Sample records for bootstrap-current driven equilibria

  1. Bootstrap and fast wave current drive for tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less

  2. Coupling of PIES 3-D Equilibrium Code and NIFS Bootstrap Code with Applications to the Computation of Stellarator Equilibria

    NASA Astrophysics Data System (ADS)

    Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.

    1997-11-01

    The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.

  3. Impact of bootstrap current and Landau-fluid closure on ELM crashes and transport

    NASA Astrophysics Data System (ADS)

    Chen, J. G.; Xu, X. Q.; Ma, C. H.; Lei, Y. A.

    2018-05-01

    Results presented here are from 6-field Landau-Fluid simulations using shifted circular cross-section tokamak equilibria on BOUT++ framework. Linear benchmark results imply that the collisional and collisionless Landau resonance closures make a little difference on linear growth rate spectra which are quite close to the results with the flux limited Spitzer-Härm parallel flux. Both linear and nonlinear simulations show that the plasma current profile plays dual roles on the peeling-ballooning modes that it can drive the low-n peeling modes and stabilize the high-n ballooning modes. For fixed total pressure and current, as the pedestal current decreases due to the bootstrap current which becomes smaller when the density (collisionality) increases, the operational point is shifted downwards vertically in the Jped - α diagram, resulting in threshold changes of different modes. The bootstrap current can slightly increase radial turbulence spreading range and enhance the energy and particle transports by increasing the perturbed amplitude and broadening cross-phase frequency distribution.

  4. Three-dimensional magnetohydrodynamic equilibrium of quiescent H-modes in tokamak systems

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Duval, B. P.; Sauter, O.; Faustin, J. M.; Kleiner, A.; Lanthaler, S.; Patten, H.; Raghunathan, M.; Tran, T.-M.; Chapman, I. T.; Ham, C. J.

    2016-06-01

    Three dimensional free boundary magnetohydrodynamic equilibria that recover saturated ideal kink/peeling structures are obtained numerically. Simulations that model the JET tokamak at fixed < β > =1.7% with a large edge bootstrap current that flattens the q-profile near the plasma boundary demonstrate that a radial parallel current density ribbon with a dominant m /n  =  5/1 Fourier component at {{I}\\text{t}}=2.2 MA develops into a broadband spectrum when the toroidal current I t is increased to 2.5 MA.

  5. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    NASA Astrophysics Data System (ADS)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B ṡ∇p are important in this region, and small non-MHD contributions to the parallel force balance equation cannot be neglected there. Two approaches are pursued to solve our equations for the pressure driven currents. First, the equilibrium equations are applied to an analytically tractable magnetic field with an island, obtaining explicit expressions for the rotational transform and magnetic coordinates, and for the pressure-driven current and its limiting behavior near the X-line. The second approach utilizes an expansion about the X-line to provide a more general calculation of the pressure-driven current near an X-line and of the rotational transform near a separatrix. The study presented in this paper is motivated, in part, by tokamak experiments with nonaxisymmetric magnetic perturbations, where significant differences are observed between the behavior of stellarator-symmetric and non-stellarator-symmetric configurations with regard to stabilization of edge localized modes by resonant magnetic perturbations. Implications for the coupling between neoclassical tearing modes, and for magnetic island stability calculations, are also discussed.

  6. Calculating Pressure-Driven Current Near Magnetic Islands for 3D MHD Equilibria

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Dhanush; Reiman, Allan

    2016-10-01

    In general, 3D MHD equilibria in toroidal plasmas do not result in nested pressure surfaces. Instead, islands and chaotic regions appear in the equilibrium. Near small magnetic islands, the pressure varies within the flux surfaces, which has a significant effect on the pressure-driven current, introducing singularities. Previously, the MHD equilibrium current near a magnetic island was calculated, including the effect of ``stellarator symmetry,'' wherein the singular components of the pressure-driven current vanish [A. H. Reiman, Phys. Plasmas 23, 072502 (2016)]. Here we first solve for pressure in a cylindrical plasma from the heat diffusion equation, after adding a helical perturbation. We then numerically calculate the corresponding Pfirsch-Schluter current. At the small island limit, we compare the pressure-driven current with the previously calculated solution, and far from the island, we recover the solution for nested flux surfaces. Lastly, we compute the current for a toroidal plasma for symmetric and non-symmetric geometries.

  7. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE PAGES

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  8. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert; Chang, C. S.

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  9. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  10. Control of bootstrap current in the pedestal region of tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less

  11. Efficient numerical calculation of MHD equilibria with magnetic islands, with particular application to saturated neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel Louis

    We have developed a preconditioned, globalized Jacobian-free Newton-Krylov (JFNK) solver for calculating equilibria with magnetic islands. The solver has been developed in conjunction with the Princeton Iterative Equilibrium Solver (PIES) and includes two notable enhancements over a traditional JFNK scheme: (1) globalization of the algorithm by a sophisticated backtracking scheme, which optimizes between the Newton and steepest-descent directions; and, (2) adaptive preconditioning, wherein information regarding the system Jacobian is reused between Newton iterations to form a preconditioner for our GMRES-like linear solver. We have developed a formulation for calculating saturated neoclassical tearing modes (NTMs) which accounts for the incomplete loss of a bootstrap current due to gradients of multiple physical quantities. We have applied the coupled PIES-JFNK solver to calculate saturated island widths on several shots from the Tokamak Fusion Test Reactor (TFTR) and have found reasonable agreement with experimental measurement.

  12. From current-driven to neoclassically driven tearing modes.

    PubMed

    Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A

    2002-03-11

    In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.

  13. Transport barriers in bootstrap-driven tokamaks

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Garofalo, A. M.; Pan, C.; McClenaghan, J.; Van Zeeland, M. A.; Lao, L. L.

    2018-05-01

    Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is caused by the suppression of turbulence primarily from the large Shafranov shift. It is shown that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift-driven barrier formation. Two self-organized states of the internal and edge transport barrier are observed. It is shown that these two states are controlled by the interaction of the bootstrap current with magnetic shear, and the kinetic ballooning mode instability boundary. Election scale energy transport is predicted to be dominant in the inner 60% of the profile. Evidence is presented that energetic particle-driven instabilities could be playing a role in the thermal energy transport in this region.

  14. Predict-first experimental analysis using automated and integrated magnetohydrodynamic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, B. C.; Paz-Soldan, C.; Meneghini, O.

    An integrated-modeling workflow has been developed in this paper for the purpose of performing predict-first analysis of transient-stability experiments. Starting from an existing equilibrium reconstruction from a past experiment, the workflow couples together the EFIT Grad-Shafranov solver [L. Lao et al., Fusion Sci. Technol. 48, 968 (2005)], the EPED model for the pedestal structure [P. B. Snyder et al., Phys. Plasmas 16, 056118 (2009)], and the NEO drift-kinetic-equation solver [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)] (for bootstrap current calculations) in order to generate equilibria with self-consistent pedestal structures as the plasma shape andmore » various scalar parameters (e.g., normalized β, pedestal density, and edge safety factor [q 95]) are changed. These equilibria are then analyzed using automated M3D-C1 extended-magnetohydrodynamic modeling [S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)] to compute the plasma response to three-dimensional magnetic perturbations. This workflow was created in conjunction with a DIII-D experiment examining the effect of triangularity on the 3D plasma response. Several versions of the workflow were developed, and the initial ones were used to help guide experimental planning (e.g., determining the plasma current necessary to maintain the constant edge safety factor in various shapes). Subsequent validation with the experimental results was then used to revise the workflow, ultimately resulting in the complete model presented here. We show that quantitative agreement was achieved between the M3D-C1 plasma response calculated for equilibria generated by the final workflow and equilibria reconstructed from experimental data. A comparison of results from earlier workflows is used to show the importance of properly matching certain experimental parameters in the generated equilibria, including the normalized β, pedestal density, and q 95. On the other hand, the details of the pedestal current did not significantly impact the plasma response in these equilibria. A comparison to the experimentally measured plasma response shows mixed agreement, indicating that while the equilibria are predicted well, additional analysis tools may be needed. In conclusion, we note the implications that these results have for the success of future predict-first studies, particularly the need for scans of uncertain parameters and for close collaboration between experimentalists and theorists.« less

  15. Predict-first experimental analysis using automated and integrated magnetohydrodynamic modeling

    DOE PAGES

    Lyons, B. C.; Paz-Soldan, C.; Meneghini, O.; ...

    2018-05-07

    An integrated-modeling workflow has been developed in this paper for the purpose of performing predict-first analysis of transient-stability experiments. Starting from an existing equilibrium reconstruction from a past experiment, the workflow couples together the EFIT Grad-Shafranov solver [L. Lao et al., Fusion Sci. Technol. 48, 968 (2005)], the EPED model for the pedestal structure [P. B. Snyder et al., Phys. Plasmas 16, 056118 (2009)], and the NEO drift-kinetic-equation solver [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)] (for bootstrap current calculations) in order to generate equilibria with self-consistent pedestal structures as the plasma shape andmore » various scalar parameters (e.g., normalized β, pedestal density, and edge safety factor [q 95]) are changed. These equilibria are then analyzed using automated M3D-C1 extended-magnetohydrodynamic modeling [S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)] to compute the plasma response to three-dimensional magnetic perturbations. This workflow was created in conjunction with a DIII-D experiment examining the effect of triangularity on the 3D plasma response. Several versions of the workflow were developed, and the initial ones were used to help guide experimental planning (e.g., determining the plasma current necessary to maintain the constant edge safety factor in various shapes). Subsequent validation with the experimental results was then used to revise the workflow, ultimately resulting in the complete model presented here. We show that quantitative agreement was achieved between the M3D-C1 plasma response calculated for equilibria generated by the final workflow and equilibria reconstructed from experimental data. A comparison of results from earlier workflows is used to show the importance of properly matching certain experimental parameters in the generated equilibria, including the normalized β, pedestal density, and q 95. On the other hand, the details of the pedestal current did not significantly impact the plasma response in these equilibria. A comparison to the experimentally measured plasma response shows mixed agreement, indicating that while the equilibria are predicted well, additional analysis tools may be needed. In conclusion, we note the implications that these results have for the success of future predict-first studies, particularly the need for scans of uncertain parameters and for close collaboration between experimentalists and theorists.« less

  16. Predict-first experimental analysis using automated and integrated magnetohydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Lyons, B. C.; Paz-Soldan, C.; Meneghini, O.; Lao, L. L.; Weisberg, D. B.; Belli, E. A.; Evans, T. E.; Ferraro, N. M.; Snyder, P. B.

    2018-05-01

    An integrated-modeling workflow has been developed for the purpose of performing predict-first analysis of transient-stability experiments. Starting from an existing equilibrium reconstruction from a past experiment, the workflow couples together the EFIT Grad-Shafranov solver [L. Lao et al., Fusion Sci. Technol. 48, 968 (2005)], the EPED model for the pedestal structure [P. B. Snyder et al., Phys. Plasmas 16, 056118 (2009)], and the NEO drift-kinetic-equation solver [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)] (for bootstrap current calculations) in order to generate equilibria with self-consistent pedestal structures as the plasma shape and various scalar parameters (e.g., normalized β, pedestal density, and edge safety factor [q95]) are changed. These equilibria are then analyzed using automated M3D-C1 extended-magnetohydrodynamic modeling [S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)] to compute the plasma response to three-dimensional magnetic perturbations. This workflow was created in conjunction with a DIII-D experiment examining the effect of triangularity on the 3D plasma response. Several versions of the workflow were developed, and the initial ones were used to help guide experimental planning (e.g., determining the plasma current necessary to maintain the constant edge safety factor in various shapes). Subsequent validation with the experimental results was then used to revise the workflow, ultimately resulting in the complete model presented here. We show that quantitative agreement was achieved between the M3D-C1 plasma response calculated for equilibria generated by the final workflow and equilibria reconstructed from experimental data. A comparison of results from earlier workflows is used to show the importance of properly matching certain experimental parameters in the generated equilibria, including the normalized β, pedestal density, and q95. On the other hand, the details of the pedestal current did not significantly impact the plasma response in these equilibria. A comparison to the experimentally measured plasma response shows mixed agreement, indicating that while the equilibria are predicted well, additional analysis tools may be needed. Finally, we note the implications that these results have for the success of future predict-first studies, particularly the need for scans of uncertain parameters and for close collaboration between experimentalists and theorists.

  17. Transport Barriers in Bootstrap Driven Tokamaks

    NASA Astrophysics Data System (ADS)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02-04ER54698.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Brooks; A.H. Reiman; G.H. Neilson

    High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has amore » substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.« less

  19. Comparison between numerical and analytical results on the required rf current for stabilizing neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin

    2018-04-01

    Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.

  20. Gyrokinetic Particle Simulations of Neoclassical Transport

    NASA Astrophysics Data System (ADS)

    Lin, Zhihong

    A time varying weighting (delta f) scheme based on the small gyro-radius ordering is developed and applied to a steady state, multi-species gyrokinetic particle simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Benchmark simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion -electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. In agreement with the existing analytical neoclassical theory, ion energy flux is enhanced by the toroidal mass flow and the neoclassical viscosity is a Pfirsch-Schluter factor times the classical viscosity in the banana regime. In addition, the poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Modifications of the neoclassical transport by the orbit squeezing effects due to the radial electric field associated with sheared toroidal flow are studied. Simulation results indicate a reduction of both ion thermal flux and neoclassical toroidal rotation. Neoclassical theory in the steep gradient profile regime, where conventional neoclassical theory fails, is examined by taking into account finite banana width effects. The relevance of these studies to interesting experimental conditions in tokamaks is discussed. Finally, the present numerical scheme is extended to general geometry equilibrium. This new formulation will be valuable for the development of new capabilities to address complex equilibria such as advanced stellarator configurations and possibly other alternate concepts for the magnetic confinement of plasmas. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.

  1. Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi

    2007-11-01

    Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.

  2. Investigation of the n  =  1 resistive wall modes in the ITER high-mode confinement

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.

    2017-06-01

    The n  =  1 resistive wall mode (RWM) stability of ITER high-mode confinement is investigated with bootstrap current included for equilibrium, together with the rotation and diamagnetic drift effects for stability. Here, n is the toroidal mode number. We use the CORSICA code for computing the free boundary equilibrium and AEGIS code for stability. We find that the inclusion of bootstrap current for equilibrium is critical. It can reduce the local magnetic shear in the pedestal, so that the infernal mode branches can develop. Consequently, the n  =  1 modes become unstable without a stabilizing wall at a considerably lower beta limit, driven by the steep pressure gradient in the pedestal. Typical values of the wall position stabilize the ideal mode, but give rise to the ‘pedestal’ resistive wall modes. We find that the rotation can contribute a stabilizing effect on RWMs and the diamagnetic drift effects can further improve the stability in the co-current rotation case. But, generally speaking, the rotation stabilization effects are not as effective as the case without including the bootstrap current effects on equilibrium. We also find that the diamagnetic drift effects are actually destabilizing when there is a counter-current rotation.

  3. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams

    2017-07-01

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.

  4. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less

  5. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    DOE PAGES

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; ...

    2017-04-28

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less

  6. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, C. C.

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  7. Lower hybrid current drive in experiments for transport barriers at high βN of JET (Joint European Torus)

    NASA Astrophysics Data System (ADS)

    Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.

    2007-09-01

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  8. Connection between plasma response and resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression in DIII-D [Connection between plasma response and RMP ELM suppression in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.

    Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less

  9. Connection between plasma response and resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression in DIII-D [Connection between plasma response and RMP ELM suppression in DIII-D

    DOE PAGES

    Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...

    2015-09-03

    Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less

  10. Improved Design of Stellarator Coils for Current Carrying Plasmas

    NASA Astrophysics Data System (ADS)

    Drevlak, M.; Strumberger, E.; Hirshman, S.; Boozer, A.; Brooks, A.; Valanju, P.

    1998-11-01

    The method of automatic optimization (P. Merkel, Nucl. Fus. 27), (1987) 867; P. Merkel, M. Drevlak, Proc 25th EPS Conf. on Cont. Fus. and Plas. Phys., Prague, in print. for the design of stellarator coils consists essentially of determining filaments such that the average relative field error int dS [ (B_coil + B_j) \\cdot n]^2/B^2_coil is minimized on the prescribed plasma boundary. Bj is the magnetic field produced by the plasma currents of the given finite β fixed boundary equilibrium. For equilibria of the W7-X type, Bj can be neglected, because of the reduced parallel plasma currents. This is not true for quasi-axisymmetric stellarator (QAS) configurations (A. Reiman, et al., to be published.) with large equilibrium and net plasma (bootstrap) currents. Although the coils for QAS exhibit low values of the field error, free boundary calculations indicate that the shape of the plasma is usually not accurately reproduced , particularly when saddle coils are used. We investigate if the surface reconstruction can be improved by introducing a modified measure of the field error based on a measure of the resonant components of the normal field.

  11. Effects of magnetic islands on bootstrap current in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, G.; Lin, Z.

    The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less

  12. Effects of magnetic islands on bootstrap current in toroidal plasmas

    DOE PAGES

    Dong, G.; Lin, Z.

    2016-12-19

    The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less

  13. Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weening, R. H.

    2012-06-15

    In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport inmore » regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.« less

  14. Magnetospheric Reconnection in Modified Current-Sheet Equilibria

    NASA Astrophysics Data System (ADS)

    Newman, D. L.; Goldman, M. V.; Lapenta, G.; Markidis, S.

    2012-10-01

    Particle simulations of magnetic reconnection in Earth's magnetosphere are frequently initialized with a current-carrying Harris equilibrium superposed on a current-free uniform background plasma. The Harris equilibrium satisfies local charge neutrality, but requires that the sheet current be dominated by the hotter species -- often the ions in Earth's magnetosphere. This constraint is not necessarily consistent with observations. A modified kinetic equilibrium that relaxes this constraint on the currents was proposed by Yamada et al. [Phys. Plasmas., 7, 1781 (2000)] with no background population. These modified equilibria were characterized by an asymptotic converging or diverging electrostatic field normal to the current sheet. By reintroducing the background plasma, we have developed new families of equilibria where the asymptotic fields are suppressed by Debye shielding. Because the electrostatic potential profiles of these new equilibria contain wells and/or barriers capable of spatially isolating different populations of electrons and/or ions, these solutions can be further generalized to include classes of asymmetric kinetic equilibria. Examples of both symmetric and asymmetric equilibria will be presented. The dynamical evolution of these equilibria, when perturbed, will be further explored by means of implicit 2D PIC reconnection simulations, including comparisons with simulations employing standard Harris-equilibrium initializations.

  15. Reduced ion bootstrap current drive on NTM instability

    NASA Astrophysics Data System (ADS)

    Qu, Hongpeng; Wang, Feng; Wang, Aike; Peng, Xiaodong; Li, Jiquan

    2018-05-01

    The loss of bootstrap current inside magnetic island plays a dominant role in driving the neoclassical tearing mode (NTM) instability in tokamak plasmas. In this work, we investigate the finite-banana-width (FBW) effect on the profile of ion bootstrap current in the island vicinity via an analytical approach. The results show that even if the pressure gradient vanishes inside the island, the ion bootstrap current can partly survive due to the FBW effect. The efficiency of the FBW effect is higher when the island width becomes smaller. Nevertheless, even when the island width is comparable to the ion FBW, the unperturbed ion bootstrap current inside the island cannot be largely recovered by the FBW effect, and thus the current loss still exists. This suggests that FBW effect alone cannot dramatically reduce the ion bootstrap current drive on NTMs.

  16. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-09CH11466, and the NMCFP of China under 2015GB110000 and 2015GB102000.

  17. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  18. Linear calculations of edge current driven kink modes with BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less

  19. Overview of physics research on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; TCV Team

    2009-10-01

    The Tokamak à Configuration Variable (TCV) tokamak is equipped with high-power (4.5 MW), real-time-controllable EC systems and flexible shaping, and plays an important role in fusion research by broadening the parameter range of reactor relevant regimes, by investigating tokamak physics questions and by developing new control tools. Steady-state discharges are achieved, in which the current is entirely self-generated through the bootstrap mechanism, a fundamental ingredient for ITER steady-state operation. The discharge remains quiescent over several current redistribution times, demonstrating that a self-consistent, 'bootstrap-aligned' equilibrium state is possible. Electron internal transport barrier regimes sustained by EC current drive have also been explored. MHD activity is shown to be crucial in scenarios characterized by large and slow oscillations in plasma confinement, which in turn can be modified by small Ohmic current perturbations altering the barrier strength. In studies of the relation between anomalous transport and plasma shape, the observed dependences of the electron thermal diffusivity on triangularity (direct) and collisionality (inverse) are qualitatively reproduced by non-linear gyro-kinetic simulations and shown to be governed by TEM turbulence. Parallel SOL flows are studied for their importance for material migration. Flow profiles are measured using a reciprocating Mach probe by changing from lower to upper single-null diverted equilibria and shifting the plasmas vertically. The dominant, field-direction-dependent Pfirsch-Schlüter component is found to be in good agreement with theoretical predictions. A field-direction-independent component is identified and is consistent with flows generated by transient over-pressure due to ballooning-like interchange turbulence. Initial high-resolution infrared images confirm that ELMs have a filamentary structure, while fast, localized radiation measurements reveal that ELM activity first appears in the X-point region. Real time control techniques are currently being applied to EC multiple independent power supplies and beam launchers, e.g. to control the plasma current in fully non-inductive conditions, and the plasma elongation through current broadening by far-off-axis heating at constant shaping field.

  20. Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D

    DOE PAGES

    Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...

    2015-01-12

    Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less

  1. Multilingual Phoneme Models for Rapid Speech Processing System Development

    DTIC Science & Technology

    2006-09-01

    processes are used to develop an Arabic speech recognition system starting from monolingual English models, In- ternational Phonetic Association (IPA...clusters. It was found that multilingual bootstrapping methods out- perform monolingual English bootstrapping methods on the Arabic evaluation data initially...International Phonetic Alphabet . . . . . . . . . 7 2.3.2 Multilingual vs. Monolingual Speech Recognition 7 2.3.3 Data-Driven Approaches

  2. Estimating uncertainty in respondent-driven sampling using a tree bootstrap method.

    PubMed

    Baraff, Aaron J; McCormick, Tyler H; Raftery, Adrian E

    2016-12-20

    Respondent-driven sampling (RDS) is a network-based form of chain-referral sampling used to estimate attributes of populations that are difficult to access using standard survey tools. Although it has grown quickly in popularity since its introduction, the statistical properties of RDS estimates remain elusive. In particular, the sampling variability of these estimates has been shown to be much higher than previously acknowledged, and even methods designed to account for RDS result in misleadingly narrow confidence intervals. In this paper, we introduce a tree bootstrap method for estimating uncertainty in RDS estimates based on resampling recruitment trees. We use simulations from known social networks to show that the tree bootstrap method not only outperforms existing methods but also captures the high variability of RDS, even in extreme cases with high design effects. We also apply the method to data from injecting drug users in Ukraine. Unlike other methods, the tree bootstrap depends only on the structure of the sampled recruitment trees, not on the attributes being measured on the respondents, so correlations between attributes can be estimated as well as variability. Our results suggest that it is possible to accurately assess the high level of uncertainty inherent in RDS.

  3. Bootstrap current in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  4. Stability of DIII-D high-performance, negative central shear discharges

    DOE PAGES

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...

    2017-03-20

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  5. Stability of DIII-D high-performance, negative central shear discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  6. Electron transport fluxes in potato plateau regime

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Hazeltine, R. D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100% bootstrap current.

  7. External and internal guest binding of a highly charged supramolecular host in water: deconvoluting the very different thermodynamics.

    PubMed

    Sgarlata, Carmelo; Mugridge, Jeffrey S; Pluth, Michael D; Tiedemann, Bryan E F; Zito, Valeria; Arena, Giuseppe; Raymond, Kenneth N

    2010-01-27

    NMR, UV-vis, and isothermal titration calorimetry (ITC) measurements probe different aspects of competing host-guest equilibria as simple alkylammonium guest molecules interact with both the exterior (ion-association) and interior (encapsulation) of the [Ga(4)L(6)](12-) supramolecular assembly in water. Data obtained by each independent technique measure different components of the host-guest equilibria and only when analyzed together does a complete picture of the solution thermodynamics emerge. Striking differences between the internal and external guest binding are found. External binding is enthalpy driven and mainly due to attractive interactions between the guests and the exterior surface of the assembly while encapsulation is entropy driven as a result of desolvation and release of solvent molecules from the host cavity.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K.C.; Hazeltine, R.D.

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  9. Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling

    PubMed Central

    2006-01-01

    Hidden populations, such as injection drug users and sex workers, are central to a number of public health problems. However, because of the nature of these groups, it is difficult to collect accurate information about them, and this difficulty complicates disease prevention efforts. A recently developed statistical approach called respondent-driven sampling improves our ability to study hidden populations by allowing researchers to make unbiased estimates of the prevalence of certain traits in these populations. Yet, not enough is known about the sample-to-sample variability of these prevalence estimates. In this paper, we present a bootstrap method for constructing confidence intervals around respondent-driven sampling estimates and demonstrate in simulations that it outperforms the naive method currently in use. We also use simulations and real data to estimate the design effects for respondent-driven sampling in a number of situations. We conclude with practical advice about the power calculations that are needed to determine the appropriate sample size for a study using respondent-driven sampling. In general, we recommend a sample size twice as large as would be needed under simple random sampling. PMID:16937083

  10. MHD Studies of Advanced Tokamak Equilibria

    NASA Astrophysics Data System (ADS)

    Strumberger, E.

    2005-10-01

    Advanced tokamak scenarios are often characterized by an extremely reversed profile of the safety factor, q, and a fast toroidal rotation. ASDEX Upgrade type equilibria with toroidal flow are computed up to a toroidal Mach number of Mta= 0.5, and compared with the static solution. Using these equilibria, the stabilizing effect of differential toroidal rotation on double tearing modes (DTMs) is investigated. These studies show that the computation of equilibria with flow is necessary for toroidally rotating plasma with Mta>=0.2. The use of ρtor instead of ρpol as radial coordinate enables us also to investigate the stability of equilibria with current holes. For numerical reasons, the rotational transform, = 1/q, has to be unequal zero in the CASTOR$FLOW code, but values of a>=0.001 (qa<=1000) can be easily handled. Stability studies of DTMs in the presence of a current hole are presented. Tokamak equilibria are only approximately axisymmetric. The finite number of toroidal field coils destroys the perfect axisymmetry of the device, and the coils produce a short wavelength ripple in the magnetic field strength. This toroidal field ripple plays a crucial role for the loss of high energy particles. Therefore, three-dimensional tokamak equilibria with and without current holes are computed for various plasma beta values. In addition the influence of the plasma beta on the toroidal field ripple is investigated.

  11. Rethinking pattern formation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  12. Stability of DIII-D high-performance, negative central shear discharges

    NASA Astrophysics Data System (ADS)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  13. The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team

    2012-08-17

    Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less

  14. The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, D. P.; Maingi, R.; Snyder, P. B.

    2011-01-01

    Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less

  15. Evaluation of respondent-driven sampling.

    PubMed

    McCreesh, Nicky; Frost, Simon D W; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda N; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total population data. Total population data on age, tribe, religion, socioeconomic status, sexual activity, and HIV status were available on a population of 2402 male household heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, using current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). We recruited 927 household heads. Full and small RDS samples were largely representative of the total population, but both samples underrepresented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven sampling statistical inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven sampling bootstrap 95% confidence intervals included the population proportion. Respondent-driven sampling produced a generally representative sample of this well-connected nonhidden population. However, current respondent-driven sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience sampling method, and caution is required when interpreting findings based on the sampling method.

  16. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  17. Modeling of fast neutral-beam-generated ions and rotation effects on RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-10-15

    Here, validation results for the MARS-K code for DIII-D equilibria, predict that the absence of fast Neutral Beam (NB) generated ions leads to a plasma response ~40–60% higher than in NB-sustained H-mode plasmas when the no-wall β N limit is reached. In a β N scan, the MARS-K model with thermal and fast-ions, reproduces the experimental measurements above the no-wall limit, except at the highest β N where the phase of the plasma response is overestimated. The dependencies extrapolate unfavorably to machines such as ITER with smaller fast ion fractions since elevated responses in the absence of fast ions indicatemore » the potential onset of a resistive wall mode (RWM). The model was also tested for the effects of rotation at high β N, and recovers the measured response even when fast-ions are neglected, reversing the effect found in lower β N cases, but consistent with the higher β N results above the no-wall limit. The agreement in the response amplitude and phase for the rotation scan is not as good, and additional work will be needed to reproduce the experimental trends. In the case of current-driven instabilities, the magnetohydrodynamic spectroscopy system used to measure the plasma response reacts differently from that for pressure driven instabilities: the response amplitude remains low up to ~93% of the current limit, showing an abrupt increase only in the last ~5% of the current ramp. This makes it much less effective as a diagnostic for the approach to an ideal limit. However, the mode structure of the current driven RWM extends radially inwards, consistent with that in the pressure driven case for plasmas with q edge~2. This suggests that previously developed RWM feedback techniques together with the additional optimizations that enabled q edge~2 operation, can be applied to control of both current-driven and pressure-driven modes at high β N.« less

  18. Optimization of Kink Stability in High-Beta Quasi-axisymmetric Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, G. Y.; Ku, L.-P.; Manickam, J.; Cooper, W. A.

    1998-11-01

    A key issue for design of Quasi-axisymmetric stellarators( A. Reiman et al, this conference.) (QAS) is the stability of external kink modes driven by pressure-induced bootstrap current. In this work, the 3D MHD stability code TERPSICHORE(W.A. Cooper, Phys. Plasmas 3), 275(1996). is used to calculate the stability of low-n external kink modes in a high-beta QAS. The kink stability is optimized by adjusting plasma boundary shape (i.e., external coil configuration) as well as plasma pressure and current profiles. For this purpose, the TERPSICHORE code has been implemented successfully in an optimizer which maximizes kink stability as well as quasi-symmetry. A key factor for kink stability is rotational transform profile. It is found that the edge magnetic shear is strongly stabilizing. The amount of the shear needed for complete stabilization increases with edge transform. It is also found that the plasma boundary shape plays an important role in the kink stability besides transform profile. The physics mechanisms for the kink stability are being studied by examining the contributions of individual terms in δ W of the energy principle: the field line bending term, the current-driven term, the pressure-driven term, and the vacuum term. Detailed results will be reported.

  19. MHD Stability of Axisymmetric Plasmas In Closed Line Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Simakov, Andrei N.; Catto, Peter J.; Ramos, Jesus J.; Hastie, R. J.

    2003-04-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study stability of pressure driven Alfvén modes. A point dipole is considered in detail to demonstrate that equilibria exist, which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated next for point dipole equilibria by means of resistive MHD theory.

  20. Nonlinear Magnetic Dynamics and The Switching Phase Diagrams in Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Yan, Shu

    Spin-transfer torque induced magnetic switching, by which the spin-polarized current transfers its magnetic moment to the ferromagnetic layer and changes its magnetization, holds great promise towards faster and smaller magnetic bits in data-storage applications due to the lower power consumption and better scalability. We propose an analytic approach which can be used to calculate the switching phase diagram of a nanomagnetic system in the presence of both magnetic field and spin-transfer torque in an exact fashion. This method is applied to the study of switching conditions for the uniaxial, single domain magnetic layers in different spin-transfer devices. In a spin valve with spin polarization collinear with the easy axis, we get a modified Stoner-Wohlfarth astroid which represents many of the features that have been found in experiment. It also shows a self-crossing boundary and demonstrates a region with three stable equilibria. We demonstrate that the region of stable equilibria with energy near the maximum can be reached only through a narrow bottleneck in the field space, which sets a stringent requirement for magnetic field alignment in the experiments. Switching diagrams are then calculated for the setups with magnetic field not perfectly aligned with the easy axis. In a ferromagnet-heavy-metal bilayer device with strong spin Hall effect, the in plane current becomes spin-polarized and transfers its magnetic moment to the ferromagnetic layer by diffusion. The three-dimensional asymmetric phase diagram is calculated. In the case that the external field is confined in the vertical plane defined by the direction of the current and the easy axis, the spin-transfer torque shifts the conventional in-plane (IP) equilibria within the same plane, and also creates two out-of-plane (OOP) equilibria, one of which can be stable. The threshold switching currents for IP switching and OOP switching are discussed. We also address the magnetic switching processes. Damping switching and precessional switching are two different switching types that are typically considered in recent studies. In the damping mode the switching is slow and heavily depends on the initial deviation, while in the precessional mode the accurate manipulation of the field or current pulse is required. We propose a switching scenario for a fast and reliable switching by taking advantage of the out-of-plane stable equilibrium in the SHE induced magnetic switching. The magnetization is first driven by a pulse of field and current towards the OOP equilibrium without precession. Since it is in the lower half of the unit sphere, no backwards pulse is required for a complete switching. This indicates a potentially feasible method of reliable ultra-fast magnetic control.

  1. High performance advanced tokamak regimes in DIII-D for next-step experiments

    NASA Astrophysics Data System (ADS)

    Greenfield, C. M.; Murakami, M.; Ferron, J. R.; Wade, M. R.; Luce, T. C.; Petty, C. C.; Menard, J. E.; Petrie, T. W.; Allen, S. L.; Burrell, K. H.; Casper, T. A.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gorelov, I. A.; Groebner, R. J.; Hobirk, J.; Hyatt, A. W.; Jayakumar, R. J.; Kessel, C. E.; La Haye, R. J.; Jackson, G. L.; Lohr, J.; Makowski, M. A.; Pinsker, R. I.; Politzer, P. A.; Prater, R.; Strait, E. J.; Taylor, T. S.; West, W. P.; DIII-D Team

    2004-05-01

    Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts.

  2. Verification of continuum drift kinetic equation solvers in NIMROD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, E. D.; Ji, J.-Y.; Kruger, S. E.

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speedmore » coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.« less

  3. Transport in the plateau regime in a tokamak pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, J.; Shaing, K. C.

    In a tokamak H-mode, a strong E Multiplication-Sign B flow shear is generated during the L-H transition. Turbulence in a pedestal is suppressed significantly by this E Multiplication-Sign B flow shear. In this case, neoclassical transport may become important. The neoclassical fluxes are calculated in the plateau regime with the parallel plasma flow using their kinetic definitions. In an axisymmetric tokamak, the neoclassical particles fluxes can be decomposed into the banana-plateau flux and the Pfirsch-Schlueter flux. The banana-plateau particle flux is driven by the parallel viscous force and the Pfirsch-Schlueter flux by the poloidal variation of the friction force. Themore » combined quantity of the radial electric field and the parallel flow is determined by the flux surface averaged parallel momentum balance equation rather than requiring the ambipolarity of the total particle fluxes. In this process, the Pfirsch-Schlueter flux does not appear in the flux surface averaged parallel momentum equation. Only the banana-plateau flux is used to determine the parallel flow in the form of the flux surface averaged parallel viscosity. The heat flux, obtained using the solution of the parallel momentum balance equation, decreases exponentially in the presence of sonic M{sub p} without any enhancement over that in the standard neoclassical theory. Here, M{sub p} is a combination of the poloidal E Multiplication-Sign B flow and the parallel mass flow. The neoclassical bootstrap current in the plateau regime is presented. It indicates that the neoclassical bootstrap current also is related only to the banana-plateau fluxes. Finally, transport fluxes are calculated when M{sub p} is large enough to make the parallel electron viscosity comparable with the parallel ion viscosity. It is found that the bootstrap current has a finite value regardless of the magnitude of M{sub p}.« less

  4. Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma

    NASA Astrophysics Data System (ADS)

    Newton, S. L.; Helander, P.; Mollén, A.; Smith, H. M.

    2017-10-01

    The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev. Lett., vol. 118, 2017a, 155002) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current.

  5. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  6. Evaluation of Respondent-Driven Sampling

    PubMed Central

    McCreesh, Nicky; Frost, Simon; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda Ndagire; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Background Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex-workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total-population data. Methods Total-population data on age, tribe, religion, socioeconomic status, sexual activity and HIV status were available on a population of 2402 male household-heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, employing current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). Results We recruited 927 household-heads. Full and small RDS samples were largely representative of the total population, but both samples under-represented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven-sampling statistical-inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven-sampling bootstrap 95% confidence intervals included the population proportion. Conclusions Respondent-driven sampling produced a generally representative sample of this well-connected non-hidden population. However, current respondent-driven-sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience-sampling method, and caution is required when interpreting findings based on the sampling method. PMID:22157309

  7. Sensitivity analysis of reactive ecological dynamics.

    PubMed

    Verdy, Ariane; Caswell, Hal

    2008-08-01

    Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.

  8. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  9. Bootstrap current control studies in the Wendelstein 7-X stellarator using the free-plasma-boundary version of the SIESTA MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.

    2018-02-01

    The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.

  10. Evaluating the Invariance of Cognitive Profile Patterns Derived from Profile Analysis via Multidimensional Scaling (PAMS): A Bootstrapping Approach

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    2010-01-01

    The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…

  11. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

    PubMed

    Chung, SungWon; Lu, Ying; Henry, Roland G

    2006-11-01

    Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.

  12. Some Aspects of Advanced Tokamak Modeling in DIII-D

    NASA Astrophysics Data System (ADS)

    St John, H. E.; Petty, C. C.; Murakami, M.; Kinsey, J. E.

    2000-10-01

    We extend previous work(M. Murakami, et al., General Atomics Report GA-A23310 (1999).) done on time dependent DIII-D advanced tokamak simulations by introducing theoretical confinement models rather than relying on power balance derived transport coefficients. We explore using NBCD and off axis ECCD together with a self-consistent aligned bootstrap current, driven by the internal transport barrier dynamics generated with the GLF23 confinement model, to shape the hollow current profile and to maintain MHD stable conditions. Our theoretical modeling approach uses measured DIII-D initial conditions to start off the simulations in a smooth consistent manner. This mitigates the troublesome long lived perturbations in the ohmic current profile that is normally caused by inconsistent initial data. To achieve this goal our simulation uses a sequence of time dependent eqdsks generated autonomously by the EFIT MHD equilibrium code in analyzing experimental data to supply the history for the simulation.

  13. Prospects for steady-state scenarios on JET

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Bizarro, J. P. S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Lomas, P.; Rimini, F. G.; Tala, T. J. J.; Akers, R.; Andrew, Y.; Arnoux, G.; Artaud, J. F.; Baranov, Yu F.; Beurskens, M.; Brix, M.; Cesario, R.; DeLa Luna, E.; Fundamenski, W.; Giroud, C.; Hawkes, N. C.; Huber, A.; Joffrin, E.; Pitts, R. A.; Rachlew, E.; Reyes-Cortes, S. D. A.; Sharapov, S. E.; Zastrow, K. D.; Zimmermann, O.; JET EFDA contributors, the

    2007-09-01

    In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (nl ~ 4 × 1019 m-3), with ITER-relevant safety factor (q95 ~ 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (~45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (~15 MW), an upgrade of the NB power (35 MW/20 s or 17.5 MW/40 s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (~2.5 MA) and density (nl > 5 × 1019 m-3), with high βN (βN > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (~3.5 T).

  14. Non-inductive current drive and transport in high βN plasmas in JET

    NASA Astrophysics Data System (ADS)

    Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors

    2009-05-01

    A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.

  15. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, J.; Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543; Hudson, S. R.

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at themore » resonant surface.« less

  16. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    2016-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.

  17. A note on two-dimensional asymptotic magnetotail equilibria

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes; Moore, Brian D.

    1994-01-01

    In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.

  18. Aspect ratio effects on neoclassical tearing modes from comparison between DIII-D and National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Haye, R. J.; Buttery, R. J.; Gerhardt, S. P.

    Neoclassical tearing mode islands are sustained by helically perturbed bootstrap currents arising at finite beta from toroidal effects that trap a fraction of the particles in non-circulating orbits. DIII-D and NSTX are here operated with similar shape and cross-sectional area but almost a factor of two difference in inverse aspect ratio a/R. In these experiments, destabilized n=1 tearing modes were self-stabilized (reached the 'marginal point') by reducing neutral-beam power and thus beta. The measure of the marginal island gives information on the small-island stabilizing physics that in part (with seeding) governs onset. The marginal island width on NSTX is foundmore » to be about three times the ion banana width and agrees with that measured in DIII-D, except for DIII-D modes closer to the magnetic axis, which are about two times the ion banana width. There is a balance of the helically perturbed bootstrap term with small island effects with the sum of the classical and curvature terms in the modified Rutherford equation for tearing-mode stability at the experimental marginal point. Empirical evaluation of this sum indicates that while the stabilizing effect of the curvature term is negligible in DIII-D, it is important in NSTX. The mode temporal behavior from the start of neutral-beam injection reduction also suggests that NSTX operates closer to marginal classical tearing stability; this explains why there is little hysteresis in beta between mode onset, saturation, and self-stabilization (while DIII-D has large hysteresis in beta). NIMROD code module component calculations based on DIII-D and NSTX reconstructed experimental equilibria are used to diagnose and confirm the relative importance of the stabilizing curvature effect, an advantage for low aspect ratio; the relatively greater curvature effect makes for less susceptibility to NTM onset even if the classical tearing stability index is near marginal.« less

  19. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  20. A neural network based reputation bootstrapping approach for service selection

    NASA Astrophysics Data System (ADS)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  1. Dynamics of embedded curves by doubly-nonlocal reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    von Brecht, James H.; Blair, Ryan

    2017-11-01

    We study a class of nonlocal, energy-driven dynamical models that govern the motion of closed, embedded curves from both an energetic and dynamical perspective. Our energetic results provide a variety of ways to understand physically motivated energetic models in terms of more classical, combinatorial measures of complexity for embedded curves. This line of investigation culminates in a family of complexity bounds that relate a rather broad class of models to a generalized, or weighted, variant of the crossing number. Our dynamic results include global well-posedness of the associated partial differential equations, regularity of equilibria for these flows as well as a more detailed investigation of dynamics near such equilibria. Finally, we explore a few global dynamical properties of these models numerically.

  2. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James

    2017-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.

  3. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    PubMed

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  4. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  5. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  6. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  7. Experiments and simulations of flux rope dynamics in a plasma

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Abbate, Sara; Ryutov, Dmitri

    2005-10-01

    The behavior of flux ropes is a key issue in solar, space and astrophysics. For instance, magnetic fields and currents on the Sun are sheared and twisted as they store energy, experience an as yet unidentified instability, open into interplanetary space, eject the plasma trapped in them, and cause a flare. The Reconnection Scaling Experiment (RSX) provides a simple means to systematically characterize the linear and non-linear evolution of driven, dissipative, unstable plasma-current filaments. Topology evolves in three dimensions, supports multiple modes, and can bifurcate to quasi-helical equilibria. The ultimate saturation to a nonlinear force and energy balance is the link to a spectrum of relaxation processes. RSX has adjustable energy density β1 to β 1, non-negligible equilibrium plasma flows, driven steady-state scenarios, and adjustable line tying at boundaries. We will show magnetic structure of a kinking, rotating single line tied column, magnetic reconnection between two flux ropes, and pictures of three braided flux ropes. We use computed simulation movies to bridge the gap between the solar physics scales and experimental data with computational modeling. In collaboration with Ivo Furno, Tsitsi Madziwa-Nussinovm Giovanni Lapenta, Adam Light, Los Alamos National Laboratory; Sara Abbate, Torino Polytecnico; and Dmitri Ryutov, Lawrence Livermore National Laboratory.

  8. Multi-baseline bootstrapping at the Navy precision optical interferometer

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Schmitt, H. R.; Mozurkewich, D.; Jorgensen, A. M.; Muterspaugh, M. W.; Baines, E. K.; Benson, J. A.; Zavala, Robert T.; Hutter, D. J.

    2014-07-01

    The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.

  9. One-dimensional models of quasi-neutral parallel electric fields

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1981-01-01

    Parallel electric fields can exist in the magnetic mirror geometry of auroral field lines if they conform to the quasineutral equilibrium solutions. Results on quasi-neutral equilibria and on double layer discontinuities were reviewed and the effects on such equilibria due to non-unique solutions, potential barriers and field aligned current flows using as inputs monoenergetic isotropic distribution functions were examined.

  10. Bootstrap Current for the Edge Pedestal Plasma in a Diverted Tokamak Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, S.; Chang, C. S.; Ku, S.

    The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. Amore » driftkinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al. , Phys. Plasmas 6 , 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity, the collisional edge bootstrap current can be significantly greater than that from the Sauter formula. Rapid toroidal rotation of the magnetic field lines at the high field side of a tight aspect-ratio tokamak is believed to be the cause of the different behavior. A new analytic fitting formula, as a simple modification to the Sauter formula, is obtained to bring the analytic expression to a better agreement with the edge kinetic simulation results« less

  11. Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, S.; Choe, W.; Chang, C. S.

    The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. Amore » drift-kinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al., Phys. Plasmas 6, 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity, the collisional edge bootstrap current can be significantly greater than that from the Sauter formula. Rapid toroidal rotation of the magnetic field lines at the high field side of a tight aspect-ratio tokamak is believed to be the cause of the different behavior. A new analytic fitting formula, as a simple modification to the Sauter formula, is obtained to bring the analytic expression to a better agreement with the edge kinetic simulation results.« less

  12. On the dynamics of a spinning top under the influence of rotation: Resonant relative equilibrium states

    NASA Astrophysics Data System (ADS)

    Sheheitli, H.; Touma, J. R.

    2018-06-01

    We investigate the dynamics of a spinning top driven by a turntable that rotates with a given angular speed Ω. The pivot point of the top is at a fixed distance from the center of the turntable. We show that such a setup leads to resonance where the spinning top is locked in a state of relative equilibrium: precessing with an angular speed equal to that of the turntable while maintaining a constant nutation angle. Bifurcation diagrams are presented to depict how the stability of these relative equilibria, along with the corresponding value of the nutation angle, depends on the two parameters: the initial spin angular momentum and Ω. We discuss the classical spinning top, that is, the Ω = 0 case, and address the relation of the "sleeping top" state to the aforementioned relative equilibria. We also relate the dynamics to that of a spherical pendulum on a rotary arm and show that the latter can be viewed as a special case of the system at hand. Finally, we illustrate how the relative equilibria can be exploited for the attitude control of the top through resonance capture while slowly varying the turnable angular speed, Ω.

  13. Multi-objective Optimization Strategies Using Adjoint Method and Game Theory in Aerodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Zhili

    2006-08-01

    There are currently three different game strategies originated in economics: (1) Cooperative games (Pareto front), (2) Competitive games (Nash game) and (3) Hierarchical games (Stackelberg game). Each game achieves different equilibria with different performance, and their players play different roles in the games. Here, we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multi-criteria aerodynamic optimization problems. The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments. We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method. The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front. Non-dominated Pareto front solutions are obtained, however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  14. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  15. Free boundary skin current MHD (magnetohydrodynamic) equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, M.F.

    1988-02-01

    Function theoretic methods in the complex plane are used to develop simple parametric hodograph formulae which generate sharp boundary equilibria of arbitrary shape. The related method of Gorenflo and Merkel is discussed. A numerical technique for the construction of solutions, based on one of the methods is presented. A study is made of the bifurcations of an equilibrium of general form. 28 refs., 9 figs.

  16. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2004-12-01

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less

  17. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2005-05-05

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schlueter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven [1]. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model [2]. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters [3,4] and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scale lengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. [5,6]. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less

  18. The Role of Emotion-Driven Impulse Control Difficulties in the Relation Between Social Anxiety and Aggression.

    PubMed

    Dixon, Laura J; Tull, Matthew T; Lee, Aaron A; Kimbrel, Nathan A; Gratz, Kim L

    2017-06-01

    To enhance our understanding of the factors that may account for increased aggression in socially anxious individuals, this study examined associations among emotion-driven impulse control difficulties, social anxiety, and dimensions of aggression (i.e., hostility, anger, physical aggression, verbal aggression). Individuals (N = 107; 73.8% male; M age = 40.8 years) receiving residential substance abuse treatment participated in this cross-sectional study. Social anxiety symptoms were significantly positively correlated with emotion-driven impulse control difficulties, anger, and hostility, but not verbal or physical aggression. Separate models for each aggression facet were examined to test the direct and indirect paths. Bootstrapped mediation analyses indicated a significant indirect path from social anxiety symptoms to each facet of aggression through emotion-driven impulse control difficulties (ps < .05). Results highlight the potential utility of targeting emotion-driven impulse control difficulties to decrease aggression among socially anxious individuals. © 2016 Wiley Periodicals, Inc.

  19. On combination of strict Bayesian principles with model reduction technique or how stochastic model calibration can become feasible for large-scale applications

    NASA Astrophysics Data System (ADS)

    Oladyshkin, S.; Schroeder, P.; Class, H.; Nowak, W.

    2013-12-01

    Predicting underground carbon dioxide (CO2) storage represents a challenging problem in a complex dynamic system. Due to lacking information about reservoir parameters, quantification of uncertainties may become the dominant question in risk assessment. Calibration on past observed data from pilot-scale test injection can improve the predictive power of the involved geological, flow, and transport models. The current work performs history matching to pressure time series from a pilot storage site operated in Europe, maintained during an injection period. Simulation of compressible two-phase flow and transport (CO2/brine) in the considered site is computationally very demanding, requiring about 12 days of CPU time for an individual model run. For that reason, brute-force approaches for calibration are not feasible. In the current work, we explore an advanced framework for history matching based on the arbitrary polynomial chaos expansion (aPC) and strict Bayesian principles. The aPC [1] offers a drastic but accurate stochastic model reduction. Unlike many previous chaos expansions, it can handle arbitrary probability distribution shapes of uncertain parameters, and can therefore handle directly the statistical information appearing during the matching procedure. We capture the dependence of model output on these multipliers with the expansion-based reduced model. In our study we keep the spatial heterogeneity suggested by geophysical methods, but consider uncertainty in the magnitude of permeability trough zone-wise permeability multipliers. Next combined the aPC with Bootstrap filtering (a brute-force but fully accurate Bayesian updating mechanism) in order to perform the matching. In comparison to (Ensemble) Kalman Filters, our method accounts for higher-order statistical moments and for the non-linearity of both the forward model and the inversion, and thus allows a rigorous quantification of calibrated model uncertainty. The usually high computational costs of accurate filtering become very feasible for our suggested aPC-based calibration framework. However, the power of aPC-based Bayesian updating strongly depends on the accuracy of prior information. In the current study, the prior assumptions on the model parameters were not satisfactory and strongly underestimate the reservoir pressure. Thus, the aPC-based response surface used in Bootstrap filtering is fitted to a distant and poorly chosen region within the parameter space. Thanks to the iterative procedure suggested in [2] we overcome this drawback with small computational costs. The iteration successively improves the accuracy of the expansion around the current estimation of the posterior distribution. The final result is a calibrated model of the site that can be used for further studies, with an excellent match to the data. References [1] Oladyshkin S. and Nowak W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering and System Safety, 106:179-190, 2012. [2] Oladyshkin S., Class H., Nowak W. Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Computational Geosciences, 17 (4), 671-687, 2013.

  20. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    NASA Astrophysics Data System (ADS)

    Kraus, B. F.; Hudson, S. R.

    2017-09-01

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.

  1. BOOK REVIEW: Stellarator and Heliotron Devices

    NASA Astrophysics Data System (ADS)

    Johnson, John L.

    1999-02-01

    Stellarators and tokamaks are the most advanced devices that have been developed for magnetic fusion applications. The two approaches have much in common; tokamaks have received the most attention because their axisymmetry justifies the use of simpler models and provides a more forgiving geometry. However, recent advances in treating more complicated three dimensional systems have made it possible to design stellarators that are not susceptible to disruptions and do not need plasma current control. This has excited interest recently. The two largest new magnetic experiments in the world are the LHD device, which commenced operation in Toki, Japan, in 1998 and W7-X, which should become operational in Greifswald, Germany, in 2004. Other recently commissioned stellarators, including H-1 in Canberra, Australia, TJ-II in Madrid, Spain, and IMS in Madison, Wisconsin, have joined these in rejuvenating the stellarator programme. Thus, it is most appropriate that the author has made the lecture material that he presents to his students in the Graduate School of Energy Science at Kyoto University available to everyone. Stellarator and Heliotron Devices provides an excellent treatment of stellarator theory. It is aimed at graduate students who have a good understanding of classical mechanics and mathematical techniques. It contains good descriptions and derivations of essentially every aspect of fusion theory. The author provides an excellent qualitative introduction to each subject, pointing out the strengths and weaknesses of the models that are being used and describing our present understanding. He judiciously uses simple models which illustrate the similarities and differences between stellarators and tokamaks. To some extent the treatment is uneven, rigorous derivations starting with basic principles being given in some cases and relations and equations taken from the original papers being used as a starting point in others. This technique provides an excellent training ground for students without detracting from the usefulness of the book for knowledgeable fusion physicists. After a short, somewhat historical, introduction, Chapter 2 contains a good treatment of the basic properties of a toroidal magnetic configuration (the concepts of magnetic surfaces, rotational transform, shear and magnetic wells), averaging techniques which can often be used to simplify the calculations, helically invariant configurations, magnetic islands and line tracing techniques. Derivations and discussions of the basic tools of plasma theory, including the Vlasov equation, magnetohydrodynamic equations and their reduced form for low-β, large aspect ratio systems, properties of MHD waves, the drift kinetic equation and transport equations, are given in Chapter 3. Chapter 4 contains a good treatment of MHD equilibria, including a derivation of the three dimensional Grad-Shafranov equation, a discussion of the calculation of equilibria with a planar magnetic axis with both averaged equations and a variational approach, a comparison of the results of the two techniques, a formulation for stellarators with a helical magnetic axis and a good discussion of the Pfirsch-Schlüter current. The treatment of MHD instabilities in Chapter 5 is also excellent. It starts with a good derivation and discussion of the energy principle, gives a detailed treatment of ballooning modes where the wavelengths of the perturbation perpendicular to the field are short while those along B are long and derives the Mercier criterion from the ballooning mode equation. I personally prefer to obtain this criterion by making the low mode number assumption that dξ/dΨ>>dξ/dθ approx dξ/dζ, since non-ideal effects such as finite gyration radius corrections may provide less stabilization to these modes. A careful treatment of the resistive interchange mode is followed by a discussion of the role of localized stability criteria in the analysis of experiment and design studies, a study of Pfirsch-Schlüter current driven magnetic islands and the interpretation of sawtooth instabilities in Heliotron E. The treatment of particle orbits in Chapter 6 includes a derivation of drift equations, a discussion of the characteristics of trapped particle confinement in a heliotron and one of the Monte Carlo method for studying transport phenomena. A good treatment of neoclassical transport in a stellarator, with emphasis on the relation between parallel viscosity driven fluxes and bootstrap current, is given in Chapter 7. This is the best treatment I have found, outside of the original references, but it is still demanding. In addition, a radial electric field is introduced into the energy transport equations. The treatment of heating and confinement of heliotron plasmas in Chapter 8 is a good combination of providing results from experiments on the Heliotron E and DR heliotrons and the ATF and CHS stellarators and showing how theoretical interpretation is formulated. The discussions of ray tracing and energy absorption for both ECRH and ICRF heating techniques, as well as a treatment of neutral beam injection, are very clear. Measurements of bootstrap current and plasma rotation, as well as the density limits associated with pellet injection, are discussed. The chapter ends with a discussion of what may be the author's favourite topic, pressure gradient driven turbulence, in which he describes mixing length and scale invariance techniques. Finally, a discussion of the characteristics of a steady state fusion reactor, including a treatment of the containment, slowing down and energy transfer of the alpha particles, one of the toroidal Alfvén modes driven by these particles and some physics of divertors are given in Chapter 9. A reviewer is usually expected to find some faults. I had no problem in finding one as soon as I received the book: indeed, I did not like its title. I have always maintained that Lyman Spitzer defined a stellarator as any toroidal device in which the rotational transform is generated by coils outside the plasma, either through imposition of a helical magnetic axis as in a figure-8 stellarator or a heliac, or through the generation of helical magnetic fields, as in a classical stellarator, a torsatron or a quasi-helical stellarator such as W7-X. The author notes that the heliotron (as it was invented by Uo in Japan) is the same as the torsatron (first proposed by Gourdon and his colleagues in Europe) in his introduction, but cannot bring himself to ignore Uo's desire to maintain a distinction between stellarators and heliotrons. Enough typographical errors are present to make one have to be careful before relying on the book for specific formulas. Nevertheless, it will prove to be a useful reference. I have always respected the author for the quality of students he produces. He provides a list of some of them in the preface, which justifies this opinion. These students are a good demonstration of the usefulness of this book.

  2. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as themore » original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.« less

  3. Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.

    2016-12-01

    It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)

  4. More accurate, calibrated bootstrap confidence intervals for correlating two autocorrelated climate time series

    NASA Astrophysics Data System (ADS)

    Olafsdottir, Kristin B.; Mudelsee, Manfred

    2013-04-01

    Estimation of the Pearson's correlation coefficient between two time series to evaluate the influences of one time depended variable on another is one of the most often used statistical method in climate sciences. Various methods are used to estimate confidence interval to support the correlation point estimate. Many of them make strong mathematical assumptions regarding distributional shape and serial correlation, which are rarely met. More robust statistical methods are needed to increase the accuracy of the confidence intervals. Bootstrap confidence intervals are estimated in the Fortran 90 program PearsonT (Mudelsee, 2003), where the main intention was to get an accurate confidence interval for correlation coefficient between two time series by taking the serial dependence of the process that generated the data into account. However, Monte Carlo experiments show that the coverage accuracy for smaller data sizes can be improved. Here we adapt the PearsonT program into a new version called PearsonT3, by calibrating the confidence interval to increase the coverage accuracy. Calibration is a bootstrap resampling technique, which basically performs a second bootstrap loop or resamples from the bootstrap resamples. It offers, like the non-calibrated bootstrap confidence intervals, robustness against the data distribution. Pairwise moving block bootstrap is used to preserve the serial correlation of both time series. The calibration is applied to standard error based bootstrap Student's t confidence intervals. The performances of the calibrated confidence intervals are examined with Monte Carlo simulations, and compared with the performances of confidence intervals without calibration, that is, PearsonT. The coverage accuracy is evidently better for the calibrated confidence intervals where the coverage error is acceptably small (i.e., within a few percentage points) already for data sizes as small as 20. One form of climate time series is output from numerical models which simulate the climate system. The method is applied to model data from the high resolution ocean model, INALT01 where the relationship between the Agulhas Leakage and the North Brazil Current is evaluated. Preliminary results show significant correlation between the two variables when there is 10 year lag between them, which is more or less the time that takes the Agulhas Leakage water to reach the North Brazil Current. Mudelsee, M., 2003. Estimating Pearson's correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology 35, 651-665.

  5. Exploration of spherical torus physics in the NSTX device

    NASA Astrophysics Data System (ADS)

    Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team

    2000-03-01

    The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.

  6. Suppressing magnetic island growth by resonant magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Günter, S.; Lackner, K.

    2018-05-01

    The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.

  7. Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.

    2015-11-01

    The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.Y. Fu; L.P. Ku; M.H. Redi

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism formore » external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length.« less

  9. A conserved quantity in thin body dynamics

    NASA Astrophysics Data System (ADS)

    Hanna, J. A.; Pendar, H.

    2016-02-01

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant.

  10. Free boundary skin current magnetohydrodynamic equilibria

    NASA Astrophysics Data System (ADS)

    Reusch, Michael F.

    1988-10-01

    Function theoretic methods in the complex plane are used to develop simple parametric hodograph formulas that generate sharp boundary equilibria of arbitrary shape. The related method of Gorenflo [Z. Angew. Math. Phys. 16, 279 (1965)] and Merkel (Ph.D. thesis, University of Munich, 1965) is discussed. A numerical technique for the construction of solutions, based on one of the methods, is presented. A study is made of the bifurcations of an equilibrium of general form.

  11. The Physics of Basis For A Conservative Physics And Conservative Technology Tokamak Power Plant, ARIES-ACT2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessel, C. E.; Poli, F. M.

    2014-03-04

    The conservative physics and conservative technology tokamak power plant ARIES-ACT2 has a major radius of 9.75 m at aspect ratio of 4.0, strong shaping with elongation of 2.2 and triangularity of 0.63. The no wall βN reaches ~ 2.4, limited by n=1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring about ~ 4.0 MA of external current drive. This current is supplied with 30 MW of ICRF/FW and 80 MW of negative ion NB. Up to 1.0 MAmore » can be driven with LH with no wall, and 1.5 or more MA can be driven with a stabilizing shell. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.65x10 20/m 3 and the temperature is ~ 9.0 keV. The H98 factor is 1.25, n/n Gr = 1.3, and the net power to LH threshold power is 1.3-1.4 in the flattop. Due to the high toroidal field and high central temperature the cyclotron radiation loss was found to be high depending on the first wall reflectivity.« less

  12. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE PAGES

    Kraus, B. F.; Hudson, S. R.

    2017-09-29

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  13. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, B. F.; Hudson, S. R.

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  14. Ideal-Magnetohydrodynamic-Stable Tilting in Field-Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Kanno, Ryutaro; Ishida, Akio; Steinhauer, Loren

    1995-02-01

    The tilting mode in field-reversed configurations (FRC) is examined using ideal-magnetohydrodynamic stability theory. Tilting, a global mode, is the greatest threat for disruption of FRC confinement. Previous studies uniformly found tilting to be unstable in ideal theory: the objective here is to ascertain if stable equilibria were overlooked in past work. Solving the variational problem with the Rayleigh-Ritz technique, tilting-stable equilibria are found for sufficiently hollow current profile and sufficient racetrackness of the separatrix shape. Although these equilibria were not examined previously, the present conclusion is quite surprising. Consequently checks of the method are offered. Even so it cannot yet be claimed with complete certainty that stability has been proved: absolute confirmation of ideal-stable tilting awaits the application of more complete methods.

  15. Improvement of Current Drive Efficiency in Projected FNSF Discharges

    NASA Astrophysics Data System (ADS)

    Prater, R.; Chan, V.; Garofalo, A.

    2012-10-01

    The Fusion Nuclear Science Facility - Advanced Tokamak (FNSF-AT) is envisioned as a facility that uses the tokamak approach to address the development of the AT path to fusion and fusion's energy objectives. It uses copper coils for a compact device with high βN and moderate power gain. The major radius is 2.7 m and central toroidal field is 5.44 T. Achieving the required confinement and stability at βN˜3.7 requires a current profile with negative central shear and qmin>1. Off-axis Electron Cyclotron Current Drive (ECCD), in addition to high bootstrap current fraction, can help support this current profile. Using the applied EC frequency and launch location as free parameters, a systematic study has been carried out to optimize the ECCD in the range ρ= 0.5-0.7. Using a top launch, making use of a large toroidal component to the launch direction, adjusting the vertical launch angle so that the rays propagate nearly parallel to the resonance, and adjusting the frequency for optimum total current give a high dimensionless efficiency of 0.44 for a broad ECCD profile peaked at ρ=0.7, and the driven current is 17 kA/MW for n20= 2.1 and Te= 10.3 keV locally.

  16. Non-inductive current generation in fusion plasmas with turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.

    2017-10-01

    It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  17. On the stability of a class of isothermal, magnetostatic atmospheres. [in sun

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Ko, C. M.

    1989-01-01

    The stability of a class of isothermal magnetostatic atmospheres with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry is explored. Special attention is given to the stability of nonpotential equilibria that have the same magnetic field geometry as the potential equilibrium of the solution family. It is found that equilibria in which the source currents for the potential field are buried at large distances below the photospheric base are stable. Also considered is the stability of configurations in which the source currents for the potential field are located at a finite depth below the base.

  18. Conformity-driven agents support ordered phases in the spatial public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto; Antonioni, Alberto; Caravelli, Francesco

    2016-05-01

    We investigate the spatial Public Goods Game in the presence of fitness-driven and conformity-driven agents. This framework usually considers only the former type of agents, i.e., agents that tend to imitate the strategy of their fittest neighbors. However, whenever we study social systems, the evolution of a population might be affected also by social behaviors as conformism, stubbornness, altruism, and selfishness. Although the term evolution can assume different meanings depending on the considered domain, here it corresponds to the set of processes that lead a system towards an equilibrium or a steady state. We map fitness to the agents' payoff so that richer agents are those most imitated by fitness-driven agents, while conformity-driven agents tend to imitate the strategy assumed by the majority of their neighbors. Numerical simulations aim to identify the nature of the transition, on varying the amount of the relative density of conformity-driven agents in the population, and to study the nature of related equilibria. Remarkably, we find that conformism generally fosters ordered cooperative phases and may also lead to bistable behaviors.

  19. Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, J., E-mail: joaquim.loizu@ipp.mpg.de; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543; Hudson, S.

    2015-02-15

    Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2)more » retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.« less

  20. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SNYDER,P.B; WILSON,H.R; XU,X.Q

    2004-06-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradientmore » and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.« less

  1. C-Mod MHD stability analysis with LHCD

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.

    2016-10-01

    In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.

  2. A condition for small bootstrap current in three-dimensional toroidal configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, M. I., E-mail: mikhaylov-mi@nrcki.ru; Nührenberg, J.; Zille, R.

    2016-11-15

    It is shown that, if the maximum of the magnetic field strength on a magnetic surface in a threedimensional magnetic confinement configuration with stellarator symmetry constitutes a line that is orthogonal to the field lines and crosses the symmetry line, then the bootstrap current density is smaller compared to that in quasi-axisymmetric (qa) [J. Nührenberg et al., in Proc. of Joint Varenna−Lausanne Int. Workshop on Theory of Fusion Plasmas, Varenna, 1994, p. 3] and quasi-helically (qh) symmetric [J. Nührenberg and R. Zille, Phys. Lett. A 129, 113 (1988)] configurations.

  3. Carving out the end of the world or (superconformal bootstrap in six dimensions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chi-Ming; Lin, Ying-Hsuan

    We bootstrap N=(1,0) superconformal field theories in six dimensions, by analyzing the four-point function of flavor current multiplets. By assuming E 8 flavor group, we present universal bounds on the central charge C T and the flavor central charge C J. Based on the numerical data, we conjecture that the rank-one E-string theory saturates the universal lower bound on C J , and numerically determine the spectrum of long multiplets in the rank-one E-string theory. We comment on the possibility of solving the higher-rank E-string theories by bootstrap and thereby probing M-theory on AdS 7×S 4/Z 2 .

  4. Carving out the end of the world or (superconformal bootstrap in six dimensions)

    DOE PAGES

    Chang, Chi-Ming; Lin, Ying-Hsuan

    2017-08-29

    We bootstrap N=(1,0) superconformal field theories in six dimensions, by analyzing the four-point function of flavor current multiplets. By assuming E 8 flavor group, we present universal bounds on the central charge C T and the flavor central charge C J. Based on the numerical data, we conjecture that the rank-one E-string theory saturates the universal lower bound on C J , and numerically determine the spectrum of long multiplets in the rank-one E-string theory. We comment on the possibility of solving the higher-rank E-string theories by bootstrap and thereby probing M-theory on AdS 7×S 4/Z 2 .

  5. Plasma Equilibria With Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Reiman, A. H.

    2009-05-01

    Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.

  6. Innovation cascades: artefacts, organization and attributions

    PubMed Central

    2016-01-01

    Innovation cascades inextricably link the introduction of new artefacts, transformations in social organization, and the emergence of new functionalities and new needs. This paper describes a positive feedback dynamic, exaptive bootstrapping, through which these cascades proceed, and the characteristics of the relationships in which the new attributions that drive this dynamic are generated. It concludes by arguing that the exaptive bootstrapping dynamic is the principal driver of our current Innovation Society. PMID:26926284

  7. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    DOE PAGES

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; ...

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality,more » $$\

  8. Collisionless current sheet equilibria

    NASA Astrophysics Data System (ADS)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  9. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I

    2014-02-01

    The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Flow Shear Effects in the Onset Physics of Resistive MHD Instabilities in Tokamaks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Dylan P.

    The progress in this research centers around the computational analysis of flow shear effects in the onset of a 3/2 mode driven by a 1/1 mode in DIII-D equilibria. The initial idea was to try and calculate, via nonlinear simulations with NIMROD, the effects of rotation shear on driven 3/2 and 2/1 seed island physics, in experimentally relevant DIIID equilibria. The simulations indicated that very small seed islands were directly driven, as shielding between the sawtooth and the surfaces is significant at the high Lundquist numbers of the experiment. Instead, long after the initial crash the difference in linear stabilitymore » of the 3/2, which remained prevalent despite the flattening of the core profiles from the sawtooth, contributed to a difference in the eventual seed island evolution. Essentially the seed islands grew or decayed long after the sawtooth crash, and not directly from it. Effectively the dominant 1/1 mode was found to be dragging the coupled modes surrounding it at a high rate through the plasma at their surfaces. The 1/1 mode is locked to the local frame of the plasma in the core, where the flow rate is greatest. The resonant perturbations at the surrounding surfaces propagate in the 'high slip regime' in the language of Fitzpatrick. Peaked flux averaged jxb forces (see Figs. 1 and 2) agree with localized flow modifications at the surfaces in analogy with Ebrahimi, PRL 2007. We track the mode into nonlinear saturation and have found oscillatory states in the evolution. During a visit (11/09) to Tulsa by R.J. LaHaye (GA), it became clear that similar oscillatory states are observed in DIII-D for these types of discharges.« less

  11. Generalization of Solovev’s approach to finding equilibrium solutions for axisymmetric plasmas with flow

    NASA Astrophysics Data System (ADS)

    M, S. CHU; Yemin, HU; Wenfeng, GUO

    2018-03-01

    Solovev’s approach of finding equilibrium solutions was found to be extremely useful for generating a library of linear-superposable equilibria for the purpose of shaping studies. This set of solutions was subsequently expanded to include the vacuum solutions of Zheng, Wootton and Solano, resulting in a set of functions {SOLOVEV_ZWS} that were usually used for all toroidally symmetric plasmas, commonly recognized as being able to accommodate any desired plasma shapes (complete-shaping capability). The possibility of extending the Solovev approach to toroidal equilibria with a general plasma flow is examined theoretically. We found that the only meaningful extension is to plasmas with a pure toroidal rotation and with a constant Mach number. We also show that the simplification ansatz made to the current profiles, which was the basis of the Solovev approach, should be applied more systematically to include an internal boundary condition at the magnetic axis; resulting in a modified and more useful set {SOLOVEV_ZWSm}. Explicit expressions of functions in this set are given for equilibria with a quasi-constant current density profile, with a toroidal flow at a constant Mach number and with specific heat capacity 1. The properties of {SOLOVEV_ZWSm} are studied analytically. Numerical examples of achievable equilibria are demonstrated. Although the shaping capability of the set {SOLOVE_ZWSm} is quite extensive, it nevertheless still does not have complete shaping capability, particularly for plasmas with negative curvature points on the plasma boundary such as the doublets or indented bean shaped tokamaks.

  12. Tearing relaxation and the globalization of transport in field-reversed configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhauer, Loren; Barnes, D. C.

    2009-09-15

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  13. Sedimentological regimes for turbidity currents: Depth-averaged theory

    NASA Astrophysics Data System (ADS)

    Halsey, Thomas C.; Kumar, Amit; Perillo, Mauricio M.

    2017-07-01

    Turbidity currents are one of the most significant means by which sediment is moved from the continents into the deep ocean; their properties are interesting both as elements of the global sediment cycle and due to their role in contributing to the formation of deep water oil and gas reservoirs. One of the simplest models of the dynamics of turbidity current flow was introduced three decades ago, and is based on depth-averaging of the fluid mechanical equations governing the turbulent gravity-driven flow of relatively dilute turbidity currents. We examine the sedimentological regimes of a simplified version of this model, focusing on the role of the Richardson number Ri [dimensionless inertia] and Rouse number Ro [dimensionless sedimentation velocity] in determining whether a current is net depositional or net erosional. We find that for large Rouse numbers, the currents are strongly net depositional due to the disappearance of local equilibria between erosion and deposition. At lower Rouse numbers, the Richardson number also plays a role in determining the degree of erosion versus deposition. The currents become more erosive at lower values of the product Ro × Ri, due to the effect of clear water entrainment. At higher values of this product, the turbulence becomes insufficient to maintain the sediment in suspension, as first pointed out by Knapp and Bagnold. We speculate on the potential for two-layer solutions in this insufficiently turbulent regime, which would comprise substantial bedload flow with an overlying turbidity current.

  14. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; Shephard, M. S.; Zhang, F.

    2016-05-01

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  15. Gyrokinetic magnetohydrodynamics and the associated equilibria

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-01

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.

  16. Gyrokinetic magnetohydrodynamics and the associated equilibria

    DOE PAGES

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-27

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee, and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, Φ, and the vector potential, A, and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when Φ → 0 and A becomes constant in time, which, in turn, givesmore » ∇· (J ∥+J ⊥) = 0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. In conclusion, these gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.« less

  17. Gyrokinetic magnetohydrodynamics and the associated equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee, and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, Φ, and the vector potential, A, and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when Φ → 0 and A becomes constant in time, which, in turn, givesmore » ∇· (J ∥+J ⊥) = 0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. In conclusion, these gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.« less

  18. Instability of signaling resolution models of parent–offspring conflict

    PubMed Central

    Rodríguez-Gironés, Miguel A.; Enquist, Magnus; Cotton, Peter A.

    1998-01-01

    Recent signaling resolution models of parent–offspring conflict have provided an important framework for theoretical and empirical studies of communication and parental care. According to these models, signaling of need is stabilized by its cost. However, our computer simulations of the evolutionary dynamics of chick begging and parental investment show that in Godfray’s model the signaling equilibrium is evolutionarily unstable: populations that start at the signaling equilibrium quickly depart from it. Furthermore, the signaling and nonsignaling equilibria are linked by a continuum of equilibria where chicks above a certain condition do not signal and we show that, contrary to intuition, fitness increases monotonically as the proportion of young that signal decreases. This result forces us to reconsider much of the current literature on signaling of need and highlights the need to investigate the evolutionary stability of signaling equilibria based on the handicap principle. PMID:9539758

  19. Stellar dynamics around a massive black hole - II. Resonant relaxation

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Touma, Jihad R.

    2016-06-01

    We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.

  20. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    NASA Astrophysics Data System (ADS)

    Spies, Günther O.; Faghihi, Mustafa

    1987-06-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.

  1. Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current

    DOE PAGES

    Mollén, A.; Landreman, M.; Smith, H. M.; ...

    2015-11-20

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at lowmore » collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z eff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.« less

  2. The Onset of Magnetic Reconnection in Tail-Like Equilibria

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Kuznetsova, Masha

    1999-01-01

    Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.

  3. The prospects for magnetohydrodynamic stability in advanced tokamak regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manickam, J.; Chance, M.S.; Jardin, S.C.

    1994-05-01

    Stability analysis of advanced regime tokamaks is presented. Here advanced regimes are defined to include configurations where the ratio of the bootstrap current, [ital I][sub BS], to the total plasma current, [ital I][sub [ital p

  4. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data.

    PubMed

    Abram, Samantha V; Helwig, Nathaniel E; Moodie, Craig A; DeYoung, Colin G; MacDonald, Angus W; Waller, Niels G

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks.

  5. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data

    PubMed Central

    Abram, Samantha V.; Helwig, Nathaniel E.; Moodie, Craig A.; DeYoung, Colin G.; MacDonald, Angus W.; Waller, Niels G.

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks. PMID:27516732

  6. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  7. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    NASA Astrophysics Data System (ADS)

    Wingen, A.; Wilcox, R. S.; Seal, S. K.; Unterberg, E. A.; Cianciosa, M. R.; Delgado-Aparicio, L. F.; Hirshman, S. P.; Lao, L. L.

    2018-03-01

    Large, spontaneous m/n  =  1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional to (dp/dρ)/B_t2 around q  =  1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. Finally, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.

  8. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingen, A.; Wilcox, R. S.; Seal, S. K.

    In this paper, large, spontaneous m/n = 1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional tomore » $$({\\rm d}p/{\\rm d}\\rho)/B_t^2$$ around q = 1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. In conclusion, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.« less

  9. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    DOE PAGES

    Wingen, A.; Wilcox, R. S.; Seal, S. K.; ...

    2018-01-15

    In this paper, large, spontaneous m/n = 1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional tomore » $$({\\rm d}p/{\\rm d}\\rho)/B_t^2$$ around q = 1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. In conclusion, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.« less

  10. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods

    PubMed Central

    2014-01-01

    Background Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. Methods We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. Results In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. Conclusions The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes. PMID:24888356

  11. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods.

    PubMed

    Sadatsafavi, Mohsen; Marra, Carlo; Aaron, Shawn; Bryan, Stirling

    2014-06-03

    Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes.

  12. Facebook and Twitter vaccine sentiment in response to measles outbreaks.

    PubMed

    Deiner, Michael S; Fathy, Cherie; Kim, Jessica; Niemeyer, Katherine; Ramirez, David; Ackley, Sarah F; Liu, Fengchen; Lietman, Thomas M; Porco, Travis C

    2017-11-01

    Social media posts regarding measles vaccination were classified as pro-vaccination, expressing vaccine hesitancy, uncertain, or irrelevant. Spearman correlations with Centers for Disease Control and Prevention-reported measles cases and differenced smoothed cumulative case counts over this period were reported (using time series bootstrap confidence intervals). A total of 58,078 Facebook posts and 82,993 tweets were identified from 4 January 2009 to 27 August 2016. Pro-vaccination posts were correlated with the US weekly reported cases (Facebook: Spearman correlation 0.22 (95% confidence interval: 0.09 to 0.34), Twitter: 0.21 (95% confidence interval: 0.06 to 0.34)). Vaccine-hesitant posts, however, were uncorrelated with measles cases in the United States (Facebook: 0.01 (95% confidence interval: -0.13 to 0.14), Twitter: 0.0011 (95% confidence interval: -0.12 to 0.12)). These findings may result from more consistent social media engagement by individuals expressing vaccine hesitancy, contrasted with media- or event-driven episodic interest on the part of individuals favoring current policy.

  13. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surround- ing vacuum region are included within the computational domain. Our implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. We use this new capability to simulate perturbed, free-boundary non- axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear andmore » nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically real- istic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  14. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, N. M., E-mail: nferraro@pppl.gov; Lao, L. L.; Jardin, S. C.

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolutionmore » of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  15. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE PAGES

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; ...

    2016-05-20

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surround- ing vacuum region are included within the computational domain. Our implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. We use this new capability to simulate perturbed, free-boundary non- axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear andmore » nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically real- istic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  16. Discharge start-up and ramp-up development for NSTX-U and MAST-U

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S. P.; Menard, J. E.; Mueller, D.; Cunningham, G.; Kirk, A.; Kogan, L.; McArdle, G.; Pangione, L.; Thornton, A. J.; Ren, E.

    2017-10-01

    A collaborative modeling effort is underway to develop robust inductive start-up and ramp-up scenarios for NSTX-U and MAST-U. These complementary spherical tokamak devices aim to generate the physics basis for achieving steady-state, high-beta and high-confinement plasma discharges with a self-consistent solution for managing the divertor heat flux. High-performance discharges in these devices require sufficient plasma elongation (κ = 2.4 - 2.8) to maximize the bootstrap and beam-driven current drive, increase MHD stability at high Ip and high βN, and realize advanced divertor geometries such as the snowflake and super-X. Achieving the target elongation on NSTX-U is enabled by an L-H transition in the current ramp-up that slows the current diffusion and maintains a low internal inductance (li <= 0.8). Modeling focuses on developing scenarios that achieve a suitable field null for breakdown and discharge conditions conducive to an early L-H transition while maintaining vertical and MHD stability, with appropriate margin for variation in experimental conditions. The toroidal currents induced in conducting structures and the specifications of the real-time control and power supply systems are unique constraints for the two devices. Work Supported by U.S. DOE Contract No. DE-AC02-09CH11466 and the RCUK Energy Programme [Grant Number EP/P012450/1].

  17. Recent results from the electron cyclotron heated plasmas in Tokamak à Configuration Variable (TCV)

    NASA Astrophysics Data System (ADS)

    Henderson, M. A.; Alberti, S.; Angioni, C.; Arnoux, G.; Behn, R.; Blanchard, P.; Bosshard, P.; Camenen, Y.; Coda, S.; Condrea, I.; Goodman, T. P.; Hofmann, F.; Hogge, J.-Ph.; Karpushov, A.; Manini, A.; Martynov, An.; Moret, J.-M.; Nikkola, P.; Nelson-Melby, E.; Pochelon, A.; Porte, L.; Sauter, O.; Ahmed, S. M.; Andrèbe, Y.; Appert, K.; Chavan, R.; Degeling, A.; Duval, B. P.; Etienne, P.; Fasel, D.; Fasoli, A.; Favez, J.-Y.; Furno, I.; Horacek, J.; Isoz, P.; Joye, B.; Klimanov, I.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Mayor, J.-M.; Mylnar, J.; Paris, P. J.; Perez, A.; Peysson, Y.; Pitts, R. A.; Raju, D.; Reimerdes, H.; Scarabosio, A.; Scavino, E.; Seo, S. H.; Siravo, U.; Sushkov, A.; Tonetti, G.; Tran, M. Q.; Weisen, H.; Wischmeier, M.; Zabolotsky, A.; Yhuang, G.

    2003-05-01

    In noninductively driven discharges, 0.9 MW second harmonic (X2) off-axis co-electron cyclotron current drive deposition is combined with 0.45 MW X2 central heating to create an electron internal transport barrier (eITB) in steady plasma conditions resulting in a 1.6-fold increase of the confinement time (τEe) over ITER-98L-mode scaling. The eITB is associated with a reversed shear current profile enhanced by a large bootstrap current fraction (up to 80%) and is sustained for up to 10 current redistribution times. A linear dependence of the confinement improvement on the product of the global shear reversal factor (q0/qmin) and the reversed shear volume (ρq-min2) is shown. In other discharges heated with X2 the sawteeth are destabilized (respectively stabilized) when heating just inside (respectively outside) the q=1 surface. Control of the sawteeth may allow the avoidance of neoclassical tearing modes that can be seeded by the sawtooth instability. Results on H-mode and highly elongated plasmas using the newly completed third harmonic (X3) system and achieving up to 100% absorption are also discussed, along with comparison of experimental results with the TORAY-GA ray tracing code [K. Matsuda, IEEE Trans. Plasma Sci. PS-17, 6 (1989); R. H. Cohen, Phys. Fluids 30, 2442 (1987)].

  18. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  19. Causality constraints in conformal field theory

    DOE PAGES

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ) 4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less

  20. Conformal Bootstrap in Mellin Space

    NASA Astrophysics Data System (ADS)

    Gopakumar, Rajesh; Kaviraj, Apratim; Sen, Kallol; Sinha, Aninda

    2017-02-01

    We propose a new approach towards analytically solving for the dynamical content of conformal field theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten diagrams with built-in crossing symmetry as our basic building blocks rather than the conventional conformal blocks in a particular channel. Demanding consistency with the operator product expansion (OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the power of this method in the ɛ expansion of the Wilson-Fisher fixed point by reproducing anomalous dimensions and, strikingly, obtaining OPE coefficients to higher orders in ɛ than currently available using other analytic techniques (including Feynman diagram calculations). Our results enable us to get a somewhat better agreement between certain observables in the 3D Ising model and the precise numerical values that have been recently obtained.

  1. Transport modeling of the DIII-D high $${{\\beta}_{p}}$$ scenario and extrapolations to ITER steady-state operation

    DOE PAGES

    McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...

    2017-08-03

    In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less

  2. Constructing Integrable Full-pressure Full-current Free-boundary Stellarator Magnetohydrodynamic Equilibria

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.; Monticello, D. A.; Reiman, A. H.; Strickler, D. J.; Hirshman, S. P.

    2003-06-01

    For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands are guaranteed to exist. Magnetic islands break the smooth topology of nested flux surfaces and chaotic field lines result when magnetic islands overlap. An analogous case occurs with 11/2-dimension Hamiltonian systems where resonant perturbations cause singularities in the transformation to action-angle coordinates and destroy integrability. The suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Techniques for `healing' vacuum fields and fixed-boundary plasma equilibria have been developed, but what is ultimately required is a procedure for designing stellarators such that the self-consistent plasma equilibrium currents and the coil currents combine to produce an integrable magnetic field, and such a procedure is presented here for the first time. Magnetic islands in free-boundary full-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [A.H.Reiman & H.S.Greenside, Comp. Phys. Comm., 43:157, 1986.] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment [G.H.Neilson et.al., Phys. Plas., 7:1911, 2000.].

  3. Electric field effect on chemical and phase equilibria in nano-TiB 2–TiO 2–TiBO 3 system at <650 °C: an in situ time-resolved energy dispersive x-ray diffraction study with an ultrahigh energy synchrotron probe

    DOE PAGES

    Özdemir, Tevfik E.; Akdoğan, Enver Koray; Şavklıyıldız, İlyas; ...

    2016-12-19

    Nano-TiB 2 powder of 58 nm size with TiO 2 and TiBO 3 as secondary phases was heated with 20 °C to <650 °C in argon while applying an electric field. The powder became conductive at 520 and 305 °C (T onset) for 16 and 40 V/cm, respectively, at which point current bursts of 4.5 and 10.0 A (peak value) were observed. Current bursts were accompanied by >1% TiB 2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB 2 and TiO 2, yielding TiBO 3 that is absent with nomore » field. Increase from 16 to 40 V/cm shifts the TiB 2 → TiBO 3 reaction forward, decreases T onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. In conclusion, the observed low temperature oxidation of TiB 2 to TiBO 3 that is electrochemically driven and is mediated by the TiO 2 solid electrolyte.« less

  4. Nonlinear Two Fluid and Kinetic ELM Simulations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Chang, C. S.; Ku, S.; Hientzsch, B.; Breslau, J.; Park, W.; Samtaney, R.; Adams, M.; Jardin, S.

    2006-04-01

    Simulations of ELMs using dissipative MHD, two fluid MHD, and neoclassical kinetic physics models are being carried out using the M3D code [1]. Resistive MHD simulations of nonlinear edge pressure and current driven instabilities have been performed, initialized with realistic DIIID equilibria. Simulations show the saturation of the modes and relaxation of equilbrium profiles. Linear simulations including two fluid effects show the stabilization of toroidal mode number n = 10 modes, when the Hall parameter H, the ratio of ion skin depth to major radius, exceeds a threshhold. Nonlinear simulations are being done including gyroviscous stabilization. Kinetic effects are incorporated by coupling with the XGC code [2], which is able to simulate the edge plasma density and pressure pedestal buildup. These profiles are being used to initialize M3D simulations of an ELM crash and pedestal relaxation. The goal is to simulate an ELM cycle. [1] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R., Sugiyama, L.E., Phys. Plas. 6, 1796 (1999).[2] Chang, C.S., Ku, S., and Weitzner, H., Phys. Plas. 11, 2649 (2004)

  5. Unconditionally marginal stability of harmonic electron hole equilibria in current-driven plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2018-06-01

    Two forms of the linearized eigenvalue problem with respect to linear perturbations of a privileged cnoidal electron hole as a structural nonlinear equilibrium element are established. Whereas its integral form involves integrations along the characteristics or unperturbed particle orbits, the differential form has to cope with a differential operator of infinite order. Both are hence faced with difficulties to obtain a solution. A first successful attempt is, however, made by addressing a single harmonic wave as a nonlinear equilibrium structure. By this microscopic nonlinear approach, its marginal stability against linear perturbations in both linear stability regimes, the sub- and super-critical one, is shown independent of the mobility of ions and in favor with recent observations. Responsible for vanishing damping (growth) is the microscopic distortion of the resonant distribution function. The macroscopic form of the trapping nonlinearity—the 3/2 power term of the electrostatic potential in the density—which disappears in the monochromatic harmonic wave limit is consequently necessary for the occurrence of a nonlinear plasma instability in the sub-critical regime.

  6. Learning Biological Networks via Bootstrapping with Optimized GO-based Gene Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.

    2010-08-02

    Microarray gene expression data provide a unique information resource for learning biological networks using "reverse engineering" methods. However, there are a variety of cases in which we know which genes are involved in a given pathology of interest, but we do not have enough experimental evidence to support the use of fully-supervised/reverse-engineering learning methods. In this paper, we explore a novel semi-supervised approach in which biological networks are learned from a reference list of genes and a partial set of links for these genes extracted automatically from PubMed abstracts, using a knowledge-driven bootstrapping algorithm. We show how new relevant linksmore » across genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. We describe an application of this approach to the TGFB pathway as a case study and show how the ensuing results prove the feasibility of the approach as an alternate or complementary technique to fully supervised methods.« less

  7. Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.

    2006-12-01

    The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.

  8. Spontaneous decay of periodic magnetostatic equilibria

    DOE PAGES

    East, William E.; Zrake, Jonathan; Yuan, Yajie; ...

    2015-08-28

    In order to understand the conditions which lead a highly magnetized, relativistic plasma to become unstable, and in such cases how the plasma evolves, we study a prototypical class of magnetostatic equilibria where the magnetic field satisfies ∇ x B = αB , where \\alpha is spatially uniform, on a periodic domain. Using numerical solutions we show that generic examples of such equilibria are unstable to ideal modes (including incompressible ones) which are marked by exponential growth in the linear phase. We characterize the unstable mode, showing how it can be understood in terms of merging magnetic and current structures,more » and explicitly demonstrate its instability using the energy principle. Following the nonlinear evolution of these solutions, we find that they rapidly develop regions with relativistic velocities and electric fields of comparable magnitude to the magnetic field, liberating magnetic energy on dynamical timescales and eventually settling into a configuration with the largest allowable wavelength. Furthermore, these properties make such solutions a promising setting for exploring the mechanisms behind extreme cosmic sources of gamma rays.« less

  9. Limitations of bootstrap current models

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.; Meneghini, Orso; ...

    2014-03-27

    We assess the accuracy and limitations of two analytic models of the tokamak bootstrap current: (1) the well-known Sauter model and (2) a recent modification of the Sauter model by Koh et al. For this study, we use simulations from the first-principles kinetic code NEO as the baseline to which the models are compared. Tests are performed using both theoretical parameter scans as well as core- to-edge scans of real DIII-D and NSTX plasma profiles. The effects of extreme aspect ratio, large impurity fraction, energetic particles, and high collisionality are studied. In particular, the error in neglecting cross-species collisional couplingmore » – an approximation inherent to both analytic models – is quantified. Moreover, the implications of the corrections from kinetic NEO simulations on MHD equilibrium reconstructions is studied via integrated modeling with kinetic EFIT.« less

  10. Current Issues in Evolutionary Paleontology.

    ERIC Educational Resources Information Center

    Scully, Erik Paul

    1987-01-01

    Describes some of the contributions made by the field of paleontology to theories in geology and biology. Suggests that the two best examples of modern evolutionary paleontology relate to the theory of punctuated equilibria, and the possibility that mass extinctions may be cyclic. (TW)

  11. The stability analysis of magnetohydrodynamic equilibria - Comparing the thermodynamic approach with the energy principle

    NASA Technical Reports Server (NTRS)

    Brinkmann, R. P.

    1989-01-01

    This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.

  12. Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.

    2015-11-01

    Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.

  13. On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling

    NASA Astrophysics Data System (ADS)

    Korovinskiy, Daniil B.; Kubyshkina, Darya I.; Semenov, Vladimir S.; Kubyshkina, Marina V.; Erkaev, Nikolai V.; Kiehas, Stefan A.

    2018-04-01

    A specific class of solutions of the Vlasov-Maxwell equations, developed by means of generalization of the well-known Harris-Fadeev-Kan-Manankova family of exact two-dimensional equilibria, is studied. The examined model reproduces the current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The generalized model allows magnetic configurations with equatorial magnetic fields decreasing in a tailward direction as slow as 1/x, contrary to the original Kan model (1/x3); magnetic configurations with a single X point are also available. The analytical solution is compared with the empirical T96 model in terms of the magnetic flux tube volume. It is found that parameters of the analytical model may be adjusted to fit a wide range of averaged magnetotail configurations. The best agreement between analytical and empirical models is obtained for the midtail at distances beyond 10-15 RE at high levels of magnetospheric activity. The essential model parameters (current sheet scale, current density) are compared to Cluster data of magnetotail crossings. The best match of parameters is found for single-peaked current sheets with medium values of number density, proton temperature and drift velocity.

  14. Another dimension to metamorphic phase equilibria: the power of interactive movies for understanding complex phase diagram sections

    NASA Astrophysics Data System (ADS)

    Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.

    2012-04-01

    The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde fractionation processes. Finally we show how, although the effective composition of symplectite growth is not easy to determine and quantify, it is possible to successfully model by constructing a series of phase equilibria calculations.

  15. 3D Equilibrium Effects Due to RMP Application on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Lazerson, E. Lazarus, S. Hudson, N. Pablant and D. Gates

    2012-06-20

    The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon [1]. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric equilibria. Self-consistent calculations of the plasma equilibrium with the VMEC [2] and SPEC [3] codes have been performed for an up-down symmetric shot (142603) in DIII-D. In these codes, a self-consistent calculation of the plasma response due to the RMP coils is calculated. The VMEC code globally enforces the constraints of ideal MHD; consequently, a continuously nestedmore » family of flux surfaces is enforced throughout the plasma domain. This approach necessarily precludes the observation of islands or field-line chaos. The SPEC code relaxes the constraints of ideal MHD locally, and allows for islands and field line chaos at or near the rational surfaces. Equilibria with finite pressure gradients are approximated by a set of discrete "ideal-interfaces" at the most irrational flux surfaces and where the strongest pressure gradients are observed. Both the VMEC and SPEC calculations are initialized from EFIT reconstructions of the plasma that are consistent with the experimental pressure and current profiles. A 3D reconstruction using the STELLOPT code, which fits VMEC equilibria to experimental measurements, has also been performed. Comparisons between the equilibria generated by the 3D codes and between STELLOPT and EFIT are presented.« less

  16. 3D Equilibrium Effects Due to RMP Application on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazerson, S.; Lazarus, E.; Hudson, S.

    2012-06-20

    The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric equilibria. Self-consistent calculations of the plasma equilibrium with the VMEC and SPEC codes have been performed for an up-down symmetric shot in DIII-D. In these codes, a self-consistent calculation of the plasma response due to the RMP coils is calculated. The VMEC code globally enforces the constraints of ideal MHD; consequently, a continuously nested family of flux surfacesmore » is enforced throughout the plasma domain. This approach necessarily precludes the observation of islands or field-line chaos. The SPEC code relaxes the constraints of ideal MHD locally, and allows for islands and field line chaos at or near the rational surfaces. Equilibria with finite pressure gradients are approximated by a set of discrete "ideal-interfaces" at the most irrational flux surfaces and where the strongest pressure gradients are observed. Both the VMEC and SPEC calculations are initialized from EFIT reconstructions of the plasma that are consistent with the experimental pressure and current profiles. A 3D reconstruction using the STELLOPT code, which fits VMEC equilibria to experimental measurements, has also been performed. Comparisons between the equilibria generated by the 3D codes and between STELLOPT and EFIT are presented.« less

  17. Variabilities in probabilistic seismic hazard maps for natural and induced seismicity in the central and eastern United States

    USGS Publications Warehouse

    Mousavi, S. Mostafa; Beroza, Gregory C.; Hoover, Susan M.

    2018-01-01

    Probabilistic seismic hazard analysis (PSHA) characterizes ground-motion hazard from earthquakes. Typically, the time horizon of a PSHA forecast is long, but in response to induced seismicity related to hydrocarbon development, the USGS developed one-year PSHA models. In this paper, we present a display of the variability in USGS hazard curves due to epistemic uncertainty in its informed submodel using a simple bootstrapping approach. We find that variability is highest in low-seismicity areas. On the other hand, areas of high seismic hazard, such as the New Madrid seismic zone or Oklahoma, exhibit relatively lower variability simply because of more available data and a better understanding of the seismicity. Comparing areas of high hazard, New Madrid, which has a history of large naturally occurring earthquakes, has lower forecast variability than Oklahoma, where the hazard is driven mainly by suspected induced earthquakes since 2009. Overall, the mean hazard obtained from bootstrapping is close to the published model, and variability increased in the 2017 one-year model relative to the 2016 model. Comparing the relative variations caused by individual logic-tree branches, we find that the highest hazard variation (as measured by the 95% confidence interval of bootstrapping samples) in the final model is associated with different ground-motion models and maximum magnitudes used in the logic tree, while the variability due to the smoothing distance is minimal. It should be pointed out that this study is not looking at the uncertainty in the hazard in general, but only as it is represented in the USGS one-year models.

  18. Neoclassical tearing mode seeding by coupling with infernal modes in low-shear tokamaks

    NASA Astrophysics Data System (ADS)

    Kleiner, A.; Graves, J. P.; Brunetti, D.; Cooper, W. A.; Halpern, F. D.; Luciani, J.-F.; Lütjens, H.

    2016-09-01

    A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes, such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands are computed from XTOR-2F simulations and an analytical model is developed based on Rutherford’s theory in combination with a model of resistive infernal modes. The parameter {{Δ }\\prime} is extended from the linear phase to the non-linear phase. Additionally, the destabilising contribution due to a helically perturbed bootstrap current is considered. Comparing the numerical XTOR-2F simulations to the model, we find that coupling has a strong destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic islands in situations when the standard NTM theory predicts stability.

  19. Seed islands driven by turbulence and NTM dynamics

    NASA Astrophysics Data System (ADS)

    Muraglia, M.; Agullo, O.; Poye, A.; Benkadda, S.; Horton, W.; Dubuit, N.; Garbet, X.; Sen, A.

    2014-10-01

    Magnetic reconnection is an issue for tokamak plasmas. Growing magnetic islands expel energetic particles from the plasma core leading to high energy fluxes in the SOL and may cause damage to the plasma facing components. The islands grow from seeds from the bootstrap current effects that oppose the negative delta-prime producing nonlinear island growth. Experimentally, the onset of NTM is quantified in terms of the beta parameter and the sawtooth period. Indeed, in experiments, (3;2) NTM magnetic islands are often triggered by sawtooth precursors. However (2;1) magnetic islands can appear without noticeable MHD event and the seed islands origin for the NTM growth is still an open question. Macroscale MHD instabilities (magnetic islands) coexist with micro-scale turbulent fluctuations and zonal flows which impact island dynamics. Nonlinear simulations show that the nonlinear beating of the fastest growing small-scale ballooning interchange modes on a low order rational surface drive a magnetic islands located on the same surface. The island size is found to be controlled by the turbulence level and modifies the NTM threshold and dynamics.

  20. The effects of magnetic B(y) component on geomagnetic tail equilibria

    NASA Technical Reports Server (NTRS)

    Hilmer, Robert V.; Voigt, Gerd-Hannes

    1987-01-01

    A two-dimensional linear magnetohydrostatic model of the magnetotail is developed here in order to investigate the effects of a significant B(y) component on the configuration of magnetotail equilibria. It is concluded that the enhanced B(y) values must be an essential part of the quiet magnetotail and do not result from a simple intrusion of the IMF. The B(y) field consists of a constant background component plus a nonuniform field existing only in the plasma sheet, where it is dependent on the plasma paramater beta and the strength of the magnetic B(z) component. B(y) is strongest at the neutral sheet and decreases monotonically in the + or - z direction, reaching a constant tail lobe value at the plasma sheet boundaries. The presence of a significant positive B(y) component produces currents, including field-aligned currents, that flow through the equatorial plane and toward and away from earth in the northern and southern halves of the plasma sheet, respectively.

  1. Turbulence Evolution and Shock Acceleration of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Chee, Ng K.

    2007-01-01

    We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.

  2. Stable Spheromaks Sustained by Neutral Beam Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R; McLean, H S

    It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.

  3. Network Model-Assisted Inference from Respondent-Driven Sampling Data

    PubMed Central

    Gile, Krista J.; Handcock, Mark S.

    2015-01-01

    Summary Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population. PMID:26640328

  4. Network Model-Assisted Inference from Respondent-Driven Sampling Data.

    PubMed

    Gile, Krista J; Handcock, Mark S

    2015-06-01

    Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population.

  5. A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification.

    PubMed

    Jiang, Wenyu; Simon, Richard

    2007-12-20

    This paper first provides a critical review on some existing methods for estimating the prediction error in classifying microarray data where the number of genes greatly exceeds the number of specimens. Special attention is given to the bootstrap-related methods. When the sample size n is small, we find that all the reviewed methods suffer from either substantial bias or variability. We introduce a repeated leave-one-out bootstrap (RLOOB) method that predicts for each specimen in the sample using bootstrap learning sets of size ln. We then propose an adjusted bootstrap (ABS) method that fits a learning curve to the RLOOB estimates calculated with different bootstrap learning set sizes. The ABS method is robust across the situations we investigate and provides a slightly conservative estimate for the prediction error. Even with small samples, it does not suffer from large upward bias as the leave-one-out bootstrap and the 0.632+ bootstrap, and it does not suffer from large variability as the leave-one-out cross-validation in microarray applications. Copyright (c) 2007 John Wiley & Sons, Ltd.

  6. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  7. Equilibrium drives of the low and high field side n  =  2 plasma response and impact on global confinement

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.

    2016-05-01

    The nature of the multi-modal n  =  2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n  =  2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n  =  2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.

  8. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE PAGES

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...

    2016-03-31

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  9. Associations between dietary and lifestyle risk factors and colorectal cancer in the Scottish population.

    PubMed

    Theodoratou, Evropi; Farrington, Susan M; Tenesa, Albert; McNeill, Geraldine; Cetnarskyj, Roseanne; Korakakis, Emmanouil; Din, Farhat V N; Porteous, Mary E; Dunlop, Malcolm G; Campbell, Harry

    2014-01-01

    Colorectal cancer (CRC) accounts for 9.7% of all cancer cases and for 8% of all cancer-related deaths. Established risk factors include personal or family history of CRC as well as lifestyle and dietary factors. We investigated the relationship between CRC and demographic, lifestyle, food and nutrient risk factors through a case-control study that included 2062 patients and 2776 controls from Scotland. Forward and backward stepwise regression was applied and the stability of the models was assessed in 1000 bootstrap samples. The variables that were automatically selected to be included by the forward or backward stepwise regression and whose selection was verified by bootstrap sampling in the current study were family history, dietary energy, 'high-energy snack foods', eggs, juice, sugar-sweetened beverages and white fish (associated with an increased CRC risk) and NSAIDs, coffee and magnesium (associated with a decreased CRC risk). Application of forward and backward stepwise regression in this CRC study identified some already established as well as some novel potential risk factors. Bootstrap findings suggest that examination of the stability of regression models by bootstrap sampling is useful in the interpretation of study findings. 'High-energy snack foods' and high-energy drinks (including sugar-sweetened beverages and fruit juices) as risk factors for CRC have not been reported previously and merit further investigation as such snacks and beverages are important contributors in European and North American diets.

  10. Using the Bootstrap Concept to Build an Adaptable and Compact Subversion Artifice

    DTIC Science & Technology

    2003-06-01

    however, and the current “second generation” of microkernel implementations has resulted in significantly better performance. Of note is the L4 micro...63 c. GEMSOS Kernel .....................................................................63 d. L4 ... Microkernel ........................................................................64 VI. CONCLUSIONS

  11. Fast, Exact Bootstrap Principal Component Analysis for p > 1 million

    PubMed Central

    Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim

    2015-01-01

    Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801

  12. Static axisymmetric equilibria in general relativistic magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez, Manuel

    2008-01-15

    While the definition of static equilibria is not clear in a general relativistic context, in many cases of astrophysical interest a natural 3+1 split exists which allows us to define physically meaningful spatial and temporal coordinates. We study the possibility of axisymmetric magnetohydrodynamic equilibria in this setting. The presence of a nontrivial shift velocity provides a constraint not present in the Newtonian case, while the momentum equation may be set in a Grad-Shafranov-like form with the presence of additional terms involving the space-time metric coefficients. It is found that whenever the magnetic field or the shift velocity possesses poloidal component,more » the existence of even local static equilibria demands that the metric parameters satisfy such strong conditions that these equilibria are extremely unlikely. Only very particular cases such as purely toroidal fields and shifts yield existence of equilibria, provided we are able to choose arbitrarily the plasma pressure and density.« less

  13. Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications

    PubMed Central

    Chaibub Neto, Elias

    2015-01-01

    In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965

  14. Equilibrium and Stability Properties of Low Aspect Ratio Mirror Systems: from Neutron Source Design to the Parker Spiral

    NASA Astrophysics Data System (ADS)

    Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.

  15. Bootstrapping the O(N) archipelago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, Filip; Poland, David; Simmons-Duffin, David

    2015-11-17

    We study 3d CFTs with an O(N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O(N) vector Φ i and the lowest dimension O(N) singlet s, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δ Φ , Δ s ) to lie inside small islands. Here, we also make rigorous determinations of current two-point functions in the O(2) and O(3) models, with applications to transport inmore » condensed matter systems.« less

  16. Topological constraints and the existence of force-free fields

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1986-01-01

    A fundamental problem in plasma theory is the question of the existence of MHD equilibria. The issue of topological constraints is of crucial importance for the problem of the existence of equilibria. Heuristic methods are used to discuss the coronal wrapping pattern. It is concluded that for a given set of footpoint positions the wrapping pattern in the corona is completely fixed. The topological constraints are included in the boundary conditions on the Euler potentials and impost no additional restrictions on possible equilibria. Although this does not prove that equilibria always exist, it does show that the force-free problem is not overdetermined and that existence of equilibria is still an open question.

  17. Passive band-gap reconfiguration born from bifurcation asymmetry.

    PubMed

    Bernard, Brian P; Mann, Brian P

    2013-11-01

    Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.

  18. Rotational stability of a long field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C.

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesomemore » ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.« less

  19. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  20. Tests of Independence for Ordinal Data Using Bootstrap.

    ERIC Educational Resources Information Center

    Chan, Wai; Yung, Yiu-Fai; Bentler, Peter M.; Tang, Man-Lai

    1998-01-01

    Two bootstrap tests are proposed to test the independence hypothesis in a two-way cross table. Monte Carlo studies are used to compare the traditional asymptotic test with these bootstrap methods, and the bootstrap methods are found superior in two ways: control of Type I error and statistical power. (SLD)

  1. A two-patch prey-predator model with predator dispersal driven by the predation strength.

    PubMed

    Kang, Yun; Sasmal, Sourav Kumar; Messan, Komi

    2017-08-01

    Foraging movements of predator play an important role in population dynamics of prey-predator systems, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns.

  2. Relativistic Self-similar Equilibria and Non-axisymmetric Neutral Modes

    NASA Astrophysics Data System (ADS)

    Cai, Mike J.; Shu, F. H.

    2002-05-01

    We have constructed semi-analytic axisymmetric scale free solutions to Einstein field equations with perfect fluid matter source. These spacetimes are self-similar under the simultaneous transformation r'= ar and t'=a1-nt. We explored the two dimensional solution space parameterized by the rescaling index n and the isothermal sound speed γ 1/2. The isopycnic surfaces are in general toroids. As the equilibrium configuration rotates faster, an ergo region develops in the form of the exterior of a cone centered about the symmetry axis. The sequence of solution terminates when frame dragging becomes infinite and the ergo cone closes onto the axis. In the extreme flattening limit, we have also searched for non-axisymmetric neutral modes in a self-similar disk. Two separate sets of tracks are discovered in the solution space. One corresponds to the bifurcation points to non-axisymmetric equilibria, which is confined in the non-ergo solutions. The other track signals the onset of instability driven by gravitational radiation. These solutions are formally infinite in extent, and thus can not represent realistic astrophysical systems. However, if these properties do not alter qualitatively when the self-similar configurations are truncated, then these solutions may serve as initial data for dynamic collapse in super massive black hole formation.

  3. a Theoretical Study of Coherent Structures in Nonneutral Plasma Columns

    NASA Astrophysics Data System (ADS)

    Lund, Steven M.

    A ubiquitous feature of experimental and computer simulation studies of magnetically confined pure electron plasmas in cylindrical confinement devices is the formation of nonaxisymmetric (partial/partial theta ne 0) rotating equilibria. In this dissertation, nonaxisymmetric rotating equilibria are investigated theoretically for strongly magnetized, low-density (omega_sp{pe} {2}/omega_sp{ce}{2 } << 1) pure electron plasmas confined in a two-dimensional cylindrical geometry. These dynamic equilibria are also called rotating coherent structures, and are stationary (time-independent) in a frame of reference rotating with angular velocity omega_ {r} = const. about the cylinder axis (r = 0). Radial confinement of the pure electron plasma is provided by a uniform axial magnetic field B_0 {bf e}_{z}, and a grounded, perfectly conducting, cylindrical wall is located at radius r = r_{w}. The analysis is based on a nonrelativistic, guiding-center model in the cold-fluid limit (the continuity and Poisson equations) that treats the electrons as a massless fluid (m_{e} to 0) with E times B flow velocity V _{e} = -(c/B_0)nablaphi times {bf e}_{z}. Within this model, general rotating equilibria with electron density (n_{e} equiv n_{R}(r,theta-omega _{r}t) and electrostatic potential phi equiv phi_{R }(r,theta-omega_{r}t) have the property that the electron density is functionally related to the streamfunction psi _{R} = -ephi_{R} + omega_{r}(eB_0/2c)r^2 by n_{R} = n_{R }(psi_{R}). The streamfunction psi_{R} satisfies the nonlinear equilibrium equation nabla ^2psi_{R} = -4pi e^2n _{R}(psi_{R}) + 2omega_{r}eB_0/c with psi_{R} = omega _{r}(eB_0/2c)r_sp{w }{2} equiv psi_{w } = const. on the cylindrical wall at r = r_{w}. A general methodology for the solution of this equilibrium system is presented and several properties of rotating equilibria are analyzed. Following this analysis, two classes of nonaxisymmetric equilibria are investigated. These two classes of equilibria can have large amplitude (strongly nonaxisymmetric). First, a class of vortex-like rotating equilibria is analyzed that is characterized by a structured density profile that fills a confinement geometry with an inner conducting cylinder at radius r = r_{I} < r_ {w}. The streamfunction describing these vortex-like equilibria is derived exactly and analyzed in several relevant limits. Next, a physically motivated class of rotating equilibria with "waterbag" (step-function) density profiles and free plasma-vacuum interfaces is investigated. An integral equation formulation of the nonlinear equilibrium equation that describes general waterbag equilibria is developed. Then a numerical method that can be used to construct diverse varieties of solutions for highly nonlinear waterbag equilibria is formulated. This method is employed to examine two classes of nonaxisymmetric equilibria that are nonlinear extrapolations of well-known small-amplitude equilibria. These two classes of rotating equilibria bear strong similarities to coherent structures observed experimentally by Driscoll and Fine (Phys. Fluid B 2, 1359 (1990)). (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  4. The privileged spectrum of cnoidal ion holes and its extension by imperfect ion trapping

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Das, Nilakshi; Borah, Prathana

    2018-01-01

    The fundamental properties of nonlinear ion hole modes propagating in current-driven collisionless plasmas are derived. Making use of Schamel's alternative method their spatial structure ϕ (x) and phase velocities u0 are analyzed and found to depend crucially on the used trapped ion distribution fit. A regular fit represents a continuous spectrum, which is called privileged or perfect since it yields a definite u0 and appears most realistic. A singular fit, on the other hand, involving jumps and moderate slope singularities at the separatrix, does reveal further classes of hole equilibria at the cost, however, of a well-defined u0. This explains why Bernstein, Greene, Kruskal (BGK)-solutions of the Vlasov-Poisson system, exhibiting a strong slope singularity of their derived trapped particle distribution, can principally not provide definite u0 s. The nonlinear dispersion relation (or u0) of privileged ion holes, on the other hand, is equivalent with that of cnoidal electron holes, i.e. in addition to the ordinary ion acoustic branch there exists a correspondence to the "Langmuir" branch and to the multiple "slow electron acoustic" branches, reflecting different trapping scenarios.

  5. Sevelamer is cost-saving vs. calcium carbonate in non-dialysis-dependent CKD patients in italy: a patient-level cost-effectiveness analysis of the INDEPENDENT study.

    PubMed

    Ruggeri, Matteo; Cipriani, Filippo; Bellasi, Antonio; Russo, Domenico; Di Iorio, Biagio

    2014-01-01

    To conduct a cost-effectiveness analysis of sevelamer versus calcium carbonate in patients with non-dialysis-dependent CKD (NDD-CKD) from the Italian NHS perspective using patient-level data from the INDEPENDENT-CKD study. Patient-level data on all-cause mortality, dialysis inception and phosphate binder dose were obtained for all 107 sevelamer and 105 calcium carbonate patients from the INDEPENDENT-CKD study. Hospitalization and frequency of dialysis data were collected post hoc for all patients via a retrospective chart review. Phosphate binder, hospitalization, and dialysis costs were expressed in 2012 euros using hospital pharmacy, Italian diagnosis-related group and ambulatory tariffs, respectively. Total life years (LYs) and costs per treatment group were calculated for the 3-year period of the study. Bootstrapping was used to estimate confidence intervals around outcomes, costs, and cost-effectiveness and to calculate the cost-effectiveness acceptability curve. A subgroup analysis of patients who did not initiate dialysis during the INDEPENDENT-CKD study was also conducted. Sevelamer was associated with 0.06 additional LYs (95% CI -0.04 to 0.16) and cost savings of EUR -5,615 (95% CI -10,066 to -1,164) per patient compared with calcium carbonate. On the basis of the bootstrap analysis, sevelamer was dominant compared to calcium carbonate in 87.1% of 10,000 bootstrap replicates. Similar results were observed in the subgroup analysis. RESULTS were driven by a significant reduction in all-cause mortality and significantly fewer hospitalizations in the sevelamer group, which offset the higher acquisition cost for sevelamer. Sevelamer provides more LYs and is less costly than calcium carbonate in patients with NDD-CKD in Italy.

  6. A Dynamical Analysis of a Piecewise Smooth Pest Control SI Model

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Liu, Wanbo; Tao, Fennmei; Kang, Baolin; Cong, Jiguang

    In this paper, we propose a piecewise smooth SI pest control system to model the process of spraying pesticides and releasing infectious pests. We assume that the pest population consists of susceptible pests and infectious pests, and that the disease spreads horizontally between pests. We take the susceptible pest as the control index on whether to implement chemical control and biological control strategies. Based on the theory of Filippov system, the sliding-mode domain and conditions for the existence of real equilibria, virtual equilibria, pseudo-equilibrium and boundary equilibria are given. Further, we show the global stability of real equilibria (or boundary equilibria) and pseudo-equilibrium. Our results can provide theoretical guidance for the problem of pest control.

  7. Slow rise and partial eruption of a double-decker filament. II. A double flux rope model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kliem, Bernhard; Török, Tibor; Titov, Viacheslav S.

    2014-09-10

    Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov and Démoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions,more » with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium.« less

  8. Does Bootstrap Procedure Provide Biased Estimates? An Empirical Examination for a Case of Multiple Regression.

    ERIC Educational Resources Information Center

    Fan, Xitao

    This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…

  9. Using the Descriptive Bootstrap to Evaluate Result Replicability (Because Statistical Significance Doesn't)

    ERIC Educational Resources Information Center

    Spinella, Sarah

    2011-01-01

    As result replicability is essential to science and difficult to achieve through external replicability, the present paper notes the insufficiency of null hypothesis statistical significance testing (NHSST) and explains the bootstrap as a plausible alternative, with a heuristic example to illustrate the bootstrap method. The bootstrap relies on…

  10. Performance of Bootstrapping Approaches To Model Test Statistics and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Jonathan; Hancock, Gregory R.

    2001-01-01

    Evaluated the bootstrap method under varying conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Results for the bootstrap suggest the resampling-based method may be conservative in its control over model rejections, thus having an impact on the statistical power associated…

  11. Nonparametric bootstrap analysis with applications to demographic effects in demand functions.

    PubMed

    Gozalo, P L

    1997-12-01

    "A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt

  12. The freedom to choose neutron star magnetic field equilibria: Table 1.

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Lasky, Paul D.

    2016-12-01

    Our ability to interpret and glean useful information from the large body of observations of strongly magnetized neutron stars rests largely on our theoretical understanding of magnetic field equilibria. We answer the following question: is one free to arbitrarily prescribe magnetic equilibria such that fluid degrees of freedom can balance the equilibrium equations? We examine this question for various models for neutron star matter; from the simplest single-fluid barotrope to more realistic non-barotropic multifluid models with superfluid/superconducting components, muons and entropy. We do this for both axi- and non-axisymmetric equilibria, and in Newtonian gravity and general relativity. We show that, in axisymmetry, the most realistic model allows complete freedom in choosing a magnetic field equilibrium whereas non-axisymmetric equilibria are never completely arbitrary.

  13. Resilient Diffusive Clouds

    DTIC Science & Technology

    2017-02-01

    scale blade servers (Dell PowerEdge) [20]. It must be recognized however, that the findings are distributed over this collection of architectures not...current operating system designs run into millions of lines of code. Moreover, they compound the opportunity for compromise by granting device drivers...properties (e.g. IP & MAC address) so as to invalidate an adversary’s surveillance data. The current running and bootstrapping instances of the micro

  14. Quasi-Axially Symmetric Stellarators with 3 Field Periods

    NASA Astrophysics Data System (ADS)

    Garabedian, Paul; Ku, Long-Poe

    1998-11-01

    Compact hybrid configurations with 2 field periods have been studied recently as candidates for a proof of principle experiment at PPPL, cf. A. Reiman et al., Physics design of a high beta quasi-axially symmetric stellarator, J. Plas. Fus. Res. SERIES 1, 429(1998). This enterprise has led us to the discovery of a family of quasi-axially symmetric stellarators with 3 field periods that seem to have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit may be as high as 6% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. A detailed manuscript describing some of this work will be published soon, cf. P.R. Garabedian, Quasi-axially symmetric stellarators, Proc. Natl. Acad. Sci. USA 95 (1998).

  15. An Introductory Idea for Teaching Two-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  16. Tearing Mode Stability of Evolving Toroidal Equilibria

    NASA Astrophysics Data System (ADS)

    Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.

    2000-10-01

    There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.

  17. The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-Analysis

    PubMed Central

    Kaufmann, Esther; Wittmann, Werner W.

    2016-01-01

    The success of bootstrapping or replacing a human judge with a model (e.g., an equation) has been demonstrated in Paul Meehl’s (1954) seminal work and bolstered by the results of several meta-analyses. To date, however, analyses considering different types of meta-analyses as well as the potential dependence of bootstrapping success on the decision domain, the level of expertise of the human judge, and the criterion for what constitutes an accurate decision have been missing from the literature. In this study, we addressed these research gaps by conducting a meta-analysis of lens model studies. We compared the results of a traditional (bare-bones) meta-analysis with findings of a meta-analysis of the success of bootstrap models corrected for various methodological artifacts. In line with previous studies, we found that bootstrapping was more successful than human judgment. Furthermore, bootstrapping was more successful in studies with an objective decision criterion than in studies with subjective or test score criteria. We did not find clear evidence that the success of bootstrapping depended on the decision domain (e.g., education or medicine) or on the judge’s level of expertise (novice or expert). Correction of methodological artifacts increased the estimated success of bootstrapping, suggesting that previous analyses without artifact correction (i.e., traditional meta-analyses) may have underestimated the value of bootstrapping models. PMID:27327085

  18. Efficient bootstrap estimates for tail statistics

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Aarnes, Ole Johan

    2017-03-01

    Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.

  19. Nonambipolar Transport and Torque in Perturbed Equilibria

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.

    2013-10-01

    A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.

  20. What Teachers Should Know About the Bootstrap: Resampling in the Undergraduate Statistics Curriculum

    PubMed Central

    Hesterberg, Tim C.

    2015-01-01

    Bootstrapping has enormous potential in statistics education and practice, but there are subtle issues and ways to go wrong. For example, the common combination of nonparametric bootstrapping and bootstrap percentile confidence intervals is less accurate than using t-intervals for small samples, though more accurate for larger samples. My goals in this article are to provide a deeper understanding of bootstrap methods—how they work, when they work or not, and which methods work better—and to highlight pedagogical issues. Supplementary materials for this article are available online. [Received December 2014. Revised August 2015] PMID:27019512

  1. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  2. Computing Nash equilibria through computational intelligence methods

    NASA Astrophysics Data System (ADS)

    Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

    2005-03-01

    Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

  3. Patterning of colloidal particles in the galvanic microreactor

    NASA Astrophysics Data System (ADS)

    Jan, Linda

    A Cu-Au galvanic microreactor is used to demonstrate the autonomous patterning of two-dimensional colloidal crystals with spatial and orientational order which are adherent to the electrode substrate. The microreactor is comprised of a patterned array of copper and gold microelectrodes in a coplanar arrangement that is immersed in a dilute hydrochloric acid solution in which colloidal polystyrene microspheres are suspended. During the electrochemical dissolution of copper, polystyrene colloids are transported to the copper electrodes. The spatial arrangement of the electrodes determines whether the colloids initiate aggregation at the edges or centers of the copper electrodes. Depending on the microreactor parameters, two-dimensional colloidal crystals can form and adhere to the electrode. This thesis investigates the mechanisms governing the autonomous particle motion, the directed particle trajectory (inner- versus edge-aggregation) as affected by the spatial patterning of the electrodes, and the adherence of the colloidal particles onto the substrate. Using in situ current density measurements, particle velocimetry, and order-of-magnitude arguments, it is shown that particle motion is governed by bulk fluid motion and electrophoresis induced by the electrochemical reactions. Bulk electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution, particularly due to localized high current density at the electrode junction. Preferential aggregation of the colloidal particles resulting in inner- and edge-aggregation is influenced by changes to the flow pattern in response to difference in current density profiles as affected by the spatial patterning of the electrode. Finally, by determining the onset of particle cementation through particle tracking analysis, and by monitoring the deposition of reaction products through the observation of color changes of the galvanic electrodes in situ, it is shown that particle cementation coincides with the precipitation and deposition of reaction products. The precipitation process is caused by shifts in the chemical equilibria of the microreactor due to changes in the composition of the electrolyte during the reactions, which can be used to control particle cementation. The corrosion driven transport, deposition and adherence of colloidal particles at corrosion sites have implications for the development of autonomous self-healing materials.

  4. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    NASA Astrophysics Data System (ADS)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  5. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  6. Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions

    NASA Astrophysics Data System (ADS)

    Fontes, L. R. G.; Schonmann, R. H.

    2008-09-01

    We study the threshold θ bootstrap percolation model on the homogeneous tree with degree b+1, 2≤ θ≤ b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p f , such that a) for p> p f , the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p< p f , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p c , such that 0< p c < p f , with the following properties: 1) if p≤ p c , then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p> p c , then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p< p c , the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p= p c , the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p f ] and analytic on ( p c , p f ), admitting an analytic continuation from the right at p c and, only in the case θ= b, also from the left at p f .

  7. Relative equilibria in quasi-homogeneous planar three body problems

    NASA Astrophysics Data System (ADS)

    Arredondo, John A.

    2018-01-01

    In this paper we find the families of relative equilibria for the three body problem in the plane, when the interaction between the bodies is given by a quasi-homogeneous potential. The number of the relative equilibria depends on the values of the masses and on the size of the system, measured by the moment of inertia.

  8. Discovering the Thermodynamics of Simultaneous Equilibria: An Entropy Analysis Activity Involving Consecutive Equilibria

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2007-01-01

    An activity is presented in which the thermodynamics of simultaneous, consecutive equilibria are explored. The activity is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing or endergonic) reaction can be caused to happen if it is coupled with a product-favored reaction of…

  9. Jump conditions in transonic equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches aremore » described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.« less

  10. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  11. Visuospatial bootstrapping: implicit binding of verbal working memory to visuospatial representations in children and adults.

    PubMed

    Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J

    2014-03-01

    When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A bootstrap based space-time surveillance model with an application to crime occurrences

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  13. Augmenting Literacy: The Role of Expertise in Digital Writing

    ERIC Educational Resources Information Center

    Van Ittersum, Derek

    2011-01-01

    This essay presents a model of reflective use of writing technologies, one that provides a means of more fully exploiting the possibilities of these tools for transforming writing activity. Derived from the work of computer designer Douglas Engelbart, the "bootstrapping" model of reflective use extends current arguments in the field…

  14. Variance Estimation Using Replication Methods in Structural Equation Modeling with Complex Sample Data

    ERIC Educational Resources Information Center

    Stapleton, Laura M.

    2008-01-01

    This article discusses replication sampling variance estimation techniques that are often applied in analyses using data from complex sampling designs: jackknife repeated replication, balanced repeated replication, and bootstrapping. These techniques are used with traditional analyses such as regression, but are currently not used with structural…

  15. What You See Is What You Get!

    ERIC Educational Resources Information Center

    Harrison, David

    1979-01-01

    The issue of observability and the relative roles of the senses and reason in understanding the world is reviewed. Eastern "mystical" philosophy serves as a focus in which interpretations of quantum mechanics, as well as the current bootstrap-quark controversy are seen in some slightly different contexts. (Author/GA)

  16. An SAS Macro for Implementing the Modified Bollen-Stine Bootstrap for Missing Data: Implementing the Bootstrap Using Existing Structural Equation Modeling Software

    ERIC Educational Resources Information Center

    Enders, Craig K.

    2005-01-01

    The Bollen-Stine bootstrap can be used to correct for standard error and fit statistic bias that occurs in structural equation modeling (SEM) applications due to nonnormal data. The purpose of this article is to demonstrate the use of a custom SAS macro program that can be used to implement the Bollen-Stine bootstrap with existing SEM software.…

  17. Predominance Diagrams, a Useful Tool for the Correlation of the Precipitation-Solubility Equilibrium with Other Ionic Equilibria

    ERIC Educational Resources Information Center

    Pereira, Constantino Fernandez; Alcalde, Manuel; Villegas, Rosario; Vale, Jose

    2007-01-01

    The four types of ionic equilibria--acid-base, redox, precipitation, and complexation--have certain similarities, which has led some authors to develop a unified treatment of them. These authors have highlighted the common aspects and tried to find a systemization of the equilibria that would facilitate learning them. In this unified treatment,…

  18. Tautomerism, Hammett σ, and QSAR

    NASA Astrophysics Data System (ADS)

    Martin, Yvonne Connolly

    2010-06-01

    A consideration of equilibrium model-based equations suggests that tautomeric equilibria do not markedly affect observed potency if the tautomer bound represents at least 50% of the compound in solution. Tautomeric equilibria can enhance or attenuate the correlation of potency with Hammett σ. Additionally, tautomeric equilibria can lead to a correlation of potency with σ even in the absence of a correlation of binding with σ.

  19. Morse Theory and Relative Equilibria in the Planar n-Vortex Problem

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth E.

    2018-04-01

    Morse theoretical ideas are applied to the study of relative equilibria in the planar n-vortex problem. For the case of positive circulations, we prove that the Morse index of a critical point of the Hamiltonian restricted to a level surface of the angular impulse is equal to the number of pairs of real eigenvalues of the corresponding relative equilibrium periodic solution. The Morse inequalities are then used to prove the instability of some families of relative equilibria in the four-vortex problem with two pairs of equal vorticities. We also show that, for positive circulations, relative equilibria cannot accumulate on the collision set.

  20. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D., E-mail: henning@fas.harvard.ed

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and themore » Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.« less

  1. Structural instability, multiple stable states, and hysteresis in periphyton driven by phosphorus enrichment in the Everglades

    USGS Publications Warehouse

    Dong, Quan; McCormick, Paul V.; Sklar, Fred H.; DeAngelis, Donald L.

    2002-01-01

    Periphyton is a key component of the Everglades ecosystems. It is a major primary producer, providing food and habitat for a variety of organisms, contributing material to the surface soil, and regulating water chemistry. Periphyton is sensitive to the phosphorus (P) supply and P enrichment has caused dramatic changes in the native Everglades periphyton assemblages. Periphyton also affects P availability by removing P from the water column and depositing a refractory portion into sediment. A quantitative understanding of the response of periphyton assemblages to P supply and its effects on P cycling could provide critical supports to decision making in the conservation and restoration of the Everglades. We constructed a model to examine the interaction between periphyton and P dynamics. The model contains two differential equations: P uptake and periphyton growth are assumed to follow the Monod equation and are limited by a modified logistic equation. Equilibrium and stability analyses suggest that P loading is the driving force and determines the system behavior. The position and number of steady states and the stability also depend upon the rate of sloughing, through which periphyton deposits refractory P into sediment. Multiple equilibria may exist, with two stable equilibria separated by an unstable equilibrium. Due to nonlinear interplay of periphyton and P in this model, catastrophe and hysteresis are likely to occur.

  2. Comparison of Sample Size by Bootstrap and by Formulas Based on Normal Distribution Assumption.

    PubMed

    Wang, Zuozhen

    2018-01-01

    Bootstrapping technique is distribution-independent, which provides an indirect way to estimate the sample size for a clinical trial based on a relatively smaller sample. In this paper, sample size estimation to compare two parallel-design arms for continuous data by bootstrap procedure are presented for various test types (inequality, non-inferiority, superiority, and equivalence), respectively. Meanwhile, sample size calculation by mathematical formulas (normal distribution assumption) for the identical data are also carried out. Consequently, power difference between the two calculation methods is acceptably small for all the test types. It shows that the bootstrap procedure is a credible technique for sample size estimation. After that, we compared the powers determined using the two methods based on data that violate the normal distribution assumption. To accommodate the feature of the data, the nonparametric statistical method of Wilcoxon test was applied to compare the two groups in the data during the process of bootstrap power estimation. As a result, the power estimated by normal distribution-based formula is far larger than that by bootstrap for each specific sample size per group. Hence, for this type of data, it is preferable that the bootstrap method be applied for sample size calculation at the beginning, and that the same statistical method as used in the subsequent statistical analysis is employed for each bootstrap sample during the course of bootstrap sample size estimation, provided there is historical true data available that can be well representative of the population to which the proposed trial is planning to extrapolate.

  3. Application of the Bootstrap Methods in Factor Analysis.

    ERIC Educational Resources Information Center

    Ichikawa, Masanori; Konishi, Sadanori

    1995-01-01

    A Monte Carlo experiment was conducted to investigate the performance of bootstrap methods in normal theory maximum likelihood factor analysis when the distributional assumption was satisfied or unsatisfied. Problems arising with the use of bootstrap methods are highlighted. (SLD)

  4. Impulse-induced localized control of chaos in starlike networks.

    PubMed

    Chacón, Ricardo; Palmero, Faustino; Cuevas-Maraver, Jesús

    2016-06-01

    Locally decreasing the impulse transmitted by periodic pulses is shown to be a reliable method of taming chaos in starlike networks of dissipative nonlinear oscillators, leading to both synchronous periodic states and equilibria (oscillation death). Specifically, the paradigmatic model of damped kicked rotators is studied in which it is assumed that when the rotators are driven synchronously, i.e., all driving pulses transmit the same impulse, the networks display chaotic dynamics. It is found that the taming effect of decreasing the impulse transmitted by the pulses acting on particular nodes strongly depends on their number and degree of connectivity. A theoretical analysis is given explaining the basic physical mechanism as well as the main features of the chaos-control scenario.

  5. Probing the type of anomalous diffusion with single-particle tracking.

    PubMed

    Ernst, Dominique; Köhler, Jürgen; Weiss, Matthias

    2014-05-07

    Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.

  6. External heating and current drive source requirements towards steady-state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.

    2014-07-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.

  7. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  8. Small sample mediation testing: misplaced confidence in bootstrapped confidence intervals.

    PubMed

    Koopman, Joel; Howe, Michael; Hollenbeck, John R; Sin, Hock-Peng

    2015-01-01

    Bootstrapping is an analytical tool commonly used in psychology to test the statistical significance of the indirect effect in mediation models. Bootstrapping proponents have particularly advocated for its use for samples of 20-80 cases. This advocacy has been heeded, especially in the Journal of Applied Psychology, as researchers are increasingly utilizing bootstrapping to test mediation with samples in this range. We discuss reasons to be concerned with this escalation, and in a simulation study focused specifically on this range of sample sizes, we demonstrate not only that bootstrapping has insufficient statistical power to provide a rigorous hypothesis test in most conditions but also that bootstrapping has a tendency to exhibit an inflated Type I error rate. We then extend our simulations to investigate an alternative empirical resampling method as well as a Bayesian approach and demonstrate that they exhibit comparable statistical power to bootstrapping in small samples without the associated inflated Type I error. Implications for researchers testing mediation hypotheses in small samples are presented. For researchers wishing to use these methods in their own research, we have provided R syntax in the online supplemental materials. (c) 2015 APA, all rights reserved.

  9. Recent Heating and Current Drive results on JET

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Baranov, Y.; Barbato, E.; Bibet, Ph.; Castaldo, C.; Cesario, R.; Cocilovo, V.; Crisanti, F.; De Angelis, R.; Ekedahl, A. C.; Figueiredo, A.; Graham, M.; Granucci, G.; Hartmann, D.; Heikkinen, J.; Hellsten, T.; Imbeaux, F.; Jones, T. T. H.; Johnson, T.; Kirov, K. V.; Lamalle, P.; Laxaback, M.; Leuterer, F.; Litaudon, X.; Maget, P.; Mailloux, J.; Mantsinen, M. J.; Mayoral, M. L.; Meo, F.; Monakhov, I.; Nguyen, F.; Noterdaeme, J.-M.; Pericoli-Ridolfini, V.; Podda, S.; Panaccione, L.; Righi, E.; Rimini, F.; Sarazin, Y.; Sibley, A.; Staebler, A.; Tala, T.; Van Eester, D.

    2001-10-01

    An overview is presented of the results obtained on JET by the Heating and Current Drive Task Force (TF-H) in the period May 2000—March 2001. A strongly improved Lower Hybrid (LH) coupling was achieved by optimizing the plasma shape and by controlling the local edge density via the injection of CD4. Up to 4 MW have been coupled in type III ELMy H-mode and/or on Internal Transport Barrier (ITB) plasmas with reflection coefficients as low as 4%. Long lasting quasi steady-state ITBs have been obtained by adding the LH current to the bootstrap and beam driven components. Furthermore the use of LH in the pre-heat phase results in electron temperature in excess of 10 keV, deep negative magnetic shear and strongly reduced power threshold for ITB formation. Preliminary results on ICRF coupling are reported including the effect of CD4 injection and the commissioning of the wide band matching system on ELMy plasmas. IC CD scenarios have been studied in H and 3He minority and used to modify the stability of the sawtooth to influence the formation of seed islands for the appearance of NTM. Up to 3 MW of IC power was coupled in the high magnetic field fast wave CD scenario. Preliminary MSE measurements indicate differences in the current profiles between -90° and +90° phasing. Careful measurements of the toroidal rotation, in plasmas heated by ICRF only show some dependence on the position of the resonance layer. Finally the use of ICRF minority heating under real-time control, in response to measured plasma parameters to simulate the effect of alpha particles, is presented. ICRF heating results in ITER non-activated scenarios are reported in a companion paper.

  10. Thermodynamic aspects of dicarboxylate recognition by simple artificial receptors.

    PubMed

    Linton, B R; Goodman, M S; Fan, E; van Arman, S A; Hamilton, A D

    2001-11-02

    Recognition of dicarboxylates by bis-functional hydrogen-bonding receptors displays divergent thermodynamics in different solvent systems. NMR titration and isothermal titration calorimetry indicated that neutral bis-urea and bis-thiourea receptors form exothermic complexes with dicarboxylates in DMSO, with a near zero entropic contribution to binding. The increased binding strength of bis-guanidinium receptors precluded quantitative measurement of binding constants in DMSO, but titration calorimetry offered a qualitative picture of the association. Formation of these 1:1 complexes was also exothermic, but additional endothermic events occurred at both lower and higher host-guest ratios. These events indicated multiple binding equilibria but did not always occur at a discrete 2:1 or 1:2 host-guest molar ratio, suggesting higher aggregates. With increasing amounts of methanol as solvent, bis-guanidinium receptors form more endothermic complexes with dicarboxylates, with a favorable entropy of association. This switch from association driven by enthalpy to one driven by entropy may reflect a change from complexation involving the formation of hydrogen bonds to that promoted by solvent liberation from binding sites.

  11. Bifurcation structure of a wind-driven shallow water model with layer-outcropping

    NASA Astrophysics Data System (ADS)

    Primeau, François W.; Newman, David

    The steady state bifurcation structure of the double-gyre wind-driven ocean circulation is examined in a shallow water model where the upper layer is allowed to outcrop at the sea surface. In addition to the classical jet-up and jet-down multiple equilibria, we find a new regime in which one of the equilibrium solutions has a large outcropping region in the subpolar gyre. Time dependent simulations show that the outcropping solution equilibrates to a stable periodic orbit with a period of 8 months. Co-existing with the periodic solution is a stable steady state solution without outcropping. A numerical scheme that has the unique advantage of being differentiable while still allowing layers to outcrop at the sea surface is used for the analysis. In contrast, standard schemes for solving layered models with outcropping are non-differentiable and have an ill-defined Jacobian making them unsuitable for solution using Newton's method. As such, our new scheme expands the applicability of numerical bifurcation techniques to an important class of ocean models whose bifurcation structure had hitherto remained unexplored.

  12. Bootstrap confidence levels for phylogenetic trees.

    PubMed

    Efron, B; Halloran, E; Holmes, S

    1996-07-09

    Evolutionary trees are often estimated from DNA or RNA sequence data. How much confidence should we have in the estimated trees? In 1985, Felsenstein [Felsenstein, J. (1985) Evolution 39, 783-791] suggested the use of the bootstrap to answer this question. Felsenstein's method, which in concept is a straightforward application of the bootstrap, is widely used, but has been criticized as biased in the genetics literature. This paper concerns the use of the bootstrap in the tree problem. We show that Felsenstein's method is not biased, but that it can be corrected to better agree with standard ideas of confidence levels and hypothesis testing. These corrections can be made by using the more elaborate bootstrap method presented here, at the expense of considerably more computation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelor, D.B.; Carreras, B.A.; Hirshman, S.P.

    Significant progress has been made in the development of new modest-size compact stellarator devices that could test optimization principles for the design of a more attractive reactor. These are 3 and 4 field period low-aspect-ratio quasi-omnigenous (QO) stellarators based on an optimization method that targets improved confinement, stability, ease of coil design, low-aspect-ratio, and low bootstrap current.

  14. Working Memory Deficits and Social Problems in Children with ADHD

    ERIC Educational Resources Information Center

    Kofler, Michael J.; Rapport, Mark D.; Bolden, Jennifer; Sarver, Dustin E.; Raiker, Joseph S.; Alderson, R. Matt

    2011-01-01

    Social problems are a prevalent feature of ADHD and reflect a major source of functional impairment for these children. The current study examined the impact of working memory deficits on parent- and teacher-reported social problems in a sample of children with ADHD and typically developing boys (N = 39). Bootstrapped, bias-corrected mediation…

  15. The Development of Spontaneous Sound-Shape Matching in Monolingual and Bilingual Infants during the First Year

    ERIC Educational Resources Information Center

    Pejovic, Jovana; Molnar, Monika

    2017-01-01

    Recently it has been proposed that sensitivity to nonarbitrary relationships between speech sounds and objects potentially bootstraps lexical acquisition. However, it is currently unclear whether preverbal infants (e.g., before 6 months of age) with different linguistic profiles are sensitive to such nonarbitrary relationships. Here, the authors…

  16. An algebraic approach to the analytic bootstrap

    DOE PAGES

    Alday, Luis F.; Zhiboedov, Alexander

    2017-04-27

    We develop an algebraic approach to the analytic bootstrap in CFTs. By acting with the Casimir operator on the crossing equation we map the problem of doing large spin sums to any desired order to the problem of solving a set of recursion relations. We compute corrections to the anomalous dimension of large spin operators due to the exchange of a primary and its descendants in the crossed channel and show that this leads to a Borel-summable expansion. Here, we analyse higher order corrections to the microscopic CFT data in the direct channel and its matching to infinite towers ofmore » operators in the crossed channel. We apply this method to the critical O(N ) model. At large N we reproduce the first few terms in the large spin expansion of the known two-loop anomalous dimensions of higher spin currents in the traceless symmetric representation of O(N ) and make further predictions. At small N we present the results for the truncated large spin expansion series of anomalous dimensions of higher spin currents.« less

  17. Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime

    DOE PAGES

    Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; ...

    2016-06-20

    Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of β p and β N despite strong ITBs. Good confinement has been achieved with reduced toroidal rotation. These high β p plasmas challenge the energy transport understanding, especiallymore » in the electron energy channel. A new turbulent transport model, named 2 TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. Finally, more investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.« less

  18. Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields. II. Kinetic theory

    NASA Astrophysics Data System (ADS)

    Forest, M. Gregory; Sircar, Sarthok; Wang, Qi; Zhou, Ruhai

    2006-10-01

    We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional rate parameters). We solve the Smoluchowski equation of the reduced model to explore: (i) the effect of introducing a coplanar magnetic field on each sheared monodomain attractor of the Doi-Hess kinetic theory and (ii) the coupling of coplanar extensional flow and magnetic fields. For (i), we show each sheared attractor (steady and unsteady, with peak axis in and out of the shearing plane, periodic and chaotic orbits) undergoes its own transition sequence versus magnetic field strength. Nonetheless, robust predictions emerge: out-of-plane degrees of freedom are arrested with increasing field strength, and a unique flow-aligning or tumbling/wagging limit cycle emerges above a threshold magnetic field strength or modified geometry parameter value. For (ii), irrotational flows coupled with a coplanar magnetic field yield only steady states. We characterize all (generically biaxial) equilibria in terms of an explicit Boltzmann distribution, providing a natural generalization of analytical results on pure nematic equilibria [P. Constantin, I. Kevrekidis, and E. S. Titi, Arch. Rat. Mech. Anal. 174, 365 (2004); P. Constantin, I. Kevrekidis, and E. S. Titi, Discrete and Continuous Dynamical Systems 11, 101 (2004); P. Constantin and J. Vukadinovic, Nonlinearity 18, 441 (2005); H. Liu, H. Zhang, and P. Zhang, Comm. Math. Sci. 3, 201 (2005); C. Luo, H. Zhang, and P. Zhang, Nonlinearity 18, 379 (2005); I. Fatkullin and V. Slastikov, Nonlinearity 18, 2565 (2005); H. Zhou, H. Wang, Q. Wang, and M. G. Forest, Nonlinearity 18, 2815 (2005)] and extensional flow-induced equilibria [Q. Wang, S. Sircar, and H. Zhou, Comm. Math. Sci. 4, 605 (2005)]. We predict large parameter regions of bi-stable equilibria; the lowest energy state always has principal axis aligned in the flow plane, while another minimum energy state often exists, with primary alignment transverse to the coplanar field.

  19. Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX

    NASA Astrophysics Data System (ADS)

    Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team

    2016-10-01

    Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  20. Thermodynamic characteristics of protolytic equilibria in aqueous solutions of glycyl peptides

    NASA Astrophysics Data System (ADS)

    Gridchin, S. N.

    2016-11-01

    Protolytic equilibria in aqueous solutions of glycyl-DL-serine, glycyl-DL-threonine, and glycyl-DL-valine are investigated by means of potentiometry and calorimetry. Dissociation constants and heat effects of the above dipeptides are determined. Standard thermodynamic characteristics (p K°, Δdis G°, Δdis H°, Δdis S°) of the investigated equilibria are calculated. The obtained results are compared to corresponding data on relative compounds.

  1. Coefficient Alpha Bootstrap Confidence Interval under Nonnormality

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew

    2012-01-01

    Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…

  2. Pearson-type goodness-of-fit test with bootstrap maximum likelihood estimation.

    PubMed

    Yin, Guosheng; Ma, Yanyuan

    2013-01-01

    The Pearson test statistic is constructed by partitioning the data into bins and computing the difference between the observed and expected counts in these bins. If the maximum likelihood estimator (MLE) of the original data is used, the statistic generally does not follow a chi-squared distribution or any explicit distribution. We propose a bootstrap-based modification of the Pearson test statistic to recover the chi-squared distribution. We compute the observed and expected counts in the partitioned bins by using the MLE obtained from a bootstrap sample. This bootstrap-sample MLE adjusts exactly the right amount of randomness to the test statistic, and recovers the chi-squared distribution. The bootstrap chi-squared test is easy to implement, as it only requires fitting exactly the same model to the bootstrap data to obtain the corresponding MLE, and then constructs the bin counts based on the original data. We examine the test size and power of the new model diagnostic procedure using simulation studies and illustrate it with a real data set.

  3. Equilibria of oligomeric proteins under high pressure - A theoretical description.

    PubMed

    Ingr, Marek; Kutálková, Eva; Hrnčiřík, Josef; Lange, Reinhard

    2016-12-21

    High pressure methods have become a useful tool for studying protein structure and stability. Using them, various physico-chemical processes including protein unfolding, aggregation, oligomer dissociation or enzyme-activity decrease were studied on many different proteins. Oligomeric protein dissociation is a process that can perfectly utilize the potential of high-pressure techniques, as the high pressure shifts the equilibria to higher concentrations making them better observable by spectroscopic methods. This can be especially useful when the oligomeric form is highly stable at atmospheric pressure. These applications may be, however, hindered by less intensive experimental response as well as interference of the oligomerization equilibria with unfolding or aggregation of the subunits, but also by more complex theoretical description. In this study we develop mathematical models describing different kinds of oligomerization equilibria, both closed (equilibrium of monomer and the highest possible oligomer without any intermediates) and consecutive. Closed homooligomer equilibria are discussed for any oligomerization degree, while the more complex heterooligomer equilibria and the consecutive equilibria in both homo- and heterooligomers are taken into account only for dimers and trimers. In all the cases, fractions of all the relevant forms are evaluated as functions of pressure and concentration. Significant points (inflection points and extremes) of the resulting transition curves, that can be determined experimentally, are evaluated as functions of pressure and/or concentration. These functions can be further used in order to evaluate the thermodynamic parameters of the system, i.e. atmospheric-pressure equilibrium constants and volume changes of the individual steps of the oligomer-dissociation processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Social Interactions under Incomplete Information: Games, Equilibria, and Expectations

    NASA Astrophysics Data System (ADS)

    Yang, Chao

    My dissertation research investigates interactions of agents' behaviors through social networks when some information is not shared publicly, focusing on solutions to a series of challenging problems in empirical research, including heterogeneous expectations and multiple equilibria. The first chapter, "Social Interactions under Incomplete Information with Heterogeneous Expectations", extends the current literature in social interactions by devising econometric models and estimation tools with private information in not only the idiosyncratic shocks but also some exogenous covariates. For example, when analyzing peer effects in class performances, it was previously assumed that all control variables, including individual IQ and SAT scores, are known to the whole class, which is unrealistic. This chapter allows such exogenous variables to be private information and models agents' behaviors as outcomes of a Bayesian Nash Equilibrium in an incomplete information game. The distribution of equilibrium outcomes can be described by the equilibrium conditional expectations, which is unique when the parameters are within a reasonable range according to the contraction mapping theorem in function spaces. The equilibrium conditional expectations are heterogeneous in both exogenous characteristics and the private information, which makes estimation in this model more demanding than in previous ones. This problem is solved in a computationally efficient way by combining the quadrature method and the nested fixed point maximum likelihood estimation. In Monte Carlo experiments, if some exogenous characteristics are private information and the model is estimated under the mis-specified hypothesis that they are known to the public, estimates will be biased. Applying this model to municipal public spending in North Carolina, significant negative correlations between contiguous municipalities are found, showing free-riding effects. The Second chapter "A Tobit Model with Social Interactions under Incomplete Information", is an application of the first chapter to censored outcomes, corresponding to the situation when agents" behaviors are subjected to some binding restrictions. In an interesting empirical analysis for property tax rates set by North Carolina municipal governments, it is found that there is a significant positive correlation among near-by municipalities. Additionally, some private information about its own residents is used by a municipal government to predict others' tax rates, which enriches current empirical work about tax competition. The third chapter, "Social Interactions under Incomplete Information with Multiple Equilibria", extends the first chapter by investigating effective estimation methods when the condition for a unique equilibrium may not be satisfied. With multiple equilibria, the previous model is incomplete due to the unobservable equilibrium selection. Neither conventional likelihoods nor moment conditions can be used to estimate parameters without further specifications. Although there are some solutions to this issue in the current literature, they are based on strong assumptions such as agents with the same observable characteristics play the same strategy. This paper relaxes those assumptions and extends the all-solution method used to estimate discrete choice games to a setting with both discrete and continuous choices, bounded and unbounded outcomes, and a general form of incomplete information, where the existence of a pure strategy equilibrium has been an open question for a long time. By the use of differential topology and functional analysis, it is found that when all exogenous characteristics are public information, there are a finite number of equilibria. With privately known exogenous characteristics, the equilbria can be represented by a compact set in a Banach space and be approximated by a finite set. As a result, a finite-state probability mass function can be used to specify a probability measure for equilibrium selection, which completes the model. From Monte Carlo experiments about two types of binary choice models, it is found that assuming equilibrium uniqueness can bring in estimation biases when the true value of interaction intensity is large and there are multiple equilibria in the data generating process.

  5. Statistical mechanics explanation for the structure of ocean eddies and currents

    NASA Astrophysics Data System (ADS)

    Venaille, A.; Bouchet, F.

    2010-12-01

    The equilibrium statistical mechanics of two dimensional and geostrophic flows predicts the outcome for the large scales of the flow, resulting from the turbulent mixing. This theory has been successfully applied to describe detailed properties of Jupiter's Great Red Spot. We discuss the range of applicability of this theory to ocean dynamics. It is able to reproduce mesoscale structures like ocean rings. It explains, from statistical mechanics, the westward drift of rings at the speed of non dispersive baroclinic waves, and the recently observed (Chelton and col.) slower northward drift of cyclonic eddies and southward drift of anticyclonic eddies. We also uncover relations between strong eastward mid-basin inertial jets, like the Kuroshio extension and the Gulf Stream, and statistical equilibria. We explain under which conditions such strong mid-basin jets can be understood as statistical equilibria. We claim that these results are complementary to the classical Sverdrup-Munk theory: they explain the inertial part basin dynamics, the jets structure and location, using very simple theoretical arguments. References: A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, arxiv ...., submitted to Physics Reports P. BERLOFF, A. M. HOGG, W. DEWAR, The Turbulent Oscillator: A Mechanism of Low- Frequency Variability of the Wind-Driven Ocean Gyres, Journal of Physical Oceanography 37 (2007) 2363-+. D. B. CHELTON, M. G. SCHLAX, R. M. SAMELSON, R. A. de SZOEKE, Global observations of large oceanic eddies, Geo. Res. Lett.34 (2007) 15606-+ b) and c) are snapshots of streamfunction and potential vorticity (red: positive values; blue: negative values) in the upper layer of a three layer quasi-geostrophic model of a mid-latitude ocean basin (from Berloff and co.). a) Streamfunction predicted by statistical mechanics. Even in an out-equilibrium situation like this one, equilibrium statistical mechanics predicts remarkably the overall qualitative flow structure. Observation of westward drift of ocean eddies and of slower northward drift of cyclones and southward drift of anticyclones by Chelton and co. We explain these observations from statistical mechanics.

  6. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  7. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  8. Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…

  9. Self-consistent current sheet structures in the quiet-time magnetotail

    NASA Technical Reports Server (NTRS)

    Holland, Daniel L.; Chen, James

    1993-01-01

    The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.

  10. Investigation of geomagnetic induced current at high latitude during the storm-time variation

    NASA Astrophysics Data System (ADS)

    Falayi, E. O.; Ogunmodimu, O.; Bolaji, O. S.; Ayanda, J. D.; Ojoniyi, O. S.

    2017-06-01

    During the geomagnetic disturbances, the geomagnetically induced current (GIC) are influenced by the geoelectric field flowing in conductive Earth. In this paper, we studied the variability of GICs, the time derivatives of the geomagnetic field (dB/dt), geomagnetic indices: Symmetric disturbance field in H (SYM-H) index, AU (eastward electrojet) and AL (westward electrojet) indices, Interplanetary parameters such as solar wind speed (v), and interplanetary magnetic field (Bz) during the geomagnetic storms on 31 March 2001, 21 October 2001, 6 November 2001, 29 October 2003, 31 October 2003 and 9 November 2004 with high solar wind speed due to a coronal mass ejection. Wavelet spectrum based approach was employed to analyze the GIC time series in a sequence of time scales of one to twenty four hours. It was observed that there are more concentration of power between the 14-24 h on 31 March 2001, 17-24 h on 21 October 2001, 1-7 h on 6 November 2001, two peaks were observed between 5-8 h and 21-24 h on 29 October 2003, 1-3 h on 31 October 2003 and 18-22 h on 9 November 2004. Bootstrap method was used to obtain regression correlations between the time derivative of the geomagnetic field (dB/dt) and the observed values of the geomagnetic induced current on 31 March 2001, 21 October 2001, 6 November 2001, 29 October 2003, 31 October 2003 and 9 November 2004 which shows a distributed cluster of correlation coefficients at around r = -0.567, -0.717, -0.477, -0.419, -0.210 and r = -0.488 respectively. We observed that high energy wavelet coefficient correlated well with bootstrap correlation, while low energy wavelet coefficient gives low bootstrap correlation. It was noticed that the geomagnetic storm has a influence on GIC and geomagnetic field derivatives (dB/dt). This might be ascribed to the coronal mass ejection with solar wind due to particle acceleration processes in the solar atmosphere.

  11. Impact of Sampling Density on the Extent of HIV Clustering

    PubMed Central

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor

    2014-01-01

    Abstract Identifying and monitoring HIV clusters could be useful in tracking the leading edge of HIV transmission in epidemics. Currently, greater specificity in the definition of HIV clusters is needed to reduce confusion in the interpretation of HIV clustering results. We address sampling density as one of the key aspects of HIV cluster analysis. The proportion of viral sequences in clusters was estimated at sampling densities from 1.0% to 70%. A set of 1,248 HIV-1C env gp120 V1C5 sequences from a single community in Botswana was utilized in simulation studies. Matching numbers of HIV-1C V1C5 sequences from the LANL HIV Database were used as comparators. HIV clusters were identified by phylogenetic inference under bootstrapped maximum likelihood and pairwise distance cut-offs. Sampling density below 10% was associated with stochastic HIV clustering with broad confidence intervals. HIV clustering increased linearly at sampling density >10%, and was accompanied by narrowing confidence intervals. Patterns of HIV clustering were similar at bootstrap thresholds 0.7 to 1.0, but the extent of HIV clustering decreased with higher bootstrap thresholds. The origin of sampling (local concentrated vs. scattered global) had a substantial impact on HIV clustering at sampling densities ≥10%. Pairwise distances at 10% were estimated as a threshold for cluster analysis of HIV-1 V1C5 sequences. The node bootstrap support distribution provided additional evidence for 10% sampling density as the threshold for HIV cluster analysis. The detectability of HIV clusters is substantially affected by sampling density. A minimal genotyping density of 10% and sampling density of 50–70% are suggested for HIV-1 V1C5 cluster analysis. PMID:25275430

  12. Visceral sensitivity, anxiety, and smoking among treatment-seeking smokers.

    PubMed

    Zvolensky, Michael J; Bakhshaie, Jafar; Norton, Peter J; Smits, Jasper A J; Buckner, Julia D; Garey, Lorra; Manning, Kara

    2017-12-01

    It is widely recognized that smoking is related to abdominal pain and discomfort, as well as gastrointestinal disorders. Research has shown that visceral sensitivity, experiencing anxiety around gastrointestinal sensations, is associated with poorer gastrointestinal health and related health outcomes. Visceral sensitivity also increases anxiety symptoms and mediates the relation with other risk factors, including gastrointestinal distress. No work to date, however, has evaluated visceral sensitivity in the context of smoking despite the strong association between smoking and poor physical and mental health. The current study sought to examine visceral sensitivity as a unique predictor of cigarette dependence, threat-related smoking abstinence expectancies (somatic symptoms and harmful consequences), and perceived barriers for cessation via anxiety symptoms. Eighty-four treatment seeking adult daily smokers (M age =45.1years [SD=10.4]; 71.6% male) participated in this study. There was a statistically significant indirect effect of visceral sensitivity via general anxiety symptoms on cigarette dependence (b=0.02, SE=0.01, Bootstrapped 95% CI [0.006, 0.05]), smoking abstinence somatic expectancies (b=0.10, SE=0.03, Bootstrapped 95% CI [0.03, 0.19]), smoking abstinence harmful experiences (b=0.13, SE=0.05, Bootstrapped 95% CI [0.03, 0.25]), and barriers to cessation (b=0.05, SE=0.06, Bootstrapped 95% CI [0.01, 0.13]). Overall, the present study serves as an initial investigation into the nature of the associations between visceral sensitivity, anxiety symptoms, and clinically significant smoking processes among treatment-seeking smokers. Future work is needed to explore the extent to which anxiety accounts for relations between visceral sensitivity and other smoking processes (e.g., withdrawal, cessation outcome). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Determination of 3D Equilibria from Flux Surface Knowledge Only

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick; N. Pomphrey

    We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information.

  14. Biparametric equilibria bifurcations of the Pierce diode: A one-dimensional plasma-filled device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terra, Maisa O.

    2011-03-15

    The equilibria bifurcations of the biparametric version of the classical Pierce diode, a one-dimensional plasma-filled device, are analyzed in detail. Our investigation reveals that this spatiotemporal model is not structurally stable in relation to a second control parameter, the ratio of the plasma ion density to the injected electron beam density. For the first time, we relate the existence of one-fluid chaotic regions with specific biparametric equilibria bifurcations, identifying the restricted regions in the parametric plane where they occur. We show that the system presents several biparametric scenarios involving codimension-two transcritical bifurcations. Finally, we provide the spatial profile of themore » stable and unstable one-fluid equilibria in order to describe their metamorphoses.« less

  15. Unbiased Estimates of Variance Components with Bootstrap Procedures

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2007-01-01

    This article provides general procedures for obtaining unbiased estimates of variance components for any random-model balanced design under any bootstrap sampling plan, with the focus on designs of the type typically used in generalizability theory. The results reported here are particularly helpful when the bootstrap is used to estimate standard…

  16. Explorations in Statistics: the Bootstrap

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2009-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the…

  17. Bootstrapping Confidence Intervals for Robust Measures of Association.

    ERIC Educational Resources Information Center

    King, Jason E.

    A Monte Carlo simulation study was conducted to determine the bootstrap correction formula yielding the most accurate confidence intervals for robust measures of association. Confidence intervals were generated via the percentile, adjusted, BC, and BC(a) bootstrap procedures and applied to the Winsorized, percentage bend, and Pearson correlation…

  18. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  19. HEXT, a software supporting tree-based screens for hybrid taxa in multilocus data sets, and an evaluation of the homoplasy excess test.

    PubMed

    Schneider, Kevin; Koblmüller, Stephan; Sefc, Kristina M

    2015-11-11

    The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis .With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.

  20. Phase Equilibria in the ZnO-"FeO"-SiO2 System in Reducing Atmosphere and in the ZnO-"FeO"-SiO2-"Cu2O" System in Equilibrium with Liquid Copper Metal at 1250 °C (1523 K)

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    2018-05-01

    Recent experimental studies in the ZnO-"FeO"-SiO2 system in reducing atmosphere demonstrated significant discrepancies with the current FactSage thermodynamic model developed using previous experimental data in this system in equilibrium with metallic iron and air. The present experimental study on phase equilibria in the ZnO-"FeO"-SiO2-"Cu2O" system in equilibrium with liquid copper at 1250 °C (1523 K) at low copper oxide concentrations in slag was initiated and undertaken to resolve these discrepancies. A high-temperature equilibration-rapid quenching-electron-probe X-ray microanalysis (EPMA) technique using a primary phase substrate support and closed system approach with Cu metal introduced to determine effective equilibrium oxygen partial pressure from the Cumetal/Cu2Oslag equilibria was applied to provide accurate information on the liquidus and corresponding solid compositions in the spinel, willemite, and tridymite primary phase fields. The present results confirmed the accuracy of the FactSage model, resolved discrepancies, and demonstrated significant uncertainties in the recent studies by other authors on the system in the open reducing atmosphere. The present study shows how this closed system approach can be used to obtain key thermodynamic data on phase equilibria in systems containing volatile metal species, overcoming the limitations and uncertainties encountered in conventional open gas/condensed phase equilibration with these systems. The study highlights the importance of the focus on obtaining accurate experimental data and the risks of misleading information from inadequate experimental control and analysis. The study also demonstrates that continuing in-depth critical review and analysis of the elemental reactions taking place in complex systems is an essential step in phase equilibrium research.

  1. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition tomore » instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.« less

  2. Core transport properties in JT-60U and JET identity plasmas

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombé, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; ITPA Transport Group; JT-60 Team; EFDA contributors, JET

    2011-07-01

    The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma shape, toroidal magnetic field ripple and dimensionless profiles as close as possible during the ITB triggering phase in terms of safety factor, normalized Larmor radius, normalized collision frequency, thermal beta, ratio of ion to electron temperatures. Similarities in the ITB triggering mechanisms and sustainment were observed when a good match was achieved of the most relevant normalized profiles except the toroidal Mach number. Similar thermal ion transport levels in the two devices have been measured in either monotonic or non-monotonic q-profiles. In contrast, differences between JET and JT-60U were observed on the electron thermal and particle confinement in reversed magnetic shear configurations. It was found that the larger shear reversal in the very centre (inside normalized radius of 0.2) of JT-60U plasmas allowed the sustainment of stronger electron density ITBs compared with JET. As a consequence of peaked density profile, the core bootstrap current density is more than five times higher in JT-60U compared with JET. Thanks to the bootstrap effect and the slightly broader neutral beam deposition, reversed magnetic shear configurations are self-sustained in JT-60U scenarios. Analyses of similarities and differences between the two devices address key questions on the validity of the usual assumptions made in ITER steady scenario modelling, e.g. a flat density profile in the core with thermal transport barrier? Such assumptions have consequences on the prediction of fusion performance, bootstrap current and on the sustainment of the scenario.

  3. Mixed Nash equilibria in Eisert-Lewenstein-Wilkens (ELW) games

    NASA Astrophysics Data System (ADS)

    Bolonek-Lasoń, Katarzyna; Kosiński, Piotr

    2017-01-01

    The classification of all mixed Nash equilibria for the original ELW game is presented. It is based on the quaternionic form of the game proposed by Landsburg (Proc. Am. Math. Soc. 139 (2011), 4423; Rochester Working Paper No 524 (2006); Wiley Encyclopedia of Operations Research and Management Science (Wiley and Sons, New York, (2011)). This approach allows to reduce the problem of finding the Nash equilibria to relatively simple analysis of the extrema of certain quadratic forms.

  4. Bootstrap Estimation of Sample Statistic Bias in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Thompson, Bruce; Fan, Xitao

    This study empirically investigated bootstrap bias estimation in the area of structural equation modeling (SEM). Three correctly specified SEM models were used under four different sample size conditions. Monte Carlo experiments were carried out to generate the criteria against which bootstrap bias estimation should be judged. For SEM fit indices,…

  5. A Bootstrap Generalization of Modified Parallel Analysis for IRT Dimensionality Assessment

    ERIC Educational Resources Information Center

    Finch, Holmes; Monahan, Patrick

    2008-01-01

    This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…

  6. Long multiplet bootstrap

    NASA Astrophysics Data System (ADS)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker

    2017-10-01

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c≥ 13/24 for the central charge of such models, which we argue cannot be saturated by an interacting SCFT.

  7. Unconventional Expressions: Productive Syntax in the L2 Acquisition of Formulaic Language

    ERIC Educational Resources Information Center

    Bardovi-Harlig, Kathleen; Stringer, David

    2017-01-01

    This article presents a generative analysis of the acquisition of formulaic language as an alternative to current usage-based proposals. One influential view of the role of formulaic expressions in second language (L2) development is that they are a bootstrapping mechanism into the L2 grammar; an initial repertoire of constructions allows for…

  8. High internal inductance for steady-state operation in ITER and a reactor

    DOE PAGES

    Ferron, John R.; Holcomb, Christopher T.; Luce, Timothy C.; ...

    2015-06-26

    Increased confinement and ideal stability limits at relatively high values of the internal inductance (more » $${{\\ell}_{i}}$$ ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with $${{\\beta}_{\\text{N}}}\\approx 5$$ at $${{\\ell}_{i}}\\approx 1.3$$ , near the ideal $n=1$ kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at $${{\\beta}_{\\text{N}}}>5.5$$ . Confinement is above the H-mode level with $${{H}_{98\\left(\\text{y},2\\right)}}\\approx 1.8$$ . At $${{q}_{95}}\\approx 7.5$$ , the current is overdriven, with bootstrap current fraction $${{f}_{\\text{BS}}}\\approx 0.8$$ , noninductive current fraction $${{f}_{\\text{NI}}}>1$$ and negative surface voltage. For ITER (which has a single-null divertor shape), operation at $${{\\ell}_{i}}\\approx 1$$ is a promising option with $${{f}_{\\text{BS}}}\\approx 0.5$$ and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at $${{q}_{95}}=4.8$$ , so far reaching $${{f}_{\\text{NI}}}=0.7$$ and $${{f}_{\\text{BS}}}=0.4$$ at $${{\\beta}_{\\text{N}}}\\approx 3.5$$ with performance appropriate for the ITER Q=5 mission, $${{H}_{89}}{{\\beta}_{\\text{N}}}/q_{95}^{2}\\approx 0.3$$ . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high $${{\\ell}_{i}}$$ discharge. Lastly, stable solutions in the double-null shape are found without the vacuum vessel wall at $${{\\beta}_{\\text{N}}}=4$$ , $${{\\ell}_{i}}=1.07$$ and $${{f}_{\\text{BS}}}=0.5$$ , and at $${{\\beta}_{\\text{N}}}=5$$ with the vacuum vessel wall.« less

  9. Understanding disruptions in tokamaksa)

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  10. Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data

    USGS Publications Warehouse

    Bakun, W.H.; Gomez, Capera A.; Stucchi, M.

    2011-01-01

    Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.

  11. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  12. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  13. Confidence Intervals for the Mean: To Bootstrap or Not to Bootstrap

    ERIC Educational Resources Information Center

    Calzada, Maria E.; Gardner, Holly

    2011-01-01

    The results of a simulation conducted by a research team involving undergraduate and high school students indicate that when data is symmetric the student's "t" confidence interval for a mean is superior to the studied non-parametric bootstrap confidence intervals. When data is skewed and for sample sizes n greater than or equal to 10,…

  14. The Beginner's Guide to the Bootstrap Method of Resampling.

    ERIC Educational Resources Information Center

    Lane, Ginny G.

    The bootstrap method of resampling can be useful in estimating the replicability of study results. The bootstrap procedure creates a mock population from a given sample of data from which multiple samples are then drawn. The method extends the usefulness of the jackknife procedure as it allows for computation of a given statistic across a maximal…

  15. Application of a New Resampling Method to SEM: A Comparison of S-SMART with the Bootstrap

    ERIC Educational Resources Information Center

    Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao

    2016-01-01

    Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…

  16. A Primer on Bootstrap Factor Analysis as Applied to Health Studies Research

    ERIC Educational Resources Information Center

    Lu, Wenhua; Miao, Jingang; McKyer, E. Lisako J.

    2014-01-01

    Objectives: To demonstrate how the bootstrap method could be conducted in exploratory factor analysis (EFA) with a syntax written in SPSS. Methods: The data obtained from the Texas Childhood Obesity Prevention Policy Evaluation project (T-COPPE project) were used for illustration. A 5-step procedure to conduct bootstrap factor analysis (BFA) was…

  17. National Spherical Torus Experiment (NSTX) Facility/Diagnostic Overview

    NASA Astrophysics Data System (ADS)

    Ono, M.

    2005-10-01

    The capabilities of the NSTX experimental facility and diagnostics continue to improve. The new TF joints are performing well at 4.5 kG. New in-board shaping coils were installed to produce plasmas with simultaneously high elongation ˜2.5 and high triangularity ˜0.8 needed for advanced operation. The EFC/RWM system with six external coils driven by three switching power amplifiers (1 kHz, 6 kA-turn) is now fully operational. With these new tools, we significantly expanded the NSTX operating parameters, achieving the highest controlled elongation of 2.75, a shape factor q95Ip/aBT of 37 MA/m-T, plasma volume of 14 m^3, stored energy of 430 kJ, normalized beta of 7.4 % MA/m-T, bootstrap current fraction of 60 % at 700 kA, and longest plasma pulse length of 1.5 s or about 4 times the resistive skin time. In the area of the plasma diagnostics, ten additional Thomson scattering channels are providing detailed measurement of the H-mode pedestal and internal barrier regions. The 8 channel MSE diagnostic is providing crucial j(r) measurements including high electron confinement reversed shear plasmas. A tangential microwave scattering system to measure electron-transport- relevant fluctuations is being commissioned.

  18. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    USGS Publications Warehouse

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  19. Bootstrap position analysis for forecasting low flow frequency

    USGS Publications Warehouse

    Tasker, Gary D.; Dunne, P.

    1997-01-01

    A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.

  20. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    PubMed

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Influence of helical external driven current on nonlinear resistive tearing mode evolution and saturation in tokamaks

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Wang, S.; Ma, Z. W.

    2017-06-01

    The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.

  2. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    PubMed

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  3. Axisymmetric plasma equilibria in a Kerr metric

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  4. Design of snowflake-diverted equilibria of CFETR

    NASA Astrophysics Data System (ADS)

    Hang, LI; Xiang, GAO; Guoqiang, LI; Zhengping, LUO; Damao, YAO; Yong, GUO

    2018-03-01

    The Chinese Fusion Engineering Test Reactor (CFETR) represents the next generation of full superconducting fusion reactors in China. Recently, CFETR was redesigned with a larger size and will be operated in two phases. To reduce the heat flux on the target plate, a snowflake (SF) divertor configuration is proposed. In this paper we show that by adding two dedicated poloidal field (PF) coils, the SF configuration can be achieved in both phases. The equilibria were calculated by TEQ code for a range of self-inductances l i3. The coil currents were calculated at some fiducial points in the flattop phase. The results indicate that the PF coil system has the ability to maintain a long flattop phase in 7.5 and 10 MA inductive scenarios for the single null divertor (SND) and SF divertor configurations. The properties of the SF configuration were also analyzed. The connection length and flux expansion of the SF divertor were both increased significantly over the SND.

  5. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    ERIC Educational Resources Information Center

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  6. On Nash-Equilibria of Approximation-Stable Games

    NASA Astrophysics Data System (ADS)

    Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh

    One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.

  7. Idealized modeling of convective organization with changing sea surface temperatures using multiple equilibria in weak temperature gradient simulations

    NASA Astrophysics Data System (ADS)

    Sentić, Stipo; Sessions, Sharon L.

    2017-06-01

    The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.

  8. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  9. The effect of delays on filament oscillations and stability

    NASA Astrophysics Data System (ADS)

    van den Oord, G. H. J.; Schutgens, N. A. J.; Kuperus, M.

    1998-11-01

    We discuss the linear response of a filament to perturbations, taking the finite communication time between the filament and the photosphere into account. The finite communication time introduces delays in the system. Recently Schutgens (1997ab) investigated the solutions of the delay equation for vertical perturbations. In this paper we expand his analysis by considering also horizontal and coupled oscillations. The latter occur in asymmetric coronal fields. We also discuss the effect of Alfven wave emission on filament oscillations and show that wave emission is important for stabilizing filaments. We introduce a fairly straightforward method to study the solutions of delay equations as a function of the filament-photosphere communication time. A solution can be described by a linear combination of damped harmonic oscillations each characterized by a frequency, a damping/growth time and, accordingly, a quality factor. As a secondary result of our analysis we show that, within the context of line current models, Kippenhahn/Schlüter-type filament equilibria can never be stable in the horizontal and the vertical direction at the same time but we also demonstrate that Kuperus/Raadu-type equilibria can account for both an inverse or a normal polarity signature. The diagnostic value of our analysis for determining, e.g., the filament current from observations of oscillating filaments is discussed.

  10. Optimal Equilibria and Plasma Parameter Evolutions for the Ignitor Experiment*

    NASA Astrophysics Data System (ADS)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    2011-10-01

    In view of the operation of the Ignitor machine in both the H and the I-regime, optimal equilibrium configurations that can sustain plasma currents Ip up to 10 MA with a double X-point have been identified. In fact, the emergence of the I-regime in double X-point configurations has not been observed experimentally yet. The characteristics of the magnetic equilibrium configurations that can be produced play a crucial role in the performance of the machine. Therefore, particular care has been devoted to the study of plasma equilibria relevant to the main phases of the discharge evolution. A series of simulations to be utilized for the control of the relevant (sub-ignited) plasma parameters has been carried out using the JETTO transport code considering different values of the plasma current and, correspondingly, of the magnetic field. Special attention has been devoted to non-igniting experiments with Ip = 5 MA and BT = 8 T, where BT is the toroidal magnetic field, as they can be performed with much better duty cycles and longer duration than experiments aimed at reaching the most extreme plasma parameters and ignition in particular. The results of the relevant analyses with a discussion of the adopted transport coefficients is presented. * Sponsored in part by ENEA and the U.S. DOE.

  11. swot: Super W Of Theta

    NASA Astrophysics Data System (ADS)

    Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor

    2017-07-01

    SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

  12. Competitive Exclusion and Coexistence of Pathogens in a Homosexually-Transmitted Disease Model

    PubMed Central

    Chai, Caichun; Jiang, Jifa

    2011-01-01

    A sexually-transmitted disease model for two strains of pathogen in a one-sex, heterogeneously-mixing population has been studied completely by Jiang and Chai in (J Math Biol 56:373–390, 2008). In this paper, we give a analysis for a SIS STD with two competing strains, where populations are divided into three differential groups based on their susceptibility to two distinct pathogenic strains. We investigate the existence and stability of the boundary equilibria that characterizes competitive exclusion of the two competing strains; we also investigate the existence and stability of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the two strains. We obtain sufficient and necessary conditions for the existence and global stability about these equilibria under some assumptions. We verify that there is a strong connection between the stability of the boundary equilibria and the existence of the coexistence equilibrium, that is, there exists a unique coexistence equilibrium if and only if the boundary equilibria both exist and have the same stability, the coexistence equilibrium is globally stable or unstable if and only if the two boundary equilibria are both unstable or both stable. PMID:21347222

  13. Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the alpha-chymotrypsin-proflavin interaction.

    PubMed

    Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin

    2007-12-01

    Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.

  14. Phase Equilibria of the Brine Systems Containing Strontium and Calcium Ions

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Zhao, Kaiyu; Li, Long; Guo, Yafei; Meng, Lingzong; Deng, Tianlong

    2017-12-01

    It is well known that the comprehensive utilization of the Salt Lake resources successfully must be guided corresponding to the aqueous phase equilibria and phase diagrams. Researches on the phase relationships of brine systems containing calcium and strontium ions are essential to promote the development for the relative resources discovered in China at recent years. In this paper, the phase equilibria of calcium-containing systems, strontium-containing systems and calcium-strontium coexisted brine systems around the world were reviewed. The problems existed recently and new trends in future were point out.

  15. Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.

    2016-08-01

    We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold-Beltrami-Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.

  16. KINETIC SIMULATIONS OF THE LOWEST-ORDER UNSTABLE MODE OF RELATIVISTIC MAGNETOSTATIC EQUILIBRIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie

    2016-08-01

    We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold–Beltrami–Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers aremore » disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.« less

  17. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  18. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  19. Dynamics of Perturbed Relative Equilibria of Point Vortices on the Sphere or Plane

    NASA Astrophysics Data System (ADS)

    Patrick, G. W.

    2000-06-01

    , and there are stable relative equilibria of four point vortices, where three identical point vortices form an equilateral triangle circling a central vortex. These relative equilibria have zero (nongeneric) momentum and form a family that extends to arbitrarily small diameters. Using the energy-momentum method, I show their shape is stable while their location on the sphere is unstable, and they move, after perturbation to nonzero momentum, on the sphere as point particles move under the influence of a magnetic monopole. In the analysis the internal and external degrees of freedom are separated and the mass of these point particles determined. In addition, two identical such relative equilibria attract one another, while opposites repel, and in energetic collisions, opposites disintegrate to vortex pairs while identicals interact by exchanging a vortex. An analogous situation also occurs for the planar system with its noncompact SE(2) symmetry.

  20. Semantic Drift in Espresso-style Bootstrapping: Graph-theoretic Analysis and Evaluation in Word Sense Disambiguation

    NASA Astrophysics Data System (ADS)

    Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji

    Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.

  1. Confidence limit calculation for antidotal potency ratio derived from lethal dose 50

    PubMed Central

    Manage, Ananda; Petrikovics, Ilona

    2013-01-01

    AIM: To describe confidence interval calculation for antidotal potency ratios using bootstrap method. METHODS: We can easily adapt the nonparametric bootstrap method which was invented by Efron to construct confidence intervals in such situations like this. The bootstrap method is a resampling method in which the bootstrap samples are obtained by resampling from the original sample. RESULTS: The described confidence interval calculation using bootstrap method does not require the sampling distribution antidotal potency ratio. This can serve as a substantial help for toxicologists, who are directed to employ the Dixon up-and-down method with the application of lower number of animals to determine lethal dose 50 values for characterizing the investigated toxic molecules and eventually for characterizing the antidotal protections by the test antidotal systems. CONCLUSION: The described method can serve as a useful tool in various other applications. Simplicity of the method makes it easier to do the calculation using most of the programming software packages. PMID:25237618

  2. Topics in Statistical Calibration

    DTIC Science & Technology

    2014-03-27

    on a parametric bootstrap where, instead of sampling directly from the residuals , samples are drawn from a normal distribution. This procedure will...addition to centering them (Davison and Hinkley, 1997). When there are outliers in the residuals , the bootstrap distribution of x̂0 can become skewed or...based and inversion methods using the linear mixed-effects model. Then, a simple parametric bootstrap algorithm is proposed that can be used to either

  3. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  4. Variable selection under multiple imputation using the bootstrap in a prognostic study

    PubMed Central

    Heymans, Martijn W; van Buuren, Stef; Knol, Dirk L; van Mechelen, Willem; de Vet, Henrica CW

    2007-01-01

    Background Missing data is a challenging problem in many prognostic studies. Multiple imputation (MI) accounts for imputation uncertainty that allows for adequate statistical testing. We developed and tested a methodology combining MI with bootstrapping techniques for studying prognostic variable selection. Method In our prospective cohort study we merged data from three different randomized controlled trials (RCTs) to assess prognostic variables for chronicity of low back pain. Among the outcome and prognostic variables data were missing in the range of 0 and 48.1%. We used four methods to investigate the influence of respectively sampling and imputation variation: MI only, bootstrap only, and two methods that combine MI and bootstrapping. Variables were selected based on the inclusion frequency of each prognostic variable, i.e. the proportion of times that the variable appeared in the model. The discriminative and calibrative abilities of prognostic models developed by the four methods were assessed at different inclusion levels. Results We found that the effect of imputation variation on the inclusion frequency was larger than the effect of sampling variation. When MI and bootstrapping were combined at the range of 0% (full model) to 90% of variable selection, bootstrap corrected c-index values of 0.70 to 0.71 and slope values of 0.64 to 0.86 were found. Conclusion We recommend to account for both imputation and sampling variation in sets of missing data. The new procedure of combining MI with bootstrapping for variable selection, results in multivariable prognostic models with good performance and is therefore attractive to apply on data sets with missing values. PMID:17629912

  5. Equilibria, prudent compromises, and the "waiting" game.

    PubMed

    Sim, Kwang Mong

    2005-08-01

    While evaluation of many e-negotiation agents are carried out through empirical studies, this work supplements and complements existing literature by analyzing the problem of designing market-driven agents (MDAs) in terms of equilibrium points and stable strategies. MDAs are negotiation agents designed to make prudent compromises taking into account factors such as time preference, outside option, and rivalry. This work shows that 1) in a given market situation, an MDA negotiates optimally because it makes minimally sufficient concession, and 2) by modeling negotiation of MDAs as a game gamma of incomplete information, it is shown that the strategies adopted by MDAs are stable. In a bilateral negotiation, it is proven that the strategy pair of two MDAs forms a sequential equilibrium for gamma. In a multilateral negotiation, it is shown that the strategy profile of MDAs forms a market equilibrium for gamma.

  6. Assessing uncertainties in superficial water provision by different bootstrap-based techniques

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo Mario

    2014-05-01

    An assessment of water security can incorporate several water-related concepts, characterizing the interactions between societal needs, ecosystem functioning, and hydro-climatic conditions. The superficial freshwater provision level depends on the methods chosen for 'Environmental Flow Requirement' estimations, which integrate the sources of uncertainty in the understanding of how water-related threats to aquatic ecosystem security arise. Here, we develop an uncertainty assessment of superficial freshwater provision based on different bootstrap techniques (non-parametric resampling with replacement). To illustrate this approach, we use an agricultural basin (291 km2) within the Cantareira water supply system in Brazil monitored by one daily streamflow gage (24-year period). The original streamflow time series has been randomly resampled for different times or sample sizes (N = 500; ...; 1000), then applied to the conventional bootstrap approach and variations of this method, such as: 'nearest neighbor bootstrap'; and 'moving blocks bootstrap'. We have analyzed the impact of the sampling uncertainty on five Environmental Flow Requirement methods, based on: flow duration curves or probability of exceedance (Q90%, Q75% and Q50%); 7-day 10-year low-flow statistic (Q7,10); and presumptive standard (80% of the natural monthly mean ?ow). The bootstrap technique has been also used to compare those 'Environmental Flow Requirement' (EFR) methods among themselves, considering the difference between the bootstrap estimates and the "true" EFR characteristic, which has been computed averaging the EFR values of the five methods and using the entire streamflow record at monitoring station. This study evaluates the bootstrapping strategies, the representativeness of streamflow series for EFR estimates and their confidence intervals, in addition to overview of the performance differences between the EFR methods. The uncertainties arisen during EFR methods assessment will be propagated through water security indicators referring to water scarcity and vulnerability, seeking to provide meaningful support to end-users and water managers facing the incorporation of uncertainties in the decision making process.

  7. Influence of driven current on resistive tearing mode in Tokamaks

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Wang, Sheng; Zhang, Wei

    2016-10-01

    Influence of driven current on the m / n = 2 / 1 resistive tearing mode is studied systematically using a three-dimensional toroidal MHD code (CLT). A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with increase of the driven current Icd or decrease of its width δcd, unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface. ITER-CN Program.

  8. Quantum game theory

    NASA Astrophysics Data System (ADS)

    Stohler, Michael Lehman

    2002-01-01

    Non-cooperative quantum games have received much attention recently. This thesis defines and divides current works into two major categories of gaming techniques with close attention paid to Nash equilibria, form and possibilities for the payoff functions, and the benefits of using a quantum strategy. In addition to comparing and contrasting these techniques, new applications and calculations are discussed. Finally, the techniques are expanded into 3 x 3 games which allows the study of non-transitive strategies in quantum games.

  9. A Pre-Screening Questionnaire to Predict Non-24-Hour Sleep-Wake Rhythm Disorder (N24HSWD) among the Blind

    PubMed Central

    Flynn-Evans, Erin E.; Lockley, Steven W.

    2016-01-01

    Study Objectives: There is currently no questionnaire-based pre-screening tool available to detect non-24-hour sleep-wake rhythm disorder (N24HSWD) among blind patients. Our goal was to develop such a tool, derived from gold standard, objective hormonal measures of circadian entrainment status, for the detection of N24HSWD among those with visual impairment. Methods: We evaluated the contribution of 40 variables in their ability to predict N24HSWD among 127 blind women, classified using urinary 6-sulfatoxymelatonin period, an objective marker of circadian entrainment status in this population. We subjected the 40 candidate predictors to 1,000 bootstrapped iterations of a logistic regression forward selection model to predict N24HSWD, with model inclusion set at the p < 0.05 level. We removed any predictors that were not selected at least 1% of the time in the 1,000 bootstrapped models and applied a second round of 1,000 bootstrapped logistic regression forward selection models to the remaining 23 candidate predictors. We included all questions that were selected at least 10% of the time in the final model. We subjected the selected predictors to a final logistic regression model to predict N24SWD over 1,000 bootstrapped models to calculate the concordance statistic and adjusted optimism of the final model. We used this information to generate a predictive model and determined the sensitivity and specificity of the model. Finally, we applied the model to a cohort of 1,262 blind women who completed the survey, but did not collect urine samples. Results: The final model consisted of eight questions. The concordance statistic, adjusted for bootstrapping, was 0.85. The positive predictive value was 88%, the negative predictive value was 79%. Applying this model to our larger dataset of women, we found that 61% of those without light perception, and 27% with some degree of light perception, would be referred for further screening for N24HSWD. Conclusions: Our model has predictive utility sufficient to serve as a pre-screening questionnaire for N24HSWD among the blind. Citation: Flynn-Evans EE, Lockley SW. A pre-screening questionnaire to predict non-24-hour sleep-wake rhythm disorder (N24HSWD) among the blind. J Clin Sleep Med 2016;12(5):703–710. PMID:26951421

  10. Counting conformal correlators

    NASA Astrophysics Data System (ADS)

    Kravchuk, Petr; Simmons-Duffin, David

    2018-02-01

    We introduce simple group-theoretic techniques for classifying conformallyinvariant tensor structures. With them, we classify tensor structures of general n-point functions of non-conserved operators, and n ≥ 4-point functions of general conserved currents, with or without permutation symmetries, and in any spacetime dimension d. Our techniques are useful for bootstrap applications. The rules we derive simultaneously count tensor structures for flat-space scattering amplitudes in d + 1 dimensions.

  11. Impact of E × B shear flow on low-n MHD instabilities.

    PubMed

    Chen, J G; Xu, X Q; Ma, C H; Xi, P W; Kong, D F; Lei, Y A

    2017-05-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al. , Phys. Plasmas 23 , 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E  ×  B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E  ×  B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the E r shear. Adopting the much more general shape of E  ×  B shear ([Formula: see text]) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.

  12. Impact of E × B shear flow on low-n MHD instabilities

    NASA Astrophysics Data System (ADS)

    Chen, J. G.; Xu, X. Q.; Ma, C. H.; Xi, P. W.; Kong, D. F.; Lei, Y. A.

    2017-05-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear ( ω E = E r / R B θ ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.

  13. Impact of E × B shear flow on low-n MHD instabilities

    PubMed Central

    Chen, J. G.; Ma, C. H.; Xi, P. W.; Lei, Y. A.

    2017-01-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear (ωE=Er/RBθ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode. PMID:28579732

  14. The Pitfalls of Precipitation Reactions.

    ERIC Educational Resources Information Center

    Slade, Peter W.; Rayner-Canham, Geoffrey W.

    1990-01-01

    Described are some of the difficulties presented in these reactions by competing equilibria that are usually ignored. Situations involving acid-base equilibria, solubility product calculations, the use of ammonia as a complexing agent, and semiquantitative comparisons of solubility product values are discussed. (CW)

  15. Liquid-vapor phase equilibria and the thermodynamic properties of 2-methylpropanol- n-alkyl propanoate solutions

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.

    2016-08-01

    The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).

  16. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jou, F.Y.; Mather, A.E.; Otto, F.D.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  17. Multiple Equilibria and Endogenous Cycles in a Non-Linear Harrodian Growth Model

    NASA Astrophysics Data System (ADS)

    Commendatore, Pasquale; Michetti, Elisabetta; Pinto, Antonio

    The standard result of Harrod's growth model is that, because investors react more strongly than savers to a change in income, the long run equilibrium of the economy is unstable. We re-interpret the Harrodian instability puzzle as a local instability problem and integrate his model with a nonlinear investment function. Multiple equilibria and different types of complex behaviour emerge. Moreover, even in the presence of locally unstable equilibria, for a large set of initial conditions the time path of the economy is not diverging, providing a solution to the instability puzzle.

  18. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality

    PubMed Central

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-01-01

    Socio–ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback–-Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio–ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems. PMID:26065713

  19. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.

    PubMed

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-06-11

    Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.

  20. The nucleation rate surfaces design over diagram of phase equilibria and their applications for computational chemistry

    NASA Astrophysics Data System (ADS)

    Anisimov, M. P.

    2016-12-01

    One can find in scientific literature a pretty fresh idea of the nucleation rate surfaces design over the diagrams of phase equilibria. That idea looks like profitable for the nucleation theory development and for various practical applications where predictions of theory have no high enough accuracy for today. The common thermodynamics has no real ability to predict parameters of the first order phase transition. Nucleation experiment can be provided in very local nucleation conditions even the nucleation takes place from the critical line (in two-component case) down to the absolute zero temperature limit and from zero nucleation rates at phase equilibria up to the spinodal conditions. Theory predictions have low reliability as a rule. The computational chemistry has chance to make solution of that problem easier when a set of the used axiomatic statements will adapt enough progressive assumptions [1]. Semiempirical design of the nucleation rate surfaces over diagrams of phase equilibria have a potential ability to provide a reasonable quality information on nucleation rate for each channel of nucleation. Consideration and using of the nucleation rate surface topologies to optimize synthesis of a given phase of the target material can be available when data base on nucleation rates over diagrams of phase equilibria will be created.

  1. Phase Equilibria and Crystallography of Ceramic Oxides

    PubMed Central

    Wong-Ng, W.; Roth, R. S.; Vanderah, T. A.; McMurdie, H. F.

    2001-01-01

    Research in phase equilibria and crystallography has been a tradition in the Ceramics Division at National Bureau of Standards/National Institute of Standatrds and Technology (NBS/NIST) since the early thirties. In the early years, effort was concentrated in areas of Portland cement, ceramic glazes and glasses, instrument bearings, and battery materials. In the past 40 years, a large portion of the work was related to electronic materials, including ferroelectrics, piezoelectrics, ionic conductors, dielectrics, microwave dielectrics, and high-temperature superconductors. As a result of the phase equilibria studies, many new compounds have been discovered. Some of these discoveries have had a significant impact on US industry. Structure determinations of these new phases have often been carried out as a joint effort among NBS/NIST colleagues and also with outside collaborators using both single crystal and neutron and x-ray powder diffraction techniques. All phase equilibria diagrams were included in Phase Diagrams for Ceramists, which are collaborative publications between The American Ceramic Society (ACerS) and NBS/NIST. All x-ray powder diffraction patterns have been included in the Powder Diffraction File (PDF). This article gives a brief account of the history of the development of the phase equilibria and crystallographic research on ceramic oxides in the Ceramics Division. Represented systems, particularly electronic materials, are highlighted. PMID:27500068

  2. Effect of scrape-off-layer current on reconstructed tokamak equilibrium

    DOE PAGES

    King, J. R.; Kruger, S. E.; Groebner, R. J.; ...

    2017-01-13

    Methods are described that extend fields from reconstructed equilibria to include scrape-off-layer current through extrapolated parametrized and experimental fits. The extrapolation includes both the effects of the toroidal-field and pressure gradients which produce scrape-off-layer current after recomputation of the Grad-Shafranov solution. To quantify the degree that inclusion of scrape-off-layer current modifies the equilibrium, the χ-squared goodness-of-fit parameter is calculated for cases with and without scrape-off-layer current. The change in χ-squared is found to be minor when scrape-off-layer current is included however flux surfaces are shifted by up to 3 cm. Here the impact on edge modes of these scrape-off-layer modificationsmore » is also found to be small and the importance of these methods to nonlinear computation is discussed.« less

  3. Hermite Polynomials and the Inverse Problem for Collisionless Equilibria

    NASA Astrophysics Data System (ADS)

    Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.

    2017-12-01

    It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82, 905820306, 2016 2. O. Allanson, S. Troscheit & T. Neukirch: The inverse problem for collisionless plasma equilibria (invited paper for IMA Journal of Applied Mathematics, under review)

  4. Seasonal multiphase equilibria in the atmospheres of Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.

    2017-12-01

    At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.

  5. Learning predictive models that use pattern discovery--a bootstrap evaluative approach applied in organ functioning sequences.

    PubMed

    Toma, Tudor; Bosman, Robert-Jan; Siebes, Arno; Peek, Niels; Abu-Hanna, Ameen

    2010-08-01

    An important problem in the Intensive Care is how to predict on a given day of stay the eventual hospital mortality for a specific patient. A recent approach to solve this problem suggested the use of frequent temporal sequences (FTSs) as predictors. Methods following this approach were evaluated in the past by inducing a model from a training set and validating the prognostic performance on an independent test set. Although this evaluative approach addresses the validity of the specific models induced in an experiment, it falls short of evaluating the inductive method itself. To achieve this, one must account for the inherent sources of variation in the experimental design. The main aim of this work is to demonstrate a procedure based on bootstrapping, specifically the .632 bootstrap procedure, for evaluating inductive methods that discover patterns, such as FTSs. A second aim is to apply this approach to find out whether a recently suggested inductive method that discovers FTSs of organ functioning status is superior over a traditional method that does not use temporal sequences when compared on each successive day of stay at the Intensive Care Unit. The use of bootstrapping with logistic regression using pre-specified covariates is known in the statistical literature. Using inductive methods of prognostic models based on temporal sequence discovery within the bootstrap procedure is however novel at least in predictive models in the Intensive Care. Our results of applying the bootstrap-based evaluative procedure demonstrate the superiority of the FTS-based inductive method over the traditional method in terms of discrimination as well as accuracy. In addition we illustrate the insights gained by the analyst into the discovered FTSs from the bootstrap samples. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Topical ketoprofen nanogel: artificial neural network optimization, clustered bootstrap validation, and in vivo activity evaluation based on longitudinal dose response modeling.

    PubMed

    Elkomy, Mohammed H; Elmenshawe, Shahira F; Eid, Hussein M; Ali, Ahmed M A

    2016-11-01

    This work aimed at investigating the potential of solid lipid nanoparticles (SLN) as carriers for topical delivery of Ketoprofen (KP); evaluating a novel technique incorporating Artificial Neural Network (ANN) and clustered bootstrap for optimization of KP-loaded SLN (KP-SLN); and demonstrating a longitudinal dose response (LDR) modeling-based approach to compare the activity of topical non-steroidal anti-inflammatory drug formulations. KP-SLN was fabricated by a modified emulsion/solvent evaporation method. Box-Behnken design was implemented to study the influence of glycerylpalmitostearate-to-KP ratio, Tween 80, and lecithin concentrations on particle size, entrapment efficiency, and amount of drug permeated through rat skin in 24 hours. Following clustered bootstrap ANN optimization, the optimized KP-SLN was incorporated into an aqueous gel and evaluated for rheology, in vitro release, permeability, skin irritation and in vivo activity using carrageenan-induced rat paw edema model and LDR mathematical model to analyze the time course of anti-inflammatory effect at various application durations. Lipid-to-drug ratio of 7.85 [bootstrap 95%CI: 7.63-8.51], Tween 80 of 1.27% [bootstrap 95%CI: 0.601-2.40%], and Lecithin of 0.263% [bootstrap 95%CI: 0.263-0.328%] were predicted to produce optimal characteristics. Compared with profenid® gel, the optimized KP-SLN gel exhibited slower release, faster permeability, better texture properties, greater efficacy, and similar potency. SLNs are safe and effective permeation enhancers. ANN coupled with clustered bootstrap is a useful method for finding optimal solutions and estimating uncertainty associated with them. LDR models allow mechanistic understanding of comparative in vivo performances of different topical formulations, and help design efficient dermatological bioequivalence assessment methods.

  7. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things.

    PubMed

    Garcia-Carrillo, Dan; Marin-Lopez, Rafael

    2016-03-11

    The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length.

  8. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things

    PubMed Central

    Garcia-Carrillo, Dan; Marin-Lopez, Rafael

    2016-01-01

    The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length. PMID:26978362

  9. Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults.

    PubMed

    Vorburger, Robert S; Habeck, Christian G; Narkhede, Atul; Guzman, Vanessa A; Manly, Jennifer J; Brickman, Adam M

    2016-01-01

    Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed. However, bootstrap-derived metrics are not independent of the underlying diffusion profile. A higher mean diffusivity causes a smaller signal-to-noise ratio and, thus, increases the measurement uncertainty. Moreover, the goodness of the tensor model, which relies strongly on the complexity of the underlying diffusion profile, influences bootstrap-derived metrics as well. The presented simulations clearly depict the cone of uncertainty as a function of the underlying diffusion profile. Since the relationship of the cone of uncertainty and common diffusion parameters, such as the mean diffusivity and the fractional anisotropy, is not linear, the cone of uncertainty has a different sensitivity. In vivo analysis of the fornix reveals the cone of uncertainty to be a predictor of memory function among older adults. No significant correlation occurs with the common diffusion parameters. The present work not only demonstrates the cone of uncertainty as a function of the actual diffusion profile, but also discloses the cone of uncertainty as a sensitive predictor of memory function. Future studies should incorporate bootstrap-derived metrics to provide more comprehensive analysis.

  10. Correct Representation of Conformational Equilibria.

    ERIC Educational Resources Information Center

    Fulop, F.; And Others

    1983-01-01

    In representing conformational equilibria of compounds having only one chiral center, erroneous formulas showing different antipodes on the two sides of the equilibrium are rare. In contrast, with compounds having two or more chiral centers especially with saturated heterocycles, this erroneous representation occurs frequently in the chemical…

  11. Multiple Reaction Equilibria--With Pencil and Paper: A Class Problem on Coal Methanation.

    ERIC Educational Resources Information Center

    Helfferich, Friedrich G.

    1989-01-01

    Points out a different and much simpler approach for the study of equilibria of multiple and heterogeneous chemical reactions. A simulation on coal methanation is used to teach the technique. An example and the methodology used are provided. (MVL)

  12. Acid-Base and Precipitation Equilibria in Wine

    ERIC Educational Resources Information Center

    Palma, Miguel; Barroso, Carmelo G.

    2004-01-01

    Experiments are performed to establish the changes of pH during the precipitation of potassium hydrogen tartrate, with its unfavorable impact on the stability of wine. Students, thus, obtain a clearer understanding of the interplay between a variety of chemical equilibria within a single medium.

  13. Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters.

    PubMed

    Huang, Francis L

    2018-04-01

    Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials are performed with a low number of clusters (~20 groups). Although multilevel models are often used to analyze nested data, researchers may be concerned of potentially biased results due to having only a few groups under study. Cluster bootstrapping has been suggested as an alternative procedure when analyzing clustered data though it has seen very little use in educational and psychological studies. Using a Monte Carlo simulation that varied the number of clusters, average cluster size, and intraclass correlations, we compared standard errors using cluster bootstrapping with those derived using ordinary least squares regression and multilevel models. Results indicate that cluster bootstrapping, though more computationally demanding, can be used as an alternative procedure for the analysis of clustered data when treatment effects at the group level are of primary interest. Supplementary material showing how to perform cluster bootstrapped regressions using R is also provided.

  14. Theoretical features of MHD equilibria with flow

    NASA Astrophysics Data System (ADS)

    Beklemishev, Alexei; Tessarotto, Massimo

    2002-11-01

    The effect produced on plasma dynamics by plasma flows, especially those produced by strong E× B-drifts represent an important theoretical issue in magnetic confinement. These include in particular Stellarator equilibria in the presence of weak flows, with velocity much smaller in magnitude than the ion thermal velocity [1]. Strong flows, however, more generally can be produced locally in a variety of physical situations (for example due to strong radial electric fields, neutral beams, RF heating, etc.). These flows can be important in establishing advanced operational regimes, such as the recently discovered HDH mode in the W7-AS Stellarator [2]. Goal of this work is to investigate theoretical features of the MHD equilibria in the presence of strong flows, with particular reference to conditions of existence of kinetic equilibria, particle adiabatic and/or bounce-averaged invariants. References 1 - M. Tessarotto, J.L. Johnson, R.B. White and L.J. Zheng, Phys. Plasmas 3, 2653 (1996); 2 - K. McCormick et al., Phys. Rev. Lett. 89, 15001 (2002).

  15. On the manifestation of coexisting nontrivial equilibria leading to potential well escapes in an inhomogeneous floating body

    NASA Astrophysics Data System (ADS)

    Sequeira, Dane; Wang, Xue-She; Mann, B. P.

    2018-02-01

    This paper examines the bifurcation and stability behavior of inhomogeneous floating bodies, specifically a rectangular prism with asymmetric mass distribution. A nonlinear model is developed to determine the stability of the upright and tilted equilibrium positions as a function of the vertical position of the center of mass within the prism. These equilibria positions are defined by an angle of rotation and a vertical position where rotational motion is restricted to a two dimensional plane. Numerical investigations are conducted using path-following continuation methods to determine equilibria solutions and evaluate stability. Bifurcation diagrams and basins of attraction that illustrate the stability of the equilibrium positions as a function of the vertical position of the center of mass within the prism are generated. These results reveal complex stability behavior with many coexisting solutions. Static experiments are conducted to validate equilibria orientations against numerical predictions with results showing good agreement. Dynamic experiments that examine potential well hopping behavior in a waveflume for various wave conditions are also conducted.

  16. Dynamical analysis of a cubic Liénard system with global parameters (II)

    NASA Astrophysics Data System (ADS)

    Chen, Hebai; Chen, Xingwu

    2016-06-01

    In this paper, we continue to study the global dynamics of a cubic Liénard system for global parameters in the case of three equilibria to follow (2015 Nonlinearity 28 3535-62), which deals with the case of two equilibria. We first analyse qualitative properties of all equilibria and judge the existences of limit cycles and homoclinic loops and their numbers. Then we obtain the bifurcation diagram and all phase portraits as our main results. Based on these results, in the case of three equilibria a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505-19), which is about the existence of some function whose graph is exactly the surface of double limit cycles, is obtained. Moreover, a parameter region for the nonexistence of figure-eight loops is given theoretically to compensate for previous numerical results and is illustrated numerically. Supported by NSFC 11471228, 11572263, the Fundamental Research Funds for the Central Universities and Cultivation Foundation of Excellent Doctoral Dissertation of Southwest Jiaotong University (2015).

  17. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.

    2016-01-01

    This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.

  18. Roto-orbital dynamics of a triaxial rigid body around a sphere. Relative equilibria and stability

    NASA Astrophysics Data System (ADS)

    Crespo, F.; Ferrer, S.

    2018-06-01

    We study the roto-orbital motion of a triaxial rigid body around a sphere, which is assumed to be much more massive than the triaxial body. The associated dynamics of this system, which consists of a normalized Hamiltonian with respect to the fast angles (partial averaging), is investigated making use of variables referred to the total angular momentum. The first order approximation of this model is integrable. We carry out the analysis of the relative equilibria, which hinges principally in the dihedral angle between the orbital and rotational planes and the ratio among the moments of inertia ρ = (B - A) / (2 C - B - A) . In particular, the dynamics of the body frame, though formally given by the classical Euler equations, experiences changes of stability in the principal directions related to the roto-orbital coupling. When ρ = 1 / 3 , we find a family of relative equilibria connected to the unstable equilibria of the free rigid body.

  19. Statics and Dynamics of Selfish Interactions in Distributed Service Systems

    PubMed Central

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall’Asta, Luca

    2015-01-01

    We study a class of games which models the competition among agents to access some service provided by distributed service units and which exhibits congestion and frustration phenomena when service units have limited capacity. We propose a technique, based on the cavity method of statistical physics, to characterize the full spectrum of Nash equilibria of the game. The analysis reveals a large variety of equilibria, with very different statistical properties. Natural selfish dynamics, such as best-response, usually tend to large-utility equilibria, even though those of smaller utility are exponentially more numerous. Interestingly, the latter actually can be reached by selecting the initial conditions of the best-response dynamics close to the saturation limit of the service unit capacities. We also study a more realistic stochastic variant of the game by means of a simple and effective approximation of the average over the random parameters, showing that the properties of the average-case Nash equilibria are qualitatively similar to the deterministic ones. PMID:26177449

  20. Bootstrapping Least Squares Estimates in Biochemical Reaction Networks

    PubMed Central

    Linder, Daniel F.

    2015-01-01

    The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769

  1. Percolation in education and application in the 21st century

    NASA Astrophysics Data System (ADS)

    Adler, Joan; Elfenbaum, Shaked; Sharir, Liran

    2017-03-01

    Percolation, "so simple you could teach it to your wife" (Chuck Newman, last century) is an ideal system to introduce young students to phase transitions. Two recent projects in the Computational Physics group at the Technion make this easy. One is a set of analog models to be mounted on our walls and enable visitors to switch between samples to see which mixtures of glass and metal objects have a percolating current. The second is a website enabling the creation of stereo samples of two and three dimensional clusters (suited for viewing with Oculus rift) on desktops, tablets and smartphones. Although there have been many physical applications for regular percolation in the past, for Bootstrap Percolation, where only sites with sufficient occupied neighbours remain active, there have not been a surfeit of condensed matter applications. We have found that the creation of diamond membranes for quantum computers can be modeled with a bootstrap process of graphitization in diamond, enabling prediction of optimal processing procedures.

  2. The synchronous neural interactions test as a functional neuromarker for post-traumatic stress disorder (PTSD): a robust classification method based on the bootstrap

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A. P.; Tan, H.-R. M.; Lewis, S. M.; Leuthold, A. C.; Winskowski, A. M.; Lynch, J. K.; Engdahl, B.

    2010-02-01

    Traumatic experiences can produce post-traumatic stress disorder (PTSD) which is a debilitating condition and for which no biomarker currently exists (Institute of Medicine (US) 2006 Posttraumatic Stress Disorder: Diagnosis and Assessment (Washington, DC: National Academies)). Here we show that the synchronous neural interactions (SNI) test which assesses the functional interactions among neural populations derived from magnetoencephalographic (MEG) recordings (Georgopoulos A P et al 2007 J. Neural Eng. 4 349-55) can successfully differentiate PTSD patients from healthy control subjects. Externally cross-validated, bootstrap-based analyses yielded >90% overall accuracy of classification. In addition, all but one of 18 patients who were not receiving medications for their disease were correctly classified. Altogether, these findings document robust differences in brain function between the PTSD and control groups that can be used for differential diagnosis and which possess the potential for assessing and monitoring disease progression and effects of therapy.

  3. Service Mediation and Negotiation Bootstrapping as First Achievements Towards Self-adaptable Cloud Services

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Dustdar, Schahram

    Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.

  4. Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae)

    PubMed Central

    Baker, William J.; Norup, Maria V.; Clarkson, James J.; Couvreur, Thomas L. P.; Dowe, John L.; Lewis, Carl E.; Pintaud, Jean-Christophe; Savolainen, Vincent; Wilmot, Tomas; Chase, Mark W.

    2011-01-01

    Background and Aims The Arecoideae is the largest and most diverse of the five subfamilies of palms (Arecaceae/Palmae), containing >50 % of the species in the family. Despite its importance, phylogenetic relationships among Arecoideae are poorly understood. Here the most densely sampled phylogenetic analysis of Arecoideae available to date is presented. The results are used to test the current classification of the subfamily and to identify priority areas for future research. Methods DNA sequence data for the low-copy nuclear genes PRK and RPB2 were collected from 190 palm species, covering 103 (96 %) genera of Arecoideae. The data were analysed using the parsimony ratchet, maximum likelihood, and both likelihood and parsimony bootstrapping. Key Results and Conclusions Despite the recovery of paralogues and pseudogenes in a small number of taxa, PRK and RPB2 were both highly informative, producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. Simultaneous analyses of the combined data sets provided additional resolution and support. Two areas of incongruence between PRK and RPB2 were strongly supported by the bootstrap relating to the placement of tribes Chamaedoreeae, Iriarteeae and Reinhardtieae; the causes of this incongruence remain uncertain. The current classification within Arecoideae was strongly supported by the present data. Of the 14 tribes and 14 sub-tribes in the classification, only five sub-tribes from tribe Areceae (Basseliniinae, Linospadicinae, Oncospermatinae, Rhopalostylidinae and Verschaffeltiinae) failed to receive support. Three major higher level clades were strongly supported: (1) the RRC clade (Roystoneeae, Reinhardtieae and Cocoseae), (2) the POS clade (Podococceae, Oranieae and Sclerospermeae) and (3) the core arecoid clade (Areceae, Euterpeae, Geonomateae, Leopoldinieae, Manicarieae and Pelagodoxeae). However, new data sources are required to elucidate ambiguities that remain in phylogenetic relationships among and within the major groups of Arecoideae, as well as within the Areceae, the largest tribe in the palm family. PMID:21325340

  5. Comparison of parametric and bootstrap method in bioequivalence test.

    PubMed

    Ahn, Byung-Jin; Yim, Dong-Seok

    2009-10-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

  6. Comparison of Parametric and Bootstrap Method in Bioequivalence Test

    PubMed Central

    Ahn, Byung-Jin

    2009-01-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption. PMID:19915699

  7. Prenatal Drug Exposure and Adolescent Cortisol Reactivity: Association with Behavioral Concerns.

    PubMed

    Buckingham-Howes, Stacy; Mazza, Dayna; Wang, Yan; Granger, Douglas A; Black, Maureen M

    2016-09-01

    To examine stress reactivity in a sample of adolescents with prenatal drug exposure (PDE) by examining the consequences of PDE on stress-related adrenocortical reactivity, behavioral problems, and drug experimentation during adolescence. Participants (76 PDE, 61 non-drug exposed [NE]; 99% African-American; 50% male; mean age = 14.17 yr, SD = 1.17) provided a urine sample, completed a drug use questionnaire, and provided saliva samples (later assayed for cortisol) before and after a mild laboratory stress task. Caregivers completed the Behavior Assessment System for Children, Second Edition (BASC II) and reported their relationship to the adolescent. The NE group was more likely to exhibit task-related cortisol reactivity compared to the PDE group. Overall behavior problems and drug experimentation were comparable across groups with no differences between PDE and NE groups. In unadjusted mediation analyses, cortisol reactivity mediated the association between PDE and BASC II aggression scores (95% bootstrap confidence interval [CI], 0.04-4.28), externalizing problems scores (95% bootstrap CI, 0.03-4.50), and drug experimentation (95% bootstrap CI, 0.001-0.54). The associations remain with the inclusion of gender as a covariate but not when age is included. Findings support and expand current research in cortisol reactivity and PDE by demonstrating that cortisol reactivity attenuates the association between PDE and behavioral problems (aggression) and drug experimentation. If replicated, PDE may have long-lasting effects on stress-sensitive physiological mechanisms associated with behavioral problems (aggression) and drug experimentation in adolescence.

  8. Sirepo for Synchrotron Radiation Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Robert; Moeller, Paul; Rakitin, Maksim

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.« less

  9. Equilibrium, confinement and stability of runaway electrons in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spong, D A

    1976-03-01

    Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits aremore » analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models. (MOW)« less

  10. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canale, Eduardo A., E-mail: ecanale@pol.una.py; Monzón, Pablo, E-mail: monzon@fing.edu.uy

    2015-02-15

    This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1–15 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degree–order ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.

  11. A decentralized process for finding equilibria given by linear equations.

    PubMed Central

    Reiter, S

    1994-01-01

    I present a decentralized process for finding the equilibria of an economy characterized by a finite number of linear equilibrium conditions. The process finds all equilibria or, if there are none, reports that, in a finite number of steps at most equal to the number of equations. The communication and computational complexity compare favorably with other decentralized processes. The process may also be interpreted as an algorithm for solving a distributed system of linear equations. Comparisons with the Linpack program for LU (lower and upper triangular decomposition of the matrix of the equation system, a version of Gaussian elimination) are presented. PMID:11607486

  12. Theoretical study on the vibrational spectra of methoxy- and formyl-dihydroxy- trans-stilbenes and their hydrolytic equilibria

    NASA Astrophysics Data System (ADS)

    Molnár, Viktor; Billes, Ferenc; Tyihák, Ernő; Mikosch, Hans

    2008-02-01

    Compounds formed by exchanging one of the resveratrol hydroxy groups to methoxy or formyl groups are biologically important. Quantum chemical DFT calculations were applied for the simulation of some of their properties. Their optimized structures and charge distributions were computed. Based on the calculated vibrational force constants and optimized molecular structure infrared and Raman spectra were calculated. The characteristics of the vibrational modes were determined by normal coordinate analysis. Applying the calculated thermodynamic functions also for resveratrol, methanol, formaldehyde and water, thermodynamic equilibria were calculated for the equilibria between resveratrol and its methyl and formyl substituted derivatives, respectively.

  13. Two Different Approaches to Nonzero-Sum Stochastic Differential Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainer, Catherine

    2007-06-15

    We make the link between two approaches to Nash equilibria for nonzero-sum stochastic differential games: the first one using backward stochastic differential equations and the second one using strategies with delay. We prove that, when both exist, the two notions of Nash equilibria coincide.

  14. Geostrophic tripolar vortices in a two-layer fluid: Linear stability and nonlinear evolution of equilibria

    NASA Astrophysics Data System (ADS)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2017-03-01

    We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.

  15. SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Ravindra, B.; Cheng, X., E-mail: vemareddy@iiap.res.in

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the ARmore » magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.« less

  16. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  17. Stress-induced electric current fluctuations in rocks: a superstatistical model

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local equilibrium processes whose variance fluctuates over time. The appearance of q-Gaussian statistics are caused by the fluctuating β parameter, which effectively models the fluctuating energy dissipation rate in the system. This concept is known as superstatistics and is physically relevant for modelling driven non-equilibrium systems where the environmental conditions fluctuate on a large scale. The idea is that the environmental variable, such as temperature or pressure, changes so slowly that a rapidly fluctuating variable within that environment has time to relax back to equilibrium between each change in the environment. The application of superstatistical techniques to our experimental electric current fluctuations show that they can indeed be described, to good approximation, by the superposition of local Gaussian processes with fluctuating variance. We conclude, then, that the measured electric current fluctuates in response to intermittent energy dissipation and is driven to varying temporary local equilibria during deformation by the variations in stress intensity. The advantage of this technique is that, once the model has been established to be a good description of the system in question, the average β parameter (a measure of the average energy dissipation rate) for the system can be obtained simply from the macroscopic q-Gaussian distribution parameters.

  18. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  19. Higher-order semantic structures in an African Grey parrot's vocalizations: evidence from the hyperspace analog to language (HAL) model.

    PubMed

    Kaufman, Allison B; Colbert-White, Erin N; Burgess, Curt

    2013-09-01

    Previous research has described the significant role that social interaction plays in both the acquisition and use of speech by parrots. The current study analyzed the speech of one home-raised African Grey parrot (Psittacus erithacus erithacus) across three different social contexts: owner interacting with parrot in the same room, owner and parrot interacting out of view in adjacent rooms, and parrot home alone. The purpose was to determine the extent to which the subject's speech reflected an understanding of the contextual substitutability (e.g., the word street can be substituted in context for the word road) of the vocalizations that comprised the units in her repertoire (i.e., global co-occurrence of repertoire units; Burgess in Behav Res Methods Instrum Comput 30:188-198, 1998; Lund and Burgess in Behav Res Methods Instrum Comput 28:203-208, 1996). This was accomplished via the human language model hyperspace analog to language (HAL). HAL is contextually driven and bootstraps language "rules" from input without human intervention. Because HAL does not require human tutelage, it provided an objective measure to empirically examine the parrot's vocalizations. Results indicated that the subject's vocalization patterns did contain global co-occurrence. The presence of this quality in this nonhuman's speech may be strongly indicative of higher-order cognitive skills.

  20. Graphic Representation of Carbon Dioxide Equilibria in Biological Systems.

    ERIC Educational Resources Information Center

    Kindig, Neal B.; Filley, Giles F.

    1983-01-01

    The log C-pH diagram is a useful means of displaying quantitatively the many variables (including temperature) that determine acid-base equilibria in biological systems. Presents the diagram as extended to open/closed biological systems and derives a new water-ion balance method for determining equilibrium pH. (JN)

  1. On Endogenous Competitive Business Cycles

    DTIC Science & Technology

    1984-01-01

    Equilibria Part II. Properties of Bequest Equilibria" by Debraj Ray and Douglas Bernheim. Reports in this Series . • . ■ 1J20. "On the Existence...or equivalently by the map W. It ray be worthwhile to end up this section with a simple graphical illustration of the backward dynamics associated to

  2. GTC simulations of ion temperature gradient driven instabilities in W7-X and LHD stellarators

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu

    2017-10-01

    We report GTC linear simulations of ion temperature gradient (ITG) instabilities in Wendelstein 7-X (W7-X) and Large Helical Device (LHD) stellarators. GTC has recently been updated to treat 3D equilibria by interfacing with MHD equilibrium code VMEC. GTC simulations of ITG have been carried out in both full torus and partial torus taking into account the toroidal periodicity of the stellarators. The effects of toroidal mode coupling on linear dispersions and mode structures in W7-X and LHD are studied. The mode structure in W7-X is more localized in the toroidal direction, and LHD is more extended in the toroidal direction and tokamak-like. Linear growth rates, real frequencies, and mode structures agree reasonably with results of EUTERPE simulations. In collaboration with I. Holod, J. Riemann, Z. Lin, J. Bao, L. Shi, S. Taimourzadeh, R. Kleiber, and M. Borchardt.

  3. Enzymatic network for production of ether amines from alcohols.

    PubMed

    Palacio, Cyntia M; Crismaru, Ciprian G; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John M; Baldenius, Kai; Wu, Bian; Janssen, Dick B

    2016-09-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed for reactions containing 10 mM alcohol and up to 280 mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up. Biotechnol. Bioeng. 2016;113: 1853-1861. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    PubMed

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  5. Bootstrap investigation of the stability of a Cox regression model.

    PubMed

    Altman, D G; Andersen, P K

    1989-07-01

    We describe a bootstrap investigation of the stability of a Cox proportional hazards regression model resulting from the analysis of a clinical trial of azathioprine versus placebo in patients with primary biliary cirrhosis. We have considered stability to refer both to the choice of variables included in the model and, more importantly, to the predictive ability of the model. In stepwise Cox regression analyses of 100 bootstrap samples using 17 candidate variables, the most frequently selected variables were those selected in the original analysis, and no other important variable was identified. Thus there was no reason to doubt the model obtained in the original analysis. For each patient in the trial, bootstrap confidence intervals were constructed for the estimated probability of surviving two years. It is shown graphically that these intervals are markedly wider than those obtained from the original model.

  6. Bootstrap and Counter-Bootstrap approaches for formation of the cortege of Informative indicators by Results of Measurements

    NASA Astrophysics Data System (ADS)

    Artemenko, M. V.; Chernetskaia, I. E.; Kalugina, N. M.; Shchekina, E. N.

    2018-04-01

    This article describes the solution of the actual problem of the productive formation of a cortege of informative measured features of the object of observation and / or control using author's algorithms for the use of bootstraps and counter-bootstraps technologies for processing the results of measurements of various states of the object on the basis of different volumes of the training sample. The work that is presented in this paper considers aggregation by specific indicators of informative capacity by linear, majority, logical and “greedy” methods, applied both individually and integrally. The results of the computational experiment are discussed, and in conclusion is drawn that the application of the proposed methods contributes to an increase in the efficiency of classification of the states of the object from the results of measurements.

  7. How bootstrap can help in forecasting time series with more than one seasonal pattern

    NASA Astrophysics Data System (ADS)

    Cordeiro, Clara; Neves, M. Manuela

    2012-09-01

    The search for the future is an appealing challenge in time series analysis. The diversity of forecasting methodologies is inevitable and is still in expansion. Exponential smoothing methods are the launch platform for modelling and forecasting in time series analysis. Recently this methodology has been combined with bootstrapping revealing a good performance. The algorithm (Boot. EXPOS) using exponential smoothing and bootstrap methodologies, has showed promising results for forecasting time series with one seasonal pattern. In case of more than one seasonal pattern, the double seasonal Holt-Winters methods and the exponential smoothing methods were developed. A new challenge was now to combine these seasonal methods with bootstrap and carry over a similar resampling scheme used in Boot. EXPOS procedure. The performance of such partnership will be illustrated for some well-know data sets existing in software.

  8. How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics.

    PubMed

    Phu, Jack; Bui, Bang V; Kalloniatis, Michael; Khuu, Sieu K

    2018-03-01

    The number of subjects needed to establish the normative limits for visual field (VF) testing is not known. Using bootstrap resampling, we determined whether the ground truth mean, distribution limits, and standard deviation (SD) could be approximated using different set size ( x ) levels, in order to provide guidance for the number of healthy subjects required to obtain robust VF normative data. We analyzed the 500 Humphrey Field Analyzer (HFA) SITA-Standard results of 116 healthy subjects and 100 HFA full threshold results of 100 psychophysically experienced healthy subjects. These VFs were resampled (bootstrapped) to determine mean sensitivity, distribution limits (5th and 95th percentiles), and SD for different ' x ' and numbers of resamples. We also used the VF results of 122 glaucoma patients to determine the performance of ground truth and bootstrapped results in identifying and quantifying VF defects. An x of 150 (for SITA-Standard) and 60 (for full threshold) produced bootstrapped descriptive statistics that were no longer different to the original distribution limits and SD. Removing outliers produced similar results. Differences between original and bootstrapped limits in detecting glaucomatous defects were minimized at x = 250. Ground truth statistics of VF sensitivities could be approximated using set sizes that are significantly smaller than the original cohort. Outlier removal facilitates the use of Gaussian statistics and does not significantly affect the distribution limits. We provide guidance for choosing the cohort size for different levels of error when performing normative comparisons with glaucoma patients.

  9. A bootstrap estimation scheme for chemical compositional data with nondetects

    USGS Publications Warehouse

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  10. Fish tracking by combining motion based segmentation and particle filtering

    NASA Astrophysics Data System (ADS)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  11. Evaluating sufficient similarity for drinking-water disinfection by-product (DBP) mixtures with bootstrap hypothesis test procedures.

    PubMed

    Feder, Paul I; Ma, Zhenxu J; Bull, Richard J; Teuschler, Linda K; Rice, Glenn

    2009-01-01

    In chemical mixtures risk assessment, the use of dose-response data developed for one mixture to estimate risk posed by a second mixture depends on whether the two mixtures are sufficiently similar. While evaluations of similarity may be made using qualitative judgments, this article uses nonparametric statistical methods based on the "bootstrap" resampling technique to address the question of similarity among mixtures of chemical disinfectant by-products (DBP) in drinking water. The bootstrap resampling technique is a general-purpose, computer-intensive approach to statistical inference that substitutes empirical sampling for theoretically based parametric mathematical modeling. Nonparametric, bootstrap-based inference involves fewer assumptions than parametric normal theory based inference. The bootstrap procedure is appropriate, at least in an asymptotic sense, whether or not the parametric, distributional assumptions hold, even approximately. The statistical analysis procedures in this article are initially illustrated with data from 5 water treatment plants (Schenck et al., 2009), and then extended using data developed from a study of 35 drinking-water utilities (U.S. EPA/AMWA, 1989), which permits inclusion of a greater number of water constituents and increased structure in the statistical models.

  12. Using the Bootstrap Method to Evaluate the Critical Range of Misfit for Polytomous Rasch Fit Statistics.

    PubMed

    Seol, Hyunsoo

    2016-06-01

    The purpose of this study was to apply the bootstrap procedure to evaluate how the bootstrapped confidence intervals (CIs) for polytomous Rasch fit statistics might differ according to sample sizes and test lengths in comparison with the rule-of-thumb critical value of misfit. A total of 25 simulated data sets were generated to fit the Rasch measurement and then a total of 1,000 replications were conducted to compute the bootstrapped CIs under each of 25 testing conditions. The results showed that rule-of-thumb critical values for assessing the magnitude of misfit were not applicable because the infit and outfit mean square error statistics showed different magnitudes of variability over testing conditions and the standardized fit statistics did not exactly follow the standard normal distribution. Further, they also do not share the same critical range for the item and person misfit. Based on the results of the study, the bootstrapped CIs can be used to identify misfitting items or persons as they offer a reasonable alternative solution, especially when the distributions of the infit and outfit statistics are not well known and depend on sample size. © The Author(s) 2016.

  13. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    NASA Astrophysics Data System (ADS)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.

  14. Efficiency reduction and pseudo-convergence in replica exchange sampling of peptide folding unfolding equilibria

    NASA Astrophysics Data System (ADS)

    Denschlag, Robert; Lingenheil, Martin; Tavan, Paul

    2008-06-01

    Replica exchange (RE) molecular dynamics (MD) simulations are frequently applied to sample the folding-unfolding equilibria of β-hairpin peptides in solution, because efficiency gains are expected from this technique. Using a three-state Markov model featuring key aspects of β-hairpin folding we show that RE simulations can be less efficient than conventional techniques. Furthermore we demonstrate that one is easily seduced to erroneously assign convergence to the RE sampling, because RE ensembles can rapidly reach long-lived stationary states. We conclude that typical REMD simulations covering a few tens of nanoseconds are by far too short for sufficient sampling of β-hairpin folding-unfolding equilibria.

  15. Reconfiguration of a smart surface using heteroclinic connections

    PubMed Central

    McInnes, Colin R.; Xu, Ming

    2017-01-01

    A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191

  16. A family of analytic equilibrium solutions for the Grad-Shafranov equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guazzotto, L.; Freidberg, J. P.

    2007-11-15

    A family of exact solutions to the Grad-Shafranov equation, similar to those described by Atanasiu et al. [C. V. Atanasiu, S. Guenter, K. Lackner, and I. G. Miron, Phys. Plasmas 11, 3510 (2004)], is presented. The solution allows for finite plasma aspect ratio, elongation and triangularity, while only requiring the evaluation of a small number of well-known hypergeometric functions. Plasma current, pressure, and pressure gradients are set to zero at the plasma edge. Realistic equilibria for standard and spherical tokamaks are presented.

  17. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Hao, Baolong; White, Roscoe; Wang, Jinfang; Zang, Qing; Han, Xiaofeng; Hu, Chundong

    2017-02-01

    Neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  18. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    DOE PAGES

    Wu, Bin; Hao, Baolong; White, Roscoe; ...

    2016-12-09

    Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  19. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Bin; Hao, Baolong; White, Roscoe

    Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  20. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    NASA Astrophysics Data System (ADS)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  1. The Novaya Zemlya Event of 31 December 1992 and Seismic Identification Issues: Annual Seismic Research Symposium (15th) Held in Vail, Colorado on 8-10 September 1993

    DTIC Science & Technology

    1993-09-10

    1993). A bootstrap generalizedlikelihood ratio test in discriminant analysis, Proc. 15th Annual Seismic Research Symposium, in press. I Hedlin, M., J... ratio indicate that the event does not belong to the first class. The bootstrap technique is used here as well to set the critical value of the test ...Methodist University. Baek, J., H. L. Gray, W. A. Woodward and M.D. Fisk (1993). A Bootstrap Generalized Likelihood Ratio Test in Discriminant

  2. Substituent Effects on Keto-Enol Equilibria Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Manbeck, Kimberly A.; Boaz, Nicholas C.; Bair, Nathaniel C.; Sanders, Allix M. S.; Marsh, Anderson L.

    2011-01-01

    In this extension to a classic physical chemistry experiment, students record the proton nuclear magnetic resonance spectra of the [beta]-diketones 2,4-pentanedione, 3-methyl-2,4-pentanedione, and 3-chloro-2,4-pentanedione to investigate the effect of substituents on keto-enol tautomerization equilibria. From the integrated intensities of keto and…

  3. Vapor-Liquid Equilibria Using the Gibbs Energy and the Common Tangent Plane Criterion

    ERIC Educational Resources Information Center

    Olaya, Maria del Mar; Reyes-Labarta, Juan A.; Serrano, Maria Dolores; Marcilla, Antonio

    2010-01-01

    Phase thermodynamics is often perceived as a difficult subject with which many students never become fully comfortable. The Gibbsian geometrical framework can help students to gain a better understanding of phase equilibria. An exercise to interpret the vapor-liquid equilibrium of a binary azeotropic mixture, using the equilibrium condition based…

  4. Using Computer-Based "Experiments" in the Analysis of Chemical Reaction Equilibria

    ERIC Educational Resources Information Center

    Li, Zhao; Corti, David S.

    2018-01-01

    The application of the Reaction Monte Carlo (RxMC) algorithm to standard textbook problems in chemical reaction equilibria is discussed. The RxMC method is a molecular simulation algorithm for studying the equilibrium properties of reactive systems, and therefore provides the opportunity to develop computer-based "experiments" for the…

  5. Equilibrator: Modeling Chemical Equilibria with Excel

    ERIC Educational Resources Information Center

    Vander Griend, Douglas A.

    2011-01-01

    Equilibrator is a Microsoft Excel program for learning about chemical equilibria through modeling, similar in function to EQS4WIN, which is no longer supported and does not work well with newer Windows operating systems. Similar to EQS4WIN, Equilibrator allows the user to define a system with temperature, initial moles, and then either total…

  6. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    ERIC Educational Resources Information Center

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  7. Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.

    2016-10-01

    New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.

  8. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  9. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  10. Coil Design for Low Aspect Ratio Stellarators

    NASA Astrophysics Data System (ADS)

    Miner, W. H., Jr.; Valanju, P. M.; Wiley, J. C.; Hirshman, S. P.; Whitson, J. C.

    1998-11-01

    Two compact stellarator designs have recently been under investigation because of their potential as a reactor featuring steady-state, disruption-free operation, low recirculating power and good confinement and beta. Both quasi-axisymmetric (QA) equilibria and quasi-omnigenous (QO) equilibria have been obtained by using the 3-D MHD equilibrium code VMEC. In order to build an experiment, coil sets must be obtained that are compatable with these equilibria. We have been using both the NESCOIL(Merkel, P., Nucl. Fus. 27, 5 (1987) 867.) code and the COILOPT code to find coilsets for both of these types of equilibria. We are considering three types of coil configurations. The first is a combination of modular coils and vertical field coils. The second configuration is a combination of toroidal field coils, vertical field coils and saddle coils. A third configuration is a combination of modular coils and a single helical winding. The quality of each coil set will be evaluated by computing its magnetic field and using that as input to VMEC in free boundary mode to see how accurately the original equilibrium can be reconstructed.

  11. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  12. Density-functional study on the equilibria in the ThDP activation.

    PubMed

    Delgado, Eduardo J; Alderete, Joel B; Jaña, Gonzalo A

    2011-11-01

    The equilibria among the various ionization and tautomeric states involved in the activation of ThDP is addressed using high level density functional theory calculations, X3LYP/6-311++G(d,p)//X3LYP(PB)/6-31++G(d,p). This study provides the first theoretically derived thermodynamic data for the internal equilibria in the activation of ThDP. The role of the medium polarity on the geometry and thermodynamics of the diverse equilibria of ThDP is addressed. The media chosen are cyclohexane and water, as paradigms of apolar and polar media. The results suggest that all ionization and tautomeric states are accessible during the catalytic cycle, even in the absence of substrate, being APH(+) the form required to interconvert the AP and IP tautomers; and the generation of the ylide proceeds via the formation of the IP form. Additionally, the calculated ΔG° values allow to calculate all the equilibrium constants, including the pK(C2) for the thiazolium C2 atom whose ionization is believed to initiate the catalytic cycle.

  13. Combining Nordtest method and bootstrap resampling for measurement uncertainty estimation of hematology analytes in a medical laboratory.

    PubMed

    Cui, Ming; Xu, Lili; Wang, Huimin; Ju, Shaoqing; Xu, Shuizhu; Jing, Rongrong

    2017-12-01

    Measurement uncertainty (MU) is a metrological concept, which can be used for objectively estimating the quality of test results in medical laboratories. The Nordtest guide recommends an approach that uses both internal quality control (IQC) and external quality assessment (EQA) data to evaluate the MU. Bootstrap resampling is employed to simulate the unknown distribution based on the mathematical statistics method using an existing small sample of data, where the aim is to transform the small sample into a large sample. However, there have been no reports of the utilization of this method in medical laboratories. Thus, this study applied the Nordtest guide approach based on bootstrap resampling for estimating the MU. We estimated the MU for the white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin (Hb), and platelets (Plt). First, we used 6months of IQC data and 12months of EQA data to calculate the MU according to the Nordtest method. Second, we combined the Nordtest method and bootstrap resampling with the quality control data and calculated the MU using MATLAB software. We then compared the MU results obtained using the two approaches. The expanded uncertainty results determined for WBC, RBC, Hb, and Plt using the bootstrap resampling method were 4.39%, 2.43%, 3.04%, and 5.92%, respectively, and 4.38%, 2.42%, 3.02%, and 6.00% with the existing quality control data (U [k=2]). For WBC, RBC, Hb, and Plt, the differences between the results obtained using the two methods were lower than 1.33%. The expanded uncertainty values were all less than the target uncertainties. The bootstrap resampling method allows the statistical analysis of the MU. Combining the Nordtest method and bootstrap resampling is considered a suitable alternative method for estimating the MU. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Water-mass formation and Sverdrup dynamics; a comparison between climatology and a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Tomczak, Matthias; Stuart Godfrey, J.

    1992-06-01

    The coupled ocean-atmosphere model integrations of Manabe and Stouffer (1988) are compared with climatological distributions of depth-integrated flow and water-mass formation. The description of the ocean circulation in their two quasi-stable equilibria is extended to include an analysis of the horizontal and meridional transport as well as the water-mass formation and vertical motion in the model. In particular, the wind-driven Sverdrup flow is computed and compared with the actual mass transport streamfunction of the model. It is found that a Sverdrup model of depth-integrated flow captures the major features of the coupled model's ocean circulation, except near region of deep water formation, where the thermohaline field drives ocean currents and wind-driven flow becomes secondary. The coupled model fails to allow for a barotropic mass transport through the Indonesian Passage. Instead, only baroclinically driven fluxes of heat and freshwater are resolved through the Indonesian Archipelago. The Sverdrup model suggests that a barotropic throughflow would transport about 16 Sv from the Pacific to Indian Oceans. According to Sverdrup dynamics, this would serve to weaken the East Australian Current by about 16 Sv and strengthen the Agulhas Current by the same amount. Recent integrations of a World Ocean model with and without a barotropic throughflow in the Indonesian Passage suggest that the modelled heat transport is sensitive to the nature of flow through the Indonesian Archipelago. From' a comparison of observed and simulated water mass properties, it is shown that some major aspects of the global-scale water masses are not captured by the coupled model. This reveals a shortcoming of the model's ability to represent the global-scale heat and freshwater balances. For example, there is an unrealistically intense halocline in the immediate vicinity of Antartica, prohibiting the formation of bottom water in the Weddell and Ross Seas. Also, no low salinity traces of Antarctic or North Pacific Intermediate Water appear in the model integrations, primarily because there is no source of sufficiently dense bottom water adjacent to Antarctica. Without this dense bottom water, the "would-be" intermediate water at 60°S sinks to great depths and actually becomes the model ocean's bottom water. Then, the simulated bottom water is too fresh and warm in the climate model, matching the temperature—salinity signature of Antarctic Intermediate Water. In the North Atlantic, whilst deep water formation appears in one of the climate states of Manabe and Stouffer (1988), its downward penetration is not as deep as observed. This is because their deep North Atlantic is not ventilated by the thermohaline overturning of warm salty North Atlantic Deep Water. Instead, a deep overturning cell centred near the equator transports relatively fresh water into the region. In contrast, the location and strength of Central Water formation agrees well with climatology.

  15. Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    1995-01-01

    Use of the bootstrap method in a canonical correlation analysis to evaluate the replicability of a study's results is illustrated. More confidence may be vested in research results that replicate. (SLD)

  16. The Role of GRAIL Orbit Determination in Preprocessing of Gravity Science Measurements

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Asmar, Sami; Fahnestock, Eugene; Harvey, Nate; Kahan, Daniel; Konopliv, Alex; Oudrhiri, Kamal; Paik, Meegyeong; Park, Ryan; Strekalov, Dmitry; hide

    2013-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission has constructed a lunar gravity field with unprecedented uniform accuracy on the farside and nearside of the Moon. GRAIL lunar gravity field determination begins with preprocessing of the gravity science measurements by applying corrections for time tag error, general relativity, measurement noise and biases. Gravity field determination requires the generation of spacecraft ephemerides of an accuracy not attainable with the pre-GRAIL lunar gravity fields. Therefore, a bootstrapping strategy was developed, iterating between science data preprocessing and lunar gravity field estimation in order to construct sufficiently accurate orbit ephemerides.This paper describes the GRAIL measurements, their dependence on the spacecraft ephemerides and the role of orbit determination in the bootstrapping strategy. Simulation results will be presented that validate the bootstrapping strategy followed by bootstrapping results for flight data, which have led to the latest GRAIL lunar gravity fields.

  17. The economics of bootstrapping space industries - Development of an analytic computer model

    NASA Technical Reports Server (NTRS)

    Goldberg, A. H.; Criswell, D. R.

    1982-01-01

    A simple economic model of 'bootstrapping' industrial growth in space and on the Moon is presented. An initial space manufacturing facility (SMF) is assumed to consume lunar materials to enlarge the productive capacity in space. After reaching a predetermined throughput, the enlarged SMF is devoted to products which generate revenue continuously in proportion to the accumulated output mass (such as space solar power stations). Present discounted value and physical estimates for the general factors of production (transport, capital efficiency, labor, etc.) are combined to explore optimum growth in terms of maximized discounted revenues. It is found that 'bootstrapping' reduces the fractional cost to a space industry of transport off-Earth, permits more efficient use of a given transport fleet. It is concluded that more attention should be given to structuring 'bootstrapping' scenarios in which 'learning while doing' can be more fully incorporated in program analysis.

  18. Towards a bootstrap approach to higher orders of epsilon expansion

    NASA Astrophysics Data System (ADS)

    Dey, Parijat; Kaviraj, Apratim

    2018-02-01

    We employ a hybrid approach in determining the anomalous dimension and OPE coefficient of higher spin operators in the Wilson-Fisher theory. First we do a large spin analysis for CFT data where we use results obtained from the usual and the Mellin bootstrap and also from Feynman diagram literature. This gives new predictions at O( ɛ 4) and O( ɛ 5) for anomalous dimensions and OPE coefficients, and also provides a cross-check for the results from Mellin bootstrap. These higher orders get contributions from all higher spin operators in the crossed channel. We also use the bootstrap in Mellin space method for ϕ 3 in d = 6 - ɛ CFT where we calculate general higher spin OPE data. We demonstrate a higher loop order calculation in this approach by summing over contributions from higher spin operators of the crossed channel in the same spirit as before.

  19. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    PubMed

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  20. Extending the validation of multi-mode model for anomalous transport to high beta poloidal tokamak scenario in DIII-D

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Garofalo, A. M.; Holod, I.; Weiland, J.

    2018-05-01

    The Multi-Mode Model (MMM7.1) for anomalous transport is tested in predictive modeling of temperature profiles of a high beta poloidal DIII-D discharge. This new H-mode plasma regime, with high beta poloidal and high bootstrap currents, has been studied in DIII-D tokamak discharges [A. Garofalo et al., Nucl. Fusion 55, 123025 (2015)]. The role of instabilities that can drive the anomalous transport described by MMM7.1 is investigated. The temperature profiles for a high beta poloidal DIII-D discharge are computed using the NCLASS model for the neoclassical transport and the Weiland and Electron Temperature Gradient (ETG) components of the MMM7.1 model for the anomalous transport. The neoclassical transport is found to be the main contributor to the ion thermal transport in the plasma core. The contributions from the ion temperature gradient driven modes are found to be important only outside of the internal transport barrier. The magnitudes of the predicted temperature profiles are found to be in a reasonable agreement with experimental profiles. The simulation results approximately reproduce the internal transport barrier in the ion temperature profile but not in the electron temperature profile due to a weak dependence of the ETG driven transport on the Shafranov shift in the ETG component of MMM7.1. Possible effects that can contribute to stabilization of these modes, for example, effects associated with the large beta poloidal such as the Shafranov shift stabilization in the MMM7.1 model, are discussed. It is demonstrated that the E × B flow shear has a relatively small effect in the formation of the internal transport barrier in the high beta poloidal DIII-D discharge 154406. The Shafranov shift (alpha stabilization) and small or reversed magnetic shear profiles are found to be the primary reasons for quenched anomalous transport in this discharge.

  1. Future projections of insured losses in the German private building sector following the A1B climatic change scenario

    NASA Astrophysics Data System (ADS)

    Held, H.; Gerstengarbe, F.-W.; Hattermann, F.; Pinto, J. G.; Ulbrich, U.; Böhm, U.; Born, K.; Büchner, M.; Donat, M. G.; Kücken, M.; Leckebusch, G. C.; Nissen, K.; Nocke, T.; Österle, H.; Pardowitz, T.; Werner, P. C.; Burghoff, O.; Broecker, U.; Kubik, A.

    2012-04-01

    We present an overview of a complementary-approaches impact project dealing with the consequences of climate change for the natural hazard branch of the insurance industry in Germany. The project was conducted by four academic institutions together with the German Insurance Association (GDV) and finalized in autumn 2011. A causal chain is modeled that goes from global warming projections over regional meteorological impacts to regional economic losses for private buildings, hereby fully covering the area of Germany. This presentation will focus on wind storm related losses, although the method developed had also been applied in part to hail and flood impact losses. For the first time, the GDV supplied their collected set of insurance cases, dating back for decades, for such an impact study. These data were used to calibrate and validate event-based damage functions which in turn were driven by three different types of regional climate models to generate storm loss projections. The regional models were driven by a triplet of ECHAM5 experiments following the A1B scenario which were found representative in the recent ENSEMBLES intercomparison study. In our multi-modeling approach we used two types of regional climate models that conceptually differ at maximum: a dynamical model (CCLM) and a statistical model based on the idea of biased bootstrapping (STARS). As a third option we pursued a hybrid approach (statistical-dynamical downscaling). For the assessment of climate change impacts, the buildings' infrastructure and their economic value is kept at current values. For all three approaches, a significant increase of average storm losses and extreme event return levels in the German private building sector is found for future decades assuming an A1B-scenario. However, the three projections differ somewhat in terms of magnitude and regional differentiation. We have developed a formalism that allows us to express the combined effect of multi-source uncertainty on return levels within the framework of a generalized Pareto distribution.

  2. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter. PMID:29180992

  3. Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.

    PubMed

    Falk, Carl F; Biesanz, Jeremy C

    2011-11-30

    Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.

  4. National Spherical Torus Experiment (NSTX) and Planned Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yueng Kay Martin; Ono, M.; Kaye, S.

    1998-01-01

    The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated in board solenoid magnet. These properties of the ST plasma,more » if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in a figure. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall condition techniques are also planned. The NSTX facilty extensively utilizes the equipment at PPPL and other reasearch institutions in collaboration. These include 6-MW High Harmonic Fast Wave (HHFW) power at {approx}30 MHz for 5 s, which will be the primary heating and current drive system following the first plasma planned for April 1999, and small ECH systems to assist breakdown for initiation. A plethora of diagnostics from TFTR and collaborators are planned. A NBI system from TFTR capable of delivering 5 MW at 80 keV for 5 s, and more powerful ECH systems are also planned for installation in 2000. The baseline plan for diagnostics systems are laid out in a figure and include: (1) Rogowski coils to measure total plasma and halo curents.« less

  5. Creation of second order magnetic barrier inside chaos created by NTMs in the ASDEX UG

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh

    2012-10-01

    Understanding and stabilization of neoclassical tearing modes (NTM) in tokamaks is an important problem. For low temperature plasmas, tearing modes are believed to be mainly driven by current density gradient. For collisionless plasmas, even when plasma is stable to classical tearing modes, helical reduction in bootstrap current in O-point of an island can destabilize NTMs when an initial island is seeded by other global MHD instabilities or when microturbulence triggers the transition from a linear to nonlinear instability. The onset of NTMs leads to the most serious beta limit in ASDEX UG tokamak [O. Gubner et al 2005 NF 39 1321]. The important NTMs in the ASDDEX UG are (m,n)=(3,2)+(4,3)+(1,1). Realistic parameterization of these NTMs and the safety factor in ASDEX UG are given in [O. Dumbrajs et al 2005 POP 12 1107004]. We use a symplectic map in magnetic coordinates for the ASDEX UG to integrate field lines in presence of the NTMs. We add a second order control term [H. Ali and A. Punjabi 2007 PPCF 49 1565] to this ASDEX UG field line Hamiltonian to create an invariant magnetic surface inside the chaos generated by the NTMs. The relative strength, robustness, and resilience of this barrier are studied to ascertain the most desirable noble barrier in the ASDEX UG with NTMs. We present preliminary results of this work, and discuss its implications with regard to magnetic transport barriers for increasing strength of magnetic perturbations. This work is supported by the grants DE-FG02-01ER54624 and DE-FG02-04ER54793.

  6. Combining test statistics and models in bootstrapped model rejection: it is a balancing act

    PubMed Central

    2014-01-01

    Background Model rejections lie at the heart of systems biology, since they provide conclusive statements: that the corresponding mechanistic assumptions do not serve as valid explanations for the experimental data. Rejections are usually done using e.g. the chi-square test (χ2) or the Durbin-Watson test (DW). Analytical formulas for the corresponding distributions rely on assumptions that typically are not fulfilled. This problem is partly alleviated by the usage of bootstrapping, a computationally heavy approach to calculate an empirical distribution. Bootstrapping also allows for a natural extension to estimation of joint distributions, but this feature has so far been little exploited. Results We herein show that simplistic combinations of bootstrapped tests, like the max or min of the individual p-values, give inconsistent, i.e. overly conservative or liberal, results. A new two-dimensional (2D) approach based on parametric bootstrapping, on the other hand, is found both consistent and with a higher power than the individual tests, when tested on static and dynamic examples where the truth is known. In the same examples, the most superior test is a 2D χ2vsχ2, where the second χ2-value comes from an additional help model, and its ability to describe bootstraps from the tested model. This superiority is lost if the help model is too simple, or too flexible. If a useful help model is found, the most powerful approach is the bootstrapped log-likelihood ratio (LHR). We show that this is because the LHR is one-dimensional, because the second dimension comes at a cost, and because LHR has retained most of the crucial information in the 2D distribution. These approaches statistically resolve a previously published rejection example for the first time. Conclusions We have shown how to, and how not to, combine tests in a bootstrap setting, when the combination is advantageous, and when it is advantageous to include a second model. These results also provide a deeper insight into the original motivation for formulating the LHR, for the more general setting of nonlinear and non-nested models. These insights are valuable in cases when accuracy and power, rather than computational speed, are prioritized. PMID:24742065

  7. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    NASA Astrophysics Data System (ADS)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  8. Textbook Forum: Equilibrium Constants of Chemical Reactions Involving Condensed Phases: Pressure Dependence and Choice of Standard State.

    ERIC Educational Resources Information Center

    Perlmutter-Hayman, Berta

    1984-01-01

    Problems of equilibria in condensed phases (particularly those involving solutes in dilute solutions) are encountered by students in their laboratory work; the thermodynamics of these equilibria is neglected in many textbooks. Therefore, several aspects of this topic are explored, focusing on pressure dependence and choice of standard state. (JN)

  9. Predicting phase equilibria in one-component systems

    NASA Astrophysics Data System (ADS)

    Korchuganova, M. R.; Esina, Z. N.

    2015-07-01

    It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.

  10. Using a Differential Scanning Calorimeter to Teach Phase Equilibria to Students of Igneous and Metamorphic Petrology

    ERIC Educational Resources Information Center

    Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.

    2011-01-01

    As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…

  11. Tethered spacecraft in asteroid gravitational environment

    NASA Astrophysics Data System (ADS)

    Burov, Alexander A.; Guerman, Anna D.; Kosenko, Ivan I.; Nikonov, Vasily I.

    2018-02-01

    Relative equilibria of a pendulum attached to the surface of a uniformly rotating celestial body are considered. The locations of the tether anchor that correspond to a given spacecraft position are defined. The domains, where the spacecraft can be held with the help of such a pendulum, are also described. Stability of the found relative equilibria is studied.

  12. Semistable extremal ground states for nonlinear evolution equations in unbounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    2008-02-01

    In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.

  13. An Introduction to Multivariate Curve Resolution-Alternating Least Squares: Spectrophotometric Study of the Acid-Base Equilibria of 8-Hydroxyquinoline-5-Sulfonic Acid

    ERIC Educational Resources Information Center

    Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago

    2007-01-01

    A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.

  14. Optimized Unlike-Pair Interactions for Water-Carbon Dioxide Mixtures described by the SPC/E and EPM2 Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Chialvo, Ariel A; Cole, David

    The unlike- pair interaction parameters for the SPC/E- EPM2 models have been optimized to reproduce the mutual solubility of water and carbon dioxide at the conditions of liquid- supercritical fluid phase equilibria. An efficient global optimization of the parameters is achieved through an implementation of the coupling parameter approach, adapted to phase equilibria calculations in the Gibbs ensemble, that explicitly corrects for the over- polarization of the SPC/E water molecule in the non- polar CO2 environments. The resulting H2O- CO2 force field reproduces accurately the available experimental solubilities at the two fluid phases in equilibria as well as the correspondingmore » species tracer diffusion coefficients.« less

  15. An intrinsic approach in the curved n-body problem: The negative curvature case

    NASA Astrophysics Data System (ADS)

    Diacu, Florin; Pérez-Chavela, Ernesto; Reyes Victoria, J. Guadalupe

    We consider the motion of n point particles of positive masses that interact gravitationally on the 2-dimensional hyperbolic sphere, which has negative constant Gaussian curvature. Using the stereographic projection, we derive the equations of motion of this curved n-body problem in the Poincaré disk, where we study the elliptic relative equilibria. Then we obtain the equations of motion in the Poincaré upper half plane in order to analyze the hyperbolic and parabolic relative equilibria. Using techniques of Riemannian geometry, we characterize each of the above classes of periodic orbits. For n=2 and n=3 we recover some previously known results and find new qualitative results about relative equilibria that were not apparent in an extrinsic setting.

  16. A Critical Meta-Analysis of Lens Model Studies in Human Judgment and Decision-Making

    PubMed Central

    Kaufmann, Esther; Reips, Ulf-Dietrich; Wittmann, Werner W.

    2013-01-01

    Achieving accurate judgment (‘judgmental achievement’) is of utmost importance in daily life across multiple domains. The lens model and the lens model equation provide useful frameworks for modeling components of judgmental achievement and for creating tools to help decision makers (e.g., physicians, teachers) reach better judgments (e.g., a correct diagnosis, an accurate estimation of intelligence). Previous meta-analyses of judgment and decision-making studies have attempted to evaluate overall judgmental achievement and have provided the basis for evaluating the success of bootstrapping (i.e., replacing judges by linear models that guide decision making). However, previous meta-analyses have failed to appropriately correct for a number of study design artifacts (e.g., measurement error, dichotomization), which may have potentially biased estimations (e.g., of the variability between studies) and led to erroneous interpretations (e.g., with regards to moderator variables). In the current study we therefore conduct the first psychometric meta-analysis of judgmental achievement studies that corrects for a number of study design artifacts. We identified 31 lens model studies (N = 1,151, k = 49) that met our inclusion criteria. We evaluated overall judgmental achievement as well as whether judgmental achievement depended on decision domain (e.g., medicine, education) and/or the level of expertise (expert vs. novice). We also evaluated whether using corrected estimates affected conclusions with regards to the success of bootstrapping with psychometrically-corrected models. Further, we introduce a new psychometric trim-and-fill method to estimate the effect sizes of potentially missing studies correct psychometric meta-analyses for effects of publication bias. Comparison of the results of the psychometric meta-analysis with the results of a traditional meta-analysis (which only corrected for sampling error) indicated that artifact correction leads to a) an increase in values of the lens model components, b) reduced heterogeneity between studies, and c) increases the success of bootstrapping. We argue that psychometric meta-analysis is useful for accurately evaluating human judgment and show the success of bootstrapping. PMID:24391781

  17. A critical meta-analysis of lens model studies in human judgment and decision-making.

    PubMed

    Kaufmann, Esther; Reips, Ulf-Dietrich; Wittmann, Werner W

    2013-01-01

    Achieving accurate judgment ('judgmental achievement') is of utmost importance in daily life across multiple domains. The lens model and the lens model equation provide useful frameworks for modeling components of judgmental achievement and for creating tools to help decision makers (e.g., physicians, teachers) reach better judgments (e.g., a correct diagnosis, an accurate estimation of intelligence). Previous meta-analyses of judgment and decision-making studies have attempted to evaluate overall judgmental achievement and have provided the basis for evaluating the success of bootstrapping (i.e., replacing judges by linear models that guide decision making). However, previous meta-analyses have failed to appropriately correct for a number of study design artifacts (e.g., measurement error, dichotomization), which may have potentially biased estimations (e.g., of the variability between studies) and led to erroneous interpretations (e.g., with regards to moderator variables). In the current study we therefore conduct the first psychometric meta-analysis of judgmental achievement studies that corrects for a number of study design artifacts. We identified 31 lens model studies (N = 1,151, k = 49) that met our inclusion criteria. We evaluated overall judgmental achievement as well as whether judgmental achievement depended on decision domain (e.g., medicine, education) and/or the level of expertise (expert vs. novice). We also evaluated whether using corrected estimates affected conclusions with regards to the success of bootstrapping with psychometrically-corrected models. Further, we introduce a new psychometric trim-and-fill method to estimate the effect sizes of potentially missing studies correct psychometric meta-analyses for effects of publication bias. Comparison of the results of the psychometric meta-analysis with the results of a traditional meta-analysis (which only corrected for sampling error) indicated that artifact correction leads to a) an increase in values of the lens model components, b) reduced heterogeneity between studies, and c) increases the success of bootstrapping. We argue that psychometric meta-analysis is useful for accurately evaluating human judgment and show the success of bootstrapping.

  18. Physics of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  19. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  20. Migration of the ATLAS Metadata Interface (AMI) to Web 2.0 and cloud

    NASA Astrophysics Data System (ADS)

    Odier, J.; Albrand, S.; Fulachier, J.; Lambert, F.

    2015-12-01

    The ATLAS Metadata Interface (AMI), a mature application of more than 10 years of existence, is currently under adaptation to some recently available technologies. The web interfaces, which previously manipulated XML documents using XSL transformations, are being migrated to Asynchronous JavaScript (AJAX). Web development is considerably simplified by the introduction of a framework based on JQuery and Twitter Bootstrap. Finally, the AMI services are being migrated to an OpenStack cloud infrastructure.

  1. Finite Beta Boundary Magnetic Fields of NCSX

    NASA Astrophysics Data System (ADS)

    Grossman, A.; Kaiser, T.; Mioduszewski, P.

    2004-11-01

    The magnetic field between the plasma surface and wall of the National Compact Stellarator (NCSX), which uses quasi-symmetry to combine the best features of the tokamak and stellarator in a configuration of low aspect ratio is mapped via field line tracing in a range of finite beta in which part of the rotational transform is generated by the bootstrap current. We adopt the methodology developed for W7-X, in which an equilibrium solution is computed by an inverse equilibrium solver based on an energy minimizing variational moments code, VMEC2000[1], which solves directly for the shape of the flux surfaces given the external coils and their currents as well as a bootstrap current provided by a separate transport calculation. The VMEC solution and the Biot-Savart vacuum fields are coupled to the magnetic field solver for finite-beta equilibrium (MFBE2001)[2] code to determine the magnetic field on a 3D grid over a computational domain. It is found that the edge plasma is more stellarator-like, with a complex 3D structure, and less like the ordered 2D symmetric structure of a tokamak. The field lines make a transition from ergodically covering a surface to ergodically covering a volume, as the distance from the last closed magnetic surface is increased. The results are compared with the PIES[3] calculations. [1] S.P. Hirshman et al. Comput. Phys. Commun. 43 (1986) 143. [2] E. Strumberger, et al. Nucl. Fusion 42 (2002) 827. [3] A.H. Reiman and H.S. Greenside, Comput. Phys. Commun. 43, 157 (1986).

  2. Bootstrap Methods: A Very Leisurely Look.

    ERIC Educational Resources Information Center

    Hinkle, Dennis E.; Winstead, Wayland H.

    The Bootstrap method, a computer-intensive statistical method of estimation, is illustrated using a simple and efficient Statistical Analysis System (SAS) routine. The utility of the method for generating unknown parameters, including standard errors for simple statistics, regression coefficients, discriminant function coefficients, and factor…

  3. Bootstrapping Student Understanding of What Is Going on in Econometrics.

    ERIC Educational Resources Information Center

    Kennedy, Peter E.

    2001-01-01

    Explains that econometrics is an intellectual game played by rules based on the sampling distribution concept. Contains explanations for why many students are uncomfortable with econometrics. Encourages instructors to use explain-how-to-bootstrap exercises to promote student understanding. (RLH)

  4. Similarity considerations and conservation laws for magneto-static atmospheres

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1986-01-01

    The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are investigated analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a single nonlinear elliptic equation for the magnetic potential. Similarity solutions of the elliptic equation are obtained for the case of an isothermal atmosphere in a uniform gravitational field. The solutions are obtained from a consideration of the invariance group of the elliptic equation. The importance of symmetries of the elliptic equation also appears in the determination of conservation laws. It turns out that the elliptic equation can be written as a variational principle, and the symmetries of the variational functional lead (via Noether's theorem) to conservation laws for the equation. As an example of the application of the similarity solutions, a model magnetostatic atmosphere is constructed in which the current density J is proportional to the cube of the magnetic potential, and falls off exponentially with distance vertical to the base, with an 'e-folding' distance equal to the gravitational scale height. The solutions show the interplay between the gravitational force, the J x B force (B, magnetic field induction) and the gas pressure gradient.

  5. Calculation of {alpha}/{gamma} equilibria in SA508 grade 3 steels for intercritical heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.J.; Kim, H.D.; Hong, J.H.

    1998-05-01

    An attempt has been made to suggest an optimum temperature for intercritical heat treatment of an SA508 grade 3 steel for nuclear pressure vessels, based on thermodynamic calculation of the {alpha}/{gamma} phase equilibria. A thermodynamic database constructed for the Fe-Mn-Ni-Mo-Cr-Si-V-Al-C-N ten-component system and an empirical criterion that the amount of reformed austenite should be around 40 pct were used for thermodynamic calculation and derivation of the optimum heat-treatment temperature, respectively. The calculated optimum temperature, 720 C, was in good agreement with an experimentally determined temperature of 725 C obtained through an independent experimental investigation of the same steel. The agreementmore » between the calculated and measured fraction of reformed austenite during the intercritical heat treatment was also confirmed. Based on the agreement between calculation and experiment, it could be concluded that thermodynamic calculations can be successfully applied to the materials and/or process design as an additive tool to the already established technology, and that the currently constructed thermodynamic database for steel systems shows an accuracy that makes such applications possible.« less

  6. A multi-marker molecular signature approach for treatment-specific subgroup identification with survival outcomes.

    PubMed

    Li, L; Guennel, T; Marshall, S; Cheung, L W-K

    2014-10-01

    Delivering on the promise of personalized medicine has become a focus of the pharmaceutical industry as the era of the blockbuster drug is fading. Central to realizing this promise is the need for improved analytical strategies for effectively integrating information across various biological assays (for example, copy number variation and targeted protein expression) toward identification of a treatment-specific subgroup-identifying the right patients. We propose a novel combination of elastic net followed by a maximal χ(2) and semiparametric bootstrap. The combined approaches are presented in a two-stage strategy that estimates patient-specific multi-marker molecular signatures (MMMS) to identify and directly test for a biomarker-driven subgroup with enhanced treatment effect. This flexible strategy provides for incorporation of business-specific needs, such as confining the search space to a subgroup size that is commercially viable, ultimately resulting in actionable information for use in empirically based decision making.

  7. Using the bootstrap to establish statistical significance for relative validity comparisons among patient-reported outcome measures

    PubMed Central

    2013-01-01

    Background Relative validity (RV), a ratio of ANOVA F-statistics, is often used to compare the validity of patient-reported outcome (PRO) measures. We used the bootstrap to establish the statistical significance of the RV and to identify key factors affecting its significance. Methods Based on responses from 453 chronic kidney disease (CKD) patients to 16 CKD-specific and generic PRO measures, RVs were computed to determine how well each measure discriminated across clinically-defined groups of patients compared to the most discriminating (reference) measure. Statistical significance of RV was quantified by the 95% bootstrap confidence interval. Simulations examined the effects of sample size, denominator F-statistic, correlation between comparator and reference measures, and number of bootstrap replicates. Results The statistical significance of the RV increased as the magnitude of denominator F-statistic increased or as the correlation between comparator and reference measures increased. A denominator F-statistic of 57 conveyed sufficient power (80%) to detect an RV of 0.6 for two measures correlated at r = 0.7. Larger denominator F-statistics or higher correlations provided greater power. Larger sample size with a fixed denominator F-statistic or more bootstrap replicates (beyond 500) had minimal impact. Conclusions The bootstrap is valuable for establishing the statistical significance of RV estimates. A reasonably large denominator F-statistic (F > 57) is required for adequate power when using the RV to compare the validity of measures with small or moderate correlations (r < 0.7). Substantially greater power can be achieved when comparing measures of a very high correlation (r > 0.9). PMID:23721463

  8. Dynamical Analysis of Density-dependent Selection in a Discrete one-island Migration Model

    Treesearch

    James H. Roberds; James F. Selgrade

    2000-01-01

    A system of non-linear difference equations is used to model the effects of density-dependent selection and migration in a population characterized by two alleles at a single gene locus. Results for the existence and stability of polymorphic equilibria are established. Properties for a genetically important class of equilibria associated with complete dominance in...

  9. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  10. Imitation dynamics of vaccine decision-making behaviours based on the game theory.

    PubMed

    Yang, Junyuan; Martcheva, Maia; Chen, Yuming

    2016-01-01

    Based on game theory, we propose an age-structured model to investigate the imitation dynamics of vaccine uptake. We first obtain the existence and local stability of equilibria. We show that Hopf bifurcation can occur. We also establish the global stability of the boundary equilibria and persistence of the disease. The theoretical results are supported by numerical simulations.

  11. Energetics of photosynthetic glow peaks

    PubMed Central

    DeVault, Don; Govindjee; Arnold, William

    1983-01-01

    By postulating temperature-dependent equilibria between two or more electron carriers acting as traps for electrons or holes, it is possible to modify the Randall-Wilkins theory of thermoluminescence so as to explain the abnormally large apparent activation energies and apparent frequency factors observed in photosynthetic glow curves when fitted by unmodified Randall-Wilkins theory. The equilibria serve to inhibit the formation of the light-emitting excited state by withholding the needed precursor state. When the inhibition is released at higher temperature by shift of equilibrium with temperature, the rise of the glow peak can be much faster than would result from Arrhenius behavior based on the true activation energy and so appears to correspond to a higher activation energy accompanied by a larger frequency factor. From another viewpoint, the enthalpy changes, ΔH, of the equilibria tend to add to the activation energy. Similarly the entropy changes, ΔS, of the equilibria tend to add to the entropy of activation, giving the large apparent frequency factors. The positive values of ΔS needed would correspond to entropy decreases in the forward early electron transport. A comparison of the glow peaks obtained by different workers is also presented. PMID:16593283

  12. A stochastic cellular automata model of tautomer equilibria

    NASA Astrophysics Data System (ADS)

    Bowers, Gregory A.; Seybold, Paul G.

    2018-03-01

    Many chemical substances, including drugs and biomolecules, exist in solution not as a single species, but as a collection of tautomers and related species. Importantly, each of these species is an independent compoundwith its own specific biochemical and physicochemical properties. The species interconvert in a dynamic and often complicated manner, making modelling the overall species composition difficult. Agent-based cellular automata models are uniquely suited to meet this challenge, allowing the equilibria to be simulated using simple rulesand at the same time capturing the inherent stochasticity of the natural phenomenon. In the present example a stochastic cellular automata model is employed to simulate the tautomer equilibria of 9-anthrone and 9-anthrol in the presence of their common anion. The observed KE of the 9-anthrone ⇌ 9-anthrol tautomerisation along with the measured tautomer pKa values were used to model the equilibria at pH values 4, 7 and 10. At pH 4 and 7, the anthrone comprises >99% of the total species population, while at pH 10the anthrone and the anion each represent just under half of the total population. The advantages of the cellular automata approach over the customary coupled differential equation approach are discussed.

  13. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  14. Maintenance of Genetic Variability under Strong Stabilizing Selection: A Two-Locus Model

    PubMed Central

    Gavrilets, S.; Hastings, A.

    1993-01-01

    We study a two locus model with additive contributions to the phenotype to explore the relationship between stabilizing selection and recombination. We show that if the double heterozygote has the optimum phenotype and the contributions of the loci to the trait are different, then any symmetric stabilizing selection fitness function can maintain genetic variability provided selection is sufficiently strong relative to linkage. We present results of a detailed analysis of the quadratic fitness function which show that selection need not be extremely strong relative to recombination for the polymorphic equilibria to be stable. At these polymorphic equilibria the mean value of the trait, in general, is not equal to the optimum phenotype, there exists a large level of negative linkage disequilibrium which ``hides'' additive genetic variance, and different equilibria can be stable simultaneously. We analyze dependence of different characteristics of these equilibria on the location of optimum phenotype, on the difference in allelic effect, and on the strength of selection relative to recombination. Our overall result that stabilizing selection does not necessarily eliminate genetic variability is compatible with some experimental results where the lines subject to strong stabilizing selection did not have significant reductions in genetic variability. PMID:8514145

  15. Analysis of the statistical thermodynamic model for nonlinear binary protein adsorption equilibria.

    PubMed

    Zhou, Xiao-Peng; Su, Xue-Li; Sun, Yan

    2007-01-01

    The statistical thermodynamic (ST) model was used to study nonlinear binary protein adsorption equilibria on an anion exchanger. Single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin (BSA) on DEAE Spherodex M were determined by batch adsorption experiments in 10 mM Tris-HCl buffer containing a specific NaCl concentration (0.05, 0.10, and 0.15 M) at pH 7.40. The ST model was found to depict the effect of ionic strength on the single-component equilibria well, with model parameters depending on ionic strength. Moreover, the ST model gave acceptable fitting to the binary adsorption data with the fitted single-component model parameters, leading to the estimation of the binary ST model parameter. The effects of ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories. The effective charge of protein in adsorption phase can be separately calculated from the two categories of the model parameters, and the values obtained from the two methods are consistent. The results demonstrate the utility of the ST model for describing nonlinear binary protein adsorption equilibria.

  16. Sirepo - Warp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Robert; Moeller, Paul

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.« less

  17. Four Bootstrap Confidence Intervals for the Binomial-Error Model.

    ERIC Educational Resources Information Center

    Lin, Miao-Hsiang; Hsiung, Chao A.

    1992-01-01

    Four bootstrap methods are identified for constructing confidence intervals for the binomial-error model. The extent to which similar results are obtained and the theoretical foundation of each method and its relevance and ranges of modeling the true score uncertainty are discussed. (SLD)

  18. Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment.

    ERIC Educational Resources Information Center

    Habing, Brian

    2001-01-01

    Discusses ideas underlying nonparametric regression and the parametric bootstrap with an overview of their application to item response theory and the assessment of local dependence. Illustrates the use of the method in assessing local dependence that varies with examinee trait levels. (SLD)

  19. Application of the Bootstrap Statistical Method in Deriving Vibroacoustic Specifications

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Paez, Thomas L.

    2006-01-01

    This paper discusses the Bootstrap Method for specification of vibroacoustic test specifications. Vibroacoustic test specifications are necessary to properly accept or qualify a spacecraft and its components for the expected acoustic, random vibration and shock environments seen on an expendable launch vehicle. Traditionally, NASA and the U.S. Air Force have employed methods of Normal Tolerance Limits to derive these test levels based upon the amount of data available, and the probability and confidence levels desired. The Normal Tolerance Limit method contains inherent assumptions about the distribution of the data. The Bootstrap is a distribution-free statistical subsampling method which uses the measured data themselves to establish estimates of statistical measures of random sources. This is achieved through the computation of large numbers of Bootstrap replicates of a data measure of interest and the use of these replicates to derive test levels consistent with the probability and confidence desired. The comparison of the results of these two methods is illustrated via an example utilizing actual spacecraft vibroacoustic data.

  20. The Reliability and Stability of an Inferred Phylogenetic Tree from Empirical Data.

    PubMed

    Katsura, Yukako; Stanley, Craig E; Kumar, Sudhir; Nei, Masatoshi

    2017-03-01

    The reliability of a phylogenetic tree obtained from empirical data is usually measured by the bootstrap probability (Pb) of interior branches of the tree. If the bootstrap probability is high for most branches, the tree is considered to be reliable. If some interior branches show relatively low bootstrap probabilities, we are not sure that the inferred tree is really reliable. Here, we propose another quantity measuring the reliability of the tree called the stability of a subtree. This quantity refers to the probability of obtaining a subtree (Ps) of an inferred tree obtained. We then show that if the tree is to be reliable, both Pb and Ps must be high. We also show that Ps is given by a bootstrap probability of the subtree with the closest outgroup sequence, and computer program RESTA for computing the Pb and Ps values will be presented. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Closure of the operator product expansion in the non-unitary bootstrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.

    We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less

  2. A revisit to contingency table and tests of independence: bootstrap is preferred to Chi-square approximations as well as Fisher's exact test.

    PubMed

    Lin, Jyh-Jiuan; Chang, Ching-Hui; Pal, Nabendu

    2015-01-01

    To test the mutual independence of two qualitative variables (or attributes), it is a common practice to follow the Chi-square tests (Pearson's as well as likelihood ratio test) based on data in the form of a contingency table. However, it should be noted that these popular Chi-square tests are asymptotic in nature and are useful when the cell frequencies are "not too small." In this article, we explore the accuracy of the Chi-square tests through an extensive simulation study and then propose their bootstrap versions that appear to work better than the asymptotic Chi-square tests. The bootstrap tests are useful even for small-cell frequencies as they maintain the nominal level quite accurately. Also, the proposed bootstrap tests are more convenient than the Fisher's exact test which is often criticized for being too conservative. Finally, all test methods are applied to a few real-life datasets for demonstration purposes.

  3. Closure of the operator product expansion in the non-unitary bootstrap

    DOE PAGES

    Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.

    2016-11-07

    We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less

  4. Finding Bounded Rational Equilibria. Part 1; Iterative Focusing

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality characterizing all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. It has recently been shown that the same information theoretic mathematical structure, known as Probability Collectives (PC) underlies both issues. This relationship between statistical physics and game theory allows techniques and insights from the one field to be applied to the other. In particular, PC provides a formal model-independent definition of the degree of rationality of a player and of bounded rationality equilibria. This pair of papers extends previous work on PC by introducing new computational approaches to effectively find bounded rationality equilibria of common-interest (team) games.

  5. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    PubMed

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  6. Microbial control of mineral–groundwater equilibria:Macroscale to microscale

    USGS Publications Warehouse

    Bennett, Philip C.; Hiebert, Franz K.; Roger, Jennifer Roberts

    2000-01-01

    macroscaleprocesses that perturb general groundwater chemistry and therefore mineral–water equilibria; and microscale interactions, where attached organisms locally perturb mineral–water equilibria, potentially releasing limiting trace nutrients from the dissolving mineral.In the contaminated unconfined glacio-fluvial aquifer near Bemidji, Minnesota, USA, carbonate chemistry is influenced primarily at the macroscale. Under oxic conditions, respiration by native aerobic heterotrophs produces excess carbon dioxide that promotes calcite and dolomite dissolution. Aerobic microorganisms do not colonize dolomite surfaces and few occur on calcite. Within the anoxic groundwater, calcite overgrowths form on uncolonized calcite cleavage surfaces, possibly due to the consumption of acidity by dissimilatory iron-reducing bacteria. As molecular oxygen concentration increases downgradient of the oil pool, aerobes again dominate and residual hydrocarbons and ferrous iron are oxidized, resulting in macroscale carbonate-mineral dissolution and iron precipitation.

  7. Device, system and method for a sensing electrical circuit

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.

  8. Preparation of YBa2Cu3O7 High Tc Superconducting Coatings by Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Danroc, J.; Lacombe, J.

    The following sections are included: * INTRODUCTION * THE COMPOUND YBa2Cu3O7-δ * Structure * Critical temperature * Critical current density * Phase equilibria in the YBaCuO system * PREPARATION OF YBa2Cu3O7 COATINGS * General organisation of the preparation process * The powder * Hot plasma spraying of YBa2Cu3O7 * The post-spraying thermal treatment * CHARACTERISTICS OF THE YBa2Cu3O7-δ COATINGS * Chemical composition * Crystalline structure * Morphology of the coatings * Electrical and magnetic characteristics * Conclusion * REFERENCES

  9. Confidence Interval Coverage for Cohen's Effect Size Statistic

    ERIC Educational Resources Information Center

    Algina, James; Keselman, H. J.; Penfield, Randall D.

    2006-01-01

    Kelley compared three methods for setting a confidence interval (CI) around Cohen's standardized mean difference statistic: the noncentral-"t"-based, percentile (PERC) bootstrap, and biased-corrected and accelerated (BCA) bootstrap methods under three conditions of nonnormality, eight cases of sample size, and six cases of population…

  10. A Bootstrap Procedure of Propensity Score Estimation

    ERIC Educational Resources Information Center

    Bai, Haiyan

    2013-01-01

    Propensity score estimation plays a fundamental role in propensity score matching for reducing group selection bias in observational data. To increase the accuracy of propensity score estimation, the author developed a bootstrap propensity score. The commonly used propensity score matching methods: nearest neighbor matching, caliper matching, and…

  11. Thermodynamic characteristics of the acid-base equilibria of ethylenediamine- N, N'-diglutaric acid in aqueous solutions using calorimetric data

    NASA Astrophysics Data System (ADS)

    Gridchin, S. N.; Nikol'skii, V. M.

    2017-10-01

    The enthalpies of reaction of betaine group neutralization of ethylenediamine- N, N'-diglutaric acid (H4L) at 298.15 K and at different values of ionic strength of 0.1, 0.5, 1.0 (KNO3) is measured by direct calorimetry. The standard thermodynamic characteristics of the protolytic equilibria of H4L are calculated.

  12. Surprising Impact of Remote Groups on the Folding-Unfolding and Dimer-Chain Equilibria of Bifunctionl H-Bonding Unimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rui; Cheng, Shuang; Baker, Erin Shammel

    2016-01-28

    Oligoamide 1, consisting of two H-bonding units linked by a trimethylene linker, was previously found to form a very stable, folded dimer. In this work, replacing the side chains and end groups of 1 led to derivatives that show the surprising impact of end groups on the folding and dimer-chain equilibria of the resultant molecules.

  13. Spacecraft Debris Avoidance Using Positively Invariant Constraint Admissible Sets

    DTIC Science & Technology

    2013-07-11

    Search; Bounded Disturbances; Linear Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...spacecraft equilibria in the Clohessy - Wiltshire -Hill (CWH) relative motion frame [2]. The collection of equilibria form a virtual net in the vicinity of...ABBREVIATIONS, AND ACRONYMS CWH Clohessy - Wiltshire -Hill LTV linear time-varying Distribution Statement A: Approved for public release; distribution is unlimited

  14. Experimental investigation and application of the equilibrium rutile + orthopyroxene = quartz + ilmenite

    USGS Publications Warehouse

    Hayob, J.L.; Bohlen, S.R.; Essene, E.J.

    1993-01-01

    Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: {Mathematical expression} have been calibrated in the range 800-1100?? C and 12-26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40-70, using Ag80Pd20 capsules with {Mathematical expression} buffered at or near iron-wu??stite. Ilmenite compositions coexisting with orthopyroxene are {Mathematical expression} of 0.06 to 0.15 and {Mathematical expression} of 0.00 to 0.01, corresponding to KD values of 13.3, 10.2, 9.0 and 8.0 (??0.5) at 800, 900, 1000 and 1100?? C, respectively, where KD=(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models for ilmenite available from the literature to calculate a/X relations in orthopyroxene of intermediate composition. Data from this study indicate that FeSiO3-MgSiO3 orthopyroxene exhibits small, positive deviations from ideality over the range 800-1100??C. ?? 1993 Springer-Verlag.

  15. Gridless, pattern-driven point cloud completion and extension

    NASA Astrophysics Data System (ADS)

    Gravey, Mathieu; Mariethoz, Gregoire

    2016-04-01

    While satellites offer Earth observation with a wide coverage, other remote sensing techniques such as terrestrial LiDAR can acquire very high-resolution data on an area that is limited in extension and often discontinuous due to shadow effects. Here we propose a numerical approach to merge these two types of information, thereby reconstructing high-resolution data on a continuous large area. It is based on a pattern matching process that completes the areas where only low-resolution data is available, using bootstrapped high-resolution patterns. Currently, the most common approach to pattern matching is to interpolate the point data on a grid. While this approach is computationally efficient, it presents major drawbacks for point clouds processing because a significant part of the information is lost in the point-to-grid resampling, and that a prohibitive amount of memory is needed to store large grids. To address these issues, we propose a gridless method that compares point clouds subsets without the need to use a grid. On-the-fly interpolation involves a heavy computational load, which is met by using a GPU high-optimized implementation and a hierarchical pattern searching strategy. The method is illustrated using data from the Val d'Arolla, Swiss Alps, where high-resolution terrestrial LiDAR data are fused with lower-resolution Landsat and WorldView-3 acquisitions, such that the density of points is homogeneized (data completion) and that it is extend to a larger area (data extension).

  16. Software Supportability Risk Assessment in OT&E (Operational Test and Evaluation): Literature Review, Current Research Review, and Data Base Assemblage.

    DTIC Science & Technology

    1984-09-28

    variables before simula- tion of model - Search for reality checks a, - Express uncertainty as a probability density distribution. a. H2 a, H-22 TWIF... probability that the software con- tains errors. This prior is updated as test failure data are accumulated. Only a p of 1 (software known to contain...discusssed; both parametric and nonparametric versions are presented. It is shown by the author that the bootstrap underlies the jackknife method and

  17. NATbox: a network analysis toolbox in R.

    PubMed

    Chavan, Shweta S; Bauer, Michael A; Scutari, Marco; Nagarajan, Radhakrishnan

    2009-10-08

    There has been recent interest in capturing the functional relationships (FRs) from high-throughput assays using suitable computational techniques. FRs elucidate the working of genes in concert as a system as opposed to independent entities hence may provide preliminary insights into biological pathways and signalling mechanisms. Bayesian structure learning (BSL) techniques and its extensions have been used successfully for modelling FRs from expression profiles. Such techniques are especially useful in discovering undocumented FRs, investigating non-canonical signalling mechanisms and cross-talk between pathways. The objective of the present study is to develop a graphical user interface (GUI), NATbox: Network Analysis Toolbox in the language R that houses a battery of BSL algorithms in conjunction with suitable statistical tools for modelling FRs in the form of acyclic networks from gene expression profiles and their subsequent analysis. NATbox is a menu-driven open-source GUI implemented in the R statistical language for modelling and analysis of FRs from gene expression profiles. It provides options to (i) impute missing observations in the given data (ii) model FRs and network structure from gene expression profiles using a battery of BSL algorithms and identify robust dependencies using a bootstrap procedure, (iii) present the FRs in the form of acyclic graphs for visualization and investigate its topological properties using network analysis metrics, (iv) retrieve FRs of interest from published literature. Subsequently, use these FRs as structural priors in BSL (v) enhance scalability of BSL across high-dimensional data by parallelizing the bootstrap routines. NATbox provides a menu-driven GUI for modelling and analysis of FRs from gene expression profiles. By incorporating readily available functions from existing R-packages, it minimizes redundancy and improves reproducibility, transparency and sustainability, characteristic of open-source environments. NATbox is especially suited for interdisciplinary researchers and biologists with minimal programming experience and would like to use systems biology approaches without delving into the algorithmic aspects. The GUI provides appropriate parameter recommendations for the various menu options including default parameter choices for the user. NATbox can also prove to be a useful demonstration and teaching tool in graduate and undergraduate course in systems biology. It has been tested successfully under Windows and Linux operating systems. The source code along with installation instructions and accompanying tutorial can be found at http://bioinformatics.ualr.edu/natboxWiki/index.php/Main_Page.

  18. Bootstrapping Methods Applied for Simulating Laboratory Works

    ERIC Educational Resources Information Center

    Prodan, Augustin; Campean, Remus

    2005-01-01

    Purpose: The aim of this work is to implement bootstrapping methods into software tools, based on Java. Design/methodology/approach: This paper presents a category of software e-tools aimed at simulating laboratory works and experiments. Findings: Both students and teaching staff use traditional statistical methods to infer the truth from sample…

  19. Bootstrap Confidence Intervals for Ordinary Least Squares Factor Loadings and Correlations in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong

    2010-01-01

    This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…

  20. Bootstrap Estimation and Testing for Variance Equality.

    ERIC Educational Resources Information Center

    Olejnik, Stephen; Algina, James

    The purpose of this study was to develop a single procedure for comparing population variances which could be used for distribution forms. Bootstrap methodology was used to estimate the variability of the sample variance statistic when the population distribution was normal, platykurtic and leptokurtic. The data for the study were generated and…

  1. Bootstrapping the Syntactic Bootstrapper: Probabilistic Labeling of Prosodic Phrases

    ERIC Educational Resources Information Center

    Gutman, Ariel; Dautriche, Isabelle; Crabbé, Benoît; Christophe, Anne

    2015-01-01

    The "syntactic bootstrapping" hypothesis proposes that syntactic structure provides children with cues for learning the meaning of novel words. In this article, we address the question of how children might start acquiring some aspects of syntax before they possess a sizeable lexicon. The study presents two models of early syntax…

  2. Evaluating the Use of Random Distribution Theory to Introduce Statistical Inference Concepts to Business Students

    ERIC Educational Resources Information Center

    Larwin, Karen H.; Larwin, David A.

    2011-01-01

    Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…

  3. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier

    PubMed Central

    Porter, Teresita M; Gibson, Joel F; Shokralla, Shadi; Baird, Donald J; Golding, G Brian; Hajibabaei, Mehrdad

    2014-01-01

    Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a naïve Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high-throughput environmental sequencing. This method provides rank-flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast-based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave-one-out cross-validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut-offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.

  4. Bar Mode Instability in Relativistic Rotating Stars: A Post-Newtonian Treatment

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart L.; Zane, Silvia

    1998-08-01

    We construct analytic models of incompressible, uniformly rotating stars in post-Newtonian (PN) gravity and evaluate their stability against nonaxisymmetric bar modes. We model the PN configurations by homogeneous triaxial ellipsoids and employ an energy variational principle to determine their equilibrium shape and stability. The spacetime metric is obtained by solving Einstein's equations of general relativity in 3 + 1 ADM form. We use an approximate subset of these equations well suited to numerical integration in the case of strong-field, three-dimensional configurations in quasi equilibrium. However, the adopted equations are exact at PN order, where they admit an analytic solution for homogeneous ellipsoids. We obtain this solution for the metric, as well as analytic functionals for the conserved global quantities, M, M0, and J. We present sequences of axisymmetric, rotating equilibria of constant density and rest mass parametrized by their eccentricity. These configurations represent the PN generalization of Newtonian Maclaurin spheroids, which we compare to other PN and full relativistic incompressible equilibrium sequences constructed by previous investigators. We employ the variational principle to consider nonaxisymmetric ellipsoidal deformations of the configurations, holding the angular momentum constant and the rotation uniform. We locate the point along each sequence at which these Jacobi-like bar modes will be driven secularly unstable by the presence of a dissipative agent such as viscosity. We find that the value of the eccentricity, as well as related ratios such as Ω2/(πρ0) and T/|W| (=rotational kinetic energy/gravitational potential energy), defined invariantly, all increase at the onset of instability as the stars become more relativistic. Since higher degrees of rotation are required to trigger a viscosity-driven bar mode instability as the stars become more compact, the effect of general relativity is to weaken the instability, at least to PN order. This behavior is in stark contrast to that found recently for secular instability via nonaxisymmetric, Dedekind-like modes driven by gravitational radiation. These findings support the suggestion that in general relativity nonaxisymmetric modes driven unstable by viscosity no longer coincide with those driven unstable by gravitational radiation.

  5. Finding Bounded Rational Equilibria. Part 2; Alternative Lagrangians and Uncountable Move Spaces

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality characterizing all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. It has recently been shown that the same information theoretic mathematical structure, known as Probability Collectives (PC) underlies both issues. This relationship between statistical physics and game theory allows techniques and insights &om the one field to be applied to the other. In particular, PC provides a formal model-independent definition of the degree of rationality of a player and of bounded rationality equilibria. This pair of papers extends previous work on PC by introducing new computational approaches to effectively find bounded rationality equilibria of common-interest (team) games.

  6. Dynamics of an eco-epidemiological model with saturated incidence rate

    NASA Astrophysics Data System (ADS)

    Suryanto, Agus

    2017-03-01

    In this paper we study the effect of prey infection on the modified Leslie-Gower predator-prey model with saturated incidence rate. The model will be analyzed dynamically to find the equilibria and their existence conditions as well as their local stability conditions. It is found that there are six type of equilibria, namely the extinction of both prey and predator point, the extinction of infective prey and predator point, the extinction of predator point, the extinction of prey point, the extinction of infective prey point and the interior point. The first four equilibrium points are always unstable, while the last two equilibria are conditionally stable. We also find that the system undergoes Hopf bifurcation around the interior point which is controlled by the rate of infection. To illustrate our analytical results, we show some numerical results.

  7. Packings of a charged line on a sphere.

    PubMed

    Alben, Silas

    2008-12-01

    We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two low-wave-number bifurcations-"baseball seam" and "twist"-which minimize Coulomb energy. The spiral shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases. Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral with uniform spacing between turns. Multiple stable equilibria of the open line are observed.

  8. An economic evaluation of Alexander Technique lessons or acupuncture sessions for patients with chronic neck pain: A randomized trial (ATLAS).

    PubMed

    Essex, Holly; Parrott, Steve; Atkin, Karl; Ballard, Kathleen; Bland, Martin; Eldred, Janet; Hewitt, Catherine; Hopton, Ann; Keding, Ada; Lansdown, Harriet; Richmond, Stewart; Tilbrook, Helen; Torgerson, David; Watt, Ian; Wenham, Aniela; Woodman, Julia; MacPherson, Hugh

    2017-01-01

    To assess the cost-effectiveness of acupuncture and usual care, and Alexander Technique lessons and usual care, compared with usual GP care alone for chronic neck pain patients. An economic evaluation was undertaken alongside the ATLAS trial, taking both NHS and wider societal viewpoints. Participants were offered up to twelve acupuncture sessions or twenty Alexander lessons (equivalent overall contact time). Costs were in pounds sterling. Effectiveness was measured using the generic EQ-5D to calculate quality adjusted life years (QALYs), as well as using a specific neck pain measure-the Northwick Park Neck Pain Questionnaire (NPQ). In the base case analysis, incremental QALY gains were 0.032 and 0.025 in the acupuncture and Alexander groups, respectively, in comparison to usual GP care, indicating moderate health benefits for both interventions. Incremental costs were £451 for acupuncture and £667 for Alexander, mainly driven by intervention costs. Acupuncture was likely to be cost-effective (ICER = £18,767/QALY bootstrapped 95% CI £4,426 to £74,562) and was robust to most sensitivity analyses. Alexander lessons were not cost-effective at the lower NICE threshold of £20,000/QALY (£25,101/QALY bootstrapped 95% CI -£150,208 to £248,697) but may be at £30,000/QALY, however, there was considerable statistical uncertainty in all tested scenarios. In comparison with usual care, acupuncture is likely to be cost-effective for chronic neck pain, whereas, largely due to higher intervention costs, Alexander lessons are unlikely to be cost-effective. However, there were high levels of missing data and further research is needed to assess the long-term cost-effectiveness of these interventions.

  9. An economic evaluation of Alexander Technique lessons or acupuncture sessions for patients with chronic neck pain: A randomized trial (ATLAS)

    PubMed Central

    Essex, Holly; Parrott, Steve; Atkin, Karl; Ballard, Kathleen; Bland, Martin; Eldred, Janet; Hewitt, Catherine; Hopton, Ann; Keding, Ada; Lansdown, Harriet; Richmond, Stewart; Tilbrook, Helen; Torgerson, David; Watt, Ian; Wenham, Aniela; Woodman, Julia; MacPherson, Hugh

    2017-01-01

    Objectives To assess the cost-effectiveness of acupuncture and usual care, and Alexander Technique lessons and usual care, compared with usual GP care alone for chronic neck pain patients. Methods An economic evaluation was undertaken alongside the ATLAS trial, taking both NHS and wider societal viewpoints. Participants were offered up to twelve acupuncture sessions or twenty Alexander lessons (equivalent overall contact time). Costs were in pounds sterling. Effectiveness was measured using the generic EQ-5D to calculate quality adjusted life years (QALYs), as well as using a specific neck pain measure–the Northwick Park Neck Pain Questionnaire (NPQ). Results In the base case analysis, incremental QALY gains were 0.032 and 0.025 in the acupuncture and Alexander groups, respectively, in comparison to usual GP care, indicating moderate health benefits for both interventions. Incremental costs were £451 for acupuncture and £667 for Alexander, mainly driven by intervention costs. Acupuncture was likely to be cost-effective (ICER = £18,767/QALY bootstrapped 95% CI £4,426 to £74,562) and was robust to most sensitivity analyses. Alexander lessons were not cost-effective at the lower NICE threshold of £20,000/QALY (£25,101/QALY bootstrapped 95% CI -£150,208 to £248,697) but may be at £30,000/QALY, however, there was considerable statistical uncertainty in all tested scenarios. Conclusions In comparison with usual care, acupuncture is likely to be cost-effective for chronic neck pain, whereas, largely due to higher intervention costs, Alexander lessons are unlikely to be cost-effective. However, there were high levels of missing data and further research is needed to assess the long-term cost-effectiveness of these interventions. PMID:29211741

  10. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  11. A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen+Methane

    NASA Astrophysics Data System (ADS)

    Kidnay, A. J.; Miller, R. C.; Sloan, E. D.; Hiza, M. J.

    1985-07-01

    The available experimental data for vapor-liquid equilibria, heat of mixing, change in volume on mixing for liquid mixtures, and gas-phase PVT measurements for nitrogen+methane have been reviewed and where possible evaluated for consistency. The derived properties chosen for analysis and correlation were liquid mixture excess Gibbs free energies, and Henry's constants.

  12. Equilibria of the symmetric collinear restricted four-body problem with radiation pressure

    NASA Astrophysics Data System (ADS)

    Arribas, M.; Abad, A.; Elipe, A.; Palacios, M.

    2016-02-01

    In this paper, a restricted four-body problem with radiation pressure is considered. The three primaries are supposed in a collinear central configuration where both masses and both radiation forces of peripheral bodies are equal. After an adequate formulation, the problem is reduced to a tri-parametric one. A complete analysis of the position of equilibria and their stability in the space of parameters is performed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoyong; Budny, Robert; Gorelenkov, Nikolai

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfvenmore » modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.« less

  14. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    NASA Astrophysics Data System (ADS)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  15. Dynamics of Axially Symmetric Perturbed Hamiltonians in 1:1:1 Resonance

    NASA Astrophysics Data System (ADS)

    Carrasco, D.; Palacián, J. F.; Vidal, C.; Vidarte, J.; Yanguas, P.

    2018-03-01

    We study the dynamics of a family of perturbed three-degree-of-freedom Hamiltonian systems which are in 1:1:1 resonance. The perturbation consists of axially symmetric cubic and quartic arbitrary polynomials. Our analysis is performed by normalisation, reduction and KAM techniques. Firstly, the system is reduced by the axial symmetry, and then, periodic solutions and KAM 3-tori of the full system are determined from the relative equilibria. Next, the oscillator symmetry is extended by normalisation up to terms of degree 4 in rectangular coordinates; after truncation of higher orders and reduction to the orbit space, some relative equilibria are established and periodic solutions and KAM 3-tori of the original system are obtained. As a third step, the reduction in the two symmetries leads to a one-degree-of-freedom system that is completely analysed in the twice reduced space. All the relative equilibria together with the stability and parametric bifurcations are determined. Moreover, the invariant 2-tori (related to the critical points of the twice reduced space), some periodic solutions and the KAM 3-tori, all corresponding to the full system, are established. Additionally, the bifurcations of equilibria occurring in the twice reduced space are reconstructed as quasi-periodic bifurcations involving 2-tori and periodic solutions of the full system.

  16. Gas chemistry of Icelandic thermal fluids

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri

    2017-10-01

    The chemistry of gases in thermal fluids from Iceland was studied in order to evaluate the sources and processes affecting volatile concentrations in volcanic geothermal systems at divergent plate boundaries. The fluids included vapor fumaroles and two-phase well discharges with temperatures of 100-340 °C. The vapor was dominated by H2O accounting for 62-100 mol% and generally for > 99 mol%, with CO2, H2S and H2 being the dominant gases followed by N2, CH4, and Ar. Overall mineral-gas and gas-gas equilibria were not observed for the major gases, including CO2, H2S, H2 and CH4 within the geothermal reservoirs. Instead the system proved to be controlled by source(s) and their ratios and various metastable equilibria along a fluid-rock reaction progress with gas concentrations controlled by such metastable equilibria varying at particular temperatures as a functional extent of reaction. The concentrations of H2S and H2 closely reflect mineral-fluid metastable equilibria, whereas CO2 concentrations are controlled by the input of magma gas corresponding to > 0.1 to < 5% mass input. With fluid ascent to the surface, boiling and condensation may occur, further changing the gas concentrations and hence surface fumaroles may not reflect the reservoir fluid characteristics but rather secondary processes.

  17. Stability of Inhomogeneous Equilibria of Hamiltonian Continuous Media Field Theories

    NASA Astrophysics Data System (ADS)

    Hagstrom, George

    2013-10-01

    There are a wide variety of 1 + 1 Hamiltonian continuous media field theories that exhibit phase space pattern formation. In plasma physics, the most famous of these is the Vlasov-Poisson equation, but other examples include the incompressible Euler equation in two-dimensions and the Hamiltonian Mean Field (or XY) model. One of the characteristic phenomenon that occurs in systems described by these equations is the formation of cat's eye patterns in phase space as a result of the nonlinear saturation of instabilities. Corresponding to each of these cat's eyes is a spatially inhomogeneous equilibrium solution of the underlying model, in plasma physics these are called BGK modes, but analogous solutions exist in all of the above systems. Here we analyze the stability of inhomogeneous equilibria in the Hamiltonian Mean Field model and in the Single Wave model, which is an equation that was derived to provide a model of the formation of electron holes in plasmas. We use action angle variables and the properties of elliptic functions to analyze the resulting dispersion relation construct linearly stable inhomogeneous equilibria for in the limit of small numbers of particles and study the behavior of solutions near these equilibria. Work supported by USDOE grant no. DE-FG02-ER53223.

  18. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  19. Simulation of drift wave instability in field-reversed configurations using global magnetic geometry

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team

    2016-10-01

    Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.

  20. Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction

    NASA Astrophysics Data System (ADS)

    Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques

    2015-04-01

    Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.

Top