Science.gov

Sample records for borate glasses doped

  1. Devitfrification Properties Of Bismuth Borate Glasses Doped With Trivalent Ions

    NASA Astrophysics Data System (ADS)

    Khanna, Atul; Bajaj, Anu

    2010-12-01

    Bismuth borate glasses and crystalline phases have outstanding luminescent and nonlinear optical properties; therefore there is lot of interest in their preparation and characterization. In this study we report the crystallization properties of bismuth borate glasses doped with trivalent ions. Glasses of the composition: xBi2O3-(100-×)B2O3 (x = 20, 25, 30, 37.5, 40, 50, 60 and 66 mol %) and 40Bi2O3-1Tv2O3-59B2O3 (where Tv = Al, Nd and Eu) were prepared by melt quench technique and devitrified by heat treatment above their glass transition temperatures for several hours. The crystalline phases produced were characterized by FTIR absorption spectroscopy, DTA and X-ray diffraction. Bi3B5O12 was found to be the predominant phase in all crystallized samples containing Bi2O3 concentration of ≤40 mol %, at higher Bi2O3 concentration, we observed the formation of Bi4B2O9 phase. Glasses with Bi2O3 concentration of ≤37.5 mol % produced Bi2B8O15 phase on crystallization. The metastable BiBO3-I phase was formed by short duration heat treatment (less than 5 hours) of the initial glass sample. Doping with rare earth ions like Eu3+ and Nd3+ promotes the formation of BiBO3-II phase while Al3+ doping suppresses it.

  2. Devitfrification Properties Of Bismuth Borate Glasses Doped With Trivalent Ions

    SciTech Connect

    Khanna, Atul; Bajaj, Anu

    2010-12-01

    Bismuth borate glasses and crystalline phases have outstanding luminescent and nonlinear optical properties; therefore there is lot of interest in their preparation and characterization. In this study we report the crystallization properties of bismuth borate glasses doped with trivalent ions. Glasses of the composition: xBi{sub 2}O{sub 3}-(100-x)B{sub 2}O{sub 3} (x = 20, 25, 30, 37.5, 40, 50, 60 and 66 mol %) and 40Bi{sub 2}O{sub 3}-1Tv{sub 2}O{sub 3}-59B{sub 2}O{sub 3}(where Tv = Al, Nd and Eu) were prepared by melt quench technique and devitrified by heat treatment above their glass transition temperatures for several hours. The crystalline phases produced were characterized by FTIR absorption spectroscopy, DTA and X-ray diffraction. Bi{sub 3}B{sub 5}O{sub 12} was found to be the predominant phase in all crystallized samples containing Bi{sub 2}O{sub 3} concentration of {<=}40 mol %, at higher Bi{sub 2}O{sub 3} concentration, we observed the formation of Bi{sub 4}B{sub 2}O{sub 9} phase. Glasses with Bi{sub 2}O{sub 3} concentration of {<=}37.5 mol % produced Bi{sub 2}B{sub 8}O{sub 15} phase on crystallization. The metastable BiBO{sub 3}-I phase was formed by short duration heat treatment (less than 5 hours) of the initial glass sample. Doping with rare earth ions like Eu{sup 3+} and Nd{sup 3+} promotes the formation of BiBO{sub 3}-II phase while Al{sup 3+} doping suppresses it.

  3. Synthesis and structural studies of praseodymium doped silver borate glasses

    NASA Astrophysics Data System (ADS)

    Jagadeesha Gowda, G. V.; Eraiah, B.

    2013-02-01

    Praseodymium doped silver borate glasses with nominal composition xPr6O11-(25-x)Ag2O-75B2O3 (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (Tg) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The Tg of these glasses increases with increase in concentration of Pr6O11 except at 0.2 mol%, Tg value is lower. 11B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm-1. This studies revealed that the progressive addition Ag2O and Pr6O11 leads to modification of B2O3 into BO4 groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.

  4. Synthesis and structural studies of praseodymium doped silver borate glasses

    SciTech Connect

    Jagadeesha Gowda, G. V.; Eraiah, B.

    2013-02-05

    Praseodymium doped silver borate glasses with nominal composition xPr{sub 6}O{sub 11}-(25-x)Ag{sub 2}O-75B{sub 2}O{sub 3} (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (T{sub g}) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The T{sub g} of these glasses increases with increase in concentration of Pr{sub 6}O{sub 11} except at 0.2 mol%, T{sub g} value is lower. {sup 11}B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm{sup -1}. This studies revealed that the progressive addition Ag{sub 2}O and Pr{sub 6}O{sub 11} leads to modification of B{sub 2}O{sub 3} into BO{sub 4} groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.

  5. Spectroscopic properties of the Ce-doped borate glasses

    NASA Astrophysics Data System (ADS)

    Kindrat, I. I.; Padlyak, B. V.; Mahlik, S.; Kukliński, B.; Kulyk, Y. O.

    2016-09-01

    The EPR, optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Ce-doped glasses with Li2B4O7, LiKB4O7, CaB4O7, and LiCaBO3 compositions have been investigated and analysed. The borate glasses were obtained from the corresponding polycrystalline compounds in the air atmosphere, using standard glass technology. The EPR signals of the isolated Ce3+ and pair Ce3+-Ce3+ centres, coupled by magnetic dipolar and exchange interactions were registered at liquid helium temperatures. The characteristic for glass host broad bands corresponding to the 4f → 5d transitions of the Ce3+centres have been observed in the optical absorption and photoluminescence (emission and excitation) spectra. The obtained luminescence decay curves can be satisfactory described by exponential function with lifetimes in the 19.8-26.1 ns range, which depend on the basic glass composition. The local structure of Ce3+ centres in the investigated glasses has been considered and discussed.

  6. Structural investigation of Zn doped sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  7. Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead.

    PubMed

    Venkatramu, V; Babu, P; Jayasankar, C K

    2006-02-01

    The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses.

  8. Physical and optical characterization of Er3+ doped lead-zinc-borate glass.

    PubMed

    Sooraj Hussain, N; Cardoso, P J; Hungerford, G; Gomes, M J M; Ali, Nasar; Santos, J D; Buddhudu, S

    2009-06-01

    This paper reports on the systematic optical characterization of Er3+ (1.0%) doped lead-zinc-borate glass from the measured absorption, luminescence and fluorescence lifetime decay curve profiles. By the application of the Judd-Ofelt theory, spectral intensities of the absorption bands have been analysed and these absorption results have been used in evaluating the luminescence properties of the Er3+ doped lead-zinc-borate glass. Stimulated emission cross-sections (sigmapE) of the measured emission transitions have been computed. Based on the measured glass density, and refractive indices, other related physical parameters have also been evaluated. Further, the structural and morphology of the glass material have also been investigated from X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis.

  9. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  10. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  11. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  12. Effects of varying base glass composition on the optical properties of lead borate glasses doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Heidorn, William D.

    Rare Earth (RE) doped lead borate glasses are expected to exhibit a compositional dependence in their optical properties due to the changes induced by variations in the structure of the base glass with increasing lead oxide content. A series of lead borate glasses with the composition xPbO:(99.5 - x)B2O 3 (x = 29.5 to 69.5 in steps of 10 mol%) doped with 0.5 mol% Sm2O3, Er2O3, and Ho2O3 were prepared using the melt quench technique followed by 3 hours of annealing near the glass transition temperature. Optical absorption and fluorescence spectra of these RE doped lead borate glasses were analyzed using Judd-Ofelt theory. The compositional dependence of Judd-Ofelt intensity parameters, O t (t = 2, 4, 6), were determined and were then used to calculate the radiative transition probability of the excited states, the total radiative transition probability, branching ratios, and radiative lifetime of the glasses. From the fluorescence spectra the stimulated emission cross section, and Stark splitting of the excited states were calculated as a function of glass composition. A fourth set of samples with composition xPbO:(99 - x)B2O 3(x = 29 to 69 in steps of 10 mol%) co-doped with 0.5 mol% Er2 O3 and Ho2O3 were also prepared and the effects of co-doping on the absorption and fluorescence were analyzed. In all the glass systems studied, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation. Er3+ transitions exhibit large stimulated cross section suggesting the possible utilization of these materials in laser applications. Keywords: Lead and bismuth borate glasses, fluorescence, optical absorption, Sm3+, Ho3+, Er3+ ions, Judd-Ofelt intensity parameters, stimulated emission cross section.

  13. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    NASA Astrophysics Data System (ADS)

    Harde, G. B.; Muley, G. G.

    2016-05-01

    Borate glasses of the system xNd2O3-(1-x) La2O3-SrCO3-10H3BO3 (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition 4I9/2 → 4G5/2 + 2G7/2 has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  14. Structural studies of lead lithium borate glasses doped with silver oxide.

    PubMed

    Coelho, João; Freire, Cristina; Hussain, N Sooraj

    2012-02-01

    Silver oxide doped lead lithium borate (LLB) glasses have been prepared and characterized. Structural and composition characterization were accessed by XRD, FTIR, Raman, SEM and EDS. Results from FTIR and Raman spectra indicate that Ag(2)O acts as a network modifier even at small quantities by converting three coordinated to four coordinated boron atoms. Other physical properties, such as density, molar volume and optical basicity are also evaluated. Furthermore, they are also affected by the silver oxide composition.

  15. Optical absorption and photoluminescence properties of Er3+ doped mixed alkali borate glasses.

    PubMed

    Ratnakaram, Y C; Kumar, A Vijaya; Naidu, D Tirupathi; Rao, J L

    2005-07-01

    An investigations of the optical absorption and fluorescence spectra of 0.2 mol% Er2O3 in mixed alkali borate glasses of the type 67.8B2O3 x xLi2O(32-x)Na2O, 67.8B2O3 x xLi2O(32-x)K2O and 67.8B2O3 x xNa2O(32-x)K2O (where x = 8, 12, 16, 20 and 24) are presented. The glasses were obtained by quenching melts consisting of H3BO3, Li2CO3, Na2CO3, K2CO3 and Er2O3 (950-1100 degrees C, 1.5-2 h) between two brass plates. Spectroscopic parameters like Racah (E1, E2 and E3), spin-orbit (xi(4f)) and configuration interaction (alpha) parameters are deduced as function of x. Using Judd-Ofelt theory, Judd-Ofelt intensity parameters (omega2, omega4 and omega6) are obtained. Radiative and non-radiative transition rates (A(T) and W(MPR)), radiative lifetimes (tauR), branching ratios (beta) and integrated absorption cross-sections (sigma) have been computed for certain excited states of Er3+ in these mixed alkali borate glasses. Emission spectra have been studied for all the three Er3+ doped mixed alkali borate glasses. The present paper throws light on the trends observed in the intensity parameters, radiative lifetimes, branching ratios and emission cross-sections as a function of x in these borate glasses, keeping in view the effect of mixed alkalies in borate glasses.

  16. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    SciTech Connect

    Omar, R. S. Wagiran, H. Saeed, M. A.

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  17. Study of Relaxation Dynamics in Mixed Iodide Doped Silver-Vanado-Borate Superionic Glass System

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Kanchan, D. K.; Pant, Meenakshi; Gondaliya, Nirali; Jayswal, Manish S.

    2011-07-01

    Electrical conductivity and impedance measurements were carried out for a new mixed metal iodide salt doped silver vanado-borate i.e., [(PbI2-CuI)-Ag2O-V2O5-B2O3] super-ionic glass system. The impedance plots (Z″ vs. Z') for all the prepared glass samples were recorded and found to exhibit depressed semi circles over the studied temperature range. Frequency dependence of the imaginary part of impedance Z″ and the imaginary part of modulus M″ at different temperatures were also investigated. Also, relaxation dynamics in framework of modulus formalism has been discussed.

  18. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    PubMed

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis.

  19. Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Suchand Sandeep, C. S.; Cha, Jaemine; Takebe, Hiromichi; Philip, Reji; Mohan, S.

    2008-05-01

    In this paper, we report the optical and ultrafast nonlinear optical properties of Yb3+ doped sodium borate and bismuthate glasses. The glasses have been prepared through the melt quench technique. Optical absorption measurements show compositional dependent absorption spectrum of Yb3+, which is due to the higher crystal field induced by Bi3+ ions. Local structure of the glasses has been identified by using Fourier transform infrared and Raman studies. From open aperture z-scan measurements done by using 100 fs laser pulses, the ultrafast optical nonlinearity in these materials is calculated at the nonresonant excitation wavelength of 800 nm. The measured three-photon absorption originates from the glass host, with contributions from the nonbridging oxygens and the nonlinear electronic polarization of the Bi3+ ions.

  20. Structural, dielectric and AC conductivity properties of Co2+ doped mixed alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Madhu, B. J.; Banu, Syed Asma; Harshitha, G. A.; Shilpa, T. M.; Shruthi, B.

    2013-02-01

    The Co2+ doped 19.9ZnO+5Li2CO3+25Na2CO3+50B2O3 (ZLNB) mixed alkali zinc borate glasses have been prepared by a conventional melt quenching method. The structural (XRD & FT-IR), dielectric and a.c. conductivity (σac) properties have been investigated. Amorphous nature of these glasses has been confirmed from their XRD pattern. The dielectric properties and electrical conductivity (σac) of these glasses have been studied from 100Hz to 5MHz at the room temperature. Based on the observed trends in the a.c. conductivities, the present glass samples are found to exhibit a non-Debye behavior.

  1. Elastic properties of silver borate glasses doped with praseodymium oxide

    NASA Astrophysics Data System (ADS)

    Gowda, G. V. Jagadeesha; Eraiah, B.

    2014-04-01

    A series of glasses xPr6O11-(35-x) Ag2O-65B2O3 with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol % were synthesized by melt quenching technique. Longitudinal and shear ultrasonic velocity were measured at 5 MHz frequency and at room temperature. Elastic moduli, Poisson's ratio and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses. The role of the Pr6O11 inside the glass network was discussed.

  2. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  3. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  4. Elastic properties of silver borate glasses doped with praseodymium oxide

    SciTech Connect

    Gowda, G. V. Jagadeesha; Eraiah, B.

    2014-04-24

    A series of glasses xPr{sub 6}O{sub 11−}(35−x) Ag{sub 2}O−65B{sub 2}O{sub 3} with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol % were synthesized by melt quenching technique. Longitudinal and shear ultrasonic velocity were measured at 5 MHz frequency and at room temperature. Elastic moduli, Poisson's ratio and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses. The role of the Pr{sub 6}O{sub 11} inside the glass network was discussed.

  5. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  6. Dielectric properties of nickel doped bismuth lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Dalal, Seema; Dahiya, Sunita; Ashima, Khasa, S.

    2016-05-01

    Glasses with composition xBi2O3•(30-x)Li2O•70B2O3 (x = 0, 2, 5, 7 and 10 mol% with codes BLBN1-5 respectively) containing 2 mol% of NiO were prepared via melt-quenching technique and dielectric properties are discussed. The dielectric properties have been studied using impedance spectroscopy. The frequency dependent conductivity investigations for prepared compositions have been carried out using impedance spectroscopy over a frequency range of 1 KHz to 5 MHz and in the temperature range of 300K-523K. The complex impedance data have been analyzed by using both the conductivity and the electric modulus formalisms. Standard dielectric behavior is observed in prepared samples. The ac conductivity variations satisfy the Arrhenius relation. The study of the equivalent circuit analysis up to a temperature of 473K shows a significant change in the equivalent circuit with change in temperature and composition.

  7. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-05

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers.

  8. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses.

    PubMed

    Thulasiramudu, A; Buddhudu, S

    2007-02-01

    This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.

  9. The Preparation and Characterization of Nd{sub 2}O{sub 3} Doped Borate Glass

    SciTech Connect

    Razali, Wan Aizuddin Wan; Kasim, Azman; Mohamed, Ruziana

    2010-07-07

    The Nd{sup 3+} doped borate glass of Nd{sub 2}O{sub 3}-MgO-ZnO-B{sub 2}O{sub 3} glass system is successfully been prepared by melt-quenched technique. Batches of 15g were prepared from certified reagent grades of B{sub 2}O{sub 3}(99.95% purity), MgO (97%), ZnO (98% purity), and Nd{sub 2}O{sub 3}(99.99%). The measured glass densities are found varies from 5683.2 kgm{sup -3} to 5724.0 kgm{sup -3}. The increment in density implies that an addition of Nd{sub 2}O{sub 3} with higher atomic masses than B{sub 2}O{sub 3} tend to increase the packing density of the glass structures since the atomic masses of B{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} are 69.62 and 336.42 respectively. From the density values obtained, the molar volume of glasses was calculated. From the results, it is found that the molar volume of these glasses decreases slightly from 22.50 cm{sup 3} to 27.54 cm{sup 3} with respect to Nd{sub 2}O{sub 3} content.

  10. Luminescence spectra and structure of Er3+ doped alkali borate and fluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Arul Rayappan, I.; Marimuthu, K.

    2013-11-01

    Trivalent erbium (Er3+) ion doped alkali borate and fluoroborate glasses were prepared and their structural and spectroscopic properties have been studied through XRD, FTIR, optical absorption and luminescence spectral measurements. The FTIR spectral studies reveal the presence of BO3, BO4 structural units and the strong OH- bonds in the title glasses. The absorption spectra were used to determine the bonding parameters (β¯,δ) of the prepared glasses. Judd—Ofelt intensity parameters (Ωλ, λ=2, 4 and 6) have been calculated from the optical absorption spectra and are used to predict the important radiative properties like radiative transition probability (A), stimulated emission cross-section (σPE) and branching ratios (βR) for the excited state transitions such as 2H9/2→4I15/2 and 4S3/2→4I15/2 of the Er3+ ions in the prepared glasses. Optical band gap energy (Eopt) values through direct, indirect allowed transitions and the Urbach energy (ΔE) values of the prepared Er3+ glasses have also been determined and compared with similar studies. The spectral characteristics of the Er3+ ions due to compositional changes have been examined and reported in the present work.

  11. Synthesis and characterization of γ-irradiated cadmium-borate glasses doped V2O5

    NASA Astrophysics Data System (ADS)

    Bahammam, S.; Abd El Al, S.; Ezz-Eldin, F. M.

    In this work, we study the relationship between the optical and magnetic properties for the irradiated and unirradiated V2O5-doped cadmium borate glasses and examined their optical band energy that has compromise of non-bridging oxygen (NBO) and bridging oxygen (BO), V3+, V4+ and V5+, and BO3 units and BO4 units. The induced defects created by γ-rays were characterized by optical and EPR spectroscopy. The dependability of the defects and the tendency for recombination or conversion of the defects besides the environment of optically dynamic V centers was also discussed. It is concluded that the development of both optical and magnetic intensity is related to V4+ ions at tetrahedral sites whereas the decrease in their intensity is recognized to the ligand-metal charge transfer transitions of V4+ ions coupled to V5+. The optical band gap energy (Eg) has been observed to decrease with increasing either V2O5 content or γ-doses. High γ-dose reduces the values of the allowed direct optical band gap Eg of 0.5 Mol% V2O5 glass up to 45 kGy after which Eg increases, but remain lower than that of un-irradiated glass. Borate glasses under this study showed linear optical absorption response over the dose range of 5-80 kG. Fading under dark and room light in 2 h after exposure in the course of 30 days have been studied in detail and presented. Our results and findings indicate that, the investigated samples may be seemed to be a good candidate for radiation processing purposes.

  12. Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Agarwal, A.

    2015-04-01

    Some important results pertaining to optical and thermal properties of vanadyl doped oxy-halide glasses in the chemical composition CaCl2-CaO-B2O3 are discussed. These glasses have been prepared by conventional melt quench technique. From X-ray diffraction (XRD) profiles the amorphous nature of the doped glasses has been confirmed. The electronic polarizability is calculated and found to increase with increase in chloride content. The optical absorption spectra have been recorded in the frequency range of 200-3200 nm. Recorded spectra are analyzed to evaluate cut-off wavelength (λcut-off), optical band gap (Eg), band tailing (B), Urbach energy (ΔE) and refractive index (n). Thermal analysis has been carried out for the prepared glasses at three different heating rates viz. 5, 10 and 20 °C/min. The glass transition temperature (Tg) along with thermal activation energy (Ea) corresponding to each heating rate are evaluated from differential scanning calorimetry (DSC) thermographs. It is found that Ea decrease and Tg increase with increase in heating rate. The variation in Tg is also observed with the substitution of calcium chloride in place of calcium oxide. The increasing and higher values of Ea suggest that prepared glasses have good thermal stability. Variation in Tg and Eg suggests that Cl- anions enter into the voids of borate network at low concentrations (<5.0%) and contribute to the network formation at high concentration (>5.0%).

  13. Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.

    PubMed

    Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif

    2008-10-01

    Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass.

  14. Effects of Chemically Doped Bioactive Borate Glass on Neuron Regrowth and Regeneration.

    PubMed

    Gupta, Brinda; Papke, Jason B; Mohammadkhah, Ali; Day, Delbert E; Harkins, Amy B

    2016-12-01

    Peripheral nerve injuries present challenges to regeneration. Currently, the gold standard for nerve repair is an autograft that results in another region of the body suffering nerve damage. Previously, bioactive borate glass (BBG) has been studied in clinical trials to treat patients with non-healing wounds, and we have reported that BBG is conducive for soft tissue repair. BBG provides structural support, degrades in a non-cytotoxic manner, and can be chemically doped. Here, we tested a wide range of chemical compounds that are reported to have neuroprotective characteristics to promote regeneration of peripheral neurons after traumatic injury. We hypothesized that chemical dopants added in trace amounts to BBG would improve neuronal survival and neurite outgrowth from dorsal root ganglion (DRG) explants. We measured neurite outgrowth from whole DRG explants, and survival rates of dissociated neurons and support cells that comprise the DRG. Results show that chemically doped BBGs have differentially variable effects on neuronal survival and outgrowth, with iron, gallium, and zinc improving outgrowth of neurons, and iodine causing the most detriment to neurons. Because chemically doped BBGs support increased nerve regrowth and survival, they show promise for use in peripheral nerve regeneration.

  15. Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.

    PubMed

    Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A

    2014-11-01

    Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties.

  16. Thermoluminescence properties of the Cu-doped lithium potassium borate glass.

    PubMed

    Aboud, Haydar; Wagiran, H; Hussin, R; Ali, Hassan; Alajerami, Yasser; Saeed, M A

    2014-08-01

    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5-4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied.

  17. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process.

  18. Waveguides and nonlinear index of refraction of borate glass doped with transition metals

    NASA Astrophysics Data System (ADS)

    Almeida, Juliana M. P.; Fonseca, Ruben D.; De Boni, Leonardo; Diniz, Andre Rosa S.; Hernandes, Antonio C.; Ferreira, Paulo H. D.; Mendonca, Cleber R.

    2015-04-01

    The ability to write 3D waveguides by femtosecond laser micromachining and the nonlinear refractive index (n2) spectrum of a new borate glass matrix, containing zinc and lead oxides - (BZP) have been investigated. The transparent matrix was doped with transition metals (CdCl2, Fe2O3, MnO2 and CoO) in order to introduce electronic transitions in visible spectrum, aiming to evaluate their influence on the waveguides and n2 spectrum. We observed that n2 is approximately constant from 600 to 1500 nm, exhibiting an average value of 4.5 × 10-20 m2/W, which is about twice larger than the one for fused silica. The waveguide profile is influenced by the self-focusing effect of the matrix owing to its positive nonlinear index of refraction in the wavelength used for micromachining. A decrease in the waveguide loss of approximately four times was observed for the sample doped with Fe in comparison to the other ones, which may be associated with the change in the optical gap energy.

  19. Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.

    PubMed

    Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C

    2012-11-01

    Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed.

  20. Multimodal emissions from Tb3+/Yb3+ co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    NASA Astrophysics Data System (ADS)

    Bahadur, A.; Yadav, R. S.; Yadav, R. V.; Rai, S. B.

    2017-02-01

    This paper reports the optical properties of Tb3+/Yb3+ co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb3+ doped LB glass contains intense NIR band centered at 976 nm due to 2F7/2→2F5/2 transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb3+ doped glass emits a broad NIR band centered at 976 nm whereas the Tb3+ doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb3+ and Yb3+ ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb3+ to Yb3+ ions. The quantum cutting efficiency for Tb3+/Yb3+ co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb3+/Yb3+ co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb3+/Yb3+ co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material.

  1. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    NASA Astrophysics Data System (ADS)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  2. One-photon band gap engineering of borate glass doped with ZnO for photonics applications

    SciTech Connect

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    2012-04-01

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{sub 2}O{sub 3} by ZnO.

  3. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides.

    PubMed

    Hashim, S; Alajerami, Y S M; Ramli, A T; Ghoshal, S K; Saleh, M A; Abdul Kadir, A B; Saripan, M I; Alzimami, K; Bradley, D A; Mhareb, M H A

    2014-09-01

    Lithium potassium borate (LKB) glasses co-doped with TiO2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of (60)Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z(eff)=8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10(3) Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software.

  4. Photon Interaction Parameters for Some Borate Glasses

    SciTech Connect

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  5. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (∆E) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  6. Role of oxygen on the optical properties of borate glass doped with ZnO

    SciTech Connect

    Abdel-Baki, Manal; El-Diasty, Fouad

    2011-10-15

    Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.

  7. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  8. Optical properties of dy doped lead and bismuth borate glasses - effect of glass composition, metal and semiconducting nanoparticles

    NASA Astrophysics Data System (ADS)

    Ooi, Hio Giap

    The optical properties of Dy3+ ions in lead borate and bismuth borate glasses are studied as a function of glass composition with PbO content (29.5 to 69.5mol%) and Bi2O3 content (29.5 to 59.5 mol%). We also studied the effect of metal and semiconducting nanoparticles on the absorption and fluorescence emission of Dy3+ ions in both lead and bismuth borate glasses. The absorption coefficient at each wavelength is obtained from the optical absorption spectrum of a glass sample, and the number density of rare-earth (RE) ions is calculated from the measurement of the glass density. These two parameters are then used to calculate the oscillator strength of each transition using Judd-Ofelt theory. Using the oscillator strength for each transition, we obtained the intensity parameters which represent changes in the symmetry of the ligand field at the Dy 3+ site (due to structural group changes and changes in Dy-O covalency). Radiative transition probabilities, the radiative lifetime of the excited states and the branching ratios are then obtained from these intensity parameters. The fluorescence spectra, obtained using 355 nm and 458 nm laser excitation, are analyzed by determining the area ratio of yellow/blue (Y/B) peaks and the wavelength of the hypersensitive transition (HST). The compositional dependence and effect of nanoparticles on the stimulated emission cross-section (sigmap), are then evaluated using radiative transition probability, the refractive index of the host glass, effective fluorescence linewidth, and the position of the band. In all of the glass systems, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation and size of nanoparticles. Dy 3+ transitions exhibit large sigmap suggesting the possible utilization of these materials in laser applications.

  9. Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd

    NASA Astrophysics Data System (ADS)

    Ivanova, O. S.; Ivantsov, R. D.; Edelman, I. S.; Petrakovskaja, E. A.; Velikanov, D. A.; Zubavichus, Y. V.; Zaikovskii, V. I.; Stepanov, S. A.

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe2O3, γ-Fe2O3, or Fe3O4 nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe2O3. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles' nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics.

  10. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  11. Effect of Bi2O3 on spectroscopic and structural properties of Er3+ doped cadmium bismuth borate glasses.

    PubMed

    Sanghi, S; Pal, I; Agarwal, A; Aggarwal, M P

    2011-12-01

    Glasses with composition 20CdO·xBi(2)O(3)·(79.5-x)B(2)O(3) (15≤x≤35, x in mol%) containing 0.5 mol% of Er(3+) ions were prepared by melt-quench technique (1150°C in air). The amorphous nature of the glasses was confirmed by X-ray diffraction. The spectroscopic properties of the glasses were investigated using optical absorption spectra and fluorescence spectra. The phenomenological Judd-Ofelt intensity parameters Ω(λ) (λ=2, 4, 6) were determined from the spectral intensities of absorption bands in order to calculate the radiative transition probability (A(R)), radiative life time (τ(R)), branching ratios (β(R)) for various excited luminescent states. Using the near infrared emission spectra, full width at half maxima (FWHM), stimulated emission cross-section (σ(e)) and figure of merit (FOM) were evaluated and compared with other hosts. Especially, the numerical values of these parameters indicate that the emission transition (4)I(13/2)→(4)I(15/2) at 1.506 μm in Er(3+)-doped cadmium bismuth borate glasses may be useful in optical communication.

  12. Thermo-optical characteristics and concentration quenching effects in Nd3+ doped yttrium calcium borate glasses.

    PubMed

    Santos, D R S; Santos, C N; de Camargo, A S S; Silva, W F; Santos, W Q; Vermelho, M V D; Astrath, N G C; Malacarne, L C; Li, M S; Hernandes, A C; Ibanez, A; Jacinto, C

    2011-03-28

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd(2)O(3)-(5-x)Y(2)O(3-)40CaO-55B(2)O(3) (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd(3+) content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd(3+) concentration with a high optimum Nd(3+) concentration put this system as a strong candidate for photonics applications.

  13. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.

  14. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.

    2011-03-01

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.

  15. Effect of co-doped SnO{sub 2} nanoparticles on photoluminescence of cu-doped potassium lithium borate glass

    SciTech Connect

    Namma, Haydar Aboud; Wagiran, H.; Hussin, R.; Ariwahjoedi, B.

    2012-09-26

    The SnO{sub 2} co-doped lithium potassium borate glasses doped with 0.05, 0.10, 0.25 and 0.50 mol% of Cu were synthesized by the melt quenching technique. The SnO{sub 2} co-dope was added to the compounds in the amounts of 0.05, 0.10, and 0.20 mol%. The photoluminescent spectrum for different concentrations of copper was studied. It was observed that the intensity of blue emission (450, 490 nm) varies with concentration mol%. In addition, with different concentration of SnO{sub 2} to 0.10 mol% Cu, the influence of the luminescence has been observed to enhance intensity and shifted to blue and red (490, 535 nm) emissions.

  16. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.

  17. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported.

  18. Luminescent properties of lithium-phosphate-borate glasses doped with Tb3+/ Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Stepanov, S. A.; Cong, Liu

    2016-02-01

    The luminescence of Li2O-B2O3-P2O5-CaF2 scintillation glass doped Tb3+, Eu3+ under different types of excitation sources are investigated. Changing the europium concentration of 0.5 to 1 wt% leads changes in luminescence intensity of Tb3+ ions. The luminescence spectrum of the Tb3+ ions are depend on the concentration of Eu3+. It was found, that the luminescence decay kinetics of terbium ion in the band 543 nm depending on the concentration of europium and from type of excitation. The difference in the nature of the luminescence decay kinetics of glasses under pulsed photo- and electronic excitation discussed.

  19. Random lasing in Eu³⁺ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation.

    PubMed

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-21

    We report the observation of random lasing from Eu(3+) doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ∼0.4 nm emerge randomly from a broad emission band with peak wavelength at ∼612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu(3+) doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film.

  20. Er3+-doped strontium lithium bismuth borate glasses for broadband 1.5 μm emission - optical properties

    NASA Astrophysics Data System (ADS)

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-01

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er3+ were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er3+ ions to evaluate J-O intensity parameters, Ωλ (λ = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (AR), branching ratios (β) and radiative lifetimes (τ) are estimated for certain transitions. From the emission spectra, peak emission-cross sections (σp) and products of stimulated emission cross-section and full width at half maximum (σp×FWHM) were calculated for the observed emission transition, 4I13/2→4I15/2.

  1. Composition dependent spectroscopic properties of Nd3+ doped sodium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-05-01

    Nd3+ doped oxide glasses of the type xNa2O-30 PbO-(69.5-x) B2O3-0.5Nd2O3 were prepared and investigated for physical and spectroscopic properties. Optical absorption spectra and Judd-Ofelt theory has been used to determine the oscillator strengths and the intensity parameters Ωλ (λ=2, 4, 6). The radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ in the prepared glasses have been determined. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4 / Ω6), the value of which is in the range 0.2-1.5, typical for Nd3+ in different laser hosts. The radiative transition probability of the potential lasing transition 4F3/2 → 4I11/2 of Nd3+ ions is found to increase with increase in content of Na2O.

  2. The influence of cation additives on the NIR luminescence intensity of Er3+-doped borate glasses

    NASA Astrophysics Data System (ADS)

    Zhou, Yong-Liang; Zhang, Xiao-Song; Xu, Jian-Ping; Zhang, Zhong-Peng; Zhang, Gao-Feng; Wei, Feng-Wei; Li, Lan

    2012-06-01

    Er3+-doped 25BaO-(25-x)SiO2-xAl2O3-25B2O3 transparent glasses are prepared with x = 0, 12.5 and 25 by a solid-state reaction. The Er-related NIR luminescence intensity, which corresponds to the transition of 4I15/2-4I13/2, is obviously altered with different silicon/aluminum ratios. The Judd-Ofelt parameters of the Er3+ ions are adopted to explain the intensity change in the NIR fluorescence, and the Raman scattering intensity versus the amount of Al and/or Si components are discussed. The spectra of the three samples are quite similar in the peak positions, but different in intensity. The maximal phonon density of state for the samples is calculated from the Raman spectra and is correlated to the NIR luminescence efficiency.

  3. Physical, structural and spectroscopic investigations of Sm3+ doped ZnO mixed alkali borate glass

    NASA Astrophysics Data System (ADS)

    Sailaja, B.; Joyce Stella, R.; Thirumala Rao, G.; Jaya Raja, B.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2015-09-01

    Glass of 20ZnO-15 Li2O-15 Na2O-49.9 B2O3 doped with 0.1 mol% of Sm3+ (ZLNB) was prepared by the melt quenching technique. Physical properties were studied and analysed. The XRD studies confirm the amorphous nature of sample. The FT-IR spectral investigation discloses the BO3, BO4 groups, H and OH bonds. Optical absorption and emission spectra were recorded and characterized. Judd-Ofelt theory was applied to f ↔ f transitions to evaluate Judd-Ofelt intensity parameters (Ωλ). The oscillator strengths and bonding parameters were determined from absorption spectra. The trend observed was Ω4 > Ω6 > Ω2. High value of Ω4 reveals higher rigidity and covalency around the Sm3+ ion. Low value of Ω2 implies ionic nature of ligands and site symmetry around Sm3+ ion. luminescence data and Judd-Ofelt parameters Ωλ (λ = 2, 4, and 6) were used to evaluate various radiative probabilities like spontaneous radiative emission probabilities (AR), radiative lifetime (τR) and branching ratios (βR) stimulated emission cross section (σe) and CIE colour coordinates were measured, CCT temperature evaluated and the values were used to ascertain potential laser transitions at the optimum mixed alkali effect observed for the glass sample prepared. The preparedness of the material as the efficient laser active material is examined.

  4. Glass composition and excitation wavelength dependence of the luminescence of Eu{sup 3+} doped lead borate glass

    SciTech Connect

    Wen Hongli; Duan, Chang-Kui; Jia Guohua; Tanner, Peter A.; Brik, Mikhail G.

    2011-08-01

    This work explores the relationship between the bandwidth of luminescence spectral features and their relative intensities, using glasses doped with europium, Eu{sup 3+}, over a wide composition range. Glasses of composition (B{sub 2}O{sub 3}){sub 70}(PbO){sub 29}(0.5Eu{sub 2}O{sub 3}){sub 1} and (B{sub 2}O{sub 3}){sub z}(PbO){sub 99.6-z}(0.5Eu{sub 2}O{sub 3}){sub 0.4}, (z = 20, 30, 40, 60, 70), were prepared by the melting-quenching technique. Variable-wavelength measurements by the prism-coupling method enabled interpolation of refractive index at selected wavelengths. Diffuse reflectance spectra confirmed the incorporation of Eu{sup 3+} into the glass, and scanning electron microscopy displayed that this was in a homogeneous manner. Vibrational spectra showed a change in boron coordination from BO{sub 3} to BO{sub 4} units with increase of PbO content in the glass. Multi-wavelength excited luminescence spectra were recorded for the glasses at temperatures down to 10 K and qualitative interpretations of spectral differences with change of B{sub 2}O{sub 3} content are given. The quantitative analysis of {sup 5}D{sub 0} luminescence intensity-bandwidth relations showed that although samples with higher boron content closely exhibit a simple proportional relationship with band intensity ratios, as expected from theory, the expression needs to be slightly modified for those with low boron content. The Judd-Ofelt intensity analysis of the {sup 5}D{sub 0} emission spectra under laser excitations at low temperature gives {Omega}{sub 2} values within the range from (3.9-6.5) x 10{sup -20} cm{sup 2}, and {Omega}{sub 4} in the range from (4.1-7.0) x 10{sup -20} cm{sup 2}, for different values of z. However, no clear monotonic relation was found between the parameter values and composition. The Judd-Ofelt parameters are compared with those from other systems doped with Eu{sup 3+} and are found to lie in the normal ranges for Eu{sup 3+}-doped glasses. The comparison of

  5. Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3)(+)-Eu(3+) ions.

    PubMed

    Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A

    2014-08-14

    Lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3+)-Eu(3+) were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to (5)D4→(7)F5 transition of Tb(3+) is observed under excitation of Dy(3+), whereas the main red emission band related to (5)D0→(7)F2 transition of Eu(3+) is successfully observed under direct excitation of Tb(3+). In both cases, the energy transfer processes from Dy(3+) to Tb(3+) and from Tb(3+) to Eu(3+) in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements.

  6. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  7. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    SciTech Connect

    Seema; Khasa, S. Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-24

    Glasses with composition xZnO⋅(30 − x)⋅Li{sub 2}O⋅70B{sub 2}O{sub 3} containing 2 mol% of V{sub 2}O{sub 5} (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li{sub 2}O is replaced by ZnO, keeping the concentration of B{sub 2}O{sub 3} constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a “blocking effect” on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  8. Structural and physical properties of vanadium doped copper bismuth borate glasses

    SciTech Connect

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-02-05

    The structural and physical properties of xCuO(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x= 0, 5, 10, 15, 20 and 25 mol % with 2 mol %V{sub 2}O{sub 5} glasses prepared by normal melt quench technique have been investigated by means of FT-IR and physical measurement techniques. With the addition of copper oxide (x{<=} 10 mol%), the frequency bands in the higher region shift towards lower wave number, suggest the conversion of BO{sub 3} to BO{sub 4} structural units, which in turn give rise to the formation of Non Bridging Oxygen's (NBOs). For further increase in CuO (i.e. for x{>=} 10 mol %), the frequency bands shift towards higher wave number, indicate the formation of Bridging Oxygen's (BOs). The FTIR analysis reveals that the present glass system is based on the BiO{sub 3} pyramidal, BiO{sub 6} octahedral units and also on BO{sub 3} and BO{sub 4} structural units. The systematic variation in density and molar volume in these glasses indicates the effect of CuO substitution.

  9. Structural and physical properties of vanadium doped copper bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-02-01

    The structural and physical properties of xCuO(30-x)Bi2O3-70B2O3; x = 0, 5, 10, 15, 20 & 25 mol % with 2 mol % V2O5 glasses prepared by normal melt quench technique have been investigated by means of FT-IR & physical measurement techniques. With the addition of copper oxide (x ≤ 10 mol%), the frequency bands in the higher region shift towards lower wave number, suggest the conversion of BO3 to BO4 structural units, which in turn give rise to the formation of Non Bridging Oxygen's (NBOs). For further increase in CuO (i.e. for x ≥ 10 mol %), the frequency bands shift towards higher wave number, indicate the formation of Bridging Oxygen's (BOs). The FTIR analysis reveals that the present glass system is based on the BiO3 pyramidal, BiO6 octahedral units and also on BO3 and BO4 structural units. The systematic variation in density and molar volume in these glasses indicates the effect of CuO substitution.

  10. Optical properties of bismuth borate glasses doped with Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.; Shareefuddin, Md.; Sayanna, R.

    2016-05-01

    The optical properties of oxide glasses of formula xNa2O-15ZnO-20Bi2O3-(64-x) B2O3-1EuO (ZNB) prepared by melt quenching method have been investigated by means of optical absorption, transmittance, reflectance spectra. The direct band gap values of ZNB changed from 2.709 eV to 2.894 eV with the changed concentration of Na2O. From UV-Vis spectra, the optical band gap, absorption edge (cut-off wavelength), Urbach energy were evaluated due to the varied contents of Na2O. The absorption edge is increasing, band gap (for r=1/2, 2, 1/3, 3) decreasing, Urbach energy is decreasing with the increasing content of Na2O.

  11. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds.

  12. Cooperative luminescence sensitisation and spontaneous Raman scattering in a borate glass doped with Pr{sup 3+} and Nd{sup 3+} ions

    SciTech Connect

    Chanturiya, G F; Kutaladze, L M; Tatarashvili, R A; Shchegolikhin, Aleksandr N

    2004-04-30

    Cooperative sensitisation of luminescence of Nd{sup 3+} ions at the {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 13/2}, {sup 4}I{sub 9/2} transitions by Pr{sup 3+} ions was observed in a borate glass doped with Pr{sup 3+}-Nd{sup 3+} ion pairs. The luminescence was excited by a 800-mW, 1.064-{mu}m Nd{sup 3+}:YAG laser. Simultaneously, spontaneous Raman scattering was observed in glasses containing Pr{sup 3+}-Nd{sup 3+} ion pairs or only Pr{sup 3+} ions. The Stokes shift from the 9398-cm{sup -1} excitation line is 794 cm{sup -1}. The mechanism of nonradiative energy transfer is discussed. (laser applications and other topics in quantum electronics)

  13. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  14. Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system.

    PubMed

    Saidu, A; Wagiran, H; Saeed, M A; Alajerami, Y S M; Kadir, A B A

    2016-12-01

    The effect of sodium as a co-dopant on the thermoluminescence (TL) properties of copper-doped zinc lithium borate (ZLB: Cu) subjected to Co-60 gamma radiation is reported in this study. TL intensity is enhanced with the introduction of sodium in ZLB: Cu. The obtained glow curve is simple with a single peak. The annealing procedure and the best heating rate for the proposed thermoluminescent dosimeter (TLD) are established, and the phosphor is reusable. The TL response within the dose range of 0.5-1000Gy is investigated. The results show that the thermal fading behaviour is improved significantly.

  15. Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: A correlation between physical, thermal, structural and optical properties

    NASA Astrophysics Data System (ADS)

    Pawar, P. P.; Munishwar, S. R.; Gedam, R. S.

    2017-02-01

    In this article the physical, thermal structural and optical properties of Dy3+ doped lithium borate glasses have been studied for white LED application. The emission spectra shows two intense emission bands at around 483 nm and 574 nm corresponds to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions along with one feeble band at 663 nm corresponds to 4F9/2 → 6H11/2 transition. The average lifetime <τ> of Dy3+ were found to be about 2.95 and 4.94 ns for blue and yellow emission bands respectively. CIE chromaticity diagram shows glass LBD-4 containing 0.5 mol% Dy2O3 with colour co-ordinates x = 0.33 and y = 0.37 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED's and modern white LED bulbs.

  16. Comparative study of ion conducting pathways in borate glasses

    SciTech Connect

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-11-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity.

  17. Structural properties of Zinc Lithium borate glass

    NASA Astrophysics Data System (ADS)

    Saidu, A.; Wagiran, H.; Saeed, M. A.; Alajerami, Y. S. M.

    2014-09-01

    Zinc Lithium Borate glasses of different composition were prepared with the aim of using it for thermoluminescence dosimetry. Melt quenching method was adopted in this process. Fourier transform Infrared (FTIR) spectroscopy and UV-vis-NIR spectroscopy techniques were employed to investigate the infrared spectra and energy band gap of different composition of Zinc Lithium Borate glasses. X-ray diffraction analysis was used to confirm the amorphous nature of the glass samples. Glass forming ability and stability of the glass was checked using Differential thermal analysis (DTA). Density, molar volume, refractive index parameters have been analyzed in the light of different concentration of the modifier. The active vibrational modes of 1200-1600 cm-1 for B-O stretching of BO3 units, 800-1200 cm-1 for B-O stretching of BO4 units and 400-800 cm-1 for bending vibration of various borate segments were detected. Addition of ZnO to lithium borate shows its influence in converting the dominant BO3 group to BO4 group. BO4 are known for creating complex defects, a situation that established deep and stable traps good for thermoluminescence phenomena. From optical data, direct and indirect energy band gap has been calculated using the data obtained from UV-vis-NIR spectroscopy. Both direct and indirect band gaps decrease with the increase of modifier Li2CO3.

  18. Er{sup 3+}-doped strontium lithium bismuth borate glasses for broadband 1.5 {mu}m emission - optical properties

    SciTech Connect

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-05

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta}) and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.

  19. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  20. Borates

    USGS Publications Warehouse

    Angulo, M.A.

    2011-01-01

    The article discusses the latest developments in the borates industry, particularly in the U.S., as of June 2011. It claims that the biggest economically feasible deposits of borates are seen in the U.S.' Mojave Desert, the Alpide belt in southern Asia and the Andean belt of South America. Turkish state-owned mining firm Eti Maden AS reported that borates were mainly used in the manufacture of glass, ceramics, fertilizer and detergent in 2009.

  1. Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions.

    PubMed

    Li, Yiming; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Papini, Marcello; Waldman, Stephen D; Towler, Mark R

    2016-11-01

    This work considered the effect of both increasing additions of Strontium (Sr(2+)) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B2O3-P2O5-CaCO3-Na2CO3-TiO2-SrCO3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na(+), Ca(2+) and Sr(2+) ions from the glasses with respect to maturation, which indicated that the addition of Sr(2+) retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr(2+) in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr(2+) incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr(2+) contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr(2+) incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1-7 days) as a result of the dissolution products released.

  2. Towards modeling gadolinium-lead-borate glasses

    SciTech Connect

    Rada, S.; Ristoiu, T.; Rada, M.; Coroiu, I.; Maties, V.; Culea, E.

    2010-01-15

    Infrared spectra of gadolinium-lead-borate glasses of the xGd{sub 2}O{sub 3}.(100 - x)[3B{sub 2}O{sub 3}.PbO] system, where x = 0, 5, 10, 15, 25, 35 and 50 mol.%, have been recorded to explore the role of content of gadolinium ions behaving as glass modifier. The FTIR spectroscopy data for the xGd{sub 2}O{sub 3}.(1 - x)[3B{sub 2}O{sub 3}.PbO] glasses show the structural role of lead ions as a network-formers and of the gadolinium ions network modifiers. Adding of the rare earth ion up to 35 mol.% into the glass matrix, the IR bands characteristic to the studied glasses become sharper and more pronounced. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd{sub 2}O{sub 3} causes a change from the continuous borate network to the continuous lead-borate network interconnected through Pb-O-B and B-O-B bridges and the transformation of some tetrahedral [BO{sub 4}] units into trigonal [BO{sub 3}] units. Then, gadolinium ions have affinity towards [BO{sub 3}] structural units which contain non-bridging oxygens necessary for the charge compensation because the more electronegative [BO{sub 3}] structural units were implied in the formation of B-O-Gd bonds and the transformation of glass network into a glass ceramic. We propose a possible structural model of building blocks for the formation of continuous random 3B{sub 2}O{sub 3}.PbO network glass used by density functional theory (DFT) calculations. DFT calculations show that lead atoms occupy three different sites in the proposed model. The first is coordinated with six oxygen atoms forming distorted octahedral geometries. The second lead atom has an octahedral oxygen environment and the five longer Pb-O bonds are considered as participating in the metal coordination scheme. The third lead atom has ionic character. In agreement with the results offered by the experimental FTIR data, the theoretical IR data confirm that our proposed structure is highly possible.

  3. The effect of Ce3+ ions on the spectral and decay characteristics of luminescence phosphate-borate glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Polisadova, E. F.; Belikov, K. N.; Egorova, N. L.

    2014-05-01

    The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J → 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.

  4. Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

    PubMed

    Misra, Sushil K; Pilbrow, John R

    2007-03-01

    Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.

  5. Angiogenic effects of borate glass microfibers in a rodent model.

    PubMed

    Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2014-12-01

    The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications.

  6. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  7. Impact of vanadium ions in barium borate glass.

    PubMed

    Abdelghany, A M; Hammad, Ahmed H

    2015-02-25

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data.

  8. Impact of vanadium ions in barium borate glass

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Hammad, Ahmed H.

    2015-02-01

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data.

  9. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    SciTech Connect

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  10. Synthesis and characterization of rare-earth doped SrBi{sub 2}Nb{sub 2}O{sub 9} phase in lithium borate based nanocrystallized glasses

    SciTech Connect

    Harihara Venkataraman, B.; Fujiwara, Takumi; Komatsu, Takayuki

    2009-06-15

    Glass composites comprising of un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1-x)Bi{sub 2}O{sub 3}-xSm{sub 2}O{sub 3}]-16.66Nb{sub 2}O{sub 5}-50Li{sub 2}B{sub 4}O{sub 7} (0<=x<=0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} phase in the samples heat treated at 530 deg. C. The formation of layered perovskite-type un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi{sub 2}Nb{sub 2}O{sub 9} perovskite phase is clarified. The dielectric constants of the perovskite SrBi{sub 2}Nb{sub 2}O{sub 9} and SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass. - Graphical Abstract: This figure shows the XRD patterns at room temperature for the as-quenched and heat treated samples in Sm{sub 2}O{sub 3}-doped (x=0.1) glass. Based on these results, it is concluded that the formation of samarium-doped perovskite SBN phase takes place via an intermediate fluorite-like phase in the crystallization of this glass.

  11. Topological phases in Ba-Borate glasses

    NASA Astrophysics Data System (ADS)

    Holbrook, Chad; Czaja, Andrew; Boolchand, Punit

    2015-03-01

    Twelve compositions in the (BaO)x(B2O3)100-x pseudo binary, in the 15% Borates2. Modes near 808 cm-1, 770 cm-1, 740 cm-1 and 705 cm-1 are observed, and identified with breathing modes of pure and mixed rings from characteristic structural groupings2. These preliminary results suggest that glasses at x <24% are in the stressed-rigid phase, in the 24% 30% in the flexible phase. Supported by NSF Grant DMR 08-53957.

  12. Thickness dependent ion conductivity of lithium borate network glasses

    NASA Astrophysics Data System (ADS)

    Berkemeier, F.; Shoar Abouzari, M.; Schmitz, G.

    2007-03-01

    Lithium borate network glasses are possible candidates for separator membranes in all-solid-state batteries. Thin films of a Li2O-borate glass were produced by argon beam sputtering and their specific ionic conductivities were measured by impedance spectroscopy. The conductivity of as-sputtered films is about two orders of magnitude higher compared to the conductivity of bulk glasses produced from the melt. Furthermore, thin films with a thickness of 7-125nm reveal a remarkable finite size effect after annealing: with decreasing thickness the specific dc conductivity increases about three orders of magnitude.

  13. Yb3+ borate laser glasses containing high-valency cations

    NASA Astrophysics Data System (ADS)

    Izumitani, Tetsuro; Hu, Lili; Dai, Shixun; Jiang, Zhonghong

    1999-07-01

    A new kind of Yb3+ borate laser glass containing high valency cations was reported in this work. B2O3-ZnO and B2O3-BaO glasses were chosen as the base glasses of Yb$3+)-BaO glasses were chosen as the base glasses of Yb3+ ions. Yb3+ ion has a large integrated absorption area in the former and longer fluorescent lifetime in the latter. The effect of Al3+, La3+, Ti3+, Zr4+, Nb4+ Ta5+, W6+ high valency cations on the absorption and fluorescent behaviors of Ba2O3-ZnO- RmOn-Yb2O3 and B2O3-BaO-RmOn-Yb2O3 glasses was examined. Some Yb3+ borate laser glasses with high cross section for stimulated emissions, good stability, good stability against devitrification and lower non-linear refractive index were presented.

  14. Barium-borate-flyash glasses: As radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  15. Low-energy vibrational dynamics of cesium borate glasses.

    PubMed

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-07

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  16. A crystallographic guide to the structure of borate glasses

    SciTech Connect

    Wright, A.C.; Vedishcheva, N.M.; Shakhmatkin, B.A.

    1997-12-31

    Borate glasses are an enigma in that there is now increasing evidence that their structures are dominated by superstructural units, which comprise well defined arrangements of the basic BO{sub 3} and BO{sub 4} structural units, with no internal degrees of freedom in the form of variable bond or torsion angles. In the present paper, it is shown that considerable insight into the structure of borate glasses can be gained from a study of the corresponding crystalline polymorphs. A simple, model is proposed to predict the fraction, x{sub 4}, of 4-fold coordinated boron atoms in vitreous borate networks and the topological criteria for the formation of such networks are discussed, taking into account the degrees of freedom necessary for conventional glass formation.

  17. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    PubMed

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses.

  18. Strontium borate glass: potential biomaterial for bone regeneration.

    PubMed

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  19. Visible properties of Sm3+ ions in chloro-fluoro-borate glasses for reddish - orange emission

    NASA Astrophysics Data System (ADS)

    Rao, K. Venkata; Babu, S.; Rao, B. Venkata; Ratnakaram, Y. C.

    2016-05-01

    Optical properties of different concentration (0.2, 0.4, 0.6, 0.8 and 1.0 mol %) of Sm3+ doped chloro-fluoro-borate glasses have been synthesized and discussed. Structural characterizations have been studied through XRD analysis. Spectroscopic analysis has done from absorption spectra, luminescence spectra and decay lifetime profiles. From the emission spectra, concentration quenching is observed, with increase of samarium concentration and discussed behind the phenomena. The nature of decay curve analysis was performed for the 4G5/2 level. These glasses are expected to give interesting application in the field of optics.

  20. Influence of mixed alkalies on absorption and emission properties of Sm 3+ ions in borate glasses

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Thirupathi Naidu, D.; Vijaya Kumar, A.; Gopal, N. O.

    2005-04-01

    The present work aims to study the variation of Judd-Ofelt intensity parameters, radiative transition probabilities, absorption and emission cross sections with alkali content in three different Sm 3+-doped mixed alkali borate glasses. Mixed alkali borate glasses in the composition 67H 3BO 3· xLi 2CO 3(32- x)Na 2CO 3·1Sm 2O 3, 67H 3BO 3· xLi 2CO 3(32- x)K 2CO 3·1Sm 2O 3 and 67H 3BO 3· xNa 2CO 3(32- x)K 2CO 3·1Sm 2O 3 with x=8, 12, 16, 20 and 24 mol% were prepared by quenching melts consisting of the above chemicals (850-950 °C, 1-2 h) between two brass plates. Judd-Ofelt theory is used to study the spectral properties and to calculate the radiative transition probabilities and branching ratios. The predicted radiative transition probabilities ( Aed), branching ratios ( β) and integrated absorption cross-sections ( Σ) for certain transitions are reported. From the emission spectra, emission cross-sections ( σ) are obtained for the four transitions, 4G 5/2→ 6H 5/2, 4G 5/2→ 6H 7/2, 4G 5/2→ 6H 9/2 and 4G 5/2→ 6H 11/2 of Sm 3+ ion in these mixed alkali borate glasses. Optical band gaps ( Eopt) and absorption edges are reported for the three Sm 3+-doped mixed alkali borate glasses.

  1. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J.; Luo, S.; Tang, B.

    1999-11-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 {micro}m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  2. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J. ); Luo, S.; Tang, B. )

    1999-01-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 [micro]m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  3. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  4. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  5. Study of structural and spectroscopic behavior of Sm3+ ions in lead-zinc borate glasses containing alkali metal ions

    NASA Astrophysics Data System (ADS)

    Sasi Kumar, M. V.; Babu, S.; Rajeswara Reddy, B.; Ratnakaram, Y. C.

    2017-02-01

    High luminescence behavior of rare earth inorganic glasses have a variety of uses in the industry. In the past few decades, rare earth ions with characteristic photonics applications are being hosted by heavy metal oxide glasses. Among the rare earth ions Sm3+ ion has features which make it apt for high density optical storage. The authors of the paper have experimented to synthesize Sm3+ doped glasses. In this regard a new series of borate glasses doped with 1 mol% Sm3+ ion are developed by using melt-quenching technique. XRD, FTIR, optical absorption, luminescence techniques are used to study the various characteristics of Sm3+ ion in the present glass matrices. The XRD spectra confirms the amorphous nature of glasses. Further, the researchers have used differential thermal analysis to study the glass transition temperature. The structural groups in the prepared glasses are studied using Fourier transform infrared spectra. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) have been computed. Based on these Judd-Ofelt intensity parameters, radiative properties such as radiative probabilities (Arad), branching ratios (β), and radiative life time (τR) are calculated. The excitation spectra of Sm3+ doped lithium heavy metal borate glass matrix is recorded under the emission wavelength of 600 nm. The emission spectra are recorded under 404 nm excitation wavelength. From various emission transitions, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 bands could be of interest for various applications. The decay profiles of 4G5/2 level exhibit single exponential nature in all the prepared glass matrices. The potassium glass matrix exhibits higher quantum efficiency than the other glass matrices. Finally, by going through these several spectroscopic characterizations, it is concluded that the prepared Sm3+ doped lead-zinc borate glasses might be useful for visible light applications.

  6. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  7. Cell adhesion to borate glasses by colloidal probe microscopy.

    PubMed

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer.

  8. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses.

    PubMed

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A

    2011-08-15

    Visible luminescence of Dy(3+) ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to (4)F(9/2)→(6)H(15/2) (blue) and (4)F(9/2)→(6)H(13/2) (yellow) transitions of Dy(3+). Luminescence decays from (4)F(9/2) state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX(2) (X=F, Cl) content. An introduction of PbX(2) to the borate glass results in the increasing of (4)F(9/2) lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy(3+) and O(2-)/X(-) ions.

  9. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made.

  10. Third order nonlinear optical properties of bismuth zinc borate glasses

    SciTech Connect

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  11. Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics

    NASA Technical Reports Server (NTRS)

    Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.

    1998-01-01

    Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.

  12. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    PubMed

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO.

  13. Structural properties of molybdenum-lead-borate glasses.

    PubMed

    Rada, M; Rada, S; Pascuta, P; Culea, E

    2010-11-01

    Glasses and glass ceramics in the system xMoO₃·(100 - x)[3B₂O₃·PbO] with 0 ≤ x ≤ 30 mol% have been prepared from melt quenching method and characterized by means of X-ray diffraction, FTIR, UV-VIS and EPR spectroscopy. We have examined and analyzed the effects of systematic molybdenum ions intercalation on lead-borate glasses and glass ceramics with interesting results. The observations present in these mechanisms show the lead ions bonded ionic have a strong affinity towards [BO₃] units containing non-bridging oxygens and [MoO₄]²⁻ molybdate units. The pronounced affinity towards molybdate anions yields the formation of the PbMoO₄ crystalline phase. Then, the excess of oxygen can be supported into the glass network by the formation of [MoO₆] and [Mo₂O₇] structural units. Pb²(+) ions with 6s² configuration show strong absorption in the ultraviolet due to parity allowed s²-sp transition and yield an absorption band centered at about 310 nm. The changes in the features of the absorption bands centered at about 310 nm can be explained as a consequence of the appearance of additional absorption shoulder due to photoinduced color centers in the glass such as the formation of borate-molybdate and lead-molybdate paramagnetic defect centers in the glasses. The concentration of molybdenum ions influences the shape and width of the EPR signals located at g ∼ 1.86, 1.91 and 5.19. The microenvironment of molybdenum ions in glasses is expected to have mainly sixfold coordination. However, there is a possibility of reduction of a part of molybdenum ions from the Mo⁶(+) to the Mo⁵(+) and Mo⁴(+) to the Mo³(+) states.

  14. Structural properties of molybdenum-lead-borate glasses

    NASA Astrophysics Data System (ADS)

    Rada, M.; Rada, S.; Pascuta, P.; Culea, E.

    2010-11-01

    Glasses and glass ceramics in the system xMoO 3·(100 - x)[3B 2O 3·PbO] with 0 ≤ x ≤ 30 mol% have been prepared from melt quenching method and characterized by means of X-ray diffraction, FTIR, UV-VIS and EPR spectroscopy. We have examined and analyzed the effects of systematic molybdenum ions intercalation on lead-borate glasses and glass ceramics with interesting results. The observations present in these mechanisms show the lead ions bonded ionic have a strong affinity towards [BO 3] units containing non-bridging oxygens and [MoO 4] 2- molybdate units. The pronounced affinity towards molybdate anions yields the formation of the PbMoO 4 crystalline phase. Then, the excess of oxygen can be supported into the glass network by the formation of [MoO 6] and [Mo 2O 7] structural units. Pb 2+ ions with 6s 2 configuration show strong absorption in the ultraviolet due to parity allowed s 2-sp transition and yield an absorption band centered at about 310 nm. The changes in the features of the absorption bands centered at about 310 nm can be explained as a consequence of the appearance of additional absorption shoulder due to photoinduced color centers in the glass such as the formation of borate-molybdate and lead-molybdate paramagnetic defect centers in the glasses. The concentration of molybdenum ions influences the shape and width of the EPR signals located at g ˜ 1.86, 1.91 and 5.19. The microenvironment of molybdenum ions in glasses is expected to have mainly sixfold coordination. However, there is a possibility of reduction of a part of molybdenum ions from the Mo 6+ to the Mo 5+ and Mo 4+ to the Mo 3+ states.

  15. Reaction of sodium calcium borate glasses to form hydroxyapatite.

    PubMed

    Han, Xue; Day, Delbert E

    2007-09-01

    This study investigated the transformation of two sodium calcium borate glasses to hydroxyapatite (HA). The chemical reaction was between either 1CaO . 2Na(2)O . 6B(2)O(3) or 2CaO . 2Na(2)O . 6B(2)O(3) glass and a 0.25 M phosphate (K(2)HPO(4)) solution at 37, 75 and 200 degrees C. Glass samples in the form of irregular particles (125-180 microm) and microspheres (45-90 and 125-180 microm) were used in order to understand the reaction mechanism. The effect of glass composition (calcium content) on the weight loss rate and reaction temperature on crystal size, crystallinity and grain shape of the reaction products were studied. Carbonated HA was made by dissolving an appropriate amount of carbonate (K(2)CO(3)) in the 0.25 M phosphate solution. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used to characterize the reaction products. The results show that sodium calcium borate glasses can be transformed to HA by reacting with a phosphate solution. It is essentially a process of dissolution of glass and precipitation of HA. The transformation begins from an amorphous state to calcium-deficient HA without changing the size and shape of the original glass sample. Glass with a lower calcium content (1CaO . 2Na(2)O . 6B(2)O(3)), or reacted at an elevated temperature (75 degrees C), has a higher reaction rate. The HA crystal size increases and grain shape changes from spheroidal to cylindrical as temperature increases from 37 to 200 degrees C. Increase in carbonate concentration can also decrease the crystal size and yield a more needle-like grain shape.

  16. Structure-property relations in lanthanide borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.; Lapp, J. C.; Shelby, J. E.

    1985-01-01

    Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.

  17. Preparation and properties of porous microspheres made from borate glass.

    PubMed

    Conzone, Samuel D; Day, Delbert E

    2009-02-01

    Dysprosium lithium-borate glass microspheres and particles, ranging from 45 to 150 microm in diameter, were reacted with a 0.25 M phosphate solution at 37 degrees C, whose pH was either 3 or 8.8. The glass reacted nonuniformly and was converted into a porous, amorphous, hydrated, dysprosium phosphate reaction product. The amorphous product had the same volume and shape (pseudomorphic) as the unreacted glass, and could be dried without cracking. After heating at 300 degrees C for 1 h, the amorphous reaction product had a specific surface area of approximately 200 m(2)/g, a pore size of approximately 30 nm, and nominal crushing strength of approximately 10 MPa. When the reaction product was heated to 600 degrees C for 15 min, the specific surface area decreased to approximately 90 m(2)/g and the nominal crushing strength increased to 35 MPa. Heating above 615 degrees C converted the amorphous dysprosium phosphate product into crystalline DyPO(4), which contained open porosity until heated above 800 degrees C for 15 min. Highly porous materials of different chemical composition can be prepared by chemically reacting a borate-based glass with an aqueous solution at low-temperature (<100 degrees C). These highly porous materials are easy to process, and are considered candidates for controlled drug delivery, catalysis, chromatographic separation, filtration, and as bioactive materials.

  18. Luminescence properties of Sm{sup 3+} impurities in strontium lithium bismuth borate glasses

    SciTech Connect

    Rajesh, D.; Ratnakaram, Y. C.; Seshadri, M.; Balakrishna, A.

    2012-06-05

    In the present work, different concentrations of Sm{sup 3+}-doped strontium lithium bismuth borate glasses (SLBiB) were prepared by melt quench technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Using the J-O intensity parameters, emission and decay measurements various radiative properties are studied. The nature of decay curves of {sup 4}G{sub 5/2} level for different Sm{sup 3+} ion concentrations in SLBiB glasses has been analyzed. The intensities of observed emission peaks and measured lifetimes decrease with the increase of Sm{sup 3+} ion concentration which may be due to energy transfer between excited Sm{sup 3+} ions through cross-relaxations and resonant energy channels.

  19. Relationship between Eu{sup 3+} reduction and glass polymeric structure in Al{sub 2}O{sub 3}-modified borate glasses under air atmosphere

    SciTech Connect

    Jiao, Qing; Yu, Xue; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei

    2013-06-15

    The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopant samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.

  20. Optical constants, single-oscillator modal and refractive index dispersion analysis of lithium zinc bismuth borate glasses doped with Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.; Srinivas, B.; Shareefuddin, Md.; Sayanna, R.

    2016-05-01

    The glasses of composition xLi2O-15ZnO- 20Bi2O3- (64 - x) B2O3- 1EuO (ZLB) (where x=0, 5, 10, 15, 20 mole %) prepared by melt-quenching technique. The amorphous nature of the prepared glasses was confirmed by XRD spectra. The UV-Vis optical absorption spectrum was recorded in the wave length range of 200-1000 nm. It is observed that the optical band gap is inversely changing with Urbach energy. The optical constants such as G (a constant proportional to the second-order deformation potential) and Ef (a constant that depends on local coordination and is called as free energy of the glass system). The most significant result of the present work is the refractive index dispersion curves of the ZLB glasses obey the single-oscillator model and oscillator parameters (Eo, Ed) changed with the Li2O content. the absorption edge, band gap and Urbach energy is changing nonlinearly with increasing content of Li2O, which can be used to calculate the optical, physical, and other constants.

  1. Synthesis and studies on microhardness of alkali zinc borate glasses

    SciTech Connect

    Subhashini, Bhattacharya, Soumalya Shashikala, H. D. Udayashankar, N. K.

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  2. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    PubMed

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication.

  3. Molecular dynamics simulation of alkali borate glass using coordination dependent potential

    SciTech Connect

    Park, B.; Cormack, A.N.

    1997-12-31

    The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

  4. A study of physical and optical absorption spectra of VO2+ ions in potassium and sodium oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.

  5. Borates

    USGS Publications Warehouse

    Crangle, R.D.

    2013-01-01

    Four minerals represent 90 percent of the borates used by industry worldwide — the sodium borates (tincal and kernite), calcium borate (colemanite) and the sodium-calcium borate (ulexite). Borax is a white crystalline substance, chemically known as sodium tetraborate decahydrate, and is found naturally as the mineral tincal. Boric acid is a colorless crystalline solid sold in technical, national formulary and special quality grades as granules or powder and marketed most often as anhydrous boric acid. Deposits of borates are associated with volcanic activity and arid climates, with the largest economically viable deposits located in the Mojave Desert of the United States near Boron, CA, the Alpide belt in southern Asia and the Andean belt of South America.

  6. Effect of TiO2 on electron paramagnetic resonance, optical transmission and dc conductivity of vanadyl doped sodium borate glasses.

    PubMed

    Agarwal, A; Seth, V P; Gahlot, P; Goyal, D R; Arora, M; Gupta, S K

    2004-11-01

    Glass systems with composition xTiO2.(30 - x)Na2O.70B2O3 (series I) and xTiO2.(70 - x)B2O3.30Na2O (series II) containing 2 mol% V2O5 have been prepared (0 < or = x < or = 7, mol%) by normal melt-quenching. The electron paramagnetic resonance (EPR) spectra of VO2+ ions have been recorded in the X-band (approximately 9.13 GHz) at room temperature. Spin Hamiltonian parameters, gparallel, gperpendicular, Aparallel, Aperpendicular, the dipolar hyperfine coupling parameter (P) and the Fermi contact interaction parameter (K) have been calculated. The increase in Deltagparallel/Deltagperpendicular with increase in TiO2 content in series I shows that the octahedral symmetry of V4+O6 complex is reduced, whereas in series II the octahedral symmetry is improved with increase in x. The decrease in P, in both the series, indicates that the 3dxy orbit expands with increase in mol% of TiO2. The molecular orbital coefficients, alpha2 and gamma2 have been calculated by recording the optical transmission spectra in the range 500-850 nm. alpha2 and gamma2 increase with increase in x in both the series, which indicates that, the covalency of the vanadium oxygen bonds decreases. The dc conductivity sigma, decreases and activation energy, W increases with increase in TiO2:Na2O ratio whereas with increase in TiO2:B2O3 ratio the variation in sigma and W is within experimental error.

  7. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  8. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  9. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  10. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties.

    PubMed

    Möncke, D; Kamitsos, E I; Palles, D; Limbach, R; Winterstein-Beckmann, A; Honma, T; Yao, Z; Rouxel, T; Wondraczek, L

    2016-09-28

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B2O3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn(2+) enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb(2+) and Bi(3+) induce cluster formation, resulting in PbOn- and BiOn-pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, FM-O. A linear correlation between glass transition temperature (Tg) and FM-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant FM-O, though for cations of similar force constant the fraction of tetrahedral borate units (N4) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N4 was

  11. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Möncke, D.; Kamitsos, E. I.; Palles, D.; Limbach, R.; Winterstein-Beckmann, A.; Honma, T.; Yao, Z.; Rouxel, T.; Wondraczek, L.

    2016-09-01

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B2O3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb2+ and Bi3+ induce cluster formation, resulting in PbOn- and BiOn-pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, FM-O. A linear correlation between glass transition temperature (Tg) and FM-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant FM-O, though for cations of similar force constant the fraction of tetrahedral borate units (N4) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N4 was determined

  12. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (Tg), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near Tg at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its Tg at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using (11)B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B(III)) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B(IV)), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near Tg, but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B(III) ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  13. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    PubMed

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable.

  14. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-05

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM.

  15. Structural investigation and laser plasma diagnostics of borate glasses containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Branca, C.; Carini, G.; Ceccio, G.; Crupi, C.; Rifici, S.; Ruello, G.; Wanderlingh, U.; Torrisi, L.

    2016-05-01

    Non-equilibrium plasmas have been produced in vacuum by irradiating thin targets of Ag2O doped borate glasses by pulsed laser. Morphological and optical measurements have shown that in these glasses at high Ag content the metallic cations exist as nanoparticle and can induce effects of resonant absorption in laser-generated plasmas. Furthermore, preliminary time-of-flight measurements have been carried out by means of an infrared laser having a maximum intensity of the order of 1010 W/cm2 evidencing that the ions energy and yield increase with the silver concentrations and depend on the glass structure. This study has shown that concentrations of Ag2O up to 25% enhance the kinetic energies and the yields of the accelerated ions, whereas a higher content of silver oxide gives rise to high laser absorption thus modifying the properties of the plasma. The obtained characterization indicates that the targets may be irradiated by higher repetitive laser intensities in order to enhance the ion acceleration and current.

  16. Novel method for early investigation of bioactivity in different borate bio-glasses.

    PubMed

    Abdelghany, A M

    2013-01-01

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm(-1) after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  17. EPR and optical absorption studies of Cu{sup 2+} ions in alkaline earth alumino borate glasses

    SciTech Connect

    Ramesh Kumar, V.; Rao, J.L. . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2005-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in alkaline earth alumino borate glasses doped with different concentrations of CuO have been studied. The EPR spectra of all the glasses exhibit the resonance signals, characteristic of Cu{sup 2+} ions present in axially elongated octahedral sites. The number of spins participating in the resonance has been calculated as a function of temperature for calcium alumino borate (CaAB) glass doped with 0.1 mol% of CuO. From the EPR data, the paramagnetic susceptibility ({chi}) was calculated at different temperatures (T) and from the 1/{chi}-T graph, the Curie temperature of the glass has been evaluated. The optical absorption spectra of all the glasses show a single broad band, which has been assigned to the {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g} transition of the Cu{sup 2+} ions. The variation in the intensity of optical absorption with the ionic radius of the alkaline earth ion has been explained based on the Coulombic forces. By correlating the EPR and optical absorption spectral data, the nature of the in-plane {sigma} bonding between Cu{sup 2+} ion and the ligands is estimated. From the fundamental ultraviolet absorption edges of the glasses, the optical energy gap (E {sub opt}) and the Urbach energy ({delta}E) are evaluated. The variation in E {sub opt} and {delta}E is explained based on the number of defect centers in the glass.

  18. Preparation and Characterization of Low-Dielectric Glass Composite with Aluminum Borate

    NASA Astrophysics Data System (ADS)

    Jean, Jau-Ho; Hwang, Shiang-Po

    1994-10-01

    The effect of aluminum borate ( Al18B4O33) on crystallization and thermal expansion of Pyrex borosilicate glass has been studied. X-ray diffraction (XRD) results show that with 40 vol% aluminum borate, the precipitation of cristobalite in the Pyrex borosilicate glass is completely inhibited. This result is further evidenced by the linear thermal expansion measurement in which, in contrast to the system without aluminum borate, the thermal expansion coefficient remains unchanged with sintering time and is close to that of silicon, 3×10-6 K-1. Moreover, the composite with 40 vol% aluminum borate has a dielectric constant of 5.2 and a dielectric loss of 0.8% at 1 MHz.

  19. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.

    PubMed

    Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

    2013-08-01

    Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair.

  20. The preparation and characterization of a lithium borate glass prepared by the gel technique

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.; Smith, G. L.; Dunn, B.; Moore, G. S.; Mackenzie, J. D.

    1985-01-01

    The preparation of an amorphous lithium borate gel by the metal organic procedure is described. In addition, a preliminary evaluation of the behavior of the gel upon heating is given. In particular the crystallization tendency of the gel is studied with the aid of DTA and X-ray diffraction, and the structural changes in the gel are monitored with the aid of IR spectroscopy. The glass produced from the lithium borate gel is compared to both the gel precursor material and a glass of similar composition prepared by conventional techniques. Specifically, the relevant water contents, crystallization behavior, and structural features are contrasted.

  1. Structural and optical characteristics of Eu3+ ions in sodium-lead-zinc-lithium-borate glass system

    NASA Astrophysics Data System (ADS)

    Rajagukguk, J.; Kaewkhao, J.; Djamal, M.; Hidayat, R.; Suprijadi; Ruangtaweep, Y.

    2016-10-01

    Structural and optical properties of Eu3+-doped sodium-lead-zinc-lithium-borate glasses (65-x)B2O3sbnd 15Na2Osbnd 10PbOsbnd 5ZnOsbnd 5Li2Osbnd xEu2O3 (where x = 0, 0.05, 0.1, 0.5, 1.0, 2.0 and 4.0) have been measured and analyzed by varying the Eu3+ ion concentrations. The physical parameters such as polaron radius, field strength and inter nuclear distance have been determined from measurements of densities and refractive indices. The structural properties of the prepared borate glasses were analyzed based on X-ray diffraction (XRD) and FTIR instruments. The diffraction spectra show no characteristic peaks in these glasses, which indicates the amorphous nature of the glasses. The infrared spectrum of the Eu3+-doped sodium-lead-zinc-lithium-borate glass systems show three disparate regions for active absorption band around 830-860 cm-1, 1020-1040 cm-1 and 1170-1180 cm-1. The electronic transitions in the UV-vis and NIR regions are assigned to the 7F0 → 5D4, 7F0 → 5G2, 7F0 → 5L6, 7F0 → 5D3, 7F0 → 5D2, 7F0 → 5D1, 7F0 → 5D07F1 → 5D07F0 → 7F6 and 7F1 → 7F6 levels centered at 362 nm, 380 nm, 395 nm, 414 nm, 465 nm, 533 nm, 583 nm, 590 nm 2092 nm and 2202 nm respectively. Five transition bands of luminescence spectra have been observed by using an excited wavelength of 395 nm. The luminescence intensity ratio (R) of 5D0 → 7F2 (electric dipole) transition to 5D0 → 7F1 (magnetic dipole) transition has been determined to obtain the strength of the covalent/ionic bond between the Eu3+ ions and the surrounding ligands. Radiative life time and emission color of the glasses were estimated and compared with other literature data by varying Eu3+ concentrations. The experimental lifetime of the 5D0 level was found to increase with increasing Eu3+ ion content, suggesting higher non-radiative energy transfer among Eu3+ ions in the glasses.

  2. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  3. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    SciTech Connect

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-05-09

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg.

  4. Optical and structural characterization of yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, Cristiane; Meneses, Domingos D. S.; Echegut, Patrick; Neuville, Daniel R.; Hernandes, Antonio C.; Ibanez, Alain

    2010-03-01

    Structural and optical properties of new stable glasses in the Y2O3 -- CaO -- B2O3 system, containing the same Y/Ca ratio as the YCa4O(BO3)3 (YCOB) crystal, were determined from Raman and reflectance infrared spectroscopy [1]. We have obtained the optical functions using a dielectric function model and their evolution with composition are associated with an increase in the number of non-bridging oxygen and to calcium/yttrium oxides content with the formation of pentaborate, metaborate, orthoborate and pyroborate groups. The orthoborate and pyroborate signatures increase with increasing the modifier cations. Refractive indexes values (from 1.597 to 1.627 at λ = 2 μm) are in good agreement with those of the YCOB crystal, an indication that these glasses are potential candidates for doping with rare-earth ions for optical applications. [4pt] [1] C. N. Santos, D.D.S. Meneses, P. Echegut, D. R. Neuville, A. C. Hernandes, A. Ibanez, Appl. Phys. Lett. 94, 151901(2009).

  5. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    PubMed

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium.

  6. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  7. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping

    2009-05-01

    The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.

  8. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    PubMed

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

  9. Atom probe tomography of lithium-doped network glasses.

    PubMed

    Greiwe, Gerd-Hendrik; Balogh, Zoltan; Schmitz, Guido

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials.

  10. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth.

  11. Effect of SnO addition on optical absorption of bismuth borate glass and photocatalytic property of the crystallized glass

    SciTech Connect

    Masai, Hirokazu; Fujiwara, Takumi; Mori, Hiroshi

    2008-04-07

    We have found that an addition of SnO in a bismuth-borate glass, CaO-B{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-TiO{sub 2}, decreases the optical absorption coefficient in the visible region, in which selective crystallization of TiO{sub 2} was observed after heat treatment. Since selective crystallization of TiO{sub 2} was also attained in the SnO-containing glass, the transparency of TiO{sub 2} crystallized glass can be improved independently of selective crystallization of TiO{sub 2}. We have also demonstrated that the rutile-nanocrystallized glass with SnO addition shows a higher photocatalytic activity than the glass without SnO, indicating that this crystallized glass has a large potential for application as transparent photocatalytic materials.

  12. Intense upconversion fluorescence in Tm 3+/Yb3+ codoped alumina lead borate glasses

    NASA Astrophysics Data System (ADS)

    Krishna Murthy Goud, K.; Shekhar Reddy, M. Chandra; Appa Rao, B.

    2016-09-01

    The Tm3+/Yb3+ codoped alumina lead borate glasses were prepared by the conventional melt quenching technique. Optical absorption and FTIR spectra were recorded. The upconversion fluorescence spectra exhibited weak blue (480 nm) and intense red (660 nm) emissions due to 1G4 → 3H6 and 1G4 → 3H4 transitions, respectively. The results concluded that both emissions are due to three photon absorption process. It has been observed that in the upconversion efficiency increases with the increase in the concentration of Yb3+ ions. The strong red upconversion fluorescence indicate that Tm3+/Yb3+ codoped alumina lead borate glasses can be used as potential host material for upconversion lasers.

  13. Influence of MO/MF2 modifiers (M = Ca, Sr, Ba) on spectroscopic properties of Eu3+ ions in germanate and borate glasses

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Janek, Joanna; Pietrasik, Ewa; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-11-01

    Series of Eu3+-doped lead-free germanate and borate glasses were synthesized. The MO glass modifiers (M = Ca, Sr or Ba) were partially or totally substituted by MF2 in chemical composition. In contrast to samples modified by CaO/CaF2 or SrO/SrF2, the germanate glass samples containing BaO and/or BaF2 are fully amorphous, while the lead-free borate glasses are fully amorphous, independently from glass modifiers. Effect of glass modifiers on spectroscopic properties of Eu3+ were systematically investigated. For that reason, excitation and emission spectra of Eu3+ ions in examined systems were registered. Based on the emission spectra, ratio of integrated luminescence intensity of the 5D0 → 7F2 transition to that of the 5D0 → 7F1 transition (R factor) was calculated. Moreover, the luminescence decay curves were collected and the luminescence lifetimes of the 5D0 excited state of Eu3+ ions were determined in function of MF2 concentration.

  14. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin.

    PubMed

    Xie, Zongping; Liu, Xin; Jia, Weitao; Zhang, Changqing; Huang, Wenhai; Wang, Jianqiang

    2009-10-15

    The effectiveness of a degradable and bioactive borate glass has been compared with the clinically used calcium sulfate in the treatment of osteomyelitis of rabbits, as a carrier for vancomycin. The bone infections were induced in the tibias of 65 rabbits by injecting methicillin-resistant Staphylococcus aureus (MRSA). After 3 weeks, these rabbits were distributed into 4 groups and treated by debridement. Pure borate glass (BG), vancomycin-loaded calcium sulfate (VCS) and vancomycin-loaded borate glass (VBG) were implanted into the infection sites of groups 2 to 4 respectively. After 8 weeks, the effectiveness of treatment was assessed radiographically, bacteriologically, and histopathologically. The results showed that the negative rates of MRSA examination for rabbits were 36.36%, 18.18%, 73.33% and 81.25% respectively for groups 1 to 4. Significant differences were observed radiographically, bacteriologically, and histopathologically between groups 1 and 4, groups 2 and 3, and between groups 2 and 4. The best result of treatment was observed in group 4. Radiographically, VBG was found to be mostly reabsorbed and replaced by lots of new bones, whereas, VCS was completely reabsorbed and replaced by modest new bones. Histopathologically, there were lots of newly formed bones around VBG without any foreign body response, and only modest new bones around VCS with obvious foreign body response. VBG proved to have excellent biocompatibility and to be very effective in eradicating osteomyelitis and simultaneously stimulating bone regeneration, avoiding the disadvantages of VCS.

  15. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    SciTech Connect

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  16. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  17. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  18. Effect of Sm{sub 2}O{sub 3} addition on electrical and optical properties of lithium borate glasses

    SciTech Connect

    Gedam, R. S.; Ramteke, D. D.

    2012-06-05

    The electrical and optical property of lithium borate glasses was investigated. It is observed that conductivity decreases while density and refractive index increases with the addition of Sm{sub 2}O{sub 3}. Radiation length of glasses was determined and it is observed that radiation length decreases with the addition of Sm{sub 2}O{sub 3}.

  19. Studies on the effect of Li{sub 2}SO{sub 4} on the structure of lithium borate glasses

    SciTech Connect

    Ganguli, M.; Rao, K.J.

    1999-02-11

    Thermal and spectroscopic investigations have been carried out on a number of glasses with a wide range of compositions in the pseudoternary glass system, Li{sub 2}SO{sub 4}-Li{sub 2}O-B{sub 2}O{sub 3}, to understand the role of sulfate ions in modifying the borate glass structure. Both nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic results indicate that four-coordinate boron atoms are retained in the glass structure to a greater extent in sulfate-containing glasses than in pure lithium borate glasses. There seems to be some evidence for the existence of sulfoborate-type units in Raman spectra in the region of 800--960 cm{sup {minus}1}. These conclusions are supported by the observed behavior of glass transition temperatures and molar volumes. The possibility of formation of sulfoborate-type units is discussed from bonding and thermodynamic points of view.

  20. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications.

  1. Low temperature thermal expansion of soda-borate glasses

    NASA Astrophysics Data System (ADS)

    Piñango, Ester S.; Vieira, S.; Villar, R.

    1983-10-01

    The thermal expansion of glassy (B 2O 3) 1- x(Na 2O) x, for x = 0.06, 0.16 and 0.25 has been measured in the temperature range 4 K < T < 20 K. The results are analysed in terms of a polynomial α = aT + bT3 + cT5 + dT7 and the values of the coefficients are discussed. The linear term a is small and positive in the three glasses. This yields a small and positive Grüneisen parameter for the two level systems. The cubic term is negative and is not affected by change in coordination, phonon dispersion being responsible for the fast increase in thermal expansion on increasing the temperature.

  2. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    PubMed

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

    2010-02-01

    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications.

  3. Conductivity and modulus formulation in lithium modified bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, Sajjan; Punia, R.; Murugavel, S.; Maan, A. S.

    2016-05-01

    The conductivity and modulus formulation in lithium modified bismuth zinc borate glasses with compositions xLi2O-(50-x) Bi2O3-10ZnO-40B2O3 has been studied in the frequency range 0.1 Hz-1.5 × 105 Hz in the temperature range 573 K-693 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the studied compositions, the dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of the experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating centre (Hf) and enthalpy of migration (Hm) have been estimated. It has been observed that number of charge carriers and ac conductivity in the lithium modified bismuth zinc borate glasses increases with increase in Li2O content. Further, the conduction mechanism in the glass sample with x = 0 may be due to overlapping large polaron tunneling, whereas, conduction mechanism in other studied glass samples more or less follows diffusion controlled relaxation model. The ac conductivity is scaled using σdc and ωH as the scaling parameter and is found that these are suitable scaling parameter for conductivity scaling. Non-Debye type relaxation is found prevalent in the studied glass system. Scaling of ac conductivity as well as electric modulus confirms the presence of different type of conduction mechanism in the glass samples with x = 0 and 5 from other studied samples. The activation energy of relaxation (ER) and dc conductivity (Edc) are almost equal, suggesting that polarons/ions have to overcome same barrier while relaxing and conducting.

  4. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass.

    PubMed

    Rahimnejad Yazdi, Alireza; Torkan, Lawrence; Stone, Wendy; Towler, Mark R

    2017-02-02

    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO3 units with three bridging oxygens and asymmetric BO3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  5. Spectroscopic properties of Pr3+ ions embedded in lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Ramteke, D. D.; Swart, H. C.; Gedam, R. S.

    2016-01-01

    A series of lithium borate glasses with different Pr3+ contents were prepared by the melt quench technique to explore the new material for solid state light applications. We found that the addition of Pr3+ ions in the glass matrix has a profound effect on the properties of the glasses. The presence of Pr3+ ions in the glass matrix created various absorption bands compared to the base glass. These bands were due to the ground state (3H4) of the Pr3+ to the various excited states. Optical energy band gap was calculated by Tauc's method which showed a decreasing trend with an increase in the Pr3+ content. This might be due to structural changes when the glass structure became rigid due to the Pr3+ ions and this was confirmed by the density results. Rigidity of the glass structure was further confirmed by the Fourier transformed infrared results. The excitation spectra showed bands at 3H4→3P2, 3P1 and 3P0 nm. The 3H4→3P2 band was used to study the unresolved 1D2→3H4 and 3P0→3H6 transitions of the Pr3+ ions.

  6. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.

    PubMed

    Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-02-04

    The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery.

  7. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.

    PubMed

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

    2013-07-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli.

  8. Effect of TeO 2 on the elastic moduli of sodium borate glasses

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Latif, Lamia. Abd El

    2004-05-01

    Sodium borate glass containing tellurite as Te xNa 2-2 xB 4-4 xO 7-5 x with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO 2 content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio Kbc/ Ke as a function of TeO 2 modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO 2 changes the rigid character of Na 2B 4O 7 to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure.

  9. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model

    PubMed Central

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

    2013-01-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  10. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    PubMed

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1 μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9 days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair.

  11. Silicate and borate glasses as composite fillers: a bioactivity and biocompatibility study.

    PubMed

    Lopes, P P; Ferreira, B J M Leite; Gomes, P S; Correia, R N; Fernandes, M H; Fernandes, M H V

    2011-06-01

    Composites filled with a silicate glass (CSi) and a new borate glass (CB) were developed and compared in terms of their in vitro behaviour both in acellular and cellular media. Acellular tests were carried out in SBF and the composites were characterized by SEM-EDS, XRD and ICP. Biocompatibility studies were investigated by in vitro cell culture with MG-63 osteoblast-like and human bone marrow cells. The growth of spherical calcium phosphate aggregates was observed in acellular medium on all composite surfaces indicating that these materials became potentially bioactive. The biological assessment resulted in a dissimilar behavior of the composites. The CSi demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. Contrarily, inhibition of cell proliferation occurred in the CB probably due to its high degradation rate, leading to high B and Mg ionic concentration in the cell culture medium.

  12. Experimental and theoretical studies of the structure of tellurate-borate glasses network.

    PubMed

    Rada, Simona; Culea, Eugen; Neumann, Manfred

    2010-08-01

    The structural properties of the xTeO(2) x (1-x)B(2)O(3) glasses (x = 0.6; 0.7) were investigated by FT-IR spectroscopy. From the analysis of the FTIR spectra, it is reasonable to assume that by the increasing of boron ions content, the tetrahedral [BO(4)] units are gradually replaced by the trigonal [BO(3)] units. The increase in the number of non-bridging oxygen atoms would decrease the connectivity of the glass network and will yield the depolymerization of the borate chains. The molecular structure and vibrational frequencies of the proposed structural models have been studied by exploring the density functional theory (DFT) calculations. The FTIR spectra of the xTeO(2) x (1-x)B(2)O(3) vitreous systems were compared with the calculated spectrum. This procedure allowed us to assign most of the observed IR bands.

  13. Optimisation of lithium borate barium chloride glass-ceramic thermal neutron imaging plates

    NASA Astrophysics Data System (ADS)

    Appleby, G. A.; Vontobel, P.

    2008-09-01

    Glass-ceramic thermal neutron imaging plates (NIPs) recently reported have been further developed for use in neutron radiography. The plate consists of nanocrystallites of the storage phosphor BaCl 2:Eu 2+ embedded within a neutron-sensitive lithium borate glass-matrix. A new generation of samples, enriched with both 10B and 6Li with thicknesses in the range 280-500 μm have been studied. Neutron images were read out using a Fuji BAS2500 imaging plate scanner and the quality of the images obtained was comparable to those recorded on a commercial NIP. Details of the response to neutron-irradiation as well as the obtained spatial resolution of the images are presented. The neutron absorption and radiation hardness of the materials studied is also measured.

  14. Structure and neutron imaging characteristics of lithium borate barium chloride glass-ceramics

    NASA Astrophysics Data System (ADS)

    Appleby, G. A.; Edgar, A.; Williams, G. V. M.; Vontobel, P.

    2006-08-01

    A glass-ceramic has been developed which can be used as a thermal neutron imaging plate (NIP) for neutron radiography. The plate consists of nanocrystallites of the storage phosphor BaCl 2:Eu 2+ embedded within a neutron sensitive lithium borate glass-matrix. Details of their preparation and structure are discussed. Neutron images were read out using a Fuji BAS2500 imaging plate scanner and the quality of the images obtained is comparable to those recorded on a commercial NIP. Details of the response to neutron and X-irradiation as well as the obtained spatial resolution of the images are presented. The neutron activation of the materials studied is also calculated.

  15. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  16. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    SciTech Connect

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-05-05

    Complex heat capacity, C{sub p}* = C{sub p}' - iC{sub p}'', of lithium borate glasses Li2O{center_dot}(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C{sub p}* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  17. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.

    PubMed

    Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

    2014-03-01

    Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection.

  18. Effect of silver nanoparticles on the fluorescence of Pb2+ and compositional dependence of Sm3+ fluorescence in borate glasses

    NASA Astrophysics Data System (ADS)

    Olumoroti, Akinloluwa T.

    Borate glasses have been widely studied due to their good optical and mechanical properties. Lead and bismuth (PbO/Bi2O 3:B2O3) borate glasses belong to a family of heavy metal oxide (HMO) glasses which are well known to be chemically durable, stable against atmospheric moisture, have low melting temperatures and good corrosion resistance. The first part of this work deals with lead borate glasses with silver nanoparticles (NPs) introduced into the glass matrix. Transmission electron microscopy characterization is done to verify the nucleation of NPs. Fluorescence and optical absorption experiments are then carried out after different heat treatment duration to investigate the influence of silver NPs on the optical properties of lead (Pb2+) by comparing with a glass sample without silver NPs. Optical absorption experiments show that a well-defined surface plasmon resonance (SPR) peak due to Ag NPs can be observed only for samples that were annealed for 36 hrs. Pb2+ fluorescence spectra reveal that the presence of silver NPs creates new emission centers for Pb2+ ions by altering their chemical environment. The second part of the work involves the use of samarium (a rare earth ion) as a dopant in lead and bismuth borate glasses. The concentration of samarium (Sm3+) is fixed and the base glass composition is varied. The goal is to investigate the compositional dependence of optical properties of samarium in the base glass (PbO/Bi2O3:B 2O3). Optical absorption spectra have been collected and the oscillator strength of each transition - including the hypersensitive - is obtained. The Optical absorption edge is found to shift toward lower energies with increasing PbO/Bi2O3 concentration. Both the oscillator strength and the peak position of the hypersensitive transition show significant variation with glass composition. Strong interaction between Sm3+ ions and Pb2+/Bi3+ ions can also be seen from the variations in the fluorescence emission properties of Sm3+ as a

  19. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Yadav, Arti; Agarwal, A.

    2016-05-01

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe2O3•(20-x)CoO•30Li2O•10Bi2O3•40B2O3 (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott's small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (Rp) has been evaluated using the values of phonon radius (Rph) and Debye temperature (θD). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  20. Optical properties of cerium doped oxyfluoroborate glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2013-06-01

    Cerium doped oxyfluoroborate glasses have been prepared and its spectroscopic properties have been discussed. It is found that the absorption edge shifts towards the lower energy side for the higher concentration of cerium dopant. Optical band gap for these glasses have been calculated and it is found that the number of non-bridging oxygen increases with cerium content. The emission spectra of these glasses have been recorded using UV laser radiations (266 and 355 nm) and it is observed that these glasses show bright blue emission. On the basis of excitation and emission spectra we have reported the existence of at least two different emission centers of Ce(3+)ions.

  1. Combination of platelet-rich plasma with degradable bioactive borate glass for segmental bone defect repair.

    PubMed

    Zhang, Ya-Dong; Wang, Gang; Sun, Yan; Zhang, Chang-Qing

    2011-02-01

    Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor significantly improves bone repair. In this study, a strategy combining degradable bioactive borate glass (BG) scaffolds with platelet-rich plasma (PRP) was tested. The bone defect was filled with BG alone, BG combined with autologous PRP or left empty. Bone formation was analyzed at 4, 8 and 12 weeks using both histology and radiology. The PRP treated group yielded better bone formation than the pure BG scaffold as determined by both histology and microcomputer tomography after 12 weeks. In conclusion, PRP improved bone healing in a diaphyseal rabbit model on BG. The combination of PRP and BG may be an effective approach to repair critical defects.

  2. B K-Edge XANES of Superstructural Units in Borate Glasses

    SciTech Connect

    Sipr, O.; Simunek, A.; Rocca, F.

    2007-02-02

    The potential of x-ray absorption near-edge structure (XANES) spectroscopy for studying medium range order in borate glasses is assessed by theoretical modelling of the spectra. B K edge XANES is calculated in case that B atoms are located in isolated BO3 and BO4 units and in case that B atom are located in superstructural units of 9-15 atoms. It is found that boroxol ring and diborate and ditriborate superstructural units give rise to spectra which differ from spectra obtained by a mere superposition of spectra of isolated BO3 and BO4 units. On the other hand, spectra of pentaborate and triborate units do not differ significantly from spectra of isolated BO3 and BO4.

  3. Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses

    SciTech Connect

    Liu Yin; Zhu Bin; Wang Li; Qiu Jianrong; Dai Ye; Ma Hongliang

    2008-03-24

    We report on the coordination transformation of B{sup 3+} ions and migration of Na{sup +} and O{sup 2-} ions in sodium borate glasses, induced by 250 kHz, 800 nm femtosecond laser irradiation. Micro-Raman spectra show that the ratio of the integrated intensity of the two peaks at 806 and 774 cm{sup -1} decreases at first and then increases with increasing distance from the center of the laser modified zone. Electron dispersive x-ray spectra show that a portion of Na{sup +} and O{sup 2-} ions migrate from the vicinity of focal point after the femtosecond laser irradiation. A possible mechanism is proposed to explain the observed phenomena.

  4. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Zhang, Chang-Qing; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E

    2010-03-15

    Local antibiotic delivery system has an advantage over systemic antibiotic for osteomyelitis treatment due to the delivery of high local antibiotic concentration while avoiding potential systemic toxicity. Composite biomaterials with multifunctional roles, consisting of a controlled antibiotic release, a mechanical (load-bearing) function, and the ability to promote bone regeneration, gradually become the most active area of investigation and development of local antibiotic delivery vehicles. In the present study, a composite of borate glass and chitosan (designated BG/C) was developed as teicoplanin delivery vehicle. The in vitro elution kinetics and antibacterial activity of teicoplanin released from BG/C composite as a function of immersion time were determined. Moreover, the pH changes of eluents and the bioactivity of the composite were characterized using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction analysis.

  5. Effect of R(3+) ions on the structure and properties of lanthanum borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.

    1985-01-01

    The present investigation of glass formation in the (mole percent) systems 25La2O3 (x)R2O3 (75-x)B2O3, where R = Al, Ga, and (25-x)La2O3 (x)Ln2O3 75B2O3, where Ln = Gd, Er, Y, notes that up to 25 mol pct Al2O3 or Ga2O3 can be substituted for B2O3, while no more than about 5 mol pct Ln2O3, substituted for La2O3, caused macro-phase separation. The substitution of either R2O3 or Ln2O3 in the lanthanum borate system changes the separation distance between adjacent B3O6 chains. The effect of this structural change on the molar volume, transformation temperature, thermal expansion coefficient, and transformation-range viscosity is discussed.

  6. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  7. The influence of CdSe and ZnSe nanoparticles on the optical properties of Sm3+ ions in lead borate glasses

    NASA Astrophysics Data System (ADS)

    Mallur, Saisudha B.; Heidorn, William D.; Fatokun, Stephen O.; Joshi, Krishna D.; Bista, Sandip S.; Babu, Panakkattu K.

    2017-03-01

    The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B2O3:0.5Sm2O3, x = 29.5-69.5 mol%, xPbO:(96.5-x) B2O3:0.5Sm2O3: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σp), and the area ratio of the electric dipole/magnetic dipole transitions of Sm3+. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σp for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σp when the average particle size is 16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm3+ in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σp values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.

  8. Magnetic behavior of erbium-zinc-borate glasses and glass ceramics

    SciTech Connect

    Borodi, G.; Pascuta, P.; Bosca, M.; Pop, V.; Stefan, R.; Tetean, R.; Radulescu, D.

    2013-11-13

    Glasses of the system (Er{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} (3 ≤ x ≤ 15 mol%) were prepared by conventional melt quenching and subsequently converted to glass ceramics by heat treatment of glass samples at 860 °C for 2 h. The magnetic behaviour of the studied glasses and glass ceramics were investigated using a vibrating sample magnetometer (VSM) and a Faraday-type magnetic balance. Magnetic data show that erbium ions are involved in negative superexchange interactions in all the investigated samples, being antiferromagnetically coupled. For all studied samples the experimental values obtained for the effective magnetic moments are lower than the value corresponding to free Er{sup 3+} ions and decrease with the increasing of Er{sub 2}O{sub 3} content. The decrease is more pronounced in heat treated samples than untreated ones.

  9. On the Electron Paramagnetic Resonance Studies in Mixed Alkali Borate Glasses

    SciTech Connect

    Padmaja, G.; Reddy, T. Goverdhan; Kistaiah, P.

    2011-10-20

    Mixed alkali effect in oxide based glasses is one of the current research activity and studies on the behavior of spectroscopic parameters in these systems are quite important to understand the basic nature of this phenomenon. EPR studies of mixed alkali glasses Li{sub 2}O-K{sub 2}O-ZnO-B{sub 2}O{sub 3} doped with Fe{sup 3+} and Mn{sup 2+} were carried out at room temperature. The EPR spectra show typical resonances of d{sup 5} system (Fe{sup 3+} and Mn{sup 2+}) in all the measured glass specimens. Evaluated hyperfine constant, number of paramagnetic centers and paramagnetic susceptibility values show deviation from the linearity with the progressive substitution of the Li ion with K in glass network.

  10. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  11. Optical absorption and fluorescence properties of Er3+/Yb3+ codoped lead bismuth alumina borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2014-04-01

    Lead bismuth alumina borate glasses codoped with Er3+/Yb3+ were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω2, Ω4 and Ω6 parameters. Radiative properties like branching ratio βr and the radiative life time τR have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb3+ and Er3+.

  12. The Development of Doped Radiosensitive Glass

    SciTech Connect

    Bradley, D. A.; Okoya, O. O.; Hugtenburg, R. P.; Hashim, Suhairul; Ramli, A. T.; Wagiran, H.; Yusoff, A. L.; Hassan, A. Aziz Mat

    2007-05-09

    For a range of industrial and medical situations there exists need for sensitive, robust high spatial resolution systems for radiation measurements. Our overall focus is on the development of doped silica-glass thermoluminescent dosimeters (TLD) with a view towards improving upon the thermoluminescence (TL) yield of commercially produced optical fibers. In baseline studies of the latter, as detailed herein, measurements have been conducted using Ge-doped communication fibers, employing sources of irradiation including bremsstrahlung x-rays (produced by a nominal accelerating potential of 50 kVp), alpha particles from an 241Am source (predominant emission 5.486 MeV) and protons of energy 2.5 MeV provided by an ion beam source. Present studies, also including elemental analysis via the PIXE and RBS techniques, permit comparison with higher TL yield doped glasses previously made by this group via the sol-gel technique and characterized in part using a range of synchrotron techniques.

  13. Comparisons in Neutron Detection, as modeled by MCNPX, in Li-6 Glass, HE-3, BF-3, and Borated PVT

    SciTech Connect

    Lawrence Lakeotes, Craig Marianno

    2009-04-03

    With the potential shortage of He-3 being reported by venders, it is important to consider other materials for neutron detection. Traditional neutron detectors are composed of BF-3 and He-3. Recently Li-6 Glass and borated PVT have been presented as possible replacements. This work will compare the relative detection efficiencies and consider other factors to determine the most appropriate neutron detection material.

  14. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    NASA Astrophysics Data System (ADS)

    Raghunatha, S.; Eraiah, B.

    2016-05-01

    Holmium doped lithium-antimony-lead borate glasses having 1mol% AgNO3 with composition 50B2O3-20PbO-25Sb2O3-5Li2O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  15. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.

    PubMed

    Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

    2013-11-01

    Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing.

  16. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing.

    PubMed

    Yang, Weijia; Corbari, Costantino; Kazansky, Peter G; Sakaguchi, Koichi; Carvalho, Isabel C S

    2008-09-29

    Single mode, low loss waveguides were fabricated in high index bismuth borate glass by femtosecond laser direct writing. A specific set of writing parameters leading to waveguides perfectly mode matched to standard single-mode fibers at 1.55 microm with an overall insertion loss of approximately 1 dB and with propagation loss below 0.2 dB/cm was identified. Photonic components such as Y-splitters and directional couplers were also demonstrated. A close agreement between their performances and theoretical predictions based upon the characterization of the waveguide properties is shown. Finally, the nonlinear refractive index of the waveguides has been measured to be 6.6 x 10(-15) cm(2)/W by analyzing self-phase modulation of the propagating femtosecond laser pulse at the wavelength of 1.46 microm. Broadening of the transmitted light source as large as 500 nm was demonstrated through a waveguide with the length of 1.8 cm.

  17. Luminescence properties of Tm3+/Yb3+ codoped lead alumina bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2016-05-01

    This paper reports on the spectroscopic properties of Yb3+ and Tm3+ codoped lead alumina bismuth borate glasses. Optical absorption spectra of these Samples were recorded at room temperature in the wavelength range 350-2000 nm. The absorption spectra exhibited the bands at 658 nm (3H6→3F2), 686 nm (3H6→3F3), 792 nm (3H6→3H4), 1211 nm (3H6→3H5) and 1663 nm (3H6→3F4) due to Tm3+ ions. The band at 977 nm (2F7/2→2F5/2) is due to Yb3+ ions. Optical band gap (Eopt) and Urbach energy (ΔE) values were calculated from the spectra. It was observed that the value of optical band gap decreases with increase in the concentration of Tm3+ ions. The upconversion luminescence spectra were measured under excitation of 980 nm laser diode, and the intense blue (470 nm) and green (656 nm) emission were simultaneously observed at room temperature. A proposed upconversion mechanism involving energy transfer from Yb3+ to Tm3+ has been presented.

  18. Oxidation of ethyl ether on borate glass: chemiluminescence, mechanism, and development of a sensitive gas sensor.

    PubMed

    Hu, Jing; Xu, Kailai; Jia, Yunzhen; Lv, Yi; Li, Yubao; Hou, Xiandeng

    2008-11-01

    A gas sensor was developed by using the chemiluminescence (CL) emission from the oxidation of ethyl ether by oxygen in the air on the surface of borate glass. Theoretical calculation, together with experimental investigation, revealed the main CL reactions: ethyl ether is first oxidized to acetaldehyde and then to acetic acid, during which main luminous intermediates such as CH 3CO (*) are generated and emit light with a peak at 493 nm. At a reaction temperature of 245 degrees C, the overall maximal emission was found at around 460 nm, and the linear range of the CL intensity versus the concentration of ethyl ether was 0.12-51.7 microg mL (-1) ( R = 0.999, n = 7) with a limit of detection (3sigma) of 0.04 microg mL (-1). Interference from foreign substances including alcohol (methanol, ethanol and isopropanol), acetone, ethyl acetate, n-hexane, cyclohexane, dichloromethane, or ether ( n-butyl ether, tetrahydrofuran, propylene oxide, isopropyl ether and methyl tert-butyl ether) was not significant except a minimal signal from n-butyl ether (<2%). It is a simple, sensitive and selective gas sensor for the determination of trace ethyl ether.

  19. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model.

    PubMed

    Cui, Xu; Huang, Wenhai; Zhang, Yadong; Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting; Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping; Pan, Haobo; Rahaman, Mohamed N

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8±2MPa to 31±2MPa) as the ratio of glass particles to chitosan solution increased (from 1.0gml(-1) to 2.5gml(-1)). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery.

  20. Effect of TiO2 on the optical, structural and crystallization behavior of barium borate glasses

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; ElBatal, H. A.

    2016-07-01

    Collective characterizations of prepared binary barium borate glass (50 mol % BaO - 50 mol % B2O3) together with samples containing increasing added TiO2 contents (5% → 30%) were carried out by optical and FT infrared absorption measurements. FT infrared and X-ray diffraction analysis were done for heat treated glass - ceramic derivatives prepared through two step regime process. Optical spectra of the glasses reveal the presence of titanium ions mainly in the tetravalent state imparting additional UV band beside strong UV absorption due to trace iron impurity. IR spectral studies indicate the presence of triangular and tetrahedral borate groups through the modification of BaO to some BO3 to BO4 groups beside the presence of titanium ions as interfering or overlapping TiO4 or Bsbnd Osbnd Ti groupings in the glassy network. Crystalline X-ray diffraction results indicate the separation of crystalline barium borate of the composition (2BaO.5 B2O3) as a main constituent together with some crystalline alkali titanates confirming the role of TiO2 of both as nucleating agent beside acting as structural forming through reaction with alkali oxides to form crystalline titanates. The optical band gap values reveal progressive decrease and increase of Urbach energy with TiO2 content and the same for the refractive index values and all these parameters are correlated with the proposed changes in the glass constitution with the introduction of TiO2. The additional thermal expansion measurements indicate the peculiar characteristic negative expansion up to 300 °C and after which an increase in the coefficient of thermal expansion is identified with the increase in temperature. The thermal parameters are also correlated with the modification of the glass structure by the introduction of titanium ions.

  1. Effect of the sintering temperature on the structural and magnetic parameters of strontium ferrites doped with kaolin and barium borate

    SciTech Connect

    Pashchenko, V.P.; Kostyagina, O.A.; Lisitsyn, S.M.; Prokopenko, A.K.; Selivanova, L.Y.; Serebro, D.Y.

    1986-01-01

    This paper presents the results of studies of the effect of the sintering temperature of strontium ferrites (doped with 1.2 mass % kaolin and barium borate) on their properties. The fine crystalline structure of anisotropic and demagnetized strontium ferrites doped with kaolin was studied with the help of the Moessbauer effect. Fe-57 nuclei, occupying 4f2 and 2a octahedral positions, respectively, in the hexagonal and spinel blocks, have the highest magnetic fields and quadrupole shifts. The effect of the sintering temperature on the physical properties of the ferrites studied is linked to changes in the microstructure and porosity of the samples.

  2. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO{sub 3} content

    SciTech Connect

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi; Dimitrov, Vesselin; Komatsu, Takayuki

    2014-12-15

    Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed between Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases

  3. The effect of semiconducting CdSe and ZnSe nanoparticles on the fluorescence of Sm3+ in lead borate glasses

    NASA Astrophysics Data System (ADS)

    Mallur, Saisudha; Fatokun, Stephen; Babu, P. K.

    2015-03-01

    We studied the fluorescence spectra of Sm3+ doped lead borate glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles with the following compositions (x PbO: 96.5-x B2O3:0.5 Sm2O3:3ZnSe/CdSe, x =36.5 and 56.5 mol%). These glass samples are prepared using the melt-quenching technique. Each sample is annealed just below the glass transition temperature at 400°C for 3 hrs and 6 hrs. We have chosen PbO-B2O3 glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Fluorescence spectra of these samples are obtained with the excitation wavelength at 477 nm. Four fluorescence transitions are observed at 563 nm, 598 nm, 646 nm and 708 nm. The transition at 646 nm is found to be a hypersensitive transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at Sm site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. The presence of CdSe nanoparticles is seen to produce the greatest influence on the fluorescence intensity ratio. This could be due to the size of the CdSe nanoparticles and covalency of the Sm-O bond.

  4. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  5. Defect formation of gamma irradiated MoO3-doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; EllBatal, H. A.

    2013-10-01

    Borophosphate glasses of the basic composition (50P2O5, 30B2O3, 20Na2O mol%) containing different doping molybdenum oxide percents (0.16-0.98) were prepared by melting and annealing method. Infrared and UV-visible absorption spectroscopic measurements before and after gamma irradiation were carried out. The base undoped borophosphate glass reveals strong UV absorption bands but with no visible bands and these UV bands are related to unavoidable trace iron impurities contaminated within the raw materials used for the preparation of this glass. The introduction of MoO3 (in doping ratio) into this glass produces an additional UV band and a broad visible band and their intensities increase with the MoO3 content. These additional bands are related to both Mo6+ and Mo5+ ions. The base undoped borophosphate glass shows retardation effect towards gamma irradiation. Gamma irradiation produces marked changes in the UV-visible spectra of Mosbnd O3-doped glasses. Such changes can be related to the production of induced defects from photochemical reactions and the generation of positive holes. Infrared absorption spectrum of the undoped borophosphate glass reveals complex vibrational bands due to the presence of both phosphate groups beside borate groups with triangular and tetrahedrally coordinated units. The introduction of MoO3 causes some limited variations in the FTIR spectra. Gamma irradiation produces minor changes in the intensities of some IR bands. Such changes are related to the changes in the bond angles and/or bond lengths of few structural groups upon irradiation while the main structural groups remain unchanged in their number and position.

  6. Structure of Alkali Borate Glasses at High Pressure: B and Li K-Edge Inelastic X-Ray Scattering Study

    SciTech Connect

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-kwang; Meng, Yue; Shu, Jinfu

    2008-06-16

    We report the first in situ boron K-edge inelastic x-ray scattering (IXS) spectra for alkali borate glasses (Li{sub 2}B{sub 4}O{sub 7}) at high pressure up to 30 GPa where pressure-induced coordination transformation from three-coordinated to four-coordinated boron was directly probed. Coordination transformation (reversible upon decompression) begins around 5 GPa and the fraction of four-coordinated boron increases with pressure from about 50% (at 1 atm) to more than 95% (at 30 GPa) with multiple densification mechanisms, evidenced by three distinct pressure ranges for (d{sup [4]}B/dP){sub T}. The lithium K-edge IXS spectrum for Li-borate glasses at 5 GPa shows IXS features similar to that at 1 atm, suggesting that the Li environment does not change much with pressure up to 5 GPa. These results provide improved understanding of the structure of low-z glass at high pressure.

  7. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model.

    PubMed

    Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai

    2010-08-01

    The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis.

  8. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-09-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2O 3 and Bi 2O 3-PbO-B 2O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient.

  9. Physical and optical properties of magnesium sulfoborate glasses doped Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Dalhatu, S. A.; Deraman, Karim; Hussin, R.

    2016-04-01

    The optical properties of alkaline earth borate glasses doped with rare earth are attractive field of research due to many optical applications. We have concentrated on the physical and optical properties of MgO-SO4-B2O3 glass with different concentrations of Dy3+ ions. The samples of glass were prepared using the melting quenching technique. The physical parameter and optical properties of the prepared glass were determined. It was observed that the density of the glass samples increased and the molar volume reduced with respect to Dy3+ ions content. Dy3+: MgO-SO4-B2O3 glass displayed 10 absorption bands with hypersensitive transition around 1265 nm (6H15/6 →6F11/2). Two intense luminescence emissions were observed at 482 nm (4F9/2 →6H15/2: blue) and 573 nm (4F9/2 →6H13/2: yellow) and weak band at 662 nm (4F9/2 →6H11/2: red) with excitation wavelength 380 nm. A strong enhancement in the emission peaks at 573 nm in the yellow region was observed with the 0.07 mol% concentration of dysprosium oxide, which may assign to the energy transfer from Mg2+ to Mg3+ ions. Beyond the optimum concentration, contrary result was observed.

  10. Optical properties of Er3 +-doped oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Feng, Li; Wu, Yinsu

    2016-02-01

    Er3 +-singly doped and Er3 +/Yb3 +-codoped 50SiO2-(50 - x)BaF2-xZnF2(SBZx) oxyfluoride glasses are prepared and the optical properties of Er3 +-singly doped glasses are investigated by using the Judd-Ofelt theory. Bright green and red upconversion luminescence of Er3 +/Yb3 +-codoped glasses is obtained under 980 nm excitation. Furthermore, factors affecting this phenomenon such as glass composition, doping concentration of Er3 + and Yb3 + ions, and pump power are discussed in details.

  11. IR luminescence in bismuth-doped germanate glasses and fibres

    SciTech Connect

    Pynenkov, A A; Firstov, Sergei V; Panov, A A; Firstova, E G; Nishchev, K N; Bufetov, Igor' A; Dianov, Evgenii M

    2013-02-28

    We have studied the optical properties of lightly bismuth doped ({<=}0.002 mol %) germanate glasses prepared in an alumina crucible. The glasses are shown to contain bismuth-related active centres that have been identified previously only in bismuth-doped fibres produced by MCVD. With increasing bismuth concentration in the glasses, their luminescence spectra change markedly, which is attributable to interaction between individual bismuth centres. (optical fibres)

  12. Role of electron transfer in Ce{sup 3+} sensitized Yb{sup 3+} luminescence in borate glass

    SciTech Connect

    Sontakke, Atul D. Katayama, Yumiko; Zhuang, Yixi; Tanabe, Setsuhisa; Ueda, Jumpei; Dorenbos, Pieter

    2015-01-07

    In a Ce{sup 3+}-Yb{sup 3+} system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb{sup 3+} infrared luminescence under Ce{sup 3+} excitation. Among them, the quantum cutting mechanism, where one Ce{sup 3+} photon (ultraviolet/blue) gives rise to two Yb{sup 3+} photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce{sup 3+}-Yb{sup 3+} codoped borate glasses, Ce{sup 3+} sensitized Yb{sup 3+} luminescence at ∼1 μm have been observed on Ce{sup 3+} 5d state excitation. However, the intensity of sensitized Yb{sup 3+} luminescence is found to be very weak compared to the strong quenching occurred in Ce{sup 3+} luminescence in Yb{sup 3+} codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb{sup 3+} codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce{sup 3+}-Yb{sup 3+} ⇌ Ce{sup 4+}-Yb{sup 2+} inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.

  13. Effect of Co(2+) and Ni(2+)-doped zinc borate nano crystalline powders by co-precipitation method.

    PubMed

    Shim, Jaesool; Venkata Reddy, Ch; Sarma, G V S S; Narayana Murthy, P; Ravikumar, R V S S N

    2015-05-05

    A simple co-precipitation method has been used for the synthesis of Co(2+) and Ni(2+)-doped zinc borate nanopowders. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV/Vis absorption, Scanning electron microscope (SEM) with EDS and photoluminescence (PL) spectroscopies techniques has been employed for their characterization. Powder X-ray diffraction data reveals that the crystal structure belongs to monoclinic for both as-prepared samples. SEM images showed surface morphology of the prepared samples. Optical absorption spectra showed the characteristic bands of doped ions in octahedral site symmetry. From the optical absorption data crystal field and inter-electronic repulsion parameters are evaluated. The FT-IR spectra showed the characteristic vibrational bands related to ZnO, BO3 and BO4 molecules. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions.

  14. Effect of pyrophosphate ions on the conversion of calcium-lithium-borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2010-10-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium-lithium-borate glass to HA was investigated. Particles of the glass (150-355 μm) were immersed for up to 28 days in 0.25 M K(2)HPO(4) solution containing 0-0.1 M K(4)P(2)O(7). The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K(4)P(2)O(7) concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K(4)P(2)O(7)) to 10 days (0.01 M K(4)P(2)O(7)). When the K(4)P(2)O(7) concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K(2)CaP(2)O(7) and Ca(2)P(2)O(7)). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed.

  15. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    PubMed

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.

  16. Nano crystalline Bi2(VO5) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2016-05-01

    Glass composition 7V2O5.23Li2O.20Bi2O3.50B2O3 and x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi2(VO5) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V2O5-crystal were observed along with the nano crystalline Bi2(VO5) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi2(VO5) nano-crystallite was ~30nm for samples annealed at 400°C and ~42nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi2(VO5) crystallite.

  17. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  18. Study on borate glass system containing with Bi 2O 3 and BaO for gamma-rays shielding materials: Comparison with PbO

    NASA Astrophysics Data System (ADS)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-04-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2O 3, BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  19. Photon-conversion and sensitization evaluation of Eu³⁺ in a borate glass system.

    PubMed

    Tian, Y M; Shen, L F; Pun, E Y B; Lin, H

    2016-02-20

    Photon conversion is exhibited in a borate (LKZBSB) glass system containing Eu(3+), and the enhanced characteristic emissions of Eu(3+) with the codoping of Ce(3+) have been verified. A large Judd-Ofelt intensity parameter Ω2 of Eu(3+) indicates a high asymmetrical and strong covalent environment around rare-earth (RE) ions in LKZBSB glasses and spontaneous emission probability and a maximum emission cross section of the dominant 5D0→7F2 transition were derived to be 370  s(-1) and 1.28×10(-21)  cm2, respectively, revealing the potential UV→visible photon-conversion capacity of Eu(3+). Absolutely quantitative evaluation illustrates that Eu(3+) is a favorable photon-conversion center to achieve high photon-conversion efficiency. The addition of Ce(3+) is beneficial to realizing effective red emission of Eu(3+), which possesses commercial value by decreasing the dopant of expensive europium compounds. As an expectation, this photon-conversion LKZBSB glass system can promote the development of a photon downconversion layer for solar cells, which are particularly used in outer space with intense UV radiation.

  20. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection.

    PubMed

    Liu, Xin; Xie, Zongping; Zhang, Changqing; Pan, Haobo; Rahaman, Mohamed N; Zhang, Xin; Fu, Qiang; Huang, Wenhai

    2010-02-01

    The objective of this work was to evaluate borate bioactive glass scaffolds (with a composition in the system Na(2)O-K(2)O-MgO-CaO-B(2)O(3)-P(2)O(5)) as devices for the release of the drug Vancomycin in the treatment of bone infection. A solution of ammonium phosphate, with or without dissolved Vancomycin, was used to bond borate glass particles into the shape of pellets. The in vitro degradation of the pellets and their conversion to a hydroxyapatite-type material in a simulated body fluid (SBF) were investigated using weight loss measurements, chemical analysis, X-ray diffraction, and scanning electron microscopy. The results showed that greater than 90% of the glass in the scaffolds degraded within 1 week, to form poorly crystallized hydroxyapatite (HA). Pellets loaded with Vancomycin provided controlled release of the drug over 4 days. Vancomycin-loaded scaffolds were implanted into the right tibiae of rabbits infected with osteomyelitis. The efficacy of the treatment was assessed using microbiological examination and histology. The HA formed in the scaffolds in vivo, resulting from the conversion of the glass, served as structure to support the growth of new bone and blood vessels. The results in this work indicate that bioactive borate glass could provide a promising biodegradable and bioactive material for use as both a drug delivery system and a scaffold for bone repair.

  1. Effects of halogen substitutions on the formation of copper colloids by hydrogen reduction in sodium borate glasses

    NASA Astrophysics Data System (ADS)

    Edson, Daniel Lee

    2002-01-01

    The substitution of small amounts of halogens (< 1 mol%) for oxygen in sodium borate glasses with 10 to 35 mol% soda that contain 0.1 or 0.2 wt% CuO dramatically influences the ligand environment around copper in these glasses and the formation of copper colloids during hydrogen treatment near Tg. The suppression of copper colloid formation in glasses that contain halogen ions has not previously been reported. The interaction of halogen ions and copper depends on the identity of the halogen ion, the ratio of the molar concentrations halogen to copper ions and the soda content of the glass. The heavier halogen ions, Cl, Br and I, preferentially associate with copper ions in the melt. Four bromine ions associate with each cupric ion, reducing it to the cuprous state. The reduction power of the ions increases in the order Cl- < Br- < I-. Cl, Br and I associate with cupric ions in combination with oxygen ions in the glass. These mixed anion complexes, which probably contain multiple halogen ions, give rise to intense charge transfer absorption bands in the UV-Vis spectra which cause a color change in the glass. The concentration of the mixed anion complexes is very small and depends on the ratio of halogen to copper. The reduction of cupric ions has been separated from the growth of copper colloids during hydrogen reduction through use of the ESR. The reduction of cupric ions by hydrogen is described by the tarnishing model. The presence of Cl, Br and I completely prevents the formation of copper colloids during hydrogen reduction near Tg. CuBr nanoparticles form in glasses with ratios of Br:Cu of 1:1 or 2:1. Support for the view that cuprous ions are the diffusing species in these glasses following hydrogen reduction is presented, with a requirement that hydrogen be present at the growing nuclei to further reduce the ion to the atomic state. Bonding between mobile cuprous ions and halogen ions is suggested to slow or prevent the formation of copper colloids and the

  2. Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure

    SciTech Connect

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-kwang; Shu, Jinfu

    2009-01-15

    Here, we report on the in situ synchrotron inelastic x-ray scattering spectra of Na-borate glasses at high pressure up to 25 GPa. The pressure-induced boron coordination transformation from {sup [3]}B to {sup [4]}B is linear with pressure characterized by a single value of ({partial_derivative}{sup [3]}B/{partial_derivative}P){sub T}. Previous studies of Li-borate and pure-borate glasses show a nonlinear transformation with multiple ({partial_derivative}{sup [3]}B/{partial_derivative}P){sub T} values for different pressure ranges, revealing the important role cation field strength plays in densification and pressure-induced structural changes. Considering the distribution of the energy difference beween low- and high-pressure states ({Delta}{var_epsilon}) in the energy landscape and the variance of the ratio {Delta}{var_epsilon} to its pressure gradient ({partial_derivative}{Delta}{var_epsilon}/{partial_derivative}P){sub T} as a measure of network flexibility with pressure, an amorphous system with a large variance in {Delta}{var_epsilon} at 1 atm and/or a small ({partial_derivative}{Delta}{var_epsilon}/{partial_derivative}P){sub T} may undergo a gradual coordination transformation (e.g., Na borates). In contrast, a system with the opposite behavior (e.g., Li borates) undergoes an abrupt coordination transformation. The results and concepts of this study thus can shed light on opportunities to study the effect of composition on the nature of densification in low-z oxide and other archetypal glasses and melts.

  3. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    SciTech Connect

    Sontakke, Atul D. Katayama, Yumiko; Tanabe, Setsuhisa; Ueda, Jumpei; Dorenbos, Pieter

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host. The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.

  4. Optical absorption and fluorescence properties of Er{sup 3+}/Yb{sup 3+} codoped lead bismuth alumina borate glasses

    SciTech Connect

    Goud, K. Krishna Murthy Reddy, M. Chandra Shekhar Rao, B. Appa

    2014-04-24

    Lead bismuth alumina borate glasses codoped with Er{sup 3+}/Yb{sup 3+} were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω{sub 2}, Ω{sub 4} and Ω{sub 6} parameters. Radiative properties like branching ratio β{sub r} and the radiative life time τ{sub R} have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+} respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb{sup 3+} and Er{sup 3+}.

  5. [Spectroscopic properties of Er3+-doped germanium bismuthate glass].

    PubMed

    Zhang, Yong; Ren, Guo-Zhong; Yang, Qi-Bin; Xu, Chang-Fu; Liu, Yun-Xin; Shang, Zhen-Gang

    2008-05-01

    Er(3+)-Doped Germanium Bismuthate Glass was fabricated and characterized. The absorption spectrum and up-conversion spectrum of glass were studied. The Judd-Oflet intensity parameters omega(t) (t = 2, 4, 6), determined based on Judd-Ofelt theory, were found to be omega2 = 3.35 x 10(-20) cm2, omega4 = 1.34 x 10(-20) cm2, omega6 = 0.67 x 10(-20) cm2. Frequency up-conversion of Er(3+)-doped germanium bismuthate glass has been investigated. The up-conversion mechanisms are discussed under 808 nm and 980 nm excitation. Stimulated emission cross-section of 4I(13/2) --> 4I(15/2) transition was calculated by McCumber theory. Compared to other host glasses, the emission property of Er(3+)-doped germanium bismuthate glasses has advantage over those of silicate, phosphate and germinate glasses. Er(3+)-doped germanium bismuth glasses are promising upconversion optical and optic-communication materials.

  6. Structural and luminescence behavior of Er(3+) ions doped Barium tellurofluoroborate glasses.

    PubMed

    Annapoorani, K; Maheshvaran, K; Arunkumar, S; Suriya Murthy, N; Marimuthu, K

    2015-01-25

    Er(3+) doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30-x)TeO2+30B2O3+20BaO+20BaF+xEr2O3 (where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2>Ω6>Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the (2)H11/2+(4)S3/2→ (4)I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σP(E)), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work.

  7. Structural and luminescence behavior of Er3+ ions doped Barium tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Annapoorani, K.; Maheshvaran, K.; Arunkumar, S.; Suriya Murthy, N.; Marimuthu, K.

    2015-01-01

    Er3+ doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30 - x)TeO2 + 30B2O3 + 20BaO + 20BaF + xEr2O3 (where x = 0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2 > Ω6 > Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the 2H11/2 + 4S3/2 → 4I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σPE), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work.

  8. Silver doped nanobioactive glass particles for bone implant applications

    NASA Astrophysics Data System (ADS)

    Prabhu, M.; Kavitha, K.; Karunakaran, G.; Manivasakan, P.; Rajendran, V.

    2013-02-01

    Silica based silver doped nanobioactive glass compositions (58SiO2-33CaO-9P2O5 and 58SiO2-23CaO-9P2O5-10Ag2O(mol%)) were synthesized by a simple sol-gel route. The prepared samples were comprehensively characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopic studies. The results reveal that the prepared samples have amorphous phase with spherical morphology and having a particle size less than 100 nm. The specific surface areas were 90 and 61 m2g-1 respectively. The in vitro bioactivity of glass samples were confirmed by the formation of hydroxyapatite layer on glass surfaces. The Ag2O-doped nanobioactive glasse samples shows reveal significant antibacterial activity compare with base glasses.

  9. Preparation of Ferroelectric KNbO3 Based Borate Glass System.

    PubMed

    Kruea-In, Chatchai; Intawin, Pratthana; Leenakul, Wilaiwan

    2015-11-01

    The incorporation method was employed to produce ferroelectric glass ceramics from the K2O-Nb2O5-B2O3 glass system. The nanocrystalline potassium niobate (KNbO3) was first prepared using a simple mixed oxide method, where the B2O3 was initially mixed and then melted to form glass. The successfully produced optically transparent glass was then subjected to a heat treatment schedule for further crystallization at temperatures ranging from 500 to 650 degrees C, which resulted in the precipitation of the KNbO3 phase, together with the K3B2Nb3O12 phase. Scanning electron microscopy (SEM) showed the presence of randomly oriented KNbO3 crystals dispersed in a continuous glass matrix. It was found that the glass ceramics subjected to the heat treatment at temperatures higher than 545 degrees C were opaque, while the lower gave a highly transparent glass ceramics. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties.

  10. Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Berwal, Neelam; Dhankhar, Sunil; Sharma, Preeti; Kundu, R. S.; Punia, R.; Kishore, N.

    2017-01-01

    The quaternary glass system xSiO2-(80-x) Bi2O3sbnd 15B2O3sbnd 5TeO2 has been prepared by melt-quench technique. The amorphous nature of glass samples has been ascertained by X-ray diffraction patterns. The variations in density, molar volume and crystalline volume with glass compositions have been discussed. A non-linear change has been observed in glass transition temperature and optical band gap energy. Raman and FTIR spectral studies suggest that glass network is mainly built up of BO3, BO4, SiO4, and TeO3 structural units, whereas BiO3 exists as both network modifying [BiO6] octahedral as well as network forming [BiO3] pyramidal structural units. The values of optical band gap energy have been estimated from fitting of both Mott and Davis's model and Hydrogenic excitonic model (HEM) with experimental data of absorption spectra. The HEM model shows good agreement with experimentally observed absorption spectra, which indicates the exciton formation in studied glass system. The non-linear compositional change in optical band gap energy is related with the structural changes occurring in present glass samples. The Urbach energy has also been estimated. The range of metallization criterion suggests that prepared glasses may be considered as new nonlinear optical materials.

  11. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    SciTech Connect

    Khasa, S.; Yadav, Arti Dahiya, M. S.; Seema,; Ashima; Agarwal, A.

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  12. Photostimulated luminescence from BaCl{sub 2}:Eu{sup 2+} nanocrystals in lithium borate glasses following neutron irradiation

    SciTech Connect

    Appleby, G. A.; Edgar, A.; Williams, G. V. M.; Bos, A. J. J.

    2006-09-04

    A glass-ceramic thermal neutron imaging plate material is reported. The material consists of a neutron sensitive 2B{sub 2}O{sub 3}-Li{sub 2}O glass matrix containing nanocrystallites of the storage phosphor BaCl{sub 2}:Eu{sup 2+}. When doped with 0.5 mol % Eu{sup 2+}, the neutron induced photostimulated luminescence (PSL) conversion efficiency of the {sup 10}B enriched glass-ceramic is around 60% of that a commercial neutron imaging plate, while the {gamma} sensitivity is an order of magnitude lower than that of the commercial plate. A Eu{sup 2+}-concentration series shows that the PSL efficiency for x rays is optimized at 0.01 mol % Eu{sup 2+}. Thermoluminescence measurements indicate trap depths in BaCl{sub 2}:Eu{sup 2+} ranging from 0.55 to 2.7 eV.

  13. Impedance spectroscopic characterization of Sm2O3 containing lithium borate glasses.

    PubMed

    Ramteke, D D; Gedam, R S

    2014-12-10

    27.5 Li2O-(72.5-X) B2O3-X Sm2O3 (X=0.5, 1, 1.5 and 2) were prepared by conventional melt quench technique. Impedance spectroscopy (IS) is used to study the electrical properties of these prepared glasses. Modulus formalism is introduced to study relaxation behaviour of these glasses. Scaling model shows the good overlap of data on single master curve which suggests that conduction mechanism in these glasses is compositional dependent. Variation of dielectric constant and dielectric loss with the addition of Sm2O3 and frequency are discussed here.

  14. Effect of copper addition on density and magnetic susceptibility of lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Soliman, A. A.; Farouk, H.; El-Shorpagy, M.; Sanad, A. M.

    2008-11-01

    Glasses of the (100- x) (Li 2O·2B 2O 3)· x CuO system, where x=0, 5, 10, 15, 20, 25 mol%, were prepared by melt quench technique. The glass samples were studied by magnetic susceptibility, density and infrared (IR) spectroscopic measurements. Molar volumes were estimated from density data. IR spectroscopic and density data show that the copper ions play a network modifier role and some ions as a network former by increasing the copper content in the studied glasses. The magnetic susceptibility data show a variable behavior due to the presence of two types of copper ions, cuprous (Cu +) and cupric (Cu 2+), in all samples.

  15. Effect of alkali addition on DC conductivity and thermal properties of vanadium-bismo-borate glasses

    SciTech Connect

    Khasa, S. Dahiya, M. S.; Agarwal, A.

    2014-04-24

    The DC Conductivity and Differential Thermal Analysis of glasses with composition (30−x)Li{sub 2}O⋅xV{sub 2}O{sub 5}⋅20Bi{sub 2}O{sub 3}⋅50B{sub 2}O{sub 3}(x=15, 10, 5) has been carried out in order to study the effect of replacing the Transition Metal Oxide (TMO) with alkali oxide. A significant increase in the DC conductivity has been observed with increase in alkali content. Again the thermal measurements have shown the decrease in both glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). The Glass Stability (GS) and Glass Forming Ability (GFA) have also been calculated and these also were found to decrease with increase in alkali oxide content at the cost of TMO.

  16. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  17. Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass

    NASA Astrophysics Data System (ADS)

    Koike, Akio; Sugimoto, Naoki

    2006-02-01

    Temperature dependences of optical path length (dS/dT; calculated using the equation, dS/dT = dn/dT + na, where a is coefficient of thermal expansion, n is refractive index and dn/dT is temperature coefficient of refractive index) in various oxide glasses were investigated. The dS/dT is generally difficult to adjust by change of glass composition because dn/dT and a are interrelated. However, low dS/dT materials are desired for optical applications such as athermal devices, and high dS/dT materials can be used for thermo-optic devices. Pure silica glass is well-known as a typical low dS/dT material but still not sufficient. Fluorine-doped silica glass showed a lower dS/dT than that of pure silica glass. By fluorine-doping in silica glass, refractive index and dn/dT decreased but a near room temperature stayed at the same level. As a result, the dS/dT decreased with increasing fluorine concentration. On the other hand, bismuthate glass showed the highest dS/dT in this study. Most glasses having high a such as tellurite glass showed negative dn/dT. However, bismuthate glasses showed positive dn/dT in spite of high a. As a result, bismuthate glasses showed quite high dS/dT. These results indicate that dS/dT of the glass can be controllable and that fluorine doped silica glass and bismuthate glass are appropriate candidate materials for optical applications.

  18. Spectral investigations of Sm{sup 3+}-doped oxyfluorosilicate glasses

    SciTech Connect

    Ramachari, D.; Rama Moorthy, L.; Jayasankar, C.K.

    2013-09-01

    Graphical abstract: The figure shows the emission spectra of Sm{sup 3+} doped KNSZL glass for different concentrations. Among the four emission transitions {sup 4}G{sub 5/2} → {sup 6}H{sub 5/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 9/2} and {sup 4}G{sub 5/2} → {sup 6}H{sub 11/2}, the {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition of KNSZLSm10 glass is more intense compared with all the transitions. The insert figure shows, the color coordinates (0.59, 0.41) of KNSZLSm10 glass is located on the perimeter of the chromaticity diagram at 592 nm which appears to be closest to the orange color. From these results the KNSZLSm10 glass could be useful for optical amplifiers, waveguides, telecommunications and orange LEDs. - Highlights: • From the DTA, the undoped KNSZL glass more precisely in fiberdrawing. • The XRD pattern confirmed the KNbO{sub 3} nanocrystallites of undoped KNSZL glass. • FTIR and Raman data of KNSZLSm10 glass revealed structural properties. • Judd–Ofelt analysis and decay measurements were carried out. • The optical gain parameter of the investigated glass is 18.13 × 10{sup −25} cm{sup 2} s. - Abstract: Sm{sub 2}O{sub 3}-doped oxyfluorosilicate glasses were prepared by melt-quenching method. The differential thermal analysis and X-ray diffraction were carried out to investigate the glass transition temperature and structure of precursor glass. Infrared spectroscopy, Raman, optical absorption, photoluminescence and decay measurements were carried out for Sm{sup 3+}-doped oxyfluorosilicate glasses. From the absorption spectrum, the Judd–Ofelt intensity parameters have been evaluated to predict the radiative properties for the emission levels of Sm{sup 3+} ions. The lifetimes of {sup 4}G{sub 5/2} level are found to decrease from 1.17 to 0.93 ms due to the energy transfer, when the concentration of Sm{sup 3+} ions increases from 0.1 to 2.0 mol%. The optical gain parameter (18.13 × 10{sup −25

  19. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    SciTech Connect

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-15

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres in dilute phosphate solution at 37 {sup o}C. The results confirmed that Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres reacted in low-concentration K{sub 2}HPO{sub 4} solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  20. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Luo, Shi-Hua; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E; Zhang, Chang-Qing; Xie, Zong-Ping; Wang, Jian-Qiang

    2010-03-01

    Composite materials composed of borate bioactive glass and chitosan (designated BGC) were investigated in vitro and in vivo as a new delivery system for teicoplanin in the treatment of chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA). In vitro, the release of teicoplanin from BGC pellets into phosphate-buffered saline (PBS), as well as its antibacterial activity, were determined. The compressive strength of the pellets was measured after specific immersion times, and the structure of the pellets was characterized using scanning electron microscopy and X-ray diffraction. In vivo, the tibial cavity of New Zealand White rabbits was injected with MRSA strain to induce chronic osteomyelitis, treated by debridement after 4weeks, implanted with teicoplanin-loaded BGC pellets (designated TBGC) or BGC pellets, or injected intravenously with teicoplanin. After 12weeks' implantation, the efficacy of the TBGC pellets for treating osteomyelitis was evaluated using hematological, radiological, microbiological and histological techniques. When immersed in PBS, the TBGC pellets provided a sustained release of teicoplanin, while the surface of the pellets was converted to hydroxyapatite (HA). In vivo, the best therapeutic effect was observed in animals implanted with TBGC pellets, resulting in significantly lower radiological and histological scores, a lower positive rate of MRSA culture, and an excellent bone defect repair, without local or systemic side effects. The results indicate that TBGC pellets are effective in treating chronic osteomyelitis by providing a sustained release of teicoplanin, in addition to participating in bone regeneration.

  1. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs.

    PubMed

    Zhang, Jieyuan; Guan, Junjie; Zhang, Changqing; Wang, Hui; Huang, Wenhai; Guo, Shangchun; Niu, Xin; Xie, Zongping; Wang, Yang

    2015-11-20

    Bioactive borate glass (BG) has emerged as a promising alternative for bone regeneration due to its high osteoinductivity, osteoconductivity, compressive strength, and biocompatibility. However, the role of BG in large segmental bone repair is unclear and little is known about the underlying mechanism of BG's osteoinductivity. In this study, we demonstrated that BG possessed pro-osteogenic effects in an experimental model of critical-sized radius defects. Transplanting BG to radius defects resulted in better repair of bone defects as compared to widely used β-TCP. Histological and morphological analysis indicated that BG significantly enhanced new bone formation. Furthermore, the degradation rate of the BG was faster than that of β-TCP, which matched the higher bone regeneration rate. In addition, ions from BG enhanced cell viability, ALP activity, and osteogenic-related genes expression. Mechanistically, the critical genes Smad1/5 and Dlx5 in the BMP pathway and p-Smad1/5 proteins were significantly elevated after BG transplantation, and these effects could be blocked by the BMP/Smad specific inhibitor. Taken together, our findings suggest that BG could repair large segmental bone defects through activating the BMP/Smad pathway and osteogenic differentiation in BMSCs.

  2. Efficiency and tuning of the erbium-doped glass lasers

    NASA Astrophysics Data System (ADS)

    Fromzel, Victor A.; Kuchma, Igor G.; Lunter, Sergei G.; Mak, Artur A.; Petrov, Aleksey A.

    1992-11-01

    Erbium-doped glass lasers operated near by 1 5 mm wavelength are helpful for medicine and biology optical communication and eye-safe range finder systems. Advances in erbium-doped glass especially phosphate glass and lasers based on it have been extensive in recent years. Nowadays we can approve that erbium glass lasers are not worse compared with the neodymium ones by many spectroscopic and laser properties. Developments of the energy spectral and temporal characteristics and tuning near the 1500 nm wavelength of the erbium - doped phosphate glass lasers are reported. 2. SPECTROSCOPIC PECULIARITIES OF THE ERBIUM DOPED GLASS Phosphate erbium-doped glass possess a number of spectroscopic peculiarities as a laser active medium. Energy level diagrams of Er3 ions and two other its co-doped ions -Yb3 and Cr3 and the actual transitions (radiate and nonradiate) between them are shown in Fig. 1 (a). Absorption spectrum of that phosphate glass is also shown in Fig. 1 (b) . One can see that the whole pum energy is absorbed only by coactivators - Yb Cr - Yb E r and Cr3 - and then quickly and efficiently transferred from them to Er3 ions. Thus ''7 lasing and pumping of the erbium glass are ''4 realized by means of quite different ions. 4 Thanks to that one can get a low laser threshold t1/2 usin a small doping of Er3 ions (about 1019 I3/2 cm ) and the same time have a high efficient 4T pumoing by using the big concentration of ions 15/2 Yb3 and Cr3 in them (1021 cm3 and 1020 b cm3 accordingly). Obstacles for high efficiency of the lasers may be connected with either increase of the back pump energy transfer from Yb3 ions to Cr3 ones by too large concentration of Cr3 ions or thermal distortions of the active medium. Optimal pumping conditions for lamp pumped Er - doped glass laser differ from neodymium ones. It is explained by the important role of pump energy transfer processes in Er - doped glass. In order to have of high efficient pumping it is necessary that energy transfer

  3. White light generation from Dy3+ doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Damak, Kamel; Yousef, El Sayed; Rüssel, Christian; Maâlej, Ramzi

    2014-02-01

    This paper reports on the spectral results of Dy3+ (1.0 mol%) ions-doped TeO2-ZnO-PbO-PbF2-Na2O (TZPPN) glass. Raman spectrum measurements, differential thermal analysis (DTA) profiles of this rare-earth ion-doped glass were carried out. From the DTA thermogram, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures were evaluated. Direct and indirect optical band gaps were calculated based on the glasses UV absorption spectra. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters, Ωk, were calculated. Using J-O intensity parameters, several radiative properties such as spontaneous transition probabilities (AR), radiative branching ratios (βR) and radiative lifetimes (τR) were determined for the excitation level 4F9/2. From the emission spectra, a strong yellow emission at 574 nm (4F9/2→6H13/2) was observed and it also showed a combination of blue and red emission bands for this glass. The stimulated emission cross-section σ(λp) was also evaluated for the 4F9/2→6HJ (J=11/2, 13/2, and 15/2) transitions. This study indicates that 1 mol% Dy2O3-doped tellurite glass can be considered for white light generation with the excitation of blue light (454 nm).

  4. Effect of substituting iron on structural, thermal and dielectric properties of lithium borate glasses

    SciTech Connect

    Dalal, Seema; Khasa, S.; Dahiya, M.S.; Agarwal, A.; Yadav, Arti; Seth, V.P.; Dahiya, S.

    2015-10-15

    Highlights: • There is increase in NBOs with iron content. • FTIR spectra supported the results predicted by density. • Glass stability has been examined. • Iron shows “blocking effect” on migration of mobile ions. • Internal Circuit varies with temperature and composition. - Abstract: Glasses with composition xFe{sub 2}O{sub 3}·(30 − x)Li{sub 2}O·70B{sub 2}O{sub 3} (x = 0, 2, 5, 7 and 10 mol%) were prepared via melt-quenching technique and their physical, thermal and dielectric properties are discussed. XRD was carried out to confirm the amorphous nature of prepared glasses. Density (ρ) and molar volume (V{sub m}) were found to increase with increase in Fe{sub 2}O{sub 3} content. Infrared absorption spectra depicted that Fe{sub 2}O{sub 3} is acting as a network modifier. DTA has been carried out to determine glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). Electrical properties have been studied using impedance spectroscopy and dc conductivity. The dc conductivity decreases and activation energy increases on replacing Li{sup +} ions with Fe{sup 3+}. The impedance measurements reveal that the total conductivity obeys Jonscher’s power law. Study of the equivalent circuit analysis up to a temperature of 523 K shows a significant change in the equivalent circuitry with change in temperature and composition.

  5. Radioluminescence properties of Sm-doped fluorochlorozirconate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Okada, Go; Edgar, Andy; Kasap, Safa; Yanagida, Takayuki

    2016-02-01

    We have investigated X-ray induced radioluminescence (XL) properties of Sm-doped fluorochlorozirconate (FCZ) glasses and glass-ceramics. The FCZ glass is a modified ZBLAN glass which shows a very high optical transmission over a wide spectral range. The glass matrix includes Sm3+-doped nanocrystals of BaCl2 after heat-treatment at temperatures above 250 °C. The glass-ceramic emits red light under UV and X-ray exposure. Since conventional Si-based photodetectors, e.g., CCDs, have the highest quantum efficiency to red light in general, the Sm-doped FCZ glass-ceramic plate can be a good candidate as a scintillator material for indirect radiation detection. Moreover, a very broad emission is present in the glass-ceramic around 300-500 nm, which is attributed to a self-trapped exciton (STE) emissions. The temperature dependence of X-ray induced luminescence and photoluminescence are very similar. The XL light yield is linearly proportional to the X-ray exposure rate for rates higher than 20 mR/s. For low exposure rates, emissions by Sm2+ are more sensitive than others, leading to a nonlinear response.

  6. The effect of CuO and MgO impurities on the optical properties of lithium potassium borate glass

    NASA Astrophysics Data System (ADS)

    Mustafa Alajerami, Yasser Saleh; Hashim, Suhairul; Saridan Wan Hassan, Wan Muhamad; Ramli, Ahmad Termizi

    2012-07-01

    Previous study proved the efficiency of copper as one of the most luminescent activators. In this work, Li2CO3-K2CO3-H3BO3 (LKB) glasses co-doped with copper oxide (CuO) and magnesium oxide (MgO) have been prepared by chemical quenching technique. Two techniques have been applied to investigate the effect of co-dopants on the physical and optical properties of the new glass network. The X-ray Diffraction (XRD) results showed the amorphous nature of the sample. Fourier transform infrared (FTIR) spectra, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance have been analyzed in the light of the different oxidation states of co-doped ions in the glass matrix. The exchange in the concentration of magnesium and copper ions illustrated the great effect of magnesium as a co-dopant on the Photoluminescence (PL) emission of LKB doped with copper oxide. Due to the change in the copper concentration, a broad green emission with intensity of around 300 (a.u) has been observed. Enhancement of about three times has been shown with the increment of 0.1 mol% of CuO and MgO as a co-dopant technique. It is well known that magnesium oxide alone does not show strong-luminescence, but during this increment, MgO acted as activator (co-dopant) for Cu ions. This enhancement may contribute to the energy transfer from Mg2+ ions to monovalent Cu+ ion. The current results are discussed and compared with other related studies.

  7. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    SciTech Connect

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curely, J.; Kliava, J.

    2012-10-15

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe{sup 3+} ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by 'direct' techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization

  8. Compact, highly efficient ytterbium doped bismuthate glass waveguide laser.

    PubMed

    Mary, R; Beecher, S J; Brown, G; Thomson, R R; Jaque, D; Ohara, S; Kar, A K

    2012-05-15

    Laser slope efficiencies close to the quantum defect limit and in excess of 78% have been obtained from an ultrafast laser inscribed buried channel waveguide fabricated in a ytterbium-doped bismuthate glass. The simultaneous achievement of low propagation losses and preservation of the fluorescence properties of ytterbium ions is the basis of the outstanding laser performance.

  9. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S.; Agarwal, Ashish; Chand, Prem

    2016-03-01

    Glasses having composition 7NiO • 23Li2O • 20Bi2O3 • 50B2O3, 7V2O5 • 23Li2O • 20Bi2O3 • 50B2O3 and x(2NiO • V2O5) • (30 - x)Li2O • 50B2O3 • 20Bi2O3 (with x = 0, 2, 5, 7 & 10 mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO • V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V4 + ion exists as vanadyl ion in the octahedral coordination with tetragonal compression.

  10. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    SciTech Connect

    Borodi, G.; Pascuta, P.; Dan, V.; Pop, V.; Stefan, R.; Radulescu, D.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and the quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.

  11. Effect of cement kiln dust and gamma irradiation on the ultrasonic parameters of HMO borate glasses

    NASA Astrophysics Data System (ADS)

    Abd elfadeel, G.; Saddeek, Yasser B.; Mohamed, Gehan Y.; Mostafa, A. M. A.; Shokry Hassan, H.

    2017-03-01

    Glass samples with the chemical formula x CKD-(100 - x) (5Na2O-65 B2O3-9 Bi2O3-21PbO), (0 ⩽ x ⩽ 32 mol%) were prepared. The density and the ultrasonic estimations of the investigated glasses were analyzed at room temperature before and after the impact of two dosages of gamma irradiation to study the effect of both CKD and gamma radiation. It was found that the density, and the ultrasonic parameters are sensitive to the variety of the content of CKD and the effect of γ-radiation. Replacement of oxides with higher atomic weights such as Bi2O3 and PbO by CKD decreases the density. Analysis of the behavior of the ultrasonic parameters demonstrates that creation of CaO6 and SiO4 on one hand and an alternate transformation between BO4 and BO3 structural units, on the other hand, affect the increase of the ultrasonic velocities and the elastic moduli. Moreover, the density and the ultrasonic parameters decrease somewhat with the increase of the doses of γ-irradiation. The variations of the previous physical parameters can be referred to the creation of radiation imperfections, which occupied the voids inside the glass structure.

  12. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature.

    PubMed

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi(2)O(3) into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi(3+) is formed. By comparing with atomic spectral data, absorption bands at ∼320 , ∼500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi(0) transitions [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], respectively, and broadband NIR emission is assigned to the transition [Formula: see text].

  13. Spectroscopic properties of Eu-doped antimony-germanate glass and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Ragin, T.; Dorosz, D.; ZajÄ c, A.

    2016-09-01

    In our work we focused on possibility of obtaining phosphate nano-phase structures in antimony-germanate glasses doped with europium ions. The glasses with molar composition of 50(Sb2O3 - GeO2) - 50(SiO2 - Al2O3 - Na2O) doped with 0.5mol% Eu2O3 were prepared by standard melt-quenching method. In order to optimize glass-ceramic system the influence of phosphate concentration (up to 10mol%) on spectroscopic properties have been investigated. The symmetry nature of molecular structure around europium ions have been determined from the intensity ratio between (5D0 →7F2)/(5D0 →7F1) transitions. The effect of prominent Stark splitting of luminescence band at 612 nm characterised as "hypersensitive transition" into 3 sub-wavelength was observed in glasses with 1mol% and 3mol% of P2O5.

  14. Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy

    SciTech Connect

    Kordas, George; Goldfarb, Daniella

    2008-10-21

    (100-x) mol % B{sub 2}O{sub 3} x mol %Me{sub 2}O (Me=Li,Na,K) glasses, exposed to {gamma}-{sup 60}Co irradiation to produce paramagnetic states, were characterized by W-band (95 GHz) pulse electron-nuclear double resonance (ENDOR) spectroscopy in order to characterize local structures occurring in the range of compositions between x=16 and x=25 at which the 'boron oxide' anomaly occurs. The high resolution of nuclear frequencies allowed resolving the {sup 7}Li and {sup 11}B ENDOR lines. In the samples with x=16 and x=20 glasses, {sup 11}B hyperfine couplings of 16, 24, and 36 MHz were observed and attributed to the tetraborate, triborate, and boron oxygen hole center (BOHC) structures, respectively. The x=25 samples showed hyperfine couplings of 15 MHz for the tetraborate and 36 MHz for BOHC. Density functional theory (DFT) calculations predicted for these structures negative hyperfine couplings, which were confirmed by W-band ENDOR. This suggests that a spin polarization mechanism accounts for the negative hyperfine structure splitting.

  15. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses.

    PubMed

    SivaRamaiah, G; LakshmanaRao, J

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges.

  16. Study of lithium borate glasses containing Bi{sub 2}O{sub 3}

    SciTech Connect

    Deshpande, A. V.; Raut, V. D.

    2014-04-24

    The effect of Bi{sub 2}O{sub 3} addition on the properties of 30Li{sub 2}O:(70−x)B{sub 2}O{sub 3}:xBi{sub 2}O{sub 3} (0≤x≤35 mol %) has been studied. Density and molar volume are increasing with Bi{sub 2}O{sub 3} content. The observed decrease in glass transition temperature and optical band gap has been explained on the basis of increase in non bridging oxygen which is supported by infrared spectroscopy. From the optical transmittance spectra it is observed that the cut off wavelength increases with Bi{sub 2}O{sub 3} content which is related to the structural changes.

  17. AC Conductivity Studies in Lithium-Borate Glass Containing Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y.; Anavekar, R. V.

    2011-07-01

    Gold nanoparticles have been synthesized in a base glass with composition 30Li2O-70B2O3 using gold chloride (HAuCl4.3H2O) as a dopant. The samples are characterized using XRD, ESR, SEM and optical absorption in the visible range. AC conductivity studies have been performed at RT over a frequency range 100 to 10 MHz. The dc conductivity is calculated from the complex impedence plot. The dc conductivity is found to be increasing with the increase of dopant concentration. AC conductivity data is fitted with Almond-West law with power exponent `s'. The values of `s' is found to lie in the range of 0.70-0.73.

  18. Evaluation of the proliferation and differentiation behaviors of mesenchymal stem cells with partially converted borate glass containing different amounts of strontium in vitro.

    PubMed

    Zhu, Yi; Ouyang, Yuanming; Chang, Yi; Luo, Congfeng; Xu, Jun; Zhang, Changqing; Huang, Wenhai

    2013-04-01

    The objective of this study was to examine the proliferation and differentiation behaviors of different compositions of strontium-containing (from 0-12 mol%) borate glasses with mesenchymal stem cells (MSCs). The Cell Counting Kit-8 (CCK-8) assay revealed that after three days of culturing, the 6Sr group had the highest cell growth rate. Analysis of cell morphology revealed that cells proliferated well near the particles of the samples in all the groups on day 3. On day 7, cells in the 6Sr group demonstrated a higher proliferation rate than other 4 groups under the microscope. When performing the Live-Dead staining experiment, the 6Sr group had the least number of dead cells. Total DNA qualification indicated that the 6Sr group had a statistically higher concentration compared with the remaining groups. It was found that on day 7, compared with the 0Sr group, the core binding factor α1 (Cbfa1) mRNA expression level was significantly higher in the 6Sr, 9Sr and 12Sr groups. On day 14, compared with the 0Sr group, the bone sialoprotein (BSP) mRNA level was significantly higher in the 6Sr group. Additionally, on day 21, the 6Sr and 9Sr groups demonstrated higher osteocalcin (OCN) mRNA expression levels compared with the 0Sr group. In the alkaline phosphatase (ALP) activity test, on day 21, the 6Sr group presented a higher activity than the 0Sr group. Further, the number of mineralized nodules per unit in MSCs was measured by Alizarin Red S staining. The results showed that the 6Sr and 9Sr groups had the greatest number of mineralized nodules. Therefore, it could be concluded that borate glasses containing strontium oxide of 0, 3, 6, 9 and 12 mol% demonstrate a significant level of proliferation when interacting with MSCs. The borate glass containing 6 mol% strontium oxide had the greatest level of proliferation when cultured with MSCs. The borate glass containing 6 and 9 mol% strontium oxide facilitated an improved bone formation ability compared with the remaining

  19. Temperature dependent electrical transport characteristics of BaTiO{sub 3} modified lithium borate glasses

    SciTech Connect

    Thakur, Vanita; Singh, Anupinder; Singh, Lakhwant; Awasthi, A. M.

    2015-08-15

    The glass samples with composition (70B{sub 2}O{sub 3}-29Li{sub 2}O-1Dy{sub 2}O{sub 3})-xBT; x = 0, 10 and 20 weight percent, have been prepared by conventional melt quench technique. The dielectric measurements as a function of temperature have been carried out on these samples in the frequency range 1 Hz-10 MHz. The dielectric relaxation characteristics of these samples have been studied by analyzing dielectric spectroscopy, dielectric loss, electric modulus formulation and electrical conductivity spectroscopy. It is found that the dielectric permittivity of the samples increases with an increase in the temperature and BT content. The frequency dependent ac conductivity has been analyzed using Jonscher’s universal power law whereas non exponential KWW function has been invoked to fit the experimental data of the imaginary part of the electric modulus. The values of the activation energy determined from the electric modulus and that from dc conductivity have been found to be quite close to each other suggesting that the same type of charge barriers are involved in the relaxation and the conduction mechanisms. The stretched exponent (β) and the power exponent (n) have been found to be temperature and composition dependent. The decrease in n with an increase in temperature further suggested that the ac conduction mechanism of the studied samples follows the correlated barrier hopping (CBH) model.

  20. Silver doped nanobioactive glass particles for bone implant applications

    SciTech Connect

    Prabhu, M.; Kavitha, K.; Karunakaran, G.; Manivasakan, P.; Rajendran, V.

    2013-02-05

    Silica based silver doped nanobioactive glass compositions (58SiO{sub 2}-33CaO-9P{sub 2}O{sub 5} and 58SiO{sub 2}-23CaO-9P{sub 2}O{sub 5}-10Ag{sub 2}O(mol%)) were synthesized by a simple sol-gel route. The prepared samples were comprehensively characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopic studies. The results reveal that the prepared samples have amorphous phase with spherical morphology and having a particle size less than 100 nm. The specific surface areas were 90 and 61 m{sup 2}g{sup -1} respectively. The in vitro bioactivity of glass samples were confirmed by the formation of hydroxyapatite layer on glass surfaces. The Ag{sub 2}O-doped nanobioactive glasse samples shows reveal significant antibacterial activity compare with base glasses.

  1. Optical properties of Er3+ ions doped in oxyfluoroborate glass.

    PubMed

    Kumar, Akshaya; Rai, D K; Rai, S B

    2002-12-01

    In this paper the Stark components of 4S(3/2), 2H(11/2) and 4I(15/2) levels of Er3+ ion doped in oxyfluoroborate glass have been resolved using laser excitation and fluorescence measurements. The lifetime of 4S(3/2) level as a function of Er3+ concentration in the glass host has also been measured. Concentration quenching due to interaction among rare earth ions and the mechanism responsible for the same has been elucidated. The Judd-Ofelt analysis of the absorption spectrum has also been carried out.

  2. Spectral investigations on Dy{sup 3+}-doped transparent oxyfluoride glasses and nanocrystalline glass ceramics

    SciTech Connect

    Babu, P.; Jang, Kyoung Hyuk; Kim, Eun Sik; Shi, Liang; Seo, Hyo Jin; Rivera-Lopez, F.; Rodriguez-Mendoza, U. R.; Lavin, V.; Vijaya, R.; Jayasankar, C. K.; Rama Moorthy, L.

    2009-01-01

    Dysprosium-doped oxyfluoride glasses and nanocrystalline glass ceramics have been synthesized and studied by x-ray diffraction, absorption, and visible and near-infrared emission spectra. The samples emit intense white light when populating the {sup 4}F{sub 9/2} level with a 451 nm laser light and, from the visible emission spectra, yellow to blue intensity ratios and chromaticity color coordinates have been calculated and their relative variation have been discussed based on the concentration of Dy{sup 3+} ions and the heat treatment conditions used to prepare the glass ceramics. Infrared emission has also been observed in glasses and glass ceramics after laser excitation at 800 nm, showing bands at 1.33 and 1.67 {mu}m, useful for optical amplification in fiber amplifiers.

  3. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid.

    PubMed

    Liu, Xin; Rahaman, Mohamed N; Day, Delbert E

    2013-03-01

    Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2-5 μm) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7-14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds.

  4. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Bonewald, Lynda F; Kuroki, Keiichi; Brown, Roger F

    2010-10-01

    In Part I, the in vitro degradation of bioactivAR52115e glass scaffolds with a microstructure similar to that of human trabecular bone, but with three different compositions, was investigated as a function of immersion time in a simulated body fluid. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. This work is an extension of Part I, to investigate the effect of the glass composition on the in vitro response of osteogenic MLO-A5 cells to these scaffolds, and on the ability of the scaffolds to support tissue infiltration in a rat subcutaneous implantation model. The results of assays for cell viability and alkaline phosphatase activity showed that the slower degrading silicate 13-93 and borosilicate 13-93B1 scaffolds were far better than the borate 13-93B3 scaffolds in supporting cell proliferation and function. However, all three groups of scaffolds showed the ability to support tissue infiltration in vivo after implantation for 6 weeks. The results indicate that the required bioactivity and degradation rate may be achieved by substituting an appropriate amount of SiO2 in 13-93 glass with B2O3, and that these trabecular glass scaffolds could serve as substrates for the repair and regeneration of contained bone defects.

  5. Er 3+-doped tellurite glass waveguides produced by fiber on glass (FOG) method

    NASA Astrophysics Data System (ADS)

    Rivera, V. A. G.; Rodriguez, E.; Chillcce, E. F.; Mazali, I. O.; Cesar, C. L.; Barbosa, L. C.

    2006-02-01

    In this work we used a Thermal Mechanic Analysis equipment to produce the channel FOG waveguides by pressing an Er 3+ doped tellurite glass optical fiber against one Er 3+ ion doped tellurite glass substrate kept under T c +/- 30 °C (T c = soft point). The luminescence and waveguide refractive index were measured. Scanning electron microscopy was used to observe the obtained structure. The objective is to produce a new concept in components of integrated optical circuits. Then this work report the production of Er 3+-doped tellurite glass channel waveguides using the novel concept of Benson et al [1] of fiber on glass (FOG). To succeed with this technique it is important to correlate the main thermo-physical characteristics of the substrate and the fiber, which are the transition temperature T g, the temperature of the onset of crystallization T x, the maximum crystallization temperature T c and the thermal expansion coefficient. The T g, T x and T c values were determined by Differential Thermal Analysis (DTA), while the thermal expansion coefficient was determined by Thermal Mechanical Analysis (TMA). For the FOG purpose the thermal stability range, T x - T g, is an important temperature region which defines if the glass will have enough viscosity to shape in the FOG concept.

  6. Super-Resolution Effect of Semiconductor-Doped Glass

    NASA Astrophysics Data System (ADS)

    Nagase, Toshihiko; Ashida, Sumio; KatsutaroIchihara, KatsutaroIchihara

    1999-03-01

    Semiconductor-doped glass is proposed as a super-resolution layer for future ultra-high-density optical disc systems. It was confirmed that this material system showed very fast response and large transmittance change by laser-beam irradiation when CdSSe-doped glass was used. The rise time of the transmittance change was less than 10 ns and the transmittance change reached 30%. These optical responses were obtained at a power density of the pumped laser beam of 1 MW/cm2. This power density corresponds to the readout power in digital versatile disk-read onlymemory (DVD-ROM) and digital versatile disk-random access memory (DVD-RAM) discs. This material system is regarded as a potential candidate for a super-resolution readout layer that is applicable to both ROM and RAM discs.

  7. Preparation of antibacterial silver-doped silica glass microspheres.

    PubMed

    Kawashita, Masakazu; Toda, Shogo; Kim, Hyun-Min; Kokubo, Tadashi; Masuda, Noriaki

    2003-08-01

    Various types of inorganic substances doped with silver ions have been developed as antibacterial materials, and some have already been commercialized. Colorless and chemically durable materials that slowly release silver ions are, however, still need to be developed. The present authors have previously shown that when a silica glass doped with silver and aluminium ions is prepared using the sol-gel method, the resultant product is colorless, chemically durable, and slowly releases silver ions into water over a long period. The doped silica glass takes a form of microspheres <1 microm in diameter, it is easily mixed with organic polymers, and the mixture can be formed into a thin film or fine fibers, etc. We report on the preparation of silver doped silica glass microspheres having a diameter =1 microm, using the sol-gel method. Initially, tetraethoxysilane was partially prehydrolyzed by water in ethanol, and then aluminium triisopropoxide was added to the solution to form Si-O-Al bonds. Finally, an ammonia solution containing silver nitrate was added to form silica microspheres doped with silver ion together with aluminium ions. The results show monodispersed microspheres 0.4-0.6 microm in diameter were obtained with nominal compositions of Si/Al/Ag = 1/0.01-0.03/0.003-0.03, with a molar ratio of Al/Ag = 1-3.3. The microspheres were colorless, showed a high chemical durability, and slowly released silver ions into water at 37 degrees C. Microspheres with the composition Si/Al/Ag = 1/0.01/0.01 showed excellent antibacterial activity against Escherichia coli. The minimum inhibitory concentration (MIC) of the microspheres was 400, which is less than the MIC value (800) of commercial antibacterial materials.

  8. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  9. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    NASA Astrophysics Data System (ADS)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar

    2009-07-01

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi2O3 into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi3+ is formed. By comparing with atomic spectral data, absorption bands at ~320 , ~500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi0 transitions {}^{4}\\mathrm {S_{3/2}} \\to {}^{2}\\mathrm {P_{3/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {P_{1/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{5/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2}}(2) and {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2 }}(1) , respectively, and broadband NIR emission is assigned to the transition {}^{2}\\mathrm {D_{3/2}(1)}\\to {}^{4}\\mathrm {S_{3/2}} .

  10. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding.

    PubMed

    Dong, Liang; McKay, Hugh A; Fu, Libin; Ohta, Michiharu; Marcinkevicius, Andrius; Suzuki, Shigeru; Fermann, Martin E

    2009-05-25

    All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension. In this work, we demonstrate, for the first time, ytterbium-doped double clad all glass leakage channel fibers with highly fluorine-doped silica as pump cladding. The new all glass leakage channel fibers have no polymer in the pump path and have independent control of fiber outer diameters and pump cladding dimension, and, therefore, enable designs with smaller pump guide for high pump absorption and, at the same time, with large fiber diameters to minimize micro and macro bending effects, a much desired features for large core fibers where intermodal coupling can be an issue due to a much increased mode density. An ytterbium-doped double clad PM fiber with core diameter of 80 microm is also reported, which can be coiled in 76 cm diameter coils.

  11. Spectroscopic properties of Er3+-doped fluorotellurite glasses

    NASA Astrophysics Data System (ADS)

    Miguel, A.; Al-Saleh, M.; Azkargorta, J.; Morea, R.; Gonzalo, J.; Arriandiaga, M. A.; Fernandez, J.; Balda, R.

    2013-09-01

    In this work we report the spectroscopic properties of Er3+-doped fluorotellurite glasses in the 46.6TeO2-18.2ZnO-35.2ZnF2 system for different ErF3 concentrations between 0.5 and 3 wt%. Absorption and emission spectra and lifetimes have been measured in the visible and near infrared regions. Judd-Ofelt analysis has been performed to estimate the radiative transition probabilities. The high content of ZnF2 in this glass decreases the covalency degree in rare-earth site and results in a lower value of Ω2 if compared with zinc tellurite glasses. The infrared emissions at 1532 nm are broader by nearly 30 nm in these glasses if compared to silica glass. This broad emission together with the high values of the stimulated emission cross-section and lifetime of level 4I13/2 make these glasses attractive for broadband amplifiers. The decays from level 4I13/2 are single exponentials for all concentrations which indicates a fast energy diffusion between Er3+ ions. Similar values for the critical radius and energy transfer microparameter are obtained for the different concentrations, which supports the dipole-dipole transfer hypothesis.

  12. Effect of glass structure on spin Hamiltonian parameters: Cu doped tellurite glasses

    SciTech Connect

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K.

    2015-06-24

    Cu-doped glasses with compositions [(70TeO{sub 2}−(30−x)ZnO−xPbO){sub 0.98}− (CuO){sub 0.02}] (x = 5, 10, 15, 20) were prepared using the melt quenching technique and characterized by EPR. Cu{sup 2+} ions are found to be in distorted oxygen octahedral cage and their corresponding spin Hamiltonian (splitting) parameters are deduced for all glasses as a function of increasing PbO. Finally, effect of the matrix on spin Hamiltonian parameters of Cu{sup 2+} ions are correlated with the help of EPR and earlier Raman analysis.

  13. Lead-salt quantum dot doped glasses for photonics

    NASA Astrophysics Data System (ADS)

    Auxier, Jason Michael

    In this dissertation, I present photonics applications of PbS quantum-dot-doped (QD-doped) glasses. The dissertation consists of two major parts: bulk material applications (Cr:forsterite laser modelocking, bleaching dynamics, optical gain, and photo-luminescence) and the fabrication of QD-doped ion-exchanged waveguides. When this work began, these PbS QD-doped glasses were the state-of-the-art in quantum dot glasses due to their narrow size distribution. Modelocking of a Cr:forsterite laser using this glass as a saturable absorber had been demonstrated, with little understanding of the dynamics. This work began by studying the dynamics of the saturable absorber to explain the ps-pulse width. In the bulk measurements, I functioned as a secondary researcher. In the laser modelocking and bleaching measurements, my contribution was laser cavity alignment, sample preparation, collecting autocorrelation traces, and aiding in the setup and data collection for the bleaching measurements. On this work, I coauthored one refereed journal article in Applied Physics Letters [1] and one refereed conference paper [2], for which I am third and second author, respectively. For the gain measurements, I aided in the setup and data collection, whereas I setup and took most of the luminescence data. The gain measurements resulted in one second-author refereed journal article in Applied Physics Letters [3] and I presented the luminescence results at CLEO2000 [4]. I took the lead role in the waveguide fabrication and characterization and authored refereed journal articles in Applied Physics Letters [5], Journal of Applied Physics [6], and Journal of the Optical Society of America B [7]. I also presented an invited talk at Photonics West [8] and presented at CLEO200-1 [9]. Additionally, I have been a coauthor of presentations at the Nanotechnology Symposium (2006), American Ceramic Society [10], and Photonics Europe ( 2006) [11]. A book chapter in The Photonics Handbook, 2nd edition [12

  14. Spectroscopy of the Er-doped lithium tetraborate glasses

    NASA Astrophysics Data System (ADS)

    Padlyak, B. V.; Lisiecki, R.; Ryba-Romanowski, W.

    2016-04-01

    The electron paramagnetic resonance (EPR), optical absorption, and luminescence (emission and excitation) spectra as well as luminescence kinetics of the Er-doped glasses with Li2B4O7 composition were investigated and analysed. The high optical quality glasses with Li2B4O7:Er composition containing 0.5 and 1.0 mol.% Er2O3 were obtained from corresponding polycrystalline compound by standard glass synthesis. The EPR spectroscopy in the 4.2-300 K temperature range and optical spectroscopy at 300 K show that the Er impurity is incorporated into the network of Li2B4O7 glass as Er3+ (4f11, 4I15/2) ions, exclusively. The local structure of the Er3+ luminescence centres in Li sites of the glass network is proposed. Based on the standard Judd-Ofelt theory the oscillator strength (Pcal) and experimental oscillator strength (Pexp) for observed absorption transitions as well as phenomenological intensity parameters (Ω2, Ω4, Ω6) for Er3+ centres in the Li2B4O7:Er glass containing 1.0 mol.% Er2O3 were calculated. Spectroscopic parameters of relevance for laser applications, including emission probabilities of transitions (Wr), branching ratios (β), and radiative lifetime (τrad) have been calculated for main observed emission transitions of the Er3+ centres in Li2B4O7:Er glasses. Experimental and calculated lifetimes were compared and quantum efficiency (η) for green (4S3/2 → 4I15/2 transition) and infrared (4I13/2 → 4I15/2 transition) emission bands has been estimated.

  15. In vitro and in vivo dissolution behavior of a dysprosium lithium borate glass designed for the radiation synovectomy treatment of rheumatoid arthritis.

    PubMed

    Conzone, Samuel D; Brown, Roger F; Day, Delbert E; Ehrhardt, Gary J

    2002-05-01

    Dysprosium lithium borate (DyLB) glass microspheres were investigated for use in the radiation synovectomy treatment of rheumatoid arthritis. In vitro testing focused on weight loss and cation dissolution from glass microspheres immersed in simulated synovial fluid (SSF) at 37 degrees C for up to 64 days. In vivo testing was performed by injecting glass microspheres into the stifle joints of Sprague-Dawley rats and monitoring the biodegradability of the microspheres and the tissue response within the joints. The DyLB microspheres reacted nonuniformly in SSF with the majority of lithium and boron being dissolved, whereas nearly all of the dysprosium (>99.7%) remained in the reacted microspheres. Because the DyLB glasses released negligible amounts of dysprosium while reacting with SSF, they are considered safe for radiation synovectomy from the standpoint of unwanted radiation release from the joint capsule. Furthermore, the DyLB microspheres fragmented, degraded, and reacted with body fluids while in the joints of rats without histologic evidence of joint damage.

  16. Er-doped and Er, Yb co-doped oxyfluoride glasses and glass-ceramics, structural and optical properties

    NASA Astrophysics Data System (ADS)

    Lisiecki, Radosław; Augustyn, Elżbieta; Ryba-Romanowski, Witold; Żelechower, Michał

    2011-09-01

    The selected glasses and glass-ceramics pertinent to following chemical composition in mol%:48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-11%PbF 2-3%ErF 3 and 48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-10%PbF 2-1%ErF 3-3%YbF 3 have been manufactured from high purity components (Aldrich) at 1450 °C in normal atmosphere. Glass optical fibers were successfully drawn. Subsequently they were subject to the heat-treatment at 700 °C in various time periods. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. It has been observed that the controlled heat-treatment of oxyfluoride glass fibers results in the creation of Pb 5Al 3F 19, Er 4F 2O 11Si 3 and Er 3FO 10Si 3 crystalline phases. The identified phases were characterized by X-ray powder diffraction (XRD) and confirmed by selected area electron diffraction (SAED). The fibers consist of mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. Their morphology was investigated applying high-resolution transmission electron microscopy. Optical properties and excited state relaxation dynamics of optically active ions (Er 3+, Yb 3+) in glass and glass-ceramics have been studied. Based on absorption spectra the Judd-Ofelt analysis was carried out. The main attention was directed to NIR luminescence at. 1.6 μm related to 4I 13/2 → 4I 15/2 Er 3+ and less effective emission associated with 4I 11/2 → 4I 15/2 Er 3+ and 2F 5/2 → 2F 7/2 Yb 3+ transitions. The dissimilar spectroscopic properties have been revealed for glasses and glass-ceramic samples, respectively. The reduction of emission linewidth at 1.6 and 1.0 μm combined with substantial increase of 4I 13/2 lifetimes of erbium in glass-ceramics appear to be evidences that Er 3+ ions are accommodated in crystalline phases. The structural and optical characteristics of oxyfluoride glass

  17. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser systems

    NASA Astrophysics Data System (ADS)

    Campbell, Jack H.; McLean, M. J.; Hawley-Fedder, Ruth A.; Suratwala, Tayyab I.; Ficini-Dorn, G.; Trombert, Jean-Hugues

    1999-07-01

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1998.

  18. Nd-doped phosphate glass microstructured optical fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Luo, F. F.; Liu, X. F.; Dong, G. P.; Zhang, Q.; Lin, G.; Zhou, Q. L.; Qiu, J. R.; Hu, L. L.; Chen, D. P.

    2010-06-01

    We experimentally demonstrated a single-mode laser at 1056 nm with Nd-doped phosphate glass microstructured optical fiber (MOF), which was fabricated with conventional stack-and-draw method. The laser action was observed from a Fabry-Perot cavity formed by placing two dichroic mirrors of ˜100 and 85% reflectivity, to the two end facets of MOF. Pumped by CW laser diodes (LDs) at 808 nm, the MOF laser yielded a maximum output power of 8.5 mW and a slope efficiency of 2%.

  19. Energy upconversion in holmium doped lead-germano-tellurite glass

    SciTech Connect

    Kamma, Indumathi; Reddy, B. Rami

    2010-06-15

    Holmium doped lead-germano-tellurite glass was prepared by the melt quenching technique. The Judd-Ofelt intensity parameters were estimated as {Omega}{sub 2}=7.6x10{sup -20}, {Omega}{sub 4}=12.9x10{sup -20}, and {Omega}{sub 6}=2.5x10{sup -20} cm{sup 2}. Radiative transition probabilities and lifetimes were also determined for some of the levels. Room temperature upconversion emissions have been observed from Ho{sup 3+} at 497 nm under 532 nm laser excitation, and at 557 and 668 nm under 762 nm laser excitation. The upconversion emission mechanisms were found to be due to a step wise excitation process. Upconversion emission intensity enhanced in a heat treated glass.

  20. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3.

  1. Dual role of the six-coordinated molybdenum and lead ions in novel of photochromic properties of the molybdenum-lead-borate glasses.

    PubMed

    Rada, M; Maties, V; Culea, M; Rada, S; Culea, E

    2010-02-01

    Transparent glasses were prepared by conventional melting-quenching method in the xMoO(3).(100-x)[3B(2)O(3).PbO] system where 0borate network.

  2. Temperature measurements using a projection to latent structures of fluorescence spectra of potassium-aluminum borate glasses with copper-containing molecular clusters

    NASA Astrophysics Data System (ADS)

    Babkina, A. N.; Khodasevich, M. A.; Shirshnev, P. S.

    2017-02-01

    Luminescence spectra of a potassium-aluminum borate glass with copper-containing molecular clusters are presented in the temperature range of 295-624 K. Two methods of temperature measurement are compared with the aim of evaluating the possibility of their further application in optical temperature sensors: specifically, the classical method of measuring a temperature based on the spectral position of the fluorescence band peak and the measurement method based on projection to latent structures of fluorescence spectra in the visible range. It is shown that, concerning the accuracy of measuring a temperature, the fourdimensional space of latent structures is preferred for the case under consideration; it allows one to determine (using a training set of fluorescence spectra) a temperature with the relative error of no more than 1.2%.

  3. Structure and luminescence of Dy3+ doped CaO-B2O3-SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Hao, Yan; Cao, Ju

    2016-07-01

    The present work reports structure and luminescence of Dy3+ doped CaO-B2O3-SiO2 glasses prepared by melt quenching technique. The presence of various stretching and bending vibrations of different borate and silicate groups were identified from FTIR spectral measurements. The optical absorption and luminescence spectra were also measured, and their emission spectra exhibit two intense emission bands at around 485 nm (blue) and 577 nm (yellow) corresponds to 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions, respectively. The emission spectra were characterized through CIE 1931 color chromaticity diagram to explore its suitability for W-LED applications. Furthermore, the proper Y2O3 could change local structure of glass, which makes the UV absorption edge shift to longer wavelength, and it's easier to transfer energy from host to Dy3+ and then enhance the emission of Dy3+.

  4. Spectral investigations of Sm3+-doped niobium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Srihari, T.; Jayasankar, C. K.

    2017-04-01

    Phosphate glasses modified with niobium and doped with different concentrations of Sm3+ ions (P2O5+K2O + Al2O3+Nb2O5+Sm2O3) were prepared by conventional melt quenching technique. Structural and optical characterizations have been carried out through X-ray diffraction (XRD), absorption, excitation, emission and decay measurements. With the help of well known Judd-Ofelt theory (JO), various radiative properties such as radiative transition probabilities (AR), branching ratios (βR) and radiative lifetime (τR) for certain luminescent levels of Sm3+ ions have been determined. The emission spectra consists of four emission bands in the visible region that corresponds to the 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm3+ ions. The stimulated emission cross-section found to be higher for 4G5/2 → 6H7/2 (11.52 × 10-22 cm2) and 4G5/2 → 6H9/2 (13.75 × 10-22 cm2) transitions. Experimental lifetimes (τexp), quantum efficiencies (η), energy transfer parameter (Q) and donor-acceptor interaction parameter (CDA) for all these glasses were evaluated under the frame work of Inokuti-Hirayama model. From the analyzed spectroscopic properties, such as quantum efficiency (98%) and CIE chromaticity coordinates, it is suggested that the 1.0 mol % of Sm3+ ions doped glasses are most suitable for the development of gain media for visible orange-red lasers.

  5. Structure and dynamics of iron doped and undoped silicate glasses

    NASA Astrophysics Data System (ADS)

    Santos, Cristiane N.; Meneses, Domingos D. S.; Echegut, Patrick; Lecomte, Emmanuel

    2010-03-01

    The optical properties of common silicate glass compositions are well known at room temperature. However, their radiative properties and structural evolution of these glasses with temperature are still largely unexplored. In this work we have measured the emissivity of a set of iron doped and undoped silicate and borosilicate glasses over an unprecedented temperature (up to 1700 K) and spectral range (40 -- 20000 cm-1). This was achieved by means of a home-made apparatus composed of a CO2 laser as the heat source, a black-body reference and two spectrometers. The optical functions were assessed using a dielectric function model [1], and the structure and dynamics of the glassy network, as well the absorption of iron species in different redox states were evidenced. We believe that these new data will help to understand the heat transfer in molten silicates. [4pt] [1] D. D. S. Meneses, G. Gruener, M. Malki, and P. Echegut, J. Non-Cryst. Solids 351, 124 (2005)

  6. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    SciTech Connect

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.

    2014-05-21

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  7. Concentration dependent spectroscopic properties of Sm3+ doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Marimuthu, K.

    2015-07-01

    A new series of Sm3+ doped borophosphate glasses 50B2O3 + 20Li2CO3 + 10ZnO + 9SrCO3 + (11 - x)P2O5 + xSm2O3 (x = 0.1, 0.25, 0.5, 1 and 2 in wt%) have been prepared by following melt quenching technique. The structural and optical properties of the prepared glasses were characterized through XRD, FTIR, absorption, luminescence and decay spectral measurements. The XRD spectrum exhibit broad diffusion at lower angles which reveal the amorphous nature and the presence of various functional groups such as Psbnd Osbnd P bonds, Bsbnd O vibrations in BO3 units and Psbnd OH and Bsbnd OH bonds in the title glasses were confirmed through the FTIR spectra. The nature of the metal-ligand bonding and the electronic band structure has been investigated using the absorption spectra. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were evaluated from the JO theory using the refractive index and the experimental oscillator strength values. The emission spectra exhibit four emission bands in the visible region corresponding to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 transitions by monitoring an excitation wavelength at 403 nm. The emission spectra have been characterized through Commission International de I'Eclairage (CIE) 1931 chromaticity diagram to explore the dominant emission from the studied glasses. The radiative parameters such as transition probability (AR), branching ratios (βR) and stimulated emission cross-section ( σPE) were obtained for the emission transitions using JO parameters and the results were discussed and compared with the reported literature.

  8. The double role played by the Gd 2O 3 in the gadolinium-aluminum-borate-bismuthate quaternary glass forming tendency. GdBO 3 crystalline phase

    NASA Astrophysics Data System (ADS)

    Rada, S.; Culea, M.; Rada, M.; Pascuta, P.; Maties, V.; Culea, E.

    2009-11-01

    Glasses and glass-ceramics in the xGd 2O 3·(100 - x)[2Bi 2O 3·B 2O 3·Al 2O 3] system with x = 0, 1, 5, 10, 15, 20, 25, 30, 35, 50 mol% Gd 2O 3 have been prepared by the melt quenching method. The changes of the IR spectral features suggest that the formation of [BO 4] tetrahedra is reduced because the modified [BO 3] units containing one or more B-O-Gd bonds are unable to accept the fourth oxygen. Based on our results, we conclude that the accommodation of the networks with the excess of oxygen is possible by the deformation of Bi-O-Bi linkages, the participation of aluminum atoms as network formers and the intercalation of [BiO 6] and [AlO 4] entities in the [BO 4] chain network. When high Gd 2O 3 content is introduced, more [BO 3] structural units are coupled with gadolinium ions and the accumulation of oxygen can be supported by the formation of new [BO 3] -3 structural units as ortho-borate units. These yield the formation of GdBO 3 crystalline phase which has been confirmed by XRD investigations. Comparing the theoretical and experimental IR spectral characteristic features, we conclude that the prediction of the structural data is good.

  9. Fluoride-modified electrical properties of lead borate glasses and electrochemically induced crystallization in the glassy state

    SciTech Connect

    M'Peko, Jean-Claude; Souza, Jose E. de; Rojas, Seila S.; Hernandes, Antonio C.

    2008-02-15

    Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF{sub 2} glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of {beta}-PbF{sub 2} crystallites, with the indication of incorporating reduced lead ions (Pb{sup +}), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored.

  10. Synthesis and Structural Characterization of Niobium Doped Lead-Telluride Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Sathish, M.; Eraiah, B.

    2015-02-01

    The basic glasses with composition (70-x) TeO2-30PbO-xNb2O5 (where x=0.1 mol % and 0.2 mol %) were prepared by melt quenching method and heat treated at 280°C for 30 min. The samples becoming glass ceramics was confirmed by SEM. The XRD parameters such as crystallite size of these glass ceramics decreases as increase the impurity and is the order of 184-109A°. However, micro strain (ε) and dislocation density (δ) increases. Glass transition and thermal stability estimated from DSC measurements and it has been found that both increase with increasing of impurity. Infrared Absorption spectra were measured for TeO2 glass and glass ceramic doped with Nb2O5. The recorded bands attributed to the different modes of vibration and stretching of Te-O band. Optical Absorption spectra of TeO2-PbO- Nb2O5 system shows that the absorption edge has a tail extending towards the lower energies and shifts towards for higher energies for rare earths-doped glass-ceramics. The degree of the edge shift was found to depend on the structural rearrangement and the relative concentrations of the glass basic units. The general appearance of the absorption spectra of these rare earth doped TeO2 glasses are similar to the spectra observed for other glasses doped with the same kind of rare earth oxides.

  11. Laser properties of an improved average-power Nd-doped phosphate glass

    SciTech Connect

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-03-15

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young`s modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  12. Properties of a new average power Nd-doped phosphate laser glass

    SciTech Connect

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.; Wilke, G.D.; Hayden, J.S.

    1995-03-09

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  13. Luminescence efficiency growth in wide band gap semiconducting Bi2O3 doped Cd0.4Pb0.1B0.5 glasses and effect of γ-irradiation

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Ibrahim, S.; Hamdy, Y. M.

    2014-11-01

    Cadmium lead borate glasses together with other glasses containing different Bi2O3-doping concentrations (2.5, 5, 7.5, 10 mol%) were prepared by conventional melt annealing method. The density and molar volume values were calculated to obtain some insight on the packing density and arrangement in the network. Also their optical and structural properties have been characterized by means of X-ray diffraction, UV-visible spectroscopy, luminescence spectroscopy and FTIR spectroscopy. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). The results demonstrate the effective rule of Bi2O3 on the studied glasses. The undoped and Bi2O3 doped - glass show strong extended UV-near visible absorption bands which are attributed to the collective presence of both trace iron impurities from raw materials and also the sharing of bismuth Bi+3 ions. Furthermore, the luminescence intensity strongly increases with increasing Bi2O3 content which may be attributed to transfer of energy from transitions in its energy levels. It has been revealed that the decreasing values of optical band gap and band tail can be understood and related in terms of the structural changes that are taking place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate network (BO3, BO4 groups) together with vibrational modes due to Bi-O groups upon the introduction of Bi2O3. The prepared samples reveal a very limited response towards of gamma irradiation which reflects its shielding behavior towards the effect of such type of irradiation.

  14. Investigations on spectroscopic properties of Er3+-doped Li-Zn fluoroborate glass

    NASA Astrophysics Data System (ADS)

    Thomas, Sunil; Sajna, M. S.; George, Rani; Rasool, Sk. Nayab; Joseph, Cyriac; Unnikrishnan, N. V.

    2015-09-01

    Er3+-doped Li-Zn fluoroborate glass was synthesized via melt quenching technique. Optical properties of the glass were investigated by UV-Vis-NIR absorption and emission spectra. To evaluate the nature of Er3+-ligand bond in the glass network, nephelauxetic ratios and bonding parameter were calculated. Judd-Ofelt analysis and hence the radiative properties of the present glass system were evaluated for ascertaining the suitability of the glass for laser applications and compared those with the emission spectra. Absorption cross-sections have been calculated from the absorption spectrum and stimulated emission cross-sections were estimated using McCumber theory for 4I13/2 ↔ 4I15/2 transitions. The results of the present glass were compared with those obtained for some other Er3+-doped glass systems.

  15. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    SciTech Connect

    Egorova, O N; Semenov, S L; Vel'miskin, V V; Dianov, Evgenii M; Salganskii, M Yu; Yashkov, M V; Gur'yanov, Aleksei N

    2011-01-24

    A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)

  16. Visible emission in Sm3+ and Tb3+ doped phosphate glass excited by UV radiation

    NASA Astrophysics Data System (ADS)

    Zmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Czajkowski, Karol; Ragin, Tomasz

    2013-10-01

    In the article analysis of UV absorption and visible fluorescence of Sm3+ and Tb3+ ions doped phosphate glass with molar composition: 65P2O5 + 8Al2O3 + 10BaO + 17(Na2O + MgO + ZnO) have been investigated. As a result of optical pumping fabricated glass with radiation from a deuterium lamp four luminescence bands were observed near to the wavelength of 600 nm for Sm3+ ions and 550 nm for Tb3+ ions. It was found that larger energy gap between laser and ground levels leads to the strongest emission in the visible range in terbium doped glasses than in glasses doped with samarium ions. Both fabricated glasses are characterized by the ability to selectively detect the radiation in the UV range.

  17. Effect of 1 MeV electrons on ceria-doped solar cell cover glass

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.

    1973-01-01

    The effect of 1 MeV electrons on the transmission properties of 1.5-percent ceria-doped solar cell cover glass was studied. Samples of doped and undoped cover glass and synthetic fused silica were irradiated with a total integrated flux of 10 to the 15th power e/sq cm. Wideband transmission and spectral transmission measurements were made before and after irradiation. The results indicate that 1.5-percent ceria-doped cover glass is much less sensitive to radiation induced discoloration than undoped cover glass. Consequently, the glass is comparable to synthetic fused silica when used as a radiation resistant solar cell cover for many space missions.

  18. Study on the preparation and properties of silver-doped phosphate antibacterial glasses (Part I)

    NASA Astrophysics Data System (ADS)

    Ahmed, A. A.; Ali, A. A.; Mahmoud, Doaa A. R.; El-Fiqi, A. M.

    2011-05-01

    Silver-doped phosphate antibacterial glasses were prepared by the melting method. The antibacterial effects of some undoped and silver-doped glasses of compositions 65P 2O 5-10CaO-(25- x) Na 2O, 70P 2O 5-20CaO-(10- x) Na 2Oand (70- x) P 2O 5-30CaO, (where x = 0, 0.5, 1.2 Ag 2O), against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli micro-organisms using agar disk-diffusion assays were investigated. The structures of some glasses were studied by XRD, FT-IR, and UV-VIS spectroscopy. The variation of pH with dissolution rate was studied. The tested silver-free and silver-doped glasses demonstrated different antibacterial effects against the tested micro-organisms. For silver-free glasses, an increase in inhibition zone diameter (zone of no bacterial growth) was seen with the decrease in water pH. Silver-doped glasses showed an increase in inhibition zone diameter with increasing Ag 2O content. The low pH produced by glass dissolution was certainly a critical factor for glass antibacterial effect. The more the phosphate ions released the lower is the pH and the greater the antibacterial effect.

  19. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    SciTech Connect

    Sushama, D.

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  20. Thermal analysis and luminescence of phospho-tellurite glass doped with NdF3

    NASA Astrophysics Data System (ADS)

    Iwanowicz, Kamil; Dorosz, Dominik; Żmojda, Jacek; Kochanowicz, Marcin

    2015-09-01

    In the paper thermal and luminescence properties of phospho-tellurite glass and glass after thermal treatment doped with NdF3 were presented. The crystallization kinetic of the main crystallization peaks of glass was investigated using differential scanning calorimetry (DSC). The value of the activation energy for crystalline phase (Ec 54,21 +/- 5 kJ mol-1) was calculated using Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), Starink and Tang methods. The glass-ceramic was obtained by heat treatment method. The luminescence transitions from levels 4F5/2 --> 4I9/2 (878 nm), 4F3/2-->4I11/2 (1058 nm), and 4F3/2 --> 4I13/2 (1330 nm) in glass and glass-ceramic doped NdF3 were compered.

  1. Raman and Photoluminescence Spectroscopy of Er(3+) Doped Heavy Metal Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Dyer, Keith; Pan, Zheng-Da; Morgan, Steve

    1997-01-01

    The potential applications of rare-earth ion doped materials include fiber lasers which can be pumped conveniently by infrared semiconductor laser diodes. The host material systems most widely studied are fluoride crystals and glasses because fluorides have low nonradiative relaxation rates due to their lower phonon energies. However, the mechanical strength, chemical durability and temperature stability of the oxide glasses are generally much better than fluoride glasses. The objective of this research was to investigate the optical and spectroscopic properties of Er(3+)-doped lead-germanate and lead-tellurium-germanate glasses. The maximum vibrational energy of lead-tellurium-germanate glasses are in the range of 740-820/cm, intermediate between those of silicate (1150/cm) and fluoride (530/cm) glasses.

  2. Optical analysis of samarium doped sodium bismuth silicate glass

    NASA Astrophysics Data System (ADS)

    Thomas, V.; Sofin, R. G. S.; Allen, M.; Thomas, H.; Biju, P. R.; Jose, G.; Unnikrishnan, N. V.

    2017-01-01

    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV-Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices.

  3. Highly Efficient Optical Second Harmonic Generation in Poled Ti-Doped Silica Glasses

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhisa; Kashima, Kenichi; Hirao, Kazuyuki; Soga, Naohiro; Yamagata, Shigeru; Mito, Akihiro; Nasu, Hiroyuki

    1995-01-01

    Optical second harmonic intensity of poled Ti-doped silica glasses prepared by the Verneuil method has been measured. The second-order nonlinear coefficient, d33, of the glasses prepared from starting materials of TiO2 and SiO2 powders ranges from 0.2 to 0.5 pm/V. These values are one order of magnitude larger than that for silica glass without intentional dopants.

  4. Green-white-yellow tunable luminescence from doped transparent glass ceramics containing nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Yan, X. H.; Xuan, Y.; Zheng, J.; He, W. Y.

    2013-10-01

    , , and doped transparent ceramics containing nanocrystals were fabricated by a melt-quenching method and subsequent heating. Tetragonal phase spheres with 20 nm size are homogeneously precipitated among a borosilicate glass matrix. The photoluminescence spectrum of single doped transparent ceramics shows white light emission under 382 nm UV excitation. The emission color of co-doped transparent glass ceramics is tuned from green to white through energy transfer from to , and the emission color of co-doped transparent ceramics is tuned from white to yellow through energy transfer from to . CIE chromaticity and color temperature measurements show that the resulting transparent glass ceramics may be a candidate as a warm-white LED material pumped by a UV InGaN chip.

  5. Luminescence properties of Dy3+ doped lanthanum-calcium-silicaborate glass scintillator

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Ha, D. H.; Lee, S. W.; Chanthima, N.; Ruangtaweep, Y.; Kaewkhao, J.

    2016-09-01

    In this research Dy3+-doped lanthanum-calcium-silicaborate glass scintillators, with the formula 25La2O3: 10CaO: 10SiO2: (55-x)B2O3: xDy2O3, were fabricated by using the melt-quenching technique. For the Dy3+ doping concentrations from 0.05 mol% to 0.5 mol% studied the luminescence properties of the Dy3+-doped glass scintillators with various radiation sources, such as X-ray, photo-, laser, and proton. To understand the absorption state, we measured the transmittance spectrum. Furthermore, X-ray, photo- and proton-induced emission spectra were measured to study the transition states of Dy3+-doped glass scintillators. The laser-induced emission spectra were measured at low temperatures in the range from 10 K to 300 K.

  6. Fluorescence quantum yield of Yb3+-doped tellurite glasses determined by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Lima, S. M.; Souza, A. K. R.; Langaro, A. P.; Silva, J. R.; Costa, F. B.; Moraes, J. C. S.; Figueiredo, M. S.; Santos, F. A.; Baesso, M. L.; Nunes, L. A. O.; Andrade, L. H. C.

    2017-01-01

    In this work, the combination of three different thermal lens spectroscopic methodologies was used to better determine the fluorescence quantum yield and to observe the concentration quenching in Yb3+-doped binary tellurite glasses (in mol%, 80TeO2 - 20Li2O and 80TeO2 - 20WO3). The samples were synthesized by the conventional melt-quenching method and then studied using optical spectroscopy and thermal lens spectroscopy (TLS). These characterizations enabled investigation of the radiative and nonradiative processes involved in the ytterbium doped systems. High fluorescence quantum yield was obtained for low Yb3+ doping (>90%), and in both glasses the Yb3+ presented concentration quenching mainly caused by impurities, host-ion interaction and OH- vibrations. The observations suggested that there is a possibility of doping the glasses with higher Yb concentration (>1.6 × 1021 ions/cm3) with low reduction of the quantum yield.

  7. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium

    NASA Astrophysics Data System (ADS)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.

    2014-12-01

    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  8. Broadband emission from Ce3+/Mn2+/Yb3+ tri-doped oxyfluoride glasses for glass greenhouse

    NASA Astrophysics Data System (ADS)

    Wang, Weirong; Huang, Zhangyu; Gao, Huiping; Cheng, Xiuying; Mao, Yanli

    2016-12-01

    In this work, a kind of oxyfluoride glasses tri-doped with Ce3+/Mn2+/Yb3+ ions was prepared by a simple and fast high temperature melting method. Under excitation with 300 nm light, two meaningful broad band emissions (ranged from 340 to 500 nm and 510-700 nm) were obtained, which matched well with the absorption of the chlorophylls. Under near-infrared (980 nm) excitation, an abnormal up-conversion luminescence was demonstrated in the oxyfluoride glasses by the energy transfer from Yb3+ to Mn2+. In addition, the up-conversion emission has a red shift along with the increase of the doping concentration of Mn2+, which would contribute to match the action spectrum of photosynthesis better. Our materials will be favored to extend the utilization of solar energy in glass greenhouse for plant cultivation.

  9. X-ray absorption studies of gamma irradiated Nd doped phosphate glass

    SciTech Connect

    Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.

    2015-06-24

    This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of L{sub III} edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd{sup 3+} to Nd{sup 2+} in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd{sub 2}O{sub 3} suggests that coordination geometry around Nd{sup 3+} in glass samples may be identical to that of Nd{sub 2}O{sub 3}.

  10. Short vertical tube furnace for the fabrication of doped glass microsphere lasers.

    PubMed

    Ward, Jonathan M; Wu, Yuqiang; Khalfi, Krimo; Nic Chormaic, Síle

    2010-07-01

    We report on the design of an electric tube furnace that can be used for the fabrication of doped glass microsphere lasers. The tube furnace has a short hot zone of length 133 mm and is based on a quartz tube design. Doped laser glass particles, specifically Er:Yb phosphate glass (IOG-2), of approximately 1 microm diameter are blown into the furnace using a 60 ml syringe and microspheres ranging in size from 10 to 400 microm are collected at the output of the tube furnace in a Petri dish. The furnace operates at a wall temperature of approximately 900 degrees C and is capable of making microspheres from glasses with glass transition temperatures of at least 375 degrees C. High quality (Q approximately 10(5)) whispering gallery modes have been excited within the microspheres by optically pumping at 978 nm via a tapered optical fiber.

  11. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    PubMed

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  12. Fluorescence properties and electron paramagnetic resonance studies of γ-irradiated Sm3+-doped oxyfluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Babu, B. Hari; Ravi Kanth Kumar, V. V.

    2012-11-01

    The permanent photoinduced valence manipulation of samarium doped oxyfluoroborate glasses as a function of γ-ray irradiation has been investigated using a steady-state fluorescence and electron paramagnetic resonance techniques. An increase in SrF2 content in the glass led to the red shift of the peaks in as prepared glass, while in irradiated glasses this led to the decrease in defect formation as well as increase in photoreduction of Sm3+ to Sm2+ ion. The energy transfer mechanism of induced permanent photoreduction of Sm3+ to Sm2+ ions in oxyfluoroborate glasses has been discussed. The decay analysis shows exponential behavior before irradiation and non-exponential behavior after irradiation. The energy transfer in irradiated glasses increases with the increase in SrF2 content in the glass and also with the irradiation dose.

  13. Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters.

    PubMed

    Da, Ning; Peng, Mingying; Krolikowski, Sebastian; Wondraczek, Lothar

    2010-02-01

    We report on intense red fluorescence from Mn(2+)-doped sulfophosphate glasses and glass ceramics of the type ZnO-Na(2)O-SO(3)-P(2)O(5). As a hypothesis, controlled internal crystallization of as-melted glasses is achieved on the basis of thermally-induced bimodal separation of an SO(3)-rich phase. Crystal formation is then confined to the relict structure of phase separation. The whole synthesis procedure is performed in air at glasses, increasing MnO content results in decreasing network polymerization. Stable glasses and continuously increasing emission intensity are observed for relatively high dopant concentration of up to 3 mol.%. Recrystallization of the glass results in strongly increasing emission intensity. Dynamic emission spectroscopy reveals only on type of emission centers in the glassy material, whereas three different centers are observed in the glass ceramic. These are attributed to octahedrally coordinated Mn(2+) in the residual glass phase and in crystalline phosphate and sulfate lattices, respectively. Relatively low crystal field strength results in almost ideal red emission, peaking around 625 nm. Excitation bands lie in the blue-to-green spectral range and exhibit strong overlap. The optimum excitation range matches the emission properties of GaN- and InGaN-based light emitting devices.

  14. Crystallization behavior of a barium titanate tellurite glass doped with Eu3+ and Er3+

    NASA Astrophysics Data System (ADS)

    Ferreira, Elivelton Alves; Cassanjes, Fábia Castro; Poirier, Gael

    2013-04-01

    The main objective of this work has been to investigate the crystallization behavior of the glass composition 70TeO2-15BaO-15TiO2 doped with Eu3+ and Er3+ in order to check the possibility of obtaining transparent glass-ceramics containing rare earth-doped BaTiO3 nanocrystals. Glass samples with the ternary composition 70TeO2-15BaO-15TiO2 were synthesized by the melt-quenching method and doped with 0.1% of Eu3+ and Er3+. Thermal properties were investigated by DTA and heat-treatments were applied between Tg and Tx to induce the controlled crystallization of these glasses. One-step and two-step heat treatments were tested and the final glass-ceramics characterized by X-ray diffraction and UV-Vis absorption. It has been shown that transparent glass-ceramics can be obtained after heat-treatment but barium titanate BaTiO3 is hardly precipitated without coprecipitation of another crystalline phase identified as an isostructure of lanthanum tellurate. In addition, the crystalline volume fraction is relatively small in these transparent samples. Finally, Gold doping has been shown to be very effective to promote a volume nucleation and preferential crystallization of BaTiO3 over the other crystalline phases.

  15. Lead-gallium glasses and glass-ceramics doped with SiO2 for near infrared transmittance

    NASA Astrophysics Data System (ADS)

    Marczewska, Agnieszka; Środa, Marcin; Nocuń, Marek; Sulikowski, Bogdan

    2015-07-01

    Lead-gallium glasses, due to the absence of typical glass-forming components, are characterized by an increased tendency to crystallization. Despite this, they are interesting materials due to a shift of IR absorption edge up to 6-7 μm. The paper considers how the SiO2 dopant affects thermal stability and the UV-VIS and IR transmittance of lead-gallium glasses. The base lead-gallium glass (0.75PbO·0.25Ga2O3) was modified by the addition of 5, 10 and 15 mol% SiO2, respectively. DTA/DSC data showed that the glasses are characterized by the multi-stage crystallization, which is changed with the amount of silica doped. The XRD analysis confirmed that: (i) different forms of lead oxide crystallize after heat treatment of the glass, and (ii) the Ga2PbO4 phase is formed at higher temperatures. The silica admixture allowed inserting a few percent of BaF2 into the lead-gallium glass structure. It was found that a transparent glass-ceramic based on the lead-gallium glass with a low phonon barium fluoride phase can be obtained during the thermal treatment. The study of UV-VIS-IR transmittance shows that 10-15 mol% SiO2 in the lead-gallium glasses diminishes the absorption band in the range of 2.6-4 μm due to the presence of hydroxyl groups and simultaneously reduces transmittance in the range of 5-6.5 μm from 10 to 20%. Introduction of SiO2 to the glass results in the increase of transmittance in the shorter wavelength region and the UV-edge shift is observed. It was also confirmed that the BaF2 nanocrystallites exert no effect on the transmittance of the spectrum analyzed.

  16. Cu-doped photovoltaic glasses by ion exchange for sunlight down-shifting

    NASA Astrophysics Data System (ADS)

    Mardegan, M.; Cattaruzza, E.

    2016-11-01

    Ion exchange process is a widely studied synthesis technique for the controlled modification of silicate glass composition and properties, being moreover an easy and cheap approach. Silicate glasses containing copper are known to exhibit a broad luminescent band peaked around 500 nm, ascribed to 3d10-3d94s1 electronic transition of Cu+ ions; this band turns out to be much promising for the realization of down-shifting systems, being excited in the UV and near-UV region. Luminescent Cu-doped silicate glass sheets suitable as down-shifters to be used for covering solar cells have been prepared by thermal ion exchange. Synthesis of the Cu-doped glasses has been done by dipping pure silicate sheets (commercially used as cover of photovoltaic panels) into a fused copper salt mixture at temperature of 400 °C, for duration between a few minutes and some hours; two different types of copper chloride salt mixtures were explored, with the aim at obtaining luminescent glasses able to improve the Si cell yield. Absorption and luminescence glass features were collected and compared. The performance of the different samples was tested by a solar simulator, measuring the output power of a Si solar cell covered with the Cu-doped glass slides.

  17. Spectroscopic investigations on γ-irradiated Eu3+ and Dy3+ doped oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Sharma, G.; Bagga, R.; Cemmi, A.; Falconieri, M.; Baccaro, S.

    2015-03-01

    Changes in the UV-visible spectra of undoped and Dy/Eu singly doped oxyfluoride glasses with varying PbF2/CdF2 content were studied under high doses of gamma irradiation. The unirradiated undoped and doped glasses exhibited strong UV absorption and characteristic absorption bands due to the presence of rare earth ions. Gamma irradiation caused loss of transmission and red shift in the cut-off wavelength for the undoped and doped samples. The radiation induced absorption coefficient and energy band gap depicted variation due to the nature of rare earth as well as the host matrix. The rare earth addition affected the physical properties (density, refractive index, molar volume) and the structure of the studied glasses revealed by Fourier Transform Infrared Spectroscopy.

  18. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    NASA Astrophysics Data System (ADS)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  19. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    PaBlick, C.; Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.; Johnson, J.A.; Schweizer, S.

    2012-10-10

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl2) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu3+ is more strongly reduced to Eu2+, in particular, when doped as a chloride instead of fluoride compound. The Eu2+-to-Eu3+ doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu2+ fraction leads to a BaCl2 phase transition from hexagonal to orthorhombic structure at a lower temperature.

  20. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    Passlick, C.; Mueller, O.; Luetzenkirchen-Hecht, D.; Frahm, R.; Johnson, J. A.; Schweizer, S.

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl{sub 2}) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu{sup 3+} is more strongly reduced to Eu{sup 2+}, in particular, when doped as a chloride instead of fluoride compound. The Eu{sup 2+}-to-Eu{sup 3+} doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu{sup 2+} fraction leads to a BaCl{sub 2} phase transition from hexagonal to orthorhombic structure at a lower temperature.

  1. Thermal stability and spectroscopic properties of Er 3+-doped antimony-borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Qian, Q.; Zhao, C.; Yang, G. F.; Yang, Z. M.; Zhang, Q. Y.; Jiang, Z. H.

    2008-11-01

    This paper reports on the optical spectroscopic properties and thermal stability of Er 3+-doped antimony-borosilicate glasses for developing 1.5 μm optical amplifiers. Upon excitation at 980 nm laser diode, an intense 1.5 μm infrared fluorescence has been observed with the maximum full width at half maximum (FWHM) of 90 nm for Er 3+-doped antimony-borosilicate glasses. The emission cross-section and the lifetime of the 4I13/2 level of Er 3+ ions are 6.3 × 10 -21 cm 2 and 0.30 ms, respectively. It is noted that the product of the emission cross-section and FWHM of the glass studied is as great as 567 × 10 -21 cm 2 nm, which is comparable or higher than that of bismuthate and tellurite glasses.

  2. Structure and spectroscopic properties of Er3+ doped germanate glass for mid-infrared application

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Chen, Fangze; Jing, Xufeng; Wang, Fengchao; Tian, Ying; Xu, Shiqing

    2014-05-01

    Intense 2.7 μm emission derived from modified Er3+ doped germanate glass was reported. Raman spectrum analysis was carried out to grasp glass structure. Based on the absorption spectrum, the Judd-Ofelt parameters and radiative properties were calculated originated from Judd-Ofelt theory. 2.7 μm emission characteristics, stark splitting features and energy transfer processes upon excitation of a conventional 808 nm or 980 nm laser diode were carefully investigated. The prepared glass possesses high spontaneous transition probability (34.28 s-1), large calculated emission cross section (13 × 10-21 cm2) and gain coefficient (5.4 cm-1) for the 4I11/2 → 4I13/2 transition. These results indicate that Er3+ doped germanate glass has potential applications in mid-infrared lasers and amplifiers.

  3. Structural origin and laser performance of thulium-doped germanate glasses.

    PubMed

    Xu, Rongrong; Xu, Lin; Hu, Lili; Zhang, Junjie

    2011-12-15

    The structural origin and laser performance of thulium-doped germanate glasses have been studied. The investigation includes two main sections. The first part discusses the Raman spectroscopic and thermal stability of the host glass structure. The low value of the largest phonon energy (850 cm(-1)) reduces the probability of nonradiative relaxation. The large emission cross section of the Tm(3+) : (3)F(4) level (8.69 × 10(-21) cm(2)), the high quantum efficiency of the (3)F(4) level (71%), and the low nonradiative relaxation rate of the (3)F(4) → (3)H(6) transition (0.09 ms(-1)) illustrate good optical properties of the germanate glass. In the second part, the room-temperature laser action from the thulium-doped germanate glass is demonstrated when pumped by a 790 nm laser diode. The maximum output power of 346 mW and slope efficiency of 25.6% are achieved.

  4. Laser irradiation in Nd{sup 3+} doped strontium barium niobate glass

    SciTech Connect

    Haro-Gonzalez, P.; Martin, I. R.; Arbelo-Jorge, E.; Gonzalez-Perez, S.; Caceres, J. M.; Nunez, P.

    2008-07-01

    A local nanocrystalline formation in a neodymium doped strontium barium niobate (SBN) glass has been obtained under argon laser irradiation. The intense emission around 880 nm, originated from the {sup 4}F{sub 3/2} ({sup 4}F{sub 5/2}) thermalized level when the glass structure changes to a glass ceramic structure due to the irradiation of the laser beam, has been studied. The intensities and lifetimes change from this level inside and outside the irradiated area made by the laser excitation. They have been analyzed and demonstrated that the desvitrification process has been successfully achieved. These results confirm that nanocrystals of SBN have been created by the laser action confirming that the transition from glass to glass ceramic has been completed. These results are in agreement with the emission properties of nanocrystals of the bulk glass ceramic sample. The present study also suggests that the SBN nanocrystal has a potential application as temperature detector.

  5. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    NASA Astrophysics Data System (ADS)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2) , (CoO) ,(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  6. Line patterning of (Sr,Ba)Nb{sub 2}O{sub 6} crystals in borate glasses by transition metal atom heat processing

    SciTech Connect

    Sato, M.; Honma, T.; Benino, Y.; Komatsu, T.

    2007-09-15

    Some NiO-doped Bi{sub 2}O{sub 3},La{sub 2}O{sub 3}-SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses giving the formation of strontium barium niobate Sr{sub 0.5}Ba{sub 0.5}Nb{sub 2}O{sub 6} (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 deg. C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 {mu}m/s in 2NiO-4La{sub 2}O{sub 3}-16SrO-16BaO-32Nb{sub 2}O{sub 5}-30B{sub 2}O{sub 3} glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass. - Graphical abstract: This figure shows the polarization optical (a) and confocal scanning laser (b) micrographs for the sample obtained by heat-assisted (300 deg. C) Nd:YAG laser irradiation with a laser power of P=1 W and laser scanning speed of S=1 {mu}m/s in Glass C. The figure demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.

  7. Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass.

    PubMed

    Fernandez, T Toney; Della Valle, G; Osellame, R; Jose, G; Chiodo, N; Jha, A; Laporta, P

    2008-09-15

    We report on fs-laser micromachining of active waveguides in a new erbium-doped phospho-tellurite glass by means of a compact cavity-dumped Yb-based writing system. The spectroscopic properties of the glass were investigated, and the fs-laser written waveguides were characterized in terms of passive as well as active performance. In particular, internal gain was demonstrated in the whole C+L band of optical communications (1530- 1610 nm).

  8. Synthesis and optical properties of CsC1-doped gallium-sodium-sulfide glasses

    SciTech Connect

    Hehlen, Markus P; Bennett, Bryan L; Williams, Darrick J; Muenchausen, Ross E; Castro, Alonso; Tornga, Stephanie C

    2009-01-01

    Ga{sub 2}S{sub 3}-Na{sub 2}S (GNS) glasses doped with CsCl were synthesized in open crucibles under inert atmosphere. The evaporative loss of CsCl during glass melting was measured by energy dispersive X-ray spectroscopy and corrected for by biasing the CsCl concentration in the mixture of starting materials to obtain glasses with accurately controlled stoichiometry. Glass transition temperatures, refractive index dispersions, and band edge energies were measured for four GNS:CsCl glasses, and the respective values were found to significantly improve over earlier studies that did not mitigate CsCl evaporative losses. The refractive index dispersion measurements indicate that the Cs{sup +} and Cl{sup -} radii are 16% larger in GNS:CsCl glass than in bulk crystalline CsCl. The band edge energy increases from 2.97 eV in GNS glass to 3.32 eV in GNS glass doped with 20 mol% CsCl as a result of introducing Cl{sup -} ions having a large optical electronegativity. The large bandgap of 3.32 eV and the low (450 cm{sup -1}) phonon energy make GNS:20%CsCl an attractive host material for rare-earth ions with radiative transitions in the near ultra-violet, visible, and near-infrared spectral regions.

  9. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    PubMed Central

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-01-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials. PMID:24852112

  10. Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses.

    PubMed

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-23

    Er3+-doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+:4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+-doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  11. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  12. EPR, optical absorption and photoluminescence properties of MnO 2 doped 23B 2O 3-5ZnO-72Bi 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Prakash Singh, Shiv; Chakradhar, R. P. S.; Rao, J. L.; Karmakar, Basudeb

    2010-05-01

    Electron paramagnetic resonance (EPR), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) spectroscopic measurements are performed on Mn 2+ doped high bismuth containing zinc-bismuth-borate glasses. TEM images reveal homogeneously dispersed Bi o nanoparticles (NPs) of spherical shape with size about 5 nm. EPR spectra exhibit predominant signals at g≈2.0 and 4.3 with a sextet hyperfine structure. The resonance signal at g≈2.0 is due to Mn 2+ ions in an environment close to octahedral symmetry, where as the resonance at g≈4.3 is attributed to the rhombic surrounding of the Mn 2+ ions. The hyperfine splitting constant ( A) indicates that Mn 2+ ions in these glasses are moderately covalent in nature. The zero-field splitting parameter D has been calculated from the allowed hyperfine lines. The optical absorption spectrum exhibits a single broad band centered at 518 nm (19,305 cm -1) is assigned to the 6A 1g(S)→ 4T 1g(G) transition of Mn 2+ ions. The visible and near infrared (NIR) luminescence bands at 548, 652 and 804 nm have been observed when excited at 400 and 530 nm, respectively. These luminescence centers are supposed to be caused by the lower valence state of bismuth, such as Bi 2+ and Bi + ions, generated during melting process.

  13. Spectroscopic properties in Er(3+)-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials.

    PubMed

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-07

    Transparent Er(3+)-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH(-)) content. Enhanced 2.7 μm emission was achieved from Er(3+)-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er(3+)-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10(-20) cm(2)). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  14. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    NASA Astrophysics Data System (ADS)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH‑) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10‑20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  15. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    PubMed Central

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  16. Rare-earth ion doped lead- and cadmium-free bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Lin, H.; Pun, E. Y. B.; Chen, B. J.; Zhang, Y. Y.

    2008-03-01

    Rare-earth ion doped bismuthate (LZBB) glasses without traditional glass formers, lead and cadmium, have been attempted to prepare. In Er3+ doped LKBB glass system, Judd-Ofelt parameters Ω2, Ω4, and Ω6 have been derived to be 3.48×10-20, 9.47×10-21, and 1.01×10-20cm2, respectively, which shows a medium symmetry of the ligand field in the site occupied by Er3+ and a less covalent environment of Er3+. Effective 1.53μm fluorescence was recorded and the peak emission cross section is proved to be more than 9.0×10-21cm2, which is much higher than those in phosphate, silicate, germanate, and tellurite glasses and beneficial to achieving powerful stimulated emission of Er3+ in LZBB glass system. Pr3+, Tm3+, and Ho3+ doped LZBB glasses with the maximum phonon energy of only ˜600 cm-1 are potential candidates for developing O-, S-, and U-band amplifiers and medical lasers.

  17. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    SciTech Connect

    Hari Babu, B. E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu E-mail: matthieu.lancry@u-psud.fr; Ibarra, Angel

    2015-09-28

    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.

  18. Yb-doped silica glass and photonic crystal fiber based on laser sintering technology

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wu, Jiale; Zhou, Guiyao; Xia, Changming; Liu, Jiantao; Tian, Hongchun; Liang, Wanting; Hou, Zhiyun

    2016-03-01

    We demonstrate the fabricating method for Yb3+-doped silica glass and double-cladding large mode area photonic crystal fiber (LMA PCF) based on laser sintering technology combined with a liquid phase doping method. The doped material prepared shows the amorphous property and the hydroxyl content is approximately 40 ppm. The attenuation of the fabricated LMA PCF is 14.2 dB m-1 at 976 nm, and the lowest value is 0.25 dB m-1 at 1200 nm. The laser slope efficiency is up to 70.2%.

  19. Thermal analysis, spectral characterization and refractive index studies of lithium doped PbO-ZnO-B{sub 2}O{sub 3} glass

    SciTech Connect

    Rajaramakrishna, R.; Lakshmikantha, R.; Anavekar, R. V.

    2012-06-05

    Lithium containing lead zinc borate glasseshave been prepared by melt quenching technique. X-ray diffraction reveals the amorphous nature of the glass. Differential scanning calorimeter (DSC) study was carried out in the temperature range RT to 600 deg. C temperature and found glass transition temperature of these glasses decreases with increase in inter substitution of Pb and Zn lithium content. PZB glasses are stable, IR spectra of these glasses show characteristics band originating from borate groups namely [BO{sub 3}] [BO{sub 4}]and B-O-B stretching vibrations respectively, and found that structure is not affected with effect of lithium content. Refractive index of these glasses are in the range of 1.47 with increasing lithium content refractive index decreases indicating decrease in scattering of light.

  20. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    SciTech Connect

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua E-mail: yuhua@nankai.edu.cn; Zhao, Lijuan E-mail: yuhua@nankai.edu.cn

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  1. In-vitro bioactivity of zirconia doped borosilicate glasses

    SciTech Connect

    Samudrala, Rajkumar; Azeem, P. Abdul E-mail: drazeem2002@yahoo.com

    2015-06-24

    Glass composition 31B{sub 2}O{sub 3}-20SiO{sub 2}-24.5Na{sub 2}O-(24.5-x) CaO-xZrO{sub 2} x=1,2,3,4,5 were prepared by melt-quenching Technique. The formation of hydroxyapatite layer on the surface of glasses after immersion in simulated body fluid (SBF) was explored through XRD, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM-EDX) analyses. In this report, we observed that hydroxyapatite formation for 5days of immersion time. Also observed that with increasing the immersion time up to 15days, higher amount of hydroxyapatite layer formation on the surface of glasses. The varying composition of zirconia in glass samples influences shown by XRD, FTIR studies. The present results indicate that, in-vitro bioactivity of glasses decreased with increasing zirconia incorporation.

  2. Hyperpolarized cesium ions doped in a glass material.

    PubMed

    Ishikawa, Kiyoshi

    2014-10-17

    Hyperpolarized (HP) (133)Cs nuclear magnetic resonance signals were measured from borosilicate glass cell walls during optical pumping of cesium vapor at high magnetic field (9.4T). Significant signal enhancements were observed when additional heating of the cell wall was provided by intense but non-resonant laser irradiation, with integrated HP (133)Cs NMR signals and line widths varying as a function of heating laser power (and hence glass temperature). Given that virtually no Cs ions would originally be present in the glass, absorbed HP Cs atoms rarely met thermally-polarized Cs ions already at the surface; thus, spin-exchange via nuclear dipole interaction cannot be the primary mechanism for injecting spin polarization into the glass. Instead, it is concluded that the absorption and transport of HP atoms into the glass material itself is the dominant mechanism of nuclear spin injection at high temperatures-the first reported experimental demonstration of such a mechanism.

  3. Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions

    SciTech Connect

    Sontakke, Atul D.; Annapurna, K.

    2012-07-01

    An investigation of donor-acceptor energy transfer kinetics in dual rare earths doped precursor oxy-fluoride glass and its glass-ceramics containing NaYF{sub 4} nano-crystals is reported here, using three different donor-acceptor ion combinations such as Nd-Yb, Yb-Dy, and Nd-Dy. The precipitation of NaYF{sub 4} nano-crystals in host glass matrix under controlled post heat treatment of precursor oxy-fluoride glasses has been confirmed from XRD, FESEM, and transmission electron microscope (TEM) analysis. Further, the incorporation of dopant ions inside fluoride nano-crystals has been established through optical absorption and TEM-EDX analysis. The noticed decreasing trend in donor to acceptor energy transfer efficiency from precursor glass to glass-ceramics in all three combinations have been explained based on the structural rearrangements that occurred during the heat treatment process. The reduced coupling phonon energy for the dopant ions due to fluoride environment and its influence on the overall phonon assisted contribution in energy transfer process has been illustrated. Additionally, realization of a correlated distribution of dopant ions causing clustering inside nano-crystals has also been reported.

  4. Er-Doped Lead-Bismuthate Glasses:. Magnetic and Structural Properties

    NASA Astrophysics Data System (ADS)

    Culea, E.; Pop, Lidia; Muntean, Raveca; Bosca, Maria; Bratu, I.; Bogdan, M.

    The effect of erbium-doping on the structural and magnetic properties of the xEr2O3-(1-x)[3Bi2O3·PbO] lead-bismuthate glasses was investigated. The glasses were investigated by infra-red spectroscopy (IR) and magnetic susceptibility measurements. The temperature dependence of the reciprocal susceptibility indicates that the erbium ions are isolated in samples with lower erbium ion content (x≤0.05) but for a higher content, a negative superexchange interaction between the magnetic erbium ions occurs. A structural model for the glasses is suggested on the basis of the IR spectral data.

  5. Electrical and mechanical properties of ZnO doped silver-molybdate glass-nanocomposite system

    NASA Astrophysics Data System (ADS)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    Zno doped silver-molybdate glass-nanocomposites, 0.3 Ag2O - 0.7 [0.075 ZnO - 0.925 MoO3] have been prepared by melt-quenching method. Ionic conductivity of these glass-nanocomposites has been measured in wide temperature and frequency windows. Vicker's hardness methods have been employed to study micro-hardness of the as-prepared samples. Heat-treated counterparts for this glass-nanocomposites system has been analyzed in different temperature to observe the changes in conductivity as well as micro-hardness for that system.

  6. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    SciTech Connect

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil; Krol, Denise M.; Reis, Signo T.; Brow, Richard K.

    2012-07-15

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  7. 1.8 μm emission of highly thulium doped fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Tian, Ying; Xu, Rongrong; Zhang, Liyan; Hu, Lili; Zhang, Junjie

    2010-10-01

    A new type of fluorophosphate glasses with high thulium doping concentration (up to 10 mol % Tm3+) is investigated. The intensive 1.8 μm fluorescence is demonstrated with lower concentration quenching. On the basis of the measured Raman spectroscopy, it is revealed that the glass structure will be changed when adding Tm3+ ions into fluorophosphate glasses. Besides, the Judd-Ofelt parameters and radiative properties are calculated and discussed based on Judd-Ofelt theory. And the absorption and emission cross-sections of F34→H36 transition are also calculated by using McCumber and Beer-Lambert theories.

  8. Scintillators based on aromatic dye molecules doped in a sol-gel glass host

    NASA Astrophysics Data System (ADS)

    Nikl, M.; Solovieva, N.; Apperson, K.; Birch, D. J. S.; Voloshinovskii, A.

    2005-03-01

    Ultraviolet and x-ray excited luminescence of fluorescein and rhodamine-6G doped sol-gel glasses were studied at room temperature with the aim of characterizing and understanding the scintillation performance of such materials. Fast energy transfer from the glass host to the dye luminescent centers was found. While the overall radioluminescence efficiency was rather low due to nonradiative losses in the glass host, our results demonstrate the potential of sol-gel technology as a versatile tool in controlling the spectral and time response of such unusual organic-inorganic scintillators.

  9. Preparation and photoluminescence of monolithic silica glass doped with Tb3+ ions using SiO2-PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroshi; Murata, Takahiro; Fujino, Shigeru

    2014-05-01

    The monolithic silica glass doped with Tb3+ ions was fabricated using the SiO2-PVA nanocomposite as the glass precursor. In order to dope Tb3+ ions in the monolithic silica glass, the mesoporous SiO2-PVA nanocomposite was immersed in the Tb3+ ions contained solution and subsequently sintered at 1100 °C in air. Consequently the monolithic transparent silica glass was obtained, exhibiting green fluorescence attributed to 5D4 → 7F5 main transitions under UV excitation. The Tb concentration in the sintered glass could be controlled by immersion time of the nanocomposite in the solution.

  10. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    PubMed

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering.

  11. Upconversion properties of Er3+-doped oxyfluoride glass-ceramics containing SrF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kesavulu, C. R.; Kiran Kumar, K.; Jayasankar, C. K.

    2014-03-01

    Er3+-doped oxyfluoride glass and glass-ceramics containing SrF2 nanocrystals have been prepared and investigated their spectroscopic and luminescence properties. The formation of SrF2 nanocrystals in glass-ceramics were confirmed by Xray diffraction (XRD) and transmission electron microscopy (TEM). Judd-Ofelt parameters have been evaluated from absorption spectra of the Er3+-doped glass, which in turn used to predict radiative properties for the fluorescent levels of Er3+ ions. The intensities of both Stokes and upconversion (anti-Stokes) emissions significantly increase with increase of the size of the fluoride crystals in the glass matrix. The mechanism of green and red upconversion emissions have been ascribed to two photon processes. The lifetime of the 4S3/2 level of the Er3+ ions in glass-ceramics is found to be slightly higher than that of the counter glass, which may be due to the incorporation of Er3+ ions into the low phonon sites of SrF2 nanocrystals.

  12. Multiphoton upconversion process in Tm 3+ doped ZBLAN glass by CW laser irradiation

    NASA Astrophysics Data System (ADS)

    Li, Jianfu; Wang, Xiaoli; Jiang, Zhankui

    2009-11-01

    Blue, even ultraviolet emissions and very strong red emissions have been observed in ZBLAN glass doped with Tm 3+ under 800 nm CW laser excitation. The red emissions were demonstrated to be of sequential two-photon process, while the ultraviolet emissions be of three-photon process, according to the intensity dependence.

  13. Waveguide fabrication in Nd3{plus} and Yb3{plus} doped phosphate glasses

    SciTech Connect

    Patel, F.D.; Honea, E.C.; Krol, D.; Payne, S.A.; Hayden, J.S.

    1998-03-02

    We report on planar waveguides formed by field assisted ion exchange in Nd{sup 3+} and Yb{sup 3+} doped phosphate glasses. Losses of 0.71 dB/cm are measured. Electron probe measurements confirm Ag{sup +} diffusion.

  14. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  15. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    NASA Astrophysics Data System (ADS)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  16. Photo-thermo-refractive glass co-doped with Nd 3+ as a new laser medium

    NASA Astrophysics Data System (ADS)

    Glebova, Larissa; Lumeau, Julien; Glebov, Leonid B.

    2011-10-01

    Photo-thermo-refractive (PTR) glass demonstrates refractive index change after exposure to UV radiation followed by a thermal treatment that enables recording of high efficiency holographic optical elements. This work demonstrates feasibility of function of this material as a complex optical medium which posseses both photosensitive and luminescent properties and paves a way for creation of monolythic solid state lasers where resonator components can be holographically recorded inside of a laser medium. It was found, that incorporating of Nd 3+ ions in PTR glass does not affect photosensitivity required for hologram recording. It was demonstrated that emission wavelength, spectral width, and cross section of Nd 3+ luminescence in PTR glass are typical for silicate laser glasses and Nd-doped PTR glass can be considered as a promising laser medium for monolithic solid state lasers.

  17. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  18. Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides

    SciTech Connect

    Damas, Pedro; Coelho, João; Hungerford, Graham; Hussain, N. Sooraj

    2012-11-15

    Graphical abstract: [TeO{sub 4}] trigonal bipyramid structural unit, which is formed by two unequivalent pair of oxygen atoms: two equatorial oxygens (O{sub eq}) and two axial oxygens (O{sub ax}). Highlights: ► Pr{sup 3+} and Sm{sup 3+} doped LBT glasses have been prepared and characterized. ► LBT glasses present normal surfaces without metallic clusters. ► Raman spectra revealed the network modifying behaviour of dopant ions. -- Abstract: This paper reports the preparation and structural studies of praseodymium and samarium (0.5, 2 and 4 mol%) oxide doped lithium boro tellurite glasses. These materials were prepared by the quenching technique in a ceramic crucible at 950 °C. Structural characterization was performed by Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy techniques. Results from Raman analysis are in good agreement with those reported in the literature, revealing a normal glass structure for the host material. Understanding on how the glasses internal structure changed when the doping concentration increases was also assessed.

  19. Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions

    NASA Astrophysics Data System (ADS)

    Ragin, Tomasz; Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Dominik

    2016-09-01

    In this paper, glasses based on bismuth, germanium, gallium and sodium oxides have been synthesized in terms of low phonon energy (724 cm-1) and high thermal stability (ΔT = 127°C). Synthesis process have been optimized using low vacuum conditions (approx. 60 mBar) to improve the transmittance in the mid-infrared region and decrease the content of hydroxide groups in the material structure. Glass doped with erbium ions has been pumped with high power diode (λexc = 980 nm) to obtain luminescence in the band of 2.7 μm as a result of Er3+: 4I11/2 -> 4I13/2 radiative transition. For analysis of emission properties and energy transfer mechanisms, glasses co-doped with Er3+/Ho3+, Er3+/Pr3+, Er3+/Nd3+ ions have been synthesized. Obtained results indicated energy transfer phenomenon between lanthanide ions and elements forming the glass matrix. This demonstrates that developed heavy metal oxide glass doped with optimal rare earth elements system is an attractive material for mid-infrared applications.

  20. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers

    NASA Astrophysics Data System (ADS)

    Augustyn, Elżbieta; Żelechower, Michał; Stróż, Danuta; Chrapoński, Jacek

    2012-04-01

    Oxyfluoride transparent glass-ceramics combine some features of glasses (easier shaping or lower than single crystals cost of fabrication) and some advantages of rare-earth doped single crystals (narrow absorption/emission lines and longer lifetimes of luminescent levels). Since the material seems to be promising candidate for efficient fiber amplifiers, the manufacturing as well as structural and optical examination of the oxyfluoride glass-ceramic fibers doped with rare-earth ions seems to be a serious challenge. In the first stage oxyfluoride glasses of the following compositions 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-11PbF2-3ErF3 and 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-10PbF2-3YbF3-1ErF3 (in molar%) were fabricated from high purity commercial chemicals (Sigma-Aldrich). The fabricated glass preforms were drawn into glass fibers using the mini-tower. Finally, the transparent Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass-ceramic fibers were obtained by controlled heat treatment of glass fibers. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. X-ray diffraction examination (XRD) at each stage of the glass-ceramic fibers fabrication confirmed the undesirable crystallization of preforms and glass fibers has been avoided. The fibers shown their mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. The crystal structure of the grown nano-crystals has been determined by XRD and confirmed by electron diffraction (SAED). Results obtained by both techniques seem to be compatible: Er3FO10Si3 (monoclinic; ICSD 92512), Pb5Al3F19 (triclinic; ICSD 91325) and Er4F2O11Si3 (triclinic; ICSD 51510) against to initially expected PbF2 crystals.

  1. Tunable mid-infrared luminescence from Er3+ -doped germanate glass.

    PubMed

    Li, Bingpeng; Wei, Tao; Tian, Ying; Jing, Xufeng; Chen, Fangze; Wang, Fengchao; Zhang, Junjie; Cai, Muzhi; Xu, Shiqing

    2015-09-01

    Er(3+) -doped germanate glasses with superior thermal stability were prepared. Judd-Ofelt intensity parameters and important spectroscopic properties were discussed in detail. Upon 800 nm and 980 nm LD pumping, 2.7 µm fluorescence characteristics were investigated and it was found that the effective 2.7 µm emission bandwidth can reach to 101.79 nm in prepared glasses. The tunability of the 2.7 µm emission band can be realized by adjusting the Er(3+) content. Moreover, a high-emission cross-section (11.09 × 10(-21) cm(2) ), large gain bandwidth (772.30 × 10(-28) cm(3) ) and gain coefficient (6.72 cm(-1) ) were obtained in the prepared sample. Hence, Er(3+) -doped germanate glass might be a promising mid-infrared material for tunable amplifiers or lasers.

  2. Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application

    SciTech Connect

    Kesavulu, C.R.; Sreedhar, V.B.; Jayasankar, C.K.; Jang, Kiwan; Shin, Dong-Soo; Yi, Soung Soo

    2014-03-01

    Graphical abstract: - Highlights: • Er{sup 3+}-doped novel oxyfluoride glasses have been prepared by melt quenching technique. • Structural, thermal and spectroscopic properties have been carried out. • SALSFEr glasses exhibit intense green and weak red emissions at 365 nm excitation. • Major laser transition for Er{sup 3+} ion in SALSFEr glasses is {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} (1.53 μm). • These results suggest the possibility of using SALSFEr glasses as photonic devices. - Abstract: The Er{sup 3+}-doped novel oxyfluoride glasses of composition (43 − x)SiO{sub 2}–10Al{sub 2}O{sub 3}–24LiF–23SrF{sub 2}–xEr{sub 2}O{sub 3}, where x = 1.0, 2.0, 4.0 and 6.0 mol%, have been prepared by conventional melt quenching technique and are characterized through X-ray diffraction (XRD), differential thermal analysis (DTA), Raman, Fourier transform infrared (FT-IR) analysis, optical absorption spectra, visible (vis) and near-infrared (NIR) emission spectra measurements. Judd–Ofelt (JO) intensity parameters (Ω{sub λ}, λ = 2, 4 and 6) have been derived from the absorption spectrum of 1.0 mol% Er{sub 2}O{sub 3} doped glass and are in turn used to calculate radiative properties for the important luminescent levels of Er{sup 3+} ions. The studied glasses show intense green and weak red visible emissions under 365 nm excitation. The decrease in visible emission intensities with concentration of Er{sup 3+} ions has been explained due to energy transfer processes between Er{sup 3+} ions. Upon excitation at 980 nm laser diode, an intense 1.53 μm NIR emission has been observed with the maximum full width at half maximum (FWHM) for Er{sup 3+}-doped oxyfluoride glasses. The higher Er{sup 3+} ion doping capability and relatively high gain and broad emission at 1.5 μm are the most notable features of these glasses to realize efficient short-length optical amplifiers.

  3. Charge transport in tri-p-tolylamine doped trinaphthalylbenzene glass

    NASA Astrophysics Data System (ADS)

    Lin, Liang-Bih; O'Reilly, James M.; Magin, Edward H.; Weiss, David S.; Jenekhe, Samson A.

    2000-09-01

    The charge transport properties of tri-p-tolylamine (TTA) doped trinaphthalylbenzene have been measured as a function of electric field and temperature. The charge mobilities of the composite are comparable to but somewhat lower than that of TTA doped polystyrene, a nonpolar polymeric host, at similar weight fractions. We suggest that the difference is due to inhomogeneity between the host and the dopant. The results suggest that, similar to polymer hosts in molecularly doped polymers, the molecular host only functions as an inert diluter and does not directly participate in the charge transport manifold. The results also substantiate the importance of molecular packing to charge hopping in disordered organic materials. The charge mobility data are analyzed with a disorder model due to Bässler and coworkers and a recently modified expression due to Novikov and coworkers [Phys. Rev. Lett. 81, 4472 (1998)]. Both models provide adequate descriptions of charge transport in organic amorphous materials.

  4. Comparison of Er-doped sol-gel glasses with various hosts

    NASA Astrophysics Data System (ADS)

    Xiang, Qing; Zhou, Yan; Lam, Yee Loy; Ooi, Boon Siew; Chan, Yuen Chuen; Kam, Chan Hin

    1999-11-01

    Using the sol-gel process, we prepared three groups of Er-doped glasses, namely, Er-doped Si02-A101.5 (SAB) glass, Er-doped Si02-Ti02-A101.5 (STAE) glass, and Er-doped Si02-Ge02-Al01.5 (SGAE) glass. Various erbium concentration and different host composition under the same processing condition have been studied in order to optimize the material composition to get the strongest fluorescence emission for each material system. It has been found that for SAE glass, the strongest fluorescence emission is obtained when the mole ratio of the three constituent oxides is lOOSiO2 : 20A101.5 2ErO1.5. For the STAE material system, the best composition ratio for the strongest fluorescence emission is 93 Si02 : 7TiO2: 20A101.5 : lErO1.5, whereas the value for SGAE glass is 9OSiO2:lOGeO2 : 2OAlO1.5: 1ErO1.5. But the relative lifetimes were obtained with the recipe lOOSiO2:10A101.5:1ErO1.5 for SAE series, 90 Si02:lOGeO2:1OAlO1.5: 1ErO1.5 for STAE group and 93 Si02:7Ti02:20A101.5:1ErO1.5 for STAE group. Using these recipes, three 20-layer (up to 2.5 μm) crack-free films have been deposited on silica-on-silicon (SOS) substrates with multiple spin-coating and rapid thermal annealing (RTA). Only the STAE film and the SGAE film are found to guide light. The experimental results show that STAB glasses have higher hydrophilicity than SGAE glasses and SGAE glasses has lower crystallization temperature than STAE glasses. The fact that these waveguiding films emit relatively strong fluorescence around the wavelength of 1.55 μm implies that such planar waveguides are potential candidates from which integrated optical waveguide amplifiers and lasers operating at the third optical fiber communication window can be fabricated.

  5. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm.

  6. Inhomogeneous and homogeneous linewidths in Er 3+-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Bigot, L.; Jurdyc, A.-M.; Jacquier, B.; Adam, J.-L.

    2003-10-01

    The erbium 4I 13/2- 4I 15/2 transition around 1.5 μm is of prim interest for telecommunications and depends on the erbium ions surrounding. In glasses, the broadening of a transition comes from two contributions: inhomogeneous (due to the disorder) and homogeneous (due to the electron phonon interaction) broadening. Resonant Fluorescence Line Narrowing (RFLN) is a useful tool to separate this two parameters. We will show in this paper that the 4I 13/2- 4I 15/2 transition in chalcogenide glass (GeGaSSb) presents a strong homogeneous character and a smaller inhomogeneous contribution compared to aluminosilicate and fluoride glasses. Consequences on gain saturation will also be discussed.

  7. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr

    PubMed Central

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  8. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    PubMed

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation.

  9. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  10. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  11. Spectroscopic properties and energy transfer in Er-Tm co-doped bismuth silicate glass

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Zhilan; Li, Kefeng; Zhang, Lei; Cheng, Jimeng; Hu, Lili

    2013-10-01

    In this paper, we investigate the spectroscopic properties of and energy transfer processes in Er-Tm co-doped bismuth silicate glass. The Judd-Ofelt parameters of Er3+ and Tm3+ are calculated, and the similar values indicate that the local environments of these two kinds of rare earth ions are almost the same. When the samples are pumped at 980 nm, the emission intensity ratio of Tm:3F4 → 3H6 to Er:4I13/2 → 4I15/2 increases with increased Er3+ and Tm3+ contents, indicating energy transfer from Er:4I13/2 to Tm:3F4. When the samples are pumped at 800 nm, the emission intensity ratio of Er:4I13/2 → 4I15/2 to Tm:3H4 → 3F4 increases with increased Tm2O3 concentration, indicating energy transfer from Tm:3H4 to Er:4I13/2. The rate equations are given to explain the variations. The microscopic and macroscopic energy transfer parameters are calculated, and the values of energy transfer from Er:4I13/2 to Tm:3F4 are found to be higher than those of the other processes. For the Tm singly-doped glass pumped at 800 nm and Er-Tm co-doped glass pumped at 980 nm, the pumping rate needed to realize population reversion is calculated. The result shows that when the Er2O3 doping level is high, pumping the co-doped glass by a 980 nm laser is an effective way of obtaining a low-threshold ˜2 μm gain.

  12. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  13. Er/Yb co-doped oxy-fluoride glass-ceramics core/polymer cladding optical fibers

    NASA Astrophysics Data System (ADS)

    Czerska, E.; Świderska, M.

    2014-11-01

    Erbium/ytterbium co-doped glasses can be applied as NIR laser sources (1.55 μm) or optical amplifiers in this range. About hundred meters of Er/Yb co-doped oxy-fluoride glass-ceramics fibers have been drawn from a glass preform followed by controlled annealing. Processing temperatures (drawing and annealing) were selected upon thermal analysis results (DTA/DSC plots). Glass-ceramic structure was confirmed by the XRD measurements. Obtained fibers show good optical properties. As a cladding material polymer material (acrylic resin) is considered due to its low deposition temperature and suitable value of refractive index.

  14. Spectroscopic properties of Er3+ doped lead phosphate glasses for photonic application 4-23-2009

    SciTech Connect

    Santos, C. C.; Guedes, I.; Moura, A. L. Moura; de Araujo, M. T.; Jacinto, C.; Vermelho, M. V. D.; Loong, C. K.; Boatner, Lynn A

    2010-01-01

    The spectroscopic characteristics of Er3+-doped lead phosphate glasses have been investigated, and Judd-Ofelt analysis was used to evaluate the effect of increasing the Er3+ content on the glass matrices. The intensity-dependent Judd=-Ofelt parameters: (4) and (6) remained constant while (2) decreased. Photoluminescence analysis revealed a low up-conversion efficiency through the weak green (530 and 550 nm) and red (660 nm) signals that were present under excitation at 800 nm. The concentration quenching effect on the lifetime of the Er3+: 4I13/2 4I15/2 (1530 nm) transition is also evaluated as a result of the addition of Er3+ to the lead phosphate glass composition. The observed relatively large reduction in the lifetime reflects the significant effects of non-radiative processes in this system. The potential use of these glasses as photonic devices is also discussed.

  15. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  16. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures

    NASA Astrophysics Data System (ADS)

    Ferrera, M.; Razzari, L.; Duchesne, D.; Morandotti, R.; Yang, Z.; Liscidini, M.; Sipe, J. E.; Chu, S.; Little, B. E.; Moss, D. J.

    2008-12-01

    Photonic integrated circuits are a key component of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses and semiconductors, such as silicon and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.

  17. Advances in Laser Cooling of Thulium-Doped Glass

    DTIC Science & Technology

    2003-05-01

    Yb31-doped KGd(WO4)2 crystal. 12 Epstein et al. observed bulk cool- ing in Yb31: YAG , recording a net sample temperature change of ;8.9 K below room...energy hn f 2 hn for each absorbed photon. Table 1. Data Analysisa Sample Dimensions (mm) Doping (wt.%) h q̃ ab (cm 21) kfit (cm K/W) kcalc Tm A 4 3...4 3 8 1 0.99 0.0002 591 825 Tm B 3 3 3 3 10 2 0.975 0.0004 1002 1224 a Tm31:ZBLANP (ZrF4-BaF2-LaF3-AlF3-NaF-PbF2) sample parameters for the 3H6 → 3F4

  18. Erbium doped tellurite glasses with improved thermal properties as promising candidates for laser action and amplification

    NASA Astrophysics Data System (ADS)

    Benmadani, Y.; Kermaoui, A.; Chalal, M.; Khemici, W.; Kellou, A.; Pellé, F.

    2013-10-01

    The influence of composition on the thermal stability of tellurite glasses was investigated by using differential scanning calorimetry (DSC). The studied glasses were synthesized by conventional melting quenching method. The best thermal stability and poor crystallization tendency were obtained for the glass composed of 65TeO2-15ZnO-10Na2O-5BaO-3La2O3 doped with Er2O3 (2 mol %). This glass will be referred, in this article, as TZNBL: Er3+ glass. The spectroscopic properties of the above glass are investigated based on the Judd-Ofelt and McCumber theories. The calculated intensity parameters (Ω2,4,6) are compared to those obtained for Er3+ in other glasses. The radiative emission rate has been calculated for the different Er3+emitting levels. The high values of Ω4 and Ω6 confirm the results of the DSC experiment concerning the rigidity of the studied glass. Absorption, emission and gain cross section of the 4I13/2 ↔ 4I15/2 (Er3+) transition in the studied glass are reported and the results are compared to those of other glasses. The 4I13/2 ↔ 4I15/2 (Er3+) absorption and emission cross sections derived by the application of the Mc Cumber's theory corroborate the Judd-Ofelt results. The whole of results demonstrate that the new composition leads to good thermal and mechanical properties as well efficient Er3+ absorption, emission cross sections, which make this glass as a promising candidate for laser action and amplification.

  19. Spectroscopic characteristics of chromium doped mullite glass-ceramics

    SciTech Connect

    Wojtowicz, A.J.; Meng, W.; Lempicki, A.; Beall, G.H.; Hall, D.W.; Chin, T.C.

    1988-06-01

    Characteristics of chromium doped mullite ceramics are discussed with reference to possible laser applications. Dominant features are attributed to large and inherent spectroscopic inhomogeneity of mullite. The spectroscopic data are analyzed using a generalized McCumber theory. The peak stimulated emission cross section is 0.54 x 10/sup -20/ cm/sup 2/. This, together with preliminary single-pass measurements, indicate that gain for mullite is about 2.6 times smaller than gain for alexandrite.

  20. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    SciTech Connect

    Zhang, Mingjie; Yang, Anping; Peng, Yuefeng; Zhang, Bin; Ren, He; Guo, Wei; Yang, Yan; Zhai, Chengcheng; Wang, Yuwei; Yang, Zhiyong; Tang, Dingyuan

    2015-10-15

    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissions centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.

  1. Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass.

    PubMed

    Engholm, M; Norin, L

    2008-01-21

    Photodarkening experiments are performed on ytterbium-doped silicate glass samples. A strong charge-transfer (CT) absorption band near 230nm in aluminosilicate glass is found to be correlated to the mechanism of induced color center formation. Excitation into the CT-absorption band generates similar color centers as observed in ytterbium-doped fiber lasers under 915nm high power diode pumping. The position of the CT-absorption band is compositional dependent and is shifted to shorter wavelengths in ytterbium doped phosphosilicate glass. Very low levels of photodarkening is observed for the ytterbium doped phosphosilicate glass composition under 915nm high power diode pumping. Possible excitation routes to reach the CT-absorption band under 915nm pumping are discussed.

  2. Optical Characterization of Nd3+ and Er3+ Doped-Lead-Indium Phosphate Glasses

    SciTech Connect

    Brito, Taisa B.; Vermelho, M. V. D.; Gouveia, E. A.; de Araujo, M. T.; Guedes, I.; Loong, C. K.; Boatner, Lynn A

    2007-01-01

    In this work, Judd-Ofelt analysis is applied to rare-earth-doped lead-indium-phosphate glasses (RE-PbInPO{sub 4}, where RE = Er{sup 3+} and Nd{sup 3+}) in order to evaluate their potential as both glass laser systems and amplifier materials. The phenomenological Judd-Ofelt parameters {Omega}{sub (2)}, {Omega}{sub (4)}, and {Omega}{sub (6)} are determined for both rare-earth ions together with their quality factors and compared with the equivalent parameters for several other host glasses. The spontaneous emission probabilities and the lifetimes of the Nd{sup 3+} {sup 4}F{sub 3/2} laser transitions are determined and analyzed as a function of the optical quality factor. For Nd{sup 3+}-PbInPO{sub 4}, glass fluorescence emission (890, 1058, and 1330 nm) lines are observed. Highly efficient infrared-to-visible frequency up-conversion at 530, 550, and 670 nm as well as an intense infrared fluorescence emission ({approx}1540 nm) is observed in Er{sup 3+}-doped PbIn(PO{sub 4}) glasses pumped using 800 nm radiation excitation.

  3. Spectroscopic properties of transparent Er-doped oxyfluoride glass-ceramics with GdF₃.

    PubMed

    Środa, Marcin; Szlósarczyk, Krzysztof; Różański, Marek; Sitarz, Maciej; Jeleń, Piotr

    2015-01-05

    Optically active glass-ceramics (GC) with the low-phonon phases of fluorides, doped with Er(3+) was studied. Glass based on SiO₂-Al₂O₃-Na₂F₂-Na₂O-GdF₃-BaO system was obtained. Dopant were introduced to the glass in an amount of 0.01 mol Er₂O₃ per 1 mol of glass. DTA/DSC study shows multi-stage crystallization. XRD identification of obtained phases did not confirm the presence of pure GdF₃ phase. Instead of that ceramization process led to formation of NaGdF₄ and BaGdF₅. The structural changes were studied using FT-IR spectroscopic method. The study of luminescence of the samples confirmed that optical properties of the obtained GC depend on crystallizing phases during ceramization. Time resolved spectroscopy of Er-doped glass showed the 3 and 8 times increase of lifetime of emission from (4)S₃/₂ and (4)F₉/₂ states, respectively. It confirms the erbium ions have ability to locate in the low phonon gadolinium-based crystallites. The results give possibility to obtain a new material for optoelectronic application.

  4. Spectroscopic characterization of alkali modified zinc-tellurite glasses doped with neodymium.

    PubMed

    Rajeswari, R; Babu, S Surendra; Jayasankar, C K

    2010-09-15

    Neodymium doped zinc-tellurite glasses of composition TeO(2)-ZnO-Na(2)O-Li(2)O have been prepared and characterized for their thermal, structural and optical properties. Differential thermal analysis revealed reasonably good forming tendency of the glass composition. FTIR spectra were used to analyze the functional groups present in the glass. Judd-Ofelt intensity parameters were derived from the absorption spectrum and used to calculate the radiative lifetime, branching ratio and stimulated emission cross-section for (4)F(3/2)-->(4)I(9/2, 11/2, 13/2) transitions. The quantum efficiency of the (4)F(3/2) level is comparable to the typical values obtained for the Nd(2)O(3)-doped glasses. The decay properties for higher concentration of Nd(2)O(3) were analyzed using Inokuti-Hirayama model to investigate the non-radiative relaxation of the (4)F(3/2) emitting level. The experimental values of branching ratio and saturation intensity of (4)F(3/2)-->(4)I(11/2) transition and calculated spectroscopic quality factor indicate the favourable lasing action in these glasses.

  5. Spectroscopic properties in Er3+/Yb3+ Co-doped fluorophosphate glass

    NASA Astrophysics Data System (ADS)

    Zheng, Tao; Qin, Jie-Ming; Jiang, Da-Yong; Lü, Jing-Wen; Xiao, Sheng-Chun

    2012-04-01

    Using the technique of high-temperature melting, a new Er3+/Yb3+ co-doped fluorophosphate glass was prepared. The absorption and fluorescence spectra were investigated in depth. The effect of Er3+ and Yb3+ concentration on the spectroscopic properties of the glass sample was also discussed. According to the Judd—Ofelt theory, the oscillator strength was computed. The lifetime of 4I13/2 level (τm) of Er3+ ions was 8.23 ms, and the full width at half maximum of the dominating emission peak was 68 nm at 1.53 μm. The large stimulated emission cross section of the Er3+ was calculated by the McCumber theory. The spectroscopic properties of Er3+ ion were compared with those in different glasses. The full width at half maximum and σe are larger than those of other glass hosts, indicating this studied glass may be a potentially useful candidate for high-gain erbium-doped fiber amplifier.

  6. DC electrical conductivity study of cerium doped conducting glass systems

    NASA Astrophysics Data System (ADS)

    Barde, R. V.; Waghuley, S. A.

    2013-06-01

    The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.

  7. Long-term test results from a West Valley actinide-doped reference glass

    SciTech Connect

    Fortner, J.A.; Gerding, T.J.; Bates, J.K.

    1995-07-01

    Results from drip tests designed to simulate unsaturated conditions in the proposed Yucca Mountain Repository are reported for an actinide-doped glass (reference glass ATM-10) used as a model waste form. These tests have been ongoing for nearly 7 years, with data collected on solution composition (including transuranics), colloid formation and disposition, glass corrosion layers, and solid secondary phases. This test is unique because of its long elapsed time, high content of thorium and transuranics, use of actual groundwater from the proposed site area, use of contact between the glass and sensitized stainless steel in the test, and the variety of analytical procedures applied to the components. Some tests have been terminated, and scanning electron microscopy (SEM) and analytical transmission electron microscopy (AEM) were used to directly measure glass corrosion and identify secondary phases. Other tests remain ongoing, with periodic sampling of the water that had contacted the glass. The importance of integrated testing has been demonstrated, as complex interactions between the glass, the groundwater, and the sensitized stainless steel have been observed. Secondary phases include smectite clay, iron silicates, and brockite. Actinides, except neptunium, concentrate into stable secondary phases. The release of actinides is then controlled by the behavior of these phases.

  8. Inhibition of multi-species oral biofilm by bromide doped bioactive glass.

    PubMed

    Galarraga-Vinueza, M E; Passoni, B; Benfatti, C A M; Mesquita-Guimarães, J; Henriques, B; Magini, R S; Fredel, M C; Meerbeek, B V; Teughels, W; Souza, J C M

    2017-03-06

    Bioactive glass is an attractive biomaterial that has shown excellent osteogenic and angiogenic effects for oral bone repairing procedures. However, anti-biofilm potential related to such biomaterial has not been completely validated, mainly against multi-species biofilms involved in early tissue infections. The aim of the present study was to evaluate the anti-biofilm effect of 58S bioactive glass embedding calcium bromide compounds at different concentrations. Bioactive glass containing 0, 5, or 10wt% CaBr2 was synthesized by alkali sol-gel method and then characterized by physco-chemical and scanning electron microscopy (SEM). Then, samples were tested by microbiological assays using optical density, real time q-PCR, and SEM. Bioactive glass particles showed accurate chemical composition and an angular shape with a bimodal size distribution ranging from 0.6 to 110 µm. The mean particle size was around 29 µm. A significant anti-biofilm effect was recorded for 5wt% CaBr2 -doped bioactive glass against S. mitis, V. parvula, P. gingivais, S. gordoni, A. viscosus, F, nucleatum, P. gingivais. F. nucleatum and P. gingivalis. Such species are involved in the biofilm structure related to infections on hard and soft tissues in the oral cavity. The incorporation of calcium bromide into bioactive glass can be a strategy to enhance the anti-biofilm potential of bioactive glasses for bone healing and infection treatment. This article is protected by copyright. All rights reserved.

  9. Simulations of silver-doped germanium-selenide glasses and their response to radiation

    PubMed Central

    2014-01-01

    Chalcogenide glasses doped with silver have many applications including their use as a novel radiation sensor. In this paper, we undertake the first atomistic simulation of radiation damage and healing in silver-doped Germanium-selenide glass. We jointly employ empirical potentials and ab initio methods to create and characterize new structural models and to show that they are in accord with many experimental observations. Next, we simulate a thermal spike and track the evolution of the radiation damage and its eventual healing by application of a simulated annealing process. The silver network is strongly affected by the rearrangements, and its connectivity (and thus contribution to the electrical conductivity) change rapidly in time. The electronic structure of the material after annealing is essentially identical to that of the initial structure. PMID:25426005

  10. Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses.

    PubMed

    Zhou, Bo; Pun, Edwin Yue-Bun

    2011-08-01

    Superbroadband near-infrared (NIR) emission covering 1250 to 1680 nm wavelength has been obtained in praseodymium (Pr(3+)) singly doped bismuth gallate glasses. The emission originates from the (1)G(4)→(3)H(5) and (1)D(2)→(1)G(4) transitions at 1330 and 1490 nm wavelengths, respectively, and is due to the extremely low phonon energy (∼690 cm(-1)) and the unique ligand field of the glasses. It is shown that the emission line shape can be modified by adjusting the Pr(3+) concentration and the energy transfers involved. The results confirm that other than bismuth (Bi), chromium (Cr), nickel (Ni), and other chemical elements, Pr(3+) singly doped system is a promising alternative in achieving superbroadband NIR emission.

  11. Spectral transmittance of organic dye-doped glass films obtained by the solgel method

    NASA Astrophysics Data System (ADS)

    Nemoto, Shojiro; Hirokawa, Naoyuki

    1996-06-01

    The spectral transmittance of colored glass films synthesized by the solgel method is presented. The film was formed on a glass slide by dipping it into an organic dye-doped solution and, thereafter, by putting it into a furnace for solidification. Three dyes, Methylene Blue, Eosin, and Uranine, were used that exhibit transparent blue, pink, and yellow colors, respectively, when they are dissolved in the starting solution. We clarify how the spectral transmittance of the films varies with the solidification temperature. The films doped with two of the three dyes that exhibit violet, orange, and green colors are also synthesized, and their transmittance is measured. Moreover, the chemical durability of the films and the transmittance change caused by aging and illumination are examined. organic dye, solgel method.

  12. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model

    PubMed Central

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai

    2015-01-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC. PMID:26416858

  13. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model.

    PubMed

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai; Zhang, Chang-Qing; Rahaman, Mohamed N

    2015-12-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC.

  14. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    SciTech Connect

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C. Kasap, S. O.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.

    2014-02-14

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm{sup 3+}) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm{sup 3+}-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm{sup 3+}-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm{sup 2+} to Sm{sup 3+} reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm{sup 2+} to Sm{sup 3+} reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  15. Promethium-doped phosphate glass laser at 933 and 1098 nm

    SciTech Connect

    Krupke, W.F.; Shinn, M.D.; Kirchoff, T.A.; Finch, C.B.; Boatner, L.A.

    1987-12-28

    A promethium (Pm/sup 3 +/) laser has been demonstrated for the first time. Trivalent promethium 147 doped into a lead-indium-phosphate glass etalon was used to produce room-temperature four-level laser emission at wavelengths of 933 and 1098 nm. Spectroscopic and kinetic measurements have shown that Pm/sup 3 +/ is similar to Nd/sup 3 +/ as a laser active ion.

  16. Energy migration in the Ce 3+-doped Na-Gd phosphate glasses

    NASA Astrophysics Data System (ADS)

    Solovieva, Natalia; Nikl, Martin; Nitsch, Karel

    2007-09-01

    Luminescence decay kinetics of Ce3+-doped Gd3+-sensitized Na-phosphate glasses was measured within 4-300 K and analyzed to reveal the mechanism of energy migration through the Gd3+ subsystem to the Ce3+ emission centers. Dependencies of the asymptotic decay rates on the temperature are used to identify the type of phonon assistance in the Gd3+-Gd3+ energy transfer.

  17. DBR and DFB Lasers in Neodymium- and Ytterbium-Doped Photothermorefractive Glasses

    NASA Technical Reports Server (NTRS)

    Ryasnyanskiy, Aleksandr; Vorobiev, N.; Smirnov, V.; Lumeau, J.; Glebov, A.; Mokhun, O..; Spiegelberg, Ch.; Krainak, Michael A.; Glebov, A.; Glebov, L.

    2014-01-01

    The first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a line width of 250 kHz and output power of 150 mW at 1066 nm is demonstrated.

  18. PDLLA scaffolds with Cu- and Zn-doped bioactive glasses having multifunctional properties for bone regeneration.

    PubMed

    Bejarano, Julian; Detsch, Rainer; Boccaccini, Aldo R; Palza, Humberto

    2017-03-01

    Novel multifunctional scaffolds for bone regeneration can be developed by incorporation of bioactive glasses (BG) doped with therapeutic and antibacterial metal ions, such as copper (Cu) and zinc (Zn), into a biodegradable polymer. In this context, porous composite materials of biodegradable poly(d, l-lactide) (PDLLA) mixed with sol-gel BG of chemical composition 60SiO2 ; 25CaO; 11Na2 O; and 4P2 O5 (mol %) doped with either 1 mol % of CuO or ZnO, and with both metals, were prepared. The cytocompatibility of the scaffolds on bone marrow stromal cells (ST-2) depended on both, the amount of glass filler and the concentration of metal ion, as evaluated by lactate dehydrogenase (LDH) activity, cell viability (water-soluble tetrazolium salt [WST-8]), and by cell morphology (scanning electron microscopy [SEM]) tests. In particular, scaffolds having a filler content of 10 wt % showed the highest cytocompatibility. In addition, compared to the neat polymer, the scaffolds containing Cu promoted the angiogenesis marker (Vascular endothelial growth factor concentration) to a larger extent while scaffolds containing Zn increased the osteogenesis marker (specific alkaline phosphatase-activity). Noteworthy, the scaffolds with both metal ions showed a combined effect on both properties. Cu- and Zn-doped glasses also provided higher antibacterial capacity to PDLLA-based scaffolds against methicillin-resistant S. aureus bacteria than undoped glass. In combination, our results showed that by a proper addition of Cu- and Zn-doped BG to a PDLLA matrix, multifunctional composite scaffolds with enhanced biological activity can be designed for bone tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 746-756, 2017.

  19. Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: Effect of heat treatment

    NASA Astrophysics Data System (ADS)

    Fares, Hssen; Elhouichet, Habib; Gelloz, Bernard; Férid, Mokhtar

    2014-09-01

    Tellurite glasses doped Er3+ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510-550 nm range in addition to the distinctive absorption peaks of Er3+ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimes were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the 4I13/2 → 4I15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er3+ ions, whereas the quenching is ascribed to the energy transfer from Er3+ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the 4I13/2 → 4I15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.

  20. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.; Kasap, S. O.

    2014-02-01

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm3+) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm3+-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm3+-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm2+ to Sm3+ reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm2+ to Sm3+ reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  1. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  2. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    SciTech Connect

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.; Du, Jincheng

    2016-11-01

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used to analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.

  3. Study on surface roughness evolvement of Nd-doped phosphate glass after IBF

    NASA Astrophysics Data System (ADS)

    Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao

    2016-10-01

    Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.

  4. Thermal stability and UV-Vis-NIR spectroscopy of a new erbium-doped fluorotellurite glass

    NASA Astrophysics Data System (ADS)

    Sayed Yousef, El; Damak, Kamel; Maalej, Ramzi; Rüssel, C.

    2012-03-01

    A new transparent bulk glass from the system 76TeO2 . 10ZnO . 9.0PbO . 1.0PbF2 . 3.0Na2O doped with Er3+ (TZPPN doped with Er3+) has been prepared using the conventional melt-quenching method. Results of differential thermal analysis (DTA) measurements indicate good thermal stability of this glass. The refractive indices at different wavelengths, the optical energy gap, the Sellmeier gap energy and the dispersion energy have been estimated. The Judd-Ofelt parameters, Ω t (t = 2, 4, 6) of Er3+ were evaluated from optical absorption spectra. Electric dipole, magnetic dipole type transition probabilities, spectroscopic quality factors, branching ratio and radiative lifetimes of several excited states of Er3+ have been predicted using intensity Judd-Ofelt parameters. The spectroscopic properties indicate that TZPPN glass doped with Er3+ is a promising candidate for laser applications and may be suitable for upconversion fibre optical devices.

  5. Influence of high magnetic field on the luminescence of Eu{sup 3+}-doped glass ceramics

    SciTech Connect

    Jiang, Wei; Chen, Weibo; Chen, Ping; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng E-mail: qjr@zju.edu.cn; Zhang, Junpei; Han, Junbo; Qiu, Jianrong E-mail: qjr@zju.edu.cn

    2014-09-28

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu{sup 3+}-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu{sup 3+} decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu{sup 3+} can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  6. Effect of Ga2O3 on the spectroscopic properties of erbium-doped boro-bismuth glasses.

    PubMed

    Ling, Zhou; Ya-Xun, Zhou; Shi-Xun, Dai; Tie-Feng, Xu; Qiu-Hua, Nie; Xiang, Shen

    2007-11-01

    The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.

  7. Fabrication of uniformly dispersed nanoparticle-doped chalcogenide glass

    SciTech Connect

    Lu, Chao; Arnold, Craig; Almeida, Juliana M. P.; Yao, Nan

    2014-12-29

    The dispersion of metallic nanoparticles within a chalcogenide glass matrix has the potential for many important applications in active and passive optical materials. However, the challenge of particle agglomeration, which can occur during traditional thin film processing, leads to materials with poor performance. Here, we report on the preparation of a uniformly dispersed Ag-nanoparticle (Ag NP)/chalcogenide glass heterogeneous material prepared through a combined laser- and solution-based process. Laser ablation of bulk silver is performed directly within an arsenic sulfide/propylamine solution resulting in the formation of Ag NPs in solution with an average particle size of less than 15 nm as determined by dynamic light scattering. The prepared solutions are fabricated into thin films using standard coating processes and are then analyzed using energy-dispersive X-ray spectroscopy and transmission electron microscopy to investigate the particle shape and size distribution. By calculating the nearest neighbor index and standard normal deviate of the nanoparticle locations inside the films, we verify that a uniformly dispersed distribution is achieved through this process.

  8. Structure and properties of strontium-doped phosphate-based glasses

    PubMed Central

    Abou Neel, Ensanya A.; Chrzanowski, Wojciech; Pickup, David M.; O'Dell, Luke A.; Mordan, Nicola J.; Newport, Robert J.; Smith, Mark E.; Knowles, Jonathan C.

    2008-01-01

    Owing to similarity in both ionic size and polarity, strontium (Sr2+) is known to behave in a comparable way to calcium (Ca2+), and its role in bone metabolism has been well documented as both anti-resorptive and bone forming. In this study, novel quaternary strontium-doped phosphate-based glasses, containing 1, 3 and 5 mol% SrO, were synthesized and characterized. 31P magic angle spinning (MAS) nuclear magnetic resonance results showed that, as the Sr2+ content is increased in the glasses, there is a slight increase in disproportionation of Q2 phosphorus environments into Q1 and Q3 environments. Moreover, shortening and strengthening of the phosphorus to bridging oxygen distance occurred as obtained from FTIR. The general broadening of the spectral features with Sr2+ content is most probably due to the increased variation of the phosphate–cation bonding interactions caused by the introduction of the third cation. This increased disorder may be the cause of the increased degradation of the Sr-containing glasses relative to the Sr-free glass. As confirmed from elemental analysis, all Sr-containing glasses showed higher Na2O than expected and this also could be accounted for by the higher degradation of these glasses compared with Sr-free glasses. Measurements of surface free energy (SFE) showed that incorporation of strontium had no effect on SFE, and samples had relatively higher fractional polarity, which is not expected to promote high cell activity. From viability studies, however, the incorporation of Sr2+ showed better cellular response than Sr2+-free glasses, but still lower than the positive control. This unfavourable cellular response could be due to the high degradation nature of these glasses and not due to the presence of Sr2+. PMID:18826914

  9. Spectroscopic characteristics of chromium-doped mullite glass-ceramics

    SciTech Connect

    Wojtowicz, A.J.; Meng, W.; Lempicki, A.; Beall, G.H.; Hall, D.W.

    1988-06-01

    The chromium (3+) ion has been widely used as an optical activator in solid-state, tunable laser materials. High octahedral field-stabilization energy and resistance against both oxidation and reduction minimize the dependence of chromium (3+) on the solid-state host matrix. However, the high sensitivity of electronic structure on crystal field strength makes the appropriate choice of host the condition for success. Characteristics of chromium-doped mullite ceramics are discussed with reference to possible laser applications. Dominant features are attributed to large and inherent spectroscopic inhomogeneity of mullite. The spectroscopic data are analyzed using a generalized McCumber theory. The peak-stimulated emission cross section is 0.54 x 10 to the -20 sq cm. This together with preliminary single-pass measurements, indicate that gain for mullite is about 2.6 times smaller than gain for alexandrite.

  10. Mössbauer spectroscopy of europium-doped fluorochlorozirconate glasses and glass ceramics: optimization of storage phosphors in computed radiography.

    PubMed

    Pfau, C; Paßlick, C; Gray, S K; Johnson, J A; Johnson, C E; Schweizer, S

    2013-05-22

    Eu(2+)-doped fluorochlorozirconate (FCZ) glasses and glass ceramics, which are being developed for medical and photovoltaic applications, have been analysed by Mössbauer spectroscopy. The oxidation state and chemical environment of the europium ions, which are important for the performance of these materials, were investigated. Routes for maximizing the divalent europium content were also investigated. By using EuCl2 instead of EuF2 in the starting material a fraction of about 90% of the europium was maintained in the Eu(2+) state as opposed to about 70% when using EuF2. The glass ceramics produced by subsequent thermal processing contain BaCl2 nanocrystals in which Eu(2+) is incorporated, as shown by the narrower linewidth in the Mössbauer spectrum. Debye temperatures of 147 K and 186 K for Eu(2+) and Eu(3+), respectively, were determined from temperature dependent Mössbauer measurements. The f-factors were used to obtain the Eu(2+)/Eu(3+) ratio from the area ratio of the corresponding absorption lines.

  11. Development of large-scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    NASA Astrophysics Data System (ADS)

    Ficini, Gaelle; Campbell, Jack H.

    1996-08-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for inertial confinement fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and a t relatively low cost. To meet the requirements of the future megajoule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology.

  12. Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment.

    PubMed

    Fang, Zaijin; Zheng, Shupei; Peng, Wencai; Zhang, Hang; Ma, Zhijun; Dong, Guoping; Zhou, Shifeng; Chen, Danping; Qiu, Jianrong

    2015-11-02

    Glass ceramic fibers containing Ni(2+) doped LiGa(5)O(8) nanocrystals were fabricated by a melt-in-tube method and successive heat treatment. Fiber precursors were prepared by drawing at high temperature where fiber core glass was melted while fiber clad glass was softened. After heat treatment, LiGa(5)O(8) nanocrystals were precipitated in the fiber core. Excited by 980 nm laser, efficient broadband near-infrared emission was observed in the glass ceramic fiber compared to that of precursor fiber. The melt-in-tube method can realize controllable crystallization and is suitable for fabrication of novel glass ceramic fibers. The Ni(2+)-doped glass ceramic fiber is promising for broadband optical amplification.

  13. An hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet.

    PubMed

    Boothroyd, A T; Babkevich, P; Prabhakaran, D; Freeman, P G

    2011-03-17

    Superconductivity in layered copper oxide compounds emerges when charge carriers are added to antiferromagnetically ordered CuO(2) layers. The carriers destroy the antiferromagnetic order, but strong spin fluctuations persist throughout the superconducting phase and are intimately linked to superconductivity. Neutron scattering measurements of spin fluctuations in hole-doped copper oxides have revealed an unusual 'hour-glass' feature in the momentum-resolved magnetic spectrum that is present in a wide range of superconducting and non-superconducting materials. There is no widely accepted explanation for this feature. One possibility is that it derives from a pattern of alternating spin and charge stripes, and this idea is supported by measurements on stripe-ordered La(1.875)Ba(0.125)CuO(4) (ref. 15). Many copper oxides without stripe order, however, also exhibit an hour-glass spectrum. Here we report the observation of an hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the family of superconducting copper oxides. Our system has stripe correlations and is an insulator, which means that its magnetic dynamics can conclusively be ascribed to stripes. The results provide compelling evidence that the hour-glass spectrum in the copper oxide superconductors arises from fluctuating stripes.

  14. Effect of silver nanoparticles on spectroscopic properties of Er3+ doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Soltani, I.; Hraiech, S.; Horchani-Naifer, K.; Elhouichet, H.; Férid, M.

    2015-08-01

    The Er3+ doped zinc phosphate glasses containing Ag nanoparticles (Ag NPS) were synthesized from high purity raw materials by melt quenching method. The transmission electron microscopic (TEM) images confirm the presence of spherical silver NPs having average diameter in the range of 20-40 nm. A wide absorption band peaking at about 403 nm was observed due to surface plasmon resonance (SPR) of Ag NPs. The Judd-Ofelt (JO) parameters Ω2, Ω4 and Ω6, were determined for Er3+ ions using the absorption bands. The quality factor was determined and is found to be in the same order (0.52-1.12) than other host glasses. The enhanced photoluminescence (PL) intensity with Ag adding was attributed to the increased local field on the Er3+ ions located in the proximity of the NPs and/or the energy transfer from the metallic Ag NPs to the Er3+ ions. The absorption and emission cross-sections are calculated and determined for the 4I13/2 → 4I15/2 transition and then compared with other reported doped glasses. The phosphate glasses are promising gain media for developing the solid-state 1.53 μm optical amplifiers.

  15. Intense red upconversion emission of Yb/Tm/Ho triply-doped tellurite glasses.

    PubMed

    Zhan, Huan; Zhou, Zhiguang; He, Jianli; Lin, Aoxiang

    2012-05-20

    By conventional melting and quenching methods, 3Yb2O3-0.2Tm2O3-xHo2O3 (wt%, x=0.2~1.2) was doped into an easily fiberized tellurite glass with composition of 78TeO2-10ZnO-12Na2O (mol%) to form YTH-TZN78 glasses. Under 976 nm excitation, the direct sensitizing effect of Yb ions (Yb→Ho) and indirect sensitizing and self-depopulating effects of Tm ions (Yb→Tm→Ho) were found to present intense red upconversion emission at 657 nm (Red, Ho:5F5→5I8) and were responsible for the absence of the usually observed 484 nm emission (Blue, Tm:1G4→3H36). Regardless of the dopant concentration of Ho ions, the intensity of the red emission at 657 nm (Red, Ho:5F5→5I8) is about three times stronger than that of the green one at 543 nm (Green, Ho:5S2→5I8). For this certain red emission at 657 nm, 0.4 wt% Ho2O3-doped YTH-TZN78 glass was found to present the highest emission intensity and is therefore determined as a promising active tellurite glass for red fiber laser development.

  16. Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Yousef, El Sayed; Elokr, M. M.; AbouDeif, Y. M.

    2016-03-01

    Novel quaternary tellurite glasses within the composition 75TeO2-10Nb2O5-10ZnO-5PbO (TNZP) doped with the following Er3+ concentrations: 2500, 3750, 5000, 6250, 7500 and 8750 ppm have been prepared by using conventional melt quenching method. The thermal parameters, such as the glass transition temperature (Tg), crystallization temperature (Tc) and thermal stability (ΔТ) were determined. It is described that this system shows a stable glass formation, high thermal stability and low tendency crystallization. The linear refractive index, n, the optical energy gap, Eg, the nonlinear refractive index, n2, two photon absorption TPA, third order susceptibility, χ(3), of prepared glasses have been determined. Moreover elastic properties like longitudinal (λ), shear (μ), Bulk (β) and Young's (Y) moduli, Poisson's ratio, Debye temperature, and the microhardness of the glasses were evaluated by measuring both longitudinal and shear velocities using the pulse-echo overlap technique at 5 MHz. The present glasses is a promising candidate for optical application.

  17. NIR emission studies and dielectric properties of Er3+-doped multicomponent tellurite glasses

    NASA Astrophysics Data System (ADS)

    Sajna, M. S.; Thomas, Sunil; Jayakrishnan, C.; Joseph, Cyriac; Biju, P. R.; Unnikrishnan, N. V.

    2016-05-01

    Multicomponent tellurite glasses containing altered concentrations of Er2O3 (ranging from 0 to 1 mol%) were prepared by the standard melt quenching technique. Investigations through energy dispersive X-ray spectroscopy (EDS), Raman scattering spectroscopy, Fourier transform infrared (FTIR) spectroscopy, near-infrared (NIR) emission studies and dielectric measurement techniques were done to probe their compositional, structural, spectroscopic and dielectric characteristics. The broad emission together with the high values of the effective linewidth (~ 63 nm), stimulated emission cross-section (9.67 × 10- 21 cm2) and lifetime (2.56 ms) of 4I13/2 level for 0.5 mol% of Er3+ makes these glasses attractive for broadband amplifiers. From the measured capacitance and dissipation factor, the relative permittivity, dielectric loss and the conductivity were computed; which furnish the dielectric nature of the multicomponent tellurite glasses that depend on the applied frequency. Assuming the ideal Debye behavior as substantiated by Cole-Cole plot, an examination of the real and imaginary parts of impedance was performed. The power-law and Cole-Cole parameters were resolved for all the glass samples. From the assessment of the emission analysis and dielectric properties of the glass samples, it was obvious that the Er3+ ion concentration had played a vital role in tuning the optical and dielectric properties and the 0.5 mol% of Er3+ -doped glass was confirmed as the optimum composition.

  18. NIR emission studies and dielectric properties of Er(3+)-doped multicomponent tellurite glasses.

    PubMed

    Sajna, M S; Thomas, Sunil; Jayakrishnan, C; Joseph, Cyriac; Biju, P R; Unnikrishnan, N V

    2016-05-15

    Multicomponent tellurite glasses containing altered concentrations of Er2O3 (ranging from 0 to 1 mol%) were prepared by the standard melt quenching technique. Investigations through energy dispersive X-ray spectroscopy (EDS), Raman scattering spectroscopy, Fourier transform infrared (FTIR) spectroscopy, near-infrared (NIR) emission studies and dielectric measurement techniques were done to probe their compositional, structural, spectroscopic and dielectric characteristics. The broad emission together with the high values of the effective linewidth (~63 nm), stimulated emission cross-section (9.67 × 10(-21) cm(2)) and lifetime (2.56 ms) of (4)I13/2 level for 0.5 mol% of Er(3+) makes these glasses attractive for broadband amplifiers. From the measured capacitance and dissipation factor, the relative permittivity, dielectric loss and the conductivity were computed; which furnish the dielectric nature of the multicomponent tellurite glasses that depend on the applied frequency. Assuming the ideal Debye behavior as substantiated by Cole-Cole plot, an examination of the real and imaginary parts of impedance was performed. The power-law and Cole-Cole parameters were resolved for all the glass samples. From the assessment of the emission analysis and dielectric properties of the glass samples, it was obvious that the Er(3+) ion concentration had played a vital role in tuning the optical and dielectric properties and the 0.5 mol% of Er(3+) -doped glass was confirmed as the optimum composition.

  19. FTIR spectra and thermal properties of TiO2-doped iron phosphate glasses

    NASA Astrophysics Data System (ADS)

    Lu, Mingwei; Wang, Fu; Liao, Qilong; Chen, Kuiru; Qin, Jianfa; Pan, Sheqi

    2015-02-01

    Structure and thermal properties of xTiO2·(90 - x) (60P2O5-40Fe2O3)ṡ10CaF2 (x = 0, 5, 10, 15, 20 and 25 mol%) glasses are investigated in detail by Fourier Transform Infrared Spectrum (FTIR) and Differential Thermal Analysis (DTA), respectively. It is found that incorporation of TiO2 increase the density and glass transition temperature of iron phosphate system glass. The increment of doped-TiO2 can also strengthen phosphate network chains due to increasing O/P ratios and more orthophosphate (Q0) units formed in the glass structure at expense of pyrophosphate (Q1) units and metaphosphate (Q2) groups. Moreover, the structure of iron phosphate glass with TiO2 content contain distorted octahedral [TiO6] linked to phosphate unit through Psbnd Osbnd Ti bonds, thus enhanced structure cohesion and increased density obtained. The knowledge provides an improved understanding of the role of TiO2 in the structure of iron phosphate glasses.

  20. Structural and optical characterization of Er3+ doped zinc telluroborate glasses for green laser applications

    NASA Astrophysics Data System (ADS)

    Annapoorani, K.; Ravindran, T. R.; Murthy, N. Suriya; Marimuthu, K.

    2015-06-01

    A new series of Erbium doped Zinc telluroborate glasses were prepared by melt quenching technique. The stretching and bending vibrations of the B-O and Te-O bonds in the prepared glass network were explored through Raman spectra. The nature of the metal-ligand bond was determined using optical absorption spectra through Nephelauxetic ratio (β) and Bonding parameter (δ) studies. The Judd-Ofelt (JO) parameters (Ω2, Ω4, Ω6) and the oscillator strengths were calculated following JO theory. The relatively higher Ω2 values reveal the higher asymmetry nature. The green emission corresponding to the 2H11/2+4S3/2→4I15/2 transition was observed at around 550 nm and the luminescence quenching occurs beyond 1.0 wt% of Erbium ion concentration. Radiative properties for the 1.0EZTB glass are found to be higher and its suitability towards green laser applications were discussed and reported.

  1. Extruded channel waveguides in a neodymium-doped lead-silicate glass for integrated optic applications

    NASA Astrophysics Data System (ADS)

    Mairaj, Arshad K.; Feng, Xian; Hewak, Daniel W.

    2003-10-01

    We report on the development of channel waveguides in a lead-silicate glass through the extrusion technique. An extruded glass slab with four imbedded fibers each with core size of 8 by 2.5 μm in the horizontal and vertical directions was manufactured. These neodymium-doped channel waveguides were in single-mode operation at 808 nm and had attenuation of 0.1 dB cm-1 at 1.06 μm. The measured 4F3/2 lifetime of 488 μs and emission cross section of 2.5×10-20 cm2 were in good agreement with reported values. The integration of multiple glass variants into a single compact platform is presented as a manufacturing route for complex integrated optical waveguides.

  2. Effect of gallium environment on infrared emission in Er3+-doped gallium– antimony– sulfur glasses

    NASA Astrophysics Data System (ADS)

    Jiao, Qing; Li, Ge; Li, Lini; Lin, Changgui; Wang, Guoxiang; Liu, Zijun; Dai, Shixun; Xu, Tiefeng; Zhang, Qinyuan

    2017-01-01

    Gallium-based Ga–Sb–S sulfide glasses was elaborated and studied. A relationship between the structure, composition, and optical properties of the glass has been established. The effects of the introduction of Ga on the structure using infrared and Raman spectroscopies and on the Er3+-doped IR emission have been discussed. The results show that incorporation of Ga induced the dissociation of [SbS3] pyramids units and the formation of tetrahedral [GaS4] units. The dissolved rare earth ions are separated around the Ga–S bonding and the infrared emission quenching are controlled. Moreover, continuous introduction of Er ions into the glass forms more Er–S bonds through the further aggregation surrounding the [GaS4] units. In return, the infrared emission intensity decreased with excessive Er ion addition. This phenomenon is correlated with the recurrence concentration quenching effect induced by the increase of [GaS4] units.

  3. Effect of gallium environment on infrared emission in Er3+-doped gallium– antimony– sulfur glasses

    PubMed Central

    Jiao, Qing; Li, Ge; Li, Lini; Lin, Changgui; Wang, Guoxiang; Liu, Zijun; Dai, Shixun; Xu, Tiefeng; Zhang, Qinyuan

    2017-01-01

    Gallium-based Ga–Sb–S sulfide glasses was elaborated and studied. A relationship between the structure, composition, and optical properties of the glass has been established. The effects of the introduction of Ga on the structure using infrared and Raman spectroscopies and on the Er3+-doped IR emission have been discussed. The results show that incorporation of Ga induced the dissociation of [SbS3] pyramids units and the formation of tetrahedral [GaS4] units. The dissolved rare earth ions are separated around the Ga–S bonding and the infrared emission quenching are controlled. Moreover, continuous introduction of Er ions into the glass forms more Er–S bonds through the further aggregation surrounding the [GaS4] units. In return, the infrared emission intensity decreased with excessive Er ion addition. This phenomenon is correlated with the recurrence concentration quenching effect induced by the increase of [GaS4] units. PMID:28106143

  4. Spectroscopic study of Er:Sm doped barium fluorotellurite glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2010-09-15

    In this paper, we report the physical and spectroscopic properties of Er(3+), Sm(3+) and Er(3+):Sm(3+) ions codoped barium fluorotellurite (BFT) glasses. Different Stokes and anti-Stokes emissions were observed under 532 nm and 976 nm laser excitations. Energy transfer from Er(3+) ion to Sm(3+) ion was confirmed on the basis of luminescence intensity variation and decay curve analysis in both the cases. Under green (532 nm) excitation emission intensity of Sm(3+) ion bands improves whereas on NIR (976 nm) excitation new emission bands of Sm(3+) ions were observed in Er:Sm codoped samples. Ion interactions and the different energy transfer parameters were also calculated.

  5. White light simulation and luminescence studies on Dy3+ doped Zinc borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Venkataiah, G.; Marimuthu, K.

    2015-01-01

    The Dy3+ doped Zinc borophosphate glasses with the chemical composition (79-x)B2O3+xP2O5+10Li2O+10ZnO+1Dy2O3 (where x=0, 10, 20, 30 and 50 in wt%) have been prepared by melt quenching technique. The prepared glass samples were characterized through optical absorption, emission and decay measurements. The bonding parameters, optical band gap and Urbach's energy values were calculated from the optical absorption spectra to explore the bonding nature of the Dy-O metal ligand and electronic band structure of the studied glasses. Judd-Ofelt (JO) intensity parameters were calculated from the absorption spectra by using the JO theory and it gives information about symmetry of the ligand environment around the Dy3+ ion site. The Y/B intensity ratio and radiative properties were obtained from the emission spectra and the results were compared with the reported literature. The x, y chromaticity color coordinates of the studied glasses were analyzed using a CIE 1931 color chromaticity diagram and found that the x, y coordinates lie in the white light region. The decay curve measurements of the prepared glasses exhibit non-exponential behavior and are well fitted to Inokuti-Hirayama (IH) model to understand the energy transfer mechanism between Dy3+ ions. The Q, R0 and CDA values of the prepared Dy3+ doped glasses were obtained from the IH model and the results were discussed and compared with the reported literature.

  6. CONTROL OF LASER RADIATION PARAMETERS: Passive laser Q switches made of glass doped with oxidised nanoparticles of copper selenide

    NASA Astrophysics Data System (ADS)

    Yumashev, K. V.

    2000-01-01

    Passive Q switching of Nd3+:YAG (λ = 1060 nm) and YAlO3:Nd3+ (1340 nm) lasers, as well as of an Er3+ (1540 nm) glass laser was realised by using glass doped with oxidised nanoparticles of copper selenide. Nonlinear optical properties of the nanoparticles (radius of 25 nm) in a glass matrix were studied by the picosecond absorption spectroscopy technique.

  7. Fabrication of SiO2-GeO2 Glass Optical Waveguides by the Gas-Phase Doping Method

    NASA Astrophysics Data System (ADS)

    Kondo, Osamu; Hirata, Masukazu; Arii, Mitsuzo

    1990-12-01

    A new method of fabricating silica glass optical waveguides has been developed. Porous silica glasses made by the sol-gel method were used as substrates, into which a dopant was introduced by utilizing the adsorption equilibrium between porous glass and vapor of the relevant dopant material. Index distributions within the glass were produced by placing the doped glass under reduced pressure to outgas the dopant from the surface of the glass, followed by transforming the dopant into oxide by hydrolysis, and then the porous glass was densified to give nonporous glass. Combining this method with the selective photopolymerization method, where the undesired portion of pores was clogged by polymer, 3D waveguides have been fabricated. The SiO2-GeO2 waveguides thus fabricated have index differences of more than 0.02 with the propagation loss of less than 1 dB/cm.

  8. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    SciTech Connect

    Vasileva, A.A.; Nazarov, I.A.; Olshin, P.K.; Povolotskiy, A.V.; Sokolov, I.A.; Manshina, A.A.

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  9. ROLE OF THE NETWORK FORMER IN SEMICONDUCTING OXIDE GLASSES.

    DTIC Science & Technology

    SEMICONDUCTOR DEVICES, *GLASS), (*ELECTRICAL NETWORKS, GLASS), ELECTRICAL PROPERTIES, SEEBECK EFFECT , BORATES, PHOSPHATES, ELECTRICAL RESISTANCE, X RAY DIFFRACTION, ANNEALING, OXIDATION, OXIDES, ELECTRODES, VANADIUM

  10. Chalcogenide glasses for infrared applications: New synthesis routes and rare earth doping

    NASA Astrophysics Data System (ADS)

    Hubert, Mathieu

    shift the optical band gap toward higher wavelengths. A systematic ceramization study emphasizes the difficulty of controlling the crystallization for glasses in the systems GeSe2-Ga2Se3-In2Se 3 and GeSe2-Ga2Se3-PbSe. No crystallization of the In2Se3 and PbSe crystalline phase was obtained. Finally, the possibility of producing rare-earth doped 80GeSe2 -20Ga2Se3 glass-ceramics transparent in the infrared region up to 16 microm is demonstrated. Enhanced photoluminescence intensity and reduced radiative lifetimes are observed with increased crystallinity in these materials.

  11. Correlation of ion dynamics and structure of superionic tellurite glasses

    SciTech Connect

    Dutta, D.; Ghosh, A.

    2008-01-28

    Ion dynamics and structure of a series of superionic AgI-doped silver tellurite glasses have been investigated in this paper. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. We have observed that the conductivity increases and the activation energy decreases with increase of AgI content and that the tellurite glasses have higher conductivity than those for phosphate or borate glasses. We have analyzed the ac electrical data in the framework of the power law and the electric modulus formalisms. We have established a correlation between the crossover rate of the mobile silver ions and the rearrangement of the structural units in tellurite glasses. The scaling of the conductivity spectra has been used to interpret the temperature and composition dependence of the relaxation dynamics. Analysis of the dielectric relaxation in the framework of modulus formalism indicates an increase in the ion-ion cooperation in the glass compositions with increasing AgI content.

  12. Influence of Nd3+ ions on TL characteristics of Li2O-MO-B2O3 (MO = ZnO, CaO, CdO) glass system

    NASA Astrophysics Data System (ADS)

    Anjaiah, J.; Laxmikanth, C.; Lyobha, Cephas John; Veeraiah, N.; Kistaiah, P.

    2015-02-01

    Thermoluminescence (TL) characteristics of X-ray irradiated pure and doped with Nd3+ ions glasses have been studied in the temperature range 303-573 K; all the pure glasses have exhibited single TL peak at 382, 424 and 466 K, respectively. When these glasses are doped with Nd3+ ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Nd3+-doped glasses mixed with cadmium oxide as modifier. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that neodymium (Nd)-doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  13. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Moretti, F.; Vedda, A.; Nikl, M.; Nitsch, K.

    2009-04-01

    The optical and structural properties of terbium doped sodium gadolinium phosphate glasses of three different compositions subjected to a crystallization process were studied and compared with those of the parent glassy samples. The structural characteristics of the glassy and crystallized phases were determined by Raman spectroscopy and the results showed a remarkable reduction in the full width at half maximum of the Raman peaks after crystallization. Radio-luminescence measurements revealed the emissions of both Gd3+ and Tb3+ ions. Their intensities strongly increased and their intensity ratio was modified by the crystallization. The luminescence temperature dependence investigated by radio-luminescence measurements in the temperature interval from 10 to 310 K became more complicated after crystallization. The role of free carrier trapping phenomena in the modification of the radio-luminescence efficiency was also studied by thermally stimulated luminescence.

  14. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics.

    PubMed

    Moretti, F; Vedda, A; Nikl, M; Nitsch, K

    2009-04-15

    The optical and structural properties of terbium doped sodium gadolinium phosphate glasses of three different compositions subjected to a crystallization process were studied and compared with those of the parent glassy samples. The structural characteristics of the glassy and crystallized phases were determined by Raman spectroscopy and the results showed a remarkable reduction in the full width at half maximum of the Raman peaks after crystallization. Radio-luminescence measurements revealed the emissions of both Gd(3+) and Tb(3+) ions. Their intensities strongly increased and their intensity ratio was modified by the crystallization. The luminescence temperature dependence investigated by radio-luminescence measurements in the temperature interval from 10 to 310 K became more complicated after crystallization. The role of free carrier trapping phenomena in the modification of the radio-luminescence efficiency was also studied by thermally stimulated luminescence.

  15. UV light induced red emission in Eu3+-doped zincborophosphate glasses

    NASA Astrophysics Data System (ADS)

    Hima Bindu, S.; Siva Raju, D.; Vinay Krishna, V.; Rajavardhana Rao, T.; Veerabrahmam, K.; Linga Raju, Ch.

    2016-12-01

    This paper reports the preparation of transparent zincborophosphate (ZBP) glasses doped with Eu3+ ions by the conventional melt quenching technique. The prepared glasses were characterized using powder XRD, FTIR, optical absorption, photoluminescence and decay curves. Judd-Ofelt (JO) intensity parameters calculated under various constraints using absorption and emission spectra. These JO intensity parameters have been used to predict the radiative properties such as radiative life time, branching ratios and stimulated emission cross section of the 5D0→7FJ (J = 0-4) transitions. Decay curves for the 5D0 level of Eu3+ ions shows single exponential for all concentrations. Luminescence properties of 5D0→7F2 transitions of Eu3+ions have revealed that the present ZBP:Eu3+ glasses have significant in optical applications at around 613 nm. An intense red luminescence has been observed due to 5D0→7F2 transition of Eu3+ ion in these glasses. From the CIE color coordinate diagram, it is observed that the present glass system is prominent material for red emission.

  16. Synthesis and properties of ZnTe and Eu3+ ion co-doped glass nanocomposites

    NASA Astrophysics Data System (ADS)

    Rahaman Molla, Atiar; Tarafder, Anal; Dey, Chirantan; Karmakar, Basudeb

    2014-10-01

    In this study, ZnTe (II-VI) semiconductor and Eu+3-ion co-doped borosilicate glass has been prepared in the SiO2-K2O-CaO-BaO-B2O3 glass system followed by controlled heat-treatment to produce glass nanocomposites. Glass transition temperature and crystallization peak temperature have been evaluated using DSC analysis. Dilatometric studies were carried out to evaluate thermal expansion co-efficient, glass transition temperature, and dilatometric softening temperature and found to be 10.7 × 10-6/K, 580° C and 628° C, respectively. TEM micrographs demonstrate formation of nano sized crystallites of less than 50 nm. The ZnTe crystal formation also established through selected area electron diffraction (SAED) analysis and high resolution images obtained through TEM studies. With increasing heat treatment time, optical transmission cut-off wavelength (λcut-off) shifted towards higher wavelength. Excitation spectra were recorded by monitoring emission at 613 nm corresponding to the 5D0 → 7F2 transition. An intense 394 nm excitation band corresponding to the 7F0 → 5L6 transition was observed. Emission spectra were then recorded by exciting the glass samples at 394 nm. When the glass is heat-treated for 30 min at 610° C, a 6-fold increase in the intensity of the red emission at 612 nm has been observed, which is attributed to the segregation of Eu3+ ions into the low phonon energy ZnTe crystallites and as the size of the nanocrystals is smaller than the size of the exciton, quantum confinement effect is visible. Further increase in heat-treatment duration led to decrease in luminescence intensity due to the growth of larger size crystals. 5D1 → 7F0 transition is visible only in the samples heat-treated for 30 min and 1 h, which is a characteristic of presence of Eu3+ ions in the low phonon energy ZnTe crystal sites. The micro hardness of the precursor glass and glass nanocomposites was evaluated; base glass shows hardness of 6.7 GPa and hardness of heat

  17. Direct laser writing of topographic features in semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing

  18. Fabrication and luminescence behavior of phosphate glass ceramics co-doped with Er3+ and Yb3+

    NASA Astrophysics Data System (ADS)

    Yu, Xiaochen; Duan, Li; Ni, Lei; Wang, Zhuo

    2012-08-01

    Transparent phosphate glass ceramics co-doped with Er3+ and Yb3+ in the system P2O5Li2OCaF2TiO2 were successfully synthesized by melt-quenching and subsequent heating. Formation of the nanocrystals was confirmed by X-ray powder diffraction. Judd-Ofelt analyses of Er3+ ions in the precursor glasses and glass ceramics were performed to evaluate the intensity parameters Ω2,4,6. Under 975 nm excitation, intense upconversion (UC) and infrared emission (1545 nm) were observed in the glass ceramics by efficient energy transfer from Yb3+ to Er3+. The luminescence processes were explained and the emission cross section was calculated by Fuchtbauer-Ladenburg (F-L) formula. The results confirm the potential applications of Er3+/Yb3+ co-doped glass ceramics as laser and fiber amplifier media.

  19. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    NASA Astrophysics Data System (ADS)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  20. Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers

    NASA Astrophysics Data System (ADS)

    Amarnath Reddy, A.; Surendra Babu, S.; Vijaya Prakash, G.

    2012-11-01

    Optical properties of Erbium-doped sodium aluminum telluro-phosphate glasses with compositions of 48P2O5-21Na2O-23Al2O3-(8-x)TeO2-(x)Er2O3 (where x=2-7) were investigated. From the measured optical absorption spectra, Judd-Ofelt (JO) analysis has been carried out to predict radiative properties of doped Er3+ ion luminescent levels. The estimated emission cross sections were found to be more than other commonly available short-length optical amplifier (aluminosilicate) glasses. Relative emission intensity enhancement with the increase of Er3+ ion concentration is observed for the laser transition, 4I13/2→4I15/2 (at 1.53 μm). Higher emission lifetimes (4.2-6.23 ms), higher quantum efficiencies (44-65%) relative at higher Er3+ ion concentrations, high gain bandwidth and gain per unit length at 1.5 μm are the most notable features of these glasses for future optical amplifier applications.

  1. Time Evolution of Radiation-Induced Luminescence in Terbium-Doped Silicate Glass

    NASA Technical Reports Server (NTRS)

    West, Michael S.; Winfree, William P.

    1996-01-01

    A study was made on two commercially available terbium-doped silicate glasses. There is an increased interest in silicate glasses doped with rare-earth ions for use in high-energy particle detection and radiographic applications. These glasses are of interest due to the fact that they can be formed into small fiber sensors; a property that can be used to increase the spatial resolution of a detection system. Following absorption of radiation, the terbium ions become excited and then emit photons via 4f-4f electronic transitions as they relax back to the ground state. The lifetime of these transitions is on the order of milliseconds. A longer decay component lasting on the order of minutes has also been observed. While radiative transitions in the 4f shell of rare-earth ions are generally well understood by the Judd-Olfelt theory, the pr'esence of a longer luminescence decay component is not. Experimental evidence that the long decay component is due, in part, to the thermal release of trapped charge carriers will be presented. In addition, a theoretical model describing the time evolution of the radiation-induced luminescence will be presented.

  2. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Ruikun; Myers, John D.; Myers, Michael J.

    2001-04-01

    High power, high brightness fiber lasers have numerous potential commercial and military applications. Fiber lasers with cladding pump designs represent a new generation of diode pumped configurations that are extremely efficient, have single mode output and may be operated with or without active cooling. Kigre has invented a new family of Er/Yb/Nd phosphate laser glass materials (designated QX) that promise to facilitate a quantum leap in fiber laser technology of this field. The new phosphate glass Rare-Earth doped fiber exhibit many advantages than Silica or Fluoride base fiber, see table.1. Instead of 30 to 50 meters of fused silica with a 50 mm bend radii; Kigre's phosphate glass fiber amplifiers may be designed to be less than 4 meters long .Laser performance and various design parameters, such as the fiber core diameter, NA, inner cladding shape and doping concentration are evaluated. Laser performances was demonstrated for an experimental QX/Er doubled clading fiber commissioned by MIT having 8 micron core, a 240 X 300 micron rectangle shaped inner cladding with 0.4 NA and 500 micron outer clading.. Kigre obtained approximately 2 dB/cm gain from 15cm long fiber under 940nm pumping The same fiber was evaluated by researcher at MIT. They used 975nm pump source. Maximum 270mW output was demonstrated by 30 cm long fiber with Fresnel reflection resonator mirrors. The slope efficiency of absorbed pump power s 47%.

  3. Microscopic dynamics of the glass transition investigated by time-resolved fluorescence measurements of doped chromophores

    NASA Astrophysics Data System (ADS)

    Ye, Jing Yong; Hattori, Toshiaki; Nakatsuka, Hiroki; Maruyama, Yoshihiro; Ishikawa, Mitsuru

    1997-09-01

    The microscopic dynamics of several monomeric and polymeric glass-forming materials has been investigated by time-resolved fluorescence measurements of doped malachite green molecules in a wide temperature region. For monomers, 1-propanol, propylene glycol, and glycerol, and a polymer without side chains, poly- butadiene, the temperature dependence of nonradiative decay time of doped malachite green molecules behaves in a similar way through the glass-transition region. Besides a kink around the calorimetric glass-transition temperature Tg, another crossover at a critical temperature Tc about 30-50 K above Tg has been clearly observed. This experimental finding is in agreement with the prediction of the mode-coupling theory that a dynamical transition exists well above Tg. On the other hand, for the complex polymers with side chains, poly(vinyl acetate), poly(methyl acrylate), and poly(ethyl methacrylate), the crossover at Tg is less pronounced than those for the monomers and the polymer without side chains. Moreover, although we could not distinguish any singularities above Tg for these complex polymers, we observed another kink below Tg, which may be attributed to the side-chain motions.

  4. Optical studies on Eu{sup 3+} doped boro-tellurite glasses

    SciTech Connect

    Maheshvaran, K.; Marimuthu, K.

    2012-06-05

    Eu{sup 3+} doped boro-tellurite glasses with the chemical composition (39-x)B{sub 2}O{sub 3}+30TeO{sub 2}+15MgO+15K{sub 2}O +xEu{sub 2}O{sub 3} (where x = 0.01, 0.1, 1, 2 and 3 wt%) have been prepared by following conventional melt quenching technique. Spectroscopic properties of the Eu{sup 3+} doped boro-tellurite glasses have been studied by recording the optical absorption and luminescence measurements. Through the optical absorption spectra, bonding parameters ({beta}-bar, {delta}) have been calculated to identify the ionic/covalent nature of the glasses. Judd-Ofelt (JO) analysis have been carried out using the luminescence spectra. The JO parameters ({Omega}{sub {lambda}}= 2, 4 and 6) were used to calculate the radiative properties for the {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J = 1, 2, 3 and 4) emission transitions of the Eu{sup 3+} ions. The change in optical properties with the variation of Eu{sup 3+} ion concentration have been studied and discussed with similar studies.

  5. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells.

    PubMed

    Brown, Roger F; Rahaman, Mohamed N; Dwilewicz, Agatha B; Huang, Wenhai; Day, Delbert E; Li, Yadong; Bal, B Sonny

    2009-02-01

    Glasses containing varying amounts of B(2)O(3) were prepared by partially or fully replacing the SiO(2) in silicate 45S5 bioactive glass with B(2)O(3). The effects of the B(2)O(3) content of the glass on its conversion to hydroxyapatite (HA) and on the proliferation of MC3T3-E1 cells were investigated in vitro. Conversion of the glasses to HA in dilute (20 mM) K(2)HPO(4) solution was monitored using weight loss and pH measurements. Proliferation of MC3T3-E1 cells was determined qualitatively by assay of cell density at the glass interface after incubation for 1 day and 3 days, and quantitatively by fluorescent measurements of total DNA in cultures incubated for 4 days. Higher B(2)O(3) content of the glass increased the conversion rate to HA, but also resulted in a greater inhibition of cell proliferation under static culture conditions. For a given mass of glass in the culture medium, the inhibition of cell proliferation was alleviated by using glasses with lower B(2)O(3) content, by incubating the cell cultures under dynamic rather than static conditions, or by partially converting the glass to HA prior to cell culture.

  6. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    PubMed

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  7. The effect of codopants on spectral-kinetic characteristics of luminescence of scintillation glasses doped with terbium ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Polisadova, E. F.

    2016-10-01

    The effect of Ce3+ and Pr3+ ions on spectral-kinetic characteristics of luminescence of lithium-phosphate-borate glasses is studied. It is shown that terbium ion luminescence caused by transitions from 5 D 3 and 5 D 4 multiplets to the ground 7FJ term is detected in samples containing Tb3+/Ce3+ and Tb3+/Pr3+. It has been found that an increase in the concentration of cerium ions from 0.2 to 1 wt % leads to an increase in the intensity of main luminescence bands of terbium ions. In Tb3+/Pr3+ glasses, a decrease in the relative light yield is observed with an increase in the concentration of Pr3+ ions. Processes of energy transfer between Tb3+/Ce3+ and Tb3+/Pr3+ ions are discussed.

  8. Fluorescence properties and electron paramagnetic resonance studies of {gamma}-irradiated Sm{sup 3+}-doped oxyfluoroborate glasses

    SciTech Connect

    Babu, B. Hari; Ravi Kanth Kumar, V. V.

    2012-11-01

    The permanent photoinduced valence manipulation of samarium doped oxyfluoroborate glasses as a function of {gamma}-ray irradiation has been investigated using a steady-state fluorescence and electron paramagnetic resonance techniques. An increase in SrF{sub 2} content in the glass led to the red shift of the peaks in as prepared glass, while in irradiated glasses this led to the decrease in defect formation as well as increase in photoreduction of Sm{sup 3+} to Sm{sup 2+} ion. The energy transfer mechanism of induced permanent photoreduction of Sm{sup 3+} to Sm{sup 2+} ions in oxyfluoroborate glasses has been discussed. The decay analysis shows exponential behavior before irradiation and non-exponential behavior after irradiation. The energy transfer in irradiated glasses increases with the increase in SrF{sub 2} content in the glass and also with the irradiation dose.

  9. Luminescence properties of Sm(3+)-doped P(2)O(5)-PbO-Nb(2)O(5) glass under high pressure.

    PubMed

    Praveena, R; Venkatramu, V; Babu, P; Jayasankar, C K; Tröster, Th; Sievers, W; Wortmann, G

    2009-01-21

    Samarium doped lead phosphate glass modified with niobium having a composition (in mol%) of 55P(2)O(5)+39.5PbO+5Nb(2)O(5)+0.5Sm(2)O(3) has been prepared by the conventional melt quenching technique. The emission spectra and the decay curves for the (4)G(5/2) level of Sm(3+) ions have been measured as a function of pressure up to 23.6 GPa at room temperature. A discontinuity in the observed shifts and crystal-field splittings as a function of pressure around 9-10 GPa suggests that a phase transition is taking place in the glass matrix. The [Formula: see text], (6)H(7/2) and (6)H(9/2) transitions are shifted towards the lower energy side with magnitudes of -7.1, -7.6 and -5.5 cm(-1) GPa(-1) up to 8.9 GPa (phase 1) and -5.6, -4.9 and -4.4 cm(-1) GPa(-1) beyond 10.3 GPa (phase 2), respectively. A much stronger increase in the splitting of the [Formula: see text] and [Formula: see text] Stark levels with pressure is observed in phase 1 than in phase 2. The lifetime of the (4)G(5/2) level decreases from 2.29 ms (0 GPa) to 0.64 ms (23.6 GPa) with pressure. The decay curves of the (4)G(5/2) level exhibit non-exponential behavior for all the pressures and were fitted by the generalized Yokota-Tanimoto model to probe the nature of the energy transfer process. The best fits with S = 6 indicate that the energy transfer between donor and acceptor is of dipole-dipole type. The crystal-field splitting experienced by the Sm(3+) ions in the title glass are found to be larger than those found in borate, K-Ba-Al phosphate and tellurite glasses.

  10. Glass formation and structure of calcium antimony phosphate glasses and those doped with tellurium oxide

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Yin; Nian, Shangjiu; Wu, Zhenning; Cao, Weijing; Zhou, Nianying; Wang, Danian

    2017-03-01

    An approximate glass-forming region in the P2O5-Sb2O3-CaO ternary system was determined. The properties and structure of two compositional series of (A) (75- x)P2O5- xSb2O3-25CaO ( x = 20, 25, 30, 35 mol%) and (B) 45P2O5-30Sb2O3-(25- x)CaO- xTeO2 ( x = 5, 10, 15, 20 mol%) were studied systematically. Thermal properties were investigated by means of differential scanning calorimetry (DSC). The densities of all samples were measured by Archimedes' method using distilled water as the immersion liquid. The water durability of the glasses was described by their dissolution rate (DR) in the distilled water at 90 °C for some time periods. Density, thermal stability and water durability were improved with the addition of Sb2O3 and TeO2. Structural studies were carried out by X-ray diffraction (XRD), infrared spectroscopy and Raman spectroscopy. The phosphate chain depolymerization occurred with the increase of Sb2O3 and the Q2 structural units transformed to the Q1 and Q0 structural units with the addition of TeO2.

  11. Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate.

    PubMed

    Sayilkan, Funda; Asiltürk, Meltem; Kiraz, Nadir; Burunkaya, Esin; Arpaç, Ertuğrul; Sayilkan, Hikmet

    2009-03-15

    Pure anatase, nanosized and Sn(4+) ion doped titanium dioxide (TiO(2)) particulates (TiO(2)-Sn(4+)) were synthesized by hydrothermal process. TiO(2)-Sn(4+) was used to coat glass surfaces to investigate the photocatalytic antibacterial effect of Sn(4+) doping to TiO(2) against gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus). Relationship between solid ratio of TiO(2)-Sn(4+) in coatings and antibacterial activity was reported. The particulates and the films were characterized using particle size analyzer, zeta potential analyzer, Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), SEM, AAS and UV/VIS/NIR techniques. The results showed that TiO(2)-Sn(4+) is fully anatase crystalline form and easily dispersed in water. Increasing the solid ratio of TiO(2)-Sn(4+) from 10 to 50% in the coating solution increased antibacterial effect.

  12. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.

    PubMed

    Jiang, Chun

    2009-04-13

    The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

  13. Upconversion energy transfer in Yb3+/Tm3+ doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Żmojda, J.; Dorosz, D.; Kochanowicz, M.; Dorosz, J.

    2011-06-01

    The paper presents energy transfer in tellurite glass from the system TeO2 - GeO2 - PbO - PbF2- BaO - Nb2O5 - LaF3 doped with Yb3+/Tm3+ ions. Under the excitation of 976 nm laser a strong blue emission (477 nm) corresponding to the transition 1G4 --> 3H6 in thulium ions was observed. Analysing the influence of the content of Tm3+ ions on the level of luminescence obtained by the mechanism of upconversion it was established that the most effective energy transfer between Yb 3+--> Tm3+ ions took place in the matrix doped in the following proportion: 1 Yb3+:0.1 Tm3+ (%mol). Based on the non-resonant process of energy transfer between Yb3+ and Tm3+ ions the mechanism of upconversion was discussed.

  14. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    SciTech Connect

    Mandal, Ashis K.; Sinha, Prasanta K.; Das, Dipankar; Guha, Chandan; Sen, Ranjan

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  15. Absolute quantum cutting efficiency of Tb3+-Yb3+ co-doped glass

    NASA Astrophysics Data System (ADS)

    Duan, Qianqian; Qin, Feng; Zhao, Hua; Zhang, Zhiguo; Cao, Wenwu

    2013-12-01

    The absolute quantum cutting efficiency of Tb3+-Yb3+ co-doped glass was quantitatively measured by an integrating sphere detection system, which is independent of the excitation power. As the Yb3+ concentration increases, the near infrared quantum efficiency exhibited an exponential growth with an upper limit of 13.5%, but the visible light efficiency was reduced rapidly. As a result, the total quantum efficiency monotonically decreases rather than increases as theory predicted. In fact, the absolute quantum efficiency was far less than the theoretical value due to the low radiative efficiency of Tb3+ (<61%) and significant cross-relaxation nonradiative loss between Yb3+ ions.

  16. Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses

    SciTech Connect

    Okada, Go; Morrell, Brian; Koughia, Cyril; Kasap, Safa; Edgar, Andy; Varoy, Chris; Belev, George; Wysokinski, Tomasz; Chapman, Dean

    2011-09-19

    The measurement of spatially resolved high doses in microbeam radiation therapy has always been a challenging task, where a combination of high dose response and high spatial resolution (microns) is required for synchrotron radiation peaked around 50 keV. The x-ray induced Sm{sup 3+}{yields} Sm{sup 2+} valence conversion in Sm{sup 3+} doped fluorophosphates glasses has been tested for use in x-ray dosimetry for microbeam radiation therapy. The conversion efficiency depends almost linearly on the dose of irradiation up to {approx}5 Gy and saturates at doses exceeding {approx}80 Gy. The conversion shows strong correlation with x-ray induced absorbance of the glass which is related to the formation of phosphorus-oxygen hole centers. When irradiated through a microslit collimator, a good spatial resolution and high ''peak-to-valley'' contrast have been observed by means of confocal photoluminescence microscopy.

  17. First Tests of 6Li Doped Glass Scintillators for Ultracold Neutron Detection

    PubMed Central

    Ban, G.; Fléchard, X.; Labalme, M.; Lefort, T.; Liénard, E.; Naviliat-Cuncic, O.; Fierlinger, P.; Kirch, K.; Bodek, K.; Geltenbort, P.

    2005-01-01

    We report the results of test measurements aimed at determining the performances of 6Li doped glass scintillators for the detection of ultra-cold neutrons. Four types of scintillators, GS1, GS3, GS10 and GS20, which differ by their 6Li concentrations, have been tested. The signal to background separation is fully acceptable. The relative detection efficiencies have been determined as a function of the neutron velocity. We find that GS10 has a higher efficiency than the others for the detection of neutrons with velocities below 7 m/s. Two pieces of scintillators have been irradiated with a high flux of cold neutrons to test the radiation hardness of the glasses. No reduction in the pulse height has been observed up to an absorbed neutron dose of 1 × 1013 cm−3. PMID:27308137

  18. Spectroscopic Studies on Eu{sup 3+} Doped Boro-Tellurite Glasses

    SciTech Connect

    Selvaraju, K.; Marimuthu, K.

    2011-07-15

    Eu{sup 3+} doped boro-tellurite glasses have been synthesized and its optical behavior have been studied and reported. The presence of varying tellurium dioxide content results changes in spectroscopic behavoir were explored through UV-VIS, and Luminescence spectra. The bonding parameters have been calculated based on the observed band positions of the absorption spectra. The Judd-Ofelt intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4 and 6) have been determined through the luminescence spectra without applying any constraints and the results are presented. The Judd-Ofelt parameters have been used to determine various optical properties corresponding to {sup 5}D{sub 0}{yields}{sup 7}F{sub J}(J = 1,2,3 and 4) transitions of Eu{sup 3+} ions. The varying optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar studies.

  19. Optical band gap and structural study on GeO2- and Y2O3-doped barium aluminoborate glasses

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Fayad, A. M.

    2016-10-01

    A series of barium borate-based glasses containing Al2O3, GeO2 and Y2O3 were prepared by conventional method of glass melting and annealing. The prepared glasses were investigated through optical, FTIR, density and molar volume measurements. The optical absorption spectra reveal three characteristic UV absorption peaks at about 213, 240 and 308 nm. The optical absorption measurements were used to estimate direct and indirect transition of optical band gap ( E opt), Urbach energy (Δ E) and the refractive index ( n).Values of the optical parameters are found to be related to the structural changes that are taking place in the prepared glasses. The deconvoluted vibrational modes identified in the IR spectrum illustrated the conversion of triangular BO3 structural units to BO4 tetrahedral units with the addition of GeO2 or Y2O3. The formation of non-bridging oxygen atoms is assumed to lead to provide some favorable properties, mainly the optical properties and semiconducting behavior of the prepared glassy samples. Density and molar volume data are found to be dependent on the rigidity of the glass network.

  20. Concentration dependent luminescence properties of Dy3+ doped lead free zinc phosphate glasses for visible applications

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2016-10-01

    Dysprosium (Dy3+) doped lead free zinc phosphate glasses with chemical compositions (60 - x) NH4H2PO4 + 20ZnO + 10BaF2 + 10NaF + xDy2O3 (where x = 0.5, 1.0, 1.5, 2.0 mol%) have been prepared by melt quenching technique. The functional groups of vibrational bands have been assigned and clearly elucidated by FTIR and Raman spectral profiles for all these glass samples. Judd-Ofelt (J-O) intensity parameters (Ωλ: λ = 2, 4, 6) have been obtained from spectral intensities of different absorption bands of Dy3+ doped glasses. Radiative properties such as radiative transition probabilities ( A R ), radiative lifetimes ( τ R ), branching ratios ( β R ) and integrated absorption cross-sections ( Σ) for different excited states are calculated by using J-O parameters. Luminescence spectra exhibit three emission bands (from 4F9/2 level to 6H15/2, 6H13/2 and 6H11/2) for all the concentrations of Dy3+ ions before and after gamma irradiation. Various luminescence properties have been studied by varying the Dy3+ concentration for the three spectral profiles. Fluorescence decay curves of 4F9/2 level have been recorded. The energy transfer mechanism that leads to quenching of 4F9/2 state lifetime has been discussed by the variation of Dy3+ concentration. These glasses are expected to be useful for yellow luminescent materials.

  1. Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling

    NASA Astrophysics Data System (ADS)

    Venkata Krishnaiah, Kummara; Ledemi, Yannick; Soares de Lima Filho, Elton; Loranger, Sebastien; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-03-01

    Laser cooling with anti-Stokes fluorescencewas predicted by Pringsheim in 1929, but for solids was only demonstrated in 1995. There are many difficulties which have hindered laser assisted cooling, principally the chemical purity of a sample and the availability of suitable hosts. Recent progress has seen the cooled temperature plummet to 93K in Yb:YLF. One of the challenges for laser cooling to become ubiquitous, is incorporating the rare-earthcooling ion in a more easily engineered material, rather than a pure crystalline host. Rare-earth-doped nanocrystalline glass-ceramics were first developed by Wang and Ohwaki for enhanced luminescence and mechanical properties compared to their parent glasses. Our work has focused on creating a nanocrystalline environment for the cooling ion, in an easy to engineer glass. The glasses with composition 30SiO2-15Al2O3-27CdF2-22PbF2-4YF3-2YbF3 (mol%), have been prepared by the conventional melt-quenching technique. By a simple post fabrication thermal treatment, the rare-earth ions are embedded in the crystalline phase within the glass matrix. Nanocrystals with various sizes and rare-earth concentrations have been fabricated and their photoluminescence properties assessed in detail. These materials show close to unity photoluminescence quantum yield (PLQY) when pumped above the band. However, they exhibit strong up-conversion into the blue, characteristic of Tm trace impurity whose presence was confirmed. The purification of the starting materials is underway to reduce the background loss to demonstrate laser cooling. Progress in the development of these nano-glass-ceramics and their experimental characterization will be discussed.

  2. Ag nanoparticles enhanced near-IR emission from Er3+ ions doped glasses

    NASA Astrophysics Data System (ADS)

    Qi, Jiani; Xu, Tiefeng; Wu, Yi; Shen, Xiang; Dai, Shixun; Xu, Yinsheng

    2013-10-01

    Vitreous materials containing rare-earth (RE) ions and metallic nanoparticles (NPs) attract considerable interest because the presence of the NPs may lead to an intensification of luminescence. In this work, the characteristics of 1.54 μm luminescence for the Er3+ ions doped bismuthate glasses containing Ag NPs were studied under 980 nm excitation. The surface plasmon resonance (SPR) band of Ag NPs appears from 500 to 1500 nm. Transmission electron microscopic (TEM) image reveals that the Ag NPs are dispersed homogeneously with the size from 2 to 7 nm. The strength parameters Ωt(t = 2, 4, 6), spontaneous emission probability (A), radiative lifetime (τ) and stimulated emission section (σem) of Er3+ ions were calculated by the Judd-Ofelt theory. When the glass contains 0.2 wt% AgCl, the 1.54 μm fluorescence intensity of Er3+ reaches a maximum value, which is 7.2 times higher than that of glass without Ag NPs. The Ag NPs embedded glasses show significantly fluorescence enhancement of Er3+ ions by local field enhancement from SPR.

  3. Praseodymium doped NaYF4 nanocrystals in oxyfluoride glass-ceramics; morphological and spectroscopic studies.

    PubMed

    Dominiak-Dzik, G

    2009-04-01

    The synthesis, morphology, optical properties and excited state dynamics of the Pr-doped NaYF4 nanocrystals in glass-ceramics are presented. The crystalline cubic NaYF4:Pr were synthesized by the controlled heat-treatment of multicomponent oxyfluoride glass based on silica and YF3. A series of the two-hour heat treatments at 620-660 degrees C were carried out yielding visually transparent materials. Above 660 degrees C an opaque material was obtained. The crystalline phase was characterized by the X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The effect of ceramming temperature on the NaYF4:Pr cell parameter (a = 5.470 A for NaYF4 and 5.4899 A, 5.4979 A and 5.5378 A in glass-ceramics) and particle average size (15-40 nm) was observed. Optical characteristics of formed glass-ceramics were favorably affected by the Pr3+ ions in well-defined sites of NaYF4; emission intensities increased and luminescence decay curves become single exponential with the longer corresponding lifetimes.

  4. Eu3+ ion doped sodium-lead borophosphate glasses for red light emission

    NASA Astrophysics Data System (ADS)

    Kiran, Nallamala

    2014-05-01

    Sodium-lead borophosphate glasses doped with different concentrations of Eu3+ ion are prepared by using the melt quenching technique to study their physical, XRD FTIR and luminescence properties to understand the lasing potentialities of these glasses. The XRD studies confirm the amorphous nature of the glasses. FTIR spectrum indicates the presence of BO3 and PO4 structural units. From the emission spectra, Judd-Ofelt (J-O) intensity parameters have been evaluated from the transition 5D0 → 7FJ (J = 2 and 4). The evaluated (J-O) intensity parameters have been used to calculate the radiative transition probabilities, luminescence branching ratio and radiative decay times. The intensity ratio (R) value due to 5D0 → 7F2/5D0 → 7F1 transition intensity of Eu3+ ions, increase with increasing concentrations suggesting higher asymmetry and covalent bonding character between rare earth ion and oxygen ligands. The chromaticity coordinates were calculated and analyzed with Commission International deI'Eclairage color diagram. The lifetimes of 5D0 metastable state for the samples with different concentrations were also measured and discussed. The predicted and experimental lifetimes for the 5D0 level in sodium lead borophosphate glasses were compared and discussed in detail.

  5. Photoluminescence of Eu³⁺-doped glasses with Cu²⁺ impurities.

    PubMed

    Jiménez, José A

    2015-06-15

    Glasses activated with Eu(3+) ions are attractive as luminescent materials for various photonic applications. Co-doping with copper has been proposed for enhancing material optical properties, but the quenching effect of Cu(2+) impurities on Eu(3+) emission in glass remains largely unexplored. In this work, Eu2O3/CuO-containing barium-phosphate glasses have been prepared by the melt-quench method, and the Eu(3+) photoluminescence (PL) quenching resulting from Eu(3+)→Cu(2+) energy transfer was evaluated. Optical absorption spectroscopy showed that with the increase in CuO concentration the Cu(2+) absorption band resonant with Eu(3+) emission (e.g. (5)D0→(7)F2 transition around 615 nm) developed steadily. As a result, Eu(3+) PL was progressively quenched. Evaluation of the quenching constants as a function of temperature in the 298-673K range showed differences basically within experimental error, consistent with a resonant transfer and lack of phonon-assisted processes. Moreover, analysis of the Eu(3+) emission decay dynamics revealed a strong correlation between the decay rates and Cu(2+) impurity levels. Results imply that for practical applications the levels of Cu(2+) in Eu(3+)/Cu(+)-activated glasses should be reduced if not removed as these will significantly limit device efficiency.

  6. Spectroscopic properties of Er3+, Yb3 + and Er3 + /Yb3+ doped metaphosphate glasses.

    PubMed

    Speghini, A; Francini, R; Martinez, A; Tavernese, M; Bettinell, M

    2001-09-01

    The absorption and emission spectroscopies of Er3+ doped and Er3+/Yb3+ codoped Ca(PO3)2, Sr(PO3)2 and Ba(PO3)2 glasses have been studied. From the Judd-Ofelt intensity parameters, the spontaneous emission probabilities of some relevant transitions and the radiative lifetimes of several excited states of Er3+ have been calculated. The decay curves of the Er3+ emission at 1.5 microm have been measured at different temperatures. The data have been fitted using a stretched exponential function and the obtained experimental lifetimes have been compared with the calculated radiative lifetimes. The difference between the experimental and calculated lifetimes is attributed to the presence of traces of OH groups in the host glasses. The absolute OH content in some glasses has been determined from the infrared spectra. The emission spectra at 1.5 microm of the Er3+ ion in the codoped glasses have been measured at different temperatures. The integrated emission intensities decrease significantly on passing from room temperature to 13 K, suggesting a temperature dependence of the rate of the energy transfer process between Yb3+ and Er3+.

  7. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    NASA Astrophysics Data System (ADS)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  8. Modified magnetic and optical properties of manganese nanoparticles incorporated europium doped magnesium borotellurite glass

    NASA Astrophysics Data System (ADS)

    Aziz, Siti Maisarah; Sahar, M. R.; Ghoshal, S. K.

    2017-02-01

    This paper reports the modified optical and magnetic properties of europium (Eu3+) ions doped and Manganese nanoparticles (NPs) embedded Magnesium Borotellurite glass synthesized via melt quenching method. The influence of varying Mn NPs concentrations on the magnetic, absorption and emission properties of such glass samples are determined. Stables, transparent and amorphous glasses are obtained. The observed modification of the electronic polarizability is interpreted in terms of the generation of non-bridging oxygen (NBO) and bridging oxygen (BO) in the amorphous network. TEM images manifested the growth of Mn NPs with average diameter 11±1 nm. High-resolution TEM reveals that the lattice spacing of manganese nanoparticles is 0.308 nm at (112) plane. The emission spectra revealed four prominent peaks centered at 587 nm, 610 nm, 651 nm and 700 nm assigned to the transition from 5D0 →7FJ (J=1, 2, 3, 4) states of Eu3+ ion. A significant drop in the luminescence intensity due to the incorporation of Mn NPs is ascribed to the enhanced energy transfer from the Eu3+ ion to NPs. Prepared glass systems exhibited paramagnetic behavior.

  9. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles.

    PubMed

    Miola, Marta; Fucale, Giacomo; Maina, Giovanni; Verné, Enrica

    2015-10-20

    A bioactive silica-based glass powder (SBA2) was doped with silver (Ag(+)) ions by means of an ion-exchange process. Scanning electron microscopy (SEM), energy dispersion spectrometry (EDS) and x-ray diffraction (XRD) evidenced that the glass powder was enriched with Ag(+) ions. However, a small amount of Ag2CO3 precipitated with increased Ag concentrations in the exchange solution. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Ag-SBA2 towards Staphylococcus aureus were also evaluated and were respectively 0.05 mg ml(-1) and 0.2 mg ml(-1). Subsequently, Ag-SBA2 glass was used as filler (30%wt) in a commercial formulation of bone cement (Simplex(™) P) in order to impart both antibacterial and bioactive properties. The composite bone cement was investigated in terms of morphology (using SEM) and composition (using EDS); the glass powder was well dispersed and exposed on the cement surface. Bioactivity tests in simulated body fluid (SBF) evidenced the precipitation of hydroxyapatite on sample surfaces. Composite cement demonstrated antibacterial properties and a compressive strength comparable to the commercial formulation.

  10. Ni2+-doped new silicate glass-ceramics for broadband near infrared luminescence

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Cheng, Yin

    2016-12-01

    The new composite transparent spinel silicate glass-ceramics containing Ni2+-doped ZnGa2O4 and solid solution MgxZn1-xGa2O4 nanocrystals were fabricated by in situ controlled crystallization method. After heat treatment, the crystal phase content of ZnGa2O4 increase with increasing heat treatment temperature, and the Mg2+ ions could enter the crystal lattice of ZnGa2O4 to replace the Zn2+ ions and form a new solid solution MgxZn1-xGa2O4. The coordination environment of Ni2+ was changed from tetrahedral in glasses to octahedral sites in glass ceramics. The super-broadband infrared luminescence with full width at half maximum (FWHM) of about 400 nm overing 1.1-1.7 μm wavelength region and fluorescent lifetime of about 480 μs were observed from the glass ceramics containing MgxZn1-xGa2O4 nanocrystals. It is probably due to the variety of solid solution structure making Ni2+ ions enter two different octahedral sites. At the same time, the impact of heat treatment temperature and the concentration of NiO on peak position and intensity were also discussed. The results demonstrate that the method presented may be an effective way to fabricate super-broadband optical amplifiers and tunable lasers.

  11. Analysis of thermal and structural properties of germanate glasses co-doped with Yb3+/Tb3+ ions

    NASA Astrophysics Data System (ADS)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Dorosz, D.; Jelen, P.; Sitarz, M.

    2014-10-01

    In the work the new glass compositions in the GeO2-GaO-BaO system have been prepared and thermal, structural properties of in germanate glasses co-doped with Yb3+/Tb3+ions were studied. Glasses were obtained by conventional high-temperature melt-quenching technique. The study of the crystallization kinetics processes of glasses co-doped with 0.7Yb2O3:0.7Tb2O3 was performed with DSC measurements. The activation energies have been calculated using Freedman analysis and verified with the Flynn-Wall-Ozawa method. In this order, the DSC curves have been registered with different heating rates, between 5 and 15 degrees/min. The structure of fabricated glasses has been studied by infrared and Raman spectroscopes. The effect of heat treatment on the structural properties was determined. In all glass samples the dominated infrared absorbance band at 800 cm-1 corresponds to asymmetric stretching motions of GeO4 tetrahedra containing bridging (Ge-O(Ge)) and non-bridging (Ge-O-) oxygens. Additionally, the influence of heat treatment on the luminescent properties was evaluated. Strong luminescence at 489, 543, 586 and 621 nm corresponding to 5D4 → 7FJ (J = 6, 5, 4, 3) transitions was measured. The highest upconversion emission intensity was obtained in the germanate glass co-doped with 0.7Yb2O3/0.7Tb2O3.

  12. Analysis of thermal and structural properties of germanate glasses co-doped with Yb(3+)/Tb(3+) ions.

    PubMed

    Zmojda, J; Kochanowicz, M; Miluski, P; Dorosz, D; Jelen, P; Sitarz, M

    2014-10-15

    In the work the new glass compositions in the GeO2-GaO-BaO system have been prepared and thermal, structural properties of in germanate glasses co-doped with Yb(3+)/Tb(3+)ions were studied. Glasses were obtained by conventional high-temperature melt-quenching technique. The study of the crystallization kinetics processes of glasses co-doped with 0.7Yb2O3:0.7Tb2O3 was performed with DSC measurements. The activation energies have been calculated using Freedman analysis and verified with the Flynn-Wall-Ozawa method. In this order, the DSC curves have been registered with different heating rates, between 5 and 15 degrees/min. The structure of fabricated glasses has been studied by infrared and Raman spectroscopes. The effect of heat treatment on the structural properties was determined. In all glass samples the dominated infrared absorbance band at 800cm(-1) corresponds to asymmetric stretching motions of GeO4 tetrahedra containing bridging (Ge-O(Ge)) and non-bridging (Ge-O(-)) oxygens. Additionally, the influence of heat treatment on the luminescent properties was evaluated. Strong luminescence at 489, 543, 586 and 621nm corresponding to (5)D4→(7)FJ (J=6, 5, 4, 3) transitions was measured. The highest upconversion emission intensity was obtained in the germanate glass co-doped with 0.7Yb2O3/0.7Tb2O3.

  13. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses

    NASA Astrophysics Data System (ADS)

    Shao, Chongyun; Xu, Wenbin; Ollier, Nadege; Guzik, Malgorzata; Boulon, Georges; Yu, Lu; Zhang, Lei; Yu, Chunlei; Wang, Shikai; Hu, Lili

    2016-10-01

    Yb3+/Al3+ co-doped silica glasses with different Ce2O3 contents were prepared using the sol-gel method combined with high-temperature sintering. Changes in refractive index, absorption, emission and fluorescence lifetime of these glasses caused by X-ray irradiation were recorded and analyzed systematically. It is found that co-doping with certain amount of Ce could greatly improve the radiation resistance without evident negative effects on the basic optical properties of the Yb3+ ions in the near-infrared region. The nature of the radiation-induced color centres and the mechanism by which Ce prevented the formation of these centres were studied using optical absorption, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) methods. Direct evidence confirmed that trapped electron centres (Yb2+/Si-E'/Al-E') and trapped hole centres (Al-OHCs) were effectively inhibited by Ce doping, which was correlated to the coexistence of the redox couple Ce3+/Ce4+ in the glasses. These results are helpful to understand the micro-structural origin and the suppression mechanism by Ce co-doping of the photodarkening effect in Yb3+-doped silica fibers.

  14. Structural and spectroscopic studies on Er3+ doped boro-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Selvaraju, K.; Marimuthu, K.

    2012-04-01

    Er3+ doped boro-tellurite glasses with the chemical composition (69-x)B2O3-xTeO2-15MgO-15K2O-1Er2O3 (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er3+ ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters (βbar and δ) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters Ωλ (λ=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio (βR) and peak stimulated emission cross-section (σPE) for the excited state transitions 2H9/2→4I15/2 and 2H11/2 and 4S3/2→4I15/2 of the Er3+ ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (Eopt) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er3+ doped boro-tellurite glasses in the present study. The optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar results.

  15. Influence of Er{sup 3+} doping on microstructure of oxyfluoride glass-ceramics

    SciTech Connect

    Bao Feng; Wang Yuansheng . E-mail: yswang@fjirsm.ac.cn; Hu Zhongjian

    2005-10-06

    Oxyfluoride glasses with composition of 45SiO{sub 2}.20Al{sub 2}O{sub 3}.30PbF{sub 2}.5ZnF{sub 2} by molar ratio with a high stability against crystallization have been obtained by melt quenching. After doping with x (x = 1, 2, 4) mol% of Er{sup 3+} transparent or translucent glass-ceramics could be formed. The structural transformations of these materials were investigated by thermal analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Spherical polycrystalline aggregates comprised of many nanosized and randomly oriented {beta}-PbF{sub 2} grains were embedded separately among glassy matrix. On heating these nanosized grains merge with their neighbors to form bigger single crystals in a way like Ostwald ripening. The size modification of polycrystalline aggregates in the samples was found to be dependent on Er{sup 3+} doping.

  16. Towards mid-infrared fiber-lasers: rare earth ion doped, indium-containing, selenide bulk glasses and fiber

    NASA Astrophysics Data System (ADS)

    Sakr, H.; Tang, Z.; Furniss, D.; Sojka, L.; Moneim, N. A.; Barney, E.; Sujecki, S.; Benson, T. M.; Seddon, A. B.

    2014-02-01

    Chalcogenide glasses are promising materials for mid-infrared (IR) fiber lasers (i.e. 3 - 25 μm wavelength range). These glasses exhibit low phonon energies, together with large refractive indices, rare earth (RE-) ion solubility and sufficient mechanical and chemical robustness. Optical quality of the fiber is key. Gallium is known to promote RE-ion solubility in chalcogenide glasses, probably forming a [Pr(III)] - Se - [Ga(III)] associated type complex. Here, indium is investigated as an alternative additive to gallium in Pr3+-doped Ge-As-Se chalcogenide glasses. Indium has the same outer electronic structure as gallium. Moreover, indium has the advantage of being heavier than gallium, potentially promoting a lower phonon-energy, local environment of the RE-dopant. Zero to ~2000 ppmw (nominal parts per million by weight) Pr3+- doped Ge-As-In-Se bulk glasses are prepared using the melt-quench method. ~500 ppmw Pr3+- doped Ge-As-In-Se, optically-clad fiber is realized via fiber-drawing of extruded fiberoptic preforms. Fiber absorption and emission spectra are collected and compared with those of the bulk glasses.

  17. Making Glasses Conduct: Electrochemical Doping of Redox-Active Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Boudouris, Bryan

    Optoelectronically-active macromolecules have been established as promising materials in myriad organic electronic applications (e.g., organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices). To date, however, the majority of the work surrounding these materials has focused on materials with a great deal of conjugation along their macromolecular backbones and with varying degrees of crystalline structure. Here, we describe an emerging class of macromolecular charge conductors, radical polymers, that: (1) do not contain conjugation and (2) are completely amorphous glasses. Radical polymers contain non-conjugated macromolecular backbones and stable radical sites along the side chains of the electronically-active materials. In contrast to conjugated polymer systems, these materials conduct charge in the solid state through oxidation-reduction (redox) reactions along these pendant groups. Specifically, we demonstrate that controlling the chemical functionality of the pendant groups and the molecular mobility of the macromolecular backbones significantly impacts the charge transport ability of the pristine (i.e., not doped) radical polymers species. Through proper control of these crucial parameters, we show that radical polymers can have electrical conductivity and charge mobility values on par with commonly-used conjugated polymers. Importantly, we also highlight the ability to dope radical polymers with redox-active small molecule species. This doping, in turn, increases the electrical conductivity of the glassy radical polymer thin films in a manner akin to what is observed in traditional conjugated polymer systems. In this way, we establish a means by which to fabricate optically-transparent and colorless thin film glasses capable of conducting charge in a rather rapid manner. We anticipate that these fundamental insights will prove crucial in developing new transparent conducting layers for future electronic applications.

  18. On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations.

    PubMed

    Ainsworth, Richard I; Christie, Jamieson K; de Leeuw, Nora H

    2014-10-21

    First-principles and classical molecular dynamics simulations of undoped and silver-doped phosphate-based glasses with 50 mol% P2O5, 0-20 mol% Ag2O, and varying amounts of Na2O and CaO have been carried out. Ag occupies a distorted local coordination with a mean Ag-O bond length of 2.5 Å and an ill-defined first coordination shell. This environment is shown to be distorted octahedral/trigonal bipyramidal. Ag-O coordination numbers of 5.42 and 5.54-5.71 are calculated for first-principles and classical methodologies respectively. A disproportionation in the medium-range phosphorus Q(n) distribution is explicitly displayed upon silver-doping via CaO substitution, approximating 2Q(2)→Q(1) + Q(3), but not on silver-doping via Na2O substitution. An accompanying increase in FWHM of the phosphorus to bridging oxygen partial pair-correlation function is strong evidence for a bulk structural mechanism associated with decreased dissolution rates with increased silver content. Experimentally, Ag2O ↔ Na2O substitution is known to decrease dissolution and we show this to be a result of Ag's local bonding.

  19. Mineral oil soluble borate compositions

    SciTech Connect

    Dulat, J.

    1981-09-15

    Alkali metal borates are reacted with fatty acids or oils in the presence of a low hlb value surfactant to give a stable mineral oil-soluble product. Mineral oil containing the borate can be used as a cutting fluid.

  20. Engineering of the extraordinary optical transmission of metallic gratings via Er3+-doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Silva, O. B.; Rivera, Victor A. G.; Marega, E.

    2015-03-01

    Although the properties of extraordinary optical transmission (EOT) due surface plasmon polariton (SPP), which are coupled in metallic slits have been widely studied in the last two decades, their influence on the absorption and transmission spectra from their dielectric substrates has not been deserved the same attention. The choice of a good substrate for implementation not just for gratings, but also for other devices, it is extremely important in order to achieve great applications of the EOT. Good candidates to replace the conventional semiconductor based substrates are the rare earth ions (REI) doped glasses. The specific case of Erbium ions and its implementation into glasses for the fabrication of fiber optics, as Erbium doped fiber amplifiers (EDFA). The transmission observed through the plasmonic nanostructures is elucidated considering the following effects: (i) white light absorption by the Er3+ ions, (ii) coupling between the light and the nanostructure via the creation of surface plasmon polariton where the wavelengths with minimums transmission corresponds to the 4I15/2 → [2H9/2, 4F3/2, 4F5/2, 4F7/2, 2H11/2, 4S3/2, 4F9/2] absorption levels the Er3+, which propagates through the slits, and, finally, (iii) the Er3+ transmission intensity and the spectral shape -symmetry depend on the nature of metallic film and the number of slits constituting the arrays, for which the resonant properties are strongly affected. Furthermore, in order to compare the influence of substrate in the transmission properties, we also performed the same measurements on slit arrays fabricated on the BK 7 glass.

  1. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser

    PubMed Central

    Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin

    2016-01-01

    Highly Tm3+ doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6 × 1020 ions/cm3, being the reported highest level in Tm3+ doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm3+ doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm3+ doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber. PMID:26828920

  2. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin

    2016-02-01

    Highly Tm3+ doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6 × 1020 ions/cm3, being the reported highest level in Tm3+ doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm3+ doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm3+ doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber.

  3. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  4. Electrical and optical properties of Ti doped ZnO films grown on glass substrate by atomic layer deposition

    SciTech Connect

    Wan, Zhixin; Kwack, Won-Sub; Lee, Woo-Jae; Jang, Seung-II; Kim, Hye-Ri; Kim, Jin-Woong; Jung, Kang-Won; Min, Won-Ja; Yu, Kyu-Sang; Park, Sung-Hun; Yun, Eun-Young; Kim, Jin-Hyock; Kwon, Se-Hun

    2014-09-15

    Highlights: • Ti doped ZnO films were prepared on Corning XG glass substrate by ALD. • The electrical properties and optical properties were systematically investigated. • An optimized Ti doped ZnO films had low resistivity and excellent optical transmittance. - Abstract: Titanium doped zinc oxide (Ti doped ZnO) films were prepared by atomic layer deposition methods at a deposition temperature of 200 °C. The Ti content in Ti doped ZnO films was varied from 5.08 at.% to 15.02 at.%. X-ray diffraction results indicated that the crystallinity of the Ti doped ZnO films had degraded with increasing Ti content. Transmission electron microscopy was used to investigate the microstructural evolution of the Ti doped ZnO films, showing that both the grain size and crystallinity reduced with increasing Ti content. The electrical resistivity of the Ti doped ZnO films showed a minimum value of 1.6 × 10{sup −3} Ω cm with the Ti content of 6.20 at.%. Furthermore, the Ti doped ZnO films exhibited excellent transmittance.

  5. Effect of crystallization heat treatment on the microstructure of niobium-doped fluorapatite glass-ceramics.

    PubMed

    Denry, I; Holloway, J A; Gupta, P K

    2012-07-01

    Our goal was to study the effect of heat treatment temperature and heating rate on the microstructure and crystalline phases and assess the domain of existence of submicrometer fluorapatite crystals in niobium-doped fluorapatite glass-ceramics for biomedical applications. Glass-ceramic specimens were prepared by casting and heat treatment between 700 and 1200°C using a fast or a slow heating rate. The microstructure was characterized by atomic force microscopy and scanning electron microscopy. Crystalline phases were analyzed by x-ray diffraction. AFM of the as-cast glass revealed that amorphous phase separation occurred in this system. XRD confirmed the presence of fluorapatite in all specimens, together with forsterite and enstatite at higher temperatures. Both heating rate and heat treatment temperature strongly influenced microstructure and crystallinity. A dual microstructure with submicrometer fluorapatite crystals and polygonal forsterite crystals was obtained when slow heating rates and crystallization temperatures between 950 and 1100°C were used. Needle-shaped fluorapatite crystals appeared after heat treatment above 1100°C. Fast heating rates led to an increase in crystal size. Heat treatment temperatures should remain below 1100°C, together with slow heating rates, to prevent crystal dissolution, and preserve a dual microstructure of finely dispersed submicrometer crystals without growth of needle-shaped crystals.

  6. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications.

    PubMed

    Krishnaiah, Kummara Venkata; de Lima Filho, Elton Soares; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-02-26

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb(3+)) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb(3+) concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb(3+): glass and decreases with increasing Yb(3+) concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm(3+) and Er(3+) ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb(3+): (2)F5/2 → (2)F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb(3+) with increasing Yb(3+) concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed.

  7. [Influence of erbium ion concentration on Judd-Ofelt parameters of Er3+ -doped tellurite glass].

    PubMed

    Zhou, Gang; Dai, Shi-xun; Yu, Chun-lei; Zhang, Jun-jie; Hu, Li-li; Jiang, Zhong-hong

    2006-03-01

    Er3+ -doped tellurite glasses with four different concentrations were fabricated, and the oscillator strength of Er3+ in the tellurite glasses were calculated through the absorption spectra of the glasses. The Judd-Ofelt intensity parameter omega i, spontaneous transition probability A, fluorescence branching ratio beta, and radiative lifetime tau rad of Er3+ were calculated on the basis of Judd-Ofelt theory, and the effect of the erbium ion concentration on the above optical parameters was also discussed. The fluorescence spectra of Er3+: (4)I(13/2)--> (4)I(15/2) transition and the lifetime of Er3+: (4)I(13/2) level of the samples were measured. The stimulated emission cross-section of (4)I(13/2)--> (4)I(15/2) transition of the samples was finally calculated by using McCumber theory. The results show that with the increase in the Er3+ concentration, the oscillator strength and spontaneous transition probability A of Er3+ increase, while the fluorescence branching ratio beta of Er3+ shows little difference. The stimulated emission cross-section of Er3+: (4)I(13/2)--> (4)I(15/2) transition of the samples changes slightly with the increase in the Er3+ concentration. All the fluorescence effective line widths for the four different Er3+ concentration samples are nearly 50 nm.

  8. Investigations on structural and optical behavior of Er3+ doped lead boro-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.

    2015-06-01

    Er3+ doped lead boro-tellurite glasses with the chemical composition (30-x)B2O3+30TeO2+23MgO+17PbF2+xEr2O3 (where x=0.05, 0.25, 0.5, and 1 in wt%) were synthesized by melt quenching technique. The structural and optical behaviors have been investigated through FTIR, absorption and emission spectral analysis. The UV-vis- NIR absorption spectra were used to calculate the bonding parameters (β ¯, δ), Judd-Ofelt intensity parameters (Ωλ, λ = 2, 4 and 6), Optical band gap and Urbach's energy of the prepared glasses. The radiative properties such as transition probability (AR), stimulated emission cross-section (σPE ), branching ratios (βR) were calculated from the luminescence spectra. The optical properties of the prepared glasses with varying Er3+ ion concentration have been studied and reported in the present work.

  9. The Effect of Remelting on the Physical Properties of Borotellurite Glass Doped with Manganese

    PubMed Central

    Hashim, Syed Putra Hashim Syed; Sidek, Haji Abdul Aziz; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Yusof, Wan Mohamad Daud Wan; Zaid, Mohd Hafiz Mohd

    2013-01-01

    A systematic set of borotellurite glasses doped with manganese (1–x) [(B2O3)0.3(TeO2)0.7]-xMnO, with x = 0.1, 0.2, 0.3 and 0.4 mol%, were successfully synthesized by using a conventional melt and quench-casting technique. In this study, the remelting effect of the glass samples on their microstructure was investigated through density measurement and FT-IR spectra and evaluated by XRD techniques. Initial experimental results from XRD evaluation show that there are two distinct phases of glassy and crystallite microstructure due to the existence of peaks in the sample. The different physical behaviors of the studied glasses were closely related to the concentration of manganese in each phase. FTIR spectra revealed that the addition of manganese oxide contributes the transformation of TeO4 trigonal bipyramids with bridging oxygen (BO) to TeO3 trigonal pyramids with non-bridging oxygen (NBO). PMID:23296276

  10. Application of Cu2O-doped phosphate glasses for bandpass filter

    NASA Astrophysics Data System (ADS)

    Elhaes, H.; Attallah, M.; Elbashar, Y.; El-Okr, M.; Ibrahim, M.

    2014-09-01

    Phosphate glasses doped with copper ions having general composition 42P2O5-39ZnO-(18-x) Na2O-1CaO-xCu2O [x=2, 4, 6, 8, 10 mol%] were prepared using a conventional melt-quench technique. Physical and chemical properties of the glasses were investigated using X-ray diffraction technique and UV-visible optical absorption. The density was measured by Archimedes' method, and molar volume (VM) was calculated. It is found that density and molar volume show opposite trend by increasing Cu2O content. Absorbance and transmittance at the normal incidence are measured by a spectrophotometer in the spectral range of 190-1100 nm. Analyses of the obtained results were considered in the frame of current theories. Absorption data were used for absorption coefficient, the optical band gap (Eopt), the cutoff in UV and IR bands to the bandpass filter, which confirmed the optical properties of this type of filter. Eopt values for different glass samples are found to decrease with increasing Cu2O content.

  11. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications

    PubMed Central

    Krishnaiah, Kummara Venkata; Soares de Lima Filho, Elton; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-01-01

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb3+) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb3+ concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb3+: glass and decreases with increasing Yb3+ concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm3+ and Er3+ ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb3+: 2F5/2 → 2F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb3+ with increasing Yb3+ concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed. PMID:26915817

  12. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    SciTech Connect

    Kuhn, Stefan Tiegel, Mirko; Herrmann, Andreas; Rüssel, Christian; Engel, Sebastian; Wenisch, Christoph; Gräf, Stephan; Müller, Frank A.; Körner, Jörg; Seifert, Reinhard; Yue, Fangxin; Klöpfel, Diethardt; Hein, Joachim; Kaluza, Malte C.

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information about the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.

  13. Investigations on optical properties of Sm{sup 3+} ion doped boro-phosphate glasses

    SciTech Connect

    Vijayakumar, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K.

    2015-06-24

    The Sm{sup 3+} doped Boro-phosphate glasses with the chemical composition 60H{sub 3}BO{sub 3}+20Li{sub 2}CO{sub 3}+10ZnO+(10−x) H{sub 6}NO{sub 4}P+xSm{sub 2}O{sub 3} (where x= 0.1, 0.5, 1 and 2 in wt%) have been prepared by melt quenching technique. The prepared glasses were characterized through optical absorption and luminescence spectral measurements. The band gap energies corresponding to the direct and indirect allowed transitions and the Urbach’s energy values were estimated from the absorption spectra. Judd-Ofelt intensity parameters have been derived to predict the radiative properties of the various emission transitions. In order to identify the emission color of the prepared glasses, the emission intensities were analyzed using CIE 1931 color chromaticity diagram. The energy transfer process takes place between Sm{sup 3+}−Sm{sup 3+} ions through cross-relaxation mechanism have also been investigated and the results were discussed and reported.

  14. Investigations on optical properties of Sm3+ ion doped boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K.

    2015-06-01

    The Sm3+ doped Boro-phosphate glasses with the chemical composition 60H3BO3+20Li2CO3+10ZnO+(10-x) H6NO4P+xSm2O3 (where x= 0.1, 0.5, 1 and 2 in wt%) have been prepared by melt quenching technique. The prepared glasses were characterized through optical absorption and luminescence spectral measurements. The band gap energies corresponding to the direct and indirect allowed transitions and the Urbach's energy values were estimated from the absorption spectra. Judd-Ofelt intensity parameters have been derived to predict the radiative properties of the various emission transitions. In order to identify the emission color of the prepared glasses, the emission intensities were analyzed using CIE 1931 color chromaticity diagram. The energy transfer process takes place between Sm3+-Sm3+ ions through cross-relaxation mechanism have also been investigated and the results were discussed and reported.

  15. XRD and IR Studies of Yb{sup 3+} Doped Tellurite Glass

    SciTech Connect

    Sahar, M. R.; Isa, H. Noor

    2011-03-30

    Ytterbium doped sodium-tellurite glasses having composition of (80-x) TeO{sub 2}-20Na{sub 2}O-(x)Yb{sub 2}O{sub 3}(where x = 0.0-2.0 mol%) are prepared by melt quenching technique. The crystallinity of the glass has been examined using X-ray diffraction technique. All glass are found to be amorphous in nature. Meanwhile the transmission spectroscopy is determine by using Infrared Spectroscopy. It is found that the absorption vibrational spectra occurs at range 3405-3423 cm{sup -1}, 1632-1643 cm{sup -1}, 1377-1382 cm{sup -1}, 721-732 cm{sup -1} and 589-606 cm{sup -1} peaks. The predominant peaks around 700 cm{sup -1} is due to the Te-O-Te vibration while peak at 600 cm{sup -1} is due to the vibration of Yb{sup 3+} ions.

  16. Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses

    NASA Astrophysics Data System (ADS)

    Manasa, P.; Jayasankar, C. K.

    2016-12-01

    Lead fluorosilicate (SPbKNLFEu) glasses doped with different concentrations of Eu3+ ions have been prepared by the melt quenching technique. The structural and spectroscopic analysis have been carried out by Raman, absorption, excitation, emission, phonon side band (PSB) spectra and decay time measurements. The Judd-Ofelt theory has been used to predict the radiative properties for the emission levels of Eu3+ ions. Local structure around the Eu3+ ions and the phonon energy of SPbKNLFEu glasses have been confirmed on the basis of PSB associated with the 7F0 → 5D2 transition. The decay curves of the 5D0 and 5D1 levels exhibit single exponential nature with a lifetime of 2240 μs and 20 μs, respectively. The multiphonon relaxation rates (Wmp) from the excited levels to the next lower level of Eu3+ ions have been calculated. The higher stimulated emission cross-section and the strong red emission at 613 nm corresponding to the 5D0 → 7F2 transition suggests that the present lead fluorosilicate glasses could be useful for the optical display devices.

  17. Optical properties of transparent cobalt-containing magnesium aluminosilicate glass-ceramics doped with gallium oxide for saturable absorbers

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Skoptsov, N. A.; Dymshits, O. S.; Malyarevich, A. M.; Yumashev, K. V.; Zhilin, A. A.; Alekseeva, I. P.

    2016-10-01

    Transparent glass-ceramic materials based on glasses of the MgO-Al2O3-SiO2-TiO2 system doped with CoO and Ga2O3 are synthesized. The secondary heat treatment of the initial glasses at temperatures of 800-950°C leads to precipitation of nanosized (6-7 nm) crystals of magnesium aluminogallium spinel doped with cobalt ions and magnesium aluminotitanate solid solutions. The optical absorption spectra of the initial glass and glass-ceramic materials are studied. It is shown that the absorption band caused by the 4 A 2(4F)→ 4 T 1(4 F) transitions of tetrahedrally coordinated Co2+ ions in glass-ceramics with nanosized Co:Mg(Al,Ga)2O4 crystals is shifted to longer wavelengths (up to 1.67 µm) compared to the position of this band in materials with Co:MgAl2O4 crystals. The synthesized glass-ceramics are characterized by a relatively low saturation fluence FS 0.5 ± 0.1 J/cm2 at a wavelength of 1.54 µm, as well as by a high radiation resistance to nanosecond laser pulses, which is no lower than 15 ± 2 J/cm2. This explains their attractiveness as materials for saturable absorbers for erbium lasers emitting in the spectral range 1.5-1.7 µm.

  18. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness.

    PubMed

    Bellucci, Devis; Sola, Antonella; Cacciotti, Ilaria; Bartoli, Cristina; Gazzarri, Matteo; Bianco, Alessandra; Chiellini, Federica; Cannillo, Valeria

    2014-09-01

    Presently, there is an increasing interest towards the composites of calcium phosphates, especially β-tricalcium phosphate (TCP), and bioactive glasses. In the present contribution, the recently developed BG_Ca/Mix glass has been used because its low tendency to crystallize allows to sinter the composites at relatively low temperature (i.e. 850°C), thus minimizing the glass devitrification and the interaction with TCP. A further improvement is the introduction of lab-produced TCP powders doped with specific ions instead of non-doped commercial powders, since the biological properties of materials for bone replacement can be modulated by doping them with certain metallic ions, such as Mg and Sr. Therefore, novel binary composites have been produced by sintering the BG_Ca/Mix glass with the addition of pure, Mg-substituted, Sr-substituted or Mg/Sr bisubstituted TCP powders. After an accurate characterization of the starting TCP powders and of the obtained samples, the composites have been used as three-dimensional supports for the culture of mouse calvaria-derived pre-osteoblastic cells. The samples supported cell adhesion and proliferation and induced promising mechanisms of differentiation towards an osteoblastic phenotype. In particular, the Mg/Sr bi-doped samples seemed to better promote the differentiation process thus suggesting a combined stimulatory effect of Mg(2+) and Sr(2+) ions.

  19. Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Okada, Go; Kawaguchi, Noriaki; Fujimoto, Yutaka; Masai, Hirokazu; Yanagida, Takayuki

    2016-12-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO3-Al(PO3)3 (NAP) glasses. The NAP glasses doped with a series of RE ions (La-Yb, except Pm) with a consistent concentration (0.3 wt%) were prepared by the conventional melt-quenching method. The PL and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components from 15 to 100 ns were due to the host or 5d-4f transition emission, and the slow components from 15 μs to 5 ms were due to the 4f-4f transitions of RE. The thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400 °C in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy. Among the samples tested, Nd and Tb doped glasses showed higher signal by at least one order of magnitude than those of non-doped and other RE-doped samples. Over the dose range tested, the TSL signals are linearly related with the incident X-ray dose, showing a potential for practical applications.

  20. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    SciTech Connect

    Ficini, G.; Campbell, J.H.

    1996-05-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm{sup 3}) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology.