi-power affine projection algorithm.

    PubMed

    Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang

    2014-09-04

    Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection.

  18. Fast Estimation of Defect Profiles from the Magnetic Flux Leakage Signal Based on a Multi-Power Affine Projection Algorithm

    PubMed Central

    Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang

    2014-01-01

    Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection. PMID:25192314

  19. FFTF/IEM (Fast Flux Test Facility/Interim Examination and Maintenance) cell fuel pin weighing system

    SciTech Connect

    Gibbons, P.W.

    1987-01-01

    The Interim Examination and Maintenance (IEM) cell in the Fast Flux Test Facility (FFTF) is used for remote dissassembly of irradiated fuel and materials experiments. For those fuel experiments where the FFTF tag-gas detection system has indicated a fuel pin cladding breach, a weighing system is used in identifying that fuel pin with a reduced weight due to the escape of gaseous and volatile fission products. A fuel pin weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF), was the basis for the IEM cell system. Design modifications to the original equipment were centered around adapting the machine to the differences between the two facilities and correcting deficiencies discovered during functional testing in the IEM cell mock-up.

  20. FFTF/IEM (Fast Flux Test Facility/Interim Examination and Maintenance) cell fuel pin removal equipment

    SciTech Connect

    Greenwell, R.K.

    1987-01-01

    This paper describes a fuel pin removal device used for pin removal from irradiated fuel assemblies at the Fast Flux Test Facility (FFTF). After irradiation in the FFTF, selected fuel assemblies are remotely disassembled in the Interim Examination and Maintenance (IEM) cell. The remote disassembly, following sodium removal, consists of slitting and removing the duct and then removing the fuel pins one-at-a-time by sliding the pins from parallel attachment rails. All pins are removed from one rail before starting on the next. The new pin removal equipment has been used very successfully on the last three fuel experiments disassembled in the IEM cell, including one assembly containing residual sodium. Pin removal time has been cut in half, and this once tedious and time-consuming activity has been turned into an almost effortless evolution.

  1. An influence of long-lasting and gradual magnetic flux transport on fate of magnetotail fast plasma flows: An energetic particle injection substorm event study

    NASA Astrophysics Data System (ADS)

    Nowada, Motoharu; Fu, Suiyan; Parks, George K.; Pulkkinen, Tuija I.; Pu, Zuyin

    2014-10-01

    Based on multi-satellite and ground observations, we investigated an influence of long-lasting and gradual enhancements of magnetic flux transport rate on the magnetotail fast flow duration. On March 10th, 2009, THEMIS-B, which was located in the central plasma sheet of middle distant magnetotail (XGSM ~-25.8 RE), observed the fast flows with the velocity exceeding 300 km/s, lasting over 3 h for intense southward Interplanetary Magnetic Field (IMF) period. During long-lasting fast flows, AL index variations were very extensive and their recovery was much slow. Pi 2 waves were observed at the ground observatories around the THEMIS's footpoints and at low-/mid-latitudes. The aspect for these AL variations suggests Steady Magnetospheric Convection (SMC), but clear substorm signatures were also observed. Further magnetic dipolarization was detected by THEMIS-A at XGSM ~-8.2 RE and its nearby THEMIS-E. Only THEMIS-A observed the associated energetic electron flux enhancements. Therefore, the fast flows occurred during substorm with energetic particle injections at “imitative” SMC, which would be driven by prolonged intense southward IMF. The cumulative transport rates of magnetic and Poynting fluxes consecutively and gradually enhanced. On the other hand, THEMIS-C detected much shorter fast flows with the duration of 37 min at XGSM ~-18.1 RE and weak/gradual substorm-associated dipolarization. However, the cumulative magnetic flux transport rate was enhanced only during the fast flow interval and was saturated after the fast flows. From different magnetic transport rate profiles at THEMIS-B and THEMIS-C, the realms of dipolar-configured field lines expanded to near THEMIS-C's position responsible for long-lasting fast flow-associated consecutive and gradual magnetic flux pileup. Because the resultant “high-speed flow braking” region was retreated into a few RE tailward direction, long-lasting fast flows were almost stemmed. These results suggest that the

  2. Swelling of 316 stainless steel and D9 cladding in FFTF (Fast Flux Test Facility)

    SciTech Connect

    Makenas, B.J.

    1986-02-01

    A data base of cladding swelling measurements from postirradiation examinations of FFTF 316 stainless steel clad fuel pins has been developed which is now sufficiently large to compare to previously published cladding swelling data. This comparison of data was motivated by the observation, in the early cycles of FFTF operation, that design swelling correlations had to be adjusted to account for the observed length increases of driver assembly ducts. These original correlations had been developed from nonfueled EBR-II irradiation tests. The recent data indicate that FFTF and EBR-II cladding, from actual fuel pins with similar heats of steel, behave almost identically with respect to fast fluence. The FFTF data further suggest that, above approx.490/sup 0/C, 316 stainless steel (SS) swells in a manner which is essentially independent of irradiation temperature. A comparison of immersion density measurements with the length increases for FFTF driver fuel pins has also shown the 316 SS cladding swelling behavior to be essentially isotropic. D9 cladding (a titanium modified variant of 316 SS) has also been irradiated in FFTF. The data base here is limited, but is large enough to establish the superiority of D9 over 316 SS as an FFTF fuel pin cladding from a swelling point of view.

  3. Boosted ellipsoid ARTMAP

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Georgios C.; Georgiopoulos, Michael; Verzi, Steven J.; Heileman, Gregory L.

    2002-03-01

    Ellipsoid ARTMAP (EAM) is an adaptive-resonance-theory neural network architecture that is capable of successfully performing classification tasks using incremental learning. EAM achieves its task by summarizing labeled input data via hyper-ellipsoidal structures (categories). A major property of EAM, when using off-line fast learning, is that it perfectly learns its training set after training has completed. Depending on the classification problems at hand, this fact implies that off-line EAM training may potentially suffer from over-fitting. For such problems we present an enhancement to the basic Ellipsoid ARTMAP architecture, namely Boosted Ellipsoid ARTMAP (bEAM), that is designed to simultaneously improve the generalization properties and reduce the number of created categories for EAM's off-line fast learning. This is being accomplished by forcing EAM to be tolerant about occasional misclassification errors during fast learning. An additional advantage provided by bEAM's desing is the capability of learning inconsistent cases, that is, learning identical patterns with contradicting class labels. After we present the theory behind bEAM's enhancements, we provide some preliminary experimental results, which compare the new variant to the original EAM network, Probabilistic EAM and three different variants of the Restricted Coulomb Energy neural network on the square-in-a-square classification problem.

  4. Comprehensive modulation of tumor progression and regression with periodic fasting and refeeding circles via boosting IGFBP-3 loops and NK responses.

    PubMed

    Chen, Xiancheng; Lin, Xiaojuan; Li, Meng

    2012-10-01

    Progressive tumor-bearing patients deserve to benefit from more realistic approaches. Here, a study revealed the impact of modified periodic fasting and refeeding regimen on tumor progression or regression with little or no loss of food intake and body weight. Human A549 lung, HepG-2 liver, and SKOV-3 ovary progressive tumor-bearing mice were established and subjected to 4 wk of periodic fasting/refeeding cycles (PFRC), including periodic 1-d fasting/6-d refeeding weekly (protocol 1) and periodic 2-d fasting/5-d refeeding weekly (P2DF/5DR, protocol 2), with ad libitum (AL)-fed hosts as controls. Afterwards, PFRC groups exhibited tumor growth arrest with some tendency towards regression; especially, complete regression of progressive tumors and metastases comprised between 43.75 and 56.25% of tumor-challenged hosts in P2DF/5DR group (P < 0.05). AL controls, in contrast, showed continuous tumor progression and metastasis. Finally, 100% hosts in P2DF/5DR and 62.5-68.75% in periodic 1-d fasting/6-d refeeding weekly groups survived a 4-month study period vs. only 31.25-37.5% in AL control group. Immunological assays and Luminex microarray revealed that tumor growth remission is mainly via natural killer cell (NK) reactivity and cross-regulation of IGF-binding protein-3, IGF/IGF-receptor, and megakaryocyte growth and development factor autocrine and paracrine loops. In vivo cellular and humoral assays indicated that tumor-regressive induction by PFRC protocols could be partly terminated by NK cell and IGF-binding protein-3 blockade or replenishment of IGF-I/-II and megakaryocyte growth and development factor. These findings offer a better understanding of comprehensive modulation of periodic fasting/refeeding strategy on the balance between tumor progression and regression.

  5. HT-9 duct cutting - IEM (Interim Examination and Maintenance) cell and mock-up testing experience at FFTF (Fast Flux Test Facility)

    SciTech Connect

    Gibbons, P.W.; Greenwell, R.K.

    1987-01-01

    This paper describes experience gained during remote cutting of the HT-9 alloy duct from an advanced fuel assembly in the Interim Examination and Maintenance (IEM) cell at the Fast Flux Test Facility (FFTF). Also described is a test program performed on mock-up equipment to develop successful cutting parameters.

  6. Sensitive, Selective, and Fast Detection of ppb-Level H2S Gas Boosted by ZnO-CuO Mesocrystal

    NASA Astrophysics Data System (ADS)

    Guo, Yanan; Gong, Miaomiao; Li, Yushu; Liu, Yunling; Dou, Xincun

    2016-10-01

    ZnO-CuO mesocrystal was prepared via topotactic transformation using one-step direct annealing of aqueous precursor solution and assembled into a H2S sensor. The ZnO-CuO mesocrystal-based sensor possesses good linearity and high sensitivity in the low-concentration range (10-200 ppb). Compared to pure CuO, the as-prepared ZnO-CuO mesocrystal sensor exhibited superior H2S sensing performance with a response ranging from 8.6 to 152 % towards H2S concentrations from 10 ppb to 10 ppm when applied at the optimized working temperature of 125 °C. The sensor showed excellent repeatability and good selectivity towards H2S gas even at a concentration four orders of magnitude lower than the interfering gases, such as H2, CO2, CO, NO2, acetone, and NH3. The improved sensitivity could be attributed partially to the effective diffusion of analyte gas through the mesocrystal surface and the abundant accessible active sites. Moreover, the nanoscale p-n junctions within the mesocrystal, which could effectively manipulate the local charge carrier concentration, are also beneficial to boost the sensing performance.

  7. Calculation of the Fast Flux Test Facility fuel pin tests with the WIMS-E and MCNP codes

    SciTech Connect

    Schwinkendorf, K.N.; Wittekind, W.D.; Toffer, H.

    1991-10-01

    The Fuel Assembly Area (FAA) at the Fast Flux Test Facility site on the Hanford Site at Richland, Washington currently is being prepared to fabricate mixed oxide fuel (U, Pu) for the FFTF. Calculational tools are required to perform criticality safety analyses for various process locations and to establish safe limits for fissile material handling at the FAA. These codes require validation against experimental data appropriate for the compositions that will be handled. Critical array experiments performed by Bierman provide such data for mixed oxide fuel in the range Pu/(U+Pu) = 22 wt %, and with Pu-240 contents equal to 12 wt %. Both the Monte Carlo Neutron Photon (MCNP) and the Winfrith Improved Multigroup Scheme (WIMS-E) computer codes were used to calculate the neutron multiplication factor for explicit models of the various critical arrays. The W-CACTUS modules within the WIMS-E code system was used to calculate k{infinity} for the explicit array configuration, as well as few-group cross sections that were then used in a three-dimensional diffusion theory code for the calculation of k{sub eff} for the finite array. 10 refs., 15 figs., 7 tabs.

  8. Solvent extraction studies with low-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1985-01-01

    A batch of irradiated Fast Flux Test Facility (FFTF) fuel was processed for the first time in the Solvent Extraction Test Facility (SETF) at the Oak Ridge National Laboratory (ORNL) during Campaign 7. The average burnup of the fuel was only 0.2 atom %, but the cooling time was short enough ({similar_to}2 years) so that {sup 95}Zr was detected in the feed. This short cooling permitted our first measurement of {sup 95}Zr decontamination factors (DFs) without having to use tracers. No operational problems were noted in the operation of the extraction-scrubbing contactor, and low uranium and plutonium losses (< 0.01%) were measured. Fission product DFs were improved noticeably by increasing the number of scrub stages from six to eight. Two flowsheet options for making pure uranium and plutonium products (total partitioning) were tested. Each flowsheet used hydroxylamine nitrate for reducing plutonium. Good products were obtained (uranium DFs of > 10{sup 3} and plutonium DFs of > 10{sup 4}), but each flowsheet was troubled with plutonium reoxidation. Adding hydrazine and lowering the plutonium concentration lessened the problem but did not eliminate it. About 370 g of plutonium was recovered from these tests, purified by anion exchange, converted to PuO{sub 2}, and transferred to the fuel refabrication program. 7 references.

  9. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    SciTech Connect

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  10. Evaluation of the advanced mixed-oxide fuel test FO-2 irradiated in the FFTF (Fast Flux Test Facility)

    SciTech Connect

    Burley Gilpin, L.L.; Chastain, S.A.; Baker, R.B.

    1989-01-01

    The advanced mixed-oxide (UO{sub 2}-PuO{sub 2}) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF) is undergoing postirradiation examination. This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of 12 different types. Two L (annular) fuel pins, GF02L04 (FFTF and transient tested) and GF02L09 (FFTF only), were destructively examined. Evaluation of the FO-2 fuel pins and assembly shows the excellent and predictable performance of the mixed-oxide fuels with HT9 structural material. This, combined with the robust behavior of the pins in transient tests, and the continued excellent performance of the CDE indicate this is a superior fuel system for liquid-metal reactors. It offers greatly reduced deformation during irradiation, while maintaining good operating characteristics.

  11. Solvent extraction studies with high-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1986-10-01

    A batch of high-burnup fuel from the Fast Flux Test Facility (FFTF) was processed in the Solvent Extraction Test Facility (SETF) during Campaign 9. The fuel had a burnup of {similar_to}0 MWd/kg and a cooling time of {similar_to} year. Two runs were made with this fuel; in the first, the solvent contained 30% tri-n-butyl phosphate (TBP) and partitioning of the uranium and plutonium was effected by reducing the plutonium with hydroxylamine nitrate (HAN); in the second, the solvent contained 10% TBP and a low operating temperature was used in an attempt to partition without reducing the plutonium valence. The plutonium reoxidation problem, which was present in previous runs that used HAN, may have been solved by lowering the temperature and acidity in the partition contactor. An automatic control system was used to maintain high loadings of heavy metals in the coextraction-coscrub contactor in order to increase its efficiency while maintaining low losses of uranium and plutonium to the aqueous raffinate. An in-line photometer system was used to measure the plutonium concentration in an intermediate extraction stage; and based on this data, a computer algorithm determined the appropriate adjustments in the addition rate of the extractant. The control system was successfully demonstrated in a preliminary run with purified uranium. However, a variety of equipment and start up problems prevented an extended demonstration from being accomplished during the runs with the FFTF fuel.

  12. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis.

    PubMed

    Blankertz, Benjamin; Dornhege, Guido; Schäfer, Christin; Krepki, Roman; Kohlmorgen, Jens; Müller, Klaus-Robert; Kunzmann, Volker; Losch, Florian; Curio, Gabriel

    2003-06-01

    Brain-computer interfaces (BCIs) involve two coupled adapting systems--the human subject and the computer. In developing our BCI, our goal was to minimize the need for subject training and to impose the major learning load on the computer. To this end, we use behavioral paradigms that exploit single-trial EEG potentials preceding voluntary finger movements. Here, we report recent results on the basic physiology of such premovement event-related potentials (ERP). 1) We predict the laterality of imminent left- versus right-hand finger movements in a natural keyboard typing condition and demonstrate that a single-trial classification based on the lateralized Bereitschaftspotential (BP) achieves good accuracies even at a pace as fast as 2 taps/s. Results for four out of eight subjects reached a peak information transfer rate of more than 15 b/min; the four other subjects reached 6-10 b/min. 2) We detect cerebral error potentials from single false-response trials in a forced-choice task, reflecting the subject's recognition of an erroneous response. Based on a specifically tailored classification procedure that limits the rate of false positives at, e.g., 2%, the algorithm manages to detect 85% of error trials in seven out of eight subjects. Thus, concatenating a primary single-trial BP-paradigm involving finger classification feedback with such secondary error detection could serve as an efficient online confirmation/correction tool for improvement of bit rates in a future BCI setting. As the present variant of the Berlin BCI is designed to achieve fast classifications in normally behaving subjects, it opens a new perspective for assistance of action control in time-critical behavioral contexts; the potential transfer to paralyzed patients will require further study.

  13. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    SciTech Connect

    Green, J.R.

    1995-01-31

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

  14. Fast-response CO2 mixing-ratio measurement with an open-path gas analyzer for eddy-flux applications

    NASA Astrophysics Data System (ADS)

    Bogoev, I.

    2014-12-01

    Infra-red gas analyzers operate on the principle of light absorption and measure the density of the gas in the sensing path. To account for density fluctuations caused by barometric pressure, thermal expansion and contraction, and water-vapor dilution, flux calculations using CO2 density measurements need to be corrected for sensible and latent heat transfer (also known as WPL corrections). In contrast, these corrections are not required if the flux calculation involves CO2 mixing ratio relative to dry air. Historically, CO2 mixing ratio measurements have been available only for analyzers with a closed-path where temperature fluctuations in the air sample are attenuated in the intake tubing to a level that they are adequately measured by a contact thermometer. Open-path gas analyzers are not able to make in situ CO2 mixing-ratio measurements because of the unavailability of a reliable, accurate and fast-response air-temperature sensor in the optical path. A newly developed eddy-flux system integrates an aerodynamic open-path gas analyzer with a sonic anemometer where the sensing volumes of the two instruments coincide. Thus the system has the ability to provide temporally and spatially synchronized fast-response measurements of the 3D wind vector, sonically derived air temperature, CO2 and water vapor densities. When these measurements are combined with a fast-response static pressure measurement an instantaneous in-situ CO2 mixing ratio can be calculated on-line, eliminating the need for density corrections in post-processing. In this study fluxes computed from CO2 mixing-ratio are compared to WPL corrected fluxes using CO2 density. Results from a field inter-comparison with an aspirated temperature probe suggest that accurate, fast response air temperature can be derived from humidity-corrected speed of sound measurements. Biases due to heat exchange with the analyzer surface are evaluated by comparing atmospheric sensible heat flux measurements with a

  15. Electric rockets get a boost

    SciTech Connect

    Ashley, S.

    1995-12-01

    This article reports that xenon-ion thrusters are expected to replace conventional chemical rockets in many nonlaunch propulsion tasks, such as controlling satellite orbits and sending space probes on long exploratory missions. The space age dawned some four decades ago with the arrival of powerful chemical rockets that could propel vehicles fast enough to escape the grasp of earth`s gravity. Today, chemical rocket engines still provide the only means to boost payloads into orbit and beyond. The less glamorous but equally important job of moving vessels around in space, however, may soon be assumed by a fundamentally different rocket engine technology that has been long in development--electric propulsion.

  16. Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Ortega, I.; Thalman, R.; Blomquist, B.; Fairall, C. W.; Volkamer, R.

    2014-10-01

    Here we present first eddy covariance (EC) measurements of fluxes of glyoxal, the smallest α-dicarbonyl product of hydrocarbon oxidation, and a precursor for secondary organic aerosol (SOA). The unique physical and chemical properties of glyoxal - i.e., high solubility in water (effective Henry's law constant, KH = 4.2 × 105 M atm-1) and short atmospheric lifetime (~2 h at solar noon) - make it a unique indicator species for organic carbon oxidation in the marine atmosphere. Previous reports of elevated glyoxal over oceans remain unexplained by atmospheric models. Here we describe a Fast Light-Emitting Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (Fast LED-CE-DOAS) instrument to measure diurnal variations and EC fluxes of glyoxal and inform about its unknown sources. The fast in situ sensor is described, and first results are presented from a cruise deployment over the eastern tropical Pacific Ocean (20° N to 10° S; 133 to 85° W) as part of the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO) field experiment (January to March 2012). The Fast LED-CE-DOAS is a multispectral sensor that selectively and simultaneously measures glyoxal (CHOCHO), nitrogen dioxide (NO2), oxygen dimers (O4), and water vapor (H2O) with ~2 Hz time resolution (Nyquist frequency ~1 Hz) and a precision of ~40 pptv Hz-0.5 for glyoxal. The instrument is demonstrated to be a "white-noise" sensor suitable for EC flux measurements. Fluxes of glyoxal are calculated, along with fluxes of NO2, H2O, and O4, which are used to aid the interpretation of the glyoxal fluxes. Further, highly sensitive and inherently calibrated glyoxal measurements are obtained from temporal averaging of data (e.g., detection limit smaller than 2.5 pptv in an hour). The campaign average mixing ratio in the Southern Hemisphere (SH) is found to be 43 ± 9 pptv glyoxal, which is higher than the Northern Hemisphere (NH) average of 32 ± 6 pptv (error reflects

  17. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

    SciTech Connect

    Cipiccia, S.; Wiggins, S. M.; Brunetti, E.; Vieux, G.; Yang, X.; Welsh, G. H.; Anania, M.; Islam, M. R.; Ersfeld, B.; Jaroszynski, D. A.; Maneuski, D.; Montgomery, R.; Smith, G.; Hoek, M.; Hamilton, D. J.; Shea, V. O.; Issac, R. C.; Lemos, N. R. C.; Dias, J. M.; and others

    2013-11-15

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

  18. LDA boost classification: boosting by topics

    NASA Astrophysics Data System (ADS)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  19. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  20. Measurements of diurnal variations and Eddy Covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Ortega, I.; Thalman, R.; Blomquist, B.; Fairall, C. W.; Volkamer, R.

    2014-06-01

    Here we present first Eddy Covariance (EC) measurements of fluxes of glyoxal, the smallest α-dicarbonyl product of hydrocarbon oxidation, and a precursor for secondary organic aerosol (SOA). The unique physical and chemical properties of glyoxal, i.e., high solubility in water (Henry's Law constant, KH = 4.2 × 105 M atm-1) and short atmospheric lifetime (~2 h at solar noon) make it a unique indicator species for organic carbon oxidation in the marine atmosphere. Previous reports of elevated glyoxal over oceans remain unexplained by atmospheric models. Here we describe a Fast Light Emitting Diode Cavity Enhanced Differential Optical Absorption Spectroscopy (Fast LED-CE-DOAS) instrument to measure diurnal variations and EC fluxes of glyoxal, and inform about its unknown sources. The fast in situ sensor is described, and first results are presented from a cruise deployment over the Eastern tropical Pacific Ocean (20° N to 10° S; 133° W to 85° W) as part of the Tropical Ocean Troposphere Exchange of Reactive Halogens and OVOC (TORERO) field experiment (January to March 2012). The Fast LED-CE-DOAS is a multispectral sensor that selectively and simultaneously measures glyoxal (CHOCHO), nitrogen dioxide (NO2), oxygen dimers (O4) and water vapor (H2O) with ~2 Hz time resolution, and a precision of ~40 pptv Hz-0.5 for glyoxal. The instrument is demonstrated to be a "white-noise" sensor suitable for EC flux measurements; further, highly sensitive and inherently calibrated glyoxal measurements are obtained from temporal averaging of data (~2 pptv detection limit over 1 h). The campaign averaged mixing ratio in the Southern Hemisphere (SH) is found to be 43 ± 9 pptv glyoxal, and is higher than in the Northern Hemisphere (NH: 32 ± 6 pptv; error reflects variability over multiple days). The diurnal variation of glyoxal in the MBL is measured for the first time, and mixing ratios vary by ~8 ppt (NH) and ~12 pptv (SH) over the course of 24 h. Consistently, maxima are

  1. The diffusion of cesium in the graphitic matrix A3-3 under irradiation by a fast neutron flux of 2 × 10 17 m -2 s -1

    NASA Astrophysics Data System (ADS)

    Hensel, W.; Hoinkis, E.

    1995-09-01

    The 137Cs core release rate of High Temperature Reactors (HTR) is effected by the interactions of cesium with the graphitic material used as a matrix for the coated fuel particles. The migration of 137Cs in the graphitic matrix A3-3 at a fast neutron flux of 2 × 10 17 m -2 s -1 was studied in short-term experiments using the thin-film technique. The penetration profiles did not satisfy Fick's second law. The diffusion/trapping/re-emission model was applied to determine the diffusion coefficient D and the trapping coefficient μ for four profiles produced at 1088 and 1166 K. D, μ and the reemission coefficient b at 1293 K were determined for two profiles. Compared to laboratory conditions no effect of the fast neutron irradiation on the 137Cs migration in matrix A3-3 was observed.

  2. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.

    2016-05-01

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.

  3. Tracking down hyper-boosted top quarks

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-01

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directly employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.

  4. Tracking down hyper-boosted top quarks

    SciTech Connect

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-05

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directly employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.

  5. Tracking down hyper-boosted top quarks

    DOE PAGES

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-05

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  6. Fast synthesis and single crystal growth of Pb-free and Pb-doped Bi-2223 superconductors using alkali chlorides flux technique

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yamamoto, A.; Tajima, S.

    2001-09-01

    Here we report our recent results for the fast synthesis of Bi 2Sr 2Ca 2Cu 3O 10+ x phase in powder and single crystal forms using modified alkali chlorides flux technique. For many factors such as flux, crucibles materials, chemical and phase composition of the precursor, temperature and duration of heat treatment, evaporation rate of the flux, their effects on the formation and growth of 2223 have been studied. By optimization of these parameters, the single-phase samples of Pb-doped and Pb-free 2223 phase were obtained in the temperature range of 850-870°C and heat treatment for <15 h, that is much faster, compared with a solid-state reaction technique. The single crystals with the size of 0.5 mm were isolated and characterized using XRD, SEM/EDX, susceptibility and resistivity measurements. The effect of post-annealing in different atmospheres on the oxygen content and superconductivity of the samples was studied by TG and chemical analyses.

  7. AC-3-irradiation test of sphere-pac and pellet (U,Pu)C fuel in the US Fast Flux Test Facility

    NASA Astrophysics Data System (ADS)

    Bart, G.; Botta, F. B.; Hoth, C. W.; Ledergerber, G.; Mason, R. E.; Stratton, R. W.

    2008-05-01

    The objective of the AC-3 bundle experiment in the Fast Flux Test Facility (FFTF) was to evaluate a fuel fabrication method by 'direct conversion' of nitrate solutions into spherical uranium-plutonium carbide particles and to compare the irradiation performance of 'sphere-pac' fuel pins prepared at Paul Scherrer Institute (PSI) with standard pellet fuel pins fabricated at Los Alamos National Laboratory (LANL). The irradiation and post test examination results show that mixed carbide pellet fuel produced by powder methods and sphere-pac particle fuel developed by internal gelation techniques are both valuable advanced fuel candidates for liquid metal reactors. The PSI fabrication process with direct conversion of actinide nitrate solutions into various sizes of fuel spheres by internal gelation and direct filling of spheres into cladding tubes is seen as more easily transferable to remote operation, showing a significant reduction of process steps. The process is also adaptable for the fabrication of carbonitrides and nitrides (still based on a uranium matrix), as well as for actinides diluted in a (uranium-free) yttrium stabilized zirconium oxide matrix. The AC-3 fuel bundle was irradiated in the Fast Flux Test Facility (FFTF) during the years 1986-1988 for 630 full power days to a peak burn up of ˜8 at.% fissile material. All of the pins, irradiated at linear powers of up to 84 kW/m, with cladding outer temperatures of 465 °C appeared to be in good condition when removed from the assembly. The rebirth of interest for fast reactor systems motivated the earlier teams to report about the excellent, still perfectly relevant results reached; this paper focusing on the sphere-pac fuel behaviour.

  8. Tritium and 36Cl as constraints on fast fracture flow and percolation flux in the unsaturated zone at Yucca Mountain.

    PubMed

    Guerin, M

    2001-10-01

    An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.

  9. Online Bagging and Boosting

    NASA Technical Reports Server (NTRS)

    Oza, Nikunji C.

    2005-01-01

    Bagging and boosting are two of the most well-known ensemble learning methods due to their theoretical performance guarantees and strong experimental results. However, these algorithms have been used mainly in batch mode, i.e., they require the entire training set to be available at once and, in some cases, require random access to the data. In this paper, we present online versions of bagging and boosting that require only one pass through the training data. We build on previously presented work by presenting some theoretical results. We also compare the online and batch algorithms experimentally in terms of accuracy and running time.

  10. Fast-Ion Energy-Flux Enhancement from Ultrathin Foils Irradiated by Intense and High-Contrast Short Laser Pulses

    SciTech Connect

    Andreev, A.; Platonov, K.; Levy, A.; Ceccotti, T.; Thaury, C.; Loch, R. A.; Martin, Ph.

    2008-10-10

    Recent significant improvements of the contrast ratio of chirped pulse amplified pulses allows us to extend the applicability domain of laser accelerated protons to very thin targets. In this framework, we propose an analytical model particularly suitable to reproducing ion laser acceleration experiments using high intensity and ultrahigh contrast pulses. The model is based on a self-consistent solution of the Poisson equation using an adiabatic approximation for laser generated fast electrons which allows one to find the target thickness maximizing the maximum proton (and ion) energies and population as a function of the laser parameters. Model furnished values show a good agreement with experimental data and 2D particle-in-cell simulation results.

  11. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber.

    PubMed

    Lüdemann, L; Matzen, T; Matzke, M; Schmidt, R; Scobel, W

    1995-11-01

    The thermal neutron distribution in slow and fast neutron beams is usually determined using the foil activation method. In this work a small magnesium walled ionization chamber, in which the inner surface of the wall has been coated with 10B to increase the sensitivity for thermal neutrons, is used to estimate the thermal neutron component of the beam. After calibration and determination of the directional response in a thermal neutron beam a comparison with foil activation at different depths in water was performed to investigate the reliability of the ionization measurements. The chamber was used in a computer controlled water phantom to measure the depth and lateral distribution of the thermal neutron dose. With this arrangement two-dimensional scans of the thermal neutrons could be performed quickly and with high accuracy.

  12. Oxygen boost pump study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oxygen boost pump is described which can be used to charge the high pressure oxygen tank in the extravehicular activity equipment from spacecraft supply. The only interface with the spacecraft is the +06 6.205 Pa supply line. The breadboard study results and oxygen tank survey are summarized and the results of the flight-type prototype design and analysis are presented.

  13. Procedure of calculation of the spatial distribution of temperatures and heat fluxes in the steam generator of a nuclear power installation with an RBEC fast-neutron reactor

    NASA Astrophysics Data System (ADS)

    Frolov, A. A.; Sedov, A. A.

    2016-08-01

    A method for combined 3D/1D-modeling of thermohydraulics of a once-through steam generator (SG) based on the joint analysis of three-dimensional thermo- and hydrodynamics of a single-phase heating coolant in the intertube space and one-dimensional thermohydraulics of steam-generating channels (tubes) with the use of well-known friction and heat-transfer correlations under various boiling conditions is discussed. This method allows one to determine the spatial distribution of temperatures and heat fluxes of heat-exchange surfaces of SGs with a single-phase heating coolant in the intertube space and with steam generation within tubes. The method was applied in the analytical investigation of typical operation of a once-through SG of a nuclear power installation with an RBEC fast-neutron heavy-metal reactor that is being designed by Kurchatov Institute in collaboration with OKB GIDROPRESS and Leipunsky Institute of Physics and Power Engineering. Flow pattern and temperature fields were obtained for the heavy-metal heating coolant in the intertube space. Nonuniformities of heating of the steam-water coolant in different heat-exchange tubes and nonuniformities in the distribution of heat fluxes at SG heat-exchange surfaces were revealed.

  14. On the sensitivity decay of the cumarine targets for fast ozone measurements. Implications for the estimation of the instrumental zero and flux calculations

    NASA Astrophysics Data System (ADS)

    Finco, Angelo; Gerosa, Giacomo; Marzuoli, Riccardo

    2015-04-01

    Fast ozone concentrations measurements are necessary in order to measure ozone fluxes with the eddy covariance technique. Since the development of the first instrument early in the 90s several other instruments, all based on a chemiluminescent reaction between ozone and a cumarine target, were developed but only in 2010 Mueller et al. recognized the importance of estimating the zero (i.e. the voltage at zero ozone concentration) which depends both on instrument and target performances. In this work we will show a new methodology to estimate the zero, this new methodology avoids some problems which were unsolved by the Mueller's one. Our first assumption wais that the sensitivity of the targets decays in an exponential way rather than a linear one, as proposed by Mueller et al. (2010). This assumption was in agreement with what proposed by Ermel et al. (2013) Similarly to the Mueller's approach, the first step we performed was plotting the instrument voltage output versus the ozone concentrations, but two main differences were introduced in our methodology: first of all we compared periods in which the target received a comparable ozone dose and then the estimation of the zero is extrapolated with an exponential fit of the data rather a linear one. In this way it was possible to avoid negative zeroes which were sometimes obtained, especially in the first 24/36 hours of the target life, by applying Mueller's methodology; negative zeroes lead to an underestimation of the ozone fluxes . After estimating the zero for some sub-periods of the target life, the evolution of the zero is modeled by interpolating the zero data as a function of the ozone dose received by the target. Moreover, with this approach the zero changes continuously with no abrupt change during the target life, avoiding remarkable discontinuities in the fluxes. Comparisons between the two methodologies will be showed.

  15. Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser{endash}solid interactions at ultrahigh intensity

    SciTech Connect

    Feurer, T.; Theobald, W.; Sauerbrey, R.; Uschmann, I.; Altenbernd, D.; Teubner, U.; Gibbon, P.; Foerster, E.; Malka, G.; Miquel, J.L.

    1997-10-01

    Using a high-power femtosecond frequency-doubled Nd:glass laser system with a contrast ratio of 10{sup 12}, the interaction between light and matter up to intensities of 10{sup 19} Wthinspcm{sup {minus}2}has been investigated. The absorption of the laser light in solid aluminum is almost independent of the polarization, peaks at about 25{degree}, and reaches values of almost 45{percent}. Assuming an exponential electron distribution, a temperature of 420 keV at 4{times}10{sup 18} Wthinspcm{sup {minus}2}was measured. These experiments and the detection of the hard-x-ray radiation (60 keV{endash}1 MeV) implied a conversion efficiency of 10{sup {minus}4}{endash}10{sup {minus}3} into suprathermal electrons. A second low-energy electron distribution either with trajectories mainly parallel to the target surface or with a reduced penetration depth due to flux inhibition was also inferred from K{alpha} line radiation measurements. {copyright} {ital 1997} {ital The American Physical Society}

  16. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    SciTech Connect

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  17. StructBoost: Boosting Methods for Predicting Structured Output Variables.

    PubMed

    Chunhua Shen; Guosheng Lin; van den Hengel, Anton

    2014-10-01

    Boosting is a method for learning a single accurate predictor by linearly combining a set of less accurate weak learners. Recently, structured learning has found many applications in computer vision. Inspired by structured support vector machines (SSVM), here we propose a new boosting algorithm for structured output prediction, which we refer to as StructBoost. StructBoost supports nonlinear structured learning by combining a set of weak structured learners. As SSVM generalizes SVM, our StructBoost generalizes standard boosting approaches such as AdaBoost, or LPBoost to structured learning. The resulting optimization problem of StructBoost is more challenging than SSVM in the sense that it may involve exponentially many variables and constraints. In contrast, for SSVM one usually has an exponential number of constraints and a cutting-plane method is used. In order to efficiently solve StructBoost, we formulate an equivalent 1-slack formulation and solve it using a combination of cutting planes and column generation. We show the versatility and usefulness of StructBoost on a range of problems such as optimizing the tree loss for hierarchical multi-class classification, optimizing the Pascal overlap criterion for robust visual tracking and learning conditional random field parameters for image segmentation.

  18. Monte Carlo simulations for high-rate fast neutron flux measurements made at the RAON neutron science facility by using MICROMEGAS

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Hee; Hong, Ser Gi; Kim, Jae Cheon; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    RAON is a Korean heavy-ion accelerator complex that is planned to be built by 2021. Deuterons (53 MeV) and protons (88 MeV) accelerated by using a low-energy driver linac (SCL1) are delivered to the neutron production target in the Neutron Science Facility (NSF) to produce high-energy neutrons in the interval from 1 to 88 MeV with high fluxes of the order of 1012 n/cm2-sec. The repetition rate of the neutron beam ranges from 1 kHz to 1 MHz, and the maximum beam current is ~12 μA at 1 MHz. The beam width is 1 ~ 2 ns. The high-energy and high-rate fast neutrons are used to estimate accurate neutron-induced cross sections for various nuclides at the NSF. A MICROMEGAS (MICRO Mesh Gaseous Structure), which is a gaseous detector initially developed for tracking in high-rate, high-energy physics experiments, is tentatively being considered as a neutron beam monitor. It can be used to measure both the energy distribution and the flux of the neutron beam. In this study, a MICROMEGAS detector for installation at the NSF was designed and investigated. 6Li, 10B, 235U and 238U targets are being considered as neutron/charged particle converters. For the low-energy region, 6Li(n,α)t and 10B(n,α)7Li are used in the energy range from thermal to 1 MeV. 235U(n,f) and 238U(n,f) reactions are used for high-energy region up to 90 MeV. All calculations are performed by using the GEANT4 toolkit.

  19. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    SciTech Connect

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.

    2016-05-01

    Abstract The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. Comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.

  20. Exercise boosts immune response.

    PubMed

    Sander, Ruth

    2012-06-29

    Ageing is associated with a decline in normal functioning of the immune system described as 'immunosenescence'. This contributes to poorer vaccine response and increased incidence of infection and malignancy seen in older people. Regular exercise can enhance vaccination response, increase T-cells and boost the function of the natural killer cells in the immune system. Exercise also lowers levels of the inflammatory cytokines that cause the 'inflamm-ageing' that is thought to play a role in conditions including cardiovascular disease; type 2 diabetes; Alzheimer's disease; osteoporosis and some cancers.

  1. Analytic boosted boson discrimination

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-05-20

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits.more » By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  2. Analytic boosted boson discrimination

    SciTech Connect

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-05-20

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.

  3. Boosted Beta Regression

    PubMed Central

    Schmid, Matthias; Wickler, Florian; Maloney, Kelly O.; Mitchell, Richard; Fenske, Nora; Mayr, Andreas

    2013-01-01

    Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures. PMID:23626706

  4. Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system

    SciTech Connect

    Dautel, W.A.

    1996-10-01

    The Deparunent of Energy is currently engaged in a dual-track strategy to develop an accelerator and a conunercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle`costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Departinent`s purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work toge ther 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay aftei 2005.

  5. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  6. AveBoost2: Boosting for Noisy Data

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.

  7. Bidirectional buck boost converter

    DOEpatents

    Esser, A.A.M.

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  8. Bidirectional buck boost converter

    DOEpatents

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  9. Can you boost your metabolism?

    MedlinePlus

    ... can boost your metabolism. Eating foods like green tea, caffeine, or hot chili peppers will not help ... Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during ...

  10. Boosting jet power in black hole spacetimes.

    PubMed

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  11. Boosting jet power in black hole spacetimes

    PubMed Central

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  12. Boost type PWM HVDC transmission system

    SciTech Connect

    Ooi, B.T.; Wang, X. . Dept. of Electrical Engineering)

    1991-10-01

    This paper reports that conventional HVdc is built around the mercury arc rectifier or the thyristor which requires line commutation. The advances of fast, high power GTO's and future devices such as MCT's with turn off capabilities, are bringing PWM techniques within the range of HVdc applications. By combining PWM techniques to the boost type bridge topology, one has an alternate system of HVdc Transmission. On the ac side, the converter station has active controls over: the voltage amplitude, the voltage angle and the frequency. On the dc side, parallel connections facilitate multi-terminal load sharing by simple local controls so that redundant communication channels are not required. Bidirectional power through each station is accomplished by the reversal of the direction of dc current flow. These claims have been substantiated by experimental results from laboratory size multi-terminal models.

  13. Resolving boosted jets with XCone

    NASA Astrophysics Data System (ADS)

    Thaler, Jesse; Wilkason, Thomas F.

    2015-12-01

    We show how the recently proposed XCone jet algorithm [1] smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  14. Representing Arbitrary Boosts for Undergraduates.

    ERIC Educational Resources Information Center

    Frahm, Charles P.

    1979-01-01

    Presented is a derivation for the matrix representation of an arbitrary boost, a Lorentz transformation without rotation, suitable for undergraduate students with modest backgrounds in mathematics and relativity. The derivation uses standard vector and matrix techniques along with the well-known form for a special Lorentz transformation. (BT)

  15. New Evidence for the Role of Emerging Flux in a Solar Filament's Slow Rise Preceding its CME-Producing Fast Eruption

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Harra, Louis K.; Moore, Ronald L.

    2007-01-01

    We observe the eruption of a large-scale (approx.300,000 km) quiet-region solar filament, leading to an Earth-directed "halo" coronal mass ejection (CME). We use coronal imaging data in EUV from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) satellite, and in soft X-rays (SXRs) from the Soft X-ray Telescope (SXT) on the Yohkoh satellite. We also use spectroscopic data from the Coronal Diagnostic Spectrometer (CDS), magnetic data from the Michelson Doppler Imager (MDI), and white-light coronal data from the Large Angle and Spectrometric Coronagraph Experiment (LASCO), all on SOHO. Initially the filament shows a slow (approx.1 km/s projected against the solar disk) and approximately constant-velocity rise for about 6 hours, before erupting rapidly, reaching a velocity of approx. 8 km/s over the next approx. 25 min. CDS Doppler data show Earth-directed filament velocities ranging from < 20 km/s (the noise limit) during the slow-rise phase, to approx. 100 km/s-1 early in the eruption. Beginning within 10 hours prior to the start of the slow rise, localized new magnetic flux emerged near one end of the filament. Near the start of and during the slow-rise phase, SXR microflaring occurred repeatedly at the flux-emergence site, in conjunction with the development of a fan of SXR illumination of the magnetic arcade over the filament. The SXR microflares, development of the SXR fan, and motion of the slow-rising filament are all consistent with "tether-weakening" reconnection occurring between the newly-emerging flux and the overlying arcade field containing the filament field. The microflares and fan structure are not prominent in EUV, and would not have been detected without the SXR data. Standard "twin dimmings" occur near the location of the filament, and "remote dimmings" and "brightenings" occur further removed from the filament.

  16. Reweighting with Boosted Decision Trees

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Alex

    2016-10-01

    Machine learning tools are commonly used in modern high energy physics (HEP) experiments. Different models, such as boosted decision trees (BDT) and artificial neural networks (ANN), are widely used in analyses and even in the software triggers [1]. In most cases, these are classification models used to select the “signal” events from data. Monte Carlo simulated events typically take part in training of these models. While the results of the simulation are expected to be close to real data, in practical cases there is notable disagreement between simulated and observed data. In order to use available simulation in training, corrections must be introduced to generated data. One common approach is reweighting — assigning weights to the simulated events. We present a novel method of event reweighting based on boosted decision trees. The problem of checking the quality of reweighting step in analyses is also discussed.

  17. Interferometric resolution boosting for spectrographs

    SciTech Connect

    Erskine, D J; Edelstein, J

    2004-05-25

    Externally dispersed interferometry (EDI) is a technique for enhancing the performance of spectrographs for wide bandwidth high resolution spectroscopy and Doppler radial velocimetry. By placing a small angle-independent interferometer near the slit of a spectrograph, periodic fiducials are embedded on the recorded spectrum. The multiplication of the stellar spectrum times the sinusoidal fiducial net creates a moir{acute e} pattern, which manifests high detailed spectral information heterodyned down to detectably low spatial frequencies. The latter can more accurately survive the blurring, distortions and CCD Nyquist limitations of the spectrograph. Hence lower resolution spectrographs can be used to perform high resolution spectroscopy and radial velocimetry. Previous demonstrations of {approx}2.5x resolution boost used an interferometer having a single fixed delay. We report new data indicating {approx}6x Gaussian resolution boost (140,000 from a spectrograph with 25,000 native resolving power), taken by using multiple exposures at widely different interferometer delays.

  18. Boost capacity, slash LWBS rate with POD triage system.

    PubMed

    2011-04-01

    With bottlenecks boosting ED wait times as well as the LWBS rate, Methodist Hospital of Sacramento decided to boost its triage capacity by taking over six beds that were being used for fast-track patients, and by taking advantage of waiting-room space for patients who don't need to be placed in beds. Within a month of implementing the new approach, the LWBS rate dropped to less than 2%, and door-to-doc time was slashed by 20 minutes. Under the POD system, providers have 15 minutes to determine whether patients should be discharged, sent back to the waiting room while tests are conducted, or placed in an ED bed where they can be monitored. To implement the approach, no alterations in physician staffing were needed, but the hospital added a triage nurse and a task nurse to manage patient flow of the triage POD.

  19. Online boosting for vehicle detection.

    PubMed

    Chang, Wen-Chung; Cho, Chih-Wei

    2010-06-01

    This paper presents a real-time vision-based vehicle detection system employing an online boosting algorithm. It is an online AdaBoost approach for a cascade of strong classifiers instead of a single strong classifier. Most existing cascades of classifiers must be trained offline and cannot effectively be updated when online tuning is required. The idea is to develop a cascade of strong classifiers for vehicle detection that is capable of being online trained in response to changing traffic environments. To make the online algorithm tractable, the proposed system must efficiently tune parameters based on incoming images and up-to-date performance of each weak classifier. The proposed online boosting method can improve system adaptability and accuracy to deal with novel types of vehicles and unfamiliar environments, whereas existing offline methods rely much more on extensive training processes to reach comparable results and cannot further be updated online. Our approach has been successfully validated in real traffic environments by performing experiments with an onboard charge-coupled-device camera in a roadway vehicle.

  20. Where boosted significances come from

    NASA Astrophysics Data System (ADS)

    Plehn, Tilman; Schichtel, Peter; Wiegand, Daniel

    2014-03-01

    In an era of increasingly advanced experimental analysis techniques it is crucial to understand which phase space regions contribute a signal extraction from backgrounds. Based on the Neyman-Pearson lemma we compute the maximum significance for a signal extraction as an integral over phase space regions. We then study to what degree boosted Higgs strategies benefit ZH and tt¯H searches and which transverse momenta of the Higgs are most promising. We find that Higgs and top taggers are the appropriate tools, but would profit from a targeted optimization towards smaller transverse momenta. MadMax is available as an add-on to MadGraph 5.

  1. Stochastic approximation boosting for incomplete data problems.

    PubMed

    Sexton, Joseph; Laake, Petter

    2009-12-01

    Boosting is a powerful approach to fitting regression models. This article describes a boosting algorithm for likelihood-based estimation with incomplete data. The algorithm combines boosting with a variant of stochastic approximation that uses Markov chain Monte Carlo to deal with the missing data. Applications to fitting generalized linear and additive models with missing covariates are given. The method is applied to the Pima Indians Diabetes Data where over half of the cases contain missing values.

  2. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA. Revision 1

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  3. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  4. Recursive bias estimation and L2 boosting

    SciTech Connect

    Hengartner, Nicolas W; Cornillon, Pierre - Andre; Matzner - Lober, Eric

    2009-01-01

    This paper presents a general iterative bias correction procedure for regression smoothers. This bias reduction schema is shown to correspond operationally to the L{sub 2} Boosting algorithm and provides a new statistical interpretation for L{sub 2} Boosting. We analyze the behavior of the Boosting algorithm applied to common smoothers S which we show depend on the spectrum of I - S. We present examples of common smoother for which Boosting generates a divergent sequence. The statistical interpretation suggest combining algorithm with an appropriate stopping rule for the iterative procedure. Finally we illustrate the practical finite sample performances of the iterative smoother via a simulation study.

  5. Series Connected Buck-Boost Regulator

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G. (Inventor)

    2006-01-01

    A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.

  6. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  7. Boost-phase discrimination research

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Feiereisen, William J.

    1993-01-01

    The final report describes the combined work of the Computational Chemistry and Aerothermodynamics branches within the Thermosciences Division at NASA Ames Research Center directed at understanding the signatures of shock-heated air. Considerable progress was made in determining accurate transition probabilities for the important band systems of NO that account for much of the emission in the ultraviolet region. Research carried out under this project showed that in order to reproduce the observed radiation from the bow shock region of missiles in their boost phase it is necessary to include the Burnett terms in the constituent equation, account for the non-Boltzmann energy distribution, correctly model the NO formation and rotational excitation process, and use accurate transition probabilities for the NO band systems. This work resulted in significant improvements in the computer code NEQAIR that models both the radiation and fluid dynamics in the shock region.

  8. Orthodontics Align Crooked Teeth and Boost Self-Esteem

    MedlinePlus

    ... desktop! more... Orthodontics Align Crooked Teeth and Boost Self- esteem Article Chapters Orthodontics Align Crooked Teeth and Boost Self- esteem Orthodontics print full article print this chapter email ...

  9. Riemann curvature of a boosted spacetime geometry

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco

    2016-10-01

    The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.

  10. Boosting Wigner's nj-symbols

    NASA Astrophysics Data System (ADS)

    Speziale, Simone

    2017-03-01

    We study the SL (2 ,ℂ ) Clebsch-Gordan coefficients appearing in the Lorentzian EPRL spin foam amplitudes for loop quantum gravity. We show how the amplitudes decompose into SU(2) nj- symbols at the vertices and integrals over boosts at the edges. The integrals define edge amplitudes that can be evaluated analytically using and adapting results in the literature, leading to a pure state sum model formulation. This procedure introduces virtual representations which, in a manner reminiscent of virtual momenta in Feynman amplitudes, are off-shell of the simplicity constraints present in the theory, but with the integrands that peak at the on-shell values. We point out some properties of the edge amplitudes which are helpful for numerical and analytical evaluations of spin foam amplitudes, and suggest among other things a simpler model useful for calculations of certain lowest order amplitudes. As an application, we estimate the large spin scaling behaviour of the simpler model, on a closed foam with all 4-valent edges and Euler characteristic χ , to be Nχ -5 E +V /2. The paper contains a review and an extension of the results on SL (2 ,ℂ ) Clebsch-Gordan coefficients among unitary representations of the principal series that can be useful beyond their application to quantum gravity considered here.

  11. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-12-31

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  12. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-01-01

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  13. Boosting Manufacturing through Modular Chemical Process Intensification

    SciTech Connect

    2016-12-09

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  14. Boosting Manufacturing through Modular Chemical Process Intensification

    ScienceCinema

    None

    2017-01-06

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  15. How Fast Is Fast?

    ERIC Educational Resources Information Center

    Korn, Abe

    1994-01-01

    Presents an activity that enables students to answer for themselves the question of how fast a body must travel before the nonrelativistic expression must be replaced with the correct relativistic expression by deciding on the accuracy required in describing the kinetic energy of a body. (ZWH)

  16. Fast Flux Test Facility (FFTF) standby plan

    SciTech Connect

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  17. Fast flux test facility, transition project plan

    SciTech Connect

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  18. Centaur liquid oxygen boost pump vibration test

    NASA Technical Reports Server (NTRS)

    Tang, H. M.

    1975-01-01

    The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.

  19. Comprehensive review of high power factor ac-dc boost converters for PFC applications

    NASA Astrophysics Data System (ADS)

    De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

    2015-08-01

    High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

  20. Boosted Jets at the LHC

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew

    2015-04-01

    Jets are collimated streams of high-energy particles ubiquitous at any particle collider experiment and serve as proxy for the production of elementary particles at short distances. As the Large Hadron Collider at CERN continues to extend its reach to ever higher energies and luminosities, an increasingly important aspect of any particle physics analysis is the study and identification of jets, electroweak bosons, and top quarks with large Lorentz boosts. In addition to providing a unique insight into potential new physics at the tera-electron volt energy scale, high energy jets are a sensitive probe of emergent phenomena within the Standard Model of particle physics and can teach us an enormous amount about quantum chromodynamics itself. Jet physics is also invaluable for lower-level experimental issues including triggering and background reduction. It is especially important for the removal of pile-up, which is radiation produced by secondary proton collisions that contaminates every hard proton collision event in the ATLAS and CMS experiments at the Large Hadron Collider. In this talk, I will review the myriad ways that jets and jet physics are being exploited at the Large Hadron Collider. This will include a historical discussion of jet algorithms and the requirements that these algorithms must satisfy to be well-defined theoretical objects. I will review how jets are used in searches for new physics and ways in which the substructure of jets is being utilized for discriminating backgrounds from both Standard Model and potential new physics signals. Finally, I will discuss how jets are broadening our knowledge of quantum chromodynamics and how particular measurements performed on jets manifest the universal dynamics of weakly-coupled conformal field theories.

  1. A TEG Efficiency Booster with Buck-Boost Conversion

    NASA Astrophysics Data System (ADS)

    Wu, Hongfei; Sun, Kai; Zhang, Junjun; Xing, Yan

    2013-07-01

    A thermoelectric generator (TEG) efficiency booster with buck-boost conversion and power management is proposed as a TEG battery power conditioner suitable for a wide TEG output voltage range. An inverse-coupled inductor is employed in the buck-boost converter, which is used to achieve smooth current with low ripple on both the TEG and battery sides. Furthermore, benefiting from the magnetic flux counteraction of the two windings on the coupled inductor, the core size and power losses of the filter inductor are reduced, which can achieve both high efficiency and high power density. A power management strategy is proposed for this power conditioning system, which involves maximum power point tracking (MPPT), battery voltage control, and battery current control. A control method is employed to ensure smooth switching among different working modes. A modified MPPT control algorithm with improved dynamic and steady-state characteristics is presented and applied to the TEG battery power conditioning system to maximize energy harvesting. A 500-W prototype has been built, and experimental tests carried out on it. The power efficiency of the prototype at full load is higher than 96%, and peak efficiency of 99% is attained.

  2. Boost breaking in the EFT of inflation

    NASA Astrophysics Data System (ADS)

    Delacrétaz, Luca V.; Noumi, Toshifumi; Senatore, Leonardo

    2017-02-01

    If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. In this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to √2H in the vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.

  3. Boosting Access to Government Rocket Science

    DTIC Science & Technology

    2014-10-01

    September–October 2014 8 with MSFC, through an SAA signed in 2012, using Marshall’s expertise and resources to perform wind tunnel testing on various...Defense AT&L: September–October 2014 6 Boosting Access to Government Rocket Science John F. Rice Defense AT&L: September–October 2014 6 Report...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Boosting Access to Government Rocket Science 5a. CONTRACT NUMBER

  4. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  5. The Attentional Boost Effect and Context Memory

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Smith, S. Adam; Spataro, Pietro

    2016-01-01

    Stimuli co-occurring with targets in a detection task are better remembered than stimuli co-occurring with distractors--the attentional boost effect (ABE). The ABE is of interest because it is an exception to the usual finding that divided attention during encoding impairs memory. The effect has been demonstrated in tests of item memory but it is…

  6. Concomitant GRID boost for Gamma Knife radiosurgery

    SciTech Connect

    Ma Lijun; Kwok, Young; Chin, Lawrence S.; Simard, J. Marc; Regine, William F.

    2005-11-15

    We developed an integrated GRID boost technique for Gamma Knife radiosurgery. The technique generates an array of high dose spots within the target volume via a grid of 4-mm shots. These high dose areas were placed over a conventional Gamma Knife plan where a peripheral dose covers the full target volume. The beam weights of the 4-mm shots were optimized iteratively to maximize the integral dose inside the target volume. To investigate the target volume coverage and the dose to the adjacent normal brain tissue for the technique, we compared the GRID boosted treatment plans with conventional Gamma Knife treatment plans using physical and biological indices such as dose-volume histogram (DVH), DVH-derived indices, equivalent uniform dose (EUD), tumor control probabilities (TCP), and normal tissue complication probabilities (NTCP). We found significant increase in the target volume indices such as mean dose (5%-34%; average 14%), TCP (4%-45%; average 21%), and EUD (2%-22%; average 11%) for the GRID boost technique. No significant change in the peripheral dose coverage for the target volume was found per RTOG protocol. In addition, the EUD and the NTCP for the normal brain adjacent to the target (i.e., the near region) were decreased for the GRID boost technique. In conclusion, we demonstrated a new technique for Gamma Knife radiosurgery that can escalate the dose to the target while sparing the adjacent normal brain tissue.

  7. Schools Enlisting Defense Industry to Boost STEM

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2008-01-01

    Defense contractors Northrop Grumman Corp. and Lockheed Martin Corp. are joining forces in an innovative partnership to develop high-tech simulations to boost STEM--or science, technology, engineering, and mathematics--education in the Baltimore County schools. The Baltimore County partnership includes the local operations of two major military…

  8. The Attentional Boost Effect with Verbal Materials

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Spataro, Pietro; Picklesimer, Milton

    2014-01-01

    Study stimuli presented at the same time as unrelated targets in a detection task are better remembered than stimuli presented with distractors. This attentional boost effect (ABE) has been found with pictorial (Swallow & Jiang, 2010) and more recently verbal materials (Spataro, Mulligan, & Rossi-Arnaud, 2013). The present experiments…

  9. Energy Boost. Q & A with Steve Kiesner.

    ERIC Educational Resources Information Center

    Schneider, Jay W.

    2002-01-01

    Presents an interview with the director of national accounts for the Edison Electric Institute in Washington, DC about the association, its booklet on energy conservation within education facilities, and ways in which educational facilities can reduce costs by boosting energy conservation. (EV)

  10. Mediterranean Diet Plus Olive Oil a Boost to Heart Health?

    MedlinePlus

    ... gov/news/fullstory_163557.html Mediterranean Diet Plus Olive Oil a Boost to Heart Health? It enhances ... HealthDay News) -- A Mediterranean diet high in virgin olive oil may boost the protective effects of "good" ...

  11. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  12. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  13. Gradient Boosting for Conditional Random Fields

    DTIC Science & Technology

    2014-09-23

    Information Processing Systems 26 ( NIPS ’13), pages 647–655. 2013. [4] J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of...and phrases and their compositionality. In Advances in Neural Information Processing Systems 26 ( NIPS ’13), pages 3111–3119. 2013. [15] A. Quattoni, M...Collins, and T. Darrell. Conditional random fields for object recognition. In Advances in Neural Information Processing Systems 17 ( NIPS ’04), pages

  14. Boosted Random Ferns for Object Detection.

    PubMed

    Villamizar, Michael; Andrade-Cetto, Juan; Sanfeliu, Alberto; Moreno-Noguer, Francesc

    2017-03-01

    In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.

  15. Boost matrix converters in clean energy systems

    NASA Astrophysics Data System (ADS)

    Karaman, Ekrem

    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.

  16. Load estimator-based hybrid controller design for two-interleaved boost converter dedicated to renewable energy and automotive applications.

    PubMed

    Bougrine, Mohamed; Benmiloud, Mohammed; Benalia, Atallah; Delaleau, Emmanuel; Benbouzid, Mohamed

    2017-01-01

    This paper is devoted to the development of a hybrid controller for a two-interleaved boost converter dedicated to renewable energy and automotive applications. The control requirements, resumed in fast transient and low input current ripple, are formulated as a problem of fast stabilization of a predefined optimal limit cycle, and solved using hybrid automaton formalism. In addition, a real time estimation of the load is developed using an algebraic approach for online adjustment of the hybrid controller. Mathematical proofs are provided with simulations to illustrate the effectiveness and the robustness of the proposed controller despite different disturbances. Furthermore, a fuel cell system supplying a resistive load through a two-interleaved boost converter is also highlighted.

  17. AdaBoost-based algorithm for network intrusion detection.

    PubMed

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  18. Phasic boosting of auditory perception by visual emotion.

    PubMed

    Selinger, Lenka; Domínguez-Borràs, Judith; Escera, Carles

    2013-12-01

    Emotionally negative stimuli boost perceptual processes. There is little known, however, about the timing of this modulation. The present study aims at elucidating the phasic effects of, emotional processing on auditory processing within subsequent time-windows of visual emotional, processing in humans. We recorded the electroencephalogram (EEG) while participants responded to a, discrimination task of faces with neutral or fearful expressions. A brief complex tone, which subjects, were instructed to ignore, was displayed concomitantly, but with different asynchronies respective to, the image onset. Analyses of the N1 auditory event-related potential (ERP) revealed enhanced brain, responses in presence of fearful faces. Importantly, this effect occurred at picture-tone asynchronies of, 100 and 150ms, but not when these were displayed simultaneously, or at 50ms or 200ms asynchrony. These results confirm the existence of a fast-operating crossmodal effect of visual emotion on auditory, processing, suggesting a phasic variation according to the time-course of emotional processing.

  19. Fast CRCs

    DTIC Science & Technology

    2009-10-01

    Detecting Codes: General Theory and Their Application in Feedback Communication Systems. Kluwer Academic, 1995. [8] D.E. Knuth , The Art of Computer ... computation . Index Terms—Fast CRC, low-complexity CRC, checksum, error-detection code, Hamming code, period of polynomial, fast software implementation...simulations, and performance analysis of systems and networks. CRC implementation in software is desirable, because many computers do not have hardware

  20. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    SciTech Connect

    W.A. REASS; J.D. DOSS; R.F. GRIBBLE

    2001-06-01

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

  1. Precision Jet Substructure from Boosted Event Shapes

    NASA Astrophysics Data System (ADS)

    Feige, Ilya; Schwartz, Matthew D.; Stewart, Iain W.; Thaler, Jesse

    2012-08-01

    Jet substructure has emerged as a critical tool for LHC searches, but studies so far have relied heavily on shower Monte Carlo simulations, which formally approximate QCD at the leading-log level. We demonstrate that systematic higher-order QCD computations of jet substructure can be carried out by boosting global event shapes by a large momentum Q and accounting for effects due to finite jet size, initial-state radiation (ISR), and the underlying event (UE) as 1/Q corrections. In particular, we compute the 2-subjettiness substructure distribution for boosted Z→qq¯ events at the LHC at next-to-next-to-next-to-leading-log order. The calculation is greatly simplified by recycling known results for the thrust distribution in e+e- collisions. The 2-subjettiness distribution quickly saturates, becoming Q independent for Q≳400GeV. Crucially, the effects of jet contamination from ISR/UE can be subtracted out analytically at large Q without knowing their detailed form. Amusingly, the Q=∞ and Q=0 distributions are related by a scaling by e up to next-to-leading-log order.

  2. Domain adaptive boosting method and its applications

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Miao, Zhenjiang

    2015-03-01

    Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.

  3. A multiview boosting approach to tissue segmentation

    NASA Astrophysics Data System (ADS)

    Kwak, Jin Tae; Xu, Sheng; Pinto, Peter A.; Turkbey, Baris; Bernardo, Marcelino; Choyke, Peter L.; Wood, Bradford J.

    2014-04-01

    Digitized histopathology images have a great potential for improving or facilitating current assessment tools in cancer pathology. In order to develop accurate and robust automated methods, the precise segmentation of histologic objects such epithelium, stroma, and nucleus is necessary, in the hopes of information extraction not otherwise obvious to the subjective eye. Here, we propose a multivew boosting approach to segment histology objects of prostate tissue. Tissue specimen images are first represented at different scales using a Gaussian kernel and converted into several forms such HSV and La*b*. Intensity- and texture-based features are extracted from the converted images. Adopting multiview boosting approach, we effectively learn a classifier to predict the histologic class of a pixel in a prostate tissue specimen. The method attempts to integrate the information from multiple scales (or views). 18 prostate tissue specimens from 4 patients were employed to evaluate the new method. The method was trained on 11 tissue specimens including 75,832 epithelial and 103,453 stroma pixels and tested on 55,319 epithelial and 74,945 stroma pixels from 7 tissue specimens. The technique showed 96.7% accuracy, and as summarized into a receiver operating characteristic (ROC) plot, the area under the ROC curve (AUC) of 0.983 (95% CI: 0.983-0.984) was achieved.

  4. Centaur boost pump turbine icing investigation

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1976-01-01

    An investigation was conducted to determine if ice formation in the Centaur vehicle liquid oxygen boost pump turbine could prevent rotation of the pump and whether or not this phenomenon could have been the failure mechanism for the Titan/Centaur vehicle TC-1. The investigation consisted of a series of tests done in the LeRC Space Power Chamber Facility to evaluate evaporative cooling behavior patterns in a turbine as a function of the quantity of water trapped in the turbine and as a function of the vehicle ascent pressure profile. It was found that evaporative freezing of water in the turbine housing, due to rapid depressurization within the turbine during vehicle ascent, could result in the formation of ice that would block the turbine and prevent rotation of the boost pump. But for such icing conditions to exist it would be necessary to have significant quantities of water in the turbine and/or its components, and the turbine housing temperature would have to be colder than 40 F at vehicle liftoff.

  5. Non-boost-invariant dissipative hydrodynamics

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael; Tinti, Leonardo

    2016-12-01

    The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity dependence of various hydrodynamical observables. We compare the results obtained using several formulations of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy in a nonperturbative fashion. The results obtained with second-order viscous hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous hydrodynamics agree for the central hot part of the system, however, they differ at the edges where the approach of anisotropic hydrodynamics helps to control the undesirable growth of viscous corrections observed in standard frameworks.

  6. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  7. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  8. Behavior Analysis in Distance Education by Boosting Algorithms

    ERIC Educational Resources Information Center

    Zang, Wei; Lin, Fuzong

    2006-01-01

    Student behavior analysis is an active research topic in distance education in recent years. In this article, we propose a new method called Boosting to investigate students' behaviors. The Boosting Algorithm can be treated as a data mining method, trying to infer from a large amount of training data the essential factors and their relations that…

  9. Inflammation boosts bacteriophage transfer between Salmonella spp.

    PubMed

    Diard, Médéric; Bakkeren, Erik; Cornuault, Jeffrey K; Moor, Kathrin; Hausmann, Annika; Sellin, Mikael E; Loverdo, Claude; Aertsen, Abram; Ackermann, Martin; De Paepe, Marianne; Slack, Emma; Hardt, Wolf-Dietrich

    2017-03-17

    Bacteriophage transfer (lysogenic conversion) promotes bacterial virulence evolution. There is limited understanding of the factors that determine lysogenic conversion dynamics within infected hosts. A murine Salmonella Typhimurium (STm) diarrhea model was used to study the transfer of SopEΦ, a prophage from STm SL1344, to STm ATCC14028S. Gut inflammation and enteric disease triggered >55% lysogenic conversion of ATCC14028S within 3 days. Without inflammation, SopEΦ transfer was reduced by up to 10(5)-fold. This was because inflammation (e.g., reactive oxygen species, reactive nitrogen species, hypochlorite) triggers the bacterial SOS response, boosts expression of the phage antirepressor Tum, and thereby promotes free phage production and subsequent transfer. Mucosal vaccination prevented a dense intestinal STm population from inducing inflammation and consequently abolished SopEΦ transfer. Vaccination may be a general strategy for blocking pathogen evolution that requires disease-driven transfer of temperate bacteriophages.

  10. Giving top quark effective operators a boost

    NASA Astrophysics Data System (ADS)

    Englert, Christoph; Moore, Liam; Nordström, Karl; Russell, Michael

    2016-12-01

    We investigate the prospects to systematically improve generic effective field theory-based searches for new physics in the top sector during LHC run 2 as well as the high luminosity phase. In particular, we assess the benefits of high momentum transfer final states on top EFT-fit as a function of systematic uncertainties in comparison with sensitivity expected from fully-resolved analyses focusing on t t bar production. We find that constraints are typically driven by fully-resolved selections, while boosted top quarks can serve to break degeneracies in the global fit. This demystifies and clarifies the importance of high momentum transfer final states for global fits to new interactions in the top sector from direct measurements.

  11. Project FAST.

    ERIC Educational Resources Information Center

    Essexville-Hampton Public Schools, MI.

    Described are components of Project FAST (Functional Analysis Systems Training) a nationally validated project to provide more effective educational and support services to learning disordered children and their regular elementary classroom teachers. The program is seen to be based on a series of modules of delivery systems ranging from mainstream…

  12. Boosting for multi-graph classification.

    PubMed

    Wu, Jia; Pan, Shirui; Zhu, Xingquan; Cai, Zhihua

    2015-03-01

    In this paper, we formulate a novel graph-based learning problem, multi-graph classification (MGC), which aims to learn a classifier from a set of labeled bags each containing a number of graphs inside the bag. A bag is labeled positive, if at least one graph in the bag is positive, and negative otherwise. Such a multi-graph representation can be used for many real-world applications, such as webpage classification, where a webpage can be regarded as a bag with texts and images inside the webpage being represented as graphs. This problem is a generalization of multi-instance learning (MIL) but with vital differences, mainly because instances in MIL share a common feature space whereas no feature is available to represent graphs in a multi-graph bag. To solve the problem, we propose a boosting based multi-graph classification framework (bMGC). Given a set of labeled multi-graph bags, bMGC employs dynamic weight adjustment at both bag- and graph-levels to select one subgraph in each iteration as a weak classifier. In each iteration, bag and graph weights are adjusted such that an incorrectly classified bag will receive a higher weight because its predicted bag label conflicts to the genuine label, whereas an incorrectly classified graph will receive a lower weight value if the graph is in a positive bag (or a higher weight if the graph is in a negative bag). Accordingly, bMGC is able to differentiate graphs in positive and negative bags to derive effective classifiers to form a boosting model for MGC. Experiments and comparisons on real-world multi-graph learning tasks demonstrate the algorithm performance.

  13. Ventriculogram segmentation using boosted decision trees

    NASA Astrophysics Data System (ADS)

    McDonald, John A.; Sheehan, Florence H.

    2004-05-01

    Left ventricular status, reflected in ejection fraction or end systolic volume, is a powerful prognostic indicator in heart disease. Quantitative analysis of these and other parameters from ventriculograms (cine xrays of the left ventricle) is infrequently performed due to the labor required for manual segmentation. None of the many methods developed for automated segmentation has achieved clinical acceptance. We present a method for semi-automatic segmentation of ventriculograms based on a very accurate two-stage boosted decision-tree pixel classifier. The classifier determines which pixels are inside the ventricle at key ED (end-diastole) and ES (end-systole) frames. The test misclassification rate is about 1%. The classifier is semi-automatic, requiring a user to select 3 points in each frame: the endpoints of the aortic valve and the apex. The first classifier stage is 2 boosted decision-trees, trained using features such as gray-level statistics (e.g. median brightness) and image geometry (e.g. coordinates relative to user supplied 3 points). Second stage classifiers are trained using the same features as the first, plus the output of the first stage. Border pixels are determined from the segmented images using dilation and erosion. A curve is then fit to the border pixels, minimizing a penalty function that trades off fidelity to the border pixels with smoothness. ED and ES volumes, and ejection fraction are estimated from border curves using standard area-length formulas. On independent test data, the differences between automatic and manual volumes (and ejection fractions) are similar in size to the differences between two human observers.

  14. The reach for charged Higgs bosons with boosted bottom and boosted top jets

    NASA Astrophysics Data System (ADS)

    Sullivan, Zack; Pedersen, Keith

    2017-01-01

    At moderate values of tan(β) , a supersymmetric charged Higgs boson H+/- is expected to be difficult to find due its small cross section and large backgrounds. Using the new μx boosted bottom jet tag, and measured boosted top tagging rates from the CERN LHC, we examine the reach for TeV-scale charged Higgs bosons at 14 TeV and 100 TeV colliders in top-Higgs associated production, where the charged Higgs decays to a boosted top and bottom quark pair. We conclude that the cross section for charged Higgs bosons is indeed too small to observe at the LHC in the moderate tan(β) ``wedge region,'' but it will be possible to probe charged Higgs bosons at nearly all tan(β) up to 6 TeV at a 100 TeV collider. This work was supported by the U.S. Department of Energy under award No. DE-SC0008347.

  15. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  16. BEATRIX-II: In situ tritium recovery from Li[sub 2]O and Li[sub 2]ZrO[sub 3] irradiated in a fast neutron flux

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W. ); Kurasawa, T. . Dept. of Fuels and Materials Research); Verrall, R.A. . Chalk River Labs.)

    1992-09-01

    The BEATRIX-II irradiation experiment was an in situ, fast neutron, tritium release experiment to evaluate the performance of ceramic fusion solid breeders at extended burnups. The experiment consisted of two sequential irradiations: Phase I for 300 EFPD and Phase II for 200 EFPD that resulted in lithium burnups from 4[endash]6%. Thin-walled Li[sub 2]O ring specimens capable of temperature changes were irradiated in both Phase I and Phase II. Temperature changes were also used to determine the tritium inventory and to characterize the effect or irradiation history and sweep gas composition. Solid-cylindrical temperature-gradient specimens were irradiated to characterize their stability with respect to heat transport, lithium transport and physical integrity over the duration of the experiment. Phase I included a solid monolithic specimen of Li[sub 2]O while Phase II included a sphere bed of Li[sub 2]ZrO[sub 3].

  17. BEATRIX-II: In situ tritium recovery from Li{sub 2}O and Li{sub 2}ZrO{sub 3} irradiated in a fast neutron flux

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.; Kurasawa, T.; Verrall, R.A.

    1992-09-01

    The BEATRIX-II irradiation experiment was an in situ, fast neutron, tritium release experiment to evaluate the performance of ceramic fusion solid breeders at extended burnups. The experiment consisted of two sequential irradiations: Phase I for 300 EFPD and Phase II for 200 EFPD that resulted in lithium burnups from 4{endash}6%. Thin-walled Li{sub 2}O ring specimens capable of temperature changes were irradiated in both Phase I and Phase II. Temperature changes were also used to determine the tritium inventory and to characterize the effect or irradiation history and sweep gas composition. Solid-cylindrical temperature-gradient specimens were irradiated to characterize their stability with respect to heat transport, lithium transport and physical integrity over the duration of the experiment. Phase I included a solid monolithic specimen of Li{sub 2}O while Phase II included a sphere bed of Li{sub 2}ZrO{sub 3}.

  18. As-Run Thermal Analysis of the GTL-1 Experiment Irradiated in the ATR South Flux Trap

    SciTech Connect

    Donna P. Guillen

    2011-05-01

    The GTL-1 experiment was conducted to assess corrosion the performance of the proposed Boosted Fast Flux Loop booster fuel at heat flux levels {approx}30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 W/cm2 to 593 W/cm2. Miniplates fabricated with three different fuel variations (without fines, annealed, and with standard powder) performed equally well, with negligible irradiation-induced swelling and a normal fission density gradient. Both the standard and the modified prefilm procedures produced hydroxide films that adequately protected the miniplates from failure. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective south lobe power of 25.4 MW(t). Results of the thermal analysis are given at four times during the cycle: BOC at 0 effective full power days (EFPD), middle of cycle (MOC) at 18 EFPD, MOC at 36 EFPD, and end of cycle at 48.9 EFPD. The highest temperatures and heat fluxes occur at the BOC and decrease in a linear manner throughout the cycle. Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant-hydroxide interface temperatures were calculated using the average measured hydroxide thickness on each miniplate. The hydroxide layers are the largest on miniplates nearest to the core midplane, where heat flux and temperature are highest. The hydroxide layer thickness averages 20.4 {mu}m on the six hottest miniplates (B3, B4, C1, C2, C3, and C4). This tends to exacerbate the heating of these miniplates, since a thicker hydroxide layer reduces the heat transfer from the fuel to the coolant. These six hottest miniplates have the following thermal characteristics at BOC: (1) Peak fuel centerline temperature >300 C; (2) Peak cladding temperature >200 C; (3) Peak hydroxide temperature >190 C; (4

  19. Cosmic ray knee and diffuse {gamma}, e{sup +} and p-bar fluxes from collisions of cosmic rays with dark matter

    SciTech Connect

    Masip, Manuel; Mastromatteo, Iacopo E-mail: iacopomas@infis.univ.trieste.it

    2008-12-15

    In models with extra dimensions the fundamental scale of gravity M{sub D} could be of the order of TeV. In that case the interaction cross section between a cosmic proton of energy E and a dark matter particle {chi} will grow fast with E for center-of-mass energies {radical}(2m{sub {chi}}E) above M{sub D}, and it could reach 1 mbarn at E Almost-Equal-To 10{sup 9} GeV. We show that these gravity-mediated processes would break the proton and produce a diffuse flux of particles/antiparticles, while boosting {chi} with a fraction of the initial proton energy. We find that the expected cross sections and dark matter densities are not enough to produce an observable asymmetry in the flux of the most energetic (extragalactic) cosmic rays. However, we propose that unsuppressed TeV interactions may be the origin of the knee observed in the spectrum of galactic cosmic rays. The knee would appear at the energy threshold for the interaction of dark matter particles with cosmic protons trapped in the galaxy by Micro-Sign G magnetic fields, and it would imply a well-defined flux of secondary antiparticles and TeV gamma rays.

  20. Series-Connected Buck Boost Regulators

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2005-01-01

    A series-connected buck boost regulator (SCBBR) is an electronic circuit that bucks a power-supply voltage to a lower regulated value or boosts it to a higher regulated value. The concept of the SCBBR is a generalization of the concept of the SCBR, which was reported in "Series-Connected Boost Regulators" (LEW-15918), NASA Tech Briefs, Vol. 23, No. 7 (July 1997), page 42. Relative to prior DC-voltage-regulator concepts, the SCBBR concept can yield significant reductions in weight and increases in power-conversion efficiency in many applications in which input/output voltage ratios are relatively small and isolation is not required, as solar-array regulation or battery charging with DC-bus regulation. Usually, a DC voltage regulator is designed to include a DC-to-DC converter to reduce its power loss, size, and weight. Advances in components, increases in operating frequencies, and improved circuit topologies have led to continual increases in efficiency and/or decreases in the sizes and weights of DC voltage regulators. The primary source of inefficiency in the DC-to-DC converter portion of a voltage regulator is the conduction loss and, especially at high frequencies, the switching loss. Although improved components and topology can reduce the switching loss, the reduction is limited by the fact that the converter generally switches all the power being regulated. Like the SCBR concept, the SCBBR concept involves a circuit configuration in which only a fraction of the power is switched, so that the switching loss is reduced by an amount that is largely independent of the specific components and circuit topology used. In an SCBBR, the amount of power switched by the DC-to-DC converter is only the amount needed to make up the difference between the input and output bus voltage. The remaining majority of the power passes through the converter without being switched. The weight and power loss of a DC-to-DC converter are determined primarily by the amount of power

  1. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  2. A Novel Transverse Flux Machine for Vehicle Traction Applications

    SciTech Connect

    Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal; Muljadi, Eduard

    2015-10-05

    A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torque density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.

  3. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    SciTech Connect

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  4. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  5. Boosting nitrification by membrane-attached biofilm.

    PubMed

    Wu, C Y; Ushiwaka, S; Horii, H; Yamagiwa, K

    2006-01-01

    Nitrification is a key step for reliable biological nitrogen removal. In order to enhance nitrification in the activated sludge (AS) process, membrane-attached biofilm (MAB) was incorporated in a conventional activated sludge tank. Simultaneous organic carbon removal and nitrification of the MAB incorporated activated sludge (AS + MAB) process was investigated with continuous wastewater treatment. The effluent TOC concentration of AS and the AS + MAB processes were about 6.3 mg/L and 7.9 mg/L, respectively. The TOC removal efficiency of both AS and AS + MAB were above 95% during the wastewater treatment, indicating excellent organic carbon removal performance in both processes. Little nitrification occurred in the AS process. On the contrary, successful nitrification was obtained with the AS + MAB process with nitrification efficiency of about 90%. The volumetric and surface nitrification rates were about 0.14 g/Ld and 6.5 g/m2d, respectively. The results clearly demonstrated that nitrification in the conventional AS process was boosted by MAB. Furthermore, the microfaunal population in the AS + MAB process was different from that in the AS process. The high concentration of rotifers in the AS + MAB process was expected to decrease the generation of excess sludge in the process.

  6. Acetonitrile boosts conductivity of imidazolium ionic liquids.

    PubMed

    Chaban, Vitaly V; Voroshylova, Iuliia V; Kalugin, Oleg N; Prezhdo, Oleg V

    2012-07-05

    We apply a new methodology in the force field generation (Phys. Chem. Chem. Phys.2011, 13, 7910) to study binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). Each RTIL is composed of tetrafluoroborate (BF(4)) anion and dialkylimidazolium (MMIM) cations. The first alkyl group of MIM is methyl, and the other group is ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Upon addition of ACN, the ionic conductivity of RTILs increases by more than 50 times. It significantly exceeds an impact of most known solvents. Unexpectedly, long-tailed imidazolium cations demonstrate the sharpest conductivity boost. This finding motivates us to revisit an application of RTIL/ACN binary systems as advanced electrolyte solutions. The conductivity correlates with a composition of ion aggregates simplifying its predictability. Addition of ACN exponentially increases diffusion and decreases viscosity of the RTIL/ACN mixtures. Large amounts of ACN stabilize ion pairs, although they ruin greater ion aggregates.

  7. Boosted Regression Tree Models to Explain Watershed ...

    EPA Pesticide Factsheets

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed

  8. Exploiting tRNAs to Boost Virulence.

    PubMed

    Albers, Suki; Czech, Andreas

    2016-01-19

    Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage-either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5'- and 3'-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.

  9. Exploiting tRNAs to Boost Virulence

    PubMed Central

    Albers, Suki; Czech, Andreas

    2016-01-01

    Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification. PMID:26797637

  10. Cutting Salt a Health Boost for Kidney Patients

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_163628.html Cutting Salt a Health Boost for Kidney Patients Blood pressure ... Encouraging people with kidney disease to reduce their salt intake may help improve blood pressure and cut ...

  11. Did El Nino Weather Give Zika a Boost?

    MedlinePlus

    ... fullstory_162611.html Did El Nino Weather Give Zika a Boost? Climate phenomenon could have helped infection- ... might have aided the explosive spread of the Zika virus throughout South America, a new study reports. ...

  12. High-temperature alloys: Single-crystal performance boost

    NASA Astrophysics Data System (ADS)

    Schütze, Michael

    2016-08-01

    Titanium aluminide alloys are lightweight and have attractive properties for high-temperature applications. A new growth method that enables single-crystal production now boosts their mechanical performance.

  13. Xanax, Valium May Boost Pneumonia Risk in Alzheimer's Patients

    MedlinePlus

    ... html Xanax, Valium May Boost Pneumonia Risk in Alzheimer's Patients Researchers suspect people may breathe saliva or ... 10, 2017 MONDAY, April 10, 2017 (HealthDay News) -- Alzheimer's patients given sedatives such as Valium or Xanax ...

  14. Lung-Sparing Surgery May Boost Mesothelioma Survival

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162720.html Lung-Sparing Surgery May Boost Mesothelioma Survival Treatment nearly ... 23, 2016 (HealthDay News) -- Surgery that preserves the lung, when combined with other therapies, appears to extend ...

  15. Autism Greatly Boosts Kids' Injury Risk, Especially for Drowning

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_164198.html Autism Greatly Boosts Kids' Injury Risk, Especially for Drowning ... TUESDAY, March 21, 2017 (HealthDay News) -- Children with autism are at extremely high risk of drowning compared ...

  16. Trauma as A Teen May Boost Depression Risk Around Menopause

    MedlinePlus

    ... 164355.html Trauma as a Teen May Boost Depression Risk Around Menopause Likelihood was more than twice ... during their teens have a greater risk of depression during the years leading into menopause, a new ...

  17. A Lengthy, Stable Marriage May Boost Stroke Survival

    MedlinePlus

    ... 162542.html A Lengthy, Stable Marriage May Boost Stroke Survival Lifelong singles fared the worst, study finds ... 14, 2016 WEDNESDAY, Dec. 14, 2016 (HealthDay News) -- Stroke patients may have better odds of surviving if ...

  18. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  19. SCALING OF THE ANOMALOUS BOOST IN RELATIVISTIC JET BOUNDARY LAYER

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-04-01

    We investigate the one-dimensional interaction of a relativistic jet and an external medium. Relativistic magnetohydrodynamic simulations show an anomalous boost of the jet fluid in the boundary layer, as previously reported. We describe the boost mechanism using an ideal relativistic fluid and magnetohydrodynamic theory. The kinetic model is also examined for further understanding. Simple scaling laws for the maximum Lorentz factor are derived, and verified by the simulations.

  20. Franchisees boost growth of Hispanic PPO.

    PubMed

    Greene, J

    1991-10-07

    What began as a local marketing effort by two Chicago hospitals to reach the city's fast-growing Hispanic population has turned into a national program with franchises in San Diego and San Antonio, Texas. Formed in 1989, Hispanocare, a preferred provider organization catering to Hispanics, began attracting attention in other cities with large Hispanic populations, prompting the Chicago hospitals to begin a marketing push.

  1. Middle East: Output expansions boost drilling

    SciTech Connect

    1996-08-01

    Iraqi exports may return to the market in limited fashion, but none of the region`s producers seems particularly concerned. They believe that global oil demand is rising fast enough to justify their additions to productive capacity. The paper discusses exploration, drilling and development, and production in Saudi Arabia, Kuwait, the Neutral Zone, Abu Dhabi, Dubai, Oman, Iran, Iraq, Yemen, Qatar, Syria, Turkey, and Sharjah. The paper also briefly mentions activities in Bahrain, Israel, Jordan, and Ras al Khaimah.

  2. Our intraoperative boost radiotherapy experience and applications

    PubMed Central

    Günay, Semra; Alan, Ömür; Yalçın, Orhan; Türkmen, Aygen; Dizdar, Nihal

    2016-01-01

    Objective: To present our experience since November 2013, and case selection criteria for intraoperative boost radiotherapy (IObRT) that significantly reduces the local recurrence rate after breast conserving surgery in patients with breast cancer. Material and Methods: Patients who were suitable for IObRT were identified within the group of patients who were selected for breast conserving surgery at our breast council. A MOBETRON (mobile linear accelerator for IObRT) was used for IObRt during surgery. Results: Patients younger than 60 years old with <3 cm invasive ductal cancer in one focus (or two foci within 2 cm), with a histologic grade of 2–3, and a high possibility of local recurrence were admitted for IObRT application. Informed consent was obtained from all participants. Lumpectomy and sentinel lymph node biopsy was performed and advancement flaps were prepared according to the size and inclination of the conus following evaluation of tumor size and surgical margins by pathology. Distance to the thoracic wall was measured, and a radiation oncologist and radiation physicist calculated the required dose. Anesthesia was regulated with slower ventilation frequency, without causing hypoxia. The skin and incision edges were protected, the field was radiated (with 6 MeV electron beam of 10 Gy) and the incision was closed. In our cases, there were no major postoperative surgical or early radiotherapy related complications. Conclusion: The completion of another stage of local therapy with IObRT during surgery positively effects sequencing of other treatments like chemotherapy, hormonotherapy and radiotherapy, if required. IObRT increases disease free and overall survival, as well as quality of life in breast cancer patients. PMID:26985156

  3. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  4. Accelerating atomistic simulations through self-learning bond-boost hyperdynamics

    SciTech Connect

    Perez, Danny; Voter, Arthur F

    2008-01-01

    By altering the potential energy landscape on which molecular dynamics are carried out, the hyperdynamics method of Voter enables one to significantly accelerate the simulation state-to-state dynamics of physical systems. While very powerful, successful application of the method entails solving the subtle problem of the parametrization of the so-called bias potential. In this study, we first clarify the constraints that must be obeyed by the bias potential and demonstrate that fast sampling of the biased landscape is key to the obtention of proper kinetics. We then propose an approach by which the bond boost potential of Miron and Fichthorn can be safely parametrized based on data acquired in the course of a molecular dynamics simulation. Finally, we introduce a procedure, the Self-Learning Bond Boost method, in which the parametrization is step efficiently carried out on-the-fly for each new state that is visited during the simulation by safely ramping up the strength of the bias potential up to its optimal value. The stability and accuracy of the method are demonstrated.

  5. How Vein Sealing Boosts Fracture Opening

    NASA Astrophysics Data System (ADS)

    Nüchter, Jens-Alexander

    2015-04-01

    an increase in the fracture opening rates. (4) At constant strain rates, the rate of fracture opening increases with increasing strain. These results suggest that vein sealing boosts the rate of fracture opening, and contributes to development of low-aspect ratio veins.

  6. Switch failure diagnosis based on inductor current observation for boost converters

    NASA Astrophysics Data System (ADS)

    Jamshidpour, E.; Poure, P.; Saadate, S.

    2016-09-01

    Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.

  7. Closed-loop analysis and control of a non-inverting buck-boost converter

    NASA Astrophysics Data System (ADS)

    Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong

    2010-11-01

    In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.

  8. Quantum Boosting and Fast Classical Metrics for Tree Cover Detection in Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Boyda, E.; Basu, S.; Ganguly, S.; Michaelis, A.; Nemani, R. R.

    2014-12-01

    New volumes of high resolution remote sensing imagery hold greatpromise for Earth science, and with it, new challenges in machinelearning. Familiar heuristic training routines become impractical asdatasets scale to terabytes and beyond. Now, emerging quantumhardware from D-wave Systems allows us to explore alternatives basedon the principles of adiabatic quantum computation. As part of aprogram to develop tree cover estimates for the continental UnitedStates based on one-meter-resolution National Agriculture ImageryProgram (NAIP) data, we have implemented a binary classifier, known asQboost, to combine in a principled manner decision stumps definedon features extracted from 8x8 pixel squares. Qboost was originallydeveloped to be trained on D-wave hardware. Prototyped on NAIP datafor the state of California, the classifier discrimates tree-covered regions with a validationerror rate of 8%. Additionally, we identify quadratic combinationsof the Atmospherically Resistant Vegetation Index (ARVI) and standarddeviations of intensity or near-infrared reflectance that providefast, simple, classical metrics to identify tree cover. They cut by nearly half theerror rates of ARVI used alone or of our best single-featurediscriminant.

  9. Improved semi-supervised online boosting for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Yicui; Qi, Lin; Tan, Shukun

    2016-10-01

    The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

  10. Maximizing boosted top identification by minimizing N-subjettiness

    NASA Astrophysics Data System (ADS)

    Thaler, Jesse; van Tilburg, Ken

    2012-02-01

    N -subjettiness is a jet shape designed to identify boosted hadronic objects such as top quarks. Given N subjet axes within a jet, N-subjettiness sums the angular distances of jet constituents to their nearest subjet axis. Here, we generalize and improve on N -subjettiness by minimizing over all possible subjet directions, using a new variant of the k-means clustering algorithm. On boosted top benchmark samples from the BOOST2010 workshop, we demonstrate that a simple cut on the 3-subjettiness to 2-subjettiness ratio yields 20% (50%) tagging efficiency for a 0.23% (4.1%) fake rate, making N -subjettiness a highly effective boosted top tagger. N-subjettiness can be modified by adjusting an angular weighting exponent, and we find that the jet broadening measure is preferred for boosted top searches. We also explore multivariate techniques, and show that additional improvements are possible using a modified Fisher discriminant. Finally, we briefly mention how our minimization procedure can be extended to the entire event, allowing the event shape N-jettiness to act as a fixed N cone jet algorithm.

  11. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  12. An optimized posterior axillary boost technique in radiation therapy to supraclavicular and axillary lymph nodes: A comparative study

    SciTech Connect

    Hernandez, Victor; Arenas, Meritxell; Müller, Katrin; Gomez, David; Bonet, Marta

    2013-01-01

    To assess the advantages of an optimized posterior axillary (AX) boost technique for the irradiation of supraclavicular (SC) and AX lymph nodes. Five techniques for the treatment of SC and levels I, II, and III AX lymph nodes were evaluated for 10 patients selected at random: a direct anterior field (AP); an anterior to posterior parallel pair (AP-PA); an anterior field with a posterior axillary boost (PAB); an anterior field with an anterior axillary boost (AAB); and an optimized PAB technique (OptPAB). The target coverage, hot spots, irradiated volume, and dose to organs at risk were evaluated and a statistical analysis comparison was performed. The AP technique delivered insufficient dose to the deeper AX nodes. The AP-PA technique produced larger irradiated volumes and higher mean lung doses than the other techniques. The PAB and AAB techniques originated excessive hot spots in most of the cases. The OptPAB technique produced moderate hot spots while maintaining a similar planning target volume (PTV) coverage, irradiated volume, and dose to organs at risk. This optimized technique combines the advantages of the PAB and AP-PA techniques, with moderate hot spots, sufficient target coverage, and adequate sparing of normal tissues. The presented technique is simple, fast, and easy to implement in routine clinical practice and is superior to the techniques historically used for the treatment of SC and AX lymph nodes.

  13. Conditional Random Field (CRF)-Boosting: Constructing a Robust Online Hybrid Boosting Multiple Object Tracker Facilitated by CRF Learning

    PubMed Central

    Yang, Ehwa; Gwak, Jeonghwan; Jeon, Moongu

    2017-01-01

    Due to the reasonably acceptable performance of state-of-the-art object detectors, tracking-by-detection is a standard strategy for visual multi-object tracking (MOT). In particular, online MOT is more demanding due to its diverse applications in time-critical situations. A main issue of realizing online MOT is how to associate noisy object detection results on a new frame with previously being tracked objects. In this work, we propose a multi-object tracker method called CRF-boosting which utilizes a hybrid data association method based on online hybrid boosting facilitated by a conditional random field (CRF) for establishing online MOT. For data association, learned CRF is used to generate reliable low-level tracklets and then these are used as the input of the hybrid boosting. To do so, while existing data association methods based on boosting algorithms have the necessity of training data having ground truth information to improve robustness, CRF-boosting ensures sufficient robustness without such information due to the synergetic cascaded learning procedure. Further, a hierarchical feature association framework is adopted to further improve MOT accuracy. From experimental results on public datasets, we could conclude that the benefit of proposed hybrid approach compared to the other competitive MOT systems is noticeable. PMID:28304366

  14. Self-boosting vaccines and their implications for herd immunity.

    PubMed

    Arinaminpathy, Nimalan; Lavine, Jennie S; Grenfell, Bryan T

    2012-12-04

    Advances in vaccine technology over the past two centuries have facilitated far-reaching impact in the control of many infections, and today's emerging vaccines could likewise open new opportunities in the control of several diseases. Here we consider the potential, population-level effects of a particular class of emerging vaccines that use specific viral vectors to establish long-term, intermittent antigen presentation within a vaccinated host: in essence, "self-boosting" vaccines. In particular, we use mathematical models to explore the potential role of such vaccines in situations where current immunization raises only relatively short-lived protection. Vaccination programs in such cases are generally limited in their ability to raise lasting herd immunity. Moreover, in certain cases mass vaccination can have the counterproductive effect of allowing an increase in severe disease, through reducing opportunities for immunity to be boosted through natural exposure to infection. Such dynamics have been proposed, for example, in relation to pertussis and varicella-zoster virus. In this context we show how self-boosting vaccines could open qualitatively new opportunities, for example by broadening the effective duration of herd immunity that can be achieved with currently used immunogens. At intermediate rates of self-boosting, these vaccines also alleviate the potential counterproductive effects of mass vaccination, through compensating for losses in natural boosting. Importantly, however, we also show how sufficiently high boosting rates may introduce a new regime of unintended consequences, wherein the unvaccinated bear an increased disease burden. Finally, we discuss important caveats and data needs arising from this work.

  15. A methodology for boost-glide transport technology planning

    NASA Technical Reports Server (NTRS)

    Repic, E. M.; Olson, G. A.; Milliken, R. J.

    1974-01-01

    A systematic procedure is presented by which the relative economic value of technology factors affecting design, configuration, and operation of boost-glide transport can be evaluated. Use of the methodology results in identification of first-order economic gains potentially achievable by projected advances in each of the definable, hypersonic technologies. Starting with a baseline vehicle, the formulas, procedures and forms which are integral parts of this methodology are developed. A demonstration of the methodology is presented for one specific boost-glide system.

  16. Boosted Objects: A Probe of Beyond the Standard Model Physics

    SciTech Connect

    Abdesselam, A.; Kuutmann, E.Bergeaas; Bitenc, U.; Brooijmans, G.; Butterworth, J.; Bruckman de Renstrom, P.; Buarque Franzosi, D.; Buckingham, R.; Chapleau, B.; Dasgupta, M.; Davison, A.; Dolen, J.; Ellis, S.; Fassi, F.; Ferrando, J.; Frandsen, M.T.; Frost, J.; Gadfort, T.; Glover, N.; Haas, A.; Halkiadakis, E.; /more authors..

    2012-06-12

    We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools developed to meet the challenge of reconstructing and isolating these topologies. In the second part, we present new results comparing the performance of jet grooming techniques and top tagging algorithms on a common set of benchmark channels. We also study the sensitivity of jet substructure observables to the uncertainties in Monte Carlo predictions.

  17. Buck-boost converter feedback controller design via evolutionary search

    NASA Astrophysics Data System (ADS)

    Sundareswaran, K.; Devi, V.; Nadeem, S. K.; Sreedevi, V. T.; Palani, S.

    2010-11-01

    Buck-boost converters are switched power converters. The model of the converter system varies from the ON state to the OFF state and hence traditional methods of controller design based on approximate transfer function models do not yield good dynamic response at different operating points of the converter system. This article attempts to design a feedback controller for a buck-boost type dc-dc converter using a genetic algorithm. The feedback controller design is perceived as an optimisation problem and a robust controller is estimated through an evolutionary search. Extensive simulation and experimental results provided in the article show the effectiveness of the new approach.

  18. Quantum AdaBoost algorithm via cluster state

    NASA Astrophysics Data System (ADS)

    Li, Yuan

    2017-03-01

    The principle and theory of quantum computation are investigated by researchers for many years, and further applied to improve the efficiency of classical machine learning algorithms. Based on physical mechanism, a quantum version of AdaBoost (Adaptive Boosting) training algorithm is proposed in this paper, of which purpose is to construct a strong classifier. In the proposed scheme with cluster state in quantum mechanism is to realize the weak learning algorithm, and then update the corresponding weight of examples. As a result, a final classifier can be obtained by combining efficiently weak hypothesis based on measuring cluster state to reweight the distribution of examples.

  19. Causes of Extremely Fast CMEs

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Ruzmaikin, Alexander

    2006-01-01

    We study CMEs observed by LASCO to have plane of the sky velocities exceeding 1500 km/sec. We find that these extremely fast CMEs are typically associated with flares accompanied by erupting prominences. Our results are consistent with a single CME initiation process that consists of three stages. The initial stage is brought about by the emergence of new magnetic flux, which interacts with the pre-existing magnetic configuration and results in a slow rise of the magnetic structure. The second stage is a fast reconnection phase with flaring, filament eruption and a sudden increase of the rise velocity of the magnetic structure (CME). The third stage consists of propagation in the corona. We discuss the sources of these CMEs and the need for improved understanding of the first and third stages.

  20. Fast Flux Test Facility performance monitoring management information, January 1989

    SciTech Connect

    Newland, D. J.

    1989-02-01

    The plant operated at full power for about half the month of January. Two test outages accounted for the remaining time, during which MOTA-1F, FSP-1, PO-4 and PO-5 were removed from the reactor. One automatic scram occurred while adjusting nuclear instruments at 15% power. Most performance indicators reflect excellent FFTF operation in spite of staff shortages and high workloads. No lost work day injuries occurred in January, and none have occurred for twelve straight months. Slight rises in maintenance backlog indicators reinforce the need for continued concentrated effort to keep backlogs within parameters that compare favorably with the best commercial nuclear plants.

  1. Fast flux test facility performance monitoring management information, July 1988

    SciTech Connect

    Newland, D J

    1988-08-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other.`` The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement.

  2. Fast Flux Test Facility performance monitoring management information, October 1988

    SciTech Connect

    Newland, D J

    1988-11-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other``. The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. Overall performance indicators are listed in Table 1. The ``other`` performance indicators, listed in Table 2, are considered useful management tools for assessing the specific areas they address. The data should be used in conjunction with the the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement. Any concerns regarding the accuracy or analysis of the specific indicator should be addressed to the responsible manager identified on the figure. This report must be reviewed with the understanding that both the design and the mission are different for FFTF compared to commercial power reactors. 26 figs.

  3. Fast flux test facility performance monitoring management information; June 1989

    SciTech Connect

    Newland, D J

    1989-07-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other``. The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement.

  4. Fast Flux Test Facility Performance Monitoring Management Information February 1989

    SciTech Connect

    Newland, D. J.

    1989-03-01

    The plant operated smoothly at full power throughout the month of February. This raised the FFTF Operational Efficiency Factor (OEF) to 98.4%, which is well above the 96% goal. With no lost work day injuries occurring now for thirteen straight months and with the continued decrease of the plant lifetime average personnel radiation exposure, most overall performance indicators reflect excellent FFTF operation in spite of staff shortages and high workloads. The protective maintenance backlog decreased significantly this month. Continued rise in corrective maintenance backlog indicators reinforces the need for planning and scheduling older work packages to ensure a favorable work-off rate. 26 figs., 2 tabs.

  5. Fast flux test facility performance monitoring management information, July 1989

    SciTech Connect

    Newland, D J

    1989-08-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. Very good performance for the month of July was highlighted by continuos full power operation for the entire month and by extremely low plant personnel radiation exposure during the second quarter of 1989. In spite of increased effort this month, the corrective maintenance work off rate continued to rise. Increased FFTF resource efforts will continue on this indicator as well as Other Performance Indicators which reflect undesirable trends. Increased Westinghouse Hanford Company emphasis continues to be placed on improving the Operations staffing levels. Extensive use of overtime and support shift personnel is still being required to support extra work loads imposed by non-routine evolutions.

  6. Fast Flux Test Facility performance monitoring management information December 1988

    SciTech Connect

    Newland, D J

    1989-01-01

    The plant operated at full power throughout the month of December, achieving a 98.9% Operational Efficiency Factor. The plant also set a new FFTF Annual Capacity Factor record of 78.5% during this past year. For the eleventh straight month there have been no unplanned automatic scrams or forced outages. With no lost work day injuries occurring in December, none have occurred for eleven straight months, nearly achieving our 1988 Annual Lost Work Day Case Rate goal---unattainable because of two incidents last January. Overall performance indicators reflect very good FFTF operation. Concentrated effort is required to keep maintenance backlogs within parameters that compare favorably with the best commercial plants. 26 figs., 2 tabs.

  7. Fast Flux Test Facility Performance Monitoring Management Information May 1989

    SciTech Connect

    Newland, D J

    1989-06-01

    The plant was started up for the P11A-1 Operating Cycle on May 3, 1989, one and one half days late due to problems with the D-14 ZTO motor generator. The plant was shut down May 16 to install the Multi-Isotope Production (MIP) experiment cluster. The subsequent startup on May 21 for the P11A-2 Operating Cycle went very well. In general, Overall Performance Indicators showed excellent plant performance. There were no unplanned automatic scrams, forced outages, unusual occurrence reports or recordable injuries. The corrective maintenance backlog greater than three months old increased slightly during May due to a decrease in the total number of corrective maintenance items and the concentration of Engineering resources needed to support timely insertion of the Fusion MOTA in the reactor. Among the Other Performance Indicators, FFTF direct staffing and total Operations staffing have increased slightly, bringing them closer to authorized staffing levels. The protective maintenance backlog recovered from last month`s increase, dropping to a post-outage record low of 1.20%. By month`s end, the value was reduced further to 1.15% (goal <1.2%). All other indicators are satisfactory.

  8. Fast Flux Test Facility Performance Monitoring Management Information January 1988

    SciTech Connect

    Newland, D J

    1988-02-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other``. The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement.

  9. Fast Flux Test Facility performance monitoring management information, December 1987

    SciTech Connect

    Newland, D J

    1988-01-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other``. The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement.

  10. Fast flux test facility performance monitoring management information, May 1988

    SciTech Connect

    Newland, D J

    1988-06-01

    The plant operated at full power until May 6 when it was shut down for a planned outage for refueling and maintenance. The success of outage activity placed it slightly ahead of the 37-day outage schedule at month`s end. Operational efficiency in May was again 100%. The plant has operated over 110 effective full power days this year through Cycle 10A. As a result, the plant remains on target for meeting the 96% Operational Efficiency Factor and 70% Capacity Factor goals for 1988. Focus on outage activity resulted in little progress on further reduction of maintenance backlogs. An unfavorable trend was experienced in spare parts availability and a slight increase in overdue commitments. Otherwise, there were no significant trends apparent in May.

  11. Fast Flux Test Facility Performance Monitoring Management Information February 1988

    SciTech Connect

    Newland, D J

    1988-03-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other.`` The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. The ``other`` performance indicators are considered useful management tools for assessing the specific areas they address. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement. 26 figs., 2 tabs.

  12. Fast Flux Test Facility Performance Monitoring Management Information April 1989

    SciTech Connect

    Newland, D. J.

    1989-05-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the result for key performance indicators divided into two categories of ``overall`` and ``other``. The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. Overall performance indicators are listed. The ``other`` performance indicators, are considered useful management tools for assessing the specific areas they address. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement. 26 figs., 2 tabs.

  13. Fast Flux Test Facility Performance Monitoring Management Information August 1989

    SciTech Connect

    Newland, D J

    1989-09-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other``. The ``overall`` performance indicators, when considered in the aggregate provide one means of monitoring overall plant performance. Overall performance indicators are listed in Table 1. The ``other`` performance indicators, listed in Table 2, are considered useful management tools for assessing the specific areas they address. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement. 27 figs., 2 tabs.

  14. Facility effluent monitoring plan for the fast flux test facility

    SciTech Connect

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  15. Fast Flux Test Facility Performance Monitoring Management Information March 1988

    SciTech Connect

    Newland, D J

    1988-04-01

    The plant was shut down over the first weekend in March to remove the PO-1 test assembly which had reached its end of life. Following restart on March 7, the plant operated at full power throughout the month. More than 115 effective full power days (EFPD) have been completed toward a planned 140 EFPD cycle. Overall performance indicators in March were dominated by a 100% operational efficiency factor and a high capacity factor with no forced power reductions. Progress was made in the corrective maintenance workoff rate, and the total corrective maintenance backlog in now under 500 items. A significant goal was achieved by reducing to 1% the fraction of deferred protective maintenance items. Achievement of the 1% level places FFTF among the best commercial nuclear plants in this performance measurement category. Other internal goals achieved in March include reducing the number of temporary modifications in the plant to nine - an all time low.

  16. Fast Flux Test Facility Performance Monitoring Management Information March 1989

    SciTech Connect

    Newland, D. J.

    1989-04-01

    The purpose of this report is to provide management with performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ``overall`` and ``other.`` The ``overall`` performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance. The data should be used in conjunction with the results of other management assessment activities to focus improvement efforts. Use of these key performance indicators as a group is stressed, since focusing on a single indicator or a narrow set of indicators can be counterproductive both to safety and to long-term performance improvement. This report must be reviewed with the understanding that both the design and the mission are different for FFTF compared to commercial power reactors.

  17. Summary description of the Fast Flux Test Facility

    SciTech Connect

    Cabell, C.P.

    1980-12-01

    This document has been compiled and issued to provide an illustrated engineering summary description of the FFTF. The document is limited to a description of the plant and its functions, and does not cover the extensive associated programs that have been carried out in the fields of design, design analysis, safety analysis, fuels development, equipment development and testing, quality assurance, equipment fabrication, plant construction, acceptance testing, operations planning and training, and the like.

  18. Sputtering of fast meteoroids' surface

    NASA Astrophysics Data System (ADS)

    Popova, O. P.; Strelkov, A. S.; Sidneva, S. N.

    Entering meteoroids are subjected by direct impacts of molecules of the individual constituents of the air, when the body approaching the Earth at heights of about 300-100 km. At meteor velocities about 72 km/s the energy of air molecules is about 800 eV and oxygen atoms have energy about 400 eV. Particles with such energies don't penetrate into deep layers of entering body and are concentrated in narrow surface layer of about hundreds angstroms. Action of air particles on meteoroid leads to both heating of meteoroid and sputtering of meteoroid surface. Sputtering effect was supposed as explanation of this high altitude ionization and luminosity (Brosch et al, 2001), which aren't explained by classical ablation theory. Sputtering results in appearance of fast particles, which also may be exited and/or ionized. Flux of these particles causes formation of ionized meteor trails recording by radars. For bigger bodies fast particles may create luminous area at the altitudes above altitude of intensive evaporation. We demonstrate physical model, which allows us to describe sputtering of meteoroid surface under impacts of incoming air particles. We consider sputtering of meteoroid with composition close to hondritic one at the altitude 150 km. Fast particles are really sputtered from meteoroid surface. They carry out about 10% of incoming flux energy. There are also reflected particles, but the most part of total particle outcome is formed by particles of meteor substance. Presence of fast particles possibly explains a large size of meteors in diffuse stage at high altitudes (above 130 km). The sputtering is neglectable in the case of meteor velocities below 30 km/s. Sputtered and reflected particles have enough high ionization degree (˜ (1-5) 10-2, that is larger than ionization degree of surrounding atmosphere (˜ 10-5div 10-6)).

  19. Fabrication of Thin Film Heat Flux Sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.

    1992-01-01

    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.

  20. A new flux splitting scheme

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1991-01-01

    A new flux splitting scheme is proposed. The scheme is remarkably simple and yet its accuracy rivals and in some cases surpasses that of Roe's solver in the Euler and Navier-Stokes solutions performed in this study. The scheme is robust and converges as fast as the Roe splitting. An approximately defined cell-face advection Mach number is proposed using values from the two straddling cells via associated characteristic speeds. This interface Mach number is then used to determine the upwind extrapolation for the convective quantities. Accordingly, the name of the scheme is coined as Advection Upstream Splitting Method (AUSM). A new pressure splitting is introduced which is shown to behave successfully, yielding much smoother results than other existing pressure splittings. Of particular interest is the supersonic blunt body problem in which the Roe scheme gives anomalous solutions. The AUSM produces correct solutions without difficulty for a wide range of flow conditions as well as grids.

  1. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  2. Mimotope vaccine efficacy gets a "boost" from native tumor antigens.

    PubMed

    Buhrman, Jonathan D; Slansky, Jill E

    2013-04-01

    Tumor-associated antigen (TAA)-targeting mimotope peptides exert more prominent immunostimulatory functions than unmodified TAAs, with the caveat that some T-cell clones exhibit a relatively low affinity for TAAs. Combining mimotope-based vaccines with native TAAs in a prime-boost setting significantly improves antitumor immunity.

  3. Repetitive peptide boosting progressively enhances functional memory CTLs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induction of functional memory CTLs holds promise for fighting critical infectious diseases through vaccination, but so far, no effective regime has been identified. We show here that memory CTLs can be enhanced progressively to high levels by repetitive intravenous boosting with peptide and adjuvan...

  4. Real-World Connections Can Boost Journalism Program.

    ERIC Educational Resources Information Center

    Schrier, Kathy; Bott, Don; McGuire, Tim

    2001-01-01

    Describes various ways scholastic journalism advisers have attempted to make real-world connections to boost their journalism programs: critiques of student publications by invited guest speakers (professional journalists); regional workshops where professionals offer short presentations; local media offering programming or special sections aimed…

  5. Boost compensator for use with internal combustion engine with supercharger

    SciTech Connect

    Asami, T.

    1988-04-12

    A boost compensator for controlling the position of a control rack of a fuel injection pump to supply fuel to an internal combustion with a supercharger in response to a boost pressure to be applied to the engine is described. The control rack is movable in a first direction increasing an amount of fuel to be supplied by the fuel injection pump to the engine and in a second direction, opposite to the first direction, decreasing the amount of fuel. The boost compensator comprises: a push rod disposed for forward and rearward movement in response to the boost pressure; a main lever disposed for angular movement about a first pivot; an auxiliary lever disposed for angular movement about a second pivot; return spring means associated with the first portion of the auxiliary lever for resiliently biasing same in one direction about the second pivot; and abutment means mounted on the second portion of the auxiliary lever and engageable with the second portion of the main lever.

  6. Balance-Boosting Footwear Tips for Older People

    MedlinePlus

    ... Home » Learn About Feet » Tips for Healthy Feet Balance-Boosting Footwear Tips for Older People Balance in all aspects of life is a good ... mental equilibrium isn't the only kind of balance that's important in life. Good physical balance can ...

  7. Graph ensemble boosting for imbalanced noisy graph stream classification.

    PubMed

    Pan, Shirui; Wu, Jia; Zhu, Xingquan; Zhang, Chengqi

    2015-05-01

    Many applications involve stream data with structural dependency, graph representations, and continuously increasing volumes. For these applications, it is very common that their class distributions are imbalanced with minority (or positive) samples being only a small portion of the population, which imposes significant challenges for learning models to accurately identify minority samples. This problem is further complicated with the presence of noise, because they are similar to minority samples and any treatment for the class imbalance may falsely focus on the noise and result in deterioration of accuracy. In this paper, we propose a classification model to tackle imbalanced graph streams with noise. Our method, graph ensemble boosting, employs an ensemble-based framework to partition graph stream into chunks each containing a number of noisy graphs with imbalanced class distributions. For each individual chunk, we propose a boosting algorithm to combine discriminative subgraph pattern selection and model learning as a unified framework for graph classification. To tackle concept drifting in graph streams, an instance level weighting mechanism is used to dynamically adjust the instance weight, through which the boosting framework can emphasize on difficult graph samples. The classifiers built from different graph chunks form an ensemble for graph stream classification. Experiments on real-life imbalanced graph streams demonstrate clear benefits of our boosting design for handling imbalanced noisy graph stream.

  8. Boost glycemic control in teen diabetics through 'family focused teamwork'.

    PubMed

    2003-09-01

    While family conflict during the teenaged years is typical, it can have long-term health consequences when it involves an adolescent with diabetes. However, researchers at Joslin Diabetes Center in Boston have developed a low-cost intervention that aims to remove conflict from disease management responsibilities--and a new study shows that it can boost glycemic control as well.

  9. Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases

    DTIC Science & Technology

    2006-08-01

    Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases Susan Shahin and David Proll Human Protection and... diseases (such as malaria, tuberculosis and HIV) has been hindered by the lack of effective immunisation strategies that induce the cellular arm of...different animal and disease models. Since several intracellular pathogens are considered potential biowarfare threats, the objective of this review

  10. Early Boost and Slow Consolidation in Motor Skill Learning

    ERIC Educational Resources Information Center

    Hotermans, Christophe; Peigneux, Philippe; de Noordhout, Alain Maertens; Moonen, Gustave; Maquet, Pierre

    2006-01-01

    Motor skill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as…

  11. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  12. Benefit of Radiation Boost After Whole-Breast Radiotherapy

    SciTech Connect

    Livi, Lorenzo; Borghesi, Simona; Saieva, Calogero; Fambrini, Massimiliano; Iannalfi, Alberto; Greto, Daniela; Paiar, Fabiola; Scoccianti, Silvia; Simontacchi, Gabriele; Bianchi, Simonetta; Cataliotti, Luigi; Biti, Giampaolo

    2009-11-15

    Purpose: To determine whether a boost to the tumor bed after breast-conserving surgery (BCS) and radiotherapy (RT) to the whole breast affects local control and disease-free survival. Methods and Materials: A total of 1,138 patients with pT1 to pT2 breast cancer underwent adjuvant RT at the University of Florence. We analyzed only patients with a minimum follow-up of 1 year (range, 1-20 years), with negative surgical margins. The median age of the patient population was 52.0 years (+-7.9 years). The breast cancer relapse incidence probability was estimated by the Kaplan-Meier method, and differences between patient subgroups were compared by the log rank test. Cox regression models were used to evaluate the risk of breast cancer relapse. Results: On univariate survival analysis, boost to the tumor bed reduced breast cancer recurrence (p < 0.0001). Age and tamoxifen also significantly reduced breast cancer relapse (p = 0.01 and p = 0.014, respectively). On multivariate analysis, the boost and the medium age (45-60 years) were found to be inversely related to breast cancer relapse (hazard ratio [HR], 0.27; 95% confidence interval [95% CI], 0.14-0.52, and HR 0.61; 95% CI, 0.37-0.99, respectively). The effect of the boost was more evident in younger patients (HR, 0.15 and 95% CI, 0.03-0.66 for patients <45 years of age; and HR, 0.31 and 95% CI, 0.13-0.71 for patients 45-60 years) on multivariate analyses stratified by age, although it was not a significant predictor in women older than 60 years. Conclusion: Our results suggest that boost to the tumor bed reduces breast cancer relapse and is more effective in younger patients.

  13. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  14. Constrained Allocation Flux Balance Analysis

    PubMed Central

    Mori, Matteo; Hwa, Terence; Martin, Olivier C.

    2016-01-01

    New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an “ensemble averaging” procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws. PMID:27355325

  15. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated...

  16. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated...

  17. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Török, Tibor

    2013-12-01

    We present results from three-dimensional visco-resistive magnetohydrodynamic simulations of the emergence of a convection zone magnetic flux tube into a solar atmosphere containing a pre-existing dipole coronal field, which is orientated to minimize reconnection with the emerging field. We observe that the emergence process is capable of producing a coronal flux rope by the transfer of twist from the convection zone, as found in previous simulations. We find that this flux rope is stable, with no evidence of a fast rise, and that its ultimate height in the corona is determined by the strength of the pre-existing dipole field. We also find that although the electric currents in the initial convection zone flux tube are almost perfectly neutralized, the resultant coronal flux rope carries a significant net current. These results suggest that flux tube emergence is capable of creating non-current-neutralized stable flux ropes in the corona, tethered by overlying potential fields, a magnetic configuration that is believed to be the source of coronal mass ejections.

  18. Electron heat flux instability

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  19. Turbulent fluxes by "Conditional Eddy Sampling"

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal

  20. Boosted dark matter in IceCube and at the galactic center

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Liu, Jia; Wang, Xiao-Ping

    2015-04-01

    We show that event excess observed by the IceCube collaboration at TeV-PeV energies, usually interpreted as evidence for astrophysical neutrinos, can be explained alternatively by the scattering of highly boosted dark matter particles. Specifically, we consider a scenario where a ~ 4 PeV scalar dark matter particle ϕ can decay to a much lighter dark fermion χ, which in turn scatters off nuclei in the IceCube detector. Besides these events, which are exclusively shower-like, the model also predicts a secondary population of events at (100 TeV) originating from the 3-body decay , where a is a pseudoscalar which mediates dark matter-Standard Model interactions and whose decay products include neutrinos. This secondary population also includes track-like events, and both populations together provide an excellent fit to the IceCube data. We then argue that a relic abundance of light Dark Matter particles χ, which may constitute a subdominant component of the Dark Matter in the Universe, can have exactly the right properties to explain the observed excess in GeV gamma rays from the galactic center region. Our boosted Dark Matter scenario also predicts fluxes of (10) TeV positrons and (100 TeV) photons from 3-body cascade decays of the heavy Dark Matter particle ϕ, and we show how these can be used to constrain parts of the viable parameter space of the model. Direct detection limits are weak due to the pseudoscalar couplings of χ. Accelerator constraints on the pseudoscalar mediator a lead to the conclusion that the preferred mass of a is ≳ 10 GeV and that large coupling to b quarks but suppressed or vanishing coupling to leptons are preferred.

  1. Too Much, Too Fast

    ERIC Educational Resources Information Center

    Fain, Paul

    2007-01-01

    Denice Denton made a rapid rise to become a university chancellor. Ms. Denton was well known for her larger-than-life personality. She was creative, aggressive, and unerringly self-assured. Although her talents at times intimidated colleagues, she was also skilled at boosting the confidence of those who worked with her. Many say she was a master…

  2. Compositional terranes on Mercury: Information from fast neutrons

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Peplowski, Patrick N.; Beck, Andrew W.; Feldman, William C.; Frank, Elizabeth A.; McCoy, Timothy J.; Nittler, Larry R.; Solomon, Sean C.

    2017-01-01

    We report measurements of the flux of fast neutrons at Mercury from 20ºS to the north pole. On the basis of neutron transport simulations and remotely sensed elemental compositions, cosmic-ray-induced fast neutrons are shown to provide a measure of average atomic mass, , a result consistent with earlier studies of the Moon and Vesta. The dynamic range of fast neutron flux at Mercury is 3%, which is smaller than the fast-neutron dynamic ranges of 30% and 6% at the Moon and Vesta, respectively. Fast-neutron data delineate compositional terranes on Mercury that are complementary to those identified with X-ray, gamma-ray, and slow-neutron data. Fast neutron measurements confirm the presence of a region with high , relative to the mean for the planet, that coincides with the previously identified high-Mg region and reveal the existence of at least two additional compositional terranes: a low- region within the northern smooth plains and a high- region near the equator centered near 90ºE longitude. Comparison of the fast-neutron map with elemental composition maps show that variations predicted from the combined element maps are not consistent with the measured variations in fast-neutron flux. This lack of consistency could be due to incomplete coverage for some elements or uncertainties in the interpretations of compositional and neutron data. Currently available data and analyses do not provide sufficient constraints to resolve these differences.

  3. Spacecraft boost and abort guidance and control systems requirement study, boost dynamics and control analysis study. Exhibit A: Boost dynamics and control anlaysis

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Price, J. B.; Lemon, R. S.

    1972-01-01

    The simulation developments for use in dynamics and control analysis during boost from liftoff to orbit insertion are reported. Also included are wind response studies of the NR-GD 161B/B9T delta wing booster/delta wing orbiter configuration, the MSC 036B/280 inch solid rocket motor configuration, the MSC 040A/L0X-propane liquid injection TVC configuration, the MSC 040C/dual solid rocket motor configuration, and the MSC 049/solid rocket motor configuration. All of the latest math models (rigid and flexible body) developed for the MSC/GD Space Shuttle Functional Simulator, are included.

  4. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  5. Production Flux of Sea-Spray Aerosol

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Andreas, E. L.; Anguelova, M. D.; Fairall, C. W.; Lewis, E. R.; O'Dowd, C.; Schulz, M.; Schwartz, S. E.

    2010-12-01

    Knowledge of the size- and composition-dependent production flux of primary sea-spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea-spray drops. This review examines recent research pertinent to SSA production flux with emphasis on particles with r80 (equilibrium radius at 80% relative humidity) less than 1 µm and as small as 0.01 µm. Production of sea-spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics, and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r80 < 0.25 µm and in locations with high biological activity can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities, such as the volume flux of air bubbles to the surface, that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.

  6. Production flux of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    de Leeuw, Gerrit; Andreas, Edgar L.; Anguelova, Magdalena D.; Fairall, C. W.; Lewis, Ernie R.; O'Dowd, Colin; Schulz, Michael; Schwartz, Stephen E.

    2011-05-01

    Knowledge of the size- and composition-dependent production flux of primary sea spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea spray drops. This review examines recent research pertinent to SSA production flux, which deals mainly with production of particles with r80 (equilibrium radius at 80% relative humidity) less than 1 μm and as small as 0.01 μm. Production of sea spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r80 < 0.25 μm and, in locations with high biological activity, can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities such as the volume flux of air bubbles to the surface that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.

  7. Flux Cancellation Leading to CME Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  8. High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.

    2013-01-01

    This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.

  9. Black brane entropy and hydrodynamics: The boost-invariant case

    SciTech Connect

    Booth, Ivan; Heller, Michal P.; Spalinski, Michal

    2009-12-15

    The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.

  10. Development of a high speed parallel hybrid boost bearing

    NASA Technical Reports Server (NTRS)

    Winn, L. W.; Eusepi, M. W.

    1973-01-01

    The analysis, design, and testing of the hybrid boost bearing are discussed. The hybrid boost bearing consists of a fluid film bearing coupled in parallel with a rolling element bearing. This coupling arrangement makes use of the inherent advantages of both the fluid film and rolling element bearing and at the same time minimizes their disadvantages and limitations. The analytical optimization studies that lead to the final fluid film bearing design are reported. The bearing consisted of a centrifugally-pressurized planar fluid film thrust bearing with oil feed through the shaft center. An analysis of the test ball bearing is also presented. The experimental determination of the hybrid bearing characteristics obtained on the basis of individual bearing component tests and a combined hybrid bearing assembly is discussed and compared to the analytically determined performance characteristics.

  11. IMM tracking of a theater ballistic missile during boost phase

    NASA Astrophysics Data System (ADS)

    Hutchins, Robert G.; San Jose, Anthony

    1998-09-01

    Since the SCUD launches in the Gulf War, theater ballistic missile (TBM) systems have become a growing concern for the US military. Detection, tracking and engagement during boost phase or shortly after booster cutoff are goals that grow in importance with the proliferation of weapons of mass destruction. This paper addresses the performance of tracking algorithms for TBMs during boost phase and across the transition to ballistic flight. Three families of tracking algorithms are examined: alpha-beta-gamma trackers, Kalman-based trackers, and the interactive multiple model (IMM) tracker. In addition, a variation on the IMM to include prior knowledge of a booster cutoff parameter is examined. Simulated data is used to compare algorithms. Also, the IMM tracker is run on an actual ballistic missile trajectory. Results indicate that IMM trackers show significant advantage in tracking through the model transition represented by booster cutoff.

  12. High Efficient Universal Buck Boost Solar Array Regulator SAR Module

    NASA Astrophysics Data System (ADS)

    Kimmelmann, Stefan; Knorr, Wolfgang

    2014-08-01

    The high efficient universal Buck Boost Solar Array Regulator (SAR) module concept is applicable for a wide range of input and output voltages. The single point failure tolerant SAR module contains 3 power converters for the transfer of the SAR power to the battery dominated power bus. The converters are operating parallel in a 2 out of 3 redundancy and are driven by two different controllers. The output power of one module can be adjusted up to 1KW depending on the requirements. The maximum power point tracker (MPPT) is placed on a separate small printed circuit board and can be used if no external tracker signal is delivered. Depending on the mode and load conditions an efficiency of more than 97% is achievable. The stable control performance is achieved by implementing the magnetic current sense detection. The sensed power coil current is used in Buck and Boost control mode.

  13. Externally Dispersed Interferometry for Resolution Boosting and Doppler Velocimetry

    SciTech Connect

    Erskine, D J

    2003-12-01

    Externally dispersed interferometry (EDI) is a rapidly advancing technique for wide bandwidth spectroscopy and radial velocimetry. By placing a small angle-independent interferometer near the slit of an existing spectrograph system, periodic fiducials are embedded on the recorded spectrum. The multiplication of the stellar spectrum times the sinusoidal fiducial net creates a moire pattern, which manifests high detailed spectral information heterodyned down to low spatial frequencies. The latter can more accurately survive the blurring, distortions and CCD Nyquist limitations of the spectrograph. Hence lower resolution spectrographs can be used to perform high resolution spectroscopy and radial velocimetry (under a Doppler shift the entire moir{acute e} pattern shifts in phase). A demonstration of {approx}2x resolution boosting (100,000 from 50,000) on the Lick Obs. echelle spectrograph is shown. Preliminary data indicating {approx}8x resolution boost (170,000 from 20,000) using multiple delays has been taken on a linear grating spectrograph.

  14. Motivating quantum field theory: the boosted particle in a box

    NASA Astrophysics Data System (ADS)

    Vutha, Amar C.

    2013-07-01

    It is a maxim often stated, yet rarely illustrated, that the combination of special relativity and quantum mechanics necessarily leads to quantum field theory. An elementary illustration is provided using the familiar particle in a box, boosted to relativistic speeds. It is shown that quantum fluctuations of momentum lead to energy fluctuations, which are inexplicable without a framework that endows the vacuum with dynamical degrees of freedom and allows particle creation/annihilation.

  15. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    SciTech Connect

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    2016-11-21

    A new physical principle has emerged to produce record voltages and efficiencies in photovoltaic cells, 'luminescence extraction.' This is exemplified by the mantra 'a good solar cell should also be a good LED.' Luminescence extraction is the escape of internal photons out of the front surface of a solar cell. Basic thermodynamics says that the voltage boost should be related to concentration ratio, C, of a resource by ..delta..V=(kT/q)ln{C}. In light trapping, (i.e. when the solar cell is textured and has a perfect back mirror) the concentration ratio of photons C={4n2}, so one would expect a voltage boost of ..delta..V=kT ln{4n2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open circuit voltage boost of ..delta..V=(kT/q)ln{n2}, ..delta..V=(kT/q)ln{2n2}, or ..delta..V=(kT/q)ln{4n2}? What is responsible for this voltage ambiguity ..delta..V=(kT/q)ln{4}=36mVolts? We show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness the voltage boost falls in between; ln{n2}q..delta..V/kT)<;ln{4n2}.

  16. Metabolic fuels: regulating fluxes to select mix.

    PubMed

    Weber, Jean-Michel

    2011-01-15

    Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.

  17. Chagas Parasite Detection in Blood Images Using AdaBoost

    PubMed Central

    Uc-Cetina, Víctor; Brito-Loeza, Carlos; Ruiz-Piña, Hugo

    2015-01-01

    The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Visual detection of such parasite through microscopic inspection is a tedious and time-consuming task. In this paper, we provide an AdaBoost learning solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup. With this method, we get 100% and 93.25% of sensitivity and specificity, respectively. A ROC comparison with the method most commonly used for the detection of malaria parasites based on support vector machines (SVM) is also provided. Our experimental work shows mainly two things: (1) Chagas parasites can be detected automatically using machine learning methods with high accuracy and (2) AdaBoost + SVM provides better overall detection performance than AdaBoost or SVMs alone. Such results are the best ones known so far for the problem of automatic detection of Chagas parasites through the use of machine learning, computer vision, and image processing methods. PMID:25861375

  18. Stereotactic Body Radiation Therapy Boost in Locally Advanced Pancreatic Cancer

    SciTech Connect

    Seo, Young Seok; Kim, Mi-Sook; Yoo, Sung Yul; Cho, Chul Koo; Yang, Kwang Mo; Yoo, Hyung Jun; Choi, Chul Won; Lee, Dong Han; Kim, Jin; Kim, Min Suk; Kang, Hye Jin; Kim, YoungHan

    2009-12-01

    Purpose: To investigate the clinical application of a stereotactic body radiation therapy (SBRT) boost in locally advanced pancreatic cancer patients with a focus on local efficacy and toxicity. Methods and Materials: We retrospectively reviewed 30 patients with locally advanced and nonmetastatic pancreatic cancer who had been treated between 2004 and 2006. Follow-up duration ranged from 4 to 41 months (median, 14.5 months). A total dose of 40 Gy was delivered in 20 fractions using a conventional three-field technique, and then a single fraction of 14, 15, 16, or 17 Gy SBRT was administered as a boost without a break. Twenty-one patients received chemotherapy. Overall and local progression-free survival were calculated and prognostic factors were evaluated. Results: One-year overall survival and local progression-free survival rates were 60.0% and 70.2%, respectively. One patient (3%) developed Grade 4 toxicity. Carbohydrate antigen 19-9 response was found to be an independent prognostic factor for survival. Conclusions: Our findings indicate that a SBRT boost provides a safe means of increasing radiation dose. Based on the results of this study, we recommend that a well controlled Phase II study be conducted on locally advanced pancreatic cancer.

  19. Action Classification by Joint Boosting Using Spatiotemporal and Depth Information

    NASA Astrophysics Data System (ADS)

    Ikemura, Sho; Fujiyoshi, Hironobu

    This paper presents a method for action classification by using Joint Boosting with depth information obtained by TOF camera. Our goal is to classify action of a customer who takes the goods from each of the upper, middle and lower shelf in the supermarkets and convenience stores. Our method detects of human region by using Pixel State Analysis (PSA) from the depth image stream obtained by TOF camera, and extracts the PSA features captured from human-motion and the depth features (peak value of depth) captured from the information of human-height. We employ Joint Boosting, which is a multi-class classification of boosting method, to perform the action classification. Since the proposed method employs spatiotemporal and depth feature, it is possible to perform the detection of action for taking the goods and the classification of the height of the shelf simultaneously. Experimental results show that our method using PSA feature and peak value of depth achieved a classification rate of 93.2%. It also had a 3.1% higher performance than that of the CHLAC feature, and 2.8% higher performance than that of the ST-patch feature.

  20. Cryogenic flux-concentrator

    NASA Technical Reports Server (NTRS)

    Bailey, B. M.; Brechna, H.; Hill, D. A.

    1969-01-01

    Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources.

  1. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  2. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  3. GEWEX Radiative Flux Assessment

    Atmospheric Science Data Center

    2016-05-20

    ... climate components (atmosphere, ocean, land, cryosphere, biosphere). The GEWEX Radiative Flux Assessment (RFA) project will provide a ... Spatial Coverage: (-20.45, -2.43)(-62.87, -47.90) Full Product Page ...

  4. Numerical Simulations of a Flux Rope Ejection

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2015-03-01

    Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. However, these observations are difficult to interpret in terms of basic physical mechanisms and quantities, thus, we need to compare equivalent quantities to test and improve our models. In our work, we intend to bridge the gap between models and observations with our model of flux rope ejection where we consistently describe the full life span of a flux rope from its formation to ejection. This is done by coupling the global non-linear force-free model (GNLFFF) built to describe the slow low- β formation phase, with a full MHD simulation run with the software MPI-AMRVAC, suitable to describe the fast MHD evolution of the flux rope ejection that happens in a heterogeneous β regime. We also explore the parameter space to identify the conditions upon which the ejection is favoured (gravity stratification and magnetic field intensity) and we produce synthesised AIA observations (171 Å and 211 Å). To carry this out, we run 3D MHD simulation in spherical coordinates where we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Our model of

  5. FluxPro: Real time monitoring and simulation system for eddy covariance flux measurement

    NASA Astrophysics Data System (ADS)

    Kim, W.; Seo, H.; Mano, M.; Ono, K.; Miyata, A.; Yokozawa, M.

    2010-12-01

    To cope with unusual weather changes on crop cultivation in a field level, prompt and precise monitoring of photosynthesis and evapotranspiration, and those fast and reliable forecasting are indispensable. So we have developed FluxPro which is simultaneous operating system of the monitoring and the forecasting. The monitoring subsystem provides vapor and CO2 fluxes with uncertainty to understand the live condition of photosynthesis and evapotranspiration by open-path eddy covariance flux measurement (EC) system and self-developed EC tolerance analysis scheme. The forecasting subsystem serves the predicted fluxes with anomaly based on model parameter assimilation to estimate the hourly or daily water consumption and carbon assimilation during a week by multi-simulation package consisting of various models from simple to complicate. FluxPro is helpful not only to detect a critical condition of growing crop in terms of photosynthesis and evapotranspiration but also to decide time and amount of launching control for keeping those optimization condition when an unusual weather event is arisen. In our presentation, we will demonstrate the FluxPro operated at tangerine orchard in Jeju, Korea.

  6. Fast food (image)

    MedlinePlus

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated ...

  7. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.

  8. Nitric oxide fluxes from an agricultural soil using a flux-gradient method

    NASA Astrophysics Data System (ADS)

    Taylor, N. M.; Wagner-Riddle, C.; Thurtell, G. W.; Beauchamp, E. G.

    1999-05-01

    Soil emission of nitric oxide may be a significant source of NOx in rural areas. Agricultural practices may enhance these emissions by addition of nitrogen fertilizers. A system that enables continuous measurement of NO fluxes from agricultural surfaces using the flux-gradient method was developed. Hourly differences in NO concentrations in air sampled at two intake heights (0.6 and 1 m) were determined using a chemiluminescence analyzer. Eddy diffusivities were determined using wind profiles (cup anemometers), and stability corrections calculated using a 5 cm path sonic anemometer. Fast switching of sampling between air intake heights (every 30 s) and determination of concentration values at a frequency of 2 Hz minimized the errors due to fluctuations in background concentration. Low travel times for air samples in the tubing (˜8 s) were estimated to result in small errors in flux values (<0.5 ng N m-2 s-1) due to chemical reactions. The overall resolution of the system was estimated as ˜1 ng N m-2s-1. NO fluxes from a bare soil were measured quasi-continuously from January to June 1995 at Elora, Canada, comprising a total of 1833 hourly values. Daily NO fluxes before nitrogen fertilization were small, increasing after nitrogen fertilizer was added (>10 ng N m-2 s-1). Monthly NO fluxes estimated were similar to those observed in previous studies. The designed system could be easily modified to measure NOx and NO fluxes by using an additional chemiluminescence analyzer. The system also could be adapted to measure fluxes sequentially from various plots, enabling testing of agricultural practices on NO emissions.

  9. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  10. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  11. Physical mechanism of spontaneous fast reconnection evolution

    NASA Astrophysics Data System (ADS)

    Ugai, M.

    2001-06-01

    Large dissipative events, such as solar flares and geomagnetic substorms, result from sudden onset of magnetic reconnection, so that it is a long-standing problem to find the physical mechanism that makes magnetic reconnection explosive. As recognized by Petschek, standing slow shocks enable the effective magnetic energy conversion in space plasmas of extremely large magnetic Reynolds number. Hence, a basic question is how the fast reconnection mechanism involving slow shocks can be realized as an eventual solution? We have proposed the spontaneous fast reconnection model, which describes a new type of nonlinear instability that grows by the positive feedback between plasma microphysics (current-driven anomalous resistivity) and macrophysics (global reconnection flow). It is demonstrated that the fast reconnection mechanism explosively grows by the positive feedback in a variety of physical situations; for the larger threshold of anomalous resistivity, the fast reconnection evolves more drastically. Also, distinct plasma processes, such as large-scale plasmoid and magnetic loop dynamics, result directly from the fast reconnection evolution. Even in general asymmetric situations, the spontaneous fast reconnection model effectively works, giving rise to drastic magnetic flux transfer.

  12. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    SciTech Connect

    Karasiov, A.V.; Greenwood, L.R.

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  13. Integrative Physiology of Fasting.

    PubMed

    Secor, Stephen M; Carey, Hannah V

    2016-03-15

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.

  14. Optical manipulation of single flux quanta

    PubMed Central

    Veshchunov, I. S.; Magrini, W.; Mironov, S. V.; Godin, A. G.; Trebbia, J.-B.; Buzdin, A. I.; Tamarat, Ph.; Lounis, B.

    2016-01-01

    Magnetic field can penetrate into type II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. Although the average properties of the vortex matter in superconductors can be tuned with magnetic fields, temperature or electric currents, handling of individual Abrikosov vortices remains challenging and has been demonstrated only with sophisticated scanning local probe microscopies. Here we introduce a far-field optical method based on local heating of the superconductor with a focused laser beam to realize a fast and precise manipulation of individual vortices, in the same way as with optical tweezers. This simple approach provides the perfect basis for sculpting the magnetic flux profile in superconducting devices like a vortex lens or a vortex cleaner, without resorting to static pinning or ratchet effects. PMID:27677835

  15. Optical manipulation of single flux quanta

    NASA Astrophysics Data System (ADS)

    Veshchunov, I. S.; Magrini, W.; Mironov, S. V.; Godin, A. G.; Trebbia, J.-B.; Buzdin, A. I.; Tamarat, Ph.; Lounis, B.

    2016-09-01

    Magnetic field can penetrate into type II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. Although the average properties of the vortex matter in superconductors can be tuned with magnetic fields, temperature or electric currents, handling of individual Abrikosov vortices remains challenging and has been demonstrated only with sophisticated scanning local probe microscopies. Here we introduce a far-field optical method based on local heating of the superconductor with a focused laser beam to realize a fast and precise manipulation of individual vortices, in the same way as with optical tweezers. This simple approach provides the perfect basis for sculpting the magnetic flux profile in superconducting devices like a vortex lens or a vortex cleaner, without resorting to static pinning or ratchet effects.

  16. Optical manipulation of single flux quanta.

    PubMed

    Veshchunov, I S; Magrini, W; Mironov, S V; Godin, A G; Trebbia, J-B; Buzdin, A I; Tamarat, Ph; Lounis, B

    2016-09-28

    Magnetic field can penetrate into type II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. Although the average properties of the vortex matter in superconductors can be tuned with magnetic fields, temperature or electric currents, handling of individual Abrikosov vortices remains challenging and has been demonstrated only with sophisticated scanning local probe microscopies. Here we introduce a far-field optical method based on local heating of the superconductor with a focused laser beam to realize a fast and precise manipulation of individual vortices, in the same way as with optical tweezers. This simple approach provides the perfect basis for sculpting the magnetic flux profile in superconducting devices like a vortex lens or a vortex cleaner, without resorting to static pinning or ratchet effects.

  17. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  18. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae

    PubMed Central

    Stecher, Bärbel; Denzler, Rémy; Maier, Lisa; Bernet, Florian; Sanders, Mandy J.; Pickard, Derek J.; Barthel, Manja; Westendorf, Astrid M.; Krogfelt, Karen A.; Walker, Alan W.; Ackermann, Martin; Dobrindt, Ulrich; Thomson, Nicholas R.; Hardt, Wolf-Dietrich

    2012-01-01

    The mammalian gut harbors a dense microbial community interacting in multiple ways, including horizontal gene transfer (HGT). Pangenome analyses established particularly high levels of genetic flux between Gram-negative Enterobacteriaceae. However, the mechanisms fostering intraenterobacterial HGT are incompletely understood. Using a mouse colitis model, we found that Salmonella-inflicted enteropathy elicits parallel blooms of the pathogen and of resident commensal Escherichia coli. These blooms boosted conjugative HGT of the colicin-plasmid p2 from Salmonella enterica serovar Typhimurium to E. coli. Transconjugation efficiencies of ∼100% in vivo were attributable to high intrinsic p2-transfer rates. Plasmid-encoded fitness benefits contributed little. Under normal conditions, HGT was blocked by the commensal microbiota inhibiting contact-dependent conjugation between Enterobacteriaceae. Our data show that pathogen-driven inflammatory responses in the gut can generate transient enterobacterial blooms in which conjugative transfer occurs at unprecedented rates. These blooms may favor reassortment of plasmid-encoded genes between pathogens and commensals fostering the spread of fitness-, virulence-, and antibiotic-resistance determinants. PMID:22232693

  19. Prediction of Wind Speeds Based on Digital Elevation Models Using Boosted Regression Trees

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Etienne, C.; Tian, J.; Krauß, T.

    2015-12-01

    In this paper a new approach is presented to predict maximum wind speeds using Gradient Boosted Regression Trees (GBRT). GBRT are a non-parametric regression technique used in various applications, suitable to make predictions without having an in-depth a-priori knowledge about the functional dependancies between the predictors and the response variables. Our aim is to predict maximum wind speeds based on predictors, which are derived from a digital elevation model (DEM). The predictors describe the orography of the Area-of-Interest (AoI) by various means like first and second order derivatives of the DEM, but also higher sophisticated classifications describing exposure and shelterness of the terrain to wind flux. In order to take the different scales into account which probably influence the streams and turbulences of wind flow over complex terrain, the predictors are computed on different spatial resolutions ranging from 30 m up to 2000 m. The geographic area used for examination of the approach is Switzerland, a mountainious region in the heart of europe, dominated by the alps, but also covering large valleys. The full workflow is described in this paper, which consists of data preparation using image processing techniques, model training using a state-of-the-art machine learning algorithm, in-depth analysis of the trained model, validation of the model and application of the model to generate a wind speed map.

  20. RP-2 Thermal Stability and Heat Transfer Investigation for Hydrocarbon Boost Engines

    NASA Technical Reports Server (NTRS)

    VanNoord, J. L.; Stiegemeier, B. R.

    2010-01-01

    A series of electrically heated tube tests were performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the use of RP-2 as a fuel for next generation regeneratively cooled hydrocarbon boost engines. The effect that test duration, operating condition and test piece material have on the overall thermal stability and materials compatibility characteristics of RP-2 were evaluated using copper and 304 stainless steel test sections. The copper tests were run at 1000 psia, heat flux up to 6.0 Btu/in.2-sec, and wall temperatures up to 1180 F. Preliminary results, using measured wall temperature as an indirect indicator of the carbon deposition process, show that in copper test pieces above approximately 850 F, RP-2 begins to undergo thermal decomposition resulting in local carbon deposits. Wall temperature traces show significant local temperature increases followed by near instantaneous drops which have been attributed to the carbon deposition/shedding process in previous investigations. Data reduction is currently underway for the stainless steel test sections and carbon deposition measurements will be performed in the future for all test sections used in this investigation. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-2.

  1. Hall Effect–Mediated Magnetic Flux Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Stone, James M.

    2017-02-01

    The global evolution of protoplanetary disks (PPDs) has recently been shown to be largely controlled by the amount of poloidal magnetic flux threading the disk. The amount of magnetic flux must also coevolve with the disk, as a result of magnetic flux transport, a process that is poorly understood. In weakly ionized gas as in PPDs, magnetic flux is largely frozen in the electron fluid, except when resistivity is large. When the disk is largely laminar, we show that the relative drift between the electrons and ions (the Hall drift), and the ions and neutral fluids (ambipolar drift) can play a dominant role on the transport of magnetic flux. Using two-dimensional simulations that incorporate the Hall effect and ambipolar diffusion (AD) with prescribed diffusivities, we show that when large-scale poloidal field is aligned with disk rotation, the Hall effect rapidly drags magnetic flux inward at the midplane region, while it slowly pushes flux outward above/below the midplane. This leads to a highly radially elongated field configuration as a global manifestation of the Hall-shear instability. This field configuration further promotes rapid outward flux transport by AD at the midplane, leading to instability saturation. In quasi-steady state, magnetic flux is transported outward at approximately the same rate at all heights, and the rate is comparable to the Hall-free case. For anti-aligned field polarity, the Hall effect consistently transports magnetic flux outward, leading to a largely vertical field configuration in the midplane region. The field lines in the upper layer first bend radially inward and then outward to launch a disk wind. Overall, the net rate of outward flux transport is about twice as fast as that of the aligned case. In addition, the rate of flux transport increases with increasing disk magnetization. The absolute rate of transport is sensitive to disk microphysics, which remains to be explored in future studies.

  2. Magnetic flux reconstruction methods for shaped tokamaks

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Wa

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the two dimensional nonlinear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p' and FF' functions). The current profile parameters are treated as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green's function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multilayer perception neural network as an interface, and the volume integration of plasma current density using Green's functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data.

  3. Magnetic flux reconstruction methods for shaped tokamaks

    SciTech Connect

    Tsui, Chi-Wa

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.

  4. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  5. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  6. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  7. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-06-25

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  8. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1989-06-07

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figs.

  9. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MaCarthur, C.D.; Cala, G.C.

    1991-09-03

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  10. How Citation Boosts Promote Scientific Paradigm Shifts and Nobel Prizes

    PubMed Central

    Mazloumian, Amin; Eom, Young-Ho; Helbing, Dirk; Lozano, Sergi; Fortunato, Santo

    2011-01-01

    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the “boosting effect” of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying “boost factor” is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain how social influence comes about and why the value of goods depends so strongly on the attention they attract. PMID:21573229

  11. How citation boosts promote scientific paradigm shifts and nobel prizes.

    PubMed

    Mazloumian, Amin; Eom, Young-Ho; Helbing, Dirk; Lozano, Sergi; Fortunato, Santo

    2011-05-04

    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying "boost factor" is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain how social influence comes about and why the value of goods depends so strongly on the attention they attract.

  12. Single-Phase Boost Rectifier with Snubber Energy Recovery Feature

    NASA Astrophysics Data System (ADS)

    Neba, Yasuhiko; Ishizaka, Kouichi; Matsumoto, Hirokazu; Itoh, Ryozo

    Single-phase boost rectifier with snubber energy recovery feature operating under the current-mode control with a turn-on at constant clock time is studied. In this rectifier, the resonant circuit consisting of small inductor and capacitor is added in DC circuit. The snubber energy is transferred to an additional resonant capacitor and can next be transferred to the load circuit when an insulated-gate bipolar transistor as the active power device is turned off. The experimental prototype is implemented to investigate the operation. The experimental results confirm that the proposed snubber energy recovery scheme has the feasibility.

  13. Boosting alternating decision trees modeling of disease trait information.

    PubMed

    Liu, Kuang-Yu; Lin, Jennifer; Zhou, Xiaobo; Wong, Stephen T C

    2005-12-30

    We applied the alternating decision trees (ADTrees) method to the last 3 replicates from the Aipotu, Danacca, Karangar, and NYC populations in the Problem 2 simulated Genetic Analysis Workshop dataset. Using information from the 12 binary phenotypes and sex as input and Kofendrerd Personality Disorder disease status as the outcome of ADTrees-based classifiers, we obtained a new quantitative trait based on average prediction scores, which was then used for genome-wide quantitative trait linkage (QTL) analysis. ADTrees are machine learning methods that combine boosting and decision trees algorithms to generate smaller and easier-to-interpret classification rules. In this application, we compared four modeling strategies from the combinations of two boosting iterations (log or exponential loss functions) coupled with two choices of tree generation types (a full alternating decision tree or a classic boosting decision tree). These four different strategies were applied to the founders in each population to construct four classifiers, which were then applied to each study participant. To compute average prediction score for each subject with a specific trait profile, such a process was repeated with 10 runs of 10-fold cross validation, and standardized prediction scores obtained from the 10 runs were averaged and used in subsequent expectation-maximization Haseman-Elston QTL analyses (implemented in GENEHUNTER) with the approximate 900 SNPs in Hardy-Weinberg equilibrium provided for each population. Our QTL analyses on the basis of four models (a full alternating decision tree and a classic boosting decision tree paired with either log or exponential loss function) detected evidence for linkage (Z >or= 1.96, p < 0.01) on chromosomes 1, 3, 5, and 9. Moreover, using average iteration and abundance scores for the 12 phenotypes and sex as their relevancy measurements, we found all relevant phenotypes for all four populations except phenotype b for the Karangar population

  14. Fermion pair production in QED and the backreaction problem in (1+1)-dimensional boost-invariant coordinates revisited

    SciTech Connect

    Mihaila, Bogdan; Cooper, Fred M; Dawson, John F

    2008-01-01

    We study two different initial conditions for fermions for the problem of pair production of fermions coupled to a classical electromagnetic field with backreaction in (1+1) boost-invariant coordinates. Both of these conditions are consistent with fermions initially in a vacuum state. We present results for the proper time evolution of the electric field E, the current J, the matter energy density {epsilon}, and the pressure p as a function of the proper time for these two cases. We also determine the interpolating number density as a function of the proper time. We find that when we use a 'first order adiabatic' vacuum initial condition or a 'free field' initial condition for the fermion field, we obtain essentially similar behavior for physically measurable quantities. The second method is computationally simpler, it is twice as fast and involves half the storage required by the first method.

  15. Advanced Surface Flux Parameterization

    DTIC Science & Technology

    2001-09-30

    within PE 0602435N are BE-35-2-18, for the Mesoscale Modeling of the Atmos- phere and Aerosols, BE-35-2-19, and for the Exploratory Data Assimilation ... Methods . Related project at NPS is N0001401WR20242 for Evaluating Surface Flux and Boundary Layer Parameterizations in Mesoscale Models Using

  16. Flux Tube Model

    NASA Astrophysics Data System (ADS)

    Steiner, O.

    2011-05-01

    This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

  17. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  18. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2016-10-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  19. Carbon Flux Explorers

    SciTech Connect

    Bishop, Jim

    2016-09-09

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  20. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  1. A Compensation-Based Optimization Methodology for Gain-Boosted OPAMP

    DTIC Science & Technology

    2004-05-14

    Reprint_._ 4. TiLu AWo 3UNTnU S. FUNDNIG UUMEAS A Compensation-Based Optimization Methodollogy for N00014-94-1-0931 Gain-Boosted OPAMP Jie Yuan and Nabil...Unlimited 13. •SW.&•CT %Af~xum200l..uord,) A gain-boosted OPAMP design methodology is presented. The methodology provides a systematic way of gain...boosted OPAMP optimization in terms- of AC response and settling performance. The evolution of the major poles and zeros of the gain- boosted OPAMP is

  2. Final Technical Report for the BOOST2013 Workshop. Hosted by the University of Arizona

    SciTech Connect

    Johns, Kenneth

    2015-02-20

    BOOST 2013 was the 5th International Joint Theory/Experiment Workshop on Phenomenology, Reconstruction and Searches for Boosted Objects in High Energy Hadron Collisions. It was locally organized and hosted by the Experimental High Energy Physics Group at the University of Arizona and held at Flagstaff, Arizona on August 12-16, 2013. The workshop provided a forum for theorists and experimentalists to present and discuss the latest findings related to the reconstruction of boosted objects in high energy hadron collisions and their use in searches for new physics. This report gives the outcomes of the BOOST 2013 Workshop.

  3. Hyperdynamics boost factor achievable with an ideal bias potential

    SciTech Connect

    Huang, Chen; Perez, Danny; Voter, Arthur F.

    2015-08-20

    Hyperdynamics is a powerful method to significantly extend the time scales amenable to molecular dynamics simulation of infrequent events. One outstanding challenge, however, is the development of the so-called bias potential required by the method. In this work, we design a bias potential using information about all minimum energy pathways (MEPs) out of the current state. While this approach is not suitable for use in an actual hyperdynamics simulation, because the pathways are generally not known in advance, it allows us to show that it is possible to come very close to the theoretical boost limit of hyperdynamics while maintaining high accuracy. We demonstrate this by applying this MEP-based hyperdynamics (MEP-HD) to metallic surface diffusion systems. In most cases, MEP-HD gives boost factors that are orders of magnitude larger than the best existing bias potential, indicating that further development of hyperdynamics bias potentials could have a significant payoff. Lastly, we discuss potential practical uses of MEP-HD, including the possibility of developing MEP-HD into a true hyperdynamics.

  4. Boosting Antimicrobial Peptides by Hydrophobic Oligopeptide End Tags*

    PubMed Central

    Schmidtchen, Artur; Pasupuleti, Mukesh; Mörgelin, Matthias; Davoudi, Mina; Alenfall, Jan; Chalupka, Anna; Malmsten, Martin

    2009-01-01

    A novel approach for boosting antimicrobial peptides through end tagging with hydrophobic oligopeptide stretches is demonstrated. Focusing on two peptides derived from kininogen, GKHKNKGKKNGKHNGWK (GKH17) and HKHGHGHGKHKNKGKKN (HKH17), tagging resulted in enhanced killing of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and fungal Candida albicans. Microbicidal potency increased with tag length, also in plasma, and was larger for Trp and Phe stretches than for aliphatic ones. The enhanced microbicidal effects correlated to a higher degree of bacterial wall rupture. Analogously, tagging promoted peptide binding to model phospholipid membranes and liposome rupture, particularly for anionic and cholesterol-void membranes. Tagged peptides displayed low toxicity, particularly in the presence of serum, and resisted degradation by human leukocyte elastase and by staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo and in vivo in porcine S. aureus skin infection models. The generality of end tagging for facile boosting of antimicrobial peptides without the need for post-synthesis modification was also demonstrated. PMID:19398550

  5. Playing tag with ANN: boosted top identification with pattern recognition

    NASA Astrophysics Data System (ADS)

    Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu; Lee, Seung J.; Perelstein, Maxim

    2015-07-01

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a "digital image" of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p T in the 1100-1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  6. Boosting the Light: X-ray Physics in Confinement

    ScienceCinema

    Rhisberger, Ralf [HASYLAB/ DESY

    2016-07-12

    Remarkable effects are observed if light is confined to dimensions comparable to the wavelength of the light. The lifetime of atomic resonances excited by the radiation is strongly reduced in photonic traps, such as cavities or waveguides. Moreover, one observes an anomalous boost of the intensity scattered from the resonant atoms. These phenomena results from the strong enhancement of the photonic density of states in such geometries. Many of these effects are currently being explored in the regime of vsible light due to their relevance for optical information processing. It is thus appealing to study these phenomena also for much shorter wavelengths. This talk illuminates recent experiments where synchrotron x-rays were trapped in planar waveguides to resonantly excite atomos ([57]Fe nuclei_ embedded in them. In fact, one observes that the radiative decay of these excited atoms is strongly accelerated. The temporal acceleration of the decay goes along with a strong boost of the radiation coherently scattered from the confined atmos. This can be exploited to obtain a high signal-to-noise ratio from tiny quantities of material, leading to manifold applications in the investigation of nanostructured materials. One application is the use of ultrathin probe layers to image the internal structure of magnetic layer systems.

  7. A boosted optimal linear learner for retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Poletti, E.; Grisan, E.

    2014-03-01

    Ocular fundus images provide important information about retinal degeneration, which may be related to acute pathologies or to early signs of systemic diseases. An automatic and quantitative assessment of vessel morphological features, such as diameters and tortuosity, can improve clinical diagnosis and evaluation of retinopathy. At variance with available methods, we propose a data-driven approach, in which the system learns a set of optimal discriminative convolution kernels (linear learner). The set is progressively built based on an ADA-boost sample weighting scheme, providing seamless integration between linear learner estimation and classification. In order to capture the vessel appearance changes at different scales, the kernels are estimated on a pyramidal decomposition of the training samples. The set is employed as a rotating bank of matched filters, whose response is used by the boosted linear classifier to provide a classification of each image pixel into the two classes of interest (vessel/background). We tested the approach fundus images available from the DRIVE dataset. We show that the segmentation performance yields an accuracy of 0.94.

  8. Boosting color feature selection for color face recognition.

    PubMed

    Choi, Jae Young; Ro, Yong Man; Plataniotis, Konstantinos N

    2011-05-01

    This paper introduces the new color face recognition (FR) method that makes effective use of boosting learning as color-component feature selection framework. The proposed boosting color-component feature selection framework is designed for finding the best set of color-component features from various color spaces (or models), aiming to achieve the best FR performance for a given FR task. In addition, to facilitate the complementary effect of the selected color-component features for the purpose of color FR, they are combined using the proposed weighted feature fusion scheme. The effectiveness of our color FR method has been successfully evaluated on the following five public face databases (DBs): CMU-PIE, Color FERET, XM2VTSDB, SCface, and FRGC 2.0. Experimental results show that the results of the proposed method are impressively better than the results of other state-of-the-art color FR methods over different FR challenges including highly uncontrolled illumination, moderate pose variation, and small resolution face images.

  9. Hyperdynamics boost factor achievable with an ideal bias potential

    DOE PAGES

    Huang, Chen; Perez, Danny; Voter, Arthur F.

    2015-08-20

    Hyperdynamics is a powerful method to significantly extend the time scales amenable to molecular dynamics simulation of infrequent events. One outstanding challenge, however, is the development of the so-called bias potential required by the method. In this work, we design a bias potential using information about all minimum energy pathways (MEPs) out of the current state. While this approach is not suitable for use in an actual hyperdynamics simulation, because the pathways are generally not known in advance, it allows us to show that it is possible to come very close to the theoretical boost limit of hyperdynamics while maintainingmore » high accuracy. We demonstrate this by applying this MEP-based hyperdynamics (MEP-HD) to metallic surface diffusion systems. In most cases, MEP-HD gives boost factors that are orders of magnitude larger than the best existing bias potential, indicating that further development of hyperdynamics bias potentials could have a significant payoff. Lastly, we discuss potential practical uses of MEP-HD, including the possibility of developing MEP-HD into a true hyperdynamics.« less

  10. Fast wave current drive

    SciTech Connect

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.

  11. fast-matmul

    SciTech Connect

    Grey Ballard, Austin Benson

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  12. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-05-20

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (∼36 Mm above the surface). We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as 'magnetic breakout', are operating during the emergence of new active regions.

  13. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  14. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    NASA Astrophysics Data System (ADS)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  15. STRATIFIED COMPOSITION EFFECTS ON PLANETARY NEUTRON FLUX

    SciTech Connect

    O. GASNAULT; ET AL

    2001-01-01

    All the bodies of the solar system that are directly irradiated by the galactic cosmic rays, emit enough neutrons to allow a measurement from space. These leakage neutron fluxes are indexes of the surface composition, depending on the energy of the neutrons [1]. Recent work propose geochemical interpretations of these fluxes: the thermal energy range is sensitive to iron, titanium, rare earth elements and thorium [2, 3], the epithermal energy range is sensitive to hydrogen, samarium and gadolinium [2] and the fast energy range is representative of the average soil atomic mass [4]. Nevertheless these studies make the hypothesis of a composition uniform within the footprint of the spectrometer and independent of depth. We show in this abstract that a stratified composition could change significantly the flux intensity and complicate the interpretation of the measurements. The neutron leakage flux is a competition between production effects (sensitive at high energy) and diffusion-capture effects (mostly sensitive at low energy). On one hand, it happens to be that the elements which produce the higher number of neutrons in typical lunar compositions are iron and titanium, which have also large cross section of absorption with the neutrons. On the other hand, the maximum of neutron intensity does not occur at the surface but at about 180 g cm{sup {minus}2} in depth. Therefore, if we have an iron- and/or titanium-rich soil (important production of neutrons) with a top layer having less iron and/or titanium (i.e. more transparent to the neutrons), we can expect an enhancement of the flux compared to a uniform composition.

  16. Stratified composition effects on planetary neutron flux

    NASA Astrophysics Data System (ADS)

    Gasnault, O.

    2001-01-01

    All the bodies of the solar system that are directly irradiated by the galactic cosmic rays, emit enough neutrons to allow a measurement from space. These leakage neutron fluxes are indexes of the surface composition, depending on the energy of the neutrons (1). Recent work propose geochemical interpretations of these fluxes: the thermal energy range is sensitive to iron, titanium, rare earth elements and thorium (2, 3), the epithermal energy range is sensitive to hydrogen, samarium and gadolinium (2) and the fast energy range is representative of the average soil atomic mass (4). Nevertheless these studies make the hypothesis of a composition uniform within the footprint of the spectrometer and independent of depth. We show in this abstract that a stratified composition could change significantly the flux intensity and complicate the interpretation of the measurements. The neutron leakage flux is a competition between production effects (sensitive at high energy) and diffusion-capture effects (mostly sensitive at low energy). On one hand, it happens to be that the elements which produce the higher number of neutrons in typical lunar compositions are iron and titanium, which have also large cross section of absorption with the neutrons. On the other hand, the maximum of neutron intensity does not occur at the surface but at about 180 g cm(sup (minus)2) in depth. Therefore, if we have an iron- and/or titanium-rich soil (important production of neutrons) with a top layer having less iron and/or titanium (i.e. more transparent to the neutrons), we can expect an enhancement of the flux compared to a uniform composition.

  17. High-Dose-Rate Brachytherapy Boost Effect on Local Tumor Control in Young Women With Breast Cancer

    SciTech Connect

    Guinot, Jose-Luis; Baixauli-Perez, Cristobal; Soler, Pablo; Tortajada, Maria Isabel; Moreno, Araceli; Santos, Miguel Angel; Mut, Alejandro; Gozalbo, Francisco; Arribas, Leoncio

    2015-01-01

    Purpose: To evaluate the local control rate and complications of a single fraction of high-dose-rate brachytherapy (HDR BT) boost in women aged 45 yeas and younger after breast-conserving therapy. Methods and Materials: Between 1999 and 2007, 167 patients between the ages of 26 and 45 years old (72 were 40 years old or younger), with stages T1 to T2 invasive breast cancer with disease-free margin status of at least 5 mm after breast-conserving surgery received 46 to 50 Gy whole-breast irradiation plus a 7-Gy HDR-BT boost (“fast boost”). An axillary dissection was performed in 72.5% of the patients and sentinel lymph node biopsy in 27.5%. A supraclavicular area was irradiated in 19% of the patients. Chemotherapy was used in 86% of the patients and hormone treatment in 77%. Clinical nodes were present in 18% and pathological nodes in 29%. The pathological stage was pT0: 5%, pTis: 3%, pT1: 69% and pT2: 23%. Intraductal component was present in 40% and 28% were G3. Results: At a median follow-up of 92 months, 9 patients relapsed on the margin of the implant, and 1 patient in another quadrant, resulting in a 10-year local relapse rate of 4.3% and a breast relapse rate of 4.9%, with breast preservation in 93.4%; no case of mastectomy due to poor cosmesis arose. Actuarial 5- and 10-year disease-free, cause-specific, and overall survival rates were 87.9% and 85.8%, and 92.1% and 88.4%, and 92.1% and 87.3%, respectively. In a univariate analysis, triple-negative cases and negative hormone receptors did worse, but in a multivariate analysis, only the last factor was significant for local and breast control. Asymptomatic fibrosis G2 was recorded in 3 cases, and there were no other late complications. Cosmetic results were good to excellent in 97% of cases. Conclusions: A single dose of 7 Gy using the fast-boost technique is well tolerated, with a low rate of late complications and improved local tumor control in women aged 45 and younger, compared to published data

  18. Flux Measurements of Volatile Organic Compounds from an Urban Landscape

    SciTech Connect

    Velasco, E.; Lamb, Brian K.; Pressley, S.; Allwine, Eugene J.; Westberg, Halvor; Jobson, B Tom T.; Alexander, M. Lizabeth; Prazeller, Peter; Molina, Luisa; Molina, Mario J.

    2005-10-19

    Direct measurements of volatile organic compound (VOC) emissions that include all anthropogenic and biogenic emission sources in urban areas are a missing requirement to evaluate emission inventories and constrain current photochemical modelling practices. Here we demonstrate the use of micrometeorological techniques coupled with fast-response sensors to measure urban VOC fluxes from a neighborhood of Mexico City, where the spatial variability of surface cover and roughness is high. Fluxes of olefins, methanol, acetone, toluene and C2-benzenes were measured and compared with the local gridded emission inventory. VOC fluxes exhibited a clear diurnal pattern with a strong relationship to vehicular traffic. Recent photochemical modeling results suggest that VOC emissions are significantly underestimated in Mexico City1, but the measured VOC fluxes described here indicate that the official emission inventory2 is essentially correct. Thus, other explanations are needed to explain the photochemical modelling results.

  19. Understanding fast macroscale fracture from microcrack post mortem patterns

    PubMed Central

    Guerra, Claudia; Scheibert, Julien; Bonamy, Daniel; Dalmas, Davy

    2012-01-01

    Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultrafast dynamics of microcrack nucleation, growth, and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatiotemporal microcracking dynamics, with micrometer/nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics. PMID:22203962

  20. Flux compactifications grow lumps

    NASA Astrophysics Data System (ADS)

    Dahlen, Alex; Zukowski, Claire

    2014-12-01

    The simplest flux compactifications are highly symmetric—a q -form flux is wrapped uniformly around an extra-dimensional q -sphere. In this paper, we investigate solutions that break the internal SO (q +1 ) symmetry down to SO (q )×Z2 ; we find a large number of such lumpy solutions, and show that often at least one of them has lower vacuum energy, larger entropy, and is more stable than the symmetric solution. We construct the phase diagram of lumpy solutions, and provide an interpretation in terms of an effective potential. Finally, we provide evidence that the perturbatively stable vacua have a nonperturbative instability to spontaneously sprout lumps. We give an estimate of the decay rate and argue that generically it is exponentially faster than all other known decays.

  1. Lobotomy of flux compactifications

    NASA Astrophysics Data System (ADS)

    Dibitetto, Giuseppe; Guarino, Adolfo; Roest, Diederik

    2014-05-01

    We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on 6 with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to = 4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the = 8 theory.

  2. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  3. A study on the TAE-induced fast-ion loss process in LHD

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Toi, K.; Shimizu, A.; Spong, D. A.; Osakabe, M.; Yamamoto, S.; the LHD Experiment Group

    2013-05-01

    Characteristics of fast-ion losses induced by toroidal-Alfvén eigenmodes (TAEs) are investigated over wide parameter ranges of Large Helical Device (LHD) plasmas to reveal the fast-ion loss process. To study fast-ion losses, a scintillator-based lost-fast ion probe is used, and an increment of fast-ion loss flux due to TAEs from the neoclassical orbit loss level (ΔΓfast ion) is measured. The dependence of ΔΓfast ion on the TAE magnetic fluctuation amplitude (bθTAE) changes from a linear to a quadratic and finally a third power with an increase in the magnetic axis shift. It is found that the dependence of fast-ion loss flux on TAE magnetic fluctuation amplitudes changes at a certain fluctuation level in a fixed configuration. Experimental results show that in the small bθTAE regime, ΔΓfast ion is proportional to bθTAE, whereas ΔΓfast ion increases with the square of bθTAE in the larger bθTAE regime. A simulation by orbit-following codes that incorporate magnetic fluctuations with frequency chirping-down due to TAEs suggests the change in the fast-ion loss process from a convective (ΔΓfast ion ∝ bθTAE) to a diffusive (\\Delta \\Gamma_{fast\\ ion} \\propto b_{\\theta TAE}^{2} ) character as bθTAE increases.

  4. Japanese experience with clinical trials of fast neutrons

    SciTech Connect

    Tsunemoto, H.; Arai, T.; Morita, S.; Ishikawa, T.; Aoki, Y.; Takada, N.; Kamata, S.

    1982-12-01

    Between November, 1975 and November, 1981, 825 patients were treated with 30 MeV (d-Be) neutrons at the National Institute of Radiological Sciences, Chiba. At the Institute of Medical Science, Tokyo, 302 patients were referred to the Radiation Therapy department and were treated with 16 MeV (d-Be) neutrons. The emphasis of these clinical trials with fast neutrons was placed on the estimation of the effect of fast neutrons for locally advanced cancers or radioresistant cancers, and on evaluation of the rate of complication of normal tissues following irradiation with fast neutrons. Results were evaluated for patients with previously untreated cancer; local control of the tumor was observed in 59.1%. Complications requiring medical care developed in only 32 patients. Late reaction of soft tissue seemed to be more severe than that observed with photon beams. The results also suggest that for carcinoma of the larynx, esophagus, uterine cervix, Pancoast's tumor of the lung and osteosarcoma, fast neutrons were considered to be effectively applied in this randomized clinical trial. For carcinoma of the larynx, a fast neutron boost was effectively delivered, although an interstitial implant was necessarily combined with fast neutrons for carcinoma of the tongue. The cumulative survival rate of the patients with carcinoma of the esophagus treated with fast neutrons of 26% compared to the survival rate of 10.5% obtained using photons. The results also indicate that local control and relief of the symptom related to Pancoast's tumor of the lung seemed to be better with neutrons than with photons. For patients suffering from osteosarcoma, the surgical procedures preserving the function of the leg and arm were studied according to the better local control rate of the tumor following fast neutron beam therapy.

  5. Japanese experience with clinical trails of fast neutrons

    SciTech Connect

    Tsunemoto, H.; Arai, T.; Morita, S.; Ishikawa, T.; Aoki, Y.; Takada, N.; Kamata, S.

    1982-12-01

    Between November, 1975 and November, 1981, 825 patients were treated with 30 MeV (d-Be) neutrons at the National Institute of Radiological Sciences, Chiba. At the Institute of Medical Science, Tokyo, 302 patients were referred to the Radiation Therapy department and were treated with 16 MeV (d-Be) neutrons. The emphasis of these clinical trials with fast neutrons was placed on the estimation of the effect of fast neutrons for locally advanced cancers or radioresistant cancers, and on evaluation of the rate of complication of normal tissues following irradiaton with fast neutrons. Results were evaluated for patients with previously untreated cancer; local control of the tumor was observed in 59.1%. Complications requiring medical care developed in only 32 patients. Patients who had received pre- or postoperative irradiation were excluded from this evaluation. Late reaction of soft tissue seemed to be more severe than that observed with photon beams. The results also suggest that for carcinoma of the larynx, esophagus, uterine cervix, Pancoasts's tumor of the lung and osteosarcoma, fast neutrons were considered to be effectively applied in this randomized clinical trial. For carcinoma of the larynx, a fast nuetron boost was effectively delivered, although an interstitial implant was necessarily combined with fast neutrons for carcinoma of the tongue. The cumulative survival rate of the patients with carcinoma of the esophagus treated with fast neutrons was 26% compared to the survival rate of 10.5% obtained using photons. This was supported by evidence from the pathological studies that showed that the tumor cells which had deeply invaded into the esophagus were effectively destroyed when fast neutrons were applied.

  6. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  7. Heat Flux Sensor Testing

    NASA Astrophysics Data System (ADS)

    Clark, D. W.

    2002-07-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  8. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  9. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  10. Fast and effective?

    PubMed

    Trueland, Jennifer

    2013-12-18

    The 5.2 diet involves two days of fasting each week. It is being promoted as the key to sustained weight loss, as well as wider health benefits, despite the lack of evidence on the long-term effects. Nurses need to support patients who wish to try intermittent fasting.

  11. fastKDE

    SciTech Connect

    O'Brien, Travis A.; Kashinath, Karthik

    2015-05-22

    This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.

  12. Fast optical pyrometry

    NASA Technical Reports Server (NTRS)

    Cezairliyan, Ared

    1988-01-01

    Design and operation of accurate millisecond and microsecond resolution optical pyrometers developed at the National Bureau of Standards during the last two decades are described. Results of tests are presented and estimates of uncertainties in temperature measurements are given. Calibration methods are discussed and examples of applications of fast pyrometry are given. Ongoing research in developing fast multiwavelength and spatial scanning pyrometers are summarized.

  13. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework

    PubMed Central

    Zheng, Qi; Grice, Elizabeth A.

    2016-01-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155

  14. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force.

    PubMed

    Tresilwised, Nittaya; Pithayanukul, Pimolpan; Mykhaylyk, Olga; Holm, Per Sonne; Holzmüller, Regina; Anton, Martina; Thalhammer, Stefan; Adigüzel, Denis; Döblinger, Markus; Plank, Christian

    2010-08-02

    Oncolytic adenoviruses rank among the most promising innovative agents in cancer therapy. We examined the potential of boosting the efficacy of the oncolytic adenovirus dl520 by associating it with magnetic nanoparticles and magnetic-field-guided infection in multidrug-resistant (MDR) cancer cells in vitro and upon intratumoral injection in vivo. The virus was complexed by self-assembly with core-shell nanoparticles having a magnetite core of about 10 nm and stabilized by a shell containing 68 mass % lithium 3-[2-(perfluoroalkyl)ethylthio]propionate) and 32 mass % 25 kDa branched polyethylenimine. Optimized virus binding, sufficiently stable in 50% fetal calf serum, was found at nanoparticle-to-virus ratios of 5 fg of Fe per physical virus particle (VP) and above. As estimated from magnetophoretic mobility measurements, 3,600 to 4,500 magnetite nanocrystallites were associated per virus particle. Ultrastructural analysis by electron and atomic force microscopy showed structurally intact viruses surrounded by magnetic particles that occasionally bridged several virus particles. Viral uptake into cells at a given virus dose was enhanced 10-fold compared to nonmagnetic virus when infections were carried out under the influence of a magnetic field. Increased virus internalization resulted in a 10-fold enhancement of the oncolytic potency in terms of the dose required for killing 50% of the target cells (IC(50) value) and an enhancement of 4 orders of magnitude in virus progeny formation at equal input virus doses compared to nonmagnetic viruses. Furthermore, the full oncolytic effect developed within two days postinfection compared with six days in a nonmagnetic virus as a reference. Plotting target cell viability versus internalized virus particles for magnetic and nonmagnetic virus showed that the inherent oncolytic productivity of the virus remained unchanged upon association with magnetic nanoparticles. Hence, we conclude that the mechanism of boosting the

  15. Magnetic Flux Compression in Plasmas

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.

    2012-10-01

    Magnetic flux compression (MFC) as a method for producing ultra-high pulsed magnetic fields had been originated in the 1950s by Sakharov et al. at Arzamas in the USSR (now VNIIEF, Russia) and by Fowler et al. at Los Alamos in the US. The highest magnetic field produced by explosively driven MFC generator, 28 MG, was reported by Boyko et al. of VNIIEF. The idea of using MFC to increase the magnetic field in a magnetically confined plasma to 3-10 MG, relaxing the strict requirements on the plasma density and Lawson time, gave rise to the research area known as MTF in the US and MAGO in Russia. To make a difference in ICF, a magnetic field of ˜100 MG should be generated via MFC by a plasma liner as a part of the capsule compression scenario on a laser or pulsed power facility. This approach was first suggested in mid-1980s by Liberman and Velikovich in the USSR and Felber in the US. It has not been obvious from the start that it could work at all, given that so many mechanisms exist for anomalously fast penetration of magnetic field through plasma. And yet, many experiments stimulated by this proposal since 1986, mostly using pulsed-power drivers, demonstrated reasonably good flux compression up to ˜42 MG, although diagnostics of magnetic fields of such magnitude in HED plasmas is still problematic. The new interest of MFC in plasmas emerged with the advancement of new drivers, diagnostic methods and simulation tools. Experiments on MFC in a deuterium plasma filling a cylindrical plastic liner imploded by OMEGA laser beam led by Knauer, Betti et al. at LLE produced peak fields of 36 MG. The novel MagLIF approach to low-cost, high-efficiency ICF pursued by Herrmann, Slutz, Vesey et al. at Sandia involves pulsed-power-driven MFC to a peak field of ˜130 MG in a DT plasma. A review of the progress, current status and future prospects of MFC in plasmas is presented.

  16. Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting

    USGS Publications Warehouse

    Chan, J.C.-W.; Huang, C.; DeFries, R.

    2001-01-01

    Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. Our results confirmed the theoretical explanation [1] that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm.

  17. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  18. Prediction and control of limit cycling motions in boosting rockets

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    An investigation concerning the prediction and control of observed limit cycling behavior in a boosting rocket is considered. The suspected source of the nonlinear behavior is the presence of Coulomb friction in the nozzle pivot mechanism. A classical sinusoidal describing function analysis is used to accurately recreate and predict the observed oscillatory characteristic. In so doing, insight is offered into the limit cycling mechanism and confidence is gained in the closed-loop system design. Nonlinear simulation results are further used to support and verify the results obtained from describing function theory. Insight into the limit cycling behavior is, in turn, used to adjust control system parameters in order to passively control the oscillatory tendencies. Tradeoffs with the guidance and control system stability/performance are also noted. Finally, active control of the limit cycling behavior, using a novel feedback algorithm to adjust the inherent nozzle sticking-unsticking characteristics, is considered.

  19. Usefulness of effective field theory for boosted Higgs production

    SciTech Connect

    Dawson, S.; Lewis, I. M.; Zeng, Mao

    2015-04-07

    The Higgs + jet channel at the LHC is sensitive to the effects of new physics both in the total rate and in the transverse momentum distribution at high pT. We examine the production process using an effective field theory (EFT) language and discussing the possibility of determining the nature of the underlying high-scale physics from boosted Higgs production. The effects of heavy color triplet scalars and top partner fermions with TeV scale masses are considered as examples and Higgs-gluon couplings of dimension-5 and dimension-7 are included in the EFT. As a byproduct of our study, we examine the region of validity of the EFT. Dimension-7 contributions in realistic new physics models give effects in the high pT tail of the Higgs signal which are so tiny that they are likely to be unobservable.

  20. Syntactic priming during sentence comprehension: evidence for the lexical boost.

    PubMed

    Traxler, Matthew J; Tooley, Kristen M; Pickering, Martin J

    2014-07-01

    Syntactic priming occurs when structural information from one sentence influences processing of a subsequently encountered sentence (Bock, 1986; Ledoux et al., 2007). This article reports 2 eye-tracking experiments investigating the effects of a prime sentence on the processing of a target sentence that shared aspects of syntactic form. The experiments were designed to determine the degree to which lexical overlap between prime and target sentences produced larger effects, comparable to the widely observed "lexical boost" in production experiments (Pickering & Branigan, 1998; Pickering & Ferreira, 2008). The current experiments showed that priming effects during online comprehension were in fact larger when a verb was repeated across the prime and target sentences (see also Tooley et al., 2009). The finding of larger priming effects with lexical repetition supports accounts under which syntactic form representations are connected to individual lexical items (e.g., Tomasello, 2003; Vosse & Kempen, 2000, 2009).

  1. Adaptive guidance for an aero-assisted boost vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.

    1988-01-01

    An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.

  2. Link prediction boosted psychiatry disorder classification for functional connectivity network

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  3. Boosting thermoelectric efficiency using time-dependent control

    PubMed Central

    Zhou, Hangbo; Thingna, Juzar; Hänggi, Peter; Wang, Jian-Sheng; Li, Baowen

    2015-01-01

    Thermoelectric efficiency is defined as the ratio of power delivered to the load of a device to the rate of heat flow from the source. Till date, it has been studied in presence of thermodynamic constraints set by the Onsager reciprocal relation and the second law of thermodynamics that severely bottleneck the thermoelectric efficiency. In this study, we propose a pathway to bypass these constraints using a time-dependent control and present a theoretical framework to study dynamic thermoelectric transport in the far from equilibrium regime. The presence of a control yields the sought after substantial efficiency enhancement and importantly a significant amount of power supplied by the control is utilised to convert the wasted-heat energy into useful-electric energy. Our findings are robust against nonlinear interactions and suggest that external time-dependent forcing, which can be incorporated with existing devices, provides a beneficial scheme to boost thermoelectric efficiency. PMID:26464021

  4. A mechatronic power boosting design for piezoelectric generators

    SciTech Connect

    Liu, Haili; Liang, Junrui Ge, Cong

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  5. Writing about testing worries boosts exam performance in the classroom.

    PubMed

    Ramirez, Gerardo; Beilock, Sian L

    2011-01-14

    Two laboratory and two randomized field experiments tested a psychological intervention designed to improve students' scores on high-stakes exams and to increase our understanding of why pressure-filled exam situations undermine some students' performance. We expected that sitting for an important exam leads to worries about the situation and its consequences that undermine test performance. We tested whether having students write down their thoughts about an upcoming test could improve test performance. The intervention, a brief expressive writing assignment that occurred immediately before taking an important test, significantly improved students' exam scores, especially for students habitually anxious about test taking. Simply writing about one's worries before a high-stakes exam can boost test scores.

  6. Defined three-dimensional microenvironments boost induction of pluripotency

    NASA Astrophysics Data System (ADS)

    Caiazzo, Massimiliano; Okawa, Yuya; Ranga, Adrian; Piersigilli, Alessandra; Tabata, Yoji; Lutolf, Matthias P.

    2016-03-01

    Since the discovery of induced pluripotent stem cells (iPSCs), numerous approaches have been explored to improve the original protocol, which is based on a two-dimensional (2D) cell-culture system. Surprisingly, nothing is known about the effect of a more biologically faithful 3D environment on somatic-cell reprogramming. Here, we report a systematic analysis of how reprogramming of somatic cells occurs within engineered 3D extracellular matrices. By modulating microenvironmental stiffness, degradability and biochemical composition, we have identified a previously unknown role for biophysical effectors in the promotion of iPSC generation. We find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodelling. We conclude that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.

  7. Metabolic engineering of resveratrol and other longevity boosting compounds.

    SciTech Connect

    Wang, Y; Chen, H; Yu, O

    2010-09-16

    Resveratrol, a compound commonly found in red wine, has attracted many attentions recently. It is a diphenolic natural product accumulated in grapes and a few other species under stress conditions. It possesses a special ability to increase the life span of eukaryotic organisms, ranging from yeast, to fruit fly, to obese mouse. The demand for resveratrol as a food and nutrition supplement has increased significantly in recent years. Extensive work has been carried out to increase the production of resveratrol in plants and microbes. In this review, we will discuss the biosynthetic pathway of resveratrol and engineering methods to heterologously express the pathway in various organisms. We will outline the shortcuts and limitations of common engineering efforts. We will also discuss briefly the features and engineering challenges of other longevity boosting compounds.

  8. Aerodynamics of a turbojet-boosted launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Riebe, G. D.; Taylor, A. H.

    1980-01-01

    Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle are presented. The success of this launch vehicle concept depends upon several novel applications of aerodynamic technology, particularly in the area of takeoff lift and minimum transonic drag requirements. The take-off mode stresses leading edge vortex lift generated in parallel by a complex arrangement of low aspect ratio booster and orbiter wings. Wind-tunnel tests on a representative model showed that this low-speed lift is sensitive to geometric arrangements of the booster-orbiter combination and is not predictable by standard analytic techniques. Transonic drag was also experimentally observed to be very sensitive to booster location; however, these drag levels were accurately predicted by standard farfield wave drag theory.

  9. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine.

    PubMed

    Sethiya, Neeraj Kumar; Nahata, Alok; Mishra, Sri Hari; Dixit, Vinod Kumar

    2009-11-01

    Shankhpushpi is an Ayurvedic drug used for its action on the central nervous system, especially for boosting memory and improving intellect. Quantum of information gained from Ayurvedic and other Sanskrit literature revealed the existence of four different plant species under the name of Shankhpushpi, which is used in various Ayurvedic prescriptions described in ancient texts, singly or in combination with other herbs. The sources comprise of entire herbs with following botanicals viz., Convulvulus pluricaulis Choisy. (Convulvulaceae), Evolvulus alsinoides Linn. (Convulvulaceae), Clitoria ternatea Linn. (Papilionaceae) and Canscora decussata Schult. (Gentianaceae). A review on the available scientific information in terms of pharmacognostical characteristics, chemical constituents, pharmacological activities, preclinical and clinical applications of controversial sources of Shankhpushpi is prepared with a view to review scientific work undertaken on Shankhpushpi. It may provide parameters of differentiation and permit appreciation of variability of drug action by use of different botanical sources.

  10. Buck-Buck- Boost Regulatr (B3R)

    NASA Astrophysics Data System (ADS)

    Mourra, Olivier; Fernandez, Arturo; Landstroem, Sven; Tonicello, Ferdinando

    2011-10-01

    In a satellite, the main function of a Power Conditioning Unit (PCU) is to manage the energy coming from several power sources (usually solar arrays and battery) and to deliver it continuously to the users in an appropriate form during the overall mission. The objective of this paper is to present an electronic switching DC-DC converter called Buck-Buck-Boost Regulator (B3R) that could be used as a modular and recurrent solution in a PCU for regulated or un- regulated 28Vsatellite power bus classes. The power conversion stages of the B3R topology are first described. Then theoretical equations and practical tests illustrate how the converter operates in term of power conversion, control loops performances and efficiency. The paper finally provides some examples of single point failure tolerant implementation using the B3R.

  11. Traction drive for cryogenic boost pump. [hydrogen oxygen rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, S.; Connelly, R. E.

    1981-01-01

    Two versions of a Nasvytis multiroller traction drive were tested in liquid oxygen for possible application as cryogenic boost pump speed reduction drives for advanced hydrogen-oxygen rocket engines. The roller drive, with a 10.8:1 reduction ratio, was successfully run at up to 70,000 rpm input speed and up to 14.9 kW (20 hp) input power level. Three drive assemblies were tested for a total of about three hours of which approximately one hour was at nominal full speed and full power conditions. Peak efficiency of 60 percent was determined. There was no evidence of slippage between rollers for any of the conditions tested. The ball drive, a version using balls instead of one row of rollers, and having a 3.25:1 reduction ratio, failed to perform satisfactorily.

  12. Measuring Intuition: Nonconscious Emotional Information Boosts Decision Accuracy and Confidence.

    PubMed

    Lufityanto, Galang; Donkin, Chris; Pearson, Joel

    2016-05-01

    The long-held popular notion of intuition has garnered much attention both academically and popularly. Although most people agree that there is such a phenomenon as intuition, involving emotionally charged, rapid, unconscious processes, little compelling evidence supports this notion. Here, we introduce a technique in which subliminal emotional information is presented to subjects while they make fully conscious sensory decisions. Our behavioral and physiological data, along with evidence-accumulator models, show that nonconscious emotional information can boost accuracy and confidence in a concurrent emotion-free decision task, while also speeding up response times. Moreover, these effects were contingent on the specific predictive arrangement of the nonconscious emotional valence and motion direction in the decisional stimulus. A model that simultaneously accumulates evidence from both physiological skin conductance and conscious decisional information provides an accurate description of the data. These findings support the notion that nonconscious emotions can bias concurrent nonemotional behavior-a process of intuition.

  13. Esophageal Cancer Dose Escalation Using a Simultaneous Integrated Boost Technique

    SciTech Connect

    Welsh, James; Palmer, Matthew B.; Ajani, Jaffer A.; Liao Zhongxing; Swisher, Steven G.; Hofstetter, Wayne L.; Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko

    2012-01-01

    Purpose: We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials: Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results: The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions: The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation.

  14. Boosted di-boson from a mixed heavy stop

    SciTech Connect

    Ghosh, Diptimoy

    2013-12-01

    The lighter mass eigenstate ($\\widetilde{t}_1$) of the two top squarks, the scalar superpartners of the top quark, is extremely difficult to discover if it is almost degenerate with the lightest neutralino ($\\widetilde{\\chi}_1^0$), the lightest and stable supersymmetric particle in the R-parity conserving supersymmetry. The current experimental bound on $\\widetilde{t}_1$ mass in this scenario stands only around 200 GeV. For such a light $\\widetilde{t}_1$, the heavier top squark ($\\widetilde{t}_2$) can also be around the TeV scale. Moreover, the high value of the higgs ($h$) mass prefers the left and right handed top squarks to be highly mixed allowing the possibility of a considerable branching ratio for $\\widetilde{t}_2 \\to \\widetilde{t}_1 h$ and $\\widetilde{t}_2 \\to \\widetilde{t}_1 Z$. In this paper, we explore the above possibility together with the pair production of $\\widetilde{t}_2$ $\\widetilde{t}_2^*$ giving rise to the spectacular di-boson + missing transverse energy final state. For an approximately 1 TeV $\\widetilde{t}_2$ and a few hundred GeV $\\widetilde{t}_1$ the final state particles can be moderately boosted which encourages us to propose a novel search strategy employing the jet substructure technique to tag the boosted $h$ and $Z$. The reconstruction of the $h$ and $Z$ momenta also allows us to construct the stransverse mass $M_{T2}$ providing an additional efficient handle to fight the backgrounds. We show that a 4--5$\\sigma$ signal can be observed at the 14 TeV LHC for $\\sim$ 1 TeV $\\widetilde{t}_2$ with 100 fb$^{-1}$ integrated luminosity.

  15. Radiosurgical boost for primary high-grade gliomas.

    PubMed

    Prisco, Flavio E; Weltman, Eduardo; de Hanriot, Rodrigo M; Brandt, Reynaldo A

    2002-04-01

    The purpose of this study was to retrospectively evaluate the survival of patients with high-grade gliomas treated with external beam radiotherapy with or without radiosurgical boost. From July 1993 to April 1998, 32 patients were selected, 15 of which received radiosurgery. Inclusion criteria were age > 18 years, histological confirmation of high-grade glioma, primary tumor treatment with curative intent, unifocal tumor and supratentorial location. All patients were found to be in classes III-VI, according to the recursive partitioning analysis proposed by the Radiation Therapy Oncology Group. The median interval between radiotherapy and radiosurgery was 5 weeks (range 1-13). Treatment volumes ranged from 2.9 to 70.3 cc (median 15.0 cc). Prescribed radiosurgery doses varied from 8.0 to 12.5 Gy (median 10.0 Gy). Radiosurgery and control groups were well balanced with respect to prognostic factor distributions. Median actuarial survival time in radiosurgery and control groups was 21.4 months and 11.6 months, respectively (p = 0.0254). Among patients with KPS > 80, median survival time was 11.0 months and 53.9 months in the control and radiosurgery groups, respectively (p = 0.0103). Radiosurgery was the single factor correlated with survival on Cox model analysis (p = 0.0362) and was associated with a 2.76 relative reduction in the risk of cancer death (95% confidence interval (CI) 1.07-7.13). Our results suggest that radiosurgery may confer a survival advantage for patients in RPA classes III-VI, especially for those with Karnofsky performance status >80. The definitive role of radiosurgical boost for patients with high-grade gliomas awaits the results of randomized trials.

  16. Transmutation of MA in the high flux thermal reactor

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Hu, Wenchao; Wang, Kai; Huang, Liming; Ouyang, Xiaoping; Tu, Jing; Zhu, Yangni

    2013-06-01

    We study the MA transmutation characteristics in the high flux thermal reactor, our calculation shows that different MA nuclides may have the drastically different effects on keff, Np-237, Am-241 and Am-243 decrease keff greatly, Cm-244 affects the keff slightly, but Cm-245 boosts the keff significantly. The MA nuclides actually can act as the burnable poisons in the thermal reactors. The SCALE simulation shows that after 300-day-exposure in high flux thermal reactor the disappearance rate of Np-237, Am-241 and Am-243 are 73.7%, 98.1% and 82.8% respectively. The SCALE simulation results also show that the total transmutation rate of MA nuclides by fission which include direct and indirect fission after 300-day-exposure in the high flux thermal reactor is 6.3%. The SCALE simulation indicates at least 44.2% MA nuclides transmute to plutonium isotopes by various reactions and 63% of the Pu-238 in the MOX fuel is consumed during 300-day-exposure in this reactor.

  17. Comparison of composite prostate radiotherapy plan doses with dependent and independent boost phases.

    PubMed

    Narayanasamy, Ganesh; Avila, Gabrielle; Mavroidis, Panayiotis; Papanikolaou, Niko; Gutierrez, Alonso; Baacke, Diana; Shi, Zheng; Stathakis, Sotirios

    2016-09-01

    Prostate cases commonly consist of dual phase planning with a primary plan followed by a boost. Traditionally, the boost phase is planned independently from the primary plan with the risk of generating hot or cold spots in the composite plan. Alternatively, boost phase can be planned taking into account the primary dose. The aim of this study was to compare the composite plans from independently and dependently planned boosts using dosimetric and radiobiological metrics. Ten consecutive prostate patients previously treated at our institution were used to conduct this study on the Raystation™ 4.0 treatment planning system. For each patient, two composite plans were developed: a primary plan with an independently planned boost and a primary plan with a dependently planned boost phase. The primary plan was prescribed to 54 Gy in 30 fractions to the primary planning target volume (PTV1) which includes prostate and seminal vesicles, while the boost phases were prescribed to 24 Gy in 12 fractions to the boost planning target volume (PTV2) that targets only the prostate. PTV coverage, max dose, median dose, target conformity, dose homogeneity, dose to OARs, and probabilities of benefit, injury, and complication-free tumor control (P+) were compared. Statistical significance was tested using either a 2-tailed Student's t-test or Wilcoxon signed-rank test. Dosimetrically, the composite plan with dependent boost phase exhibited smaller hotspots, lower maximum dose to the target without any significant change to normal tissue dose. Radiobiologically, for all but one patient, the percent difference in the P+ values between the two methods was not significant. A large percent difference in P+ value could be attributed to an inferior primary plan. The benefits of considering the dose in primary plan while planning the boost is not significant unless a poor primary plan was achieved.

  18. Ductal Carcinoma in Situ-The Influence of the Radiotherapy Boost on Local Control

    SciTech Connect

    Wong, Philip; Lambert, Christine; Agnihotram, Ramanakumar V.; David, Marc; Duclos, Marie; Freeman, Carolyn R.

    2012-02-01

    Purpose: Local recurrence (LR) of ductal carcinoma in situ (DCIS) is reduced by whole-breast irradiation after breast-conserving surgery (BCS). However, the benefit of adding a radiotherapy boost to the surgical cavity for DCIS is unclear. We sought to determine the impact of the boost on LR in patients with DCIS treated at the McGill University Health Centre. Methods and Materials: A total of 220 consecutive cases of DCIS treated with BCS and radiotherapy between January 2000 and December 2006 were reviewed. Of the patients, 36% received a radiotherapy boost to the surgical cavity. Median follow-up was 46 months for the boost and no-boost groups. Kaplan-Meier survival analyses and Cox regression analyses were performed. Results: Compared with the no-boost group, patients in the boost group more frequently had positive and <0.1-cm margins (48% vs. 8%) (p < 0.0001) and more frequently were in higher-risk categories as defined by the Van Nuys Prognostic (VNP) index (p = 0.006). Despite being at higher risk for LR, none (0/79) of the patients who received a boost experienced LR, whereas 8 of 141 patients who did not receive a boost experienced an in-breast LR (log-rank p = 0.03). Univariate analysis of prognostic factors (age, tumor size, margin status, histological grade, necrosis, and VNP risk category) revealed only the presence of necrosis to significantly correlate with LR (log-rank p = 0.003). The whole-breast irradiation dose and fractionation schedule did not affect LR rate. Conclusions: Our results suggest that the use of a radiotherapy boost improves local control in DCIS and may outweigh the poor prognostic effect of necrosis.

  19. Fast ion profile stiffness due to the resonance overlap of multiple Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Van Zeeland, M. A.; Heidbrink, W. W.

    2016-11-01

    Fast ion pressure profiles flattened by multiple Alfvén eigenmodes (AEs) are investigated for various neutral beam deposition powers in a multi-phase simulation, which is a combination of classical simulation and hybrid simulation for energetic particles interacting with a magnetohydrodynamic fluid. Monotonic degradation of fast ion confinement and fast ion profile stiffness is found with increasing beam deposition power. The confinement degradation and profile stiffness are caused by a sudden increase in fast ion transport flux brought about by AEs for fast ion pressure gradients above a critical value. The critical pressure gradient and the corresponding beam deposition power depend on the radial location. The fast ion pressure gradient stays moderately above the critical value, and the profiles of the fast ion pressure and fast ion transport flux spread radially outward from the inner region, where the beam is injected. It is found that the square root of the MHD fluctuation energy is proportional to the beam deposition power. Analysis of the time evolutions of the fast ion energy flux profiles reveals that intermittent avalanches take place with contributions from the multiple eigenmodes. Surface of section plots demonstrate that the resonance overlap of multiple eigenmodes accounts for the sudden increase in fast ion transport with increasing beam power. The critical gradient and critical beam power for the profile stiffness are substantially higher than the marginal stability threshold.

  20. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  1. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  2. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  3. FAST Construction Progress

    NASA Astrophysics Data System (ADS)

    Nan, R. D.; Zhang, H. Y.; Zhang, Y.; Yang, L.; Cai, W. J.; Liu, N.; Xie, J. T.; Zhang, S. X.

    2016-11-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. A unique karst depression in Guizhou province has been selected as the site to build an active reflector radio telescope with a diameter of 500 m and three outstanding aspects, which enables FAST to have a large sky coverage and the ability of observing astronomical targets with a high precision. Chinese Academy of Sciences and Guizhou province are in charge of FAST construction. The first light of the telescope was expected on September 25, 2016.

  4. Explosive instability and erupting flux tubes in a magnetized plasma

    PubMed Central

    Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.

    2015-01-01

    The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193

  5. Sausage Instabilities on top of Kinking Lengthening Current-Carrying Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; You, Setthivoine

    2015-11-01

    Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments involve fast topological change beyond MHD reconnection. Recent experiments suggest that hierarchies of instabilities coupling disparate plasma scales could be responsible for this fast topological change by accessing two-fluid and kinetic scales. This study will explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Current driven flux tubes evolve over a wide range of aspect ratios k and current to magnetic flux ratios λ . An analytical stability criterion and numerical investigations, based on applying Newcomb's variational approach to idealized magnetic flux tubes with core and skin currents, indicate a dependence of the stability boundaries on current profiles and overlapping kink and sausage unstable regions in the k - λ trajectory of the flux tubes. A triple electrode planar plasma gun (Mochi.LabJet) is designed to generate flux tubes with discrete core and skin currents. Measurements from a fast-framing camera and a high resolution magnetic probe are being assembled into stability maps of the k - λ space of flux tubes. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  6. Asymptotic domination of cold relativistic MHD winds by kinetic energy flux

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Li, Zhi-Yun

    1994-01-01

    We study the conditions which lead to the conversion of most Poynting flux into kinetic energy flux in cold, relativistic hydromagnetic winds. It is shown that plasma acceleration along a precisely radial flow is extremely inefficient due to the near cancellation of the toroidal magnetic pressure and tension forces. However, if the flux tubes in a flow diverge even slightly faster than radially, the fast magnetosonic point moves inward from infinity to a few times the light cylinder radius. Once the flow becomes supermagnetosonic, further divergence of the flux tubes beyond the fast point can accelerate the flow via the 'magnetic nozzle' effect, thereby further converting Poynting flux to kinetic energy flux. We show that the Grad-Shafranov equation admits a generic family of kinetic energy-dominated asymptotic wind solutions with finite total magnetic flux. The Poynting flux in these solutions vanishes logarithmically with distance. The way in which the flux surfaces are nested within the flow depends only on the ratio of angular velocity to poliodal 4-velocity as a function of magnetic flux. Radial variations in flow structure can be expressed in terms of a pressure boundary condition on the outermost flux surface, provided that no external toriodal field surrounds the flow. For a special case, we show explicitly how the flux surfaces merge gradually to their asymptotes. For flows confined by an external medium of pressure decreasing to zero at infinity we show that, depending on how fast the ambient pressure declines, the final flow state could be either a collimated jet or a wind that fills the entire space. We discuss the astrophysical implications of our results for jets from active galactic nuclei and for free pulsar winds such as that believed to power the Crab Nebula.

  7. Thermal flux transfer system

    NASA Technical Reports Server (NTRS)

    Freggens, R. A. (Inventor)

    1973-01-01

    A thermal flux transfer system for use in maintaining the thrust chamber of an operative reaction motor at given temperatures is described. The system is characterized by an hermetically sealed chamber surrounding a thrust chamber to be cooled, with a plurality of parallel, longitudinally spaced, disk-shaped wick members formed of a metallic mesh and employed in delivering a working fluid, in its liquid state, radially toward the thrust chamber and delivering the working fluid, in its vapor state, away from the nozzle for effecting a cooling of the nozzle, in accordance with known principles of an operating heat pipe.

  8. High flux reactor

    DOEpatents

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  9. A MODEL OF CORONAL STREAMERS WITH UNDERLYING FLUX ROPES

    SciTech Connect

    Cottaar, M.; Fan, Y.

    2009-10-10

    We present global two-dimensional axisymmetric isothermal MHD simulations of the dynamic evolution of a coronal helmet streamer, driven at the lower boundary by the emergence of a twisted flux rope. By varying both the detached toroidal and poloidal fluxes emerged into the corona, but fixing the normal flux distribution at the surface at the end of the emergence, we obtain solutions that either settle to a new steady state of a stable helmet streamer containing a flux rope, or result in a disruption of the helmet with the underlying flux rope being expelled in a coronal mass ejection (CME)-like eruption. In all of the cases studied, we find that the transition from a stable to an eruptive state takes place at a magnetic energy that is very close to the Aly open field energy. Furthermore, we find that the transition from a stable to an eruptive end state does not occur at a single critical value of the total relative magnetic helicity, but depends on the profile of the underlying flux rope. Cases where the detached flux rope contains a higher amount of self-helicity, i.e., higher internal twist or detached poloidal flux, are found to become eruptive at a significantly lower total helicity. For the eruptive cases, the detached flux rope after emergence first rises quasi-statically due to a gradual opening of the field lines at the edge of the streamer and a slow reconnection below the flux rope, which continues to slowly increase the amount of the detached flux. This decreases the downward magnetic tension on the flux rope. The dynamic eruption is initiated when the magnetic pressure gradient no longer decreases fast enough to balance the decrease in the magnetic tension. Later rapid reconnections below the flux rope are important for accelerating the flux rope. For the stable helmets, we find that no cavities are formed due to the simplifying assumption of isothermal energetics and the uniform density lower boundary condition. However during the eruption we see the

  10. CyberKnife Boost for Patients with Cervical Cancer Unable to Undergo Brachytherapy.

    PubMed

    Haas, Jonathan Andrew; Witten, Matthew R; Clancey, Owen; Episcopia, Karen; Accordino, Diane; Chalas, Eva

    2012-01-01

    Standard radiation therapy for patients undergoing primary chemosensitized radiation for carcinomas of the cervix usually consists of external beam radiation followed by an intracavitary brachytherapy boost. On occasion, the brachytherapy boost cannot be performed due to unfavorable anatomy or because of coexisting medical conditions. We examined the safety and efficacy of using CyberKnife stereotactic body radiotherapy (SBRT) as a boost to the cervix after external beam radiation in those patients unable to have brachytherapy to give a more effective dose to the cervix than with conventional external beam radiation alone. Six consecutive patients with anatomic or medical conditions precluding a tandem and ovoid boost were treated with combined external beam radiation and CyberKnife boost to the cervix. Five patients received 45 Gy to the pelvis with serial intensity-modulated radiation therapy boost to the uterus and cervix to a dose of 61.2 Gy. These five patients received an SBRT boost to the cervix to a dose of 20 Gy in five fractions of 4 Gy each. One patient was treated to the pelvis to a dose of 45 Gy with an external beam boost to the uterus and cervix to a dose of 50.4 Gy. This patient received an SBRT boost to the cervix to a dose of 19.5 Gy in three fractions of 6.5 Gy. Five percent volumes of the bladder and rectum were kept to ≤75 Gy in all patients (i.e., V75 Gy ≤ 5%). All of the patients remain locally controlled with no evidence of disease following treatment. Grade 1 diarrhea occurred in 4/6 patients during the conventional external beam radiation. There has been no grade 3 or 4 rectal or bladder toxicity. There were no toxicities observed following SBRT boost. At a median follow-up of 14 months, CyberKnife radiosurgical boost is well tolerated and efficacious in providing a boost to patients with cervix cancer who are unable to undergo brachytherapy boost. Further follow-up is required to see if these results remain

  11. A simulated Antarctic fast ice ecosystem

    NASA Technical Reports Server (NTRS)

    Arrigo, Kevin R.; Kremer, James N.; Sullivan, Cornelius W.

    1993-01-01

    A 2D numerical ecosystem model of Antarctic land fast ice is developed to elucidate the primary production with the Antarctic sea ice zone. The physical component employs atmospheric data to simulate congelation ice growth, initial brine entrapment, desalination, and nutrient flux. The biological component is based on the concept of a maximum temperature-dependent algal growth rate which is reduced by limitations imposed from insufficient light or nutrients, as well as suboptimal salinity. Preliminary simulations indicate that, during a bloom, microalgae are able to maintain their vertical position relative to the lower congelation ice margin and are not incorporated into the crystal matrix as the ice sheet thickens. It is inferred that land fast sea ice contains numerous microhabitats that are functionally distinct based upon the unique set of processes that control microalgal growth and accumulation within each.

  12. Fast magnetic reconnection with large guide fields

    DOE PAGES

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; ...

    2015-01-09

    We domonstrate, using two-fluid simulations, that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. Moreover, we verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. The rate is therefore independentmore » of the DR physics and is in good agreement with kinetic results.« less

  13. FAST joins Breakthrough programme

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-11-01

    The 180m Five-hundred-meter Aperture Spherical radio Telescope (FAST) - the world's largest single-aperture radio receiver - has become part of the Breakthrough Listen programme, which launched in July 2015 to look for intelligent life beyond Earth.

  14. Pneumococcal Disease Fast Facts

    MedlinePlus

    ... Home About Pneumococcal Types of Infection Risk Factors & Transmission Symptoms & Complications Diagnosis & Treatment Prevention Photos Fast Facts Pneumococcal Vaccination For Clinicians Streptococcus pneumoniae Transmission Clinical Features Risk Factors Diagnosis & Management Prevention For ...

  15. Calorie count - Fast food

    MedlinePlus

    ... count - fast food FOOD ITEM SERVING SIZE CALORIES Breakfast Foods Dunkin Donuts Egg White Veggie Wrap 1 ... Cheese Biscuit Sandwich 1 sandwich 510 BK Ultimate Breakfast Platter 1 platter 1190 McDonalds Fruit 'n Yogurt ...

  16. Fast electromigration crack in nanoscale aluminum film

    NASA Astrophysics Data System (ADS)

    Emelyanov, O. A.; Ivanov, I. O.

    2014-08-01

    The current-induced breakage of 20 nm thin aluminum layers deposited onto capacitor grade polypropylene (PP) films is experimentally studied. Biexponential current pulses of different amplitude (10-15 A) and duration (0.1-1 μs) were applied to the samples. Breakage occurred after fast development of electromigrating ˜200 nm-wide cracks with initial propagation velocity of ˜1 m/s under a high current density of ˜1012 A/m2. The cracks stopped when their lengths reached 250-450 μm. This behavior is explained by the balance of electromigration and stress-induced atomic fluxes.

  17. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  18. First Reconnected Flux Tubes

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Lapenta, G.; Newman, D. L.; Markidis, S.; Spanswick, E. L.; Baker, J. B.; Clausen, L. B.; Larson, D. E.; Ergun, R. E.; Frey, H. U.; Singer, H. J.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Wolfgang, B.

    2011-12-01

    THEMIS observations from the magnetic equator (the equatorial plane) in the near-earth tail reveal a great amount of information regarding the plasma environment in the vicinity of the first reconnected flux tubes (a subgroup of dipolarization fronts). Two sequential observations of dipolarization fronts are analyzed in detail using three of the THEMIS spacecraft. Particle acceleration to high energies (>50 keV) is observed together with a void region interpreted as a region to which the full electron distribution has incomplete access. Whistler waves, which are observed, could be driven by one of the two electron populations located in the wake of the first reconnected flux tubes. The detailed observations are compared with 2D and 3D implicit kinetic simulation of reconnection events. This presentation focuses on the similarity between observation and simulation. One key aspect of this presentation is a demonstration of how different the signature is when observing at vs off the magnetic equator, since most observations in the literature (unlike the observations presented here) are from off the equator. For this event, additional spacecraft and ground observations have been analyzed, which demonstrate that a reconfiguration of the magnetosphere is taking place. However, the focus of this presentation is on the small scale (<~10 di), rather than the large scale (~20 Re).

  19. Computing the Flux Footprint

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.

    2015-07-01

    We address the flux footprint for measurement heights in the atmospheric surface layer, comparing eddy diffusion solutions with those furnished by the first-order Lagrangian stochastic (or "generalized Langevin") paradigm. The footprint given by Langevin models differs distinctly from that given by the random displacement model (i.e. zeroth-order Lagrangian stochastic model) corresponding to its "diffusion limit," which implies that a well-founded theory of the flux footprint must incorporate the turbulent velocity autocovariance. But irrespective of the choice of the eddy diffusion or Langevin class of model as basis for the footprint, tuning relative to observations is ultimately necessary. Some earlier treatments assume Monin-Obukhov profiles for the mean wind and eddy diffusivity and that the effective Schmidt number (ratio of eddy viscosity to the tracer eddy diffusivity) in the neutral limit , while others calibrate the model to the Project Prairie Grass dispersion trials. Because there remains uncertainty as to the optimal specification of (or a related parameter in alternative theories, e.g. the Kolmogorov coefficient in Langevin models) it is recommended that footprint models should be explicit in this regard.

  20. Discovery with FAST

    NASA Astrophysics Data System (ADS)

    Wilkinson, P.

    2016-02-01

    FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.

  1. Capture-Gated Fast Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mumm, H. P.; Abdurashitov, J. N.; Beise, E. J.; Breuer, H.; Gavrin, V. N.; Heimbach, C. R.; Langford, T. J.; Mendenhall, M.; Nico, J. S.; Shikhin, A. A.

    2015-10-01

    We present recent developments in fast neutron detection using segmented spectrometers based on the principle of capture-gating. Our approach employs an organic scintillator to detect fast neutrons through their recoil interaction with protons in the scintillator. The neutrons that thermalize and are captured produce a signal indicating that the event was due to a neutron recoil and that the full energy of the neutron was deposited. The delayed neutron capture also serves to discriminate against uncorrelated background events. The segmentation permits reconstruction of the initial neutron energy despite the nonlinear response of the scintillator. We have constructed spectrometers using both He-3 proportional counters and Li-6 doping as capture agents in plastic and liquid organic scintillators. We discuss the operation of the spectrometers for the measurement of low levels of fast neutrons for several applications, including the detection of very low-activity neutron sources and the characterization of the flux and spectrum of fast neutrons at the Earth's surface and in the underground environment.

  2. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.

    PubMed

    Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin

    2008-09-01

    We propose a novel method for the automatic detection and measurement of fetal anatomical structures in ultrasound images. This problem offers a myriad of challenges, including: difficulty of modeling the appearance variations of the visual object of interest, robustness to speckle noise and signal dropout, and large search space of the detection procedure. Previous solutions typically rely on the explicit encoding of prior knowledge and formulation of the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are constrained by the validity of the underlying assumptions and usually are not enough to capture the complex appearances of fetal anatomies. We propose a novel system for fast automatic detection and measurement of fetal anatomies that directly exploits a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns automatically to distinguish between the appearance of the object of interest and background by training a constrained probabilistic boosting tree classifier. This system is able to produce the automatic segmentation of several fetal anatomies using the same basic detection algorithm. We show results on fully automatic measurement of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), humerus length (HL), and crown rump length (CRL). Notice that our approach is the first in the literature to deal with the HL and CRL measurements. Extensive experiments (with clinical validation) show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer.

  3. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.

    PubMed

    Chen, Gen; Yan, Litao; Luo, Hongmei; Guo, Shaojun

    2016-09-01

    Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications.

  4. Modeling a multilevel boost converter using SiC components for PV application

    NASA Astrophysics Data System (ADS)

    Alateeq, Ayoob S.; Almalaq, Yasser A.; Matin, Mohammad A.

    2016-09-01

    This paper discusses a DC-DC multilevel boost with wide bandgap components for PV applications. In the PV system, the multilevel boost converter is advisable to be used over the conventional boost converter because of the high ratio conversion. The multilevel boost converter is designed with one inductor, 2N-1 silicon carbide (SiC) schottky diodes, 2N-1 capacitors and one SiC MOSFET where N is the number of levels. Inserting SiC components in the design helps to maintain the temperature effect that could cause a high power loss. Most function of using a multilevel boost converter is to produce a high output voltage without using either a power transformer or a coupled inductor. Achieving a high gain output in the multilevel boost converter depends on the level of the converter and the switching duty cycle. The demonstrated design is a multilevel boost converter supplies from 220 V to rate 2 KW power. The switching frequency is 100 KHz and the output voltage of 4-level is 3.5 KV. Several values of temperatures are applicable to the system and the effect of changing the temperature on efficiency is studied. The developed design is simulated by using a LTspice software and the results are discussed.

  5. Boost Your High: Cigarette Smoking to Enhance Alcohol and Drug Effects among Southeast Asian American Youth

    PubMed Central

    Lipperman-Kreda, Sharon; Lee, Juliet P.

    2011-01-01

    The current study examined: 1) whether using cigarettes to enhance the effects of other drugs (here referred to as “boosting”) is a unique practice related to blunts (i.e., small cheap cigars hollowed out and filled with cannabis) or marijuana use only; 2) the prevalence of boosting among drug-using young people; and 3) the relationship between boosting and other drug-related risk behaviors. We present data collected from 89 Southeast Asian American youth and young adults in Northern California (35 females). 72% respondents reported any lifetime boosting. Controlling for gender, results of linear regression analyses show a significant positive relationship between frequency of boosting to enhance alcohol high and number of drinks per occasion. Boosting was also found to be associated with use of blunts but not other forms of marijuana and with the number of blunts on a typical day. The findings indicate that boosting may be common among drug-using Southeast Asian youths. These findings also indicate a need for further research on boosting as an aspect of cigarette uptake and maintenance among drug- and alcohol-involved youths. PMID:22522322

  6. A novel sparse boosting method for crater detection in the high resolution planetary image

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Yang, Gang; Guo, Lei

    2015-09-01

    Impact craters distributed on planetary surface become one of the main barriers during the soft landing of planetary probes. In order to accelerate the crater detection, in this paper, we present a new sparse boosting (SparseBoost) method for automatic detection of sub-kilometer craters. The SparseBoost method integrates an improved sparse kernel density estimator (RSDE-WL1) into the Boost algorithm and the RSDE-WL1 estimator is achieved by introducing weighted l1 penalty term into the reduced set density estimator. An iterative algorithm is proposed to implement the RSDE-WL1. The SparseBoost algorithm has the advantage of fewer selected features and simpler representation of the weak classifiers compared with the Boost algorithm. Our SparseBoost based crater detection method is evaluated on a large and high resolution image of Martian surface. Experimental results demonstrate that the proposed method can achieve less computational complexity in comparison with other crater detection methods in terms of selected features.

  7. Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer.

    PubMed

    Demiral, S; Beyzadeoglu, M; Uysal, B; Oysul, K; Kahya, Y Elcim; Sager, O; Dincoglan, F; Gamsiz, H; Dirican, B; Surenkok, S

    2013-01-01

    The purpose of this study is to evaluate the use of linear accelerator (LINAC)-based stereotactic body radiotherapy (SBRT) boost with multileaf collimator technique after pelvic radiotherapy (RT) in patients with endometrial cancer. Consecutive patients with endometrial cancer treated using LINAC-based SBRT boost after pelvic RT were enrolled in the study. All patients had undergone surgery including total abdominal hysterectomy and bilateral salpingo-oophorectomy ± pelvic/paraortic lymphadenectomy before RT. Prescribed external pelvic RT dose was 45 Gray (Gy) in 1.8 Gy daily fractions. All patients were treated with SBRT boost after pelvic RT. The prescribed SBRT boost dose to the upper two thirds of the vagina including the vaginal vault was 18 Gy delivered in 3 fractions with 1-week intervals. Gastrointestinal and genitourinary toxicity was assessed using the Common Terminology Criteria for Adverse Events version 3 (CTCAE v3).Between April 2010 and May 2011, 18 patients with stage I-III endometrial cancer were treated with LINAC-based SBRT boost after pelvic RT. At a median follow-up of 24 (8-26) months with magnetic resonance imaging (MRI) and gynecological examination, local control rate of the study group was 100 % with negligible acute and late toxicity.LINAC-based SBRT boost to the vaginal cuff is a feasible gynecological cancer treatment modality with excellent local control and minimal toxicity that may replace traditional brachytherapy boost in the management of endometrial cancer.

  8. THE INSIDIOUS BOOSTING OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS IN INTERMEDIATE-AGE MAGELLANIC CLOUD CLUSTERS

    SciTech Connect

    Girardi, Léo; Marigo, Paola; Bressan, Alessandro; Rosenfield, Philip

    2013-11-10

    In the recent controversy about the role of thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate, to various extents, the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect, linked to the physics of stellar interiors, that in all probability is the main cause of this conundrum. As soon as stellar populations intercept the ages at which red giant branch stars first appear, a sudden and abrupt change in the lifetime of the core He-burning phase causes a temporary 'boost' in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of ∼2. The boost occurs for turn-off masses of ∼1.75 M{sub ☉}, just in the proximity of the expected peak in the TP-AGB lifetimes (for MC metallicities), and for ages of ∼1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. As we discuss in this paper, the identification of this evolutionary effect brings about three main consequences. First, we claim that present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters are biased toward too large values. Second, the relative TP-AGB contribution of single-burst populations falling in

  9. Impact of the Radiation Boost on Outcomes After Breast-Conserving Surgery and Radiation

    SciTech Connect

    Murphy, Colin; Anderson, Penny R.; Li Tianyu; Bleicher, Richard J.; Sigurdson, Elin R.; Goldstein, Lori J.; Swaby, Ramona; Denlinger, Crystal; Dushkin, Holly; Nicolaou, Nicos; Freedman, Gary M.

    2011-09-01

    Purpose: We examined the impact of radiation tumor bed boost parameters in early-stage breast cancer on local control and cosmetic outcomes. Methods and Materials: A total of 3,186 women underwent postlumpectomy whole-breast radiation with a tumor bed boost for Tis to T2 breast cancer from 1970 to 2008. Boost parameters analyzed included size, energy, dose, and technique. Endpoints were local control, cosmesis, and fibrosis. The Kaplan-Meier method was used to estimate actuarial incidence, and a Cox proportional hazard model was used to determine independent predictors of outcomes on multivariate analysis (MVA). The median follow-up was 78 months (range, 1-305 months). Results: The crude cosmetic results were excellent in 54%, good in 41%, and fair/poor in 5% of patients. The 10-year estimate of an excellent cosmesis was 66%. On MVA, independent predictors for excellent cosmesis were use of electron boost, lower electron energy, adjuvant systemic therapy, and whole-breast IMRT. Fibrosis was reported in 8.4% of patients. The actuarial incidence of fibrosis was 11% at 5 years and 17% at 10 years. On MVA, independent predictors of fibrosis were larger cup size and higher boost energy. The 10-year actuarial local failure was 6.3%. There was no significant difference in local control by boost method, cut-out size, dose, or energy. Conclusions: Likelihood of excellent cosmesis or fibrosis are associated with boost technique, electron energy, and cup size. However, because of high local control and rare incidence of fair/poor cosmesis with a boost, the anatomy of the patient and tumor cavity should ultimately determine the necessary boost parameters.

  10. Confinement and dynamics of neutral beam injected fast ions in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Liu, D.; Almagri, F.; Anderson, J. K.; den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Fiksel, G.; Deichuli, P.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Stupishin, N.; Andre, R.; McCune, D.

    2010-11-01

    The new 1MW neutral beam injector (97% H, 3% D) on MST provides a good test-bed for study of fast ions in the RFP. Analysis of the D-D fusion neutron flux decay at beam turn-off reveals that the confinement time of the fast ions is at least 10 ms, ten-fold larger than the thermal conferment times for particles and energy in standard stochastic plasmas. Also, the fast ion confinement increases with magnetic field strength. Dependence of fast ion confinement on plasma parameters, beam energy, and injection direction will be characterized and compared with TRANSP simulations. In addition, an advanced neutral particle analyzer and a prototype of fast ion charge exchange spectroscopy are under construction to measure neutralized fast ions and induced Doppler-shifted Hα light, respectively, thereby resolving fast ion density and energy distribution. Initial measurements of fast-ion dynamics during magnetic reconnection events will be presented.

  11. Magnetic Flux Reconstruction Methods for Shaped Tokamaks

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Wa.

    The use of a variational method permits the Grad -Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a pararmeterization of the plasma boundary and the current profile (p^' and FF^' functions). We treat the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. We found that the matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green's function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle (60) provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. We found that the performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package have been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perceptron neural network as a interface, and the volume integration of plasma current density using Green's functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising. Also, we found that some plasmas in the tokamak Alcator C-Mod lie

  12. Retroperitoneal Sarcoma (RPS) High Risk Gross Tumor Volume Boost (HR GTV Boost) Contour Delineation Agreement Among NRG Sarcoma Radiation and Surgical Oncologists

    PubMed Central

    Baldini, Elizabeth H.; Bosch, Walter; Kane, John M.; Abrams, Ross A.; Salerno, Kilian E.; Deville, Curtiland; Raut, Chandrajit P.; Petersen, Ivy A.; Chen, Yen-Lin; Mullen, John T.; Millikan, Keith W.; Karakousis, Giorgos; Kendrick, Michael L.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose Curative intent management of retroperitoneal sarcoma (RPS) requires gross total resection. Preoperative radiotherapy (RT) often is used as an adjuvant to surgery, but recurrence rates remain high. To enhance RT efficacy with acceptable tolerance, there is interest in delivering “boost doses” of RT to high-risk areas of gross tumor volume (HR GTV) judged to be at risk for positive resection margins. We sought to evaluate variability in HR GTV boost target volume delineation among collaborating sarcoma radiation and surgical oncologist teams. Methods Radiation planning CT scans for three cases of RPS were distributed to seven paired radiation and surgical oncologist teams at six institutions. Teams contoured HR GTV boost volumes for each case. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results HRGTV boost volume contour agreement between the seven teams was “substantial” or “moderate” for all cases. Agreement was best on the torso wall posteriorly (abutting posterior chest abdominal wall) and medially (abutting ipsilateral para-vertebral space and great vessels). Contours varied more significantly abutting visceral organs due to differing surgical opinions regarding planned partial organ resection. Conclusions Agreement of RPS HRGTV boost volumes between sarcoma radiation and surgical oncologist teams was substantial to moderate. Differences were most striking in regions abutting visceral organs, highlighting the importance of collaboration between the radiation and surgical oncologist for “individualized” target delineation on the basis of areas deemed at risk and planned resection. PMID:26018727

  13. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  14. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small

  15. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Bruno, Cy

    2012-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single

  16. Electronic Reliability and the Environmental Thermal Neutron Flux

    DTIC Science & Technology

    2007-11-02

    several Californium sources of varying strengths. The room is ten by ten by three meters. It is below ground with concrete walls. In a high flux...desirable for calibrating the system. Californium -252 is a self-fissioning fast neutron source, which can be moderated to produce thermal neutrons...NIST has several Californium sources with strengths as high as 200 mrem/h at one meter. The Cf sources are stored below the floor for the safety

  17. Flux effect analysis in WWER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kryukov, A.; Blagoeva, D.; Debarberis, L.

    2013-11-01

    The results of long term research programme concerning the determination of irradiation embrittlement dependence on fast neutron flux for WWER-440 reactor pressure vessel steels before and after annealing are presented in this paper. The study of flux effect was carried out on commercial WWER-440 steels which differ significantly in phosphorous (0.013-0.036 wt%) and copper (0.08-0.20 wt%) contents. All specimens were irradiated in surveillance channel positions under similar conditions at high ˜4 × 1012 сm-2 s-1 and low ˜6 × 1011 сm-2 s-1 fluxes (E > 0.5 MeV) at a temperature of 270 °С. The radiation embrittlement was evaluated by transition temperature shift on the basis of Charpy specimens test results. In case of low flux, the measured Tk shifts could be 25-50 °C bigger than the Tk shifts obtained from high flux data. A significant flux effect is observed in WWER-440 reactor pressure vessel steels with higher copper content (>0.13 wt%).

  18. Optimal fluxes and Reynolds stresses

    NASA Astrophysics Data System (ADS)

    Jiménez, Javier

    2016-12-01

    It is remarked that fluxes in conservation laws, such as the Reynolds stresses in the momentum equation of turbulent shear flows, or the spectral energy flux in isotropic turbulence, are only defined up to an arbitrary solenoidal field. While this is not usually significant for long-time averages, it becomes important when fluxes are modelled locally in large-eddy simulations, or in the analysis of intermittency and cascades. As an example, a numerical procedure is introduced to compute fluxes in scalar conservation equations in such a way that their total integrated magnitude is minimised. The result is an irrotational vector field that derives from a potential, thus minimising sterile flux `circuits'. The algorithm is generalised to tensor fluxes and applied to the transfer of momentum in a turbulent channel. The resulting instantaneous Reynolds stresses are compared with their traditional expressions, and found to be substantially different.

  19. Fast Ion Transport in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Capecchi, W.; Kim, J.; Sears, S. H.; Egedal, J.

    2016-10-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The magnetic topology of the RFP establishes guiding center drifts along flux surfaces, resulting in naturally well-confined fast ions. Past experiments reveal reduced confinement and a redistribution of fast ions with beam-driven instabilities or transition to a 3D equilibrium state. A fast ion transport model characterized by a temporally and spatially dependent diffusion profile describes the fast ion evolution. The diffusion coefficient varies as the square of the measured mode amplitude, and the width is inferred from comparison with correlated density fluctuations. In studying multiple interacting modes, the model reproduces the dynamic NPA-measured 20 % drop in core fast ion concentration. In the case of long-lived frequency chirping modes, there is a consistent time evolution of the fast ion distribution and measured mode frequency on a spatially varying Alfven continuum. Additional studies probe the dynamics of energetic particle modes (EPMs) during the growth of the core-localized kink mode and the rapid loss of fast ion confinement as a transition to a 3D equilibrium occurs. This research is supported by US DOE.

  20. Measuring Fast Ion Losses in a Reversed Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.

    2015-11-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The RFP's weak toroidal field, strong magnetic shear, and ability to enter a 3D state provide a wide range of dynamics to study fast ions. Core-localized, 25 keV fast ions are sourced into MST by a tangentially injected hydrogen/deuterium neutral beam. Neutral particle analysis and measured fusion neutron flux indicate enhanced fast ion transport in the plasma core. Past experiments point to a dynamic loss of fast ions associated with the RFP's transition to a 3D state and with beam-driven, bursting magnetic modes. Consequently, fast ion transport and losses in the RFP have garnered recent attention. Valuable information on fast-ion loss, such as energy and pitch distributions, are sought to provide a better understanding of the transport mechanisms at hand. We have constructed and implemented two fast ion loss detectors (FILDs) for use on MST. The FILDs have two, independent, design concepts: collecting particles as a function of v⊥ or with pitch greater than 0.8. In this work, we present our preliminary findings and results from our FILDs on MST. This research is supported by US DOE.

  1. Fast wave current drive

    NASA Astrophysics Data System (ADS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Experiments on the fast wave in the range of high ion cyclotron harmonics in the ACT-1 device show that current drive is possible with the fast wave just as it is for the lower hybrid wave, except that it is suitable for higher plasma densities. A 140° loop antenna launched the high ion cyclotron harmonic fast wave [ω/Ω=O(10)] into a He+ plasma with ne≂4×1012 cm-3 and B=4.5 kG. Probe and magnetic loop diagnostics and FIR laser scattering confirmed the presence of the fast wave, and the Rogowski loop indicated that the circulating plasma current increased by up to 40A with 1 kW of coupled power, which is comparable to lower hybrid current drive in the same device with the same unidirectional fast electron beam used as the target for the rf. A phased antenna array would be used for FWCD in a tokamak without the E-beam.

  2. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Sen, Manibrata

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions, focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra of νe and bar nue. Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.

  3. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  4. Boosting productivity: a framework for professional/amateur collaborative teamwork

    NASA Astrophysics Data System (ADS)

    Al-Shedhani, Saleh S.

    2002-11-01

    As technology advances, remote operation of telescopes has paved the way for joint observational projects between Astronomy clubs. Equipped with a small telescope, a standard CCD, and a networked computer, the observatory can be set up to carry out several photometric studies. However, most club members lack the basic training and background required for such tasks. A collaborative network between professionals and amateurs is proposed to utilize professional know-how and amateurs' readiness for continuous observations. Working as a team, various long-term observational projects can be carried out using small telescopes. Professionals can play an important role in raising the standards of astronomy clubs via specialized training programs for members on how to use the available technology to search/observe certain events (e.g. supernovae, comets, etc.). Professionals in return can accumulate a research-relevant database and can set up an early notification scheme based on comparative analyses of the recently-added images in an online archive. Here we present a framework for the above collaborative teamwork that uses web-based communication tools to establish remote/robotic operation of the telescope, and an online archive and discussion forum, to maximize the interactions between professionals and amateurs and to boost the productivity of small telescope observatories.

  5. The dark matter annihilation boost from low-temperature reheating

    NASA Astrophysics Data System (ADS)

    Erickcek, Adrienne L.

    2015-11-01

    The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abundance without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.

  6. Fault diagnosis algorithm based on switching function for boost converters

    NASA Astrophysics Data System (ADS)

    Cho, H.-K.; Kwak, S.-S.; Lee, S.-H.

    2015-07-01

    A fault diagnosis algorithm, which is necessary for constructing a reliable power conversion system, should detect fault occurrences as soon as possible to protect the entire system from fatal damages resulting from system malfunction. In this paper, a fault diagnosis algorithm is proposed to detect open- and short-circuit faults that occur in a boost converter switch. The inductor voltage is abnormally kept at a positive DC value during a short-circuit fault in the switch or at a negative DC value during an open-circuit fault condition until the inductor current becomes zero. By employing these abnormal properties during faulty conditions, the inductor voltage is compared with the switching function to detect each fault type by generating fault alarms when a fault occurs. As a result, from the fault alarm, a decision is made in response to the fault occurrence and the fault type in less than two switching time periods using the proposed algorithm constructed in analogue circuits. In addition, the proposed algorithm has good resistivity to discontinuous current-mode operation. As a result, this algorithm features the advantages of low cost and simplicity because of its simple analogue circuit configuration.

  7. Heterodyning Time Resolution Boosting for Velocimetry and Reflectivity Measurements

    SciTech Connect

    Erskine, D J

    2004-08-02

    A theoretical technique is described for boosting the temporal resolving power by several times, of detectors such as streak cameras in experiments that measure light reflected from or transmitted through a target, including velocity interferometer (VISAR) measurements. This is a means of effectively increasing the number of resolvable time bins in a streak camera record past the limit imposed by input slit width and blur on the output phosphor screen. The illumination intensity is modulated sinusoidally at a frequency similar to the limiting time response of the detector. A heterodyning effect beats the high frequency science signal down a lower frequency beat signal, which is recorded together with the conventional science signal. Using 3 separate illuminating channels having different phases, the beat term is separated algebraically from the conventional signal. By numerically reversing the heterodyning, and combining with the ordinary signal, the science signal can be reconstructed to better effective time resolution than the detector used alone. The effective time resolution can be approximately halved for a single modulation frequency, and further decreased inversely proportional to the number of independent modulation frequencies employed.

  8. Boosting the performance of red PHOLEDs by exciton harvesting

    NASA Astrophysics Data System (ADS)

    Chang, Y.-L.; Wang, Z. B.; Helander, M. G.; Qiu, J.; Lu, Z. H.

    2012-09-01

    Significant development has been made on phosphorescent organic light emitting diodes (PHOLEDs) over the past decade, which eventually resulted in the commercialization of widely distributed active-matrix organic light emitting diode displays for mobile phones. However, higher efficiency PHOLEDs are still needed to further reduce the cost and lower the power consumption for general lighting and LED backlight applications. In particular, red PHOLEDs currently have in general the lowest efficiencies among the three primary colors, due most likely to the energy-gap law. Therefore, a number of groups have of made use of various device configurations, including insertion of a carrier blocking or exciton confining layer, doping the transport layers, as well as employing multiple emissive zone structures to improve the device efficiency. However, these approaches are rather inconvenient for commercial applications. In this work, we have developed a simpler way to boost the performance of red PHOLEDs by incorporating an exciton harvesting green emitter, which transfers a large portion of the energy to the co-deposited red emitter. A high external quantum efficiency (EQE) of 20.6% was achieved, which is among the best performances for red PHOLEDs.

  9. Memory boosting effect of Citrus limon, Pomegranate and their combinations.

    PubMed

    Riaz, Azra; Khan, Rafeeq Alam; Algahtani, Hussein A

    2014-11-01

    Memory is greatly influenced by factors like food, stress and quality of sleep, hence present study was designed to evaluate the effect of Citrus limon and Pomegranate juices on memory of mice using Harvard Panlab Passive Avoidance response apparatus controlled through LE2708 Programmer. Passive avoidance is fear-motivated tests used to assess short or long-term memory of small animals, which measures latency to enter into the black compartment. Animals at MCLD showed highly significant and significant increase in latency to enter into the black compartment after 3 and 24 hours respectively than control, animals at HCLD showed significant increase in latency only after 3hours. Animals both at low and moderate doses of pomegranate showed significant increase in test latency after 3 hours, while animals at high dose showed highly significant and significant increase in latency after 3 and 24 hours respectively. There was highly significant and significant increase in latency in animals at CPJ-1 combination after 3 and 24 hours respectively; however animals received CPJ-2 combination showed significant increase in latency only after 3 hours as compare to control. These results suggest that Citrus limon and Pomegranate has phytochemicals and essential nutrients which boost memory, particularly short term memory. Hence it may be concluded that flavonoids in these juices may be responsible for memory enhancing effects and a synergistic effect is observed by CPJ-1 and CPJ-2 combinations.

  10. Massage-like stroking boosts the immune system in mice

    PubMed Central

    Major, Benjamin; Rattazzi, Lorenza; Brod, Samuel; Pilipović, Ivan; Leposavić, Gordana; D’Acquisto, Fulvio

    2015-01-01

    Recent clinical evidence suggests that the therapeutic effect of massage involves the immune system and that this can be exploited as an adjunct therapy together with standard drug-based approaches. In this study, we investigated the mechanisms behind these effects exploring the immunomodulatory function of stroking as a surrogate of massage-like therapy in mice. C57/BL6 mice were stroked daily for 8 days either with a soft brush or directly with a gloved hand and then analysed for differences in their immune repertoire compared to control non-stroked mice. Our results show that hand- but not brush-stroked mice demonstrated a significant increase in thymic and splenic T cell number (p < 0.05; p < 0.01). These effects were not associated with significant changes in CD4/CD8 lineage commitment or activation profile. The boosting effects on T cell repertoire of massage-like therapy were associated with a decreased noradrenergic innervation of lymphoid organs and counteracted the immunosuppressive effect of hydrocortisone in vivo. Together our results in mice support the hypothesis that massage-like therapies might be of therapeutic value in the treatment of immunodeficiencies and related disorders and suggest a reduction of the inhibitory noradrenergic tone in lymphoid organs as one of the possible explanations for their immunomodulatory function. PMID:26046935

  11. OBSERVATIONS OF DOPPLER BOOSTING IN KEPLER LIGHT CURVES

    SciTech Connect

    Van Kerkwijk, Marten H.; Breton, Rene P.; Justham, Stephen; Rappaport, Saul A.; Podsiadlowski, Philipp; Han, Zhanwen

    2010-05-20

    Among the initial results from Kepler were two striking light curves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That result became particularly intriguing because a substellar mass had been derived for the secondary in KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large that we can use it to infer a radial velocity amplitude accurate to 1 km s{sup -1}. As far as we are aware, this is the first time a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22 {+-} 0.03 M{sub sun}. We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.

  12. Sparse approximation through boosting for learning large scale kernel machines.

    PubMed

    Sun, Ping; Yao, Xin

    2010-06-01

    Recently, sparse approximation has become a preferred method for learning large scale kernel machines. This technique attempts to represent the solution with only a subset of original data points also known as basis vectors, which are usually chosen one by one with a forward selection procedure based on some selection criteria. The computational complexity of several resultant algorithms scales as O(NM(2)) in time and O(NM) in memory, where N is the number of training points and M is the number of basis vectors as well as the steps of forward selection. For some large scale data sets, to obtain a better solution, we are sometimes required to include more basis vectors, which means that M is not trivial in this situation. However, the limited computational resource (e.g., memory) prevents us from including too many vectors. To handle this dilemma, we propose to add an ensemble of basis vectors instead of only one at each forward step. The proposed method, closely related to gradient boosting, could decrease the required number M of forward steps significantly and thus a large fraction of computational cost is saved. Numerical experiments on three large scale regression tasks and a classification problem demonstrate the effectiveness of the proposed approach.

  13. Redundant Interdependencies Boost the Robustness of Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo; Bianconi, Ginestra

    2017-01-01

    In the analysis of the robustness of multiplex networks, it is commonly assumed that a node is functioning only if its interdependent nodes are simultaneously functioning. According to this model, a multiplex network becomes more and more fragile as the number of layers increases. In this respect, the addition of a new layer of interdependent nodes to a preexisting multiplex network will never improve its robustness. Whereas such a model seems appropriate to understand the effect of interdependencies in the simplest scenario of a network composed of only two layers, it may seem unsuitable to characterize the robustness of real systems formed by multiple network layers. In fact, it seems unrealistic that a real system evolved, through the development of multiple layers of interactions, towards a fragile structure. In this paper, we introduce a model of percolation where the condition that makes a node functional is that the node is functioning in at least two of the layers of the network. The model reduces to the commonly adopted percolation model for multiplex networks when the number of layers equals two. a larger number of layers, however, the model describes a scenario where the addition of new layers boosts the robustness of the system by creating redundant interdependencies among layers. We prove this fact thanks to the development of a message-passing theory that is able to characterize the model in both synthetic and real-world multiplex graphs.

  14. Negative emotion boosts quality of visual working memory representation.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2016-08-01

    Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record

  15. Development of cassava periclinal chimera may boost production.

    PubMed

    Bomfim, N; Nassar, N M A

    2014-02-10

    Plant periclinal chimeras are genotypic mosaics arranged concentrically. Trials to produce them to combine different species have been done, but pratical results have not been achieved. We report for the second time the development of a very productive interspecific periclinal chimera in cassava. It has very large edible roots up to 14 kg per plant at one year old compared to 2-3 kg in common varieties. The epidermal tissue formed was from Manihot esculenta cultivar UnB 032, and the subepidermal and internal tissue from the wild species, Manihot fortalezensis. We determined the origin of tissues by meiotic and mitotic chromosome counts, plant anatomy and morphology. Epidermal features displayed useful traits to deduce tissue origin: cell shape and size, trichome density and stomatal length. Chimera roots had a wholly tuberous and edible constitution with smaller starch granule size and similar distribution compared to cassava. Root size enlargement might have been due to an epigenetic effect. These results suggest a new line of improved crop based on the development of interspecific chimeras composed of different combinations of wild and cultivated species. It promises boosting cassava production through exceptional root enlargement.

  16. Max-confidence boosting with uncertainty for visual tracking.

    PubMed

    Guo, Wen; Cao, Liangliang; Han, Tony X; Yan, Shuicheng; Xu, Changsheng

    2015-05-01

    The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods.

  17. Controlled Vocabularies Boost International Participation and Normalization of Searches

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2006-01-01

    The Global Change Master Directory's (GCMD) science staff set out to document Earth science data and provide a mechanism for it's discovery in fulfillment of a commitment to NASA's Earth Science progam and to the Committee on Earth Observation Satellites' (CEOS) International Directory Network (IDN.) At the time, whether to offer a controlled vocabulary search or a free-text search was resolved with a decision to support both. The feedback from the user community indicated that being asked to independently determine the appropriate 'English" words through a free-text search would be very difficult. The preference was to be 'prompted' for relevant keywords through the use of a hierarchy of well-designed science keywords. The controlled keywords serve to 'normalize' the search through knowledgeable input by metadata providers. Earth science keyword taxonomies were developed, rules for additions, deletions, and modifications were created. Secondary sets of controlled vocabularies for related descriptors such as projects, data centers, instruments, platforms, related data set link types, and locations, along with free-text searches assist users in further refining their search results. Through this robust 'search and refine' capability in the GCMD users are directed to the data and services they seek. The next step in guiding users more directly to the resources they desire is to build a 'reasoning' capability for search through the use of ontologies. Incorporating twelve sets of Earth science keyword taxonomies has boosted the GCMD S ability to help users define and more directly retrieve data of choice.

  18. Clinton budget squeezes EPA, boosts federal R D

    SciTech Connect

    Begley, R.

    1993-04-21

    Although Environmental Protection Agency chief Carol Browner tried to portray the numbers in a positive light, a budget cut is a budget cut and that is what she was handed by her new boss. Despite Clinton Administration rhetoric on the environment, the $6.4-billion EPA budget for fiscal 1994 is down almost 8% for 1993. The superfund program is hit hardest, down 6%, to $1.5 billion. Browner counts funds from the President's 1993 stimulus bill--currently in limbo in Congress--in her 1994 budget to arrive at an increase. She says 1994 will bring greater emphasis to pollution prevention, collaborative programs with industry on toxic releases, and improvement in EPA's science and research activities. EPA's air and pesticides programs will get more money, as well hazardous waste, which EPA says will [open quotes]eliminate unnecessary and burdensome requirements[close quotes] on industry and speed up corrective action. Water quality programs will be cut, as will the toxic substances program, although the Toxic Release Inventory will get a boost.

  19. On-line inverse multiple instance boosting for classifier grids

    PubMed Central

    Sternig, Sabine; Roth, Peter M.; Bischof, Horst

    2012-01-01

    Classifier grids have shown to be a considerable choice for object detection from static cameras. By applying a single classifier per image location the classifier’s complexity can be reduced and more specific and thus more accurate classifiers can be estimated. In addition, by using an on-line learner a highly adaptive but stable detection system can be obtained. Even though long-term stability has been demonstrated such systems still suffer from short-term drifting if an object is not moving over a long period of time. The goal of this work is to overcome this problem and thus to increase the recall while preserving the accuracy. In particular, we adapt ideas from multiple instance learning (MIL) for on-line boosting. In contrast to standard MIL approaches, which assume an ambiguity on the positive samples, we apply this concept to the negative samples: inverse multiple instance learning. By introducing temporal bags consisting of background images operating on different time scales, we can ensure that each bag contains at least one sample having a negative label, providing the theoretical requirements. The experimental results demonstrate superior classification results in presence of non-moving objects. PMID:22556453

  20. Boosting forward-time population genetic simulators through genotype compression

    PubMed Central

    2013-01-01

    Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. PMID:23763838

  1. Neutron fluxes in radiotherapy rooms.

    PubMed

    Agosteo, S; Foglio Para, A; Maggioni, B

    1993-01-01

    The spatial distribution of the neutron flux, originated in an electron accelerator therapy room when energies above the threshold of (y,n) and (e,e'n) reactions are employed, is physically due to a direct flux, coming from the accelerator head, and to a flux diffused from the walls. In this work, the flux is described to a high degree of approximation by a set of functions whose spatial behavior is univocally determined by the angular distributions of the neutrons emitted from the shield of the accelerator head and diffused from the walls. The analytical results are verified with an extended series of Monte Carlo simulations obtained with the MCNP code.

  2. Cultural resistance to fast-food consumption? A study of youth in North Eastern Thailand.

    PubMed

    Seubsman, Sam-Ang; Kelly, Matthew; Yuthapornpinit, Pataraporn; Sleigh, Adrian

    2009-11-01

    Increased intake of saturated fat and refined sugars underlies much of the problem of emerging obesity all over the world. This includes middle-income countries like Thailand, which are subject to successful marketing of Western fast foods especially targeted at adolescents. In this study we explore the socio-cultural influences on fast-food intake for non-metropolitan (rural and urban) adolescents in North East Thailand (Isan). Our questionnaire sample included 634 persons aged 15-19 years who are in and out of formal schooling and who are randomly representing upper, central and lower Isan. All were asked about their knowledge of fast-food health risks and their attitudes towards, and consumption of, fast food and traditional food. As well, we used several focus groups to obtain qualitative data to complement the information derived from the questionnaire. Some three quarters of sampled youth were aware that fast food causes obesity and half knew of the link to heart disease. About half consumed fast food regularly, induced by the appeal of 'modern' lifestyles, social events and marketing, as well as by the convenience, speed and taste. Nearly two-thirds thought that local foods should be more popular and these beliefs were more likely to be found among children from educated and urban families. Local foods already constitute a cultural resistance to fast-food uptake. We propose several methods to boost this resistance and protect the youth of Thailand against fast food and its many adverse health consequences.

  3. The Pressure Limitations on Flux Pile-Up Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Litvinenko, Y. E.

    1999-05-01

    Flux pile-up magnetic reconnection was thought to be able to provide fast energy dissipation a strongly magnetized plasma, for example, in solar flares. We examine the problem of the plasma pressure limitations on the rapidity of flux pile-up reconnection. It is shown that for a two-dimensional stagnation point flow with nonzero vorticity the magnetic merging rate cannot exceed the Sweet-Parker scaling in a low-beta plasma, which is too slow to explain flares. Moreover, the solution has some undesireable properties such as a diffusion layer at the external boundary and the massively increasing inflow speed. The pressure limitation appears to be somewhat less restrictive for three-dimensional flux pile-up. This work was supported by NSF grant ATM-9813933.

  4. Programmable flux DACs in a Quantum Annealing Processor

    NASA Astrophysics Data System (ADS)

    Hoskinson, Emile M.; Altomare, Fabio; Berkeley, Andrew J.; Bunyk, Paul; Harris, Richard; Johnson, Mark W.; Lanting, Trevor M.; Tolkacheva, Elena; Perminov, Ilya; Uchaikin, Sergey; Whittaker, Jed D.

    2014-03-01

    Programming the D-Wave Two processor to solve a given problem involves adjustment of thousands of independent flux biases. This is accomplished with an array of 4480 on-chip digital-to-analog converters (DACs), addressed using 56 external lines. Each DAC comprises a superconducting loop and control circuitry that allows injection of a deterministic number of flux quanta, up to a maximum value determined by the device parameters and the addressing scheme. In-depth characterization is performed to determine DAC transfer-functions and the addressing levels needed for fast and reliable programming. In contrast with traditional single-flux-quanta (SFQ) circuitry, zero static power during programming is dissipated on-chip, allowing efficient operation at mK temperatures.

  5. HOMOLOGOUS FLUX ROPES OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2013-12-01

    We present the first Solar Dynamics Observatory observations of four homologous flux ropes in the active region (AR) 11745 on 2013 May 20-22. The four flux ropes are all above the neutral line of the AR, with endpoints anchoring at the same region, and have a generally similar morphology. The first three flux ropes rose with a velocity of less than 30 km s{sup –1} after their appearance, and subsequently their intensities at 131 Å decreased and the flux ropes became obscure. The fourth flux rope erupted last, with a speed of about 130 km s{sup –1} and formed a coronal mass ejection (CME). The associated filament showed an obvious anti-clockwise twist motion at the initial stage, and the twist was estimated at 4π. This indicates that kink instability possibly triggers the early rise of the fourth flux rope. The activated filament material was spatially within the flux rope and showed consistent evolution in the early stages. Our findings provide new clues for understanding the characteristics of flux ropes. Firstly, multiple flux ropes are successively formed at the same location during an AR evolution process. Secondly, a slow-rise flux rope does not necessarily result in a CME, and a fast-eruption flux rope does result in a CME.

  6. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  7. KoFlux: Korean Regional Flux Network in AsiaFlux

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  8. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOEpatents

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  9. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    SciTech Connect

    Johnson, Mark; Friedman, David

    2016-12-15

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  10. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition

    EPA Science Inventory

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...

  11. Hour-Long Nap May Boost Brain Function in Older Adults

    MedlinePlus

    ... fullstory_162923.html Hour-Long Nap May Boost Brain Function in Older Adults Linked to improved memory and ... during the day had any effects on their brain function. Nearly 60 percent of the people regularly napped ...

  12. Stable detection of expanded target by the use of boosting random ferns

    NASA Astrophysics Data System (ADS)

    Deng, Li; Wang, Chunhong; Rao, Changhui

    2012-10-01

    This paper studies the problem of keypoints recognition of extended target which lacks of texture information, and introduces an approach of stable detection of these targets called boosting random ferns (BRF). As common descriptors in this circumstance do not work as well as usual cases, matching of keypoints is hence turned into classification task so as to make use of the trainable characteristic of classifier. The kernel of BRF is consisted of random ferns as the classifier and AdaBoost (Adaptive Boosting) as the frame so that accuracy of random ferns classifier can be boosted to a relatively high level. Experiments compare BRF with widely used SURF descriptor and single random ferns classifier. The result shows that BRF obtains higher recognition rate of keypoints. Besides, for image sequence, BRF provides stronger stability than SURF in target detection, which proves the efficiency of BRF aiming to extended target which lacks of texture information.

  13. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    ScienceCinema

    Johnson, Mark; Friedman, David

    2017-01-06

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  14. A Fast Hermite Transform.

    PubMed

    Leibon, Gregory; Rockmore, Daniel N; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S

    2008-12-17

    We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed.

  15. Boosted objects and jet substructure at the LHC: Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012

    SciTech Connect

    Altheimer, A.

    2014-03-21

    This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments’ ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. The final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.

  16. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  17. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test.

    PubMed

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m(2) with high accuracy and the response time of less than 10 s.

  18. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test

    NASA Astrophysics Data System (ADS)

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m2 with high accuracy and the response time of less than 10 s.

  19. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  20. How to link soil C pools with CO2 fluxes?

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Y.

    2011-06-01

    Despite the importance of carbon (C) pools and CO2 fluxes in terrestrial ecosystems and especially in soils, as well as many attempts to assign fluxes to specific pools, this challenge remains unsolved. Interestingly, scientists investigating pools are not closely linked with scientists studying fluxes. This review therefore focused on experimental approaches enabling soil C pools to be linked with CO2 flux from the soil. The background, advantages and shortcomings of uncoupled approaches (measuring only pools or fluxes) and of coupled approaches (measuring both pools and fluxes) were evaluated and their prerequisites - steady state of pools and isotopic steady state - described. The uncoupled approaches include: (i) monitoring the decrease of C pools in long-term fallow bare soil lacking C input over decades, (ii) analyzing components of CO2 efflux dynamics by incubating soil without new C input over months or years, and (iii) analyzing turnover rates of C pools based on their 13C and 14C isotopic signature. The uncoupled approaches are applicable for non-steady state conditions only and have limited explanatory power. The more advantageous coupled approaches partition simultaneously pools and fluxes based on one of three types of changes in the isotopic signature of input C compared to soil C: (i) abrupt permanent, (ii) gradual permanent, and (iii) abrupt temporary impacts. I show how the maximal sensitivity of the approaches depends on the differences in the isotopic signature of pools with fast and slow turnover rates. The promising coupled approaches include: (a) δ13C of C pools and CO2 efflux from soil after C3/C4 vegetation changes or in FACE experiments (both corresponding to continuous labeling), (b) addition of 13C or 14C labeled organics (corresponding to pulse labeling), and (c) bomb-14C. I show that physical separation of soil C pools is not a prerequisite to estimate pool size or to link pools with fluxes. Based on simple simulation of C aging in