Sample records for booster engine configuration

  1. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  2. Space Transportation Booster Engine Configuration Study. Volume 3: Program Cost estimates and work breakdown structure and WBS dictionary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  3. Space transportation booster engine configuration study. Volume 2: Design definition document and environmental analysis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  4. Space Shuttle: Static pressure distribution on Chrysler Corporation Space Division SERV booster configuration

    NASA Technical Reports Server (NTRS)

    Price, E. A.; Hull, J. J.; Rawls, E. A.

    1971-01-01

    A dual purpose test was conducted in the propulsion wind tunnel (PWT) to evaluate the performance of an aerospike engine, in the presence of a booster, and obtain forebody and base pressure distributions on the booster in which it is installed. The test item was a 2.5 percent scaled replica of the SERV booster employing a 5 percent spike length aerospike engine installed in the base region of the model. Cold flow air was used to simulate engine jet operation. Two booster configurations were investigated, one on which reentry aerospike engine thermal protection doors were installed, and another where the doors were removed. The data presented are representative of the latter configuration for a Mach number range of 0 to 1.25 at angles of attack of 0 and 8 degrees and 0 degrees angle of sideslip.

  5. Space transportation booster engine configuration study. Addendum: Design definition document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine.

  6. Space Transportation Booster Engine (STBE) configuration study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.

  7. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, T. J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the Fly Back Engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  8. The common engine concept for ALS application - A cost reduction approach

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Schindler, C. M.

    1989-01-01

    Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.

  9. Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.

  10. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overview is presented of the results of the analyses conducted in support of the selected engine system for the pressure-fed booster stage. During initial phases of the project, a gimbaled, regeneratively cooled, fixed thrust engine having a coaxial pintle injector was selected as optimum for this configuration.

  11. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  12. An analysis of the booster plume impingement environment during the space shuttle nominal staging maneuver

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Penny, M. M.; Greenwood, T. F.; Fossler, I. H.

    1972-01-01

    An experimental study of the plume impingement heating on the space shuttle booster afterbody resulting from the space shuttle orbiter engine plumes was conducted. The 1/100-scale model tests consisted of one and two orbiter engine firings on a flat plate, a flat plate with a fin, and a cylinder model. The plume impingement heating rates on these surfaces were measured using thin film heat transfer gages. Results indicate the engine simulation is a reasonable approximation to the two engine configuration, but more tests are needed to verify the plume model of the main engine configuration. For impingment, results show models experienced laminar boundary layer convective heating. Therefore, tests at higher Reynolds numbers are needed to determine impingment heating.

  13. Space shuttle phase B extension, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Space shuttle systems are defined using a low technology orbiter combined with either an F-1 flyback booster or a pressure-fed booster. The mission and system requirements are given, and orbiter and booster configuration concepts are evaluated. Systems analyses and trades are discussed for LO2-RP propellent, F-1 engine main propulsion system, winged flyback recovery booster and for the pressure-fed, ocean recoverable, refurbishable booster system. Trade studies are also made for aluminum versus titanium orbiter and for crew location and compartment size.

  14. Space Shuttle Five-Segment Booster (Short Course)

    NASA Technical Reports Server (NTRS)

    Graves, Stanley R.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    NASA is considering upgrading the Space Shuttle by adding a fifth segment (FSB) to the current four-segment solid rocket booster. Course materials cover design and engineering issues related to the Reusable Solid Rocket Motor (RSRM) raised by the addition of a fifth segment to the rocket booster. Topics cover include: four segment vs. five segment booster, abort modes, FSB grain design, erosive burning, enhanced propellant burn rate, FSB erosive burning model development and hardware configuration.

  15. Space shuttle system program definition. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase B Extension of the Space Shuttle System Program Definition study was redirected to apply primary effort to consideration of space shuttle systems utilizing either recoverable pressure fed liquids or expendable solid rocket motor boosters. Two orbiter configurations were to be considered, one with a 15x60 foot payload bay with a 65,000 lb, due East, up-payload capability and the other with a 14x45 payload bay with 45,000 lb, of due East, up-payload. Both were to use three SSME engines with 472,000 lb of vacuum thrust each. Parallel and series burn ascent modes were to be considered for the launch configurations of primary interest. A recoverable pump-fed booster is included in the study in a series burn configuration with the 15x60 orbiter. To explore the potential of the swing engine orbiter configuration in the pad abort case, it is included in the study matrix in two launch configurations, a series burn pressure fed BRB and a parallel burn SRM. The resulting matrix of configuration options is shown. The principle objectives of this study are to evaluate the cost and technical differences between the liquid and solid propellant booster systems and to assess the development and operational cost savings available with a smaller orbiter.

  16. EDIN design study alternate space shuttle booster replacement concepts. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    The use of a recoverable liquid rocket booster (LRB) system to replace the existing solid rocket booster (SRB) system for the shuttle was studied. Historical weight estimating relationships were developed for the LRB using Saturn technology and modified as required. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the study designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut off points of the shuttle reference mission 1. Performance analysis is based on a point design trajectory model which optimizes initial tilt rate and exoatmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle of attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary. Four basic configurations were investigated: a parallel burn vehicle with an F-1 engine powered LRB; a parallel burn vehicle with a high pressure engine powered LRB; a series burn vehicle with a high pressure engine powered LRB. The relative sizes of the LRB and the ET are optimized to minimize GLOW in most cases.

  17. Alternate space shuttle concepts study. Part 2: Technical summary. Volume 2: Orbiter definition

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted of a three-engined external hydrogen tank orbiter/heat sink booster utilizing 415 K sea level thrust engines. The results of the study, pertaining to the orbiter portion of the configuration, are presented. A complete summary of characteristics is given for the external tank configuration along with some comparative data for a conventional internal tank configuration.

  18. Effect of engine shroud configuration on the static aerodynamic characteristics of a 0.00563 scale 142-inch diameter solid rocket booster (SA10F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.

    1974-01-01

    A test of a 0.563 percent scale space shuttle Solid Rocket Booster (SRB) model, MSFC Model 449, was conducted in a trisonic wind tunnel. Test Mach numbers were 0.4, 0.6, 0.9, 1.2, 1.96, 3.48, 4.0, 4.45, and 4.96. Test angles-of-attack ranged from minus 10 degrees to 190 degrees. Test Reynolds numbers ranged from 3.0 million per foot to 8.6 million per foot. Test roll angles were 0, 11.25, 22.5, 45, and 90 degrees. In addition to the static stability evaluation of the primary SRB configuration, five parametric investigations were made: (1) effect of Reynolds number, (2) effect of engine shroud flare angle, (3) effect of engine shroud length, (4) effect of engine shroud strakes, and (5) effect of engine shroud strakes and trust vector control bottles.

  19. Liquid rocket booster study. Volume 2, book 4, appendices 6-8: Reports of Rocketdyne, Pratt and Whitney, and TRW

    NASA Technical Reports Server (NTRS)

    1988-01-01

    For the pressure fed engines, detailed trade studies were conducted defining engine features such as thrust vector control methods, thrust chamber construction, etc. This was followed by engine design layouts and booster propulsion configuration layouts. For the pump fed engines parametric performance and weight data was generated for both O2/H2 and O2/RP-1 engines. Subsequent studies resulted in the selection of both LOX/RP-1 and O2/H2 propellants for the pump fed engines. More detailed analysis of the selected LOX/RP-1 and O2/H2 engines was conducted during the final phase of the study.

  20. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. These new boosters will enable the flexible path approach to deep space exploration, opening up vast opportunities for human missions to near-Earth asteroids and Mars. This evolved capability will offer large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements.

  1. Space Shuttle Main Engine: Thirty Years of Innovation

    NASA Technical Reports Server (NTRS)

    Jue, F. H.; Hopson, George (Technical Monitor)

    2002-01-01

    The Space Shuttle Main Engine (SSME) is the first reusable, liquid booster engine designed for human space flight. This paper chronicles the 30-year history and achievements of the SSME from authority to proceed up to the latest flight configuration - the Block 2 SSME.

  2. Feasibility Study of a Pressure-fed Engine for a Water Recoverable Space Shuttle Booster

    NASA Technical Reports Server (NTRS)

    Gerstl, E.

    1972-01-01

    Detailed mass properties are presented for a gimbaled, fixed thrust, regeneratively cooled engine having a coaxial pintle injector. The baseline design parameters for this engine are tabulated. Mass properties are also summarized for several other engine configurations i.e., a hinge nozzle using a Techroll seal, a gimbaled duct cooled engine and a regeneratively cooled engine using liquid injection thrust vector control (LITVC). Detailed engine analysis and design trade studies leading to the selection of a regeneratively cooled gimbaled engine and pertaining to the selection of the baseline design configuration are also given.

  3. Tripropellant Engine Study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1977-01-01

    The feasibility of modifying the space shuttle main engine (SSME) for dual mode operation was investigated. Various high power cycle engine configurations derived from the SSME were configurations that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen were studied in order to identify concepts that make maximum use of SSME hardware and best satisfy the dual mode booster engine system application. Engine cycles were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flow rates and operating cycles were established and the adaptability of the major components of the SSME was evaluated.

  4. Space shuttle: Stability and control effectiveness at high and low angles of attack and effects of variations in engine shround, fin, and drag petal configurations for the Boeing 0.008899-scale pressure-fed ballistic recoverable booster, model 979-160

    NASA Technical Reports Server (NTRS)

    Hanson, R. L.; Obrien, R. G.; Oiye, M. Y.; Vanderleest, S.

    1972-01-01

    Experimental aerodynamic investigations were carried out in the Boeing transonic and supersonic wind tunnels on a 0.008899-scale model of a proposed pressure-fed ballistic recoverable booster (BRB) configuration. The purpose of the test program was to determine the stability and control effectiveness of the basic configuration at high and low angles of attack, and to conduct parametric studies of various engine shroud, fin, and drag petal configurations. Six-component force data and base pressure data were obtained over a Mach number range of 0.35 to 4.0 at angles of attack of -5 to 25 and 55 to 85 at zero degrees sideslip and over a sideslip range of -10 to +10 at angles of attack ranging from -10 to 72.5. Two-component force data were also obtained with a fin balance on selected runs.

  5. Space shuttle system program definition. Volume 4: Cost and schedule report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The supporting cost and schedule data for the second half of the Space Shuttle System Phase B Extension Study is summarized. The major objective for this period was to address the cost/schedule differences affecting final selection of the HO orbiter space shuttle system. The contending options under study included the following booster launch configurations: (1) series burn ballistic recoverable booster (BRB), (2) parallel burn ballistic recoverable booster (BRB), (3) series burn solid rocket motors (SRM's), and (4) parallel burn solid rocket motors (SRM's). The implications of varying payload bay sizes for the orbiter, engine type for the ballistics recoverable booster, and SRM motors for the solid booster were examined.

  6. Development of the RFBB “Bargouzine” concept for Ariane-5 evolution

    NASA Astrophysics Data System (ADS)

    Sumin, Yuriy; Kostromin, Sergey F.; Panichkin, Nikolai; Prel, Yves; Osin, Mikhail; Iranzo-Greus, David; Prampolini, Marco

    2009-10-01

    This paper presents the study of a concept of Ariane-5 evolution by means of replacement of two solid-propellant boosters EAP with two liquid-propellant reusable fly-back boosters (RFBBs) called "Bargouzine". The main design feature of the reference RFBB is LOX/LH2 propellant, the canard aerodynamic configuration with delta wings and rocket engines derived from Vulcain-2 identical to that of the central core except for the nozzle length. After separation RFBBs return back by use of air breathing engines mounted in the aft part and then landing on a runway. The aim of the study is a more detailed investigation of critical technology issues concerning reliability, re-usability and maintenance requirements. The study was performed in three main phases: system trade-off, technical consolidation, and programmatic synthesis. The system trade-off includes comparative analysis of two systems with three and four engines on each RFBB and determination of the necessary thrust level taking into account thrust reservation for emergency situations. Besides, this phase contains trade-off on booster aerodynamic configurations and abort scenario analysis. The second phase includes studying of controllability during the ascent phase and separation, thermo-mechanical design, development of ground interfaces and attachment means, and turbojets engine analysis taking into account reusability.

  7. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study. Amendment 13: Orientation meeting

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics are presented in viewgraph form and include the following: LRB study results summary -- Feb. 1989; LRB study results -- Jan. 1990; Shuttle configuration with booster options; LRB study results -- Sept. 1990; LRB statement of work tasks; ground rules and assumptions; study flow of design, manufacturing/production, and test program/certification; study products; study schedule; and candidate 1.5 stage engine arrangements.

  8. Study of solid rocket motors for a space shuttle booster. Volume 2, book 3, addendum 1: Cost estimating data

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    A second iteration of the program baseline configuration and cost for the solid propellant rocket engines used with the space shuttle booster system is presented. The purpose of the study was to ensure that total program costs were complete and to review areas where costs might be overly conservative and could be reduced. Labor and material were analyzed in more depth, more definition was prepared to separate recurring from nonrecurring costs, and the operations portions of the engine and stage were separated into more identifiable activities.

  9. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  10. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  11. Liquid rocket booster integration study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the executive summary of the five volume series.

  12. Liquid rocket booster integration study. Volume 5, part 1: Appendices

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the appendices of the five volume series.

  13. Liquid Rocket Booster Integration Study. Volume 2: Study synopsis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the study summary of the five volume series.

  14. Study of solid rocket motor for space shuttle booster. Volume 4: Cost

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The cost data for solid propellant rocket engines for use with the space shuttle are presented. The data are based on the selected 156 inch parallel and series burn configurations. Summary cost data are provided for the production of the 120 inch and 260 inch configurations. Graphs depicting parametric cost estimating relationships are included.

  15. Liquid rocket booster integration study. Volume 3: Study products. Part 2: Sections 8-19

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part two of the study products section of the five volume series.

  16. Liquid rocket booster study. Volume 2, book 6, appendix 10: Vehicle systems effects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three tasks were undertaken by Eagle Engineering as a part of the Liquid Rocket Booster (LRB) study. Task 1 required Eagle to supply current data relative to the Space Shuttle vehicle and systems affected by an LRB substitution. Tables listing data provided are presented. Task 2 was to evaluate and compare shuttle impacts of candidate LRB configuration in concert with overall trades of analysis activity. Three selected configurations with emphasis on flight loads, separation dynamics, and cost comparison are presented. Task 3 required the development of design guidelines and requirements to minimize impacts to the Space Shuttle system from all LRB substitution. Results are presented for progress to date.

  17. Liquid rocket booster integration study. Volume 3, part 1: Study products

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part one of the study products section of the five volume series.

  18. Solid rocket booster performance evaluation model. Volume 1: Engineering description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle solid rocket booster performance evaluation model (SRB-II) is made up of analytical and functional simulation techniques linked together so that a single pass through the model will predict the performance of the propulsion elements of a space shuttle solid rocket booster. The available options allow the user to predict static test performance, predict nominal and off nominal flight performance, and reconstruct actual flight and static test performance. Options selected by the user are dependent on the data available. These can include data derived from theoretical analysis, small scale motor test data, large motor test data and motor configuration data. The user has several options for output format that include print, cards, tape and plots. Output includes all major performance parameters (Isp, thrust, flowrate, mass accounting and operating pressures) as a function of time as well as calculated single point performance data. The engineering description of SRB-II discusses the engineering and programming fundamentals used, the function of each module, and the limitations of each module.

  19. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 2) of the report -- Booster Configuration.

  20. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 1) of the report -- Booster Configuration.

  1. Reentry aerodynamic characteristics of a space shuttle solid rocket booster model 449 tested in MSFC 14 by 14 inch TWT (SA26F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.

    1974-01-01

    Force tests of a 0.563 percent scale space shuttle solid rocket booster (SRB) model, MSFC Model 449, were conducted at the Marshall Space Flight Center 14 x 14 inch Trisonic Wind Tunnel. There were a total of 134 runs (pitch polars) made. Test Mach numbers were 0.6, 0.9, 1.2, 1.96, 2.74, 3.48, 4.00, 4.45, and 4.96; test angles of attack ranged from minus 10 degrees to 190 degrees; test Reynolds numbers ranged from 4.9 million per foot to 7.1 million per foot; and test roll angles were 0, 45, 90, and 135 degrees. The model was tested with three different engine nozzle/skirts. Two of these engine configurations differed from each other in the magnitude of the volume inside the nozzle and skirt. The third engine configuration had part of the nozzle removed. The model was tested with an electrical tunnel in combination with separation rockets of two different heights.

  2. Launch Architecture Impact on Ascent Abort and Crew Survival

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Lawrence, Scott L.

    2006-01-01

    A study was performed to assess the effect of booster configuration on the ascent abort process. A generic abort event sequence was created and booster related risk drivers were identified. Three model boosters were considered in light of the risk drivers: a solid rocket motor configuration, a side mount combination solid and liquid configuration, and a stacked liquid configuration. The primary risk drivers included explosive fireball, overpressure, and fragment effects and booster-crew module re-contact. Risk drivers that were not specifically booster dependent were not addressed. The solid rocket configuration had the most benign influence on an abort while the side mount architecture provided the most challenging abort environment.

  3. Space shuttle vehicle rocket plume impingement study for separation analysis. Tasks 2 and 3: Definition and preliminary plume impingement analysis for the MSC booster

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Penny, M. M.; Prozan, R. J.

    1970-01-01

    The results are presented of a space shuttle plume impingement study for the Manned Spacecraft Center configuration. This study was conducted as two tasks which were to (1) define the orbiter main stage engine exhaust plume flow field, and (2) define the plume impingement heating, force and resulting moment environments on the booster during the staging maneuver. To adequately define these environments during the staging maneuver and allow for deviation from the nominal separation trajectory, a multitude of relative orbiter/booster positions are analyzed which map the region that contains the separation trajectories. The data presented can be used to determine a separation trajectory which will result in acceptable impingement heating rates, forces, and the resulting moments. The data, presented in graphical form, include the effect of roll, pitch and yaw maneuvers for the booster. Quasi-steady state analysis methods were used with the orbiter engine operating at full thrust. To obtain partial thrust results, simple ratio equations are presented.

  4. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  5. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  6. STS-56, RSRM-031, 360L031 KSC processing configuration and data report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    KSC Processing Configuration and Data Report is being provided as a historical document and as an enhancement to future RSRM manufacturing and processing operations. The following sections provide information on segment receipt, aft booster build-up, booster assembly, and closeout for STS-56, RSRM flight set 36OL031. Section 2.0 contains a summary of RSRM-031 processing. Section 3.0 discusses any significant problems or special issues that require special attention. Sections 4.0 through 6.0 contain narrative descriptions of all key events, including any related processing problems. Appendix A provides engineering specifications and changes. A list and matrix of all problem reports (PR's) pertinent to this flight set is provided in Appendix B. The matrix was provided by the Thiokol LSS Quality Engineering office. Copies of the PR's generated during the processing of RSRM-031 will be provided upon request. Appendix C contains the motor set status matrix, which provides milestone dates for the RSRM-031 flow. Section 7.0 provides recommendations, if any, for the improvement of flight hardware processing. Section 8.0 contains data sheets that provide flight hardware parts and consumables information installed during the booster build-up and stacking operations by location, lot/serial number, expiration and cure dates/times, and installation dates.

  7. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-09-09

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  8. Illustration of Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  9. Illustration of Ares I During Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  10. Illustration of Ares I Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  11. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo transportation systems (CTRV's) were also examined. The study provided detailed design and analysis of the performance, reliability, and operations of these concepts. The study analyzed these concepts as unique systems and also analyzed several combined CTRV/booster configurations as integrated launch systems (such as for launch abort analyses). Included in the set of CTRV concepts analyzed were the medium CTRV, the integral CTRV (in both a pressurized and unpressurized configuration), the winged CTRV, and an attached cargo carrier for the PLS system known as the PLS caboose.

  12. Aerodynamic stability and control characteristics of TBC shuttle booster AR-11981-3

    NASA Technical Reports Server (NTRS)

    Phelps, E. R.; Watts, L. L.; Ainsworth, R. W.

    1972-01-01

    A scale model of the Boeing Company space shuttle booster configuration 3 was tested in the MSFC 14-inch trisonic wind tunnel. This test was proposed to fill-in the original test run schedule as well as to investigate the aerodynamic stability and control characteristics of the booster with three wing configurations not previously tested. The configurations tested included: (1) a cylindrical booster body with an axisymmetric nose, (2) clipped delta canards that had variable incidence from 0 deg to -60 deg, (3) different aft body mounted wing configurations, (4) two vertical fin configurations, and (5) a Grumman G-3 orbiter configuration. Tests were conducted over a Mach range from 0.6 to 5.0.

  13. EDIN design study alternate space shuttle booster replacement concepts. Volume 2: Design simulation results

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    Historical weight estimating relationships were developed for the liquid rocket booster (LRB) using Saturn technology, and modified as required to support the EDIN05 study. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the EDIN05 designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut-off points. Performance analysis was based on a point design trajectory model which optimized initial tilt rate and exo-atmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle-of-attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary.

  14. Hypersonic aerothermal characteristics of a manned low finenes ratio shuttle booster

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.; Throckmorton, D. A.

    1972-01-01

    An investigation of a winged booster model having canards and an ascent configuration comprised of the booster mounted in tandem with an orbiter model has been conducted at Mach 10.2 in the continuous flow hypersonic tunnel. Longitudinal and lateral directional force characteristics were obtained over angle of attack ranges of -12 deg to 60 deg for the booster and -11 deg to 11 deg for the ascent configuration. Interference heating effects on the booster using the phase-change coating technique were determined at 0 deg angle of attack. Some oil flow photographs of the isolated booster and orbiter and ascent configuration are also presented.

  15. Space shuttle: Aerodynamic characteristics of a composite booster/040A orbiter launch configuration with fin and booster body configuration effect contribution

    NASA Technical Reports Server (NTRS)

    Ainsworth, R. W.; Johnson, J. C.; Watts, L. L.

    1972-01-01

    An investigation was made of the fin configuration and booster body configuration effects on a composite booster/040A orbiter launch configuration. Aerodynamic performance and stability characteristics in pitch and yaw were obtained. Configurations tested included two stepped cylindrical bodies of different lengths with a conical nose, four fin shapes of various sizes and aspect ratios mounted in different positions around the base of the bodies, two base flare angles and three 040A orbiter configurations. The orbiter variations included a tailless configuration and two tail sizes. A tailless booster launch configuration with deflected petals (expanded flare sectors) was also tested. The model scale was 0.003366. Data were converted to coefficient form in near real time, punched on cards, and tabulated. The cards used in conjunction with a Benson-Lehner plotter were used to provide plotted data. At the end of the test, tabulated input forms were completed for the SADSAC computer program to aid in publishing the final test data report.

  16. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  17. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a data base and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Data Base is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandem combinations.

  18. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel data acquired in the Phase B development have been compiled into a data base and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include booster, orbiter and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbital configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. This is Volume 3 (Part 2) of the report -- Launch Configuration -- which includes booster and orbiter components in various stacked and tandem combinations.

  19. A turbojet-boosted two-stage-to-orbit space transportation system design study

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W.; Scharf, W.

    1979-01-01

    The concept to use twin turbo-powered boosters for acceleration to supersonic staging speed followed by an all rocket powered orbiter stage was proposed. A follow-on design study was then made of the concept with the performance objective of placing a 29,483 Kg payload into a .2.6 X 195.3 km orbit. The study was performed in terms of analysis and trade studies, conceptual design, utility and economic analysis, and technology assessment. Design features of the final configuration included: strakes and area rule for improved take off and low transonic drag, variable area inlets, exits and turbine, and low profile fixed landing gear for turbojet booster stage. The payload required an estimated GLOW of 1,270,000 kg for injection in orbit. Each twin booster required afterburning turbojet engines each with a static sea level thrust rating of 444,800 N. Life cycle costs for this concept were comparable to a SSTO/SLED concept except for increased development cost due to the turbojet engine propulsion system.

  20. Ascent performance and abort analysis for a Future Space Transportation System

    NASA Technical Reports Server (NTRS)

    Naftel, J. C.; Powell, R. W.

    1983-01-01

    The Future Space Transportation System (FSTS) study was conducted by the NASA Langley Research Center to identify the technology requirements for concepts that will replace the Space Shuttle in the post 2000 time frame. The configuration chosen for the study is a two-stage, fully reusable, vertical liftoff, and horizontal landing system with a 150,000 lb. payload capability. The two stages are burned in parallel with the booster providing all the propellant until staging, which results in a large lateral c.g. movement. Nominally, the booster stages at Mach 3 and glides back to the launch site. Because of the large lateral c.g. travel, a scheme to trim the vehicle until staging occurred was developed that used both gimballing and throttling of the engines. Preliminary booster aerodynamics were determined, and the booster glideback trajectory was analyzed with and without winds. Finally, a preliminary abort analysis was conducted for each stage.

  1. Aerodynamic characteristics of MSFC model 454 of the 142 inch solid rocket booster tested in the LeRC 10 foot SWT at Mach numbers of 2.0 and 2.7 (SA6F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Burstadt, P. L.; Radford, W. D.

    1975-01-01

    A 2.112 percent scale Space Shuttle Solid Rocket Booster (SRB) was tested in a ten foot, supersonic wind tunnel. The test Mach numbers were 2.0 and 2.7. Test angles of attack were from minus 5 degrees to plus 185 degrees. The Reynolds numbers ranged from 0.514 to 2.81 million per foot. Test roll angles were 0, 22.5, 45, 90, and 135 degrees. The following configurations were tested: (1) SRB without external protuberances, (2) SRB with an electrical tunnel and a thrust attachment structure, (3) SRB with two engine shroud strakes, (4) SRB with eight engine shroud strakes, and (5) SRB with an electrical tunnel, thrust attachment structure, eight engine shroud strakes, and separation motors.

  2. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  3. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  4. Parametric trade studies on a Shuttle 2 launch system architecture

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Talay, Theodore A.; Lepsch, Roger A.; Morris, W. Douglas; Naftel, J. Christopher; Cruz, Christopher I.

    1991-01-01

    A series of trade studies are presented on a complementary architecture of launch vehicles as a part of a study often referred to as Shuttle-2. The results of the trade studies performed on the vehicles of a reference Shuttle-2 mixed fleet architecture have provided an increased understanding of the relative importance of each of the major vehicle parameters. As a result of trades on the reference booster-orbiter configuration with a methane booster, the study showed that 60 percent of the total liftoff thrust should be on the booster and 40 percent on the orbiter. It was also found that the liftoff thrust to weight ratio (T/W) on the booster-orbiter should be 1.3. This leads to a low dry weight and still provides enough thrust to allow the design of a heavy lift architecture. As a result of another trade study, the dry weight of the reference booster-orbiter was chosen for a variety of operational considerations. Other trade studies on the booster-orbiter demonstrate that the cross feeding of propellant during boost phase is desirable and that engine-out capability from launch to orbit is worth the performance penalty. Technology assumptions made during the Shuttle-2 design were shown to be approx. equivalent to a 25 percent across the board weight reduction over the Space Shuttle technology. The vehicles of the Shuttle-2 architecture were also sized for a wide variety of payloads and missions to different orbits. Many of these same parametric trades were also performed on completely liquid hydrogen fueled fully reusable concepts. If a booster-orbiter is designed using liquid hydrogen engines on both the booster and orbiter, the total vehicle dry weight is only 3.0 percent higher than the reference dual-fuel booster-orbiter, and the gross weight is 3.8 percent less. For this booster-orbiter vehicle, a liftoff T/W of 1.3, a thrust of about 60 percent on the booster, and a Mach staging number of 3 all proved to be desirable. This modest dry weight increase for a liquid hydrogen fueled Shuttle-2 system should be more than offset by the elimination of the entire hydrocarbon engine development program and the savings in operation cost realized by the elimination of an entire fuel type.

  5. Shuttle Propulsion Overview - The Design Challenges

    NASA Technical Reports Server (NTRS)

    Owen, James W.

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.

  6. Space shuttle abort separation pressure investigation. Volume 1, Part A: Booster data at Mach 5

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Love, D. A.; Rampy, J. M.; Decker, J. P.; Blackwell, K. L.; Strike, W. T.

    1972-01-01

    Pressure data obtained from a joint Langley Research Center (LaRC)/Marshall Space Flight Center (MSFC) Space Shuttle about stage separation wind tunnel test are presented. The .00556 scale models of the McDonnell-Douglas orbiter and booster configurations were tested in proximity in Tunnel A of the Von Karman Facility (VKF), Arnold Engineering Development Center (AEDC). Mach numbers were 5.0, 3.0, and 2.0 and nominal Reynolds numbers were 1.09, 1.60, and 1.74 million per foot, respectively. Pressure data were obtained for the booster upper surface and orbiter lower surface at angles of attack of -10 deg, -5, 0, 5, and 10 deg for zero degrees sideslip. The models were tested at incidence angles of 0 and 5 deg for several separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Data were also obtained with the booster canard off in close proximity.

  7. Materials and processes for shuttle engine, external tank, and solid rocket booster

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1977-01-01

    The Shuttle flight system is composed of the Orbiter, an External Tank (ET) that contains the ascent propellant to be used by the Space Shuttle Main Engines (SSME), and two Solid Rocket Boosters (SRB). The ET is expended on each launch; the Orbiter and SRB's are reusable. It is the requirement for reuse which poses the exciting new materials and processes challenges in the development of the Space Shuttle. A brief description of the Space Shuttle and the mission profile is given. The Shuttle configuration is then described with emphasis on the SSME, ET, and SRB. The materials selection, tracking, and control system used to assure reliability and to minimize cost are described, and salient features and challenges in materials and processes associated with the SSME, ET, and SRB are subsequently discussed.

  8. jsc2011e204520

    NASA Image and Video Library

    2011-10-27

    At the Baikonur Cosmodrome in Kazakhstan, the Soyuz booster and its ISS Progress 45 cargo craft rolled to the launch pad in bone-chilling weather on October 28, 2011 in preparation for launch October 31 to send the unmanned Russian resupply vehicle to the International Space Station. The launch will be the first for this configuration of the Soyuz booster rocket since a third-stage engine failure in flight August 24 that resulted in the loss of the previous Progress cargo craft, the ISS Progress 44. ISS Progress 45 is loaded with almost three tons of food, fuel and supplies for the residents of the orbital laboratory. Credit: NASA

  9. jsc2011e204523

    NASA Image and Video Library

    2011-10-27

    At the Baikonur Cosmodrome in Kazakhstan, the Soyuz booster and its ISS Progress 45 cargo craft rolled to the launch pad in bone-chilling weather on October 28, 2011 in preparation for launch October 31 to send the unmanned Russian resupply vehicle to the International Space Station. The launch will be the first for this configuration of the Soyuz booster rocket since a third-stage engine failure in flight August 24 that resulted in the loss of the previous Progress cargo craft, the ISS Progress 44. ISS Progress 45 is loaded with almost three tons of food, fuel and supplies for the residents of the orbital laboratory. Credit: NASA

  10. jsc2011e204519

    NASA Image and Video Library

    2011-10-27

    At the Baikonur Cosmodrome in Kazakhstan, the Soyuz booster and its ISS Progress 45 cargo craft rolled to the launch pad in bone-chilling weather on October 28, 2011 in preparation for launch October 31 to send the unmanned Russian resupply vehicle to the International Space Station. The launch will be the first for this configuration of the Soyuz booster rocket since a third-stage engine failure in flight August 24 that resulted in the loss of the previous Progress cargo craft, the ISS Progress 44. ISS Progress 45 is loaded with almost three tons of food, fuel and supplies for the residents of the orbital laboratory. Credit: NASA

  11. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  12. Aerodynamic characteristics of a 142-inch diameter solid rocket booster, configuration 139 (SA2FA/SA2FB)

    NASA Technical Reports Server (NTRS)

    Radford, W. D.; Johnson, J. D.

    1974-01-01

    Tests of a 2.112 percent scale model of the space shuttle solid rocket booster model were conducted in a transonic pressure tunnel. Tests were conducted at Mach numbers ranging from 0.4 to 1.2, angles of attack from minus one degree to plus 181 degrees, and Reynolds numbers from 0.6 million to 6.1 million per foot. The model configurations investigated were as follows: (1) solid rocket booster without external protuberances, (2) solid rocket booster with an electrical tunnel and a solid rocket booster/external tank thrust attachment structure, and (3) solid rocket booster with two body strakes.

  13. StarBooster Demonstrator Cluster Configuration Analysis/Verification Program

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.

    2003-01-01

    In order to study the flight dynamics of the cluster configuration of two first stage boosters and upper-stage, flight-testing of subsonic sub-scale models has been undertaken using two glideback boosters launched on a center upper-stage. Three high power rockets clustered together were built and flown to demonstrate vertical launch, separation and horizontal recovery of the boosters. Although the boosters fly to conventional aircraft landing, the centerstage comes down separately under its own parachute. The goal of the project has been to collect data during separation and flight for comparison with a six degree of freedom simulation. The configuration for the delta wing canard boosters comes from a design by Starcraft Boosters, Inc. The subscale rockets were constructed of foam covered in carbon or fiberglass and were launched with commercially available solid rocket motors. The first set of boosters built were 3-ft tall with a 4-ft tall centerstage, and two additional sets of boosters were made that were each over 5-ft tall with a 7.5 ft centerstage. The rocket cluster is launched vertically, then after motor bum out the boosters are separated and flown to a horizontal landing under radio-control. An on-board data acquisition system recorded data during both the launch and glide phases of flight.

  14. Energy efficient engine: Fan test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1980-01-01

    A single stage fan and quarter stage booster were designed for the energy efficient engine. The fan has an inlet radius ratio of 0.342 and a specific flow rate of 208.9 Kg/S sq m (42.8 lbm/sec sq ft). The fan rotor has 32 medium aspect ratio (2.597) titanium blades with a partspan shroud at 55% blade height. The design corrected fan tip speed is 411.5 M/S (1350 ft/sec). The quarter stage island splits the total fan flow with approximately 22% of the flow being supercharged by the quarter stage rotor. The fan bypass ratio is 6.8. The core flow total pressure ratio is 1.67 and the fan bypass pressure ratio is 1.65. The design details of the fan and booster blading, and the fan frame and static structure for the fan configuration are presented.

  15. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  16. Space Launch System NASA Research Announcement Advanced Booster Engineering Demonstration and/or Risk Reduction

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Craig, Kellie D.

    2011-01-01

    The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction

  17. Development Status of the J-2X

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Vilja, John

    2008-01-01

    In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because a single production line can support both missions with minimal differences between each engine configuration kit.

  18. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  19. Atlas Centaur Rocket With Reusable Booster Engines

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Proposed modification of Atlas Centaur enables reuse of booster engines. Includes replacement of current booster engines with engine of new design in which hydrogen used for both cooling and generation of power. Use of hydrogen in new engine eliminates coking and clogging and improves performance significantly. Primary advantages: reduction of cost; increased reliability; and increased payload.

  20. STS-51, RSRM-033, 360T033 KSC processing configuration and data report

    NASA Technical Reports Server (NTRS)

    Hillard, Robert C.

    1993-01-01

    KSC Processing Configuration and Data Report is being provided as a historical document and as an enhancement to future RSRM manufacturing and processing operations. The following sections provide information on segment receipt, aft booster build up, motor assembly, and closeout for STS-51, RSRM flight set 360T033. Section 2.0 contains a summary of RSRM-033 processing. Section 3.0 discusses any significant problems or special issues that require special attention. Sections 4.0 through 6.0 contain narrative descriptions of all key events, including any related processing problems. Appendix A provides engineering specifications and changes. A list and matrix of all problem reports (PR's) pertinent to this flight set is provided in Appendix B. The matrix was provided by the Thiokol LSS Quality Engineering office. Copies of the PR's generated during the processing of RSRM-033 will be provided upon request. Appendix C contains the motor set status matrix, which provides milestone dates for the RSRM-033 flow. Section 7.0 provides recommendations for the improvement of flight hardware processing. Section 8.0 contains data sheets that provide flight hardware parts and consumable information installed during the booster build-up and stacking operations by location, lot/serial number, expiration and cure dates/times, and installation dates.

  1. The liquid rocket booster as an element of the U.S. national space transportation system

    NASA Astrophysics Data System (ADS)

    Bialla, Paul H.; Simon, Michael C.

    Liquid rocket boosters (LRBs) were first considered for the U.S. Space Transportation System (STS) during the early conceptual phases of the Space Shuttle program. However, solid rocket boosters (SRBs) were ultimately selected for the STS, primarily due to near-term economics. Liquid rocket boosters are once again being considered as a possible future upgrade to the Shuttle. This paper addresses the findings of these studies to date, with emphasis on the feasibility, benefits, and implementation strategy for a LRB program. The principal issue relating to LRB feasibility is their ability to be integrated into the STS with minimal vehicle and facility impacts. Booster size has been shown to have a significant influence on compatibility with the STS. The physical dimensions of the Orbiter and STS support facilities place an inherent limitation on the size of any booster to be used with this system. In addition, excessively large diameter boosters can cause increased airloads to be induced on the Orbiter wings, requiring modification of STS launch trajectory and possible performance losses. However, trajectory and performance analyses have indicated that LRBs can be designed within these sizing constraints and still have sufficient performance to meet Space Shuttle mission requirements. In fact, several configurations have been developed to meet a design goal of providing a 20,000 lb performance improvement to low Earth-orbit (LEO), as compared with current SRBs. Several major system trade studies have been performed to establish a baseline design which is most compatible with the existing Space Transportation System. These trades include propellant selection (storable, hydrogen-oxygen, hydrocarbon-oxygen, and advanced propellants); pump-fed vs pressure-fed propellant feed system design; engine selection (Space Shuttle Main Engine, Titan LR-87, and advanced new engines); number of engines per booster; and reusability vs expendability. In general, it was determined through these trade studies that several options exist for designing a LRB that can be integrated into the STS with manageable impacts on STS facilities and operational procedures. While LRBs offer a potential 40% improvement in Shuttle performance, their most significant benefit is the potential improvements they offer in the area of Shuttle safety. This begins during ground handling operations, where LRBs eliminate the need for large quantities of hazardous solid propellants to be emplaced in the Kennedy Space Center Vehicle Assembly Building. In the pre-launch phase, all LRB engines can be ignited on the launch pad and verified prior to release of the STS. During flight, LRB engines can be shut down on command should the need arise. Further, missions could be aborted safely during the boost phase—an option not available with SRBs. A related benefit of LRBs is their ability to accomplish a mission even if one engine fails, assuming the LRB is designed with sufficient performance margin. An implementation plan has been developed which indicates that LRBs can be operational by 1997. The attractive features of the LRB have prompted NASA to include this booster as a principal element of the agency's long range plan for enhancing STS capabilities through an evolutionary program of block changes. The implementation of LRBs offers an attractive option for developing a safer, more reliable, and better performing STS.

  2. Study of solid rocket motor for space shuttle booster, volume 2, book 5, appendices E thru H

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Preliminary parametric studies were performed to establish size, weight and packaging arrangements for aerodynamic decelerator devices that could be used for recovery of the expended solid propellant rocket motors used in the launch phase of the Space Shuttle System. Computations were made using standard engineering analysis techniques. Terminal stage parachutes were sized to provide equilibrium descent velocities for water entry that are presently thought to be acceptable without developing loads that could exceed the boosters structural integrity. The performance characteristics of the aerodynamic parachute decelerator devices considered are based on analysis and prior test results for similar configurations and are assumed to be maintained at the scale requirements of the present problem.

  3. Preliminary base heating environments for a generalized ALS LO2/LH2 launch vehicle, appendix 1 and 2

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Reardon, John E.

    1989-01-01

    A secondary objective of contract NAS8-39141 is to provide base heating assessments, as required, to support Advanced Launch System (ALS) preliminary launch vehicle and propulsion system design studies. The ALS propulsion systems integration working group meeting (No. 3) recently completed in San Diego, California, focused attention on the need for base heating environment determination to provide preliminary requirements for LO2/LH2 propulsion systems currently being considered for ALS. We were requested to provide these environments for a range of possible propellant mixture and nozzle area ratios. Base heating environments can only be determined as a function of altitude when the engine operating conditions and vehicle base region geometry (engine arrangement) are known. If time dependent environments are needed to assess thermal loads, a trajectory must also be provided. These parameters are not fixed at this time since the ALS configurations and propulsion operating conditions are varied and continue to be studied by Phase B contractors. Therefore, for this study, a generalized LO2/LH2 system was selected along with a vehicle configuration consisting of a seven-engine booster and a three-engine core. MSFC provided guidance for the selection. We also selected a limited number of body points on the booster and core vehicles and engines for the environment estimates. Environments at these locations are representative of maximum heating conditions in the base region and are provided as a function of altitude only. Guidelines and assumptions for this assessment, methodology for determining the environments, and preliminary results are provided in this technical note. Refinements in the environments will be provided as the ALS design matures.

  4. Optimization of the rocket mode trajectory in a rocket based combined cycle (RBCC) engine powered SSTO vehicle

    NASA Astrophysics Data System (ADS)

    Foster, Richard W.

    1989-07-01

    The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.

  5. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  6. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.

  7. Space shuttle: Aerodynamic characteristics of the Titan T 3 (1207-4)/GAC H-33 launch configuration

    NASA Technical Reports Server (NTRS)

    Sims, J. F.

    1972-01-01

    Aerodynamic data obtained in a 14-inch trisonic wind tunnel test on static stability and drag of 0.003366-scale models of the Grumman H-33 drop tank orbiter and the Titan T 3 (1207-4) expendable booster are presented. The orbiter was mounted to the booster both piggyback and tandem. Data were obtained over a Mach number range of 0.6 to 5.0. Angle of attack data were obtained from -16 deg to +4 deg at both 0 deg and -6 deg sideslip for the piggyback configuration, but were limited to -10 deg to +10 deg at 0 deg sideslip for the tandem configuration. Primary configuration variations, other than piggyback and tandem mount, were the number and location of solid propellant strap-on boosters.

  8. Space Launch System Accelerated Booster Development Cycle

    NASA Technical Reports Server (NTRS)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study, affordability is defined as lifecycle cost, which includes design, development, test, and engineering (DDT&E), production and operational costs (P&O). For this study, the system objectives include reducing DDT&E schedule by a factor of three, showing 99.9% reliability, flying up to four times per year, serving both crew and cargo missions, and evolving to a lift capability of 130 metric tons.3 After identifying gaps in the current system s capabilities, this study seeks to identify non-traditional and innovative technologies and processes that may improve performance in these areas and assess their impacts on booster system development. The DDT&E phase may be improved by incorporating incremental development testing and integrated demonstrations to mitigate risk. To further reduce DDT&E, this study will also consider how aspects of the booster system may have commonality with other users, such as the Department of Defense, commercial applications, or international partners; by sharing some of the risk and investment, the overall development cost may be reduced. Consideration is not limited to solid and liquid rocket boosters. A set of functional performance characteristics, such as engine thrust, specific impulse (Isp), mixture ratio, and throttle range are identified and their impacts on the system are evaluated. This study also identifies how such characteristics affect overall life cycle cost, including DDT&E and fixed and variable P&O.

  9. Space shuttle: High angle of attack transition and low angle of attack launch phase aerodynamic stability and control of GD/C B-18E-2, B-18E-3 delta wing booster, and launch configuration of MSC-040A orbiter and twin pressure fed boosters

    NASA Technical Reports Server (NTRS)

    Debevoise, J. M.; Mcginnis, R. F.

    1972-01-01

    The test was a conventional stability and control test except for two aspects. One was the very high angles of attack at which the delta wing configurations were tested (up to 60 degrees) at Mach numbers of 3 and 4.96. The other was the installation of the orbiter and twin boosters in a manner that caused the support system to induce normal forces and side forces on the aft portion of the boosters at all Mach numbers; i.e., the support and the booster bodies were close together, side by side.

  10. Space shuttle: Static stability and control investigation of NR/GD delta wing booster (B-20) and delta wing orbiter (134D), volume 4

    NASA Technical Reports Server (NTRS)

    Allen, E. C., Jr.; Eder, F. W.

    1972-01-01

    Test results of booster and orbiter models of various component buildup configurations are reported. Dataset Collation Sheets, which give a complete summary of the configurations, are presented along with a description of the test facility. Data reduction procedures are described.

  11. Solid rocket motors for the Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1972-01-01

    The evolution of the space shuttle booster system is reviewed from its initial concepts based on liquid-propellant reusable boosters to the final selection of recoverable, solid-fuel rocket motors. The rationale associated with each of the several major decisions in the evolution process is discussed. It is shown that the external tank orbiter configuration emerging from the latest studies takes maximum advantage of the solid rocket motor development experience and promises to be the optimum configuration for fulfilling the paramount shuttle program requirements of minimum total development risk within acceptable costs.

  12. Investigation of the McDonnell-Douglas orbiter and booster shuttle models in proximity at Mach numbers 2.0 to 6.0. Volume 7: Proximity data at Mach 4 and 6, interference free and launch vehicle data

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Love, D. A.; Decker, J. P.; Blackwell, K. L.; Strike, W. T.; Rampy, J. M.

    1972-01-01

    Aerodynamic data obtained from a space shuttle abort stage separation wind tunnel test are presented. The .00556 scale models of the orbiter and booster configuration were tested in close proximity using dual balances during the time period of April 21 to April 27 1971. Data were obtained for both booster and orbiter over an angle of attack range from -10 to 10 deg for zero degree sideslip angle. The models were tested at several relative incidence angles and separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, 25 and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Pitch control effectiveness data were obtained for both booster and orbiter with power on and off. In addition, launch vehicle data with and without booster power were obtained utilizing a single balance in the booster model. Data were also obtained with the booster canard off in close proximity and for the launch configuration.

  13. Space shuttle: Aerodynamic characteristics of various MDAC space shuttle ascent configurations with parallel burn pressure-fed and SRM boosters. Volume 1: Tanks T1 and T2 ascent configurations

    NASA Technical Reports Server (NTRS)

    Jarrett, T. W.

    1972-01-01

    Various space shuttle ascent configurations were tested in a trisonic wind tunnel to determine the aerodynamic characteristics. The ascent configuration consisted of a NASA/MSC 040 orbiter in combination with various HO centerline tank and booster geometries. The aerodynamic interference between components of the space shuttle and the effect on the orbiter aerodynamics was determined. The various aerodynamic configurations tested were: (1) centerline HO tanks T1 and T2, (2) centerline HO tank T3, and (3) centerline HO tank H4.

  14. XCALIBUR: a Vertical Takeoff TSTO RLV Concept with a HEDM Upperstage and a Scram-Rocket Booster

    NASA Astrophysics Data System (ADS)

    Bradford, J.

    2002-01-01

    A new 3rd generation, two-stage-to-orbit (TSTO) reusable launch vehicle (RLV) has been designed. The Xcalibur concept represents a novel approach due to its integration method for the upperstage element of the system. The vertical-takeoff booster, which is powered by rocket-based combined-cycle (RBCC) engines, carries the upperstage internally in the aft section of the airframe to a Mach 15 staging condition. The upperstage is released from the booster and carries the 6,820 kg of payload to low earth orbit (LEO) using its high energy density matter (HEDM) propulsion system. The booster element is capable of returning to the original launch site in a ramjet-cruise propulsion mode. Both the booster and the upperstage utilize advanced technologies including: graphite-epoxy tanks, metal-matrix composites, UHTC TPS materials, electro- mechanical actuators (EMAs), and lightweight subsystems (avionics, power distribution, etc.). The booster system is enabled main propulsion system which utilizes four RBCC engines. These engines operate in four distinct modes: air- augmented rocket (AAR), ramjet, scram-rocket, and all-rocket. The booster operates in AAR mode from takeoff to Mach 3, with ramjet mode operation from Mach 3 to Mach 6. The rocket re-ignition for scram-rocket mode occurs at Mach 6, with all-rocket mode from Mach 14 to the staging condition. The extended utilization of the scram-rocket mode greatly improves vehicle performance by providing superior vehicle acceleration when compared to the scramjet mode performance over the same flight region. Results indicate that the specific impulse penalty due to the scram-rocket mode operation is outweighed by the reduced flight time, smaller vehicle size due to increased mixture ratio, and lower allowable maximum dynamic pressure. A complete vehicle system life-cycle analysis was performed in an automated, multi-disciplinary design environment. Automated disciplinary performance analysis tools include: trajectory (POST), propulsion (SCCREAM), aeroheating (TCAT II), and an Excel spreadsheet for component weight estimation. These tools were automated using `file wrappers' in Phoenix Integration's ModelCenter collaborative design environment. Performance tools utilized for the analysis, but not requiring automation included IDEAS for solid modeling and APAS for the aerodynamic analysis. The paper describes the vehicle concept and operation, discussing the types of technologies used and the nominal flight scenario. A brief discussion explaining the decision-making process for the vehicle configuration is included. For cost predictions, NAFCOM-derived cost estimating relationships were used. Economic predictions were developed using a number of codes, including CABAM (financials), AATe (operations), and GTSafetyII (safety and reliability).

  15. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, P.; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  16. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, Patti; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  17. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2000-04-03

    This is a computer generated image of a Shuttle launch utilizing 2nd generation Reusable Launch Vehicle (RLV) flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  18. Investigation of safe-life fail-safe criteria for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An investigation was made to determine the effects of a safe-life design approach and a fail-safe design approach on the space shuttle booster vehicle structure, and to recommend any changes to the structural design criteria. Two configurations of the booster vehicle were considered, one incorporating a delta wing (B-9U configuration) and the other a swept wing (B-16B configuration). Several major structural components of the booster were studied to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was investigated to determine the practicability of applying a safe-life or fail-safe design philosophy, the changes such design approaches might require, and the impact of these changes on weight, cost, development plans, and performance.

  19. NASA's Space Launch System: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.

  20. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  1. Experimental Aerodynamic Characteristics of the Pegasus Air-Launched Booster and Comparisons with Predicted and Flight Results

    NASA Technical Reports Server (NTRS)

    Rhode, M. N.; Engelund, Walter C.; Mendenhall, Michael R.

    1995-01-01

    Experimental longitudinal and lateral-directional aerodynamic characteristics were obtained for the Pegasus and Pegasus XL configurations over a Mach number range from 1.6 to 6 and angles of attack from -4 to +24 degrees. Angle of sideslip was varied from -6 to +6 degrees, and control surfaces were deflected to obtain elevon, aileron, and rudder effectiveness. Experimental data for the Pegasus configuration are compared with engineering code predictions performed by Nielsen Engineering & Research, Inc. (NEAR) in the aerodynamic design of the Pegasus vehicle, and with results from the Aerodynamic Preliminary Analysis System (APAS) code. Comparisons of experimental results are also made with longitudinal flight data from Flight #2 of the Pegasus vehicle. Results show that the longitudinal aerodynamic characteristics of the Pegasus and Pegasus XL configurations are similar, having the same lift-curve slope and drag levels across the Mach number range. Both configurations are longitudinally stable, with stability decreasing towards neutral levels as Mach number increases. Directional stability is negative at moderate to high angles of attack due to separated flow over the vertical tail. Dihedral effect is positive for both configurations, but is reduced 30-50 percent for the Pegasus XL configuration because of the horizontal tail anhedral. Predicted longitudinal characteristics and both longitudinal and lateral-directional control effectiveness are generally in good agreement with experiment. Due to the complex leeside flowfield, lateral-directional characteristics are not as well predicted by the engineering codes. Experiment and flight data are in good agreement across the Mach number range.

  2. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this side view of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  3. Space shuttle: Directional and lateral stability and interference effects of cruise engine location on a 0.015 scale space shuttle

    NASA Technical Reports Server (NTRS)

    Buchholz, R. E.

    1972-01-01

    The results are presented that were obtained from a wind tunnel tests to improve space shuttle booster baseline lateral-directional stability, control characteristics, and cruise engine location optimization. Tests were conducted in a 7 x 10-foot transonic wind tunnel. The model employed was a 0.015-scale replica of a space shuttle booster. The three major objectives of this test were to determine the following: (1) force, static stability, and control effectiveness characteristics for varying angles of positive and negative wing dihedral and various combinations of wing tip and centerline dorsal fins; (2) force and static stability characteristics of cruise engines location on the body below the high aerodynamic canard; and (3) control effectiveness for the low-mounted wing configuration. The wing dihedral study was conducted at a cruise Mach number of 0.40 and simulated altitude of 10,000 feet. Portions of the test were conducted to determine the control surfaces stability and control characteristics over the Mach number range of 0.4 to 1.2. The aerodynamic characteristics determined are based on a unit Reynolds number of approximately 2 million per foot. Boundary layer trip strips were employed to induce boundary layer transition.

  4. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  5. A CAD/CAE analysis of photographic and engineering data

    NASA Technical Reports Server (NTRS)

    Goza, S. Michael; Peterson, Wayne L.

    1987-01-01

    In the investigation of the STS 51L accident, NASA engineers were given the task of visual analysis of photographic data extracted from the tracking cameras located at the launch pad. An analysis of the rotations associated with the right Solid Rocket Booster (SRB) was also performed. The visual analysis involved pinpointing coordinates of specific areas on the photographs. The objective of the analysis on the right SRB was to duplicate the rotations provided by the SRB rate gyros and to determine the effects of the rotations on the launch configuration. To accomplish the objectives, computer aided design and engineering was employed. The solid modeler, GEOMOD, inside the Structural Dynamics Research Corp. I-DEAS package, proved invaluable. The problem areas that were encountered and the corresponding solutions that were obtained are discussed. A brief description detailing the construction of the computer generated solid model of the STS launch configuration is given. A discussion of the coordinate systems used in the analysis is provided for the purpose of positioning the model in coordinate space. The techniques and theory used in the model analysis are described.

  6. YALINA-booster subcritical assembly pulsed-neutron e xperiments: detector dead time and apatial corrections.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable modelmore » is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.« less

  7. Space shuttle: Static stability and control investigation of the NR-GD/C delta wing booster (B-15B-1) and a Reusable Nuclear Stage (RNS) M = 0.6 - 4.96

    NASA Technical Reports Server (NTRS)

    Allen, E. C.

    1971-01-01

    Experimental aerodynamic investigations were made in the NASA/MSFC 14 x 14 inch trisonic wind tunnel on a NR-GD/C 0.0031 scale model delta wing booster (B-15B-1) and reusable nuclear stage (RNS). Three basic configurations were tested: (1) the B-15B-1 booster alone, (2) the RNS alone, and (3) the booster with the RNS mounted piggyback. Six component force and moment data were recorded for each of these configurations over an angle of attack range from -16 deg to 4 deg at zero degrees sideslip, and over an angle of sideslip range from -10 deg to 10 deg at zero and -6 degrees angle of attack. The configurations were tested over a Mach number range of 0.6 to 5.0 with a nominal Reynolds number of 6.5 million per foot except for Mach 1.2 and 3.0 where the Reynolds number were 12.4 million and 4.4 million per foot respectively.

  8. KENNEDY SPACE CENTER, FLA. - The external tank in the Vehicle Assembly Building (VAB) is destacked from the solid rocket boosters. The tank and SRBs were configured for Atlantis and mission STS-114. The tank will remain in the VAB.

    NASA Image and Video Library

    2003-05-20

    KENNEDY SPACE CENTER, FLA. - The external tank in the Vehicle Assembly Building (VAB) is destacked from the solid rocket boosters. The tank and SRBs were configured for Atlantis and mission STS-114. The tank will remain in the VAB.

  9. Booster Separation Motor (BSM) Test Fire

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This photograph depicts a hot fire test of the Shuttle Booster Separation Motor (BSM) at the Marshall Space Flight Center (MSFC) test stand 116. The objective of the test was to test the aft heat seal in flight configuration. The function of the motor is to separate the Shuttle vehicle from the boosters that carry it into space.

  10. Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, Edward L.; Rothschild, William J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  11. Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, E. L.; Rothschild, W. J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  12. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-12-05

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  13. Illustration of Ares V Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  14. Model of the Ares V Launch System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This is a studio photograph of a model of the Ares V rocket. Named for the Greek god associated with Mars, Ares vehicles will return humans to the moon and later take them to Mars and other destinations. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars, while the Crew will be carried by the Ares I. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  15. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  16. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group. This group then selected suitable batteries and other components to meet these requirements. The group also designed heat shielding and cooling systems to ensure subsystem performance. In addition to these responsibilities this group designed the attitude control methods and RCS components for the vehicle. The Aircraft Integration Group was responsible for all aspects of the booster aircraft connection. This included the design of the connection structure and the drop mechanism. This group also designed the vehicle assembly facility and identified possible ground bases for the plane.

  17. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group.

  18. Innovative Comparison of Transient Ignition Temperature at the Booster Interface, New Stainless Steel Pyrovalve Primer Chamber Assembly "V" (PCA) Design Versus the Current Aluminum "Y" PCA Design

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor L.; McDougle, Stephen H.; Garcia,Roberto; Johnson, Kenneth L.; Sipes, William; Rickman, Steven; Hosangadi, Ashvin

    2011-01-01

    An assessment of four spacecraft pyrovalve anomalies that occurred during ground testing was conducted by the NASA Engineering & Safety Center (NESC) in 2008. In all four cases, a common aluminum (Al) primer chamber assembly (PCA) was used with dual NASA Standard Initiators (NSIs) and the nearly simultaneous (separated by less than 80 microseconds) firing of both initiators failed to ignite the booster charge. The results of the assessment and associated test program were reported in AIAA Paper AIAA-2008-4798, NESC Independent Assessment of Pyrovalve Ground Test Anomalies. As a result of the four Al PCA anomalies, and the test results and findings of the NESC assessment, the Mars Science Laboratory (MSL) project team decided to make changes to the PCA. The material for the PCA body was changed from aluminum (Al) to stainless steel (SS) to avoid melting, distortion, and potential leakage of the NSI flow passages when the device functioned. The flow passages, which were interconnected in a Y-shaped configuration (Y-PCA) in the original design, were changed to a V-shaped configuration (V-PCA). The V-shape was used to more efficiently transfer energy from the NSIs to the booster. Development and qualification testing of the new design clearly demonstrated faster booster ignition times compared to the legacy AL Y-PCA design. However, the final NESC assessment report recommended that the SS V-PCA be experimentally characterized and quantitatively compared to the Al Y-PCA design. This data was deemed important for properly evaluating the design options for future NASA projects. This test program has successfully quantified the improvement of the SS V-PCA over the Al Y-PCA. A phase B of the project was also conducted and evaluated the effect of firing command skew and enlargement of flame channels to further assist spacecraft applications.

  19. Design data book phase A/B study for a pressure fed engine on a reusable space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Preliminary engineering definition information is presented for a liquid pressure-fed reusable booster engine. The material is reported in three separate sections which include: (1) program and baseline data, (2) critical trade studies summary, and (3) methodology.

  20. One vs two primary LOX feedline configuration study for the National Launch System

    NASA Technical Reports Server (NTRS)

    Dill, K.; Davis, D.; Bates, R.; Tarwater, R.

    1992-01-01

    Six single LOX feedline designs were evaluated for use on the National Launch Vehicle. A single feedline design, designated the 'Spider', was chosen and compared to the baseline system. The baseline configuration employs two 20-inch I.D. lines, each supplying LOX to three 650,000 lbf thrust Space Transportation Main Engines. Five single feedline diameters were examined for the spider configuration; 22, 24, 26, 28, and 30-inch I.D. System dry weights and LOX residuals were estimated. These parameters, along with calculated staged mass for the different single line and baseline configurations, were used to calculate the payload mass to orbit. For the cases where LOX is drained to minimum NPSP conditions, none of the single lines performed as well as the dual line system, although the 22-inch diameter single line compared well. However, for the cases where LOX is drained to operating levels (LOX level at the booster and spider manifolds for the dual and single line configurations, respectively), the 22 - 26-inch I.D. single line systems show a greater payload capability.

  1. Feasibility study of a pressure fed engine for a water recoverable space shuttle booster Volume 2: Technical, phase A effort

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Design and systems considerations are presented on an engine concept selection for further preliminary design and program evaluation. These data have been prepared from a feasibility study of a pressure-fed engine for the water recoverable space shuttle booster.

  2. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  3. Expendable second stage reusable space shuttle booster. Volume 4: Detail mass properties data

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Mass properties data are presented to describe the characteristics of an expendable second stage with a reusable space shuttle booster. The final mass characteristics of the vehicle configurations for three specified payloads are presented in terms of weight, center of gravity, and mass moments of inertia. Three basic subjects are the integrated vehicle system, the expendable second stage, and the booster modifications.

  4. Liquid rocket booster study addendum

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Liquid rocket booster study (LRB) addendum to final report is presented in the form of the view-graphs. The following subject areas are covered: LRB launch vehicle concepts; LRB design; propulsion system configurations; LRB boattail for Shuttle-C application; and manned transportation systems.

  5. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines nears the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the VAB, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  6. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  7. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs up inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  8. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs in to the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  9. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  10. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  11. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    New service platforms for NASA's Space Launch System booster engines, secured on two flatbed trucks, are on their way to the agency's Kennedy Space Center in Florida. They are being transported from fabricator Met-Con Inc. in Cocoa, Florida. The platforms will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  12. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    One of two new work platforms for NASA's Space Launch System booster engines is secured on dunnage inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  13. Reentry aerodynamics forces and moments on the engine nozzle of the 146-inch solid rocket booster model 473 tested in MSFC 14 by 14 inch trisonic wind tunnel (SA30F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.

    1975-01-01

    A test of a model of the Space Shuttle Solid Rocket Boosters (SRB's) was performed in a 14 x 14 inch Trisonic Wind Tunnel to determine the aerodynamic forces and moments imposed on the nozzle of the SRB during reentry. The model, with scale dimensions equal to 0.5479 of the actual SRB dimensions, was instrumented with a six-component force balance attached to the model nozzle so that only forces and moments acting on the nozzle were measured. A total of 137 runs (20 deg pitch polars) were performed during this test. The angle of attack ranged from 60 to 185 deg, the Reynolds number from 5.2 million to 7.6 million. The Mach numbers investigated were 1.96, 2.74, and 3.48. Five external protuberances were simulated. The effective roll angle simulated was 180 deg. The effects of three different heat shield configurations were investigated.

  14. Aerodynamic static stability characteristics of the MSFC 33-foot pump fed booster at high angles of attack

    NASA Technical Reports Server (NTRS)

    Hamilton, T.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the 14-inch trisonic wind tunnel during early February 1972 on a 0.00340 scale model of the 33-foot diameter space shuttle pump fed booster configuration. The basic configuration tested was a 40-deg cone/cylinder. Six component aerodynamic force and moment data were recorded over a Mach number range from 0.6 to 5.0, angles-of-attack from 50 to 90 deg at 0 deg sideslip and over a sideslip range from -10 to +10 deg at 60 and 80 deg angles-of-attack. Primary configuration variables were fin area and body cutout size.

  15. Space shuttle: Effect of configuration changes on the directional characteristics of a GD/C booster Mach no. 1.2 - 4.96

    NASA Technical Reports Server (NTRS)

    Brickey, J.; Brice, T.; Marks, K. E.

    1971-01-01

    Force tests on a 0.0035-scale model of the General Dynamics/Convair aerospace space shuttle B-15B-1 booster were conducted in the MSFC trisonic wind tunnel. The configuration has a low delta wing, all-movable delta-planform canard controls, and a single vertical tail. The test was devoted to investigating the effects of various configuration variables upon lateral-directional characteristics. These variables included wing dihedral, rudder flare, and body flap deflection. Yaw runs were made at angles of attack of 6, 10, 15, 25, 30, and 35 degrees. The Mach number range for this test was 1.20 to 4.96.

  16. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  17. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  18. NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned advanced booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  19. NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an Advanced Booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned Advanced Booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  20. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    NASA Technical Reports Server (NTRS)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing processes, and new inspection techniques. New materials and processes provide improved performance, safety, and affordability but also have led to challenges for the government/industry development team. The team completed its first full-size qualification motor test firing in early 2015. The second is scheduled for mid-2016. This paper will discuss booster accomplishments to date, as well as challenges and milestones ahead.

  1. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Greene, William D.

    2017-01-01

    Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters

  2. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, has arrived at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be stored in the VAB and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  3. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines has been offloaded from a flatbed truck and is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  4. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the Vehicle Assembly Building, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  5. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines makes its way along the NASA Causeway to the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  6. Prediction of Launch Vehicle Ignition Overpressure and Liftoff Acoustics

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew

    2009-01-01

    The LAIOP (Launch Vehicle Ignition Overpressure and Liftoff Acoustic Environments) program predicts the external pressure environment generated during liftoff for a large variety of rocket types. These environments include ignition overpressure, produced by the rapid acceleration of exhaust gases during rocket-engine start transient, and launch acoustics, produced by turbulence in the rocket plume. The ignition overpressure predictions are time-based, and the launch acoustic predictions are frequency-based. Additionally, the software can predict ignition overpressure mitigation, using water-spray injection into the rocket exhaust stream, for a limited number of configurations. The framework developed for these predictions is extensive, though some options require additional relevant data and development time. Once these options are enabled, the already extensively capable code will be further enhanced. The rockets, or launch vehicles, can either be elliptically or cylindrically shaped, and up to eight strap-on structures (boosters or tanks) are allowed. Up to four engines are allowed for the core launch vehicle, which can be of two different types. Also, two different sizes of strap-on structures can be used, and two different types of booster engines are allowed. Both tabular and graphical presentations of the predicted environments at the selected locations can be reviewed by the user. The output includes summaries of rocket-engine operation, ignition overpressure time histories, and one-third octave sound pressure spectra of the predicted launch acoustics. Also, documentation is available to the user to help him or her understand the various aspects of the graphical user interface and the required input parameters.

  7. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    NASA Technical Reports Server (NTRS)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  8. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this three-foot-long model at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  9. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  10. Counterrotatable booster compressor assembly for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)

    2004-01-01

    A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex

    Baseline design of the JLEIC booster synchrotron is presented. Its aim is to inject and accumulate heavy ions and protons at 285 MeV, to accelerate them to about 7 GeV, and finally to extract the beam into the ion collider ring. The Figure-8 ring features two 2600 achromatic arcs configured with negative momentum compaction optics, designed to avoid transition crossing for all ion species during the course of acceleration. The lattice also features a specialized high dispersion injection insert optimized to facilitate the transverse phase-space painting in both planes for multi-turn ion injection. Furthermore, the lattice has been optimized tomore » ease chromaticity correction with two families of sextupoles in each plane. The booster ring is configured with super-ferric, 3 Tesla bends. We are presently launching optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime.« less

  12. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.

  13. Survey of Advanced Booster Options for Potential Shuttle Derivative Vehicles

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Ryan, Richard; Threet, Ed; Kennedy, James W. (Technical Monitor)

    2001-01-01

    A never-ending major goal for the Space Shuttle program is to continually improve flight safety, as long as this launch system remains in operational service. One of the options to improve system safety and to enhance vehicle performance as well, that has been seriously studied over the past several decades, is to replace the existing strap-on four segment solid rocket boosters (SRB's) with more capable units. A number of booster upgrade options have been studied in some detail, ranging from five segment solids through hybrids and a wide variety of liquid strap-ons (both pressure and pump fed with various propellants); all the way to a completely reusable liquid fly back booster (complete with air breathing engines for controlled landing and return). All of these possibilities appear to offer improvements in varying degrees; and each has their strengths and weaknesses from both programmatic and technical points of view. The most beneficial booster upgrade/design, if the shuttle program were to continue long enough to justify the required investment, would be an approach that greatly increased both vehicle and crew safety. This would be accomplished by increasing the minimum range/minimum altitude envelope that would readily allow abort to orbit (ATO), possibly even to zero/zero, and possibly reduce or eliminate the Return to Launch Site (RTLS) and even the Trans Atlantic Landing (TAL) abort mode requirements. This paper will briefly survey and discuss all of the various booster'upgrade options studied previously, and compare their relative attributes. The survey will explicitly discuss, in summary comparative form, options that include: five segment solids; several hybrid possibilities; pressure and/or pump-fed liquids using either LO2/kerosene, H2O/kerosene and LO2/J2, any of which could be either fully expendable, partly or fully reusable; and finally a fully reusable liquid fly back booster system, with a number of propellant and propulsion system options. Performance and configuration comparison illustrations and tables will be included to provide a comprehensive survey for the paper.

  14. Space Launch System Booster Separation Aerodynamic Database Development and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Pinier, Jeremy T.; Wilcox, Floyd J., Jr.; Dalle, Derek J.; Rogers, Stuart E.; Gomez, Reynaldo J.

    2016-01-01

    The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database.

  15. Space shuttle solid rocket booster recovery system definition, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The performance requirements, preliminary designs, and development program plans for an airborne recovery system for the space shuttle solid rocket booster are discussed. The analyses performed during the study phase of the program are presented. The basic considerations which established the system configuration are defined. A Monte Carlo statistical technique using random sampling of the probability distribution for the critical water impact parameters was used to determine the failure probability of each solid rocket booster component as functions of impact velocity and component strength capability.

  16. Space shuttle: Heat transfer rate measurements on Convair booster (B-15B-2) at nominal Mach number of 8

    NASA Technical Reports Server (NTRS)

    Warmbrod, J. D.; Martindale, W. R.; Matthews, R. K.

    1971-01-01

    Plotted and tabulated data on heat transfer from a thin-skin thermocouple are presented. The data is representative of the reentry event of the booster alone configuration. The data were generated during wind tunnel tests of the B-15B-2 delta wing booster at Mach 8. Thermocouple measurements are reduced to heat transfer coefficient ratio and the data are presented as plotted variations versus longitudinal, lateral, and vertical local model positions.

  17. KSC-08pd0863

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, a worker attaches the crane to a solid rocket booster. The crane will raise the booster to a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  18. KSC-08pd0865

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the solid rocket booster is raised from its transporter toward a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. Two other boosters are already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  19. KSC-08pd0864

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the solid rocket booster is raised from its transporter toward a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. Two other boosters are already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  20. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the Vehicle Assembly Building (VAB), in view in the distance, at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the VAB, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  1. Thrust augmentation options for the Beta 2 two-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    1993-01-01

    NASA LeRC is continuing to study propulsion concepts for a horizontal takeoff and landing, fully reusable, two-stage-to-orbit vehicle. This will be capable of launching and returning a 10,000 pound payload to a 100 nautical mile polar orbit using low-risk technology. The vehicle, Beta 2, is a derivative of the USAF/Boeing Beta vehicle which was designed to deliver a 50,000 pound payload to a similar orbit. Beta 2 stages at Mach 6.5 and about 100,000 ft altitude. The propulsion system for the booster is an over/under turbine bypass engine/ramjet configuration. In this paper, several options for thrust augmentation were studied in order to improve the performance of this engine where there was a critical need. Options studies were turbine engine overspeed in the transonic region, water injection at a various turbine engine locations also during the transonic region, and water injection at the turbine engine face during high speed operation. The methodology, constraints, propulsion performance, and mission study results are presented.

  2. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  3. Hybrid propulsion technology program: Phase 1, volume 4

    NASA Technical Reports Server (NTRS)

    Claflin, S. E.; Beckman, A. W.

    1989-01-01

    The use of a liquid oxidizer-solid fuel hybrid propellant combination in booster rocket motors appears extremely attractive due to the integration of the best features of liquid and solid propulsion systems. The hybrid rocket combines the high performance, clean exhaust, and safety of liquid propellant engines with the low cost and simplicity of solid propellant motors. Additionally, the hybrid rocket has unique advantages such as an inert fuel grain and a relative insensitivity to fuel grain and oxidizer injection anomalies. The advantages mark the hybrid rocket as a potential replacement or alternative for current and future solid propellant booster systems. The issues are addressed and recommendations are made concerning oxidizer feed systems, injectors, and ignition systems as related to hybrid rocket propulsion. Early in the program a baseline hybrid configuration was established in which liquid oxygen would be injected through ports in a solid fuel whose composition is based on hydroxyl terminated polybutadiene (HTPB). Liquid oxygen remained the recommended oxidizer and thus all of the injector concepts which were evaluated assumed only liquid would be used as the oxidizer.

  4. Engine protection system for recoverable rocket booster

    NASA Technical Reports Server (NTRS)

    Shelby, Jr., Jerry A. (Inventor)

    1994-01-01

    A rocket engine protection system for a recoverable rocket booster which is arranged to land in a salt water body in substantially a nose down attitude. The system includes an inflatable bag which is stowed on a portion of a flat annular rim of the aft skirt of the booster. The bag is hinged at opposing sides and is provided with springs that urge the bag open. The bag is latched in a stowed position during launch and prior to landing for recovery is unlatched to permit the bag to be urged open and into sealing engagement with the rim. A source of pressurized gas further inflates the bag and urges it into sealing engagement with the rim of the skirt where it is locked into position. The gas provides a positive pressure upon the interior of the bag to preclude entry of salt water into the skirt and into contact with the engine. A flotation arrangement may assist in precluding the skirt of the booster from becoming submerged.

  5. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  6. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Liquid Rocket Booster (LRB) Systems Definition Handbook presents the analyses and design data developed during the study. The Systems Definition Handbook (SDH) contains three major parts: the LRB vehicles definition; the Pressure-Fed Booster Test Bed (PFBTB) study results; and the ALS/LRB study results. Included in this volume are the results of all trade studies; final configurations with supporting rationale and analyses; technology assessments; long lead requirements for facilities, materials, components, and subsystems; operational requirements and scenarios; and safety, reliability, and environmental analyses.

  7. Booster propulsion/vehicle impact study

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric

    1988-01-01

    The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.

  8. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.

  9. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians mount NASA's Soil Moisture Active Passive, or SMAP, spacecraft on a work platform. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  10. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians rotate NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  11. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians have rotated NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  12. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  13. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians begin processing of NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  14. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, an engineer inspects NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  15. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians remove a protective covering from NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  16. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians prepare a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  17. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians rotate NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  18. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  19. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians have rotated NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  20. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians prepare a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  1. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians remove a protective covering from NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  2. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  3. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  4. Space Shuttle Transportation (Roll-Out) Loads Diagnostics

    NASA Technical Reports Server (NTRS)

    Elliott, Kenny B.; Buehrle, Ralph D.; James, George H.; Richart, Jene A.

    2005-01-01

    The Space Transportation System (STS) consists of three primary components; an Orbiter Vehicle, an External Fuel Tank, and two Solid Rocket Boosters. The Orbiter Vehicle and Solid Rocket Boosters are reusable components, and as such, they are susceptible to durability issues. Recently, the fatigue load spectra for these components have been updated to include load histories acquired during the rollout phase of the STS processing for flight. Using traditional program life assessment techniques, the incorporation of these "rollout" loads produced unacceptable life estimates for certain Orbiter structural members. As a result, the Space Shuttle System Engineering and Integration Office has initiated a program to re-assess the method used for developing the "rollout" loads and performing the life assessments. In the fall of 2003 a set of tests were preformed to provide information to either validate existing load spectra estimation techniques or generate new load spectra estimation methods. Acceleration and strain data were collected from two rollouts of a partial-stack configuration of the Space Shuttle. The partial stack configuration consists of two Solid Rocket Boosters tied together at the upper External Tank attachment locations mounted on the Mobile Launch Platform carried by a Crawler Transporter (CT). In the current analysis, the data collected from this test is examined for consistency in speed, surface condition effects, and the characterization of the forcing function. It is observed that the speed of the CT is relatively stable. The dynamic response acceleration of the partial-stack is slightly sensitive to the surface condition of the road used for transport, and the dynamic response acceleration of the partial-stack generally increases as the transport speed increases. However, the speed sensitivity is dependent on the measurement location. Finally, the character of the forcing function is narrow-banded with the primary drivers being harmonics of two CT speed dependent excitations. One source is an excitation due to the CT treads striking the road surface, and the second is unknown.

  5. LOX/hydrocarbon rocket engine analytical design methodology development and validation. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Niiya, Karen E.; Walker, Richard E.; Pieper, Jerry L.; Nguyen, Thong V.

    1993-01-01

    This final report includes a discussion of the work accomplished during the period from Dec. 1988 through Nov. 1991. The objective of the program was to assemble existing performance and combustion stability models into a usable design methodology capable of designing and analyzing high-performance and stable LOX/hydrocarbon booster engines. The methodology was then used to design a validation engine. The capabilities and validity of the methodology were demonstrated using this engine in an extensive hot fire test program. The engine used LOX/RP-1 propellants and was tested over a range of mixture ratios, chamber pressures, and acoustic damping device configurations. This volume contains time domain and frequency domain stability plots which indicate the pressure perturbation amplitudes and frequencies from approximately 30 tests of a 50K thrust rocket engine using LOX/RP-1 propellants over a range of chamber pressures from 240 to 1750 psia with mixture ratios of from 1.2 to 7.5. The data is from test configurations which used both bitune and monotune acoustic cavities and from tests with no acoustic cavities. The engine had a length of 14 inches and a contraction ratio of 2.0 using a 7.68 inch diameter injector. The data was taken from both stable and unstable tests. All combustion instabilities were spontaneous in the first tangential mode. Although stability bombs were used and generated overpressures of approximately 20 percent, no tests were driven unstable by the bombs. The stability instrumentation included six high-frequency Kistler transducers in the combustion chamber, a high-frequency Kistler transducer in each propellant manifold, and tri-axial accelerometers. Performance data is presented, both characteristic velocity efficiencies and energy release efficiencies, for those tests of sufficient duration to record steady state values.

  6. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A. M.; Kondratenko, M. A.; Morozov, Vasiliy

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, wemore » propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.« less

  7. X-43A hypersonic research aircraft mated to its modified Pegasus booster rocket.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. FIRST X-43A MATED TO BOOSTER -- The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer of 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  8. KSC-08pd0860

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster joins the first booster lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  9. Control techniques to improve Space Shuttle solid rocket booster separation

    NASA Technical Reports Server (NTRS)

    Tomlin, D. D.

    1983-01-01

    The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.

  10. NASA's SPACE LAUNCH SYSTEM: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.

  11. Space shuttle: Determination of the aerodynamic interference between the space shuttle orbiter, external tank, and solid rocket booster on a 0.004 scale ascent configuration

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.; Buchholz, R.; Allen, E. C. JR.; Dehart, J.

    1973-01-01

    Wind tunnel tests were conducted to determine the aerodynamic interference between the space shuttle orbiter, external tank, and solid rocket booster on a 0.004 scale ascent configuration. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 to plus 10 degrees at zero degree sideslip. A sideslip range of minus 10 to plus 10 degrees at zero degree angle of attack was also tested. The Mach number range was varied from 0.6 to 4.96 with Reynolds number varying between 4.9 and 6.8 times one million per foot.

  12. Space shuttle: Verification of transition reentry corridor at high angles of attack and determination of transition aerodynamic characteristics and subsonic aerodynamic characteristics at low angles of attack for the Boeing H-32 booster

    NASA Technical Reports Server (NTRS)

    Houser, J.; Johnson, L. J.; Oiye, M.; Runciman, W.

    1972-01-01

    Experimental aerodynamic investigations were made in a transonic wind tunnel on a 1/150-scale model of the Boeing H-32 space shuttle booster configuration. The purpose of the test was: (1) to verify the transonic reentry corridor at high angles of attack; (2) to determine the transonic aerodynamic characteristics; and (3) to determine the subsonic aerodynamic characteristics at low angles of attack. Test variables included configuration buildup, horizontal stabilizer settings of 0 and -20 deg, elevator deflections of 0 and -30 deg, and wing spoiler settings of 60 deg.

  13. Aerodynamic characteristics of the Grumman H-33 orbiter mated to a three segment solid propellant booster

    NASA Technical Reports Server (NTRS)

    Sims, F.; Olive, R.

    1971-01-01

    Experimental aerodynamic investigations were conducted on a .003366-scale model of the Grumman space shuttle configuration mounted to a three (3) segmented solid propellant booster. These tests were conducted in the MSFC 14-inch trisonic wind tunnel over a Mach number range of 0.6 to 4.96. The purpose of the test was to determine the aerodynamic characteristics of this configuration. Aerodynamic data was taken over a nominal angle of attack and angle of sideslip of -10 degrees to 10 degrees at zero degrees beta and alpha respectively. In addition, data was obtained for the H-33 orbiter alone to supplement data from TWT 502 and TWT 503.

  14. SRB-3D Solid Rocket Booster performance prediction program. Volume 1: Engineering description/users information manual

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The modified Solid Rocket Booster Performance Evaluation Model (SRB-3D) was developed as an extension to the internal ballistics module of the SRB-2 performance program. This manual contains the engineering description of SRB-3D which describes the approach used to develop the 3D concept and an explanation of the modifications which were necessary to implement these concepts.

  15. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated booster, the main stage ensuring the initial acceleration in liquid rocket mode and a complementary acceleration phase in rocket mode beyond the air-breathing propulsion system operation. Finally, the liquid rocket engine of this third variant can be replaced by a continuous detonation wave rocket engine. The paper describes the main guidelines for the design of these variants and provides their main characteristics. On this basis, the achievable performance, estimated by trajectory simulation, are detailed.

  16. Evaluation of SRB phenolic TPS material made by an alternate vendor

    NASA Technical Reports Server (NTRS)

    Karu, Z. S.

    1982-01-01

    Tests conducted to evaluate the adequacy of solid rocket booster (SRB) phenolic thermal protection system (TPS) material supplied by an alternate vendor chosen by United Space Boosters, Inc. (USBI), to replace the current phenolic TPS sections used thus far on the first four Shuttle flights. The phenolic TPS is applied mainly to the attach and kick rings of the solid rocket booster (SRB). Full-scale sectional models of both the attach and kick ring structure were made up with 0.0265 in. thick stainless steel thin skin covers with thermocouples on them to determine the heating rates. Such models were made up for both the forward and rear faces of the kick ring which has a different configuration on each side. The thin skins were replaced with the alternate phenolic TPS sections cut from flight hardware configuration phenolic parts as supplied by the new vendor. Two tests were performed for each configuration of the attach and kick rings and the samples were exposed to the flow for a duration that gave a heat load equivalent to that obtained in the series of runs made for the current line of phenolic TPS. The samples performed very well with no loss of any phenolic layers. The post-test samples looked better than those used to verify the current phenolic TPS.

  17. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  18. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically produced Atlas V engine that could also potentially satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete critical design review this fall and begin testing in 2017. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements. This paper will discuss the ABEDRR engine task and structures task achievements to date and the remaining effort through the end of the contract.

  19. On the X-34 FASTRAC-Memorandums of Misunderstanding

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Turner, Jim E.

    2015-01-01

    Engineers at MSFC designed, developed, and tested propulsion systems that helped launch Saturn I, IB, and V boosters for the Apollo missions. After the Apollo program, Marshall was responsible for the design and development of the propulsion elements for the Shuttle launch vehicle, including the solid rocket boosters, external tank and main engines. Each of these systems offered new propulsion technological challenges that pushed engineers and administrators beyond Saturn. The technical challenges presented by the development of each of these propulsion systems helped to establish and sustain a culture of engineering conservatism and was often accompanied by a deep level of penetration into contractors that worked on these systems.

  20. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    NASA Technical Reports Server (NTRS)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  1. Space shuttle: Aerodynamic heating tests of the MDAC delta wing orbiter and canard booster

    NASA Technical Reports Server (NTRS)

    Andresen, T. L.

    1972-01-01

    Design of an efficient thermal protection system for the space shuttle orbiter and booster is discussed, based on knowledge of the thermal environment to be experienced by the vehicles in all flight phases. The complex configurations of these vehicles limit the level of confidence which can be associated with purely analytical thermal environment predictions. Tests were conducted during April and May 1971 using an orbiter and booster model at a 96-in. hypersonic shock tunnel. Both models were tested separately as well as together. A sufficiently large range in Reynolds number was covered so that laminar, transitional, and turbulent data could be obtained.

  2. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    The factors affecting the choice of the 156 inch diameter, parallel burn, solid propellant rocket engine for use with the space shuttle booster are presented. Primary considerations leading to the selection are: (1) low booster vehicle cost, (2) the largest proven transportable system, (3) a demonstrated design, (4) recovery/reuse is feasible, (5) abort can be easily accomplished, and (6) ecological effects are minor.

  3. A Shuttle Derived Vehicle launch system

    NASA Technical Reports Server (NTRS)

    Tewell, J. R.; Buell, D. N.; Ewing, E. S.

    1982-01-01

    This paper describes a Shuttle Derived Vehicle (SDV) launch system presently being studied for the NASA by Martin Marietta Aerospace which capitalizes on existing Shuttle hardware elements to provide increased accommodations for payload weight, payload volume, or both. The SDV configuration utilizes the existing solid rocket boosters, external tank and the Space Shuttle main engines but replaces the manned orbiter with an unmanned, remotely controlled cargo carrier. This cargo carrier substitution more than doubles the performance capability of the orbiter system and is realistically achievable for minimal cost. The advantages of the SDV are presented in terms of performance and economics. Based on these considerations, it is concluded that an unmanned SDV offers a most attractive complement to the present Space Transportation System.

  4. Preliminary vibration, acoustic, and shock design and test criteria for components on the SRB, ET, and SSME

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Specifications for vibration, acoustic and shock design for components and subassemblies on the External Tank (ET), Solid Rocket Booster (SRB), and Space Shuttle Main Engine (SSME). Included are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. The space shuttle ET, SRB, and SSME have been divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (General Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Criteria for some specific components are also presented.

  5. Testing of Environmentally Preferable Aluminum Pretreatments and Coating Systems for Use on Space Shuttle Solid Rocket Boosters (SRB)

    NASA Technical Reports Server (NTRS)

    Clayton, C.; Raley, R.; Zook, L.

    2001-01-01

    The solid rocket booster (SRB) has historically used a chromate conversion coating prior to protective finish application. After conversion coating, an organic paint system consisting of a chromated epoxy primer and polyurethane topcoat is applied. An overall systems approach was selected to reduce waste generation from the coatings application and removal processes. While the most obvious waste reduction opportunity involved elimination of the chromate conversion coating, several other coating system configurations were explored in an attempt to reduce the total waste. This paper will briefly discuss the use of a systems view to reduce waste generation from the coating process and present the results of the qualification testing of nonchromated aluminum pretreatments and alternate coating systems configurations.

  6. Aerodynamic characteristics of several launch configurations utilizing the Titan 3 L booster and MMC DTO-7 Orbiter

    NASA Technical Reports Server (NTRS)

    Michna, D. J.

    1972-01-01

    The .00429 scale model Titan 3 booster was mated with the DTO-7 space shuttle orbiter with drop tanks and tested for aerodynamic performance in a 14 x 14 inch trisonic wind tunnel. Six component aerodynamic force and moment data were measured on several variations of the above component in a launch configuration over a Mach number range from 0.6 to 3.48. Angle of attack ranged from -12 deg to 12 deg at 0 deg and -6 deg sideslip angle and sideslip angle ranged from -12 deg to 12 deg at 0 deg angle of attack. Date are presented in plotted form in both the stability and body axis system.

  7. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  8. Surface pressure and inviscid flow field properties McDonnell-Douglas booster nominal Mach number of 8, volume 3

    NASA Technical Reports Server (NTRS)

    Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.

    1972-01-01

    The results are presented of a wind tunnel test program to determine surface pressures and flow field properties on the space shuttle booster configuration. The tests were conducted in September 1971. Data were obtained at a nominal Mach number of 8 at angles of attack of 40 and 50 deg and at a free stream unit Reynolds number of 3.7 million per foot.

  9. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  10. Booster Interface Loads

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Wood, Bill; Nettles, Mindy

    2015-01-01

    The interaction between shock waves and the wake shed from the forward booster/core attach hardware results in unsteady pressure fluctuations, which can lead to large buffeting loads on the vehicle. This task investigates whether computational tools can adequately predict these flows, and whether alternative booster nose shapes can reduce these loads. Results from wind tunnel tests will be used to validate the computations and provide design information for future Space Launch System (SLS) configurations. The current work combines numerical simulations with wind tunnel testing to predict buffeting loads caused by the boosters. Variations in nosecone shape, similar to the Ariane 5 design (fig. 1), are being evaluated with regard to lowering the buffet loads. The task will provide design information for the mitigation of buffet loads for SLS, along with validated simulation tools to be used to assess future SLS designs.

  11. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2005-01-01

    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  12. Study of solid rocket motors for a space shuttle booster. Volume 2, book 1: Analysis and design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the factors which determined the selection of the solid rocket propellant engines for the space shuttle booster is presented. The 156 inch diameter, parallel burn engine was selected because of its transportability, cost effectiveness, and reliability. Other factors which caused favorable consideration are: (1) recovery and reuse are feasible and offer substantial cost savings, (2) abort can be easily accomplished. and (3) ecological effects are acceptable.

  13. Historical Footage of John Glenn Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Friendship mission launch on the 20th day of February marked the first time that an American attempts to orbit the Earth. Historical footage of John Glenn's suit up, ride out to the launch pad, countdown, liftoff, booster engine cutoff, and separation of the booster engine escape tower is shown. Views of the Earth, Glenn's manual control of the electrical fly-by wire system, and the recovery of the landing vehicle from the ocean are presented.

  14. Liquid boosters for Shuttle?

    NASA Astrophysics Data System (ADS)

    Robertson, Donald F.

    1989-12-01

    The use of liquid rocket boosters (LRBs) for the Space Shuttle is proposed. The advantages LRBs provide are improved flight safety due to the use of four engines instead of two and less environmental pollution than solid rocket boosters because LRBs utilize clean-burning fuels. The LRBs also permit very high launch rates and increased safety in assembly and mating of the Shuttle. Concerns about LRBs such as costs, diameter, support capability, and water recovery are examined.

  15. Liquid Rocket Booster (LRB) for the Space Transportion System (STS) systems study. Appendix D: Trade study summary for the liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.

  16. 39. VIEW OF CHRYSLER WORKERS LOADING A SATURN IB BOOSTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. VIEW OF CHRYSLER WORKERS LOADING A SATURN IB BOOSTER INTO THE EAST POSITION ON THE STATIC TEST TOWER. AS THE MAIN CONTRACTOR OF THE SATURN IB BOOSTER, CHRYSLER TOOK OVER OPERATIONS OF THE EAST POSITION OF THE STATIC TEST TOWER IN 1963. THAT SAME YEAR, THE WEST POSITION OF THE TEST TOWER WAS MODIFIED (AS SEEN IN THE PHOTO) FOR RESEARCH AND DEVELOPMENT TESTS OF THE SATURN V BOOSTER'S ENGINE, THE F-1. MARCH 1963, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  17. KSC-08pd0866

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster is lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. It joins the first two boosters already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  18. KSC-08pd0862

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, workers prepare to raise the solid rocket booster to a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  19. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  20. Liquid rocket booster study. Volume 2, book 3, appendices 2-5: PPIP, transition plan, AMOS plan, and environmental analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Preliminary Project Implementation Plan (PPIP) was used to examine the feasibility of replacing the current Solid Rocket Boosters on the Space Shuttle with Liquid Rocket Boosters (LRBs). The need has determined the implications of integrating the LRB with the Space Transportation System as the earliest practical date. The purpose was to identify and define all elements required in a full scale development program for the LRB. This will be a reference guide for management of the LRB program, addressing such requirement as design and development, configuration management, performance measurement, manufacturing, product assurance and verification, launch operations, and mission operations support.

  1. Design Optimization of Gas Generator Hybrid Propulsion Boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight; Fink, Larry

    1990-01-01

    A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  2. Going Boldly Beyond: Progress on NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Crumbly, Chris

    2013-01-01

    NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.

  3. Ram booster

    NASA Technical Reports Server (NTRS)

    Brand, Vance D. (Inventor); Morgan, Walter Ray (Inventor)

    2011-01-01

    The present invention is a space launch system and method to propel a payload bearing craft into earth orbit. The invention has two, or preferably, three stages. The upper stage has rocket engines capable of carrying a payload to orbit and provides the capability of releasably attaching to the lower, or preferably, middle stage. Similar to the lower stage, the middle stage is a reusable booster stage that employs all air breathing engines, is recoverable, and can be turned-around in a short time between missions.

  4. KSC-2014-4287

    NASA Image and Video Library

    2014-10-16

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians mount NASA's Soil Moisture Active Passive, or SMAP, spacecraft on a work platform. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/ Randy Beaudoin

  5. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 3: Advanced Fan Section Grid Generator Final Report and Computer Program User's Manual

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1991-01-01

    A procedure is studied for generating three-dimensional grids for advanced turbofan engine fan section geometries. The procedure constructs a discrete mesh about engine sections containing the fan stage, an arbitrary number of axisymmetric radial flow splitters, a booster stage, and a bifurcated core/bypass flow duct with guide vanes. The mesh is an h-type grid system, the points being distributed with a transfinite interpolation scheme with axial and radial spacing being user specified. Elliptic smoothing of the grid in the meridional plane is a post-process option. The grid generation scheme is consistent with aerodynamic analyses utilizing the average-passage equation system developed by Dr. John Adamczyk of NASA Lewis. This flow solution scheme requires a series of blade specific grids each having a common axisymmetric mesh, but varying in the circumferential direction according to the geometry of the specific blade row.

  6. Results of a space shuttle pulme impingement investigation at stage separation in the NASA-MSFC impulse base flow facility

    NASA Technical Reports Server (NTRS)

    Mccanna, R. W.; Sims, W. H.

    1972-01-01

    Results are presented for an experimental space shuttle stage separation plume impingement program conducted in the NASA-Marshall Space Flight Center's impulse base flow facility (IBFF). Major objectives of the investigation were to: (1)determine the degree of dual engine exhaust plume simulation obtained using the equivalent engine; (2) determine the applicability of the analytical techniques; and (3) obtain data applicable for use in full-scale studies. The IBFF tests determined the orbiter rocket motor plume impingement loads, both pressure and heating, on a 3 percent General Dynamics B-15B booster configuration in a quiescent environment simulating a nominal staging altitude of 73.2 km (240,00 ft). The data included plume surveys of two 3 percent scale orbiter nozzles, and a 4.242 percent scaled equivalent nozzle - equivalent in the sense that it was designed to have the same nozzle-throat-to-area ratio as the two 3 percent nozzles and, within the tolerances assigned for machining the hardware, this was accomplished.

  7. Space Launch System Base Heating Test: Experimental Operations & Results

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  8. Providing a Turn for the Better

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Engineers are tasked with designing new systems every day to meet changing or unexpected technical requirements. After the tragic explosion of the Space Shuttle Challenger on January 28, 1986, NASA engineers embarked on a complete overhaul of many of their long-standing quality systems and procedures. When the official cause of the accident was determined to be an O-ring failure in the right Solid Rocket Booster, NASA's Shuttle Program initiated a thorough redesign of the rocket boosters' clevis ends, which are the O-ring's mating surfaces. One of the unique systems that NASA engineers developed as a result of this effort included a heating assembly that is coupled to the outside of the rocket boosters. When the assembly is affixed to the external surface of the boosters, the very nature of its design allows for the warming of the O-rings prior to launch. After the engineers completed the assembly's design, however, they found that it was nearly impossible to tighten the spanner nuts required for attaching the system, given the minimum amount of clearance they had in the limited and confined space. Under these circumstances, the standard wrenches typically used for tightening these types of nuts did not work, and there were no other existing devices to solve the problem. NASA engineers embraced the challenge, developing a torque wrench tool adapter that allowed for a full rotation of spanner nuts in confined spaces. The tool, which is similar to an open-ended crowfoot wrench and a fixed-face spanner wrench, contains two dowel pins that center and lock the wrench onto the nut.

  9. Aerodynamic stability and drag characteristics of the MSFC pressure fed booster configurations at Mach numbers from 0.9 to5.0

    NASA Technical Reports Server (NTRS)

    Baker, J.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14 x 14 Inch Trisonic Wind Tunnel during January 1972 on 0.003366 and 0.00419 scale models of the MSFC space shuttle pressure fed booster configurations. The configurations tested were a 40 deg cone/cylinder/13 deg flare with and without fins, a 40 deg cone/cylinder/13 deg flare/9 deg flare with and without fins, a 35 deg cone/cylinder with and without fins, a 35 deg cone/cylinder/7 deg flare and a 35 deg cone/cylinder with straight extension. Six component aerodynamic force and moment data were recorded over a Mach number range of 0.9 to 5.0. Model angle of attack range was -10 to +10 deg and +20 to 80 at 0 deg sideslip. Model sideslip range was -10 to +10 deg at nominal angles of attack of 0, 30 and 51 deg

  10. Reentry aerodynamic characteristics of a space shuttle solid rocket booster (MSFC model 454) at high angles of attack and high Mach number in the NASA/Langley four-foot unitary plan wind tunnel (SA25F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.

    1975-01-01

    A force test of a 2.112 percent scale Space Shuttle Solid Rocket Booster (SRB), MSFC Model 454, was conducted in test section no. 2 of the Unitary Plan Wind Tunnel. Sixteen (16) runs (pitch polars) were performed over an angle of attack range from 144 through 179 degrees. Test Mach numbers were 2.30, 2.70, 2.96, 3.48, 4.00 and 4.63. The first three Mach numbers had a test Reynolds number of 1.5 million per foot. The remaining three were at 2.0 million per foot. The model was tested in the following configurations: (1) SRB without external protuberances, and (2) SRB with an electrical tunnel and a SRB/ET thrust attachment structure. Schlieren photographs were taken during the testing of the first configuration. The second configuration was tested at roll angles of 45, 90, and 135 degrees.

  11. NASA's Space Launch System Booster Passes Major Milestone on Journey to Mars (QM-2)

    NASA Image and Video Library

    2016-06-28

    A booster for the most powerful rocket in the world, NASA’s Space Launch System (SLS), was fired up Tuesday, June 28 at 11:05 a.m. EDT for a second qualification ground test at Orbital ATK's test facilities in Promontory, Utah. This was the last full-scale test for the booster before SLS is ready in 2018 for the first uncrewed test flight with NASA’s Orion spacecraft, marking a key milestone on the agency’s Journey to Mars. The booster was tested at a cold motor conditioning target of 40 degrees Fahrenheit –the colder end of its accepted propellant temperature range. When ignited, temperatures inside the booster reached nearly 6,000 degrees. The two-minute, full-duration ground qualification test provided NASA with critical data on 82 qualification objectives that will support certification of the booster for flight. Engineers now will evaluate test data captured by more than 530 instrumentation channels on the booster.

  12. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses included three-dimensional models of the RSRM and FSM aft motors with four-degree vectored nozzles.

  13. Study of solid rocket motors for a space shuttle booster. Volume 4: Mass properties report

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Mass properties data for the 156 inch diameter, parallel burn, solid propellant rocket engine for the space shuttle booster are presented. Design ground rules and assumptions applicable to generation of the mass properties data are described, together with pertinent data sources.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1966-01-01

    Engineers and technicians at the Marshall Space Flight Center placed a Saturn V ground test booster (S-IC-D) into the dynamic test stand. The stand was constructed to test the integrity of the vehicle. Forces were applied to the tail of the vehicle to simulate the engines thrusting, and various other flight factors were fed to the vehicle to test reactions. The Saturn V launch vehicle, with the Apollo spacecraft, was subjected to more than 450 hours of shaking. The photograph shows the 300,000 pound S-IC stage being lifted from its transporter into place inside the 360-foot tall test stand. This dynamic test booster has one dummy F-1 engine and weight simulators are used at the other four engine positions.

  15. Analysis of the staging maneuver and booster glideback guidance for a two-stage, winged, fully reusable launch vehicle. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Naftel, J. Christopher; Powell, Richard W.

    1993-01-01

    One of the promising launch concepts that could replace the current space shuttle launch system is a two-stage, winged, vertical-takeoff, fully reusable launch vehicle. During the boost phase of ascent, the booster provides propellant for the orbiter engines through a cross-feed system. When the vehicle reaches a Mach number of 3, the booster propellants are depleted and the booster is staged and glides unpowered to a horizontal landing at a launch site runway. Two major design issues for this class of vehicle are the staging maneuver and the booster glideback. For the staging maneuver analysis, a technique was developed that provides for a successful separation of the booster from the orbiter over a wide range of staging angles of attack. A longitudinal flight control system was developed for control of the booster during the staging maneuver. For the booster glide back analysis, a guidance algorithm was developed that successfully guides the booster from the completion of the staging maneuver to a launch site runway while encountering many off-nominal atmospheric, aerodynamic, and staging conditions.

  16. Single-stage-to-orbit performance enhancement from take-off thrust augmentation

    NASA Astrophysics Data System (ADS)

    Galati, Terence; Elkins, Travis

    1997-01-01

    Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor® strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80% of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H2 engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, Isp and pitch rate are quantified.

  17. SMAP During Weighing

    NASA Image and Video Library

    2014-11-07

    Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  18. SMAP During Weighing

    NASA Image and Video Library

    2014-11-07

    Preparations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  19. SMAP During Weighing

    NASA Image and Video Library

    2014-11-07

    NASA's Soil Moisture Active Passive, or SMAP, spacecraft is lifted from its workstand in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California during operations to determine its weight. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-01

    This photograph shows stacking of the left side of the solid rocket booster (SRB) segments in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). Staging shown here are the aft skirt, aft segment, and aft center segment. The SRB was attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT is to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-01

    This photograph shows the left side of the solid rocket booster (SRB) segment as it awaits being mated to the nose cone and forward skirt in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-01

    Workmen in the Dynamic Test Stand lowered the nose cone into place to complete stacking of the left side of the solid rocket booster (SRB) in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB'S to which the ET was attached.

  3. Heat transfer tests of the McDonnell-Douglas delta wing orbiter mated with -17A booster at Mach number 8

    NASA Technical Reports Server (NTRS)

    Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.

    1972-01-01

    A wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell-Douglas configurations is reported. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). Heat-transfer rates were determined by the phase-change paint technique on 0.011-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, freestream unit Reynolds numbers of 0.8 x one million, 2.5 x one million, and 3.7 x one million, and angles of attack of -5 deg, 0 deg, +5deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented.

  4. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1976-01-01

    This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  6. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Greene, William D.

    2017-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article. The test article is scheduled to complete fabrication and assembly soon and continue testing through late 2019. Dynetics has also designed, developed, and built innovative tank and structure assemblies using friction stir welding to leverage recent NASA investments in manufacturing tools, facilities, and processes, significantly reducing development and recurring costs. The full-scale cryotank assembly was used to verify the structural design and prove affordable processes. Dynetics performed hydrostatic and cryothermal proof tests on the assembly to verify the assembly meets performance requirements..

  7. Design optimization of gas generator hybrid propulsion boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight U.; Fink, Lawrence E.

    1990-01-01

    A methodology used in support of a contract study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specified optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  8. Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster

    NASA Technical Reports Server (NTRS)

    Craft, Joe; Ess, Robert; Sauvageau, Don

    2003-01-01

    The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.

  9. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (framed between the boosters), and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (framed between the boosters), and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  10. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  11. An investigation of the aerodynamic characteristics of a 0.00548 scale model (model no. 486) of the space shuttle 146-inch diameter solid rocket booster at angels of attack from 113 deg to 180 deg in the AEDC PWT 4-foot transonic wind tunnel (SA16F)

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1976-01-01

    An experimental investigation (SA16F) was conducted in the AEDC PWT 4T to determine the entry static stability of a 0.00548 scale space shuttle solid rocket booster (SRB). The primary objective was to improve the definition of the aerodynamic characteristics in the angle of attack range beyond 90 deg in the vicinity of the entry trim point. The SRB scale model consisted of the reentry configuration with all major protuberances. A simulated heat shield around the engine nozzle was also included. Data were obtained for a 60 deg side mounted sting and a straight nose mounted sting. The angle of attack range for the side mounted sting was 113 deg to 147 deg and for the nose mounted sting 152 deg to 187 deg. The Mach number range consisted of 0.4 to 1.2 at roll angles of 0 and 90 deg. The resulting 6-component aerodynamic force data was presented as the variation of coefficients with angle of attack for each Mach number and roll angle.

  12. CLV First Stage Design, Development, Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Burt, Richard K.; Brasfield, F.

    2006-01-01

    The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  13. Study of solid rocket motors for a space shuttle booster. Volume 2, book 3: Cost estimating data

    NASA Technical Reports Server (NTRS)

    Vanderesch, A. H.

    1972-01-01

    Cost estimating data for the 156 inch diameter, parallel burn solid rocket propellant engine selected for the space shuttle booster are presented. The costing aspects on the baseline motor are initially considered. From the baseline, sufficient data is obtained to provide cost estimates of alternate approaches.

  14. 22 CFR 121.5 - Apparatus and devices under Category IV(c).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., modified or configured for items listed in that category, bomb racks and shackles, bomb shackle release units, bomb ejectors, torpedo tubes, torpedo and guided missile boosters, guidance systems equipment and...

  15. Reusable Boosters in a European-Russian Perspective

    NASA Astrophysics Data System (ADS)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  16. Liquid lift for the Shuttle

    NASA Astrophysics Data System (ADS)

    Demeis, Richard

    1989-02-01

    After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the Space Shuttle, its cargo version ('Shuttle-C'), and the next-generation Advanced Launch System. The system envisioned would involve two booster units, whose four engines/unit would be fed by integral LOX and kerosene tanks. Mission aborts with one-booster unit and two-unit failures would not be catastrophic, and would respectively allow LEO or an emergency landing in Africa.

  17. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.

    1993-01-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing additional flexibility in the use of the program, allowing additional optimization options, and providing special options for the NLS configuration.

  18. Influence of vibration modes on control system stabilization for space shuttle type vehicles

    NASA Technical Reports Server (NTRS)

    Greiner, H. G.

    1972-01-01

    An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.

  19. Space Shuttle Project

    NASA Image and Video Library

    1972-03-07

    This early chart conceptualizes the use of two parallel Solid Rocket Motor Boosters in conjunction with three main engines to launch the proposed Space Shuttle to orbit. At approximately twenty-five miles altitude, the boosters would detach from the Orbiter and parachute back to Earth where they would be recovered and refurbished for future use. The Shuttle was designed as NASA's first reusable space vehicle, launching vertically like a spacecraft and landing on runways like conventional aircraft. Marshall Space Flight Center had management responsibility for the Shuttle's propulsion elements, including the Solid Rocket Boosters.

  20. Low-cost commercial transport

    NASA Technical Reports Server (NTRS)

    Mcpherson, J.

    1991-01-01

    The topics presented are covered in viewgraph form. The objectives are to develop and validate technology, design tools and methodologies to enable the low cost commercial development and operational uses of hydrogen and hydrocarbon fueled liquid engines, low pressure booster engines and hybrid engines.

  1. NASA Conducts First RS-25 Rocket Engine Test of 2015

    NASA Image and Video Library

    2015-01-09

    From the Press Release: The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars. "We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.” The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture. "This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing." Testing will resume in April after upgrades are completed on the high pressure industrial water system, which provides cool water for the test facility during a hot fire test. Eight tests, totaling 3,500 seconds, are planned for the current development engine. Another development engine later will undergo 10 tests, totaling 4,500 seconds. The second test series includes the first test of new flight controllers, known as green running. The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is upgraded, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.

  2. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Cook, Jerry; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100 metric tons and, ultimately, to 130 metric tons. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  3. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  4. Space Launch System Booster Test- Behind the Scenes

    NASA Image and Video Library

    2016-06-24

    Get a sneak peek behind the scenes of how engineers and technicians at Orbital ATK in Promontory, Utah, are coming together to test the most powerful booster for NASA’s new rocket, the Space Launch System. SLS will make missions possible to an asteroid and the journey to Mars. For more information on SLS, visit www.nasa.gov/sls.

  5. Study of solid rocket motors for a space shuttle booster. Appendix C: Recovery and reuse 120-inch diameter solid rocket motor boosters

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A baseline for a space shuttle configuration utilizing four parallel-burn 120-in. diameter SRMS is presented. Topics discussed include parachute system sequence, recovery system development profile, parachute container, and segment and closure recovery operations. A cost analysis for recovery of the SRM stage is presented. It is concluded that from the standpoint of minimum cost and development, parachutes are the best means of achieving SRM recovery. Major SRM components can be reused safely.

  6. Steel Primer Chamber Assemblies for Dual Initiated Pyrovalves

    NASA Technical Reports Server (NTRS)

    Guemsey, Carl S.; Mizukami, Masashi; Zenz, Zac; Pender, Adam A.

    2009-01-01

    A solution was developed to mitigate the potential risk of ignition failures and burn-through in aluminum primer chamber assemblies on pyrovalves. This was accomplished by changing the assembly material from aluminum to steel, and reconfiguration of flame channels to provide more direct paths from initiators to boosters. With the geometric configuration of the channels changed, energy is more efficiently transferred from the initiators to the boosters. With the alloy change to steel, the initiator flame channels do not erode upon firing, eliminating the possibility of burn-through. Flight qualification tests have been successfully passed.

  7. The Next Great Ship: NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  8. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. On either side of the boosters on the horizon can be seen the two launch pads. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. On either side of the boosters on the horizon can be seen the two launch pads. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  9. PWM Inverter with Voltage Boosters with Regenerating Capability Augmented by Electric Double-Layer Capacitor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kichiro; Imakiire, Akihiro; Iimori, Kenichi

    An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by electric double-layer capacitors (EDLCs) is proposed. In the proposed system, EDLCs are arranged in series with batteries so that a lesser number of the EDLCs and batteries will be required. The proposed system has two bi-directional voltage boosters: one is for both the batteries and EDLCs to control the dc-link voltage of a PWM inverter and the other is for only the EDLCs and is used to control the energy flow from and to the EDLCs. In this paper, a strategy to control the energy flow to and from the EDLCs is explained and its effectiveness is confirmed by simulation and experimental results. Furthermore, the efficiencies of the voltage booster, inverter, PM motor, and whole system are measured for the system with the basic configuration, i.e., which consists of only one bi-directional voltage booster and PWM inverter. Then, the steady-state characteristics are determined. Finally, the efficiency of the voltage boosters in the proposed system is determined, and the advantage of the proposed PM motor drive system is discussed.

  10. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    NASA Astrophysics Data System (ADS)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  11. Heavy Lift for Exploration: Options and Utilization

    NASA Technical Reports Server (NTRS)

    Creech, Steve; Sumrall, Phil

    2010-01-01

    Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.

  12. 78 FR 50320 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) model GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part number...-2B67 turbofan engine be removed from the Applicability section of this AD. The commenters noted that...

  13. Study of solid rocket motors for a space shuttle booster. Appendix E: Environmental impact statement, solid rocket motor, space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the combustion products resulting from the solid propellant rocket engines of the space shuttle booster is presented. Calculation of the degree of pollution indicates that the only potentially harmful pollutants, carbon monoxide and hydrochloric acid, will be too diluted to constitute a hazard. The mass of products ejected during a launch within the troposphere is insignificant in terms of similar materials that enter the atmosphere from other sources. Noise pollution will not exceed that obtained from the Saturn 5 launch vehicle.

  14. Aerodynamic flight evaluation analysis and data base update

    NASA Technical Reports Server (NTRS)

    Boyle, W. W.; Miller, M. S.; Wilder, G. O.; Reheuser, R. D.; Sharp, R. S.; Bridges, G. I.

    1989-01-01

    Research was conducted to determine the feasibility of replacing the Solid Rocket Boosters on the existing Space Shuttle Launch Vehicle (SSLV) with Liquid Rocket Boosters (LRB). As a part of the LRB selection process, a series of wind tunnel tests were conducted along with aero studies to determine the effects of different LRB configurations on the SSLV. Final results were tabulated into increments and added to the existing SSLV data base. The research conducted in this study was taken from a series of wind tunnel tests conducted at Marshall's 14-inch Trisonic Wind Tunnel. The effects on the axial force (CAF), normal force (CNF), pitching moment (CMF), side force (CY), wing shear force (CSR), wing torque moment (CTR), and wing bending moment (CBR) coefficients were investigated for a number of candidate LRB configurations. The aero effects due to LRB protuberances, ET/LRB separation distance, and aft skirts were also gathered from the tests. Analysis was also conducted to investigate the base pressure and plume effects due to the new booster geometries. The test results found in Phases 1 and 2 of wind tunnel testing are discussed and compared. Preliminary LRB lateral/directional data results and trends are given. The protuberance and gap/skirt effects are discussed. The base pressure/plume effects study is discussed and results are given.

  15. Spacecraft boost and abort guidance and control systems requirement study, boost dynamics and control analysis study. Exhibit A: Boost dynamics and control anlaysis

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Price, J. B.; Lemon, R. S.

    1972-01-01

    The simulation developments for use in dynamics and control analysis during boost from liftoff to orbit insertion are reported. Also included are wind response studies of the NR-GD 161B/B9T delta wing booster/delta wing orbiter configuration, the MSC 036B/280 inch solid rocket motor configuration, the MSC 040A/L0X-propane liquid injection TVC configuration, the MSC 040C/dual solid rocket motor configuration, and the MSC 049/solid rocket motor configuration. All of the latest math models (rigid and flexible body) developed for the MSC/GD Space Shuttle Functional Simulator, are included.

  16. Aerodynamic results of a separation effects test conducted in the AEDC 40 by 40 inch tunnel A facility on the Rockwell International launch configuration 3 (model-OTS) integrated vehicle (IA13), volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II

    1975-01-01

    Experimental aerodynamic investigations were conducted from July 5 through July 17, 1973, on a 0.01 scale model. The AEDC captive trajectory system was utilized in conjunction with the tunnel primary sector to obtain grid-type data for external tank abort from the orbiter, and for nominal separation of one solid rocket booster from the orbiter-tank combination. Booster separation was investigated with and without separation motors plume simulation. The plumes were generated by eight M sub j = 2.15 nozzles using a 1500 psia cold air supply. Free stream data were obtained for all models (orbiter, tank, orbiter-tank, and right-hand booster) to provide baselines for evaluation of proximity effects.

  17. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 3, part 1: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Olsen, C. D.

    1972-01-01

    Planning documentation is presented covering the specific areas of project engineering and development, management, facilities, manufacturing, logistic support maintenance, and test and product assurance.

  18. The development of H-II rocket solid rocket booster thrust vector control system

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Fukushima, Yukio; Kazama, Hiroo; Asai, Tatsuro; Okaya, Shunichi; Watanabe, Yasushi; Muramatsu, Shoji

    The development of the thrust-vector-control (TVC) system for the two solid rocket boosters (SRBs) of the H-II rocket, which was started in 1984 and completed in 1989, is described. Special attention is given to the system's design, the trade-off studies, and the evaluation of the SRB-TVC system performance, as well as to problems that occurred in the course of the system's development and to the countermeasures that were taken. Schematic diagrams are presented for the H-II rocket, the SRB, and the SRB-TVC system configurations.

  19. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Inside the RPSF, engineers and technicians with Jacobs Engineering on the Test and Operations Support Contract, explain the various test stands. In the far corner is one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  20. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  1. Study of solid rocket motors for a space shuttle booster. Appendix D: Recovery and reuse 156-inch diameter solid rocket motor booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The baseline for a space shuttle configuration utilizing two parallel-burn, 156-in.-diameter SRMs with three segments and techroll seal movable nozzles is presented. The concept and general economic benefits of SRM recovery are equally valid for the series-burn SRMs, provided that those SRMs are also designed for the same strength, stiffness, segmentation, and interchangeability as the present design, and that those SRMs are also recovered as individual units. Feasibility studies were initiated to investigate SRM recoverability. These studies were based upon recovery of the SRM boosters for the Titan 3C. Ground rules precluded SRM modification that required significant changes in motor qualification or schedule. Even with this restriction, the study determined that the recoverable booster concept was completely feasible, both technically and economically. Parachute recovery has been selected as the best method, principally because it can accomplish the task with a minimum development cost and time to achieve operational recovery status. This system affords the highest probability for achieving large cost reductions.

  2. Orbit on demand - Will cost determine best design?

    NASA Technical Reports Server (NTRS)

    Macconochie, J. O.; Mackley, E. A.; Morris, S. J.; Phillips, W. P.; Breiner, C. A.; Scotti, S. J.

    1985-01-01

    Eleven design concepts for vertical (V) and horizontal (H) take-off launch-on-demand manned orbital vehicles are discussed. Attention is given to up to three stages, Mach numbers (sub-, 2, or 3), expendable boosters, drop tanks (DT), and storable (S) or cryogenic fuels. All the concepts feature lifting bodies with circular cross-section and most have a 7 ft diam, 15 ft long payload bay as well as a crew compartment. Expendable elements impose higher costs and in some cases reduce all-azimuth launch capabilities. Single-stage vehicles simplify the logistics whether in H or V configuration. A two-stage H vehicle offers launch offset for the desired orbital plane before firing the rocket engines after take-off and subsonic acceleration. A two-stage fully reusable V form has the second lowest weight of the vehicles studied and an all-azimuth launch capability. Better definition of the prospective mission requirements is needed before choosing among the alternatives.

  3. SMAP Spacecraft Arrives at Astrotech

    NASA Image and Video Library

    2014-10-14

    Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  4. SMAP Spacecraft Rotate & Placed on Fixture

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, processing has begun on NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  5. SMAP Spacecraft Arrives at Astrotech

    NASA Image and Video Library

    2014-10-14

    The truck transporting NASA's Soil Moisture Active Passive, or SMAP, spacecraft arrives at the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  6. SMAP Spacecraft Offload

    NASA Image and Video Library

    2014-10-15

    NASA's Soil Moisture Active Passive, or SMAP, spacecraft is delivered by truck from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  7. KSC-2014-4457

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive, or SMAP, spacecraft is lifted from its workstand in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California during operations to determine its weight. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. KSC-2014-4455

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. KSC-2014-4453

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. KSC-2014-4454

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  11. KSC-2014-4451

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  12. KSC-2014-4452

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. KSC-2014-4456

    NASA Image and Video Library

    2014-11-07

    VANDENBERG AIR FORCE BASE, Calif. – Operations are underway to weigh NASA's Soil Moisture Active Passive, or SMAP, spacecraft in the clean room of the Astrotech payload processing facility on Vandenberg Air Force Base in California. The weighing of a spacecraft is standard procedure during prelaunch processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. NASA's Jet Propulsion Laboratory that built the observatory and its radar instrument also is responsible for SMAP project management and mission operations. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. NASA SLS Booster Nozzle Plug Pieces Fly During Test

    NASA Image and Video Library

    2016-06-28

    On June 28, a test version of the booster that will help power NASA's new rocket, the Space Launch System, fired up at nearly 6,000 degrees Fahrenheit for a successful, two-minute qualification test at Orbital ATK's test facilities in Promontory, Utah. This video shows the booster's nozzle plug intentionally breaking apart. The smoky ring coming off the booster is condensed water vapor created by a pressure difference between the motor gas and normal air. The nozzle plug is an environmental barrier to prevent heat, dust and moisture from getting inside the booster before it ignites. The plug isn't always part of a static test but was included on this one due to changes made to the hardware. The foam on the plug is denser than previous NASA launch vehicles, as the engines are now in the same plane as the boosters. A numbered grid was placed on the exterior of the plug before the test so the pieces retrieved could support plug breakup assessment and reconstruction. Along with video, collecting the pieces helps determine the size and speed of them when they break apart. Nozzle plug pieces were found as far as 1,500 to 2,000 feet away from the booster. This is the last full-scale qualification test for the booster before the first, uncrewed flight of SLS with the Orion spacecraft in 2018.

  15. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  16. Low Cost Propulsion Technology Testing at the Stennis Space Center: Propulsion Test Article and the Horizontal Test Facility

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.

    1998-01-01

    The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.

  17. Space Shuttle Project

    NASA Image and Video Library

    1978-10-04

    The Shuttle Orbiter Enterprise is being installed into liftoff configuration at Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  18. Hybrid Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  19. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  20. Ascent performance issues of a vertical-takeoff rocket launch vehicle

    NASA Astrophysics Data System (ADS)

    Powell, Richard W.; Naftel, J. C.; Cruz, Christopher I.

    1991-04-01

    Advanced manned launch systems studies under way at the NASA Langley Research Center are part of a broader effort that is examining options for the next manned space transportation system to be developed by the United States. One promising concept that uses near-term technologies is a fully reusable, two-stage vertical-takeoff rocket vehicle. This vehicle features parallel thrusting of the booster and orbiter with the booster cross-feeding the propellant to the orbiter until staging. In addition, after staging, the booster glides back unpowered to the launch site. This study concentrated on two issues that could affect the ascent performance of this vehicle. The first is the large gimbal angle range required for pitch trim until staging because of the propellant cross-feed. Results from this analysis show that if control is provided by gimballing of the rocket engines, they must gimbal greater than 20 deg, which is excessive when compared with current vehicles. However, this analysis also showed that this limit could be reduced to 10 deg if gimballing were augmented by throttling the booster engines. The second issue is the potential influence of off-nominal atmospheric conditions (density and winds) on the ascent performance. This study showed that a robust guidance algorithm could be developed that would insure accurate insertion, without prelaunch atmospheric knowledge.

  1. Optimum spaceborne computer system design by simulation

    NASA Technical Reports Server (NTRS)

    Williams, T.; Kerner, H.; Weatherbee, J. E.; Taylor, D. S.; Hodges, B.

    1973-01-01

    A deterministic simulator is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Its use as a tool to study and determine the minimum computer system configuration necessary to satisfy the on-board computational requirements of a typical mission is presented. The paper describes how the computer system configuration is determined in order to satisfy the data processing demand of the various shuttle booster subsytems. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources.

  2. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster decelerator subsystem drop test vehicle. Volume 2: Airplane flutter and load analysis results

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The airplane flutter and maneuver-gust load analysis results obtained during B-52B drop test vehicle configuration (with fins) evaluation are presented. These data are presented as supplementary data to that given in Volume 1 of this document. A brief mathematical description of airspeed notation and gust load factor criteria are provided as a help to the user. References are defined which provide mathematical description of the airplane flutter and load analysis techniques. Air-speed-load factor diagrams are provided for the airplane weight configurations reanalyzed for finned drop test vehicle configuration.

  3. KSC-08pd0871

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the Delta II rocket, at right, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is poised to receive the solid rocket boosters in the mobile service tower, at left. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  4. KSC-08pd0869

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, three solid rocket boosters are in the mobile service tower. They will be mated with the Delta II rocket, at left, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  5. KSC-08pd0868

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, three solid rocket boosters are in the mobile service tower. They will be mated with the Delta II rocket, at left, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  6. KSC-08pd0861

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- A third solid rocket booster arrives on Pad 17-B on Cape Canaveral Air Force Station for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  7. KSC-08pd0867

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster joins two others in the mobile service tower. They will be mated with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  8. KSC-08pd0870

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster joins two others in the mobile service tower. They will be mated with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  9. Chinese modify CZ-2/3 rocket boosters, focus on commercial launch market

    NASA Astrophysics Data System (ADS)

    Covault, C.

    1985-07-01

    A program underway in the People's Republic of China to modify the Titan-class CZ-2/3 satellite-launch and ICBM boosters is described on the basis of a recent visit to the manufacturing plant in Shanghai. The present two-stage CZ-2 and three-stage CZ-3 can place 5000 lbs in LEO or 3080 lbs in GEO, respectively, and are produced on a custom basis with a delivery time of about 2 yrs. Modifications introduced include 4 x 6-ft fins and a pogo-suppression system for the four-engine first stage and a steel support band for the combustion chamber of the 80-ton-thrust second-stage main engine.

  10. 78 FR 21578 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part... GE model GEnx-2B67 and GEnx- 2B67B turbofan engines with BAI air duct, P/N 2469M32G01, and support...

  11. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  12. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, talks with a reporter about the booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  13. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media watch as two cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System (SLS) rocket into the vertical position inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. The pathfinder booster segment will be moved to the other end of the RPSF and secured on a test stand. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  14. Space shuttle phase B extension, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    In order to define a system which would significantly reduce payload delivery costs, activities were extended to modifications of the reusable space shuttle design concept. Considered were systems using orbiters with external propellant tanks and an interim expendable booster which allowed phased development of the usable orbiter and booster. Analyzed were: Merits of internal and external propellant tanks and the impact of external LH2 compared to L02 and LH2; impact of cargo bay size; impact abort; merit of expendable booster options; and merit of a phased development program. Studies showed that external L02/LH2 and the continued use of the J-2S engine on the orbiter reduced program cost and risk.

  15. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A close-up view of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, portion of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  16. SHINE Vacuum Pump Test Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to themore » movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ''booster pump'' is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of 3/4 inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.« less

  17. KENNEDY SPACE CENTER, FLA. - The crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - The crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  18. KENNEDY SPACE CENTER, FLA. - A crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - A crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1960-06-15

    The Saturn Project was approved on January 18, 1960 as a program of the highest national priority. The formal test program to prove out the clustered-booster concept was well underway. A series of static tests of the Saturn I booster (S-I stage) began June 3, 1960 at the Marshall Space Flight Center (MSFC). This photograph depicts the Saturn I S-I stage equipped with eight H-1 engines, being successfully test-fired for the duration of 121 seconds on June 15, 1960.

  20. KENNEDY SPACE CENTER, FLA. - Framed between palm trees, solid rocket boosters loom above the Mobile Launcher Platform (MLP) as the crawler transporter slowly moves it along the crawlerway. The journey is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - Framed between palm trees, solid rocket boosters loom above the Mobile Launcher Platform (MLP) as the crawler transporter slowly moves it along the crawlerway. The journey is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  1. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  2. KENNEDY SPACE CENTER, FLA. - The crawler transporter has slowly moved the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter has slowly moved the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  3. KENNEDY SPACE CENTER, FLA. - The crawler transporter is slowly moving the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter is slowly moving the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  4. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, out of the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  5. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  6. 53. (Credit JTL) Interior view looking southwest at two high ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. (Credit JTL) Interior view looking southwest at two high service engines with Worthington-Snow engine in foreground. Electric high service booster pump is located on the far right between the two high service pumping engines. Grating is immediate foreground covers # 3 low service pump pit. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  7. Hyper-X Research Vehicle - Artist Concept in Flight with Scramjet Engine Firing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's depiction of a Hyper-X research vehicle under scramjet power in free-flight following separation from its booster rocket. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  8. Developing the World's Most Powerful Solid Booster

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.; Frame, Kyle L.

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are underway with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing processes, and new inspection techniques. New materials and processes provide improved performance, safety, and affordability but also have led to challenges for the government/industry development team. The team completed its first full-size qualification motor test firing in early 2015. The second is scheduled for mid-2016. This paper will discuss booster accomplishments to date, as well as challenges and milestones ahead.

  9. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1964-03-03

    Two technicians apply insulation to the outer surface of the S-II second stage booster for the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  11. Low speed aerodynamic characteristics of the GD/C B-18E3 booster

    NASA Technical Reports Server (NTRS)

    Carter, W. V.; Gallaher, W. H.

    1972-01-01

    A 0.02 scale model of the B-18E3 space shuttle booster was tested in a low speed wind tunnel to evaluate the low speed aerodynamic charactersitics. The basic configuration, including build-up, was tested at a Mach number of 0.201 and Reynolds number per foot of 1.39 million. The normal angle-of-attack range was -4 to +24 degrees in 2 degree increments, at sideslip angles of 0 and 5 degrees. Some lateral data were obtained at the sideslip angle range of -6 to 10 degrees at angles-of attack of 0, 10, and 15 degrees. Data were obtained for canard, split elevon, and split rudder deflections.

  12. Asymmetrical booster guidance and control system design study. Volume 3: Space shuttle vehicle SRB actuator failure study. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The investigation of single actuator failures on the space shuttle solid rocket booster required the analysis of both square pattern and diamond pattern actuator configurations. It was determined that for failures occuring near or prior to the region of maximum dynamic pressure, control gain adjustments can be used to achieve virtually nominal mid-boost vehicle behavior. A distinct worst case failure condition was established near staging that could significantly delay staging. It is recommended that the square pattern be retained as a viable alternative to the baseline diamond pattern because the staging transient is better controlled resulting in earlier staging.

  13. Reentry static stability characteristics of a (Model 471) .005479-scale 146-inch solid rocket booster tested in the NASA/MSFC 14 by 14 inch TWT (SA8F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.; Praharaj, S. C.

    1975-01-01

    A force test of a scale model of the Space Shuttle Solid Rocket Booster was conducted in a trisonic wind tunnel. The model was tested with such protuberances as a camera capsule, electrical tunnel, attach rings, aft separation rockets, ET attachment structure, and hold-down struts. The model was also tested with the nozzle at gimbal angles of 0, 2.5, and 5 degrees. The influence of a unique heat shield configuration was also determined. Some photographs of model installations in the tunnel were taken and are included. Schlieren photography was utilized for several angles of attack.

  14. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  15. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, explains the various test stands and how they will be used to prepare booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  16. Space Launch System (SLS) Program Overview NASA Research Announcement (NRA) Advanced Booster (AB) Engineering Demonstration and Risk Reduction (EDRR) Industry Day

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2011-01-01

    SLS is a national capability that empowers entirely new exploration for missions of national importance. Program key tenets are safety, affordability, and sustainability. SLS builds on a solid foundation of experience and current capacities to enable a timely initial capability and evolve to a flexible heavy-lift capability through competitive opportunities: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability and performance The road ahead promises to be an exciting journey for present and future generations, and we look forward to working with you to continue America fs space exploration.

  17. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Volume 2: Addendum 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The potential of a common Liquid Rocket Booster (LRB) design was evaluated for use with both the Space Transportation System (STS) and the Advanced Launch System (ALS). A goal is to have a common Liquid Oxygen/Liquid Hydrogen (LO2/LH2) engine developed for both the ALS booster and the core stage. The LO2/LH2 option for the STS was evaluated to identify potential LRB program cost reductions. The objective was to identify the structural impacts to the external tank (ET), and to determine if any significant ET re-development costs are required as a result of the larger LO2/LH2 LRB. The potential ET impacts evaluated are presented.

  18. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  19. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the RPSF. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  20. Engineering design manual of parachute decelerator characteristics for space shuttle solid rocket booster recovery

    NASA Technical Reports Server (NTRS)

    Mansfield, D. L.

    1973-01-01

    The design criteria and characteristics of parachutes for recovery of the solid rocket boosters used with the space shuttle launch are presented. A computer program for analyzing the requirements of the parachute decelerators is described. The computer inputs for both the drogue and main parachute decelerators are; (1) parachute size, (2) deployment conditions, (3) inflation times, (4) reefing times, (5) mass properties, (6) spring properties, and (7) aerodynamic coefficients. Graphs of the parachute performance are included.

  1. Mercury Capsule Separation Tests

    NASA Image and Video Library

    1960-04-01

    Mercury capsule separation from Redstone booster in the Altitude Wind Tunnel (AWT): NASA Lewis conducted full-scale separation tests of the posigrade rockets that were fired after the Redstone rockets burned out. The researchers studied the effect of the posigrade rockets firing on the Redstone booster and retrograde package. This film shows the Mercury capsule being mounted to the Redstone missile model in the Altitude Wind Tunnel. The capsule's engines are fired and it horizontally separates from the Atlas. After firing the capsule swings from an overhead crane.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1961-02-04

    The Saturn project was approved on January 18, 1960 as a program of the highest national priority. The formal test program to prove out the clustered-booster concept was well underway. A series of static tests of the Saturn I booster (S-I stage) began June 3, 1960 at the Marshall Space Flight Center (MSFC). This photograph depicts the Saturn I S-I stage equipped with eight H-1 engines, being successfully test-fired on February 4, 1961. A Juno rocket is visible on the right side of the test stand.

  3. Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

  4. A Technology Pathway for Airbreathing, Combined-Cycle, Horizontal Space Launch Through SR-71 Based Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.

    2011-01-01

    Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.

  5. KSC-08pd0872

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the mobile service tower at left approaches the Delta II rocket at right. The solid rocket boosters in the tower will be mated with the rocket, which will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will be mated with the rocket to help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  6. KSC-08pd0873

    NASA Image and Video Library

    2008-03-27

    CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the mobile service tower at left approaches the Delta II rocket at right. The solid rocket boosters in the tower will be mated with the rocket, which will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will be mated with the rocket to help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann

  7. Effects of cruise engine location and power on interference

    NASA Technical Reports Server (NTRS)

    Bradley, D.

    1972-01-01

    Data are presented, in plotted form, of tests for determining the interference effects of space shuttle booster cruise engine location for power-on and power-off conditions. The tests were conducted in a 7 x 10 foot transonic wind tunnel; the model was a 0.015-scale space shuttle booster specially equipped for propulsion effects testing. Data were obtained over a Mach number range of 0.4 to 1.13 at angles of attack from -4 deg to 20 deg at zero degrees sideslip and at angles of sideslip from -6 deg to +6 deg at constant angles of attack of 0 deg, 6 deg, 15 deg, and in some cases 10 deg. Additional parameters investigated were: elevon deflection, canard deflection, aileron deflection, rudder deflection, canard position, and mass flow rate.

  8. SMS engineering design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.

  9. Space Shuttle Projects

    NASA Image and Video Library

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  11. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    NASA Astrophysics Data System (ADS)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  12. Hypersonic aeroheating test of space shuttle vehicle: Configuration 3 (model 22 OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 2

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The model tested was an 0.0175-scale version of the vehicle 3 space shuttle configuration. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster (SRB) alone to provide heat transfer data. The test was conducted at free stream Mach numbers of 5.3 and 7.3 and at free stream Reynolds numbers of 1.5, 3.7, 5.0, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  13. Solid rocket motor cost model

    NASA Technical Reports Server (NTRS)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  14. KSC-2014-4236

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – The truck transporting NASA's Soil Moisture Active Passive, or SMAP, spacecraft arrives at the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. KSC-2014-4244

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. SMAP Spacecraft Offload

    NASA Image and Video Library

    2014-10-15

    NASA's Soil Moisture Active Passive, or SMAP, spacecraft, enclosed in a transportation container, is offloaded from the truck on which it traveled from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  17. KSC-2014-4243

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  18. SMAP Spacecraft Arrives at Astrotech

    NASA Image and Video Library

    2014-10-14

    The transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft is offloaded from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California with the aid of a forklift. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  19. An experimental determination in Calspan Ludwieg tube of the base environment of the integrated space shuttle vehicle at simulated Mach 4.5 flight conditions (test IH5 of model 19-OTS)

    NASA Technical Reports Server (NTRS)

    Drzewiecki, R. F.; Foust, J. W.

    1976-01-01

    A model test program was conducted to determine heat transfer and pressure distributions in the base region of the space shuttle vehicle during simulated launch trajectory conditions of Mach 4.5 and pressure altitudes between 90,000 and 210,000 feet. Model configurations with and without the solid propellant booster rockets were examined to duplicate pre- and post-staging vehicle geometries. Using short duration flow techniques, a tube wind tunnel provided supersonic flow over the model. Simultaneously, combustion generated exhaust products reproduced the gasdynamic and thermochemical structure of the main vehicle engine plumes. Heat transfer and pressure measurements were made at numerous locations on the base surfaces of the 19-OTS space shuttle model with high response instrumentation. In addition, measurements of base recovery temperature were made indirectly by using dual fine wire and resistance thermometers and by extrapolating heat transfer measurements.

  20. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon) and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon) and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  1. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP. In the distance, at left, is Launch Pad 39A. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP. In the distance, at left, is Launch Pad 39A. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  2. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawls away from the Vehicle Assembly Building in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawls away from the Vehicle Assembly Building in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  3. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch away from the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch away from the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  4. KENNEDY SPACE CENTER, FLA. - Carrying a set of twin solid rocket boosters, the crawler transporter slowly moves the Mobile Launcher Platform (MLP) past the NASA-KSC News Center where the U.S. flag flies daily. The journey is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - Carrying a set of twin solid rocket boosters, the crawler transporter slowly moves the Mobile Launcher Platform (MLP) past the NASA-KSC News Center where the U.S. flag flies daily. The journey is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  5. KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway. The move is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the two solid rocket boosters on top are framed in the doorway. The move is in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  6. KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the driver of the front control cab can be seen. The MLP is carrying two solid rocket boosters for engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - As the crawler transporter slowly moves the Mobile Launcher Platform (MLP) out of the Vehicle Assembly Building, the driver of the front control cab can be seen. The MLP is carrying two solid rocket boosters for engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  7. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  8. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  9. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, conracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  10. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, approaches the raised span of the NASA railroad bridge to continue over the Indian River north of Kennedy Space Center with two containers on railcars for storage at the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  11. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard near the center. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  12. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, continues along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  13. 75 FR 46868 - Airworthiness Directives; The Boeing Company Model 747 Airplanes and Model 767 Airplanes Equipped...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... crystal accretion. However, at this time, we do not agree to pursue research to develop an ice detector... significantly different type-design booster from that of the GE Model CF6-80C2 series engines (GE Model CF6-80A... events recorded on GE Model CF6-80A series engines. While this engine has a similar compressor design...

  14. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  15. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  16. Thermal Analysis in Support of the Booster Separation Motor Crack Investigation

    NASA Technical Reports Server (NTRS)

    Davis, Darrell; Prickett, Terry; Turner, Larry D. (Technical Monitor)

    2001-01-01

    During a post-test inspection of a Booster Separation Motor (BSM) from a Lot Acceptance Test (LAT), a crack was noticed in the graphite throat. Since this was an out-of-family occurrence, an investigation team was formed to determine the cause of the crack. This paper will describe thermal analysis techniques used in support of this investigation. Models were generated to predict gradients in nominal motor conditions, as well as potentially anomalous conditions. Analysis was also performed on throats that were tested in the Laser Hardened Material Evaluation Laboratory (LHMEL). Some of these throats were pre-cracked, while others represented configurations designed to amplify effects of thermal stresses. Results from these analyses will be presented in this paper.

  17. Thermal Analysis in Support of the Booster Separation Motor Crack Investigation

    NASA Technical Reports Server (NTRS)

    Davis, Darrell; Prickett, Terry

    2002-01-01

    During a post-test inspection of a Booster Separation Motor (BSM) from a Lot Acceptance Test (LAT), a crack was noticed in the graphite throat. Since this was an out-of-family occurrence, an investigation team was formed to determine the cause of the crack. This paper will describe thermal analysis techniques used in support of this investigation. Models were generated to predict gradients in nominal motor conditions, as well as potentially anomalous conditions. Analysis was also performed on throats that were tested in the Laser Hardened Material Evaluation Laboratory (LHMEL). Some of these throats were pre-cracked, while others represented configurations designed to amplify effects of thermal stresses. Results from these analyses will be presented in this paper.

  18. Aerodynamic control, recovery, and sensor design for a first stage flyback booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission of the flyback group is to control and recover the first stage of a commercially developed winged booster launched from a B-52 at 40,000 ft and Mach 0.8. First-stage separation occurs at 210,000 ft and Mach 8.7; the second and third stages will continue deployment of their 600 lb payload into low Earth orbit. The job of the flyback group begins at this point, employing a modified control system developed to stabilize and maneuver the separated first-stage vehicle to a suitable landing site approximately 130 miles from the launch point over the Pacific Ocean. This multidisciplinary design was accomplished by four subgroups: aerodynamic design/vehicle configuration (ADVC), trajectory optimization, controls, and thermal management.

  19. Methods for data reduction and loads analysis of Space Shuttle Solid Rocket Booster model water impact tests

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The methodology used to predict full scale space shuttle solid rocket booster (SRB) water impact loads from scale model test data is described. Tests conducted included 12.5 inch and 120 inch diameter models of the SRB. Geometry and mass characteristics of the models were varied in each test series to reflect the current SRB baseline configuration. Nose first and tail first water entry modes were investigated with full-scale initial impact vertical velocities of 40 to 120 ft/sec, horizontal velocities of 0 to 60 ft/sec., and off-vertical angles of 0 to plus or minus 30 degrees. The test program included a series of tests with scaled atmospheric pressure.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This 1968 chart depicts the various mission configurations for the Saturn IB launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  1. Early Rockets

    NASA Image and Video Library

    1955-09-01

    Launch of a three-stage Vanguard (SLV-7) from Cape Canaveral, Florida, September 18, 1959. Designated Vanguard III, the 100-pound satellite was used to study the magnetic field and radiation belt. In September 1955, the Department of Defense recommended and authorized the new program, known as Project Vanguard, to launch Vanguard booster to carry an upper atmosphere research satellite in orbit. The Vanguard vehicles were used in conjunction with later booster vehicle such as the Thor and Atlas, and the technique of gimbaled (movable) engines for directional control was adapted to other rockets.

  2. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media photograph the process as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  3. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media watch as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  4. Study of solid rocket motor for space shuttle booster, volume 2, book 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.

  5. Two technicians apply insulation to S-II second stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Two technicians apply insulation to the outer surface of the S-II second stage booster for the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    Workers at the Michoud Assembly Facility near New Orleans, Louisiana install the H-1 engines into the S-IB stage, the Saturn IB launch vehicle's first stage. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at MAF, the 90,000-pound booster utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  7. Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2016-01-01

    Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.

  8. Configuration evaluation and criteria plan. Volume 1: System trades study and design methodology plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.

  9. Vice President Pence Visits SLS Engineering Test Facility

    NASA Image and Video Library

    2017-09-25

    The Vice President toured the SLS engineering facility where the engine section of the rocket’s massive core stage is undergoing a major stress test. The rocket’s four RS-25 engines and the two solid rocket boosters that attach to the SLS engine section will produce more than 8 million pounds of thrust to launch the Orion spacecraft beyond low-Earth orbit. More than 3,000 measurements using sensors installed on the test section will help ensure the core stage for all SLS missions can withstand the extreme forces of flight.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage was hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage is hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage is a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months proving the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, houses the fuel and liquid oxygen tanks that hold a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage was hoisted into the S-IC Static Test Stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle, not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks were cornected by a 26-foot intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1966-09-15

    This vintage photograph shows the 138-foot long first stage of the Saturn V being lowered to the ground following a successful static test firing at Marshall Space flight Center's S-1C test stand. The firing provided NASA engineers information on the booster's systems. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  14. Hypersonic aeroheating test of space shuttle vehicle configuration 3 (model 22-OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 1

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The results of hypersonic wind tunnel testing of an 0.0175 scale version of the vehicle 3 space shuttle configuration are presented. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster alone to provide heat transfer data. The test was conducted at free-stream Mach numbers of 5.3 and 7.3 and at free-stream Reynolds numbers of 1.5 million, 3.7 million, 5.0 million, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  15. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  16. Feasibility study using large ribbon parachutes, retrorockets, and hydrodynamic attenuation to recover liquid rocket boosters for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pepper, William B.; Wailes, William K.

    1989-01-01

    A new three-phase approach to recovery of the large liquid rocket boosters being studied for the Space Shuttle is proposed. The concept consists of a cluster of larger ribbon parachutes, retrorockets, and spar mode flotation. The two inert liquid rocket boosters weighing 115,000 lb to 183,000 lb descend from high altitude in a side-on coning attitude to 16,000 ft altitude where a cluster of large ribbon parachutes are deployed. The terminal velocity near water landing is 80 ft/sec. Retrorockets are used to decrease the velocity to about 40 ft/sec. The third phase is opening of the front end of the cylindrical rocket case to allow flooding to cushion impact and allow vertical flotation in the spar mode keeping the four expensive liquid rocket engines dry.

  17. Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, J.; Bhat, C. M.; Hendricks, B. S.

    We have developed a computer program interfaced with the ACNET environment of Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection into the Booster. It uses a digitizing oscilloscope and provides users an ability to configure the scope settings for optimal data acquisition from a resistive wall current monitor. When the program is launched, a) a one shot timeline is generated to initiate beam injection into the Booster, b) a gap of about 40 ns is produced in the injected beam using a set of fast kickers, c) collects line charge distribution datamore » from the wall current monitor for the first 200 μs from the injection and d) performs complete data analysis to extract full beam energy spread of the beam. The program also gives the option to store the data for offline analyses. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from recent measurements.« less

  18. Space shuttle: Longitudinal and lateral aerodynamic characteristics of the 0.0035-scale GD/C aerospace booster (B-15B-1)

    NASA Technical Reports Server (NTRS)

    Debevoise, J. M.; Mcginnis, R. F.

    1972-01-01

    Force tests on a 0.0035-scale model of the General Dynamics/Convair space shuttle B-15B-1 booster were conducted in the MSFC trisonic wind tunnel during February and March 1971. Longitudinal and lateral characteristics were obtained at Mach numbers from 0.6 to 4.96. The configuration tested had a low delta wing, all-movable canard controls of delta planform, and a single vertical tail. Most of the test was devoted to obtaining data relevant to the transition from atmospheric reentry to subsonic cruise. In that portion of the test the angles of attack ranged from 6 degrees to 60 degrees, and yaw runs were made at angles of attack of 15 and 35 degrees. The rest of the test was devoted to obtaining booster-alone buildup data relevant to the launch phase. For the launch phase, the Mach number range was from 0.6 to 2.0, the angles of attack were from -10 to +10 degrees, and yaw runs were made at zero angle of attack.

  19. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    PubMed Central

    Conversano, Michele; Zivelonghi, Giambattista; Zoppi, Giorgio

    2014-01-01

    The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP) or reduced dose (dTaP or dTap) product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules). PMID:24678509

  20. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  1. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawl out of the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. In the background is another MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, crawl out of the Vehicle Assembly Building (VAB) in support of the second engineering analysis vibration test on the crawler and MLP. In the background is another MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  2. KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician monitors the performance of a crawler-transporter as it moves Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, to the intersection in the crawlerway during the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A, and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician monitors the performance of a crawler-transporter as it moves Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, to the intersection in the crawlerway during the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A, and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  3. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, inches along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The MLP is viewed from the KSC News Center across the turn basin. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, inches along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The MLP is viewed from the KSC News Center across the turn basin. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  4. KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician walks towards the intersection of the crawlerway beside a crawler-transporter moving Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, during the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A, and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician walks towards the intersection of the crawlerway beside a crawler-transporter moving Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, during the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A, and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  5. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon at right; Pad 39B is at far left), and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A (on the horizon at right; Pad 39B is at far left), and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  6. The Shuttle Era

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview of the Space Shuttle Program is presented. The missions of the space shuttle orbiters, the boosters and main engine, and experimental equipment are described. Crew and passenger accommodations are discussed as well as the shuttle management teams.

  7. Aerodynamic characteristics of a 0.00563 scale 142-inch diameter solid rocket booster (MSFC model 449 and 480) with side mounted stings in the NASA/MSFC 14-inch trisonic wind tunnel (SA14FA)

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1976-01-01

    An experimental investigation (SA14FA, TWT 620) was conducted in the MSFC 14-inch Trisonic Wind Tunnel (TWT) to determine the entry static stability of a 0.00563 scale shuttle solid rocket booster (SRB). The primary objective was to determine the effects of four side mounted sting configurations and to improve the definition of the aerodynamic characteristics in the vicinity of the SRB entry trim point. Data were obtained for two 60 and two 90 degree side mounted stings and a straight nose mounted sting. The angle of attack range for the side-mounted stings was 100 to 170 degrees while that for the nose mounted sting was 150 to 170 degrees. The Mach number range consisted of 0.6 to 3.48. Except for the aft attach ring, no protuberances were considered and the side slip and roll angles were zero. The test model was scaled from the 142-inch diameter SRB known as configuration 139 which was used during test TWT 572 (SA5F).

  8. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  9. Composite Nozzle/Thrust Chambers Analyzed for Low-Cost Boosters

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1999-01-01

    The Low Cost Booster Technology Program is an initiative to minimize the cost of future liquid engines by using advanced materials and innovative designs, and by reducing engine complexity. NASA Marshall Space Flight Center s 60K FASTRAC Engine is one example where these design philosophies have been put into practice. This engine burns a liquid kerosene/oxygen mixture. It uses a one-piece, polymer composite thrust chamber/nozzle that is constructed of a tape-wrapped silica phenolic liner, a metallic injector interface ring, and a filament-wound epoxy overwrap. A cooperative effort between NASA Lewis Research Center s Structures Division and Marshall is underway to perform a finite element analysis of the FASTRAC chamber/nozzle under all the loading and environmental conditions that it will experience during its lifetime. The chamber/nozzle is a complex composite structure. Of its three different materials, the two composite components have distinctly different fiber architectures and, consequently, require separate material model descriptions. Since the liner is tape wrapped, it is orthotropic in the nozzle global coordinates; and since the overwrap is filament wound, it is treated as a monoclinic material. Furthermore, the wind angle on the overwrap varies continuously along the length of the chamber/nozzle.

  10. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  11. Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.

  12. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  13. Shuttle: forever young?

    PubMed

    Sietzen, Frank

    2002-01-01

    NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module.

  14. Solid rocket booster performance evaluation model. Volume 3: Sample case. [propellant combustion simulation/internal ballistics

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solid rocket booster performance evaluation model (SRB-11) is used to predict internal ballistics in a sample motor. This motor contains a five segmented grain. The first segment has a 14 pointed star configuration with a web which wraps partially around the forward dome. The other segments are circular in cross-section and are tapered along the interior burning surface. Two of the segments are inhibited on the forward face. The nozzle is not assumed to be submerged. The performance prediction is broken into two simulation parts: the delivered end item specific impulse and the propellant properties which are required as inputs for the internal ballistics module are determined; and the internal ballistics for the entire burn duration of the motor are simulated.

  15. Heat transfer rate distributions on McDonnell-Douglas booster determined by phase change technique for nominal Mach number of 8

    NASA Technical Reports Server (NTRS)

    Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.

    1972-01-01

    The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell Douglas Booster configuration are presented. Heat-transfer rates were determined by the phase-change paint technique on 0.009-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers 5 million and 7.3 million, and angles of attack of 40, 50, and 60 deg. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described.

  16. Zone radiometer measurements on a model rocket exhaust plume

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radiometer for analytical prediction of rocket plume-to-booster thermal radiation and convective heating is described. Applications for engine combustion analysis, incineration, and pollution control by high temperature processing are discussed. Illustrations of equipment are included.

  17. Space Shuttle redesign status

    NASA Technical Reports Server (NTRS)

    Brand, Vance D.

    1986-01-01

    NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.

  18. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media watch as a crane is used to move one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket to a test stand in the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  19. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59146 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  20. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59150 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  1. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59158 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  2. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    Technicians and engineers prepare to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  3. Ares 1 First Stage Design, Development, Test, and Evaluation

    NASA Technical Reports Server (NTRS)

    Williams, Tom; Cannon, Scott

    2006-01-01

    The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  4. KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  5. RS-84 Engine Completes Design Review

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is an artist's concept of the kerosene-fueled RS-84 engine, one of several technologies competing to power NASA's next generation of launch vehicles. The RS-84 has successfully completed its preliminary design review as a reusable, liquid kerosene booster engine that will deliver a thrust level of 1 million pounds of force. The preliminary design review is a lengthy technical analysis that evaluates engine design according to stringent system requirements. The review ensures development is on target to meet Next Generation Launch Technology goals: Improved safety, reliability, and cost.

  6. Aeroheating (pressure) characteristics on a 0.10-scale version of the vehicle 3 space shuttle configuration (26-OTS) in the Langley Research Center 4-foot wind tunnel (IH4)

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1976-01-01

    Results of wind tunnel tests, conducted at the Langley Research Center Unitary Plan Wind Tunnel, are presented. The model tested was an 0.010-scale version of the Vehicle 3 Space Shuttle Configuration. Pressure measurements were made on the launch configuration, Orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 to 20 deg for a sideslip angle range from -5 to +5 deg, and at sideslip angles from -5 to 48 deg for 0 deg angle of attack. Tabulated data are given and photographs of the test configuration are shown.

  7. Aerodynamic stability and drag characteristics of a parallel burn/SRM ascent configuration at Mach numbers from 0.6 to 4.96

    NASA Technical Reports Server (NTRS)

    Sims, J. F.; Hamilton, T.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch trisonic wind tunnel during March 1972 on a .003366 scale model of a solid rocket motor version of the space shuttle ascent configuration. The configuration consisted of a parallel burn solid rocket motor booster on an external H-O centerline tank orbiter. Six component aerodynamic force and moment date were recorded over an angle of attack range from -10 to 10 deg at zero degrees sideslip and over a sideslip range from -10 to 10 deg at 0, +6, and -6 deg angle of attack. Mach number ranged from 0.6 to 4.96. The performance and stability characteristics of the complete ascent configuration and build-up, and the effects of variations in tank diameter, orbiter incidence, fairings and positioning of the solid rocket motors and tank fins were determined.

  8. Delta II Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.

  9. Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  10. KSC-2012-4455

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load the aft skirt for a space shuttle solid rocket booster on a truck. A twin set of space shuttle solid rocket boosters and an external fuel tank are being prepared for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  11. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A construction worker is in view as a flatbed truck passes by carrying a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  12. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. In view is the mobile launcher. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  13. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A view from underneath one of the vertical support posts for NASA's Space Launch System rocket. Two after skirt electrical umbilicals (ASEUs) and the first of the vertical support post were transported by flatbed truck from the Launch Equipment Test Facility to the Mobile Launcher Yard as NASA's Kennedy Space Center in Florida. The ASEUs and the VSP underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  14. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    Construction workers assist as a crane is used to lower a vertical support post for NASA's Space Launch System (SLS) onto a platform at the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. Two ASEUs and the first of the vertical support posts underwent a series of tests at the Launch Equipment Test Facility to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  15. Investigation of structural factors of safety for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was made of the factors governing the structural design of the fully reusable space shuttle booster to establish a rational approach to select optimum structural factors of safety. The study included trade studies of structural factors of safety versus booster service life, weight, cost, and reliability. Similar trade studies can be made on other vehicles using the procedures developed. The major structural components of a selected baseline booster were studied in depth, each being examined to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was further examined to determine its reliability and safety requirements, and the change of structural weight with factors of safety. The apparent factors of safety resulting from fatigue, safe-life, proof test, and fail-safe requirements were identified. The feasibility of reduced factors of safety for design loads such as engine thrust, which are well defined, was examined.

  16. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  17. Conceptual Design For Interplanetary Spaceship Discovery

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR engines provide ``engine out'' redundancy. (5) The design efficiently implements galactic cosmic ray shielding using main propellant liquid hydrogen. (6) The design provides artificial gravity to mitigate crew physiological problems on long-duration missions. (7) The design is modular and can be launched using the proposed upgrades to the Evolved Expendable Launch Vehicles or Shuttle-derived heavy lift launch vehicles. (8) High value modules are reusable for Mars and Lunar missions. (9) The design has inherent growth capability, and can be tailored to satisfy expanding mission requirements to enable an in-family progression ``to the Moon, Mars, and beyond.''

  18. Crew Launch Vehicle (CLV) Upper Stage Configuration Selection Process

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.; Coook, Jerry R.

    2006-01-01

    The Crew Launch Vehicle (CLV), a key component of NASA's blueprint for the next generation of spacecraft to take humans back to the moon, is being designed and built by engineers at NASA s Marshall Space Flight Center (MSFC). The vehicle s design is based on the results of NASA's 2005 Exploration Systems Architecture Study (ESAS), which called for development of a crew-launch system to reduce the gap between Shuttle retirement and Crew Exploration Vehicle (CEV) Initial Operating Capability, identification of key technologies required to enable and significantly enhance these reference exploration systems, and a reprioritization of near- and far-term technology investments. The Upper Stage Element (USE) of the CLV is a clean-sheet approach that is being designed and developed in-house, with element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115' long and 216" in diameter, consisting of the following subsystems: Primary Structures (LOX Tank, LH2 Tank, Intertank, Thrust Structure, Spacecraft Payload Adaptor, Interstage, Forward and Aft Skirts), Secondary Structures (Systems Tunnel), Avionics and Software, Main Propulsion System, Reaction Control System, Thrust Vector Control, Auxiliary Power Unit, and Hydraulic Systems. The ESAS originally recommended a CEV to be launched atop a four-segment Space Shuttle Main Engine (SSME) CLV, utilizing an RS-25 engine-powered upper stage. However, Agency decisions to utilize fewer CLV development steps to lunar missions, reduce the overall risk for the lunar program, and provide a more balanced engine production rate requirement prompted engineers to switch to a five-segment design with a single Saturn-derived J-2X engine. This approach provides for single upper stage engine development for the CLV and an Earth Departure Stage, single Reusable Solid Rocket Booster (RSRB) development for the CLV and a Cargo Launch Vehicle, and single core SSME development. While the RSRB design has changed since the CLV Project's inception, the USE design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system. Because consideration was given in the ESAS to both clean-sheet and modified USE designs, this paper will highlight the advantages and disadvantages of both approaches and provide a detailed discussion of trades/selections made that led to the final upper stage configuration.

  19. The second X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrives at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-01-31

    The second of three X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrived at NASA's Dryden Flight Research Center, Edwards, California, on January 31, 2001. The arrival of the second X-43A from its manufacturer, MicroCraft, Inc., of Tullahoma, Tenn., followed by only a few days the mating of the first X-43A and its specially-designed adapter to the first stage of a modified Pegasus® booster rocket. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the 12-foot-long, unpiloted research aircraft to a predetermined altitude and speed after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer, 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  20. Wind and Wave Energy Pioneer Finds Freedom in Research | News | NREL

    Science.gov Websites

    generate our own energy one way or another." A mechanical engineering professor with Oregon State at engineering degree to work on the Saturn booster for the Project Apollo moon shot-but was ready for the next faced adversity during his career. At one point in the '90s while serving as director of the NWTC (a job

  1. Fuel control for gas turbine engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, C.F.; Tutherly, H.W.

    1983-12-27

    The basic gas turbine engine hydromechanical fuel control is adaptable to different engine configurations such as turbofan, turboprop and turboshaft engines by incorporating in the main housing those elements having a commonality to all engine configurations and providing a removable block for each configuration having the necessary control elements and flow passages required for that particular configuration. That is to say, a block with the elements peculiar to a turbofan engine could be replaced by a mating block that includes those elements peculiar to a turboshaft engine in adapting the control for a turboshaft configuration. Similarly another block with thosemore » elements peculiar to a turboprop engine could replace any of the other blocks in adapting the control to a turboprop configuration. Obviously the basic control has the necessary flow passages terminating at the interface with the block and these flow passages mate with corresponding passages in the block.« less

  2. Responses of the Q6/Q6s ATD Positioned in Booster Seats in the Far-Side Seat Location of Side Impact Passenger Car and Sled Tests.

    PubMed

    Tylko, Suzanne; Bohman, Katarina; Bussières, Alain

    2015-11-01

    Passenger car side impact crash tests and sled tests were conducted to investigate the influence of booster seats, near-side occupant characteristics and vehicle interiors on the responses of the Q6/Q6s child ATD positioned in the rear, far-side seating location. Data from nine side impact sled tests simulating a EuroNCAP AEMD barrier test were analyzed with data obtained from 44 side impact crash tests. The crash tests included: FMVSS 214 and IIHS MDB, moving car-to-stationary car and moving car-to-moving car. A Q6 or prototype Q6s ATD was seated on the far-side, using a variety of low and high back booster seats. Head and chest responses were recorded and ATD motions were tracked with high-speed videos. The vehicle lateral accelerations resulting from MDB tests were characterized by a much earlier and more rapid rise to peak than in tests where the bullet was another car. The near-side seating position was occupied by a Hybrid III 10-year-old ATD in the sled tests, and a rear or front facing child restraint or a 5th percentile side impact ATD in the crash tests. Head impacts occurred more frequently in vehicles where a forward facing child restraint was present behind the driver seat for both the low and high back booster seats. Pretensioners were found to reduce lateral head displacements in all sled test configurations but the greatest reduction in lateral excursion was obtained with a high back booster seat secured with LATCH and tested in combination with pretensioners.

  3. jsc2013e018018

    NASA Image and Video Library

    2013-03-22

    At the Integration Facility at the Baikonur Cosmodrome in Kazakhstan, engineers swarm over the Soyuz TMA-08M spacecraft March 22 as they prepare the vehicle for its encapsulation into the third stage of a Soyuz booster rocket. The operation was part of the preparation for the Soyuz’ launch March 29, Kazakh time, to carry Expedition 35/36 Flight Engineer Chris Cassidy of NASA, Soyuz Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin to the International Space Station for a 5 ½ month mission. NASA/Victor Zelentsov

  4. Saturn V First Stage Lowered to the Ground After Static Test

    NASA Technical Reports Server (NTRS)

    1966-01-01

    This vintage photograph shows the 138-foot long first stage of the Saturn V being lowered to the ground following a successful static test firing at Marshall Space flight Center's S-1C test stand. The firing provided NASA engineers information on the booster's systems. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  5. Splash evaluation of SRB designs

    NASA Technical Reports Server (NTRS)

    Counter, D. N.

    1974-01-01

    A technique is developed to optimize the shuttle solid rocket booster (SRB) design for water impact loads. The SRB is dropped by parachute and recovered at sea for reuse. Loads experienced at water impact are design critical. The probability of each water impact load is determined using a Monte Carlo technique and an aerodynamic analysis of the SRB parachute system. Meteorological effects are included and four configurations are evaluated.

  6. Athena: Advanced air launched space booster

    NASA Astrophysics Data System (ADS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-06-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  7. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  8. Space shuttle launch vehicle (13 P-OTS) strut support interference effects study in the Rockwell International 7- by 7-foot trisonic wind tunnel (IA68)

    NASA Technical Reports Server (NTRS)

    Rogge, R. L.

    1974-01-01

    Strut support interference investigations were conducted on an 0.004-(-) scale representation of the space shuttle launch vehicle in order to determine transonic and supersonic model support interference effects for use in a future exhaust plume effects study. Strut configurations were also tested. Orbiter, external tank, and solid rocket booster pressures were recorded at Mach numbers 0.9, 1.2, 1.5, and 2.0. Angle of attack and angle of sideslip were varied between plus or minus 4 degrees in 2 degree increments. Parametric variations consisted only of the strut configurations.

  9. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  10. Hyper-X Vehicle Model - Side View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  11. X-43A Hypersonic Experimental Vehicle - Artist Concept in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  12. Hyper-X Vehicle Model - Front View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  13. Artist Concept of X-43A/Hyper-X Hypersonic Experimental Research Vehicle in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  14. X-43A Vehicle During Ground Testing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' is seen here undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  15. Hyper-X Vehicle Model - Side View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Sleek lines are apparent in this side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  16. Hyper-X Research Vehicle - Artist Concept in Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  17. Hyper-X Vehicle Model - Top Rear View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This aft-quarter model view of NASA's X-43A 'Hyper-X' or Hypersonic Experimental Vehicle shows its sleek, geometric design. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  18. Hyper-X Vehicle Model - Top Front View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A top front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  19. X-43A Undergoing Controlled Radio Frequency Testing in the Benefield Anechoic Facility at Edwards Ai

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-43A Hypersonic Experimental (Hyper-X) Vehicle hangs suspended in the cavernous Benefield Aenechoic Facility at Edwards Air Force Base during radio frequency tests in January 2000. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  20. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, crawl to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. In the background are Launch Pads 39A (right) and 39B (left). The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters bolted to it, atop the crawler-transporter, crawl to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. In the background are Launch Pads 39A (right) and 39B (left). The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  1. KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. In the distance, at left, is Launch Pad 39A. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB) in support of engineering analysis vibration tests on the crawler and MLP. In the distance, at left, is Launch Pad 39A. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  2. KENNEDY SPACE CENTER, FLA. - Seen across the water of the Launch Complex 39 turn basin, a crawler-transporter, carrying Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted atop, crawls out of the 525-foot-tall Vehicle Assembly Building during the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Seen across the water of the Launch Complex 39 turn basin, a crawler-transporter, carrying Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted atop, crawls out of the 525-foot-tall Vehicle Assembly Building during the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  3. KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician inspects the shoes on one of eight tracks of a crawler-transporter (CT). The CT is moving Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted on top to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - A Kennedy Space Center technician inspects the shoes on one of eight tracks of a crawler-transporter (CT). The CT is moving Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted on top to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  4. KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The view reveals the river gravel surface that is 4 inches thick on the straightaway sections and 8 inches thick on curves. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - Mobile Launcher Platform (MLP) number 3 and a set of twin solid rocket boosters, atop the crawler-transporter, inch along the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. The view reveals the river gravel surface that is 4 inches thick on the straightaway sections and 8 inches thick on curves. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  5. KENNEDY SPACE CENTER, FLA. - Viewed across the turn basin in the Launch Complex 39 Area, the crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB). The journey is in support of engineering analysis vibration tests on the crawler and MLP. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-17

    KENNEDY SPACE CENTER, FLA. - Viewed across the turn basin in the Launch Complex 39 Area, the crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB). The journey is in support of engineering analysis vibration tests on the crawler and MLP. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  6. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket mounted to NASA's NB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  7. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  8. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  9. KSC-2015-1096

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, has been secured inside a transportation canister and secured onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  10. KSC-2015-1088

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  11. KSC-2015-1087

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  12. KSC-2015-1094

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, secured inside a transportation canister is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  13. KSC-2015-1089

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, a technician ensures the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft is ready for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  14. KSC-2014-4254

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive, or SMAP, spacecraft, enclosed in a transportation container, is offloaded from the truck on which it traveled from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Robert Rasmison

  15. KSC-2014-4245

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive, or SMAP, spacecraft, still protected in its transportation container, arrives in the Astrotech payload processing facility at Vandenberg Air Force Base in California, completing its journey from the Jet Propulsion Laboratory in Pasadena, California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. KSC-2015-1091

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  17. KSC-2015-1086

    NASA Image and Video Library

    2014-12-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  18. KSC-2015-1090

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  19. KSC-2014-4252

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – A forklift is enlisted to offload the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Stephen Greenberg, JPL

  20. KSC-2014-4241

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – The transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft is offloaded from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California with the aid of a forklift. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  1. KSC-2014-3615

    NASA Image and Video Library

    2014-08-20

    VANDENBERG AIR FORCE BASE, Calif. – The second stage of the Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transferred into the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to install the second stage atop the rocket's first stage. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  2. KSC-2015-1093

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft has had the appropriate logos affixed to its transportation canister before its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  3. KSC-2015-1092

    NASA Image and Video Library

    2015-01-12

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians monitor the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft as it is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron

  4. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent c

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  5. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket nestled under the wi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-43A hypersonic research aircraft and its modified Pegasus booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  6. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  7. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  8. STS-55 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1993-01-01

    A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.

  9. Pressurization System Modeling for a Generic Bimese Two- Stage-to-Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Nguyen, Han

    2005-01-01

    A pressurization system model was developed for a generic bimese Two-Stage-to-orbit Reusable Launch Vehicle using a cross-feed system and operating with densified propellants. The model was based on the pressurization system model for a crossfeed subscale water test article and was validated with test data obtained from the test article. The model consists of the liquid oxygen and liquid hydrogen pressurization models, each made up of two submodels, Booster and Orbiter tank pressurization models. The tanks are controlled within a 0.2-psi band and pressurized on the ground with ambient helium and autogenously in flight with gaseous oxygen and gaseous hydrogen. A 15-psi pressure difference is maintained between the Booster and Orbiter tanks to ensure crossfeed check valve closure before Booster separation. The analysis uses an ascent trajectory generated for a generic bimese vehicle and a tank configuration based on the Space Shuttle External Tank. It determines the flow rates required to pressurize the tanks on the ground and in flight, and demonstrates the model's capability to analyze the pressurization system performance of a full-scale bimese vehicle with densified propellants.

  10. Test report for 120-inch-diameter Solid Rocket Booster (SRB) model tests. [floating and towing characteristics of space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Jones, W. C.

    1973-01-01

    The space shuttle solid rocket boosters (SRB's) will be jettisoned to impact in the ocean within a 200-mile radius of the launch site. Tests were conducted at Long Beach, California, using a 12-inch diameter Titan 3C model to simulate the full-scale characteristics of the prototype SRB during retrieval operations. The objectives of the towing tests were to investigate and assess the following: (1) a floating and towing characteristics of the SRB; (2) need for plugging the SRB nozzle prior to tow; (3) attach point locations on the SRB; (4) effects of varying the SRB configuration; (5) towing hardware; and (6) difficulty of attaching a tow line to the SRB in the open sea. The model was towed in various sea states using four different types and varying lengths of tow line at various speeds. Three attach point locations were tested. Test data was recorded on magnetic tape for the tow line loads and for model pitch, roll, and yaw characteristics and was reduced by computer to tabular printouts and X-Y plots. Profile and movie photography provided documentary test data.

  11. NASA Collaborative Design Processes

    NASA Technical Reports Server (NTRS)

    Jones, Davey

    2017-01-01

    This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.

  12. Booster propulsion/vehicle impact study, 2

    NASA Technical Reports Server (NTRS)

    Johnson, P.; Satterthwaite, S.; Carson, C.; Schnackel, J.

    1988-01-01

    This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel.

  13. KSC-2011-8167

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck positions a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex at a temporary storage area at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  14. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  15. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians and engineers offload a solid rocket booster (SRB) that just arrived at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  16. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians and engineers assist as a crane lifts a solid rocket booster (SRB) for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  17. Far-Field Acoustic Characteristics of Multiple Blade-Vane Configurations for a High Tip Speed Fan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Gazzaniga, John A.; Hughes, Christopher

    2004-01-01

    The acoustic characteristics of a model high-speed fan stage were measured in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff and approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. A simulated engine pylon and nozzle bifurcation was contained within the bypass duct. The fan stage consisted of all combinations of 3 possible rotors, and 3 stator vane sets. The 3 rotors were (1) wide chord, (2) forward swept, and (3) shrouded. The 3 stator sets were (1) baseline, moderately swept, (2) swept and leaned, and (3) swept integral vane/frame which incorporated some of the swept and leaned features as well as eliminated the downstream support structure. The baseline configuration is considered to be the wide chord rotor with the radial vane stator. A flyover Effective Perceived Noise Level (EPNL) code was used to generate relative EPNL values for the various configurations. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at high fan speeds. The baseline, wide chord rotor was typically the quietest of the three rotors. A tone removal study was performed to assess the acoustic benefits of removing the fundamental rotor interaction tone and its harmonics. Reprocessing the acoustic results with the bypass tone removed had the most impact on reducing fan noise at transonic rotor speeds. Removal of the bypass rotor interaction tones (BPF and nBPF) showed up to a 6 EPNdB noise reduction at transonic rotor speeds relative to noise levels for the baseline (wide chord rotor and radial stator; all tones present) configuration.

  18. Shuttle derived vehicle analysis solid booster unmanned launch vehicle concept definition study, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technical effort associated with the selection and definition of the recommended SRB-X concept is documented. Included are discussions concerning the trades leading to the selected concept, the analysis that established the concept's basic subsystem characteristics, selected configuration description and performance capabilities, launch site operations and facility needs, development schedule, cost characteristics, risk assessment, and a cursory comparison with other launch systems.

  19. Assessing child belt fit, volume II : effect of restraint configuration, booster seat designs, seating procedure, and belt fit on the dynamic response of the hybrid III 10-year-old ATD in sled tests.

    DOT National Transportation Integrated Search

    2008-09-01

    A total of 49 dynamic sled tests were performed with the Hybrid III 10YO to examine issues relating to child belt fit. The goals of these tests were to evaluate ATD response to realistic belt geometries and belt fit, develop methods for accurate, rep...

  20. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

Top