Science.gov

Sample records for boreal forest ecosystems

  1. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  2. Methane Emissions From Boreal and Tropical Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Williams, J.; Sinha, V.; Crutzen, P.; Lelieveld, J.

    2006-12-01

    Methane is a climatologically important greenhouse gas and plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. Recent findings that vegetation emits methane have stimulated efforts to ascertain the impact of this source on the global budget of this trace gas. In this work, we present the results of high frequency (1 minute) methane measurements conducted in the boreal forests of Finland and the tropical forests of Suriname, in April-May, 2005 and October 2005 respectively. The measurements were performed using a gas chromatograph - flame ionization detector (GC-FID). The average of the median mixing ratios during a typical diel cycle were 1.83 μmol mol-1 and 1.74 μmol mol-1 for the boreal forest ecosystem and tropical forest ecosystem respectively, with remarkable similarity in the time series of both the boreal and tropical diel profiles. Night time methane emission flux of the boreal forest ecosystem, calculated from the increase of methane during the night and measured nocturnal boundary layer heights yields a flux of 3.62 x 1011 molecules cm-2 s-1.These results highlight the importance of the boreal and tropical forest ecosystems for the global budget of methane. We also discuss our results in the context of recent work reporting high methane mixing ratios over tropical forests using space borne near infra red spectroscopy measurements.

  3. Ecosystem feedbacks and nitrogen fixation in boreal forests.

    PubMed

    DeLuca, Thomas H; Zackrisson, Olle; Gundale, Michael J; Nilsson, Marie-Charlotte

    2008-05-30

    Biological feedback mechanisms regulate fundamental ecosystem processes and potentially regulate ecosystem productivity. To date, no studies have documented the down-regulation of terrestrial nitrogen (N) fixation via an ecosystem-level feedback mechanism. Herein, we demonstrate such a feedback in boreal forests. Rapid cycling of N in early secondary succession forests yielded greater throughfall N deposition, which in turn decreased N fixation by cyanobacterial associates in feather moss carpets that reside on the forest floor. The forest canopy exerts a tight control on biotic N input at a period of high productivity.

  4. Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Williams, J.; Crutzen, P. J.; Lelieveld, J.

    2007-09-01

    Methane is a climatologically important greenhouse gas, which plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. Recent findings that vegetation emits methane have stimulated efforts to ascertain the impact of this source on the global budget. In this work, we present the results of high frequency (ca. 1 min-1) methane measurements conducted in the boreal forests of Finland and the tropical forests of Suriname, in April-May, 2005 and October 2005 respectively. The measurements were performed using a gas chromatograph - flame ionization detector (GC-FID). The average of the median mixing ratios during a typical diel cycle were 1.83 μmol mol-1 and 1.74 μmol mol-1 for the boreal forest ecosystem and tropical forest ecosystem respectively, with remarkable similarity in the time series of both the boreal and tropical diel profiles. Night time methane emission flux of the boreal forest ecosystem, calculated from the increase of methane during the night and measured nocturnal boundary layer heights yields a flux of (3.62±0.87)×1011 molecules cm-2 s-1(or 45.5±11 Tg CH4 yr-1 for global boreal forest area). This is a source contribution of circa 8% of the global methane budget. These results highlight the importance of the boreal and tropical forest ecosystems for the global budget of methane. The results are also discussed in the context of recent work reporting high methane mixing ratios over tropical forests using space borne near infra-red spectroscopy measurements.

  5. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  6. BOREAS (Boreal Ecosystem-Atmosphere Study): Global change and biosphere-atmosphere interactions in the boreal forest

    NASA Technical Reports Server (NTRS)

    Sellers, Piers J.

    1991-01-01

    The Boreal Ecosystems Atmosphere Study (BOREAS) is a cooperative field and analysis project involving elements of land surface climatology, tropospheric chemistry, and terrestrial ecology. The goal of the study is to understand the interactions between the boreal forest biome and the atmosphere in order to clarify their roles in global change. The study will be centered on two 20 by 20 km sites within the North American boreal forest region, located near the northern and southern limits of the biome. Studies based at these sites will be used to explore the roles of various environmental factors in controlling the extent and character of the biome. The sites will be the subject of surface, airborne, and satellite based observations which aim to improve understanding of the biological and physical processes and states which govern the exchanges of energy, water, carbon, and trace gases between boreal forest ecosystems and the atmosphere. Particular reference will be made to those processes and states that may be sensitive to global change. The study also aims to develop the use of remote sensing techniques to transfer understanding of the above process from local scales out to regional scales. The BOREAS project is being planned for 1992-1996, with a major field effort in 1994.

  7. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    PubMed

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a

  8. Effects of a Severe Drought on a Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Sevanto, S.; Launiainen, S.; Höltta, T.; Kolari, P.; Pumpanen, J.; Korhonen, J. F.; Duursma, R.; Vesala, T.; Nikinmaa, E.

    2008-12-01

    Water is seldom a limiting factor for plant activity in the boreal zone. Melting snow in the spring loads soil water reservoirs and during the short summertime the amount of precipitation usually is enough to prevent the ecosystems from drought. In Finland, for example, the three summer months (June, July and August) account for more than 30% of the annual precipitation (700 mm/year). Summer 2006 was exceptionally dry in Southern Finland. In June and July precipitation was < 40% of the long term average of this time, which resulted in limited soil water availability for the plants. We have carried out ecosystem-scale atmosphere-biosphere exchange measurements at the SMEAR II station in Hyytiälä, Southern Finland since year 1996. The station is surrounded by a homogenous Scots pine (Pinus sylvestris L.) stand, which was sown after prescribed burning in 1962. The measurement set up includes an eddy-covariance system for measuring CO2, water vapor and sensible heat fluxes, soil water content measurements by the TDR-system, theta probes and equitensiometers, radiation measurements above and inside the canopy as well as automated chamber measurements for soil respiration and shoot-scale photosynthesis. We also measured sap flow in the trees using the Granier method and water tension inside the xylem using stem diameter variation measurements. The set-up of the sensors also allowed estimation of the variation in the stem hydraulic conductivity. Summer 2006 was the first time in the 11-year-data set, when soil water availability clearly reduced photosynthesis in the ecosystem scale. The drought also reduced respiration, but the reduction was not enough to keep the ecosystem from changing to a carbon source during the drought period. In normal conditions the ecosystem is a clear sink of carbon in summertime. In this study we compared the ecosystem responses of summer 2006 to the long term averages of our site and evaluated the conditions when the plants start reducing

  9. Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters

    NASA Astrophysics Data System (ADS)

    Potter, Christopher S.; Wang, Shusen; Nikolov, Ned T.; McGuire, A. David; Liu, Jane; King, Anthony W.; Kimball, John S.; Grant, Robert F.; Frolking, Steven E.; Clein, Joy S.; Chen, Jing M.; Amthor, Jeffrey S.

    2001-12-01

    Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models' initial standing wood and soil carbon pools, including historical climate patterns and the

  10. The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina

    2016-04-01

    Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation

  11. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.

    2013-12-01

    Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal forest and tundra ecosystems. In this study, we incorporated a mechanism that allowed boreal plants to uptake small molecular amino acids into a process-based biogeochemical model, the Terrestrial Ecosystem Model (TEM), to evaluate the impact of organic nitrogen uptake on ecosystem carbon cycling. The new version of the model was evaluated for both boreal forest and tundra sites. We found that the modeled organic nitrogen uptake accounted for 36-87% of total nitrogen uptake by plants in tundra ecosystems and 26-50% for boreal forests, suggesting that tundra ecosystem might have more relied on the organic form of nitrogen than boreal forests. The simulated monthly gross ecosystem production (GPP) and net ecosystem production (NEP) tended to be larger with the new version of the model since the plant uptake of organic nitrogen alleviated the soil nitrogen limitation especially during the growing season. The sensitivity study indicated that the most important factors controlling the plant uptake of organic nitrogen was the soil amino acid diffusion coefficient (De) in our model, suggesting that the organic nitrogen uptake by plants is likely to be regulated by the edaphic characteristics of diffusion. The model uncertainty due to uncertain parameters associated with organic nitrogen uptake of the tundra ecosystem was larger than the boreal forest ecosystems. This study suggests that considering the organic nitrogen uptake by plants is important to carbon modeling of boreal forest and tundra ecosystems.

  12. The Importance of Winter for Controlling the Growing Season Net Ecosystem Exchange (NEE) of Boreal Forests

    NASA Astrophysics Data System (ADS)

    Oquist, M. G.; Peichl, M.; Ottosson Lofvenius, M.; Nilsson, M. B.

    2014-12-01

    It is becoming increasingly apparent that the winter season of high latitudes can be important for controlling a range of ecological and biogeochemical properties of northern ecosystems. Here we evaluate the importance of winter conditions on the carbon exchange between boreal forest systems and the atmosphere during the following growing season in order to elucidate any influence of inter-seasonal "memory" effects on carbon exchange properties of boreal forest ecosystems. The study is based on 5 years of continuous eddy covariance measurements at two ca 50 year old Norway spruce stands situated in mid- and northern Sweden, respectively (a total of 10 site years). The growing season net ecosystem exchange (NEE) ranged from -530 to -60 g C m-2 (negative values indicates carbon sinks). Environmental conditions during the growing season (e.g. temperature, radiation, length) only weakly explained the year-to-year variability in NEE. In contrast, up to 75% of the variation could be explained by the severity of the preceding winter (defined as the lowest observed average weekly air temperature) using an exponential response function. After warm winters the carbon sink properties were high as compared to those observed after cold winters. The winter conditions markedly affected the systems potential for carbon uptake in early summer. This presentation will address the potential mechanisms underpinning the observed correlations linking growing season carbon exchange to the conditions of the preceding winter. The influence of winter on the partitioned carbon fluxes of ecosystem respiration and gross primary productivity, respectively, will also be addressed. The results strongly indicate that controls on boreal forest carbon exchange can transcend across seasons. Understanding these mechanisms are integral for understanding the environmental drivers of atmospheric carbon exchange, allowing for accurate predictions of boreal forest NEE under both present and future climates.

  13. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  14. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    NASA Astrophysics Data System (ADS)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  15. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  16. Links Among Warming, Fungal Communities, and Carbon Fluxes in Boreal Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Czimczik, C. I.; Treseder, K. K.

    2006-12-01

    Microbial responses to climate change could drive positive feedbacks to the carbon cycle, particularly in high latitude ecosystems. We used molecular and enzymatic approaches to determine whether fungal communities changed in response to experimental warming in boreal forest ecosystems. We also measured the flux and 14C signature of soil respiration from warmed and unwarmed soils to link microbial responses with the carbon cycle. In an early-successional site recovering from a 1999 fire, warming significantly increased the activities of cellulose- and chitin-degrading enzymes by 17% and 30%, respectively. In a second site dominated by mature black spruce trees, the activity of the chitin-degrading enzyme declined significantly by 24%. However, warming did not affect soil CO2 fluxes in either site, or the source of soil respiration as measured by 14C isotopic analyses in the mature forest site. Together, these results suggest that warming does alter fungal community composition and potentially carbon substrate utilization. However, the total amount and 14C age of microbially-respired carbon does not change. Despite shifts in fungal community composition, ecosystem processes driven by microbial activity may be resistant to climate warming in these well-drained boreal ecosystems.

  17. Tree Species Linked to Large Differences in Ecosystem Carbon Distribution in the Boreal Forest of Alaska

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A. G.; Genet, H.; McGuire, A. D.

    2014-12-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is altering plant-soil-microbial feedbacks and ecosystem carbon (C) dynamics. The boreal landscape has historically been dominated by black spruce (Picea mariana), a tree species associated with slow C turnover and large soil organic matter (SOM) accumulation. Historically, low severity fires have led to black spruce regeneration post-fire, thereby maintaining slow C cycling rates and large SOM pools. In recent decades however, an increase in high severity fires has led to greater consumption of the soil organic layer (SOL) during fire and subsequent establishment of deciduous tree species in areas previously dominated by black spruce. This shift to a more deciduous dominated landscape has many implications for ecosystem structure and function, as well as feedbacks to global C cycling. To improve our understanding of how boreal tree species affect C cycling, we quantified above- and belowground C stocks and fluxes in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1958 fire near Fairbanks, Alaska. Although total ecosystem C pools (aboveground live tree biomass + dead wood + SOL + top 10 cm of mineral soil) were similar for the two stand types, the distribution of C among pools was markedly different. In black spruce, 78% of measured C was found in soil pools, primarily in the SOL, where spruce contained twice the C stored in paper birch (4.8 ± 0.3 vs. 2.4 ± 0.1 kg C m-2). In contrast, aboveground biomass dominated ecosystem C pools in birch forest (6.0 ± 0.3 vs. 2.5 ± 0.2 kg C m-2 in birch and spruce, respectively). Our findings suggest that tree species exert a strong influence over plant-soil-microbial feedbacks and may have long-term effects on ecosystem C sequestration and storage that feedback to the climate system.

  18. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-08-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  19. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-04-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  20. Bryophyte-cyanobacteria associations contribute to ecosystem-N-budget of boreal forest

    NASA Astrophysics Data System (ADS)

    Salemaa, Maija; Lindroos, Antti-Jussi; Merilä, Päivi; Mäkipää, Raisa; Smolander, Aino

    2014-05-01

    Bryophytes frequently dominate the ground vegetation on the forest floor in boreal region. Northern ecosystems are often nitrogen limited, and therefore biological nitrogen (N2) fixation of bryophyte-associated microbes is an important source of new N. In this study we estimated the N stock of bryophyte layer and the N input rate by N2 fixation of bryophyte-cyanobacteria associations at the ecosystem level. We studied 12 intensively monitored forest ecosystem plots (ICP Forests Level II) along a latitudinal gradient in Finland during 2009-2013. The total biomass and N stock of the bryophytes varied 700-2000 kg ha-1 and 9-23 kg ha-1, respectively. N2 fixation rate associated to bryophytes increased towards the north and was at highest 1-2 kg N ha-1 year-1 (based on the bryophyte biomass in the monitoring plots). This N input was at the same level as the N deposition in the northern Finland (1.5 kg N ha-1 year-1). In comparison, via needle litterfall and other tree litter c.a. 5 kg N ha-1 is annually returned to the nutrient cycle. In southern Finland, very low rates of N2 fixation were found probably because of inhibition by the anthropogenic N deposition. The upper parts of the bryophyte shoots showed 2-3 times higher N2-fixing rate than the lower parts, but differences between Hylocomium splendens and Pleurozium schreberi were minor. However, Dicranum species showed much lower N2 fixation rates compared to these two species. The moisture level of bryophytes and light/temperature conditions regulated strongly the rate of N2-fixing activity. The results showed that the bryophyte layer significantly contributes to the N input and plays an important role in controlling the N and C balances of boreal forests.

  1. Multi-trophic resilience of boreal lake ecosystems to forest fires

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, M.R.

    2014-01-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  2. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    PubMed

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  3. Ecosystem services of boreal forests - Carbon budget mapping at high resolution.

    PubMed

    Akujärvi, Anu; Lehtonen, Aleksi; Liski, Jari

    2016-10-01

    The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes.

  4. Regional Assessment of soil organic matter profile distribution in the boreal forest ecosystems of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Belousova, Nataliya; Vasenev, Ivan

    2015-04-01

    Boreal forest ecosystems play one of the key roles in the Global Change challenges responses. The soil carbon stocks are principal regulators of their environmental functions. Boreal forest soil cover is characterized by mutually increased spatial variability in soil organic matter content (SOMC) that one need to take into attention in its current and future environmental functions state assessment including the potential of regional soil organic matter stocks changes due to Global Change and inverse ones. Knowledge of the regional regularities in SOMC profile vertical distribution allows improving their soil environmental functions prediction land quality evaluation. More than 900 profiles of SOMC distribution were studied using the database Boreal that contains data on Russian boreal soils developed in drained conditions on loamy soil forming rocks. These soil profiles belong to seven main types of forest soils of Russian classification and six major regions of Russia. The predomination of accumulation profile type was observed for all cases. Thus the vertical distribution of OMC in the profiles of boreal soils can be described as follow: the layer of maximum OMC is replaced by the layer of dramatic OMC reduction; then the layer of minimal OMC extends up to 2.5 m. The layer of maximal OMC accumulation has the low depth of 5-15 cm. It carried out in different genetic horizons: A1, A1A2, A2, B, AB; sometimes it captures the A2B horizon or the upper part of the illuvial horizon. The OMC in this layer increases from the northern taiga to the southern taiga and from the European part of Russia to Siberia. The second layer is characterized by its depth and by the gradient of OMC decreasing. A great variety of the both parameters is observed. The layer of the sharp OMC fall most often fits with the eluvial horizons A2 or А2В or even the upper part of the Вt (textural) or Bm (metamorphic) horizons. The layer of permanently small OMC may begin in any genetic horizon

  5. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests.

    PubMed

    Thom, Dominik; Seidl, Rupert

    2016-08-01

    In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus

  6. Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Novenko, E.; Desherevskaya, O.; Krasnorutskaya, K.; Kurbatova, J.

    2009-10-01

    Effects of possible climatic and vegetation changes on H2O and CO2 fluxes in boreal forest ecosystems of the central part of European Russia were quantified using modeling and experimental data. The future pattern of climatic conditions for the period up to 2100 was derived using the global climatic model ECHAM5 (Roeckner et al 2003 The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report 349 (Hamburg: Max-Planck Institute for Meteorology) p 127) with the A1B emission scenario. The possible trends of future vegetation changes were obtained by reconstructions of vegetation cover and paleoclimatic conditions in the Late Pleistocene and Holocene, as provided from pollen and plant macrofossil analysis of profiles in the Central Forest State Natural Biosphere Reserve (CFSNBR). Applying the method of paleoanalogues demonstrates that increasing the mean annual temperature, even by 1-2 °C, could result in reducing the proportion of spruce in boreal forest stands by up to 40%. Modeling experiments, carried out using a process-based Mixfor-SVAT model, show that the expected future climatic and vegetation changes lead to a significant increase of net ecosystem exchange (NEE) and gross primary productivity (GPP) of the boreal forests. Despite the expected warming and moistening of the climate, the modeling experiments indicate a relatively weak increase of annual evapotranspiration (ET) and even a reduction of transpiration (TR) rates of forest ecosystems compared to present conditions.

  7. Contribution of Soil Surface CO2 Efflux to Boreal Forest Net Ecosystem Flux: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Niinisto, S. M.; Kellomaki, S.

    2001-05-01

    The aims of the study are to assess the contribution of measured soil surface CO2 efflux to boreal forest net ecosystem flux and to test whether modeled component fluxes such as leaf and surface soil fluxes are consistent with the net flux measured from a tower over a forest stand. Net ecosystem flux was measured continuously in a boreal Scots pine forest in eastern Finland (62° 52'N, 30° 49'E) during the growing period in 2000. Height and diameter of trees in this 50-year-old stand ranged from 10 to 13 m and from 9 to 12 cm, respectively, for 80 % of trees. Eddy-flux measurements were made at the top of a 32-m tower, about 20 m above the canopy. Wind velocity and virtual temperature were measured with a three-axis sonic anemometer. CO2 fluctuations at 32 m were continuously monitored with a CO2 analyzer. Raw data were sampled at 10 Hz and 1/2 hr fluxes calculated. Soil surface CO2 efflux was measured on the top of a feather moss or lichen cover with an IRGA and four automated open dynamic chambers, each equipped with a PAR sensor and air temperature probe. Chambers of 19 cm diameter were made of transparent PMMA. Measurements were made twice per hr, lasting 1 min each. Periods considered in this study included both early and late season conditions, since data from the automated soil surface efflux measurements were available from May to June as well as from August to September. In this study, we aim to compare the measured soil surface CO2 efflux with simultaneously measured net ecosystem flux. The performance of the automated chambers will be tested by comparing with simultaneous measurements from a dark closed static chamber at the same site. A simple regression model, using soil surface temperature as an independent variable, will be built using the static dark chamber data from the previous years. A rough correction for the carbon uptake of moss will be made. This model could be validated later with automated measurements. To investigate further the

  8. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems.

    PubMed

    Rousk, Kathrin; Jones, Davey L; Deluca, Thomas H

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  9. Impacts of climatic changes on carbon and water balance components of boreal forest ecosystems in central part of European Russia

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Novenko, E.; Desherevskaya, O.; Kurbatova, J.

    2009-04-01

    Within the framework of the study the possible impacts of climatic changes on carbon and water balances of boreal forest ecosystems of the central part of European Russia for period up to 2100 was estimated using results of model simulations and field measurements. The boreal forests of the Central Forest State Natural Biosphere Reserve (CFSNBR) were selected for the study. They are located at the southern boundary of south taiga zone in the European part of Russia (Tver region) and it can be expected that they will be very sensitive to modern climate warming. Expected future pattern of climatic parameters in the study area was derived using the global climatic model ECHAM5 (MPI Hamburg, Germany) and climatic scenarios B1, A1B and A2 (IPCC 2007). The possible scenarios of species composition changes of the boreal forests were developed using reconstructions of Holocene vegetation cover and climatic conditions on the base of pollen and plant macrofossil analysis of peat profiles in CFSNBR. The annual future pattern of CO2 and H2O fluxes of the forests were simulated using a process-based Mixfor-SVAT model (Olchev et al. 2002, 2008). The main advantage of Mixfor-SVAT is that it allows us to describe CO2 and H2O fluxes both in mono-specific and mixed forest stands. It is able to quantify both total ecosystem fluxes and flux partitioning among different tree species and canopy layers. It is obvious that it can be very helpful to describe accurately effects of species composition changes on structure of dynamics of carbon and water balance of forest ecosystems. Results of modeling experiments show that expected climatic and vegetation changes can have significant impact on evapotranspiration, transpiration, Net Ecosystem Exchange (NEE), Gross (GPP) and Net (NPP) Primary Productivities of boreal forest ecosystems. These changes have a clear seasonal trend and they are depended on species composition of a forest stand. This study was supported by the Russian Foundation

  10. Remote sensing of net ecosystem productivity based on component spectrum and soil respiration observation in a boreal forest, interior Alaska

    NASA Astrophysics Data System (ADS)

    Kushida, Keiji; Kim, Yongwon; Tanaka, Noriyuki; Fukuda, Masami

    2004-03-01

    We built a remote-sensing method for determining leaf area index (LAI) and ground cover mosses/lichens in boreal forests by field component spectral observation and radiative transfer modeling based on the spectrum. The method was applied to evaluate annual net ecosystem productivity (NEP) distribution in a boreal forest, interior Alaska, by accounting for net primary productivity (NPP) of the vegetation compositions and soil respiration observation synchronized to the spectral observation. Spectral reflectance and soil respiration were observed in two 30-m × 30-m plots in black spruce stands, central Alaska. Spectral characteristics of the forest floor and the needle leaves were used as input parameters of a radiative transfer model to evaluate nadir reflectances of spruce communities in relation to varying upper layer LAI, forest floor bryophyte types, and leaf spectral characteristics. Using the relationship, we obtained LAI and bryophyte area ratios for each pixel that corresponds to spruce forest on Landsat ETM+ imagery. The LAI-NPP relationship of spruce forest was estimated from 's [1981] normal yield table data and specific leaf area, and NPP was calculated from LAI. Observations of daily respiration were extrapolated to annual timescales using soil temperature. On the basis of the annual soil respiration and NPP of the upper layer and forest floor, annual NEP geographical distribution in a recent normal year was estimated from remotely sensed LAI and forest floor bryophyte area ratios. The annually estimated NEP was 51 g C/m2/yr, which corresponds to the value (55 g C/m2/yr) for 150-year-old black spruce forest in the Boreal Ecosystem-Atmosphere Study (BOREAS) region, Canada.

  11. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.

    PubMed

    Owojori, Olugbenga J; Siciliano, Steven D

    2015-03-01

    Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture.

  12. Remote sensing of net ecosystem productivity based on component spectrum and soil respiration observation in boreal forest, interior Alaska.

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Kim, Y.; Tanaka, N.; Fukuda, M.

    2003-12-01

    We built a remote sensing method for leaf area index (LAI) and ground cover mosses / lichens in boreal forest by field component spectral observation and radiative transfer modeling based on the spectrum. The method was applied to evaluate annual net ecosystem productivity (NEP) distribution in boreal forest, interior Alaska by combining soil respiration observation synchronized to the spectral observation. Spectral reflectance and soil respiration were observed in two 30m X 30m plots in black spruce stands, central Alaska. Spectral characteristics of the forest floor and the needle leaves were used as input parameters of a radiative transfer model to evaluate nadir reflectances of spruce communities in relation to varying upper layer LAI, forest floor bryophyte types, and leaf spectral characteristics. Using the relationship, we obtained LAI and bryophyte area ratios for each pixel that corresponds to spruce forest on Landsat ETM+ imagery. The LAI-NPP relationship was estimated from Plonski's normal yield table data and specific leaf area, and NPP was calculated from LAI. Based on the observed annual soil respiration and NPP of upper layer and forest floor, annual NEP geographical distribution was estimated as a mean value in recent 30-100 years from remotely sensed LAI and forest floor bryophyte area ratios. The annually estimated NEP was 51 gC/m2/year, which corresponds to the value (55 gC/m2/year) of 150-year-old black spruce forest in the BOREAS study region, Canada.

  13. Constraining ecosystem model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Mäkelä, Jarmo; Susiluoto, Jouni; Markkanen, Tiina; Aurela, Mika; Järvinen, Heikki; Mammarella, Ivan; Hagemann, Stefan; Aalto, Tuula

    2016-12-01

    We examined parameter optimisation in the JSBACH (Kaminski et al., 2013; Knorr and Kattge, 2005; Reick et al., 2013) ecosystem model, applied to two boreal forest sites (Hyytiälä and Sodankylä) in Finland. We identified and tested key parameters in soil hydrology and forest water and carbon-exchange-related formulations, and optimised them using the adaptive Metropolis (AM) algorithm for Hyytiälä with a 5-year calibration period (2000-2004) followed by a 4-year validation period (2005-2008). Sodankylä acted as an independent validation site, where optimisations were not made. The tuning provided estimates for full distribution of possible parameters, along with information about correlation, sensitivity and identifiability. Some parameters were correlated with each other due to a phenomenological connection between carbon uptake and water stress or other connections due to the set-up of the model formulations. The latter holds especially for vegetation phenology parameters. The least identifiable parameters include phenology parameters, parameters connecting relative humidity and soil dryness, and the field capacity of the skin reservoir. These soil parameters were masked by the large contribution from vegetation transpiration. In addition to leaf area index and the maximum carboxylation rate, the most effective parameters adjusting the gross primary production (GPP) and evapotranspiration (ET) fluxes in seasonal tuning were related to soil wilting point, drainage and moisture stress imposed on vegetation. For daily and half-hourly tunings the most important parameters were the ratio of leaf internal CO2 concentration to external CO2 and the parameter connecting relative humidity and soil dryness. Effectively the seasonal tuning transferred water from soil moisture into ET, and daily and half-hourly tunings reversed this process. The seasonal tuning improved the month-to-month development of GPP and ET, and produced the most stable estimates of water use

  14. Inclusion of Additional Plant Species and Trait Information in Dynamic Vegetation Modeling of Arctic Tundra and Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.

    2015-12-01

    Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.

  15. The boreal forest as a cultural landscape.

    PubMed

    Johnson, Edward A; Miyanishi, Kiyoko

    2012-02-01

    Because of its generally low density of humans and few settlements, the circumpolar boreal forest is often viewed as an untouched wilderness. However, archeological evidence indicates that humans have inhabited the region since the continental glaciers disappeared 8,000-12,000 years ago. This paper discusses the ecological impacts that humans have had on the boreal forest ecosystem through their activities in prehistoric, historic, and recent times and argues that the boreal forest has always been a cultural landscape with a gradient of impacts both spatially and temporally. These activities include hunting, trapping, herding, agriculture, forestry, hydroelectric dam projects, oil and natural gas development, and mining. In prehistoric times, human impacts would generally have been more temporary and spatially localized. However, the megafaunal extinctions coincident with arrival of humans were very significant ecological impacts. In historic times, the spread of Europeans and their exploitation of the boreal's natural resources as well as agricultural expansion has altered the composition and continuity of the boreal forest ecosystem in North America, Fennoscandia, and Asia. Particularly over the last century, these impacts have increased significantly (e.g., some hydroelectric dams and tar sands developments that have altered and destroyed vast areas of the boreal forest). Although the atmospheric changes and resulting climatic changes due to human activities are causing the most significant changes to the high-latitude boreal forest ecosystem, any discussion of these impacts are beyond the limits of this paper and therefore are not included.

  16. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest.

    PubMed

    Metcalfe, Daniel B; Crutsinger, Gregory M; Kumordzi, Bright B; Wardle, David A

    2016-01-01

    Ecological theory, developed largely from ungulates and grassland systems, predicts that herbivory accelerates nutrient cycling more in productive than unproductive systems. This prediction may be important for understanding patterns of ecosystem change over time and space, but its applicability to other ecosystems and types of herbivore remain uncertain. We estimated fluxes of nitrogen (N) and phosphorus (P) from herbivory of a common tree species (Betula pubescens) by a common species of herbivorous insect along a -5000-yr boreal chronosequence. Contrary to established theory, fluxes of N and P via herbivory increased along the chronosequence despite a decline in plant productivity. The herbivore-mediated N and P fluxes to the soil are comparable to the main alternative pathway for these nutrients via tree leaf litterfall. We conclude that insect herbivores can make large contributions to nutrient cycling even in unproductive systems, and influence the rate and pattern of ecosystem development, particularly in systems with low external nutrient inputs.

  17. Integrating modelling and remote sensing to identify ecosystem performance anomalies in the boreal forest, Yukon River Basin, Alaska

    USGS Publications Warehouse

    Wylie, B.K.; Zhang, L.; Bliss, Norman B.; Ji, Lei; Tieszen, Larry L.; Jolly, W. M.

    2008-01-01

    High-latitude ecosystems are exposed to more pronounced warming effects than other parts of the globe. We develop a technique to monitor ecological changes in a way that distinguishes climate influences from disturbances. In this study, we account for climatic influences on Alaskan boreal forest performance with a data-driven model. We defined ecosystem performance anomalies (EPA) using the residuals of the model and made annual maps of EPA. Most areas (88%) did not have anomalous ecosystem performance for at least 6 of 8 years between 1996 and 2004. Areas with underperforming EPA (10%) often indicate areas associated with recent fires and areas of possible insect infestation or drying soil related to permafrost degradation. Overperforming areas (2%) occurred in older fire recovery areas where increased deciduous vegetation components are expected. The EPA measure was validated with composite burn index data and Landsat vegetation indices near and within burned areas.

  18. The detection and interpretation of fire-disturbed boreal forest ecosystems in Alaska using spaceborne SAR data

    SciTech Connect

    Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F. )

    1993-06-01

    There is great interest in the ability to remotely monitor changes in boreal forest ecosystems for the understanding and balancing of the global carbon budget. The purpose of this study is to evaluate the utility of spaceborne synthetic aperture radar (SAR), particularly the ERS-1 C-VV SAR, for the detection and interpretation of fire-disturbed boreal forest ecosystems in the state of Alaska. The Alaska Fire Service has provided fire maps and records for comparison with the SAR data. Preliminary results have found that the following all have an influence on the detectability of a fire-scar (1) the time elapsed since the fire occurred, (2) the season in which the SAR data is collected, and (3) the geomorphology of the landscape in which the fire occurred. This paper demonstrates the usefulness of SAR in the estimation of the areal extent of fires. It also evaluates the potential usefulness of SAR in providing information on the spatial variability of bum intensity.

  19. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems.

    PubMed

    Baskaran, Preetisri; Hyvönen, Riitta; Berglund, S Linnea; Clemmensen, Karina E; Ågren, Göran I; Lindahl, Björn D; Manzoni, Stefano

    2017-02-01

    Tree growth in boreal forests is limited by nitrogen (N) availability. Most boreal forest trees form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve the uptake of inorganic N and also have the capacity to decompose soil organic matter (SOM) and to mobilize organic N ('ECM decomposition'). To study the effects of 'ECM decomposition' on ecosystem carbon (C) and N balances, we performed a sensitivity analysis on a model of C and N flows between plants, SOM, saprotrophs, ECM fungi, and inorganic N stores. The analysis indicates that C and N balances were sensitive to model parameters regulating ECM biomass and decomposition. Under low N availability, the optimal C allocation to ECM fungi, above which the symbiosis switches from mutualism to parasitism, increases with increasing relative involvement of ECM fungi in SOM decomposition. Under low N conditions, increased ECM organic N mining promotes tree growth but decreases soil C storage, leading to a negative correlation between C stores above- and below-ground. The interplay between plant production and soil C storage is sensitive to the partitioning of decomposition between ECM fungi and saprotrophs. Better understanding of interactions between functional guilds of soil fungi may significantly improve predictions of ecosystem responses to environmental change.

  20. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: A comparison of functional characteristics in plants from three mature forest types

    NASA Astrophysics Data System (ADS)

    Flanagan, Lawrence B.; Brooks, J. Renee; Ehleringer, James R.

    1997-12-01

    In this paper we compare measurements of photosynthesis and carbon isotope discrimination characteristics among plants from three mature boreal forest types (Black spruce, Jack pine, and aspen) in order to help explain variation in ecosystem-level gas exchange processes. Measurements were made at the southern study area (SSA) and northern study area (NSA) of the boreal forest in central Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). In both the NSA and the SSA there were significant differences in photosynthesis among the major tree species, with aspen having the highest CO2 assimilation rates and spruce the lowest. Within a species, photosynthetic rates in the SSA were approximately twice those measured in the NSA, and this was correlated with similar variations in stomatal conductance. Calculations of the ratio of leaf intercellular to ambient CO2 concentration (ci/ca) from leaf carbon isotope discrimination (Δ) values indicated a relatively low degree of stomatal limitation of photosynthesis, despite the low absolute values of stomatal conductance in these boreal tree species. Within each ecosystem, leaf Δ values were strongly correlated with life-form groups (trees, shrubs, forbs, and mosses), and these differences are maintained between years. Although we observed significant variation in the 13C content of tree rings at the old Jack pine site in the NSA during the past decade (indicating interannual variation in the degree of stomatal limitation), changes in summer precipitation and temperature accounted for only 44% of the isotopic variance. We scaled leaf-level processes to the ecosystem level through analyses of well-mixed canopy air. On average, all three forest types had similar ecosystem-level Δ values (average value ± standard deviation, 19.1‰±0.5‰), calculated from measurements of change in the concentration and carbon isotope ratio of atmospheric CO2 during a diurnal cycle within a forest canopy. However, there were

  1. Drought responses of a normally well-watered boreal forest ecosystem

    NASA Astrophysics Data System (ADS)

    Sevanto, S.; Hölttä, T.; Kolari, P.; Launiainen, S.; Pumpanen, J.; Korhonen, J. F. J.; Vesala, T.; Nikinmaa, E.

    2009-04-01

    In the boreal zone water is seldom a limiting factor for plant activity. Springtime snowmelt reloads soil water reservoirs and during the short summer the amount of precipitation is usually enough to keep the ecosystem moist. In Finland, for example, the three summer months (June, July and August) account for more than 30% of the annual precipitation (700 mm/year). We have carried out ecosystem-scale atmosphere-biosphere exchange measurements at the SMEAR II station in Hyytiälä, Southern Finland since 1996. The station is surrounded by a homogenous Scots pine (Pinus sylvestris L.) stand, which was sown after prescribed burning in 1962. The measurement set up includes an eddy-covariance system for measuring CO2, water vapor and sensible heat fluxes, soil water content measurements by the TDR-system, theta probes and equi-tensiometers, radiation measurements above and inside the canopy as well as automated chamber measurements for soil respiration and shoot-scale photosynthesis. We also measure sap flow in the trees using the Granier method and water tension inside the xylem using stem diameter variation measurements. This set-up allows also estimation of the variation in the stem hydraulic conductivity as well as stem water storage capacity. During the 11 years of measurements there has been three summers when soil water content has limited activity of the ecosystem: 1999, 2002 and 2006. In this study we compared the ecosystem responses of the dry summers to the long term averages of our site and evaluated the conditions when ecosystems-scale effects on the carbon fluxes start occur. We also studied the effects of drought on different components of ecosystem respiration and the water transport and storage capacity of the pine trees. Interestingly, drought did not reduce stem or shoot respiration significantly but the first rainfall event after the drought increased soil respiration more than photosynthesis turning the ecosystem from a sink to a source of carbon.

  2. Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands.

    PubMed

    Hyodo, Fujio; Wardle, David A

    2009-07-01

    In the prolonged absence of catastrophic disturbance, ecosystem retrogression occurs, and this involves increased nutrient limitation, and reduced aboveground and belowground ecosystem processes rates. Little is known about how the nitrogen and carbon stable isotope ratios (delta(15)N and delta(13)C) of plants, soils and consumer organisms respond to retrogression in boreal forests. We investigated a 5000 year chronosequence of forested islands in the boreal zone of northern Sweden, for which the time since lightning-induced wildfire increases with decreasing island size, leading to ecosystem retrogression. For this system, tissue delta(15)N of three abundant plant species (Betula pubescens, Vaccinium myrtillus and Pleurozium schreberi) and humus all increased as retrogression proceeded. This is probably due to enhanced ecosystem inputs of N by biological fixation, and greater dependency of the plants on organic N during retrogression. The delta(13)C of B. pubescens and plant-derived humus also increased during retrogression, probably through nutrient limitation increasing plant physiological stress. Unlike the plants, delta(15)N of invertebrates (lycosid spiders and ants) did not increase during retrogression, probably because of their partial dependence on aquatic-derived prey that had a variable delta(15)N signature. The delta(13)C of the invertebrates increased as retrogression proceeded and converged towards that of an aquatic prey source (chironomid flies), suggesting increased dependence on aquatic-derived prey during retrogression. These results show that measurement of delta(15)N and delta(13)C of plants, soils, and consumers across the same environmental gradient can provide insights into environmental factors that drive both the aboveground and belowground subsystems, as well as the linkages between them.

  3. Fluxes of Dissolved Organic Carbon within Soils across a Boreal Forest Ecosystem Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Bowering, K.; Edwards, K.; Billings, S. A.; Skinner, A.; Warren, J.; Ziegler, S. E.

    2013-12-01

    The movement of dissolved organic carbon (DOC) can represent a significant flux of C within soils, and may be a critical flux of C from the terrestrial into the aquatic environment. Further, these fluxes can represent an important source of C to deeper mineral horizons where stabilization mechanisms may exist. However the quantity and quality of this C flux is largely unknown, and regulating factors that are influenced by climate and land-use change are poorly understood. This movement of C is of particular interest in the boreal forest, where large soil C stocks are vulnerable to the impacts of climate change. Laboratory experiments have demonstrated that warming, in the absence of moisture limitation, can increase the rate of production of DOC in soils directly through increased decomposition rates; however, this has been difficult to test under field conditions where seasonality, intact soil, and hydrological systems influence DOC production and movement. To assess the impact of climate warming on DOC fluxes occurring through the organic soil layer of the eastern North American boreal forest, we sampled passive lysimeters installed at 3 sites along a latitudinal transect in Newfoundland and Labrador, Canada. Separated by just over 5° latitude, mean annual temperature at these sites were 4°C, 2.1°C, and -0.5°C from lowest to highest latitude. Six lysimeters were sampled from each site and collections were made at least three times annually for two consecutive years (2011-2013). Soils tend to freeze over-winter in the high-latitude site whereas they rarely freeze in the low-latitude site. The low-latitude site also experiences more variable precipitation, with a longer snow-free season and more precipitation falling during single events. Rates of DOC flux increased with decreasing latitude, indicating greater DOC transport through soils in forests experiencing a warmer climate. DOC fluxes calculated over different seasonal time periods ranged from 4.6 to 20

  4. Sensitivity of Spruce/Moss Boreal Forest Net Ecosystem Productivity to Seasonal Anomalies in Weather

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1997-01-01

    Abstract. A process-oriented, daily time step model of a spruce/moss boreal ecosystem simulated 1994 and 1995 productivity for a Boreal Ecosystem-Atmosphere Study site near Thompson, Manitoba. Simulated black spruce net primary productivity (NPP) was 139 g C m(exp -2) in 1994 and 112 in 1995; feathermoss NPP was 13.0 g C m(exp -2) in 1994 and 9.7 in 1995; decomposition was 126 g C m(exp -2) in 1994 and 130 in 1995; net ecosystem productivity (NEP) was an uptake of 26.3 g C m(exp -2)in 1994 and 2.5 in 1995. A very dry period for the first half of the 1995 summer was the major cause of that year's lower productivity. Sensitivity simulations explored the impact of 2-month long warmer, cooler, wetter, and drier spells on ecosystem productivity. Warmer summers decreased spruce NPP, moss NPP, and NEP; cooler summers had the opposite effect. Earlier snowmelt (due to either warmer spring temperatures or reduced winter precipitation) increased moss and spruce NPP; later snowmelt had the opposite effect. The largest effect on decomposition was a 5% reduction due to a drier summer. One-month droughts (April through October) were also imposed on 1975 base year weather. Early summer droughts reduced moss annual NPP by -30-40%; summer droughts reduced spruce annual NPP by 10%; late summer droughts increased moss NPP by about 20% due to reduced respiration; May to September monthly droughts reduced heterotrophic respiration by about 10%. Variability in NEP was up to roughly +/- 35%. Finally, 1975 growing season precipitation was redistributed into frequent, small rainstorms and infrequent, large rainstorms. These changes had no effect on spruce NPP. Frequent rainstorms increased decomposition by a few percent, moss NPP by 50%, and NEP by 20%. Infrequent rainstorms decreased decomposition by 5%, moss NPP by 50% and NEP by 15%. The impact of anomalous weather patterns on productivity of this ecosystem depended on their timing during the year. Multiyear data sets are necessary to

  5. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    PubMed

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  6. Enabling intelligent copernicus services for carbon and water balance modeling of boreal forest ecosystems - North State

    NASA Astrophysics Data System (ADS)

    Häme, Tuomas; Mutanen, Teemu; Rauste, Yrjö; Antropov, Oleg; Molinier, Matthieu; Quegan, Shaun; Kantzas, Euripides; Mäkelä, Annikki; Minunno, Francesco; Atli Benediktsson, Jon; Falco, Nicola; Arnason, Kolbeinn; Storvold, Rune; Haarpaintner, Jörg; Elsakov, Vladimir; Rasinmäki, Jussi

    2015-04-01

    The objective of project North State, funded by Framework Program 7 of the European Union, is to develop innovative data fusion methods that exploit the new generation of multi-source data from Sentinels and other satellites in an intelligent, self-learning framework. The remote sensing outputs are interfaced with state-of-the-art carbon and water flux models for monitoring the fluxes over boreal Europe to reduce current large uncertainties. This will provide a paradigm for the development of products for future Copernicus services. The models to be interfaced are a dynamic vegetation model and a light use efficiency model. We have identified four groups of variables that will be estimated with remote sensed data: land cover variables, forest characteristics, vegetation activity, and hydrological variables. The estimates will be used as model inputs and to validate the model outputs. The earth observation variables are computed as automatically as possible, with an objective to completely automatic estimation. North State has two sites for intensive studies in southern and northern Finland, respectively, one in Iceland and one in state Komi of Russia. Additionally, the model input variables will be estimated and models applied over European boreal and sub-arctic region from Ural Mountains to Iceland. The accuracy assessment of the earth observation variables will follow statistical sampling design. Model output predictions are compared to earth observation variables. Also flux tower measurements are applied in the model assessment. In the paper, results of hyperspectral, Sentinel-1, and Landsat data and their use in the models is presented. Also an example of a completely automatic land cover class prediction is reported.

  7. Boreal forest health and global change.

    PubMed

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions.

  8. Interannual Variability In the Atmospheric CO2 Rectification Over Boreal Forests Based On A Coupled Ecosystem-Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Worthy, D.

    2004-05-01

    Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.

  9. Biomass burning in boreal forests and peatlands: Effects on ecosystem carbon losses and soil carbon stabilization as black carbon

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.; Kane, E. S.; Benscoter, B.

    2011-12-01

    Climate change has increased both annual area burned and the severity of biomass combustion in some boreal regions. For example, there has been a four-fold increase in late season fires in boreal Alaska over the last decade relative to the previous 50 years. Such changes in the fire regime are expected to stimulate ecosystem carbon losses through fuel combustion, reduced primary production, and increased decomposition. However, biomass burning also will influence the accumulation of black carbon in soils, which could promote long-term soil carbon sequestration. Variations in slope and aspect regulate soil temperatures and drainage conditions, and affect the development of permafrost and thick peat layers. Wet soil conditions in peatlands and permafrost forests often inhibit combustion during wildfires, leading to strong positive correlations between pre- and post- fire organic soil thickness that persist through multiple fire cycles. However, burning can occur in poorly drained ecosystems through smouldering combustion, which has implications for emission ratios of CO2:CH4:CO as well as black carbon formation. Our studies of combustion severity and black carbon concentrations in boreal soils show a negative relationship between concentrations of black carbon and organic carbon in soils post-fire. Relative to well drained stands, poorly drained sites with thick peat layers (such as north-facing stands) had less severe burning and low concentrations of black carbon in mineral soils post-fire. Conversely, drier forests lost a greater proportion of their organic soils during combustion but retained larger black carbon stocks following burning. Overall, we have quantified greater black carbon concentrations in surface mineral soil horizons than in organic soil horizons. This is surprising given that wildfires typically do not consume the entire organic soil layer in boreal forests, and could be indicative of the vulnerability of black carbon formed in organic horizons

  10. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    NASA Astrophysics Data System (ADS)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (< 1 km) where animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring

  11. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate

    NASA Astrophysics Data System (ADS)

    Ryan, Michael G.; Lavigne, Michael B.; Gower, Stith T.

    1997-12-01

    Autotrophic respiration (Ra) in forest ecosystems can be >50% of the carbon fixed in photosynthesis and may regulate productivity and carbon storage in forest ecosystems, because Ra increases with temperature. We estimated annual Ra from chamber measurements in aspen, black spruce, and jack pine forests in Canada for 1994. Mean foliage respiration at 10°C for expanded leaves was 0.21-0.95 μmol m-2 (leaf surface) s-1 for all species and differed little from May to September. Wood respiration at 15°C (0.2-1 μmol m-2 (stem surface) s-1 for all species) was strongly seasonal, with high rates in midsummer that coincided with wood growth. Fine root respiration at 10°C was 2.5-7.7 μmol kg-1 s-1 for all species and declined throughout the growing season for the conifers. Annual costs of Ra for foliage, wood, and roots (overstory and understory) were 490, 610, and 450 g C m-2 (ground) yr-1 for aspen, black spruce, and jack pine (old) in northern Manitoba and 600, 480, and 310 g C m-2 yr-1 for aspen, black spruce, and jack pine (old) in central Saskatchewan. Carbon use efficiency (CUE), the ratio of net production to production plus Ra, averaged 0.44, 0.34, and 0.39 for aspen, black spruce, and jack pine (old) for all tissues and 0.61, 0.36, and 0.44 for aboveground tissues. Differences in CUE between the northern and the southern sites were small for all species, and CUE did not vary with stand biomass. Species differences in CUE suggest that models assuming a constant CUE across species may poorly estimate production and carbon balance for any given site.

  12. Functional responses and resilience of boreal forest ecosystem after reduction of deer density.

    PubMed

    Bachand, Marianne; Pellerin, Stéphanie; Moretti, Marco; Aubin, Isabelle; Tremblay, Jean-Pierre; Côté, Steeve D; Poulin, Monique

    2014-01-01

    The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada). Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years.

  13. Functional Responses and Resilience of Boreal Forest Ecosystem after Reduction of Deer Density

    PubMed Central

    Bachand, Marianne; Pellerin, Stéphanie; Moretti, Marco; Aubin, Isabelle; Tremblay, Jean-Pierre; Côté, Steeve D.; Poulin, Monique

    2014-01-01

    The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada). Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years. PMID:24587362

  14. Toward Improved Parameterization of a Meso-Scale Hydrologic Model in a Discontinuous Permafrost, Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Young, J. M.; Morton, D.; Hinzman, L. D.

    2013-12-01

    The sub-arctic environment can be characterized as being located in the zone of discontinuous permafrost. Although the distribution of permafrost is site specific, it dominates many of the hydrologic and ecologic responses and functions including vegetation distribution, stream flow, soil moisture, and storage processes. In this region, the boundaries that separate the major ecosystem types (deciduous dominated and coniferous dominated ecosystems) as well as permafrost (permafrost verses non-permafrost) occur over very short spatial scales. One of the goals of this research project is to improve parameterizations of meso-scale hydrologic models in this environment. Using the Caribou-Poker Creeks Research Watershed (CPCRW) as the test area, simulations of the headwater catchments of varying permafrost and vegetation distributions were performed. CPCRW, located approximately 50 km northeast of Fairbanks, Alaska, is located within the zone of discontinuous permafrost and the boreal forest ecosystem. The Variable Infiltration Capacity (VIC) model was selected as the hydrologic model. In CPCRW, permafrost and coniferous vegetation is generally found on north facing slopes and valley bottoms. Permafrost free soils and deciduous vegetation is generally found on south facing slopes. In this study, hydrologic simulations using fine scale vegetation and soil parameterizations - based upon slope and aspect analysis at a 50 meter resolution - were conducted. Simulations were also conducted using downscaled vegetation from the Scenarios Network for Alaska and Arctic Planning (SNAP) (1 km resolution) and soil data sets from the Food and Agriculture Organization (FAO) (approximately 9 km resolution). Preliminary simulation results show that soil and vegetation parameterizations based upon fine scale slope/aspect analysis increases the R2 values (0.5 to 0.65 in the high permafrost (53%) basin; 0.43 to 0.56 in the low permafrost (2%) basin) relative to parameterization based on

  15. Effects of Disturbances on Vegetation Composition and Permafrost Thaw in Boreal Forests and Tundra Ecosystems of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ramos, E.; Alexander, H. D.; Natali, S.

    2014-12-01

    In Arctic ecosystems, climate-driven changes to the thermal regime of permafrost soils have the potential to create surface disturbances that influence vegetation dynamics and underlying soil properties. Disturbance-mediated changes in vegetation are important because vegetation and the accumulation of soil organic matter drive ecosystem carbon (C) dynamics and contribute to the insulation of soils and protection of permafrost from thaw. We examined the effect of two disturbance types—thermokarsts and frost boils—to determine disturbance effects on the vegetation community and soil properties in northeast Siberia. In summer 2014, we measured vegetation cover, soil moisture, soil temperature, and thaw depth in two thermokarst sites within boreal forests, two frost boil sites in tundra, and in adjacent undisturbed sites within both ecosystems. Both thermokarst and frost boils resulted in decreased vegetation cover and greater exposure of mineral soils (10-40% bare soils vs. 0% in undisturbed), and consequently, 2-3 times higher soil temperature and deeper thaw depth. Compared to undisturbed areas, soil moisture was 3-4 times higher in thermokarst areas but 1.2-2 times lower in frost boil areas, which reflected differences in microtopography between these two disturbance types. In both thermokarst and frost boil disturbed areas, deciduous and evergreen shrubs covered only 5 and 10%, respectively, compared to approximately 10 and 20%, respectively, in undisturbed areas. In general, graminoids were substantially more abundant (2-20 times) in disturbed areas than in those undisturbed. These results highlight important linkages between disturbances, vegetation communities, and permafrost soils, and contribute to our understanding of how changes in arctic vegetation dynamics as direct and/or indirect consequences of climate change have the potential to impact permafrost C pools.

  16. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  17. Response of net ecosystem CO2 exchange and evapotranspiration of boreal forest ecosystems to projected future climate changes: results of a modeling study

    NASA Astrophysics Data System (ADS)

    Olchev, Alexander; Kurbatova, Julia

    2014-05-01

    It is presented the modeling results describing the possible response of net ecosystem exchange of CO2 (NEE), gross (GPP) and net (NPP) primary production, as well as evapotranspiration (ET) of spruce forest ecosystems situated at central part of European part of Russia at the southern boundary of boreal forest community to projected future changes of climatic conditions and forest species composition. A process-based MixFor-SVAT model (Olchev et al 2002, 2008, 2009) has been used to describe the CO2 and H2O fluxes under present and projected future climate conditions. The main advantage of MixFor-SVAT is its ability not only to describe seasonal and daily dynamics of total CO2 and H2O fluxes at an ecosystem level, but also to adequately estimate the contributions of soil, forest understorey, and various tree species in overstorey into total ecosystem fluxes taking into account their individual responses to changes in environmental conditions as well as the differences in structure and biophysical properties. Results of modeling experiments showed that projected changes of climate conditions (moderate scenario A1B IPCC) and forest species composition at the end of 21 century can lead to small increase of annual evapotranspiration as well as to growth of NEE, GPP and NPP of the forests in case if the projected increase in temperature and elevated CO2 in the atmosphere in future will be strictly balanced with growth of available nutrients and water in plant and soil. It is obvious that any deficit of e.g. nitrogen in leaves (due to reduced transpiration, nitrogen availability in soil, etc.) may lead to decreases in the photosynthesis and respiration rates of trees and, as a consequence, to decreases in the GPP and NEE of entire forest ecosystem. Conducted modeling experiments have demonstrated that a 20% reduction of available nitrogen in tree leaves in a monospesific spruce forest stand may result in a 14% decrease in NEE, a 8% decrease in NPP, and a 4% decrease in

  18. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview.

    PubMed

    Kramer, K; Leinonen, I; Loustau, D

    2000-08-01

    An overview is presented of the phenological models relevant for boreal coniferous, temperate-zone deciduous and Mediterranean coniferous forest ecosystems. The phenology of the boreal forests is mainly driven by temperature, affecting the timing of the start of the growing season and thereby its duration, and the level of frost hardiness and thereby the reduction of foliage area and photosynthetic capacity by severe frost events. The phenology of temperate-zone forests is also mainly driven by temperature. Since temperate-zone forests are mostly mixed-species deciduous forests, differences in phenological response may affect competition between tree species. The phenology of Mediterranean coniferous forests is mainly driven by water availability, affecting the development of leaf area, rather than the timing of phenological events. These phenological models were subsequently coupled to the process-based forest model FORGRO to evaluate the effect of different climate change scenarios on growth. The results indicate that the phenology of each of the forest types significantly affects the growth response to a given climate change scenario. The absolute responses presented in this study should, however, be used with caution as there are still uncertainties in the phenological models, the growth models, the parameter values obtained and the climate change scenarios used. Future research should attempt to reduce these uncertainties. It is recommended that phenological models that describe the mechanisms by which seasonality in climatic drivers affects the phenological aspects of trees should be developed and carefully tested. Only by using such models may we make an assessment of the impact of climate change on the functioning and productivity of different forest ecosystems.

  19. Modeling effects of climate change on spruce-fir forest ecosystems: Changes in the montane ecotone between boreal and temperate forests in the Green Mountains, U.S.A, from forest edge detection in Landsat TM imagery,1989 to 2011

    NASA Astrophysics Data System (ADS)

    Foster, J. R.; D'Amato, A. W.

    2014-12-01

    Climate change is projected to affect the integrity of forested ecosystems worldwide. One forest type expected to be severely impacted is the eastern spruce-fir forest, because it is already at the extreme elevational and latitudinal limits of its range within the northern United States. Large-scale bioclimactic models predict declining habitat suitability for spruce and fir species, while causing drought and thermal stress on remnant trees. As rising temperatures reduce or eliminate habitat throughout much of the current spruce-fir range, growth and regeneration of hardwood forests or more southerly conifers will be favored. The ecotone between northern hardwood forests and montane boreal forests was recently reported to have shifted approximately 100 m upslope over the last 20-40 years in the Green Mountains of Vermont, U.S.A. The research behind this finding relied on long-term forest plot data and change analysis of narrow transects (6 m width) on aerial photos and SPOT imagery. In the White Mountains of New Hampshire, U.S.A., research using vegetation indices from Landsat data reported a conflicting finding; that coniferous vegetation was increasing downslope of the existing ecotone. We carefully matched and topographically corrected Landsat images from 1989 through 2011 to comprehensively map the boreal-temperate forest ecotone throughout the Green Mountains in Vermont, U.S.A. We used edge detection and linear mixed models to evaluate whether the ecotone changed in elevation over 20 years, and whether rates of change varied with Latitude or aspect. We found that the elevation of the boreal-temperate forest ecotone, and changes in its location over 20 years, were more variable than reported in recent studies. While the ecotone moved to higher elevations in some locations at reported rates, these rates were at the tales of the distribution of elevational change. Other locations showed downward movement of the ecotone, while for the majority of sites, no change

  20. The likely impact of elevated [CO2], nitrogen deposition, increased temperature, and management on carbon sequestration in temperate and boreal forest ecosystems. A literature review

    SciTech Connect

    Norby, Richard J

    2007-01-01

    Temperate and Boreal forest ecosystems contain a large part of the carbon stored on land, both in the form of biomass and soil organic matter. Increasing atmospheric carbon dioxide concentration, increasing temperatures, elevated nitrogen deposition, and intensified management will change this carbon store. We review current literature and conclude that northern forests will acquire extra carbon as a result of an increasing length of the growing season (the main temperature response), higher leaf area index (the main nitrogen deposition response) and higher photosynthetic rate (the main [CO2] response). Simultaneously, forests will lose soil carbon as a result of higher temperatures, but nitrogen deposition may slow down soil carbon turnover. The prediction of the net effect is complicated because of a multitude of interactions between variables at different scales. Management has, however, a considerable potential for controlling the carbon store.

  1. [A new source of methane in boreal forests].

    PubMed

    Mukhin, V A; Voronin, P Iu

    2008-01-01

    Methane was found among the gases evolved during natural wood decay caused by bracket fungi in boreal forests. Methane was detected both in decaying wood and fungal fruiting bodies. A scheme of symbiotic association of wood-degrading fungi and anaerobic microorganisms providing the methanogenesis in the wood was proposed. The scale of mycogenic methane emission has to be consistent with the huge volume of decaying wood in boreal forest ecosystems.

  2. Carbon Isotope Composition of Ecosystem Respired Carbon Dioxide in Three Boreal Forest Ecosystems: Measurements and Model Calculations

    NASA Astrophysics Data System (ADS)

    Cai, T.; Flanagan, L. B.

    2007-12-01

    We conducted measurements of seasonal and inter-annual variation in the carbon isotope composition of ecosystem respired CO2 (δR) in aspen, black spruce and jack pine dominated ecosystems in northern Saskatchewan during 2004-2006 as part of the Fluxnet-Canada Research Network. All three sites showed relatively small variation (approximately -26 to -29 per mil) in δR values during the entire study. The measurements were strongly correlated with modeled δ13C values of ecosystem respired CO2. The model calculated leaf CO2 assimilation, stomatal conductance and chloroplast CO2 concentration separately for sunlit and shaded leaves within multiple canopy layers, and, therefore, allowed us to estimate canopy photosynthetic 13C discrimination. All three sites showed variation in canopy 13C discrimination in response to environmental conditions in a manner consistent with well-known leaf-level studies. Specifically, 13C discrimination was positively correlated with soil moisture and negatively correlated with photon flux density, air temperature and vapor pressure deficit. As a consequence a strong diurnal pattern was observed for 13C discrimination. The measured δR values also varied in response to environmental conditions in a manner consistent with well-known leaf-level studies of photosynthetic 13C discrimination, but with a dampened response caused by the contribution of heterotrophic respiration, which had a constant δ13C value. These results indicate that the stable isotope composition of respired CO2 is a useful ecosystem-scale tool to study constraints to photosynthesis and acclimation of ecosystems to environmental stress.

  3. Collected Data of The Boreal Ecosystem and Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Newcomer, J. (Editor); Landis, D. (Editor); Conrad, S. (Editor); Curd, S. (Editor); Huemmrich, K. (Editor); Knapp, D. (Editor); Morrell, A. (Editor); Nickerson, J. (Editor); Papagno, A. (Editor); Rinker, D. (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) was a large-scale international interdisciplinary climate-ecosystem interaction experiment in the northern boreal forests of Canada. Its goal was to improve our understanding of the boreal forests -- how they interact with the atmosphere, how much CO2 they can store, and how climate change will affect them. BOREAS wanted to learn to use satellite data to monitor the forests, and to improve computer simulation and weather models so scientists can anticipate the effects of global change. This BOREAS CD-ROM set is a set of 12 CD-ROMs containing the finalized point data sets and compressed image data from the BOREAS Project. All point data are stored in ASCII text files, and all image and GIS products are stored as binary images, compressed using GZip. Additional descriptions of the various data sets on this CD-ROM are available in other documents in the BOREAS series.

  4. Aspects of Boreal Forest Hydrology: From Stand to Watershed

    NASA Technical Reports Server (NTRS)

    Nijssen, B.

    2000-01-01

    This report evaluates land surface hydrologic processes in the boreal forest using observations collected during the Boreal Ecosystem Atmospheric Study (BOREAS), carried out in the boreal forest of central Canada from 1994 to 1996. Three separate studies, each of which constitutes a journal publication, are included. The first study describes the application of a spatially-distributed hydrologic model, originally developed for mid-latitude forested environments, to selected BOREAS flux measurement sites. Compared to point observations at the flux towers, the model represented energy and moisture fluxes reasonably well, but shortcomings were identified in the soil thermal submodel and the partitioning of evapotranspiration into canopy and subcanopy components. As a first step towards improving this partitioning, the second study develops a new parameterization for transmission of shortwave radiation through boreal forest canopies. The new model accounts for the transmission of diffuse and direct shortwave radiation and accounts for multiple scattering in the canopy and multiple reflections between the canopy layers.

  5. Sensitivity of ecosystem CO sub 2 flux in the boreal forests of interior Alaska to climatic parameters

    SciTech Connect

    Bonan, G.B.

    1992-03-01

    An ecophysiological model of carbon uptake and release was used to examine C02 fluxes in 17 mature forests near Fairbanks, Alaska. Under extant climatic conditions, ecosystem C02 flux ranged from a loss of 212 g C02 m-2 yr-1 in a black spruce stand to an uptake of 2882 g C02 m-2 yr-1 in a birch stand. Increased air temperature resulted in substantial soil warming. Without concomitant increases in nutrient availability, large climatic warming reduced ecosystem C02 uptake in all forests. Deciduous and white spruce stands were still a sink for C02, but black spruce stands became, on average, a net source Of CO2- With increased nutrient availability that might accompany soil warming, enhanced tree growth increased C02 uptake in conifer stands.

  6. Browning boreal forests of western North America

    NASA Astrophysics Data System (ADS)

    Verbyla, David

    2011-12-01

    Forest Ecol. Manag. 227 219-32 Berg E E, Hillman K M, Dial R and DeRuwe A 2009 Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: a major regime shift after 18 000 years of wet Sphagnum-sedge peat recruitment Canadian J. Forest Res. 39 2033-46 Brabets T P and Walvoord M A 2009 Trends in streamflow in the Yukon River Basin from 1944 to 2004 and the influence of the Pacific Decadal Oscillation J. Hydrol. 371 108-19 Bunn A G, Goetz S J, Kimball J S and Zhang K 2007 Northern high-latitude ecosystems respond to climate change EOS Trans. Am. Geophys. Union 88 333-40 D'Arrigo R, Kaufmann R K, Davi N, Jacoby G C, Laskowski C, Myneni R B and Cherubini P 2004 Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada Glob. Biogeochem. Cycles 18 GB3021 Goetz S J, Bunn A G, Fiske G J and Houghton R A 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521-5 Lloyd A H and Bunn A G 2007 Responses of the circumpolar boreal forest to the 20th century climate variability Environ. Res. Lett. 2 045013 Lloyd A H and Fastie C L 2002 Spatial and temporal variability in the growth and climate response of treeline trees in Alaska Clim. Change 52 481-509 Malmström C and Raffa K R 2000 Biotic disturbance agents in the boreal forest: considerations for vegetation change models Glob. Change Biol. 6 (Suppl. 1) 35-48 McGuire A D, Ruess R W, Lloyd A, Yarie J, Clein J S and Juday G P 2010 Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives Canadian J. Forest Res. 40 1197-209 Michealian M, Hogg E H, Hall R J and Arsenault E 2011 Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest Glob. Change Biol. 17 2084-94 Parent M B and Verbyla D 2010 The browning of Alaska

  7. Differential response of bird functional traits to post-fire salvage logging in a boreal forest ecosystem

    NASA Astrophysics Data System (ADS)

    Azeria, Ermias T.; Ibarzabal, Jacques; Hébert, Christian; Boucher, Jonathan; Imbeau, Louis; Savard, Jean-Pierre L.

    2011-05-01

    The concept of functional trait-environment relationship posits that species in a local community should possess similar traits that match the selective environment. The present study examines species trait-habitat (using Fourth-corner and RLQ analyses) and habitat occupancy patterns (logistic regression models) of bird assemblages in boreal forest stands following disturbances by forest fire and salvage logging. The stands differed in the amount and composition of residual tree retention, salvage- and aquatic-edges, degree of burn severity (all measured at 100 and 500 m buffers), as well as landscape-level variables such as distance to previously burned forests. Tests of trait-habitat relationships showed that canopy-nesters and bark- and foliage- insectivores required high levels of residual trees of low burn severity, with the feeding guilds showing affinity for different stand composition. In contrast, ground-nesters and omnivores thrived in salvaged areas and associated edges. In addition, cavity-nesting and ground-foragers were associated with severely burned stands. The species' habitat occupancy patterns were commensurate with trait requirements, which also appeared to be scale-dependent. For example, some fire-associated species had high occupancy probability in severely burned stands at small-scale (100 m buffer), which was consistent with their cavity-nesting trait. This pattern, however, was not evident at large-scale, where their feeding requirement (bark-insectivores) for low-severity burns dominated. Our study suggests that trait-habitat relationships can provide critical information to the complex ways species' relate to key habitat factors following natural and anthropogenic disturbances.

  8. Seasonal variability in foliar characteristics and physiology for boreal forest species at the five Saskatchewan tower sites during the 1994 Boreal Ecosystem-Atmosphere Study

    NASA Astrophysics Data System (ADS)

    Middleton, E. M.; Sullivan, J. H.; Bovard, B. D.; Deluca, A. J.; Chan, S. S.; Cannon, T. A.

    1997-12-01

    Leaf-level measurements of gas exchange, chemistry, morphology, and spectral optical properties were acquired at the five instrumented tower sites during the three 1994 growing season intensive field campaigns (IFCs) conducted near Prince Albert, Saskatchewan, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Stands included old and young aspen (OA, YA) associated with the hazelnut shrub, old and young jack pine (OJP, YJP) stands, and an old black spruce (OBS) stand; white spruce (at YA) and an understory herb (dogbane, at OJP) were also examined. Midsummer peak photosynthesis for aspen leaves in the field (A, light saturated) and laboratory (Amax light and CO2 saturated) was ˜12.6 and 33-41 μmol CO2 m-2 s-1. Black spruce exhibited the lowest A, 3 μmol CO2 m-2 s-1. Jack pine and black spruce attained their highest Amax (17-20 μmol CO2 m-2 s-1) in late summer/early fall. Gas exchange by white spruce was significantly higher and stomatal limitation lower than for other conifers, at levels comparable to broadleaf responses. White spruce foliage had the highest chlorophyll content in fall (˜41 μg cm-2), followed by aspen (OA) and hazelnut (YA) in midsummer (˜31 μg cm-2). Specific leaf mass of aspen, hazelnut, and conifer foliage was 86, ˜47, and ˜174 g m-2, respectively. Leaf nitrogen content of broadleaves (18-40 g N g-1 dry wt) was 2-3 times greater than conifer needles (8-12 g N g-1). Significantly larger needles were produced at OJP versus YJP, but needle number per age class was greater at YJP. The absorbed photosynthetically active radiation fraction (fAPAR) in June/July averaged ˜80% for broadleaves and ˜83% in conifer needles. The simple ratio (SR, near-infrared/red ratio) calculated from foliar transmittances was more strongly related to fAPAR than SR calculated from reflectances, with stronger correlation for broadleaves (r=0.92) than for conifers (r=0.78).

  9. Gaseous emissions from Canadian boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1990-01-01

    CO2-normalized emission ratios for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were determined from smoke samples collected during low-altitude helicopter flights over two prescribed fires in northern Ontario, Canada. The emission ratios determined from these prescribed boreal forest fires are compared to emission ratios determined over two graminoid (grass) wetlands fires in central Florida and are found to be substantially higher (elevated levels of reduced gas production relative to CO2) during all stages of combustion. These results argue strongly for the need to characterize biomass burning emissions from the major global vegetation/ecosystems in order to couple combustion emissions to their vegetation/ecosystem type.

  10. Nitrogen balance along a boreal forest fire chronosequence

    NASA Astrophysics Data System (ADS)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2016-04-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change in boreal regions. Because boreal forests comprise 30% of the global forest area, increases in the annual area burned may have significant implications for global carbon and nitrogen (N) cycles. The productivity of boreal forests is limited by low N availability. Fires cause N loss from ecosystems through oxidation and volatilization of N stored in biomass and soil. N balance may be poorly buffered against forest fires especially in sub-arctic ecosystems where atmospheric N deposition is low. Although forest fires alter N dynamics, there are little quantitative data available on N pools and fluxes through post-fire succession in sub-arctic boreal forests. We studied changes in N pools and fluxes, and the overall N balance across a 155-year forest fire chronosequence in sub-arctic Scots pine (Pinus sylvestris) forests in Värriö Strict Nature Reserve situated in Finnish Lapland (67°46' N, 29°35' E). Soil was the largest N pool in all forest age classes and comprised 69-82% of the total ecosystem N pool. The total ecosystem N pool varied from 622 kg ha-1 in the recently burned forest to 960 kg ha-1 in the 155-year-old forest. The forests were N sinks in all age classes the annual N accumulation rate being 2.28 kg ha-1 yr-1 which was distributed almost equally between soil and biomass. The observed changes in ecosystem N pools were consistent with the computed N balance 2.10 kg ha-1 yr-1 over the 155-year post-fire period (Balance= (atmospheric deposition + N fixation) - (leaching + N2O emissions)). The results indicated that N deposition is an important component of the N balance and the N outputs are small (13% of the inputs) in the studied ecosystems. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) compared to the other N fluxes. The biological N fixation increased with succession and constituted 9% of the total N

  11. Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study

    USGS Publications Warehouse

    Hintelmann, H.; Harris, R.; Heyes, A.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.; Rudd, J.W.M.; Scott, K.J.; St. Louis, V.L.

    2002-01-01

    The METAALICUS (Mercury Experiment To Assess Atmospheric Loading In Canada and the US) project is a whole ecosystem experiment designed to study the activity, mobility, and availability of atmospherically deposited mercury. To investigate the dynamics of mercury newly deposited onto a terrestrial ecosystem, an enriched stable isotope of mercury (202Hg) was sprayed onto a Boreal forest subcatchment in an experiment that allowed us, for the first time, to monitor the fate of "new" mercury in deposition and to distinguish it from native mercury historically stored in the ecosystem. Newly deposited mercury was more reactive than the native mercury with respect to volatilization and methylation pathways. Mobility through runoff was very low and strongly decreased with time because of a rapid equilibration with the large native pool of "bound" mercury. Over one season, only ???8% of the added 202Hg volatilized to the atmosphere and less than 1% appeared in runoff. Within a few months, approximately 66% of the applied 202Hg remained associated with above ground vegetation, with the rest being incorporated into soils. The fraction of 202Hg bound to vegetation was much higher than seen for native Hg (<5% vegetation), suggesting that atmospherically derived mercury enters the soil pool with a time delay, after plants senesce and decompose. The initial mobility of mercury received through small rain events or dry deposition decreased markedly in a relatively short time period, suggesting that mercury levels in terrestrial runoff may respond slowly to changes in mercury deposition rates.

  12. Resistance of the boreal forest to high burn rates.

    PubMed

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-09-23

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.

  13. Resistance of the boreal forest to high burn rates

    PubMed Central

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-01-01

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30–500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981

  14. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska

    USGS Publications Warehouse

    Gough, L.P.; Crock, J.G.; Wang, B.; Day, W.C.; Eberl, D.D.; Sanzolone, R.F.; Lamothe, P.J.

    2008-01-01

    We report on soil development as a function of bedrock type and the presence of loess in two high latitude ecosystems (boreal forest and tundra) and from two regions in Alaska?the Yukon-Tanana Upland (YTU, east-central Alaska) and the Seward Peninsula (SP, far-west coastal Alaska). This approach to the study of 'cold soils' is fundamental to the quantification of regional geochemical landscape patterns. Of the five state factors in this study, bedrock and biota (ecosystem; vegetation zone) vary whereas climate (within each area) and topography are controlled. The influence of time is assumed to be controlled, as these soils are thousands of years old (late Quaternary to Holocene). The primary minerals in soils from YTU, developed over loess and crystalline bedrock (metamorphic and intrusive), are quartz, plagioclase, and 2:1 clays; whereas in the SP, where loess and metasedimentary bedrock (schist and quartzite) predominate, they are quartz and muscovite. The A horizon of both regions is rich in peat. Examination of the ratio of mobile (K2O, CaO, and Fe2O3) to immobile (TiO2) major oxides, within each region, shows that very little difference exists in the chemical weathering of soils developed between the two ecosystems examined. Differences were observed between tundra soils developed in the two regions. These differences are most probably due to the dissimilarity in the geochemical importance of both loess and bedrock. A minimal loss of cadmium with soil depth is seen for soils developed over YTU crystalline bedrock in the boreal forest environments. This trend is related to the mobility of cadmium in these soils as well as to its biogenic cycling. Major differences were observed in the proportion of cadmium and zinc among the A, B, and C horizon material sequestered in various soil fractions as measured by sequential soil extractions. These trends followed such variables as the decrease with depth in organic matter, the change in clay minerals, and the change

  15. Snow and Vegetation Interactions at Boundaries in Alaska's Boreal Forest

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Sturm, M.

    2012-12-01

    There has been increased attention on snow-vegetation interactions in Arctic tundra because of rapid climate-driven changes affecting that snow-dominated ecosystem. Yet, far less attention is paid to boreal forest snow-vegetation interactions even though climatic conditions are changing there as well. Further, it is the prevalent terrestrial biome on the planet. The forest is a variable patchwork of trees, shrubs, grasses, and forbs shaped by wind, fire, topography, water drainage, and permafrost. These patches and their boundaries have a corresponding effect on boreal snow distributions; however, measurements characterizing boreal snow are sparse and focus within patches (vs. between patches). Unfortunately, remote sensing approaches in such forested areas frequently fall short due to coarse footprint size and dense canopy cover. Over the last several years we have been examining the characteristics of snow cover within and across boundaries in the boreal forest, seeking to identify gradients in snow depth due to snow-vegetation interactions as well identifying methods whereby boreal forest surveys could be improved. Specifically, we collected end-of-season snow measurements in the Alaska boreal forest during long-distance traverses in the Tanana Basin in 2010 (26 sites) and within the Yukon Flats National Wildlife Refuge in 2011 (26 sites). At each site (all relatively flat), hundreds of snow depths were collected using a GPS-equipped Magnaprobe, which is an automated tool for measuring and locating individual snow depths. Corresponding canopy properties included NDVI determined from high-resolution satellite imagery; canopy properties were variable among the 1ha sites and some areas had recently burned. Among sites, NDVI had the largest correlation with snow depths; elevation was not significant. Vegetation transition zones play important roles in explaining observed snow depth. Similar to treeline work showing nutrient and energy gradients are influenced by

  16. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.

    2013-08-01

    Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal ecosystems. In this study, we incorporated a mechanism that allowed boreal plants to uptake small molecular amino acids into a process-based biogeochemical model, the Terrestrial Ecosystem Model (TEM), to evaluate the impact of organic nitrogen uptake on ecosystem carbon cycling. The new version of the model was evaluated at both boreal forest and tundra sites. We found that the modeled organic nitrogen uptake accounted for 36-87% of total nitrogen uptake by plants in tundra ecosystems and 26-50% for boreal forests, suggesting that tundra ecosystem might have more relied on the organic form of nitrogen than boreal forests. The simulated monthly gross ecosystem production (GPP) and net ecosystem production (NEP) tended to be larger with the new version of the model since the plant uptake of organic nitrogen alleviated the soil nitrogen limitation especially during the growing season. The sensitivity study indicated that the most important factors controlling the plant uptake of organic nitrogen were the maximum root uptake rate (Imax) and the radius of the root (r0) in our model. The model uncertainty due to uncertain parameters associated with organic nitrogen uptake at tundra ecosystem was larger than at boreal forest ecosystems. This study suggests that considering the organic nitrogen uptake by plants is important to boreal ecosystem carbon modeling.

  17. Whole Ecosystem Low-level 14C Pulse Labeling and CO2 Flux Measurements in a Boreal Forest

    NASA Astrophysics Data System (ADS)

    Carbone, M.; Trumbore, S.; Czimczik, C.; McDuffee, K.; McMillan, A.

    2004-12-01

    We developed a large volume, low level, 14C pulse-chase, field labeling method to determine the timing and contribution of recent photosynthetic products to total ecosystem respiration in a poorly drained black spruce forest stand in Manitoba, Canada. The site is part of a chronosequence of black spruce stands located in the BOREAS Northern Study Area (55N, 98W), and time since fire is 40 years. The radiocarbon addition was designed to produce a 14C signature of ~1500 times Modern for CO2 at ambient levels inside the ~37,000 L volume light chamber. At this level of labeling, the radioactivity in our 14C source (acidified sodium bicarbonate solution with specific activity of ~30 nCi/g) and in the chamber were well below levels that are regulated. We labeled two chambers in August 2004. The vegetation inside the first (37,000 L) chamber included black spruce trees (ranging from seedlings to 4 m tall) with feather moss and shrub understory. A second 14CO2 label was applied in a smaller chamber (500 L) containing only feather mosses. Both chambers were constructed from polyethylene plastic that allowed for 70 percent transmission of PAR. For seven days following the label, we measured the quantity and 14C content of soil respiration with small (10 L) dark chambers, above-ground respiration with branch bags, and total ecosystem respiration with a dark chamber. Live root and moss 14C content were measured by field incubations. Additionally, soil gas 14C content at two depths within the moss/organic layer was measured. Radiocarbon measurements are made using Accelerator Mass Spectrometry, which allows us to easily distinguish the presence of the label in small amounts (mg) of material. We will report the radiocarbon (delta 14C) signature of individual respiration sources. Preliminary results show that we can use these isotopic signatures to follow the labeled contribution of respiration from individual sources (moss, root/root exudates, and needle) to total ecosystem

  18. Landscape pattern and successional dynamics in the boreal forest

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Strebel, Donald E.; Goetz, Scott J.; Woods, Kerry D.; Botkin, Daniel B.

    1987-01-01

    The landscape-scale community dynamics of a boreal forest ecosystem was investigated using the Landsat MSS data record form 1973 to 1983 to generate a stochastic description of the key life cycle states of the community landscape elements. Such descriptions can provide input and verification for models of community development and landscape dynamics. It is anticipated that the proposed approach may be extended to measure, monitor, and model ecosystems at continental and planetary scales.

  19. Biomass burning emissions estimates in the boreal forests of Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E. A.; Ivanova, G. A.; Soja, A. J.; Conard, S. G.

    2012-04-01

    Wildfire is the main boreal forest disturbance and can burn 10-30 million hectares annually, thus modifying the global carbon budget through direct fire emissions, postfire biogenic emissions, and by maintaining or altering ecosystems through establishing the beginning and end of successional processes. Fires in the Russian boreal forest range from low-severity surface fires to high-severity crown fires. Estimates of carbon emissions from fires in Russian boreal forests vary substantially due to differences in ecosystems types, burned area calculations, and the amount of fuel consumed. There is an urgent need to obtain more accurate and impartial fire carbon loss estimates in the boreal forests of Siberia due to their considerable contribution to the regional and global carbon balance. We examined uncertainties in estimates of carbon emissions. Area burned in the Siberian region was analyzed and compared using distinct methodologies. Differences between mapped ecosystems were also compared and contrasted to evaluate the potential for error resulting from disparate vegetation structure and fuel consumption estimates. Accurate fuel consumption estimates are obtained in the course of fire experiments with pre- and post-fire biomass measuring. Our large-scale experiments carried out in the course of the FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project provided quantitative and qualitative data on ecosystem state and carbon emissions due to fires of known behavior in major forest types of Siberia that could be used to verify large-scale carbon emissions estimates. Carbon emissions from fires vary annually and interannually and can increase several times in extreme fire years in comparison to normal fire years. Climate change and increasing drought length have increased the probability of high-severity fire occurrences. This would result in greater carbon losses and efflux to the atmosphere. This research was supported by NASA LCLUC Program, Fulbright

  20. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review.

    PubMed

    Hyvönen, Riitta; Agren, Göran I; Linder, Sune; Persson, Tryggve; Cotrufo, M Francesca; Ekblad, Alf; Freeman, Michael; Grelle, Achim; Janssens, Ivan A; Jarvis, Paul G; Kellomäki, Seppo; Lindroth, Anders; Loustau, Denis; Lundmark, Tomas; Norby, Richard J; Oren, Ram; Pilegaard, Kim; Ryan, Michael G; Sigurdsson, Bjarni D; Strömgren, Monika; van Oijen, Marcel; Wallin, Göran

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.

  1. Simple and Multiple Endmember Mixture Analysis in the Boreal Forest

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie

    2000-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.

  2. Moss and lichen cover mapping at local and regional scales in the boreal forest ecosystem of central Canada

    USGS Publications Warehouse

    Rapalee, G.; Steyaert, L.T.; Hall, F.G.

    2001-01-01

    Mosses and lichens are important components of boreal landscapes [Vitt et al., 1994; Bubier et al., 1997]. They affect plant productivity and belowground carbon sequestration and alter the surface runoff and energy balance. We report the use of multiresolution satellite data to map moss and lichens over the BOREAS region at a 10 m, 30 m, and 1 km scales. Our moss and lichen classification at the 10 m scale is based on ground observations of associations among soil drainage classes, overstory composition, and cover type among four broad classes of ground cover (feather, sphagnum, and brown mosses and lichens). For our 30 m map, we used field observations of ground cover-overstory associations to map mosses and lichens in the BOREAS southern study area (SSA). To scale up to a 1 km (AVHRR) moss map of the BOREAS region, we used the TM SSA mosaics plus regional field data to identify AVHRR overstory-ground cover associations. We found that: 1) ground cover, overstory composition and density are highly correlated, permitting inference of moss and lichen cover from satellite-based land cover classifications; 2) our 1 km moss map reveals that mosses dominate the boreal landscape of central Canada, thereby a significant factor for water, energy, and carbon modeling; 3) TM and AVHRR moss cover maps are comparable; 4) satellite data resolution is important; particularly in detecting the smaller wetland features, lakes, and upland jack pine sites; and 5) distinct regional patterns of moss and lichen cover correspond to latitudinal and elevational gradients. Copyright 2001 by the American Geophysical Union.

  3. Towards a comprehensive emission inventory of terpenoids from boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Tarvainen, V.; Hakola, H.; Rinne, J.; Hellén, H.; Haapanala, S.

    2007-07-01

    The biogenic volatile organic compound emissions in the south boreal, middle boreal and north boreal vegetation zones in Finland were calculated utilizing satellite land cover information and actual meteorological data in a BEIS-type canopy emission model. The sesquiterpene emissions from the boreal forest were estimated for the first time, and the inventory was further complemented by the inclusion of wetland isoprene emissions from open fens. Recently published results from emission measurements carried out in various parts of the boreal region were utilized in the compilation of the standard emission potentials and monoterpene emission spectra for the deciduous and coniferous forest categories and wetlands. The average annual isoprene emission fluxes from forests were 73, 56 and 45, and those of monoterpenes 657, 567 and 342 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The average annual sesquiterpene fluxes were of the same order of magnitude as isoprene, being 54, 46 and 26 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The isoprene emissions from wetlands were significant, contributing 3%, 18% and 31% of the annual isoprene emissions in the south boreal, middle boreal and north boreal vegetation zones, respectively. Throughout the boreal region, the main emitted monoterpenes were α-pinene and Δ3-carene, with significant contributions from β-pinene and sabinene in summer and autumn. Due to the new seasonal emission potentials of the coniferous species introduced in this work, the overwhelming role of spruce as the main isoprene and monoterpene emitter in the boreal forest is subdued. The new emission inventory also accentuates the role of the boreal deciduous trees as terpenoid emitters in the late summer months.

  4. Effects of boreal forest vegetation on global climate

    NASA Astrophysics Data System (ADS)

    Bonan, Gordon B.; Pollard, David; Thompson, Starley L.

    1992-10-01

    TERRESTRIAL ecosystems are thought to play an important role in determining regional and global climate1-6 one example of this is in Amazonia, where destruction of the tropical rainforest leads to warmer and drier conditions4-6. Boreal forest ecosystems may also affect climate. As temperatures rise, the amount of continental and oceanic snow and ice is reduced, so the land and ocean surfaces absorb greater amounts of solar radiation, reinforcing the warming in a 'snow/ice/albedo' feedback which results in large climate sensitivity to radiative forcings7-9. This sensitivity is moderated, however, by the presence of trees in northern latitudes, which mask the high reflectance of snow10,11, leading to warmer winter temperatures than if trees were not present12-14. Here we present results from a global climate model which show that the boreal forest warms both winter and summer air temperatures, relative to simulations in which the forest is replaced with bare ground or tundra vegetation. Our results suggest that future redistributions of boreal forest and tundra vegetation (due, for example, to extensive logging, or the influence of global warming) could initiate important climate feedbacks, which could also extend to lower latitudes.

  5. Quantifying nitrogen-fixation in feather moss carpets of boreal forests.

    PubMed

    DeLuca, Thomas H; Zackrisson, Olle; Nilsson, Marie-Charlotte; Sellstedt, Anita

    2002-10-31

    Biological nitrogen (N) fixation is the primary source of N within natural ecosystems, yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lack any significant, widespread symbiotic N-fixing plants. With the exception of scattered stands of alder in early primary successional forests, N-fixation in boreal forests is considered to be extremely limited. Nitrogen-fixation in northern European boreal forests has been estimated at only 0.5 kg N ha(-1) yr(-1); however, organic N is accumulated in these ecosystems at a rate of 3 kg N ha(-1) yr(-1) (ref. 8). Our limited understanding of the origin of boreal N is unacceptable given the extent of the boreal forest region, but predictable given our imperfect knowledge of N-fixation. Herein we report on a N-fixing symbiosis between a cyanobacterium (Nostoc sp.) and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt. that alone fixes between 1.5 and 2.0 kg N ha(-1) yr(-1) in mid- to late-successional forests of northern Scandinavia and Finland. Previous efforts have probably underestimated N-fixation potential in boreal forests.

  6. Boreal Forest Watch: A BOREAS Outreach Program

    NASA Technical Reports Server (NTRS)

    Rock, Barrett N.

    1999-01-01

    The Boreal Forest Watch program was initiated in the fall of 1994 to act as an educational outreach program for the BOREAS project in both the BOREAS Southern Study Area (SSA) and Northern Study Area (NSA). Boreal Forest Watch (13FW) was designed to introduce area high school teachers and their students to the types of research activities occurring as part of the BOREAS study of Canadian boreal forests. Several teacher training workshops were offered to teachers from central and northern Saskatchewan and northern Manitoba between May, 1995 and February, 1999; teachers were introduced to techniques for involving their students in on-going environmental monitoring studies within local forested stands. Boreal Forest Watch is an educational outreach program which brings high school students and research scientists together to study the forest and foster a sustainable relationship between people and the planetary life-support system we depend upon. Personnel from the University of New Hampshire (UNH), Complex Systems Research Center (CSRC), with the cooperation from the Prince Albert National Park (PANP), instituted this program to help teachers within the BOREAS Study Areas offer real science research experience to their students. The program has the potential to complement large research projects, such as BOREAS, by providing useful student- collected data to scientists. Yet, the primary goal of BFW is to allow teachers and students to experience a hands-on, inquiry-based approach to leaming science - emulating the process followed by research scientists. In addition to introducing these teachers to on-going BOREAS research, the other goals of the BFW program were to: 1) to introduce authentic science topics and methods to students and teachers through hands-on, field-based activities; and, 2) to build a database of student-collected environmental monitoring data for future global change studies in the boreal region.

  7. The Boreal Virtual Forest. [CD-ROM].

    ERIC Educational Resources Information Center

    Indiana Univ.-Purdue Univ., Indianapolis.

    This CD-ROM is an educational CD-ROM aimed at classroom audiences in 5th grade and above. Using QuickTime Virtual Reality (QTVR), the Boreal Virtual Forest is designed so that students are able to see views from inside the central hardwood forest and look up or down or spin around 360 degrees. The program allows students to become familiar with…

  8. Distribution of 210Pb and 210Po concentrations in wild berries and mushrooms in boreal forest ecosystems.

    PubMed

    Vaaramaa, Kaisa; Solatie, Dina; Aro, Lasse

    2009-12-15

    The activity concentrations and distribution of 210Pb and 210Po in wild berries and edible mushrooms were investigated in Finnish forests. The main study areas were located in Scots pine (Pinus sylvestris L.) forests in southern and northern Finland. The activity concentrations of 210Pb and 210Po in blueberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) samples decreased in the order: stems>leaves>berries (i.e. fruits). The activity ratios of 210Po/210Pb in the wild berry samples were mainly higher than one, indicating elevated activity concentrations of polonium in the samples. In mushrooms the activity concentrations of 210Pb and especially 210Po were higher than in fruits of the wild berries. The highest activity concentration of 210Pb was detected in Cortinarius armillatus L. (16.2 Bq kg(-1) d.w.) and the lowest in Leccinum vulpinum L. (1.38 Bq kg(-1) d.w.). The 210Po activity concentrations of the whole fruiting bodies ranged from 7.14 Bq kg(-1) d.w. (Russula paludosa L.) to 1174 Bq kg(-1) d.w. (L. vulpinum L.). In general, the highest activity concentrations of 210Po were recorded in boletes. The caps of mushrooms of the Boletaceae family showed higher activity concentrations of 210Po compared to the stipes. In most of the mushrooms analyzed, the activity concentrations of 210Po were higher than those of 210Pb. 210Po and 210Pb dominate the radiation doses received via ingestion of wild berries and mushrooms in northern Finland, while in southern Finland the ingested dose is dominated by 137Cs from the Chernobyl fallout.

  9. Meso-Scale Hydrological Modeling Using Small Scale Parameterizations in a Discontinuous Permafrost Watershed in the Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Hinzman, L. D.; Morton, D.; Young, J. M.

    2014-12-01

    The sub-Arctic region lies in the transition zone between the warm temperate region to the south and the cold arctic region to the north. The sub-Arctic hosts sharply contrasting ecosystems that vary over short horizontal spatial scales due to the presence or absence of permafrost. In the discontinuous permafrost zone, the presence or absence of permafrost plays a dominant role to many hydrological processes including stream flow, soil moisture, and water storage dynamics. The distribution of permafrost also has a strong influence on ecosystem composition and function. The land cover and vegetation distribution is also an important parameter affecting the stream flow responses due to the large differences in the transpiration rates between coniferous and deciduous vegetation. As a result, accurate simulation of the hydrology in this region is challenging. The objectives of this study are to improve the parameterization of meso-scale hydrologic simulations in the discontinuous permafrost zone through fine-scale observation and modeling. Slope and aspect, derived from 30m Digital Elevation Model (DEM), are used as a proxy for permafrost distribution and vegetation composition. Small-scale parameterizations were conducted at the two sub-basins (area ~11km2 ) of the Caribou-Poker Creeks Research Watershed (CPCRW) using the Variable Infiltration Capacity (VIC) meso-scale hydrological model. The small scale parameterization simulation results indicate that slope and aspect based vegetation cover and soil parameter parameterization improve meso-scale hydrological modeling in these regions. In order to test the extent to which these small-scale parameterizations are valid, the Chena River Basin (area ~5,478 km2), located in Interior Alaska, is being simulated using these small-scale parameterizations. Aspect will be used as the proxy for the parameterization of vegetation cover and soil property. Results from the VIC simulation using the small scale parameterization will

  10. Global estimates of boreal forest carbon stocks and flux

    NASA Astrophysics Data System (ADS)

    Bradshaw, Corey J. A.; Warkentin, Ian G.

    2015-05-01

    The boreal ecosystem is an important global reservoir of stored carbon and a haven for diverse biological communities. The natural disturbance dynamics there have historically been driven by fire and insects, with human-mediated disturbances increasing faster than in other biomes globally. Previous research on the total boreal carbon stock and predictions of its future flux reveal high uncertainty in regional patterns. We reviewed and standardised this extensive body of quantitative literature to provide the most up-to-date and comprehensive estimates of the global carbon balance in the boreal forest. We also compiled century-scale predictions of the carbon budget flux. Our review and standardisation confirmed high uncertainty in the available data, but there is evidence that the region's total carbon stock has been underestimated. We found a total carbon store of 367.3 to 1715.8 Pg (1015 g), the mid-point of which (1095 Pg) is between 1.3 and 3.8 times larger than any previous mean estimates. Most boreal carbon resides in its soils and peatlands, although estimates are highly uncertain. We found evidence that the region might become a net carbon source following a reduction in carbon uptake rate from at least the 1980s. Given that the boreal potentially constitutes the largest terrestrial carbon source in the world, in one of the most rapidly warming parts of the globe (Walsh, 2014), how we manage these stocks will be influential on future climate dynamics.

  11. Modeling Climate-Biosphere Interactions in the Boreal Forest

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1998-01-01

    The overall goal of this BOREAS Program was to develop, test, and apply a model of the carbon balance of boreal forest sites with a significant groundcover component (moss or lichen). The basic question addressed with this model was: What is the sensitivity of the boreal forest carbon balance to weather variability? More specifically: What are the differences in the sensitivities of carbon gains (photosynthesis) and carbon losses (respiration) of the various components of the ecosystem? Are there different seasonalities to their sensitivities (e.g., warmer springs will have one effect, warmer summers a different effect)? What are the effects of different patterns of successive weather years (wet/dry, warm/cool)? What, for example, would be the difference in effects of two "warmer than normal" months-one with each day warmer than normal, and the other with three normal weeks and one very hot week? Due to weather variability, how "noisy" will any carbon flux or carbon pool signal be that we might use to try to detect change? The project resulted in the development of a new boreal forest ecosystem model. This model was the first model in the BOREAS project to look closely at the role of mosses in the ecosystem carbon balance, and also was the first model in the BOREAS project to look closely at interannual variability in carbon fluxes. Along with the work of many other groups, TE-19 modeling analysis pointed to the need for a second, longer field season in 1996, with particular focus on the spring and fall transitions and on ground vegetation. BOREAS groups TE-19 (Frolking), TGB-1 (Crill) & TGB-3 (Moore & Roulet) analyzed BOREAS data and other published and unpublished data to develop a relationship between peatland ecosystem productivity and incoming radiation, which is quite distinct from the upland ecosystem relationships observed in other studies.

  12. Exchange of volatile organic compounds in the boreal forest floor

    NASA Astrophysics Data System (ADS)

    Aaltonen, Hermanni; Bäck, Jaana; Pumpanen, Jukka; Pihlatie, Mari; Hakola, Hannele; Hellén, Heidi; Aalto, Juho; Heinonsalo, Jussi; Kajos, Maija K.; Kolari, Pasi; Taipale, Risto; Vesala, Timo

    2013-04-01

    Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in formation and growth of secondary organic aerosols in the atmosphere and thus affect also Earth's radiation balance (Kulmala et al. 2004). We have studied boreal soil and forest floor VOC fluxes with chamber and snow gradient techniques we were developed. Spatial and temporal variability in VOC fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. Our results reveal that VOCs from soil are mainly emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Soil fungi showed high emissions of lighter VOCs, like acetone, acetaldehyde and methanol, from isolates. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of other trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not show correlations with the VOC fluxes. These results indicate that emissions of VOCs from the boreal forest floor account for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This emphasises that forest floor compartment should be taken into

  13. Lichen conservation in heavily managed boreal forests.

    PubMed

    McMullin, Richard Troy; Thompson, Ian D; Newmaster, Steven G

    2013-10-01

    Lichens are an important component of the boreal forest, where they are long lived, tend to accumulate in older stands, and are a major food source for the threatened woodland caribou (Rangifer tarandus caribou). To be fully sustainable, silvicultural practices in the boreal forest must include the conservation of ecological integrity. Dominant forest management practices, however, have short-term negative effects on lichen diversity, particularly the application of herbicides. To better understand the long-term effects of forest management, we examined lichen regeneration in 35 mixed black spruce (Picea mariana) and jack pine (Pinus banksiana) forest stands across northern Ontario to determine recovery following logging and postharvest silvicultural practices. Our forest stands were 25-40 years old and had undergone 3 common sivilcultural treatments that included harvested and planted; harvested, planted, and treated with N-[phosphonomethyl] glycine (glyphosate); and harvested, planted, and treated with 2,4-dichlorophenoxyacetic acid (2,4-D). Forest stands with herbicide treatments had lower lichen biomass and higher beta and gamma diversity than planted stands that were not treated chemically or control stands. In northwestern Ontario, planted stands that were not treated chemically had significantly greater (p < 0.05) alpha diversity than stands treated with herbicides or control stands. Our results show that common silvicultural practices do not emulate natural disturbances caused by wildfires in the boreal forest for the lichen community. We suggest a reduction in the amount of chemical application be considered in areas where lichen biomass is likely to be high and where the recovery of woodland caribou is an objective.

  14. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers

    NASA Astrophysics Data System (ADS)

    Buermann, Wolfgang; Parida, Bikash; Jung, Martin; MacDonald, Glen M.; Tucker, Compton J.; Reichstein, Markus

    2014-03-01

    Terrestrial ecosystems in the northern high latitudes are currently experiencing drastic warming, and recent studies suggest that boreal forests may be increasingly vulnerable to warming-related factors, including temperature-induced drought stress as well as shifts in fire regimes and insect outbreaks. Here we analyze interannual relationships in boreal forest greening and climate over the last three decades using newly available satellite vegetation data. Our results suggest that due to continued summer warming in the absence of sustained increases in precipitation, a turning point has been reached around the mid-1990s that shifted western central Eurasian boreal forests into a warmer and drier regime. This may be the leading cause for the emergence of large-scale negative correlations between summer temperatures and forest greenness. If such a regime shift would be sustained, the dieback of the boreal forest induced by heat and drought stress as predicted by vegetation models may proceed more rapidly than anticipated.

  15. Remote estimation of net CO2 emission from boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Rogers, C. A.; Strachan, I. B.

    2010-12-01

    Hydroelectricity is the main source of power in the province of Quebec, Canada. While hydroelectricity is considered to be a relatively green source of energy, reservoir creation is a land use change that involves flooding terrestrial ecosystems and thus a loss of greenhouse gas (GHG) uptake as well as direct GHG emission from decomposing vegetation. Both the lost sink for GHGs and direct emission from the reservoir surface must be included in estimating the net GHG emission attributable to the reservoir’s construction. These emissions can be determined using techniques such as eddy covariance, however, such methods are often costly and time consuming, and require frequent access to remote locations. Remote sensing is able to provide spatially continuous data over large areas, minimizing the need for ground based measurements. We tested the ability of the photochemical reflectance index (PRI) and normalized difference vegetation index (NDVI) to predict fluxes of carbon dioxide in areas representative of boreal forests and peatlands flooded by the Eastmain 1 hydroelectric reservoir in the James Bay region of Quebec, Canada. We collected spectral measurements from hand-held and helicopter-based platforms, as well as continuously monitored the indices PRI and NDVI from tower-mounted sensors at a forest and peatland site. We then compared the vegetation indices to net fluxes of carbon dioxide measured by eddy covariance at each site. PRI was related to fluxes at both the forest and peatland sites, suggesting it is possible to remotely estimate carbon dioxide uptake by vegetation in boreal forests and peatlands and thus greenhouse gas emissions resulting from land use changes in boreal regions, such as reservoir inundation.

  16. Microwave dielectric properties of boreal forest trees

    NASA Technical Reports Server (NTRS)

    Xu, G.; Ahern, F.; Brown, J.

    1993-01-01

    The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.

  17. Net Primary Production of boreal forests in the Krasnoyarsk Territory

    NASA Astrophysics Data System (ADS)

    Larko, Alexander; Chernetskiy, Maxim; Shevyrnogov, Anatoly

    One of the most important characteristics used in the biosphere change control is net primary production dynamics. (NPP) NPP shows the amount of pure carbon fixed in plants for a definite time period, essentially, this indicator reflects the intensity of a carbon biochemical cycle. Being the main indicator of the ecosystem condition, NPP has great significance, since it is also an indicator of biosphere carbon flux intensity. Its use is important for ecological investigations, carbon cycle calculation and the distribution of natural recourses. Ground true ecosystems determine most of seasonal and annual changes in the atmospheric CO2 concentration. Satellite methods of investigation are known to be effectively used for the calculation of the global NPP distribution. In its turn, the study of boreal forest NPP dynamics is required to introduce clarity into global models and to understand their role in the carbon cycle. At present, there is a number of calculation models for obtaining NPP. In the given work, an estimate of NPP for boreal forests of the Krasnoyarsk Territory is made. For the calculation, the GloPEM model employing TERRA/MODIS and TOMS data has been used. The obtained data have been compared with satellite temperature and ground true climatic data and, also, with the forest vegetation maps. The maps contained data about the biomass amount and the forest species composition, which allowed one to obtain the results showing the nonuniformity of NPP distribution depending on the climatic conditions, species composition and the latitude of the objects under study.

  18. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  19. Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov.

    PubMed

    Kachalkin, Aleksey V; Yurkov, Andrey M

    2012-06-01

    The effects of the temperature-moisture factors on the phylloplane yeast communities inhabiting Sphagnum mosses were studied along the transition from a boreal forest to a swamp biotope at the Central Forest State Biosphere Reserve (Tver region, Russia). We tested the hypothesis that microclimatic parameters affect yeast community composition and structure even on a rather small spatial scale. Using a conventional plating technique we isolated and identified by molecular methods a total of 15 species of yeasts. Total yeast counts and species richness values did not depend on environmental factors, although yeast community composition and structure did. On average, Sphagnum in the swamp biotope supported a more evenly structured yeast community. Relative abundance of ascomycetous yeasts was significantly higher on swamp moss. Rhodotorula mucilaginosa dominated in the spruce forest and Cryptococcus magnus was more abundant in the swamp. Our study confirmed the low occurrence of tremellaceous yeasts in the Sphagnum phyllosphere. Of the few isolated ascomycetous yeast and yeast-like species, some were differentiated from hitherto known species in physiological tests and phylogenetic analyses. We describe one of them as Candida sphagnicola and designate KBP Y-3887(T) (=CBS 11774(T) = VKPM Y-3566(T) = MUCL 53590(T)) as the type strain. The new species was registered in MycoBank under MB 563443.

  20. Diurnal, seasonal and interannual variability of carbon isotope discrimination at the canopy level in response to environmental factors in a boreal forest ecosystem.

    PubMed

    Chen, Baozhang; Chen, Jing M

    2007-10-01

    Accurate estimation of temporal and spatial variations in photosynthetic discrimination of 13C is critical to carbon cycle research. In this study, a combined ecosystem-boundary layer isotope model, which was satisfactorily validated against intensive campaign data, was used to explore the temporal variability of carbon discrimination in response to environmental driving factors in a boreal ecosystem in the vicinity of Fraserdale Tower, Ontario, Canada (49 degrees 52'30''N, 81 degrees 34'12''W). A 14 year (1990-1996 and 1998-2004) hourly CO2 concentration and meteorological record measured on this tower was used for this purpose. The 14 year mean yearly diurnal amplitude of canopy-level discrimination Delta(canopy) was computed to be 2.8 +/- 0.5 per thousand, and the overall diurnal cycle showed that the greatest Delta(canopy) values occurred at dawn and dusk, while the minima generally appeared in mid-afternoon. The average annual Delta(canopy) varied from 18.3 to 19.7 per thousand with the 14 year average of 19 +/- 0.4 per thousand. The overall seasonality of Delta(canopy) showed a gradually increasing trend from leaf emergence in May-September and with a slight decrease at the end of the growing season in October. Delta(canopy) was negatively correlated to vapour pressure deficit and air temperature across hourly to decadal timescales. A strong climatic control on stomatal regulation of ecosystem isotope discrimination was found in this study.

  1. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.

    PubMed

    Lara, Mark J; Genet, Hélène; McGuire, Anthony D; Euskirchen, Eugénie S; Zhang, Yujin; Brown, Dana R N; Jorgenson, Mark T; Romanovsky, Vladimir; Breen, Amy; Bolton, William R

    2016-02-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  2. Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space

    PubMed Central

    Pickell, Paul D.; Coops, Nicholas C.; Gergel, Sarah E.; Andison, David W.; Marshall, Peter L.

    2016-01-01

    Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055

  3. Thermokarst Rates Intensify Due to Climate Change and Forest Fragmentation in an Alaskan Boreal Forest Lowland

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; Genet, H.; McGuire, A. D.; Euskirchen, E. S.; Zhang, Y.; Brown, D. N.; Jorgenson, T.; Romanovsky, V. E.; Breen, A. L.; Bolton, W. R.

    2015-12-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse scar-bogs, low shrub/scrub, and forests growing on elevated ice rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5o C of thawing. Increases in the collapse of lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998 and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30x30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, respectively. Gradient boosting and regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950-2009 landscape-level analysis estimates a transition of ~15 km² of birch forest area to wetlands on the Tanana Flats, where the greatest change followed warm periods. This work highlights the vulnerability of lowland

  4. Fire severity influences the response of soil microbes to a boreal forest fire

    NASA Astrophysics Data System (ADS)

    Holden, Sandra R.; Rogers, Brendan M.; Treseder, Kathleen K.; Randerson, James T.

    2016-03-01

    Wildfire activity is projected to increase in boreal forests as a result of climate warming. The consequences of increased wildfire activity for soil carbon (C) storage in boreal forests may depend on the sensitivity of soil microbes to fire severity, but microbial responses to boreal forest fire severity are not well known. Here, we combine remote sensing of fire severity and field sampling to characterize the response of soil microbial biomass per g soil, microbial respiration of CO2 per g soil, and fungal groups to fire severity in a boreal forest ecosystem. We used remote sensing measurements of differenced normalized burn ratio from Landsat as a measure of fire severity. Our results demonstrate that fire severity controls soil microbial responses to boreal forest fires. In comparison to unburned stands, burned stands had a 52% and 56% reduction in soil microbial biomass and basal respiration, respectively. Within burned stands, we found that microbial biomass and basal respiration significantly declined with increasing fire severity. In addition, mycorrhizal taxa and basidiomycetes displayed particularly low tolerances for severe fire. Although wildfires result in the immediate loss of soil C, our study provides evidence that decreases in microbial biomass and respiration following high severity fires may reduce the capacity of the soil microbial community to decompose soil C over longer time scales. Therefore, models of C cycle responses to climate warming may need to represent the sensitivity of microbial biomass and fungal community composition to fire severity in boreal forests.

  5. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  6. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    NASA Technical Reports Server (NTRS)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  7. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools.

  8. The Recovery of Net Ecosystem Productivity and Water Use Efficiency of a Harvested Aspen Forest in the Western Boreal Plain, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Giroux, K.; Brown, S. M.; Devito, K. J.; Chasmer, L. E.

    2011-12-01

    The Utikuma Region Study Area (URSA) is located in north-central Alberta, Canada, in a region where aspen (Populus Tremuloides Michx.) dominate the upland vegetation of the Western Boreal Plain (WBP). Due to the heterogeneity of the surficial geology as well as the sub-humid climate where the water balance is dominated by evapotranspiration, the carbon balance across this landscape is highly variable. Moreover, the upland aspen regions represent significant stores of carbon. More recently, aspen stands have become valuable commercial resources for pulp and paper processing. These stands are harvested through clear cutting and are generally left to regenerate on their own, a process which occurs rapidly in clonal species like aspen. At URSA, three eddy covariance towers were setup during the length of the growing seasons of 2005-2009 to investigate the CO2 exchange under natural conditions and the rate of recovery after harvest. In 2007, the south facing slope of URSA was harvested and the north facing slope in 2008. This study examines the inter-annual variability and recovery (after harvest) of net ecosystem productivity (NEP) and water use efficiency (WUE) as controlled by environmental variables such as air temperature, precipitation, soil moisture, growing season length and LAI.

  9. Bryophyte Evapotranspiration in a Boreal Forest Chronosequence

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Ewers, B.; Angstmann, J.; Gower, S.

    2008-12-01

    Forest water fluxes, in particular evapotranspiration (ET), are less well constrained than are carbon fluxes, and the effect of changing stand age on forest ET is not well understood. We combined field and lab measurements to estimate the bryophyte contribution to ET in a black spruce-dominated boreal chronosequence in Manitoba, Canada. Site ages were 17, 42, 76 and 156 years, and each site contained separate well- and poorly-drained stands (bogs). Field plots (N=4) were surveyed for moss diversity and microtopography; meteorological variables were recorded continuously. Field measurements were made 3-4 times during the growing season using a custom chamber attached to a LI-COR 6400. In addition, large tubs of moss were incubated in a controlled-environment chamber and water loss rates measured via weighing; these tubs were also measured using the same protocol as performed in the field. In the lab, fully-saturated feathermoss and Sphagnum lost water at rates as high as 1.5 and 4.5 mm day-1, respectively, at 25 °C. Over the entire year, modeled bryophyte ET ranged from 0.2-0.3 and 0.2-0.5 mm day-1 in the well- and poorly-drained stands, respectively. During the growing season, these rates were 0.7-0.8 and 0.6- 1.4 mm day-1. Ignoring bog microtopography would have resulted in underestimation of fluxes by ~10%. There was no clear trend of moss ET flux with stand age, except at the very youngest stands, where bryophyte spatial coverage was low. Our results emphasize the important contribution that bryophytes make to the ET flux of boreal forests.

  10. Effects of Sloped Terrain and Forest Stand Maturity on Evapotranspiration in a Boreal Forested Catchment

    NASA Astrophysics Data System (ADS)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2015-12-01

    The boreal forests are the predominant landscape of Canada, occupying 49% of its boreal zone or 27% of the country. Despite the tremendous amount of literature on such ecosystems, some gaps persist in our understanding of boreal forest evapotranspiration (ET), given that direct measurements are costly to obtain and therefore scarce in these remote territories. This is especially the case on sloped terrain, since the eddy covariance method is not traditionally used in such situations. These gaps lead to the implementation of the EVAP experimental project, which intends to produce a major leap in our understanding of the water and energy budgets of a sloped boreal forest. Starting in summer 2015, we heavily instrumented a watershed in the Montmorency Forest (47°17' N; 71°10' W), Quebec, Canada. Located in the Laurentian Mountains, the forest has a mean elevation of 750 m with peaks at 1000 m. The setup includes a 20-m flux tower with two separate sets of eddy correlation and net radiation measurements facing opposite directions, located over an almost mature boreal forest (logged ~20 years ago, 8-10 m trees). Eddy fluxes are also measured under the canopy with a similar setup, while a sub-watershed is instrumented with a 10-m flux tower using homologous instruments, this time on a much younger forest stand (logged ~10 years ago, 4-5 m trees). Both sites are characterized by a significant slope (~20%), facing northeast for the 20-m tower and west for the 10-m tower. With several other instruments, we are measuring every major components of both water and energy budgets, including the outgoing discharge of the watershed and subwatershed. The different slope orientations and local topography of both sites allow us to quantify the relationships between solar exposition, topographic shading and ET rates; these relationships being transposable to other mountainous forested catchments. We also investigate the presence of slope flows and assess their impact on local ET

  11. Phenology cameras observing boreal ecosystems of Finland

    NASA Astrophysics Data System (ADS)

    Peltoniemi, Mikko; Böttcher, Kristin; Aurela, Mika; Kolari, Pasi; Tanis, Cemal Melih; Linkosalmi, Maiju; Loehr, John; Metsämäki, Sari; Nadir Arslan, Ali

    2016-04-01

    Cameras have become useful tools for monitoring seasonality of ecosystems. Low-cost cameras facilitate validation of other measurements and allow extracting some key ecological features and moments from image time series. We installed a network of phenology cameras at selected ecosystem research sites in Finland. Cameras were installed above, on the level, or/and below the canopies. Current network hosts cameras taking time lapse images in coniferous and deciduous forests as well as at open wetlands offering thus possibilities to monitor various phenological and time-associated events and elements. In this poster, we present our camera network and give examples of image series use for research. We will show results about the stability of camera derived color signals, and based on that discuss about the applicability of cameras in monitoring time-dependent phenomena. We will also present results from comparisons between camera-derived color signal time series and daily satellite-derived time series (NVDI, NDWI, and fractional snow cover) from the Moderate Resolution Imaging Spectrometer (MODIS) at selected spruce and pine forests and in a wetland. We will discuss the applicability of cameras in supporting phenological observations derived from satellites, by considering the possibility of cameras to monitor both above and below canopy phenology and snow.

  12. Disturbance Regimes and Landscape Heterogeneity in the Boreal Forest

    NASA Astrophysics Data System (ADS)

    Lyons, Evan Albert

    The boreal forest circles the high northern latitudes but it is far from a continuous carpet of evergreen trees. Rather, the boreal forest is a patchwork of land cover types in constant flux as they recover from wildfire and then are burned again. This fast turnover of land cover makes the boreal forest particularly susceptible to rapid change in response to climate. Furthermore, the boreal forest is an important component of the climate system that pumps heat into the atmosphere and significantly raises northern hemisphere temperatures year-round. As both a major component of the climate system and a sensitive indicator of climate change, the boreal forest is in a feedback loop. The direction of that feedback loop, positive or negative, depends largely on the strength of the land-atmosphere exchange of heat and momentum driven by forest cover and its spatial structure. That spatial structure has yet to be comprehensively measured. This dissertation used newly available, high resolution, satellite based forest cover data to quantify the heterogeneity of the boreal forest in North America. First, at the local scale, the pattern of forest cover patches within fires were found to be larger, more regularly shaped, and clustered than in unburned forest. The heterogeneity metrics also returned to pre-fire levels relatively quickly. At the continental scale, the landscape heterogeneity maps were analyzed by region, with respect to the northern extent of trees, and disturbance regimes. The boreal forest regions had smaller, more complicated forest patches, and no single dominant forest cover class which was significantly different than the temperate forests that border the region to the south. When compared to two preexisting maps of the boreal treeline, the patch cohesion metric indicated that the tundra ecoregion extended further south into the forested Central and Eastern Canada. Based on this finding, a new patch cohesion-based treeline was drawn which divides the

  13. Lagged processes and critical timescales in boreal forest response to climate

    NASA Astrophysics Data System (ADS)

    Wofsy, S. C.; Dunn, A. L.; Amiro, B. D.; Barr, A.; Rocha, A. V.; Goulden, M. L.

    2006-12-01

    Long-term eddy covariance datasets have recorded the response of boreal ecosystems to climate on timescales up to decadal (Dunn et al. 2006, Barr et al. 2006). Carbon balances in these forests are very dynamic, responding to climatic anomalies on timescales of months to years. A boreal black spruce forest in central Manitoba, Canada, was a source of carbon to the atmosphere in the mid-1990s (55 g C m^{- 2} y-1, 1995-1997), but switched to a sink in recent years (-25 g C m-2 y-1, 2003-2005). The short-term carbon exchange at this site was strongly controlled by temperature, but on long timescales the water balance was more important (Dunn et al. 2006). In a boreal aspen forest in central Saskatchewan, Canada, temperature was the main driver of phenology and canopy duration, but drought status, and especially the persistence of drought over multiple years, was a critical control on ecosystem respiration and resultant carbon balance (Barr et al. 2006). Lagged processes are especially important in the boreal forest: Dunn et al. (2006) found that carbon balances, and especially ecosystem respiration, were strongly controlled by the integrated water balance over preceding years, suggesting that the effects of climatic anomalies are expressed slowly in these forests. Rocha et al. (2006) found similar evidence in tree-ring cores from the NOBS site, which showed a strong correlation with lagged water balances, suggesting that wood growth in these forests is a process integrating over prior years. In a tree-ring analysis across aspen stands in western Canada, Hogg et al. (2005) found that current and lagged (up to four years) moisture status were critical factors regulating ecosystem carbon balance. These results from long-term boreal datasets suggest that the vulnerability of these forests to climate change will be strongly dependent on the future balance between precipitation and temperature. Persistent perturbations to the local climate will likely shift overall biome

  14. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    NASA Astrophysics Data System (ADS)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two

  15. Nitrogen balance along a northern boreal forest fire chronosequence.

    PubMed

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  16. Nitrogen balance along a northern boreal forest fire chronosequence

    PubMed Central

    Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests. PMID:28358884

  17. Responses of aboveground and belowground forest carbon stocks to disturbances in boreal forests of Northeastern China

    NASA Astrophysics Data System (ADS)

    Huang, Chao; He, Hong S.; Hawbaker, Todd J.; Liang, Yu; Gong, Peng; Wu, Wuzhiwei; Zhu, Zhiliang

    2016-04-01

    Boreal forests represents about 1/3 of forest area and 1/3 of forest carbon on earth. Carbon dynamics of boreal forests are sensitive to climate change, natural (e.g., fire) and anthropogenic (e.g., harvest) disturbances. Field-based studies suggest that disturbances alter species composition, stand structure, and litter decomposition, and have significant effects on boreal forest carbon dynamics. Most of these studies, however, covered a relatively short period of time (e.g., few decades), which is limited in revealing such long-term effects of disturbances. Models are therefore developed as important tools in exploring the long-term (e.g., hundreds of years) effects of disturbances on forest carbon dynamics. In this study, we applied a framework of coupling forest ecosystem and landscape model to evaluating the effect of fire, harvest and their interactions on carbon stocks in a boreal forest landscape of Northeastern China. We compared the simulation results under fire, harvest and fire-harvest interaction scenarios with the simulated value of succession scenario at 26 landtypes over 150 years at a 10-year time step. Our results suggest that aboveground and belowground carbon are significantly reduced by fire and harvest over 150years. Fire reduced aboveground carbon by 2.3±0.6 ton/ha, harvest by 6.0±1.4 ton/ha, and fire and harvest interaction by 8.0±1.9 tons/ha. Fire reduced belowground carbon by 4.6±3.4 ton/ha, harvest by 5.0±3.5 ton/ha, and fire-harvest interaction by 5.7±3.7 tons/ha. The divergent response of carbon stocks among landtypes and between disturbance scenarios was due to the spatial interactions between fire, harvest, and species composition. Our results indicated that boreal forests carbon stocks prediction needs to consider the effects of fire and harvest for improving the estimation accuracy.

  18. Measurement of CO2 exchange between Boreal forest and the atmosphere.

    PubMed

    Black, T Andrew; Gaumont-Guay, David; Jassal, Rachhpal S; Amiro, Brian D; Jarvis, Paul G; Gower, Stith T; Kelliher, Frank M; Dunn, Allison; Wofsy, Steven C

    2005-01-01

    The Boreal forest is the world's second largest forested biome occupying the circumpolar region between 50 degrees N and 70 degrees N. This heterogeneous biome stores about 25% of all terrestrial carbon. We have reviewed EC measurements of CO2 exchange between the atmosphere and Boreal forests, and assessed progress in understanding the controlling processes. We have assessed net ecosystem productivity, the net balance between net primary productivity and heterotrophic respiration, measured using the EC method, for 38 Boreal forest sites. Gross ecosystem productivity has been estimated by adding day-time EC-measured CO2 fluxes to respiration estimated from night-time relationships between respiration and temperature. Maximum midday values of gross ecosystem productivity vary from 33 pmol m(-2) s(-1) for aspen to 6 micromol m(-2) s(-1) for larch stands. Long-term EC flux measurements, ongoing at nine Boreal sites, have shown the strong impact of spring weather and growing season water balance on annual net ecosystem productivity. Estimation of net biome production, incorporating the effects of disturbance resulting from forest fires and logging, has progressed significantly in recent years. After disturbance, summer measurements in Boreal chronosequences suggest that it takes about 10 years before growing season carbon uptake offsets the decomposition emissions. Small-scale exchange rate measurements using chambers and manipulative experiments such as stem girdling and soil heating help to understand the processes and mechanisms playing major roles in the carbon balance of terrestrial ecosystems. Aircraft EC flux measurements, convective boundary layer carbon budgets, and (13)C/12C changes in the atmosphere play an important role in validating estimates of regional carbon exchange based on scaled up EC measurements. Atmospheric inverse models are an important approach to studying regional and global carbon balance but need further improvement to yield reliable

  19. Mechanisms influencing changes in lake area in Alaskan boreal forest

    USGS Publications Warehouse

    Roach, Jennifer K.; Griffith, Brad; Verbyla, David; Jones, Jeremy B.

    2011-01-01

    During the past ∼50 years, the number and area of lakes have declined in several regions in boreal forests. However, there has been substantial finer-scale heterogeneity; some lakes decreased in area, some showed no trend, and others increased. The objective of this study was to identify the primary mechanisms underlying heterogeneous trends in closed-basin lake area. Eight lake characteristics (δ18O, electrical conductivity, surface : volume index, bank slope, floating mat width, peat depth, thaw depth at shoreline, and thaw depth at the forest boundary) were compared for 15 lake pairs in Alaskan boreal forest where one lake had decreased in area since ∼1950, and the other had not. Mean differences in characteristics between paired lakes were used to identify the most likely of nine mechanistic scenarios that combined three potential mechanisms for decreasing lake area (talik drainage, surface water evaporation, and terrestrialization) with three potential mechanisms for nondecreasing lake area (subpermafrost groundwater recharge through an open talik, stable permafrost, and thermokarst). A priori expectations of the direction of mean differences between decreasing and nondecreasing paired lakes were generated for each scenario. Decreasing lakes had significantly greater electrical conductivity, greater surface : volume indices, shallower bank slopes, wider floating mats, greater peat depths, and shallower thaw depths at the forest boundary. These results indicated that the most likely scenario was terrestrialization as the mechanism for lake area reduction combined with thermokarst as the mechanism for nondecreasing lake area. Terrestrialization and thermokarst may have been enhanced by recent warming which has both accelerated permafrost thawing and lengthened the growing season, thereby increasing plant growth, floating mat encroachment, transpiration rates, and the accumulation of organic matter in lake basins. The transition to peatlands associated

  20. The changing effects of Alaska’s boreal forests on the climate system

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, Anthony; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  1. Long-term effects of single potassium fertilization on 137Cs levels in plants and fungi in a boreal forest ecosystem.

    PubMed

    Rosén, K; Vinichuk, M; Nikolova, I; Johanson, K

    2011-02-01

    We examined the long-term effects of a single application of potassium (K) fertilizer (100 kg K ha(-1)) in 1992 on (137)Cs uptake in a forest ecosystem in central Sweden. (137)Cs activity concentrations were determined in three low-growing perennial shrubs, heather (Calluna vulgaris), lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), and in four wild fungal species (Cortinarius semisanguineus, Lactarius rufus, Rozites caperata and Suillus variegatus). Uptake of (137)Cs by plants and fungi growing on K-fertilized plots 17 years after application of the K fertilizer was significantly lower than in corresponding species growing in a non-fertilized control area. The (137)Cs activity concentration was 21-58% lower in fungal sporocarps and 40-61% lower in plants in the K-fertilized area compared with the control. Over the study period, this decrease in (137)Cs activity concentration was more consistent in plants than in fungi, although the effect was statistically significant and strongly pronounced in all species. The effect of K fertilization in reducing (137)Cs activity concentration in fungi and plants decreased over time but was still significant in 2009, 17 years after fertilization. This suggests that application of K fertilizer to forests is an appropriate and effective long-term measure to decrease radiocaesium accumulation in plants and fungi.

  2. Logging and Fire Effects in Siberian Boreal Forests

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Buryak, L.; Ivanova, G.; Kalenskaya, O.; Bogorodskaya, A.; Zhila, S.; McRae, D.; Conard, S. G.

    2013-12-01

    The Russian boreal zone supports a huge terrestrial carbon pool. Moreover, it is a tremendous reservoir of wood products concentrated mainly in Siberia. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and has potentially important climate feedbacks. In addition, both legal and illegal logging increase landscape complexity and fire hazard. We investigated a number of sites in different regions of Siberia to evaluate the impacts of fire and logging on fuel loads, carbon emissions, tree regeneration, soil respiration, and microbocenosis. We found large variations of fire and logging effects among regions depending on growing conditions and type of logging activity. Partial logging had no negative impact on forest conditions and carbon cycle. Illegal logging resulted in increase of fire hazard, and higher carbon emissions than legal logging. The highest fuel loads and carbon emissions were found on repeatedly burned unlogged sites where first fire resulted in total tree mortality. Repeated fires together with logging activities in drier conditions and on large burned sites resulted in insufficient regeneration, or even total lack of tree seedlings. Soil respiration was less on both burned and logged areas than in undisturbed forest. The highest structural and functional disturbances of the soil microbocenosis were observed on logged burned sites. Understanding current interactions between fire and logging is important for modeling ecosystem processes and for managers to develop strategies of sustainable forest management. Changing patterns in the harvest of wood products increase landscape complexity and can be expected to increase emissions and ecosystem damage from wildfires, inhibit recovery of natural ecosystems, and exacerbate impacts of wildland fire on changing climate and air quality. The research was supported by NASA LCLUC Program, RFBR grant # 12-04-31258, and Russian Academy of Sciences.

  3. Reduced postfire tree regeneration along a boreal forest-forest-tundra transect in northern Quebec

    SciTech Connect

    Sirois, L.; Payette, S. )

    1991-04-01

    The large 1950s fires that burned > 5,500 km{sup 2} of land across a south-to-north climatic gradient in northern Quebec provide an opportunity to evaluate the role of fire in forest-tundra development on a demographic basis. The tree population density before and {approx} 30 yr after fire was estimated by censusing trees in plots of 400 m{sup 2} located in upland and lowland within four representative ecoregions of northern Quebec. The analysis of tree recruitment before and after fire, in 410 randomly selected sites along a transect crossing the upper boreal forest and forest-tundra zones, indicated that wildfires induced substantial depletion of tree populations. Taken as a whole, fires have significantly reduced the density of black spruce populations in forest-tundra uplands, but not in the lowlands. Sustained reduction of tree population density after several destructive fires appears as one of the main deforestation processed in the subarctic zone. This leads to the patchy distribution of forest stands and scattered tree populations typical of the forest-tundra biome. Comparisons with paleoecological data suggest that the impact of the 1950s fires contributed to the expansion of the forest tundra into the upper boreal forest. The ecological impact of these fires was probably similar to those fires responsible for development of the forest tundra during the Holocene. It is suggested that the fire-climate interaction should be considered in order to predict the ecological impact of warming climate on high-latitude forest ecosystems.

  4. Boreal forests, aerosols and the impacts on clouds and climate.

    PubMed

    Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S

    2008-12-28

    Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.

  5. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    USGS Publications Warehouse

    Lara, M.; Genet, Helene; McGuire, Anthony; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  6. Arctic and boreal ecosystems of western North America as components of the climate system

    USGS Publications Warehouse

    Chapin, F. S.; McGuire, A.D.; Randerson, J.; Pielke, R.; Baldocchi, D.; Hobbie, S.E.; Roulet, Nigel; Eugster, W.; Kasischke, E.; Rastetter, E.B.; Zimov, S.A.; Running, S.W.

    2000-01-01

    Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3??C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These

  7. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest

    PubMed Central

    Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari

    2016-01-01

    Boreal forests comprise 73% of the world’s coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories. PMID:26997421

  8. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest.

    PubMed

    Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari

    2016-03-21

    Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.

  9. Quantifying the missing link between forest albedo and productivity in the boreal zone

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  10. Persistent and pervasive compositional shifts of western boreal forest plots in Canada.

    PubMed

    Searle, Eric B; Chen, Han Y H

    2017-02-01

    Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO2 and warming will continue in the 21st century.

  11. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  12. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142

  13. Earlier springs decrease peak summer productivity in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Buermann, Wolfgang; Bikash, Parida R.; Jung, Martin; Burn, Donald H.; Reichstein, Markus

    2013-06-01

    In the northern high latitudes, alternative hypotheses with regards to how warming-related shifts in seasonality influence ecosystem productivity exist. Increased plant growth associated with a longer growing season may enhance ecosystem productivity, but shifts to earlier springs may also negatively influence soil moisture status and productivity during the peak of the growing season. Here, we analyzed nearly three decades (1982-2008) of observational records and derived products, including satellite microwave and optical imagery as well as upscaled ecosystem flux observations, to better understand how shifts in seasonality impact hydrology and productivity in the North American boreal forests. We identified a dominant adverse influence of earlier springs on peak summer forest greenness, actual evapotranspiration and productivity at interannual time scales across the drier western and central sections of the North American boreal forests. In the vast regions where this spring onset mechanism operates, ecosystem productivity gains from earlier springs during the early portion of the growing season are effectively cancelled through corresponding losses in the later portion. Our results also indicate that recent decadal shifts towards earlier springs and associated drying in the midst of the growing season over western North American boreal forests may have contributed to the reported declines in summer productivity and increases in tree mortality and fire activity. With projections of accelerated northern high-latitude warming and associated shifts to earlier springs, persistent soil moisture deficits in peak summer may be an effective mechanism for regional-scale boreal forest dieback through their strong influence on productivity, tree mortality and disturbance dynamics.

  14. Amine Measurements in Boreal Forest Air

    NASA Astrophysics Data System (ADS)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  15. Oxygenated VOC and monoterpene emissions from a boreal coniferous forest

    NASA Astrophysics Data System (ADS)

    Taipale, R.; Rantala, P.; Kajos, M. K.; Patokoski, J.; Ruuskanen, T. M.; Aalto, J.; Kolari, P.; Bäck, J.; Hari, P.; Kulmala, M.; Rinne, J.

    2012-04-01

    Compared with terpenoids, emissions of oxygenated volatile organic compounds (VOCs) from boreal ecosystems have been poorly characterized. We measured ecosystem scale emissions of three oxygenated compounds (methanol, acetaldehyde, and acetone) and monoterpenes from a Scots pine dominated forest in southern Finland during the summers 2006-2008. The measurements were conducted using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The contribution of the three oxygenated compounds to the measured total emissions was 40-60 %. The highest oxygenated VOC emissions were those of methanol, comprising 20-30 % of the total, followed by acetone with a share of 10-20 %. The acetaldehyde emissions were 5-10 % of the total. This emission composition will be compared with that obtained from shoot enclosure measurements. Methanol showed deposition during some periods although its overall flux was towards the atmosphere. The monoterpene emissions had a light dependent component, suggesting that part of the emissions originated directly from monoterpene biosynthesis. Diurnal, seasonal, and inter-annual variations in the emissions, along with temperature and light dependencies, will be discussed.

  16. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  17. Widespread Burning of Alaskan Boreal Forests Overcomes Fuel Limitation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Kelly, R.; Hu, F.

    2015-12-01

    Fire is a key determinant of the structure and function of boreal forest ecosystems. Boreal fire regimes have been climate-limited in recent decades, and future climate warming is predicted to drive a pronounced increase in fire activity, likely resulting in carbon release from the boreal biome and positive feedback to climate change. Fuel limitation could slow fire regime change by reducing the abundance of mature vegetation on the landscape, but this mechanism remains poorly quantified and is thus excluded from forecasts of future boreal burning. We developed a novel statistical model that links regional area burned to mean landscape age, a proxy for fuel limitation due to cumulative past burning. Fit to historical fire observations from interior Alaska, the model detects significant evidence of fire-vegetation feedback and provides the first quantitative estimate of its effects on regional fire regimes. These effects were subtle during the past 60 yr, but they will become increasingly influential as climate warming promotes higher fire activity. By the end of the 21st century, fuel limitation reduces predicted area burned by 40-50% relative to predictions based on climate alone, and diminishes the difference between fire regimes expected under alternate future climate scenarios. Nevertheless, annual area burned will approximately double during the coming century as fire becomes more widespread in spite of regional fuel limitation. Furthermore, changes to the fire regime and mean landscape age by the end of the century could represent a fundamental shift in the Alaskan boreal ecosystem. Our model structure facilitates linking fire regime predictions to ecosystem and Earth system models and could help reduce uncertainty in these models due to poorly constrained initial conditions. We demonstrate this approach using the Terrestrial Ecosystem Model, which has been calibrated extensively for applications in simulating boreal carbon dynamics. Results suggest that

  18. Evaporation within and above a boreal aspen forest

    NASA Astrophysics Data System (ADS)

    Blanken, Peter David

    1997-12-01

    As part of the Boreal Ecosystem-Atmosphere Study, water vapour, heat, CO2 and momentum exchange between the atmosphere and a southern boreal aspen (Populus tremuloides Michx.) forest in central Saskatchewan, Canada (53.629oN, 106.200oW) were measured continuously throughout much of 1994 using the eddy-covariance method. Measurements were made both above the c. 21.5-m tall 70 year-old aspen stand and within the leafless trunk space above a lush c. 2-m tall hazelnut (Corylus cornuta Marsh.) understory. This research focused on the measurements of and processes controlling water vapour exchange within and above the aspen canopy. Above-canopy turbulent exchange was dominated by large, slowly rotating eddies whereas in-canopy exchange was dominated by the intermittent, downward penetration of gusts. A constant flux layer redeveloped beneath the aspen canopy making eddy-covariance measurements possible. Nocturnal eddy fluxes were often underestimated at both heights due to spatial heterogeneity in turbulence statistics caused by low wind speeds. These periods were identified from the height-independent similarity function normalized by that expected from Monin-Obukhov theory and were empirically corrected as a function of friction velocity. Erratic daytime flux behaviour was corrected on the basis of conservation of energy and partitioning of the missing energy using the original eddy fluxes of latent and sensible heat. Evapotranspiration from the forest accounted for 82-91% of the annual precipitation. Aspen, hazelnut transpiration and soil water evaporation were 68%, 27% and 5%, respectively, of the total annual evapotranspiration. Over the growing season, there was no net change in the soil water content and there was little drainage beyond the root zone. Understory radiation levels decreased exponetially with increasing aspen leaf area. Surface conductance to water vapour was a linear function of forest leaf area and was dominated by the aspen canopy. Aspen and

  19. Resilience of Alaska’s boreal forest to climatic change

    USGS Publications Warehouse

    Chapin, F.S.; McGuire, Anthony; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  20. Resilience of Alaska's Boreal Forest to Climatic Change

    NASA Technical Reports Server (NTRS)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; Kielland, K.; Kofinas, G. P.; Turetsky, M. R.; Yarie, J.; Lloyd, A. H.; Taylor, D. L.

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  1. The climate responses of tropical and boreal ecosystems with an improved land surface model (JULES)

    NASA Astrophysics Data System (ADS)

    Harper, Anna; Friedlingstein, Pierre; Cox, Peter; Wiltshire, Andy; Jones, Chris

    2016-04-01

    The Joint UK Land Environment Simulator (JULES) is the land surface of the next generation UK Earth System Model (UKESM1). Recently, JULES was updated with new plant functional types and physiology based on a global plant trait database. These developments improved the simulation of terrestrial gross and net primary productivity on local and global scales, and enabled a more realistic representation of the global distribution of vegetation. In this study, we explore the present-day distribution of ecosystems and their vulnerability to climate change in JULES with these improvements, focusing on tropical and boreal ecosystems. Changes to these ecosystems will have implications for biogeophysical and biogeochemical feedbacks to climate change and need to be understood. First, we examine the simulated and observed rainforest-savannah boundary, which is strongly related to annual precipitation and the maximum climatological water deficit. Second, we assess the length of growing season and biomass stored in boreal ecosystems, where 20th century warming has likely extended the growing season. In each case, we first evaluate the ability of JULES to capture observed climate-vegetation relationships and trends. Finally, we run JULES to 2100 using climate data from 3 models and 2 RCP scenarios, and examine potential 21st century changes to these ecosystems. For example, do the tropical forests shrink in response to changes in tropical rainfall seasonality? And, how does the composition of boreal ecosystems change in response to climate warming? Given the potential for climate feedbacks and the inherent value in these ecosystems, it is essential to assess their responses to a range of climate change scenarios.

  2. Production and retention of methylmercury in inundated boreal forest soils.

    PubMed

    Rolfhus, Kristofer R; Hurley, James P; Bodaly, Richard A Drew; Perrine, Gregory

    2015-03-17

    The Flooded Uplands Dynamics Experiment (FLUDEX) was an ecosystem-scale study examining the production of methylmercury (MeHg) and greenhouse gases from reservoirs constructed on an upland boreal forest landscape in order to quantify their dependence upon carbon stores. We detail the within-reservoir production and storage of MeHg before, during, and nine years after the experiment. The reservoirs were net MeHg producers during the first two years of flooding, and net demethylating systems afterward. During years 1-3, a rapid pulse of MeHg and total Hg was observed in floodwater, followed by substantial increases in MeHg in seston and sediment. Resampling of the dry reservoirs nine years after the experiment ended indicated that organic soil MeHg was still 8 to 52-fold higher than preflood conditions, and averaged 86% of the levels recorded at the end of the third flooding year. Both total Hg and MeHg retention in soil were a strong function of organic carbon content. The time scale of soil MeHg retention may help explain the decadal time lag frequently observed for the decrease of piscivorous fish Hg concentrations in new reservoirs. Predicted extreme precipitation events associated with climate change may serve to make landscapes more susceptible to this process.

  3. Major losses of nutrients following a severe drought in a boreal forest.

    PubMed

    Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis

    2016-11-28

    Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide(1). Although the impact of drought on tree growth and mortality is being increasingly documented(2-4), very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks(5-7) (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.

  4. Fire, global warming, and the carbon balance of boreal forests

    SciTech Connect

    Kasischke, E.S.; Christensen, N.L. Jr.; Stocks, B.J.

    1995-05-01

    Fire strongly influences carbon cycling and storage in boreal forests. In the near-term, if global warming occurs, the frequency and intensity of fires in boreal forests are likely to increase significantly. A sensitivity analysis on the relationship between fire and carbon storage in the living-biomass and ground-layer compartments of boreal forests was performed to determine how the carbon stocks would be expected to change as a result of global warming. A model was developed to study this sensitivity. The model shows if the annual area burned in boreal forests increases by 50%, as predicted by some studies, then the amount of carbon stored in the ground layer would decrease between 3.5 and 5.6 kg/m{sup 2}, and the amount of carbon stored in the living biomass would increase by 1.2 kg/m{sup 2}. There would be a net loss of carbon in boreal forests between 2.3 and 4.4 kg/m{sup 2}, or 27.1-51.9 Pg on a global scale. Because the carbon in the ground layer is lot more quickly than carbon is accumulated in living biomass, this could lead to a short-term release of carbon over the next 50-100 yr at a rate of 0.33-0.8 Pg/yr, dependent on the distribution of carbon between organic and mineral soil in the ground layer (which is presently not well-understood) and the increase in fire frequency caused by global warming. 57 refs., 9 figs., 2 tabs.

  5. The human footprint in the carbon cycle of temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Magnani, Federico; Mencuccini, Maurizio; Borghetti, Marco; Berbigier, Paul; Berninger, Frank; Delzon, Sylvain; Grelle, Achim; Hari, Pertti; Jarvis, Paul G.; Kolari, Pasi; Kowalski, Andrew S.; Lankreijer, Harry; Law, Beverly E.; Lindroth, Anders; Loustau, Denis; Manca, Giovanni; Moncrieff, John B.; Rayment, Mark; Tedeschi, Vanessa; Valentini, Riccardo; Grace, John

    2007-06-01

    Temperate and boreal forests in the Northern Hemisphere cover an area of about 2×107square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).

  6. The human footprint in the carbon cycle of temperate and boreal forests.

    PubMed

    Magnani, Federico; Mencuccini, Maurizio; Borghetti, Marco; Berbigier, Paul; Berninger, Frank; Delzon, Sylvain; Grelle, Achim; Hari, Pertti; Jarvis, Paul G; Kolari, Pasi; Kowalski, Andrew S; Lankreijer, Harry; Law, Beverly E; Lindroth, Anders; Loustau, Denis; Manca, Giovanni; Moncrieff, John B; Rayment, Mark; Tedeschi, Vanessa; Valentini, Riccardo; Grace, John

    2007-06-14

    Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).

  7. The impact of boreal forest fire on climate warming

    USGS Publications Warehouse

    Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  8. Regional-scale surface flux observations across the boreal forest during BOREAS

    NASA Astrophysics Data System (ADS)

    Oncley, Steven P.; Lenschow, Donald H.; Campos, Teresa L.; Davis, Kenneth J.; Mann, Jakob

    1997-12-01

    A major role of the National Center for Atmospheric Research (NCAR) Electra aircraft during the Boreal Ecosystem-Atmosphere Study (BOREAS) was to measure fluxes of momentum, sensible and latent heat, carbon dioxide, and ozone on a transect that crossed the entire boreal forest biome. The observations spanned the growing season (late May to mid-September 1994) and extended the fluxes obtained in two intensive study areas to larger spatial scales to help provide a data set that is useful for comparison with and validation of large-scale models and satellite retrievals. We found the deciduous forests to be more photosynthetically active than nearby coniferous forests. Coniferous forest fluxes across the transect from the BOREAS southern to northern study areas show no apparent spatial trend, though smaller-scale variability is large. The fluxes make a smooth transition from the BOREAS northern study area to the subarctic tundra. Typical midsummer, midday, large-scale net ecosystem exchanges of carbon dioxide were about -10 μmol m-2 s-1 for primarily deciduous forests, about -6 μmol m-2 s-1 for the primarily coniferous regions between and including the two BOREAS study areas, and about -2 μmol m-2 s-1 for the subarctic tundra. The first two values are similar to those observed by flux towers in the region. Throughout the boreal forest the fluxes are influenced by the presence of lakes. Lake fraction is found to be a dominant source of variability in the fluxes observed along the transect. Lakes are also found to be large sinks of available radiant energy. Regional ground storage of heat is estimated to be about 30% of the net radiation over the forest, and 40% over the subarctic tundra, largely due to the presence of lakes.

  9. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    NASA Technical Reports Server (NTRS)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  10. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Liberman-Cribbin, Wil; Berner, Logan T.; Natali, Susan M.; Goetz, Scott J.; Alexander, Heather D.; Kholodov, Alexander L.

    2016-09-01

    In arctic tundra and boreal forest ecosystems vegetation structural and functional influences on the surface energy balance can strongly influence permafrost soil temperatures. As such, vegetation changes will likely play an important role in permafrost soil carbon dynamics and associated climate feedbacks. Processes that lead to changes in vegetation, such as wildfire or ecosystem responses to rising temperatures, are of critical importance to understanding the impacts of arctic and boreal ecosystems on future climate. Yet these processes vary within and between ecosystems and this variability has not been systematically characterized across the arctic-boreal region. Here we quantify the distribution of vegetation productivity trends, wildfire, and near-surface soil carbon, by vegetation type, across the zones of continuous and discontinuous permafrost. Siberian larch forests contain more than one quarter of permafrost soil carbon in areas of continuous permafrost. We observe pervasive positive trends in vegetation productivity in areas of continuous permafrost, whereas areas underlain by discontinuous permafrost have proportionally less positive productivity trends and an increase in areas exhibiting negative productivity trends. Fire affects a much smaller proportion of the total area and thus a smaller amount of permafrost soil carbon, with the vast majority occurring in deciduous needleleaf forests. Our results indicate that vegetation productivity trends may be linked to permafrost distribution, fire affects a relatively small proportion of permafrost soil carbon, and Siberian larch forests will play a crucial role in the strength of the permafrost carbon climate feedback.

  11. Modeled Climate and Disturbance Impacts to Carbon Sequestration of Recent Interior Boreal Alaska Ecosystem Productivity Declines

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Carvalhais, N.; Collatz, G. J.; Tucker, C. J.

    2010-12-01

    Terrestrial Higher Northern Latitude Boreal ecosystems over the past half century have and are expected to incur substantial future climate warming altering long-term biophysical processes that mediate carbon sink status. Boreal ecosystems are one of the primary terrestrial pools with high organic and mineral soil carbon concentrations due to reduced decomposition from extended periods below freezing. Direct impacts of changing local to regional climate have altered Interior Alaska disturbance regimes shifting patterns of net primary production (NPP), soil heterotrophic respiration (Rh), net ecosystem production (NEP = NPP - Rh) and net biome production (NBP = NEP - De) which includes disturbance events (De). We investigated ecosystem dynamics with a satellite remote sensing driven model accounting for fine-scale heterogeneous events observed from multi temporal-spectral index vectors derived from Landsat. Our intent was to elucidate local to regional processes which have resulted in negative trends observed from the NOAA series of Advanced Very High Resolution Radiometers (AVHRR) over the past decade. The Carnegie-Ames-Stanford approach (CASA) model was run with changing fractional burned area to simulate bi-monthly patterns of net plant carbon fixation, biomass and nutrient allocation, litterfall, soil nitrogen mineralization, combustion emissions, and microbial CO2 production. Carbon reallocation was based on fire disturbances identified with remote sensing data (Landsat, IKONOS, and aerial photography) and disturbance perimeter maps from land management agencies. Warming coupled with insect and fire disturbance emissions reduced interior Boreal forest recalcitrant carbon pools for which losses greatly exceed the North Slope Tundra sink. Our multi spatial-temporal approach confirms substantial forested NPP declines in Landsat and AVHRR while distinguishing abiotic and biophysical disturbance frequency impacts upon NBP.

  12. Global Boreal Forest Mapping with JERS-1: North America

    NASA Technical Reports Server (NTRS)

    Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce

    2000-01-01

    Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.

  13. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  14. Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review

    USGS Publications Warehouse

    Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.

    2014-01-01

    Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide

  15. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence.

    PubMed

    Sun, Hui; Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O; Heinonsalo, Jussi

    2015-11-01

    Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.

  16. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence

    PubMed Central

    Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O.; Heinonsalo, Jussi

    2015-01-01

    Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics. PMID:26341215

  17. Forest harvest contribution to Boreal freshwater methyl mercury load

    NASA Astrophysics Data System (ADS)

    Kronberg, Rose-Marie; Drott, Andreas; Jiskra, Martin; Wiederhold, Jan G.; Björn, Erik; Skyllberg, Ulf

    2016-06-01

    Effects of Boreal forest harvest on mercury (Hg) and methyl mercury (MeHg) soil pools and export by stream runoff were quantified by comparing 10 reference watersheds (REFs) covered by >80 year old Norway spruce (Picea abies Karst.) forests with 10 similar watersheds subjected to clear-cutting (CCs). While total Hg soil storage did not change, MeHg pools increased seven times (p = 0.006) in the organic topsoil 2 years after clear-cutting. In undulating terrain, situated above the postglacial marine limit (ML) of the ancient Baltic Sea, the mass ratio between flux-weighted MeHg and dissolved organic carbon (MeHg/DOC) in stream runoff increased 1.8 times (p < 0.004) as a consequence of forest harvest. When recalculated to 100% clear-cutting of the watershed, the annual MeHg stream export increased 3.8 times (p = 0.047). Below the ML, where the terrain was flatter, neither the MeHg/DOC ratio nor the annual export of MeHg differed between REFs and CCs, likely because of the larger contribution of MeHg exported from peaty soils and small wetlands. The most robust measure, MeHg/DOC, was used to calculate MeHg loadings to Boreal headwaters. If the forest harvest effect lasts 10 years, clear-cutting increases MeHg runoff by 12-20% in Sweden and 2% in the Boreal zone as a whole. In Sweden, having intensely managed forests, 37% and 56% of MeHg are exported from peatlands and forest soils, respectively, and forest clear-cutting is adding another 6.6%. In the Boreal zone as a whole peatlands and forests soils contribute with 53% and 46%, respectively, and clear-cutting is estimated to add another 1.0%. An expected rapid increase in Boreal forest harvest and disturbance urge for inclusion of land use effects in mercury biogeochemical cycling models at different scales.

  18. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests

    USGS Publications Warehouse

    Kelly, Ryan; Genet, Helene; McGuire, Anthony; Hu, Feng Sheng

    2016-01-01

    Wildfires play a key role in the boreal forest carbon cycle1, 2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections7 point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions8 that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.

  19. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests

    NASA Astrophysics Data System (ADS)

    Kelly, Ryan; Genet, Hélène; McGuire, A. David; Hu, Feng Sheng

    2016-01-01

    Wildfires play a key role in the boreal forest carbon cycle, and models suggest that accelerated burning will increase boreal C emissions in the coming century. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord led to simulated C losses of 1.4 kg C m-2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m-2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends and future projections point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.

  20. Aboveground Biomass Monitoring over Siberian Boreal Forest Using Radar Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Stelmaszczuk-Gorska, M. A.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Aboveground biomass (AGB) plays an essential role in ecosystem research, global cycles, and is of vital importance in climate studies. AGB accumulated in the forests is of special monitoring interest as it contains the most of biomass comparing with other land biomes. The largest of the land biomes is boreal forest, which has a substantial carbon accumulation capability; carbon stock estimated to be 272 +/-23 Pg C (32%) [1]. Russian's forests are of particular concern, due to the largest source of uncertainty in global carbon stock calculations [1], and old inventory data that have not been updated in the last 25 years [2]. In this research new empirical models for AGB estimation are proposed. Using radar L-band data for AGB retrieval and optical data for an update of in situ data the processing scheme was developed. The approach was trained and validated in the Asian part of the boreal forest, in southern Russian Central Siberia; two Siberian Federal Districts: Krasnoyarsk Kray and Irkutsk Oblast. Together the training and testing forest territories cover an area of approximately 3,500 km2. ALOS PALSAR L-band single (HH - horizontal transmitted and received) and dual (HH and HV - horizontal transmitted, horizontal and vertical received) polarizations in Single Look Complex format (SLC) were used to calculate backscattering coefficient in gamma nought and coherence. In total more than 150 images acquired between 2006 and 2011 were available. The data were obtained through the ALOS Kyoto and Carbon Initiative Project (K&C). The data were used to calibrate a randomForest algorithm. Additionally, a simple linear and multiple-regression approach was used. The uncertainty of the AGB estimation at pixel and stand level were calculated approximately as 35% by validation against an independent dataset. The previous studies employing ALOS PALSAR data over boreal forests reported uncertainty of 39.4% using randomForest approach [2] or 42.8% using semi-empirical approach [3].

  1. Spatial and Temporal Variation in Feather Moss Associated Nitrogen Fixation in Coniferous and Deciduous Dominated Alaskan Boreal Forests

    NASA Astrophysics Data System (ADS)

    Jean, M.; Mack, M. C.; Johnstone, J. F.

    2015-12-01

    Dominant canopy tree species have strong effects on the composition and function of understory species. In boreal forests, forest floor bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and thus an important process regulating ecosystem productivity. Bryophyte composition and abundance varies with forest composition, yet how such changes can affect ecosystem processes such as N fixation is still poorly understood. Our goal is to investigate how cyanobacteria-based N fixation occurring in the two most common feather mosses in the Alaskan boreal forest (Pleurozium schreberi and Hylocomium splendens) varies among coniferous and deciduous forest types, over the growing season, and across a nutrient availability gradient. Twelve patches of H. splendens and P. schreberi were identified in three pairs (blocks) of adjacent stands of paper birch (Betula neoalaskana) and black spruce (Picea mariana) near Fairbanks, interior Alaska. Sampling occurred in one block in June, July, August, and September 2014, and in the three blocks once in August 2014. Moss leaf area, moisture and weight, as well as environmental variables such as air temperature and canopy cover were recorded. Fixation rates were consistently higher for P. schreberi than for H. splendens. Overall, N fixation rates were lower in birch than in spruce stands and peaked in August, or July for P. schreberi in birch stands. Moreover, fixation rates varied along the nutrient availability gradient, with fixation rates higher where nutrient availability was lower. This difference was especially clear in spruce stands. Our preliminary results suggest that moss species, canopy type, and environmental factors all influence N fixation rates in Alaskan boreal forests. Our results will enhance the knowledge of the processes that drive N fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.

  2. Ca isotope cycling in a forested ecosystem

    NASA Astrophysics Data System (ADS)

    Holmden, Chris; Bélanger, Nicolas

    2010-02-01

    Reports of large Ca isotope fractionations between trees and soils prompted this study of a Boreal forest ecosystem near La Ronge, Saskatchewan, to improve understanding of this phenomenon. The results on five tree species (black spruce, trembling aspen, white spruce, jack pine, balsam poplar) confirm that nutrient Ca uptake by plants favors the light isotopes, thus driving residual Ca in plant available soil pools towards enrichment in the heavy isotopes. Substantial within-tree fraction occurs in tissues formed along the transpiration stream, with low δ 44Ca values in fine roots (2 mm), intermediate values in stemwood, and high values in foliage. Separation factors between different plant tissues are similar between species, but the initial fractionation step in the tips of the fine roots is species specific, and/or sensitive to the local soil environment. Soil water δ 44Ca values appear to increase with depth to at least 35 cm below the top of the forest floor, which is close to the deepest level of fine roots. The heavy plant fractionated signature of Ca in the finely rooted upper soils filters downward where it is retained on ion exchange sites, leached into groundwater, and discharged into surface waters. The relationship between Ca uptake by tree fine roots and the pattern of δ 44Ca enrichment with soil depth was modeled for two Ca pools: the forest floor (litter) and the underlying (upper B) mineral soil. Six study plots were investigated along two hillside toposequences trending upwards from a first order stream. We used allometric equations describing the Ca distribution in boreal tree species to calculate weighted average δ 44Ca values for the stands in each plot and estimate Ca uptake rates. The δ 44Ca value of precipitation was measured, and soil weathering signatures deduced, by acid leaching of lower B mineral soils. Steady state equations were used to derive a set of model Ca fluxes and fractionation factors for each plot. The model reproduces

  3. The impact of bryophytes on the carbon stocks of northern boreal forest soils

    NASA Astrophysics Data System (ADS)

    Hagemann, U.; Moroni, M. T.; Shaw, C. H.; Kurz, W. A.

    2012-04-01

    Dead organic matter (DOM), organic layer, and mineral soil carbon (C) dynamics in cool and humid northern boreal forests are expected to differ from those of drier or warmer boreal forests, because processes such as paludification and woody debris (WD) burial within the organic layer by overgrowing moss are more pronounced in regions with low average temperatures, vigorous moss layers, and long fire-return intervals. However, very few studies have provided field-measured data for these mostly remote regions. Hence, C cycling models such as the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) have rarely been validated with field data from northern boreal forest soils, resulting in large uncertainties for estimated C stocks in a large proportion of the boreal forest ecozone. We present (i) measured data on organic layer and mineral soil (0-45 cm) C stocks in 18 old-growth and disturbed high-boreal black spruce stands in Labrador, Canada; (ii) a comparison of field-measured soil C stocks with those predicted using the CBM-CFS3; and (iii) special characteristics of the DOM and soil C dynamics of northern boreal forest soils that require modifications of model parameters and structure. Measured organic layer C stocks (30.4-47.4 Mg C ha-1) were within the range reported for other boreal forests. However, mineral soil C stocks (121.5-208.1 Mg C ha-1) contributed 58-76% to total ecosystem C stocks. Mineral soil C stocks were thus considerably higher than observed in other upland boreal forests in drier or warmer regions, but similar to values reported for black spruce on poorly drained sites and peat soils. In addition, large amounts of deadwood C (4.7-18.2 Mg C ha-1) were found to be buried within the organic layer, contributing up to 31% to total organic layer C stocks. The comparison of field-measured and CBM-CFS3 modeled C stocks showed that organic layer and mineral soil DOM in Labrador black spruce stands likely decays at lower rates than assumed by CBM

  4. Permafrost and Forest Degradation after Wet Climate Years in Eastern Siberian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Abe, K.; Ise, H.; Masuzawa, T.; Fedorov, A. N.

    2014-12-01

    Unusual precipitation increase during summer through winter had continued since 2004 in the central Lena river basin, eastern Siberia. The precipitation increase led to deepening active layer (permafrost thawing near the surface) accompanying with remarkable increase in soil moisture. The perennially waterlogged conditions had exacerbated the boreal forest habitat; that is, larch trees had widely withered and died in this region. The present study clarified spatial extent of permafrost and forest degradation due to the unexpected hydro-climate-driven damages. We have attempted to extract the degraded boreal forest based on satellite image analyses, along with expansion of the perennially waterlogged surface area. We used ALOS-PALSAR and AVNIR-2 images taken from 2006 to 2009. Classification of waterlogged area was performed by PALSAR images with supervised classification based on a microwave backscattering coefficient. Then, we compared the distribution of the waterlogged area between multi-years. Additional supervised classification of boreal forest change was conducted using AVNIR-2 images. Both classifications produced the multi-years change in degraded boreal forest at the intensive observational sites in both left and right bank of Lena River near Yakutsk. In the right bank area, most of alas lakes expanded and boreal forest on the periphery of lakes turned to waterlogged surface. In the left bank area, in contrast, waterlogged surface expanded at concaved terrain and along valleys in conjunction with forest degradation. Field survey supported that humidified and deepening active layer along slope and near alas lakes correspond with the gradient of forest degradation and enhanced thermokarst activity. Both of increasing precipitation and thawing ice in permafrost might cause the degradation. In brief, the method combining ALOS satellite images has possibility to detect permafrost and forest degradation caused by wet climate in boreal forest.

  5. Challenges in Modeling Disturbance Regimes and Their Impacts in Arctic and Boreal Ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.; Rupp, T. S.; Kurz, W.

    2013-12-01

    Disturbances in arctic and boreal terrestrial ecosystems influence services provided by these ecosystems to society. In particular, changes in disturbance regimes in northern latitudes have uncertain consequences for the climate system. A major challenge for the scientific community is to develop the capability to predict how the frequency, severity and resultant impacts of disturbance regimes will change in response to future changes in climate projected for northern high latitudes. Here we compare what is known about drivers and impacts of wildfire, phytophagous insect pests, and thermokarst disturbance to illustrate the complexities in predicting future changes in disturbance regimes and their impacts in arctic and boreal regions. Much of the research on predicting fire has relied on the use of drivers related to fire weather. However, changes in vegetation, such as increases in broadleaf species, associated with intensified fire regimes have the potential to influence future fire regimes through negative feedbacks associated with reduced flammability. Phytophagous insect outbreaks have affected substantial portions of the boreal region in the past, but frequently the range of the tree host is larger than the range of the insect. There is evidence that a number of insect species are expanding their range in response to climate change. Major challenges to predicting outbreaks of phytophagous insects include modeling the effects of climate change on insect growth and maturation, winter mortality, plant host health, the synchrony of insect life stages and plant host phenology, and changes in the ranges of insect pests. Moreover, Earth System Models often simplify the representation of vegetation characteristics, e.g. the use of plant functional types, providing insufficient detail to link to insect population models. Thermokarst disturbance occurs when the thawing of ice-rich permafrost results in substantial ground subsidence. In the boreal forest, thermokarst can

  6. Summer movements, predation and habitat use of wolves in human modified boreal forests.

    PubMed

    Gurarie, Eliezer; Suutarinen, Johanna; Kojola, Ilpo; Ovaskainen, Otso

    2011-04-01

    Grey wolves (Canis lupus), formerly extirpated in Finland, have recolonized a boreal forest environment that has been significantly altered by humans, becoming a patchwork of managed forests and clearcuts crisscrossed by roads, power lines, and railways. Little is known about how the wolves utilize this impacted ecosystem, especially during the pup-rearing summer months. We tracked two wolves instrumented with GPS collars transmitting at 30-min intervals during two summers in eastern Finland, visiting all locations in the field, identifying prey items and classifying movement behaviors. We analyzed preference and avoidance of habitat types, linear elements and habitat edges, and tested the generality of our results against lower resolution summer movements of 23 other collared wolves. Wolves tended to show a strong preference for transitional woodlands (mostly harvested clearcuts) and mixed forests over coniferous forests and to use forest roads and low use linear elements to facilitate movement. The high density of primary roads in one wolf's territory led to more constrained use of the home territory compared to the wolf with fewer roads, suggesting avoidance of humans; however, there did not appear to be large differences on the hunting success or the success of pup rearing for the two packs. In total, 90 kills were identified, almost entirely moose (Alces alces) and reindeer (Rangifer tarandus sspp.) calves of which a large proportion were killed in transitional woodlands. Generally, wolves displayed a high level of adaptability, successfully exploiting direct and indirect human-derived modifications to the boreal forest environment.

  7. Studies of microwave scattering and canopy architecture for boreal forests

    NASA Technical Reports Server (NTRS)

    Lockhart, G. Lance; Gogineni, S. P.

    1995-01-01

    This is an annual report on the project titled 'Study of Microwave Scattering and Canopy Architecture for Boreal Forests.' The objectives of our work are to study the interaction of microwave signals with vegetation components and to determine the radar's ability to provide accurate estimates of biophysical parameters such as biomass. Our research is aimed at refining the current microwave models and using these improvements to facilitate more accurate interpretations of SAR (synthetic aperture radar) imagery.

  8. Large-scale variation in boreal and temperate forest carbon turnover rate related to climate

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-05-01

    Vegetation carbon turnover processes in forest ecosystems and their dominant drivers are far from being understood at a broader scale. Many of these turnover processes act on long timescales and include a lateral dimension and thus can hardly be investigated by plot-level studies alone. Making use of remote sensing-based products of net primary production (NPP) and biomass, here we show that spatial gradients of carbon turnover rate (k) in Northern Hemisphere boreal and temperate forests are explained by different climate-related processes depending on the ecosystem. k is related to frost damage effects and the trade-off between growth and frost adaptation in boreal forests, while drought stress and climate effects on insects and pathogens can explain an elevated k in temperate forests. By identifying relevant processes underlying broadscale patterns in k, we provide the basis for a detailed exploration of these mechanisms in field studies, and ultimately the improvement of their representations in global vegetation models (GVMs).

  9. Radar modeling of a boreal forest

    NASA Technical Reports Server (NTRS)

    Chauhan, Narinder S.; Lang, Roger H.; Ranson, K. J.

    1991-01-01

    Microwave modeling, ground truth, and SAR data are used to investigate the characteristics of forest stands. A mixed coniferous forest stand has been modeled at P, L, and C bands. Extensive measurements of ground truth and canopy geometry parameters were performed in a 200-m-square hemlock-dominated forest plot. About 10 percent of the trees were sampled to determine a distribution of diameter at breast height (DBH). Hemlock trees in the forest are modeled by characterizing tree trunks, branches, and needles as randomly oriented lossy dielectric cylinders whose area and orientation distributions are prescribed. The distorted Born approximation is used to compute the backscatter at P, L, and C bands. The theoretical results are found to be lower than the calibrated ground-truth data. The experiment and model results agree quite closely, however, when the ratios of VV to HH and HV to HH are compared.

  10. Carbon dioxide flux within and above a boreal aspen forest

    NASA Astrophysics Data System (ADS)

    Yang, Paul Chenggang

    Carbon dioxide, water vapour, sensible heat and momentum fluxes were continuously measured using the eddy covariance technique above and below the overstory in a 70-year old aspen stand in northern Saskatchewan from October to November 1993 and from February to September 1994, and above the overstory from April to December 1996 as a part of the Boreal Ecosystem-Atmosphere Study (BOREAS). The air within the forest was usually stably stratified at night and unstable during the daytime. The relationships of the variances of the vertical velocity and scalars (air temperature, CO2 concentration and specific humidity) to the stability parameter above the forest followed the Monin-Obukhov similarity (MOS) relationships, while the applicability of MOS theory in the trunk space was poor. The rate of change in CO2 storage in the air column (Δ Sa/Δt) beneath the above-canopy eddy covariance system could be well estimated with concentrations measured at one height above the form and at one height (2.3 m) in the trunk space. Within the hunk space, eddy covariance sensible and latent heat flux measurements at one position were representative of an area extending for at least two tree heights. The same was the case for CO2 flux and during the daytime. At night, however, they exhibited significant horizontal variability but were representative of the above area when averaged over several days. Evidence supporting the hypothesis that the low nighttime CO2 fluxes resulted from the short-term changes in CO2 storage in the air-filled pores of soil/snow was presented. The rate of change of this storage (ΔSa/Δt) was estimated as ΔSs/Δt = (1 - M)Rsha where Rsha (forest respiration) is a function of soil temperature and M is a function of the friction velocity. Photosynthetic rates (P) were modelled as a product of P1, P2 and P3. P1 is a rectangular hyperbolic function of the absorbed photosynthetic photon flux density (PPFD), and P2 and P3 are second order polynomial functions of

  11. Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems.

    PubMed

    Rousk, Kathrin; Degboe, Jefferson; Michelsen, Anders; Bradley, Robert; Bellenger, Jean-Philippe

    2017-04-01

    Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a (15) N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : (15) N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.

  12. On the relationship between boreal forest browning and tree mortality: insights from Alaska

    NASA Astrophysics Data System (ADS)

    Rogers, B. M.; Goetz, S. J.

    2015-12-01

    Long-term satellite measurements of vegetation productivity in high-latitude environments have revealed profound and widespread responses to climate warming. Although warmer and longer summers are causing the Arctic to "green", many regions of boreal forest are showing the opposite response, particularly since the mid 1990s. This "browning" phenomenon was generally unexpected at the time of discovery, is not captured by global models, and may have profound consequences for the boreal biome. A number of studies have linked satellite-based browning trends to tree productivity through tree rings. However, our understanding of the environmental controls and ecosystem consequences of browning remains remarkably limited. Here we examine to what extent browning patterns are related to a fundamental demographic process: tree mortality. We focus on a long-term inventory database in Alaska to characterize mortality events and trends from 1994 to 2014. These patterns were related to vegetation productivity indices from MODIS and the AVHRR-based GIMMS3g data set. We explore three central hypotheses: (1) mortality events are likely to be preceded by 5-10 year browning trends ("press stress"), (2) mortality events are likely to be preceded by distinct pulses of low productivity ("pulse stress"), and (3) long-term trends in mortality are related to long-term browning. Within our study region, which encompasses eastern Alaskan from the Pacific coastal mountains up through the interior, we find strong evidence for the first two hypotheses. The third is weakly supported, which may be a consequence of the episodic nature of mortality in the region. However, preliminary analyses in the southern Canadian boreal reveal a markedly stronger relationship between long-term mortality and browning. Taken together, our study suggests a robust correlation between satellite-based metrics of productivity and forest demography; one that has consequences for forest composition, carbon stocks, and

  13. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  14. Changing Arctic ecosystems--the role of ecosystem changes across the Boreal-Arctic transition zone on the distribution and abundance of wildlife populations

    USGS Publications Warehouse

    McNew, Lance; Handel, Colleen; Pearce, John; DeGange, Anthony R.; Holland-Bartels, Leslie; Whalen, Mary

    2013-01-01

    Arctic and boreal ecosystems provide important breeding habitat for more than half of North America’s migratory birds as well as many resident species. Northern landscapes are projected to experience more pronounced climate-related changes in habitat than most other regions. These changes include increases in shrub growth, conversion of tundra to forest, alteration of wetlands, shifts in species’ composition, and changes in the frequency and scale of fires and insect outbreaks. Changing habitat conditions, in turn, may have significant effects on the distribution and abundance of wildlife in these critical northern ecosystems. The U.S. Geological Survey (USGS) is conducting studies in the Boreal–Arctic transition zone of Alaska, an environment of accelerated change in this sensitive margin between Arctic tundra and boreal forest.

  15. High upward fluxes of formic acid from a boreal forest canopy

    NASA Astrophysics Data System (ADS)

    Schobesberger, Siegfried; Lopez-Hilfiker, Felipe D.; Taipale, Ditte; Millet, Dylan B.; D'Ambro, Emma L.; Rantala, Pekka; Mammarella, Ivan; Zhou, Putian; Wolfe, Glenn M.; Lee, Ben H.; Boy, Michael; Thornton, Joel A.

    2016-09-01

    Eddy covariance fluxes of formic acid, HCOOH, were measured over a boreal forest canopy in spring/summer 2014. The HCOOH fluxes were bidirectional but mostly upward during daytime, in contrast to studies elsewhere that reported mostly downward fluxes. Downward flux episodes were explained well by modeled dry deposition rates. The sum of net observed flux and modeled dry deposition yields an upward "gross flux" of HCOOH, which could not be quantitatively explained by literature estimates of direct vegetative/soil emissions nor by efficient chemical production from other volatile organic compounds, suggesting missing or greatly underestimated HCOOH sources in the boreal ecosystem. We implemented a vegetative HCOOH source into the GEOS-Chem chemical transport model to match our derived gross flux and evaluated the updated model against airborne and spaceborne observations. Model biases in the boundary layer were substantially reduced based on this revised treatment, but biases in the free troposphere remain unexplained.

  16. Using three decades of Landsat data to characterize changes and vulnerability of temperate and boreal forest phenology to climate change

    NASA Astrophysics Data System (ADS)

    Melaas, E. K.; Sulla-menashe, D. J.; Gray, J. M.; Friedl, M. A.

    2015-12-01

    Climate change is creating well-documented impacts on terrestrial ecosystems. Among the best known of these impacts are changes to the growing season of temperate and boreal forests. Changes in phenology provide useful diagnostics of climate change impacts in these biomes, influence coupled biosphere-atmosphere interactions, and also affect regional-to-global carbon budgets. Extreme events and climate variability complicate the response of ecosystems and increase vulnerability by inducing large phenological responses that affect ecosystem function at seasonal (and longer) time scales. Studies using in-situ measurements have suggested that the growing season of temperate and boreal ecosystems is changing, and remote sensing-based research using time series imagery from coarse resolution sensors appear to confirm this trend. Specifically, studies using AVHRR NDVI data have documented changes in growing season NDVI that indicate widespread perturbations to boreal and temperate forests in response to climate change. However, the coarse spatial resolution and other limitations of AVHRR data constrain the types of inferences that can be drawn from these data. We describe research to address these challenges using Landsat data. Specifically, we use a new methodology that exploits dense time series of Landsat images to quantify spatio-temporal patterns in North American temperate and boreal forest growing season dynamics. Our methodology uses a sampling strategy designed to capture geographic variation in temperate and boreal forest properties, and focuses on regions of overlap between adjacent Landsat scenes, thereby significantly increasing the temporal sampling of Landsat images. Results from this research provide retrospective characterization of changes to temperate and boreal forest growing seasons spanning 30+ years at 30 m spatial resolution. In doing so, this research is (1) dramatically improving information about how temperate and boreal forests have changed in

  17. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.

    PubMed

    Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng

    2013-08-06

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.

  18. A new model for estimating boreal forest fPAR

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Rautiainen, Miina; Stenberg, Pauline

    2014-05-01

    Life on Earth is continuously sustained by the extraterrestrial flux of photosynthetically active radiation (PAR, 400-700 nm) from the sun. This flux is converted to biomass by chloroplasts in green vegetation. Thus, the fraction of absorbed PAR (fPAR) is a key parameter used in carbon balance studies, and is listed as one of the Essential Climate Variables (ECV). Temporal courses of fPAR for boreal forests are difficult to measure, because of the complex 3D structures. Thus, they are most often estimated based on models which quantify the dependency of absorbed radiation on canopy structure. In this study, we adapted a physically-based canopy radiation model into a fPAR model, and compared modeled and measured fPAR in structurally different boreal forest stands. The model is based on the spectral invariants theory, and uses leaf area index (LAI), canopy gap fractions and spectra of foliage and understory as input data. The model differs from previously developed more detailed fPAR models in that the complex 3D structure of coniferous forests is described using an aggregated canopy parameter - photon recollision probability p. The strength of the model is that all model inputs are measurable or available through other simple models. First, the model was validated with measurements of instantaneous fPAR obtained with the TRAC instrument in nine Scots pine, Norway spruce and Silver birch stands in a boreal forest in southern Finland. Good agreement was found between modeled and measured fPAR. Next, we applied the model to predict temporal courses of fPAR using data on incoming radiation from a nearby flux tower and sky irradiance models. Application of the model to simulate diurnal and seasonal values of fPAR indicated that the ratio of direct-to-total incident radiation and leaf area index are the key factors behind the magnitude and variation of stand-level fPAR values.

  19. Regulation of Boreal soil respiration: evidence from a Swedish forest fire chronosequence.

    NASA Astrophysics Data System (ADS)

    Mason, Kelly; Oakley, Simon; Ostle, Nicholas; DeLuca, Thomas; Arróniz-Crespo, María; Jones, Davey

    2014-05-01

    Globally, boreal forests occupy 14% of total land surface and are important regions for biogeochemical cycling of carbon (C) and nitrogen (N)1. They are recognised as stores of terrestrial C and reservoirs of uniquely adapted biodiversity. Like many forest biomes, boreal forests are under pressure from climate change and growing populations. C and N cycling in the boreal region is strongly influenced by the occurrence of forest fires, which return large amounts of stored N back into an otherwise N limited system2. The frequency and intensity of boreal forest fires is expected to increase in the next century as the global atmosphere warms and N deposition continues to increase due to human activities3,4. Despite the importance of these ecosystems, there is limited knowledge of the effects of interactions between climate and N limitation on soil respiration and feedbacks of carbon dioxide (CO2) and other greenhouse gases (GHGs) to the atmosphere. In this research we aimed to improve understanding of how changes in the frequency and intensity of fires might alter N and C dynamics in the boreal region. Specifically, we examined the degree of N limitation and the temperature sensitivity of GHG (CO2, N2O and CH4) fluxes from soils underlying carpets of Pleurozium schreberi, a feather moss known to form important symbiotic relationships with N-fixing cyanobacteria1, from a fire chronosequence of Swedish boreal forest stands. We hypothesised that: (1) soil respiration in late succession ecosystems is most N limited due to high soil C:N ratios and high microbial biomass; and (2) early succession forest soil respiration is most temperature sensitive due to higher N availability and higher bacterial biomass. To test these hypotheses, we took soil cores from a chronosequence of six sites in the northern boreal region of Sweden, including two early, two mid, and two late succession stands. These sites are dominated by mixed Pinus sylvestris and Picea abies, with an understory

  20. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    NASA Astrophysics Data System (ADS)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of

  1. Reconciling Harvest Intensity and Plant Diversity in Boreal Ecosystems: Does Intensification Influence Understory Plant Diversity?

    NASA Astrophysics Data System (ADS)

    Kershaw, H. Maureen; Morris, Dave M.; Fleming, Robert L.; Luckai, Nancy J.

    2015-11-01

    Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types.

  2. Reconciling Harvest Intensity and Plant Diversity in Boreal Ecosystems: Does Intensification Influence Understory Plant Diversity?

    PubMed

    Kershaw, H Maureen; Morris, Dave M; Fleming, Robert L; Luckai, Nancy J

    2015-11-01

    Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types.

  3. Timing of plant phenophases since 1752 in the boreal forest environment

    NASA Astrophysics Data System (ADS)

    Kubin, Eero; Tolvanen, Anne; Karhu, Jouni; Valkama, Jari

    2016-04-01

    almost constant in the southern boreal zone. Effective temperature sum is important for the timing of the bud burst. The timing of phenological phenomena of forest vegetation, berry and seed crops reflects information about the response of the forest environment to the changes in the environmental factors. The global warming will be at its most powerful in the northern latitudes and this phenomenon is predicted to become increasingly more powerful in the future. Study of the regional differences will yield information about the changes in the northern limits of distribution of different plant species, and these changes can significantly affect the quantitative proportions of plant species. These changes, in turn, have an indirect impact on the entire ecosystem and the sources of livelihood relying on it. Phenological monitoring is nowadays more important than ever especially in boreal regions, where spring temperatures are elevated. Compilation and documentation of observations on plant phenophases play a key role in working out the rate of global climate change. To utilize citizen-science data together with the scientific monitoring will be discussed in the conference.

  4. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated

  5. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.

    PubMed

    Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar

    2016-02-01

    Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.

  6. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    PubMed

    Boberg, Johanna B; Finlay, Roger D; Stenlid, Jan; Ekblad, Alf; Lindahl, Björn D

    2014-01-01

    Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine) needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration), presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  7. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.

  8. Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  9. Trace gas emissions from chaparral and boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  10. Effects of warming on the structure and function of a boreal black spruce forest

    SciTech Connect

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  11. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century

    USGS Publications Warehouse

    Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.

    2009-01-01

    The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.

  12. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  13. Salvage logging following fires can minimize boreal caribou habitat loss while maintaining forest quotas: An example of compensatory cumulative effects.

    PubMed

    Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric

    2015-11-01

    Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice.

  14. Deciduous Tree Species Alter Nitrogen and Phosphorus Availability in Mid-successional Alaskan Boreal Forest

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A.

    2013-12-01

    In Alaskan boreal forest, increased fire severity associated with climate change is altering successional processes and ecosystem nutrient dynamics. Fire is a common disturbance in Interior Alaska and typically burns forests dominated by black spruce (Picea mariana), a tree species associated with slow nutrient turnover and high soil organic matter accumulation rates. Historically, low severity fires have driven black spruce regeneration post-fire, thereby maintaining slow nutrient cycling rates and large soil organic matter stocks. In contrast, high severity fires consume the organic layer and can lead to the establishment of deciduous tree species on exposed mineral soil, which produce less recalcitrant leaf litter and exhibit faster nutrient cycling rates. To improve our understanding of the long-term impacts of tree species composition on nutrient cycling in boreal forest, we quantified nitrogen (N) cycling rates and estimated soil N, phosphorus (P), and base cation pools in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1960 fire near Fairbanks, Alaska. Results indicate significantly higher net N mineralization in paper birch soils relative to black spruce for both the fibric organic layer and top 10 cm of mineral soil during 30-day and 90-day lab incubation studies. Net nitrification was significantly higher in the paper birch fibric layer after 90 days. Total soil N concentrations did not differ between paper birch and black spruce stands, however the black spruce organic layer was significantly larger than that of birch, resulting in larger organic layer N stocks (130 vs. 87 g N m2). In contrast, total P concentrations were significantly higher in the organic layer in birch forest, but the total P stocks did not differ significantly between species because of the larger mass of soil organic matter in the black spruce. These findings suggest that a shift towards greater deciduous

  15. Diverse growth trends and climate responses across Eurasia’s boreal forest

    NASA Astrophysics Data System (ADS)

    Hellmann, Lena; Agafonov, Leonid; Charpentier Ljungqvist, Fredrik; Churakova (Sidorova, Olga; Düthorn, Elisabeth; Esper, Jan; Hülsmann, Lisa; Kirdyanov, Alexander V.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz H.; Solomina, Olga; Tegel, Willy; Büntgen, Ulf

    2016-07-01

    The area covered by boreal forests accounts for ˜16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ≤ 0.01). By revealing complex climate constraints on the productivity of Eurasia’s northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.

  16. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results

  17. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    USGS Publications Warehouse

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  18. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global

  19. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest.

    PubMed

    Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico

    2012-11-05

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.

  20. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study

    NASA Technical Reports Server (NTRS)

    Green, R.; Roberts, D.; Gamon, J.; Keightley, K.; Prentiss, D.; Reith, E.

    2000-01-01

    A key scientific objective of the original BOREAS field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass and trace gases in the boreal forest biome.

  1. Antioxidant Potential of Bark Extracts from Boreal Forest Conifers

    PubMed Central

    Legault, Jean; Girard-Lalancette, Karl; Dufour, Dominic; Pichette, André

    2013-01-01

    The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity. PMID:26784337

  2. Antioxidant Potential of Bark Extracts from Boreal Forest Conifers.

    PubMed

    Legault, Jean; Girard-Lalancette, Karl; Dufour, Dominic; Pichette, André

    2013-07-11

    The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity.

  3. Uncertainty about future nitrogen availability dominates boreal forest growth projections

    NASA Astrophysics Data System (ADS)

    Mäkelä, Annikki; Kalliokoski, Tuomo; Peltoniemi, Mikko

    2015-04-01

    There is broad consensus among scientists that the capacity of forests in the boreal zone to take up carbon will increase as a result of climate change. However, boreal forests are strongly nitrogen limited. This may hamper the potential increase in GPP for forest productivity and carbon sequestration, but little is known about the impact of climate change on nitrogen availability in forests. Here we use OptiPipe, a model of optimal carbon and nitrogen co-allocation to analyse the role of nitrogen availability in growth limitation under climate change in Finland. We predict changes in metabolic rates related to the C balance using existing models and data, and we explore three alternative, plausible scenarios of N availability under climate change. Three climate scenarios based on three SRES emissions scenarios - B1 (low), A1B (moderate) and A2 (high) - are used for projecting changes of daily temperature, precipitation, vapour pressure deficit and solar radiation for periods 2011-2040, 2041-2070 and 2071-2100. We use a mean among 8 climate models. CO2 concentrations corresponding to the SRES scenarios come from (IPCC, 2007: Climate Change 2007: The Physical Science Basis) The results will be presented across Finland on a 10 km x 10 km grid. The results indicate that NPP and woody growth will increase under climate change if N availability is also increasing. If N availability is limited, volume growth will to reduce, because maintenance costs (respiration and turnover) increase. If N availability increases relatively as much or more than C availability, reduced allocation requirements to fine roots will lead to more foliage with higher photosynthetic capacity, thus increasing woody volume growth disproportionately. These results are attributable to optimised carbon and nitrogen co-allocation. In order to reduce the uncertainty of growth predictions, a better understanding of the mechanisms related to N availability is needed.

  4. Monitoring boreal ecosystem phenology with integrated active/passive microwave remote sensing

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Njoku, E.; Kimball, J.; Running, S.; Thompson, C.; Lee, J. K.

    2002-01-01

    The important role of the high latitudes in the functioning of global processes is becoming well established. The size and remoteness of arctic and boreal ecosystems, however, pose a challenge to quantification of both terrestrial ecosystem processes and their feedbacks to regional and global climate conditions. Boreal and arctic regions form a complex land cover mosaic where vegetation structure, condition and distribution are strongly regulated by environmental factors such as moisture availability, permafrost, growing season length, disturbance and soil nutrients.

  5. Global change and the boreal forest: thresholds, shifting states or gradual change?

    PubMed

    Chapin, F Stuart; Callaghan, Terry V; Bergeron, Yves; Fukuda, M; Johnstone, J F; Juday, G; Zimov, S A

    2004-08-01

    Changes in boreal climate of the magnitude projected for the 21st century have always caused vegetation changes large enough to be societally important. However, the rates and patterns of vegetation change are difficult to predict. We review evidence suggesting that these vegetation changes may be gradual at the northern forest limit or where seed dispersal limits species distribution. However, forest composition may be quite resilient to climate change in the central portions of a species range until some threshold is surpassed. At this point, changes can be rapid and unexpected, often causing a switch to very different ecosystem types. Many of these triggers for change are amenable to management, suggesting that our choice of policies in the coming decades will substantially influence the ecological and societal consequences of current climatic change.

  6. Altitudinal vs Latitudinal Climactic Drivers: A Comparison of a Relict Picea and Abies Forest in the Southern Appalachians versus the Hemi-Boreal Transition Zone off Southern Canada

    NASA Astrophysics Data System (ADS)

    Evans, A.; Lafon, C. W.

    2015-12-01

    Identification of biotic and abiotic determinants of tree species range limits is critical for understanding the effects of climate change on species distributions. Upward shifts of species distributions in montane areas have been widely reported but there have been few reports of latitudinal range retractions. Previous studies have indicated that southern latitudinal limits of a species range are dictated by biotic factors such as competition while others have suggested that abiotic factors, such as temperature, dictate these limits. We investigated the potential climatic gradients at the southern latitudinal limit of the Spruce (Picea) and Fir (Abies) species that dominate the Canadian boreal forest community as well as relict boreal forests containing similar species found in the high elevation areas of the Southern Appalachians. Existing research has suggested that relict ecosystems are more sensitive to climate change and can be indicative of future changes at latitudinal range limits. Expanding on this literature, we hypothesized that we would see similar gradients in climatic variables at the southern latitudinal limit of the Canadian boreal forest and those in the relict boreal forests southern Appalachians acting as controlling factors of these species distributions. We used forty years of climate data from weather stations along the southern edge of the boreal forest in the Canadian Shield provinces, species distribution data from the Canadian National Forest Inventory, (CNFI) geospatial data from the National Park Service (NPS), and historical weather data from the National Oceanic and Atmospheric Administration (NOAA) to perform our analysis. Our results indicate different climate variables act as controls of warm edge range limits of the Canadian boreal forest than those of the relict boreal forest of the southern Appalachians. However, we believe range retractions of the relict forest may be indicative of a more gradual response of similar species

  7. Spatially explicit fire-climate history of the boreal forest-tundra (Eastern Canada) over the last 2000 years.

    PubMed

    Payette, Serge; Filion, Louise; Delwaide, Ann

    2008-07-12

    Across the boreal forest, fire is the main disturbance factor and driver of ecosystem changes. In this study, we reconstructed a long-term, spatially explicit fire history of a forest-tundra region in northeastern Canada. We hypothesized that current occupation of similar topographic and edaphic sites by tundra and forest was the consequence of cumulative regression with time of forest cover due to compounding fire and climate disturbances. All fires were mapped and dated per 100 year intervals over the last 2,000 years using several fire dating techniques. Past fire occurrences and post-fire regeneration at the northern forest limit indicate 70% reduction of forest cover since 1800 yr BP and nearly complete cessation of forest regeneration since 900 yr BP. Regression of forest cover was particularly important between 1500s-1700s and possibly since 900 yr BP. Although fire frequency was very low over the last 100 years, each fire event was followed by drastic removal of spruce cover. Contrary to widespread belief of northward boreal forest expansion due to recent warming, lack of post-fire recovery during the last centuries, in comparison with active tree regeneration more than 1,000 years ago, indicates that the current climate does not favour such expansion.

  8. Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China

    PubMed Central

    Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209

  9. Emissions of Black Carbon Aerosols from Alaskan Boreal Forest Wildfires

    NASA Astrophysics Data System (ADS)

    Mouteva, G.; Fahrni, S. M.; Rogers, B. M.; Wiggins, E. B.; Santos, G.; Czimczik, C. I.; Randerson, J. T.

    2014-12-01

    Boreal wildfires are a major source of carbonaceous aerosols. Emissions from wildfires in Alaska represent ~ 33% of all open biomass combustion emissions of black carbon (BC) in the United States. BC contributes to atmospheric warming and accelerates melting of ice and snow. With fire frequency and burned area projected to increase in boreal regions, BC has the potential to become an important positive feedback to climate change. Quantifying the emissions, constraining the sources and better understanding the transportation patterns of BC to the polar regions are therefore critical for constraining the strength of this feedback. We present results from direct measurements of BC from wildfires in Alaska during the summer of 2013 collected as a part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Fine aerosol particulate matter (PM2.5) was collected at two locations: Caribou-Poker Creek Research Watershed and Delta Junction Agricultural and Forestry Experimental Site. Using a Sunset OCEC analyzer, we separated BC from organic carbon aerosols, measured concentrations and analyzed the radiocarbon (14C) content with accelerator mass spectrometry. We also analyzed the total carbon (C) and nitrogen (N) elemental and stable isotope composition of the bulk PM2.5 with EA-IRMS. We compared the temporal dynamics of BC concentrations and isotopic composition with active fire/thermal anomaly information from MODIS. Our results show that boreal forest fire emissions in interior Alaska increased BC concentrations by up to an order of magnitude above background levels. The mean Δ14C value of fire-emitted BC was 120‰ with a range of +99‰ to +149‰ after correcting for contributions from background BC. This range was in good agreement with measurements of the depth of burn in soil organic carbon layers from interior wildland fires, and Δ14C profiles. High fire periods also corresponded to elevated C:N ratios. The δ15N of the aerosols was

  10. Priming Effects in Boreal Black Spruce Forest Soils: Quantitative Evaluation and Sensitivity Analysis

    PubMed Central

    Fan, Zhaosheng; Jastrow, Julie D.; Liang, Chao; Matamala, Roser; Miller, Raymond Michael

    2013-01-01

    Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst. PMID:24205010

  11. Ectomycorrhizal-Dominated Boreal and Tropical Forests Have Distinct Fungal Communities, but Analogous Spatial Patterns across Soil Horizons

    PubMed Central

    McGuire, Krista L.; Allison, Steven D.; Fierer, Noah; Treseder, Kathleen K.

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling. PMID:23874569

  12. Understanding COS Fluxes in a Boreal Forest: Towards COS-Based GPP Estimates.

    NASA Astrophysics Data System (ADS)

    Chen, H.; Kooijmans, L.; Franchin, A.; Keskinen, H.; Levula, J.; Mammarella, I.; Maseyk, K. S.; Pihlatie, M.; Praplan, A. P.; Seibt, U.; Sun, W.; Vesala, T.

    2015-12-01

    Carbonyl Sulfide (COS) is a promising new tracer that can be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. COS and CO2 vegetation fluxes are closely related as these gases share the same diffusion pathway into stomata, which makes COS a potentially powerful tracer for GPP. While vegetative uptake is the largest sink of COS, the environmental drivers are poorly understood, and soil fluxes represent an important but relatively unconstrained component. Therefore, the realization of the COS tracer method requires proper characterization of both soil and ecosystem fluxes. A campaign to provide better constrained soil and ecosystem COS flux data for boreal forests took place in the summer of 2015 at the SMEAR II site in Hyytiälä, Finland. Eddy covariance flux measurements were made above the forest canopy on an Aerodyne continuous-wave quantum cascade laser (QCL) system that is capable of measuring COS, CO2, CO and H2O. Soil COS fluxes were obtained using modified LI-COR LI-8100 chambers together with high accuracy concentration measurements from another Aerodyne QCL instrument. The same instrument alternately measured concentrations in and above the canopy on a cycle through 4 heights, which will be used to calculate ecosystem fluxes using the Radon-tracer method, providing ecosystem fluxes under low-turbulent conditions. We will compare ecosystem fluxes from both eddy covariance and profile measurements and show estimates of the fraction of ecosystem fluxes attributed to the soil component. With the better understanding of ecosystem and soil COS fluxes, as obtained with this dataset, we will be able to derive COS-based GPP estimates for the Hyytiälä site.

  13. Management to conserve forest ecosystems

    USGS Publications Warehouse

    Robbins, C.S.; McComb, William C.

    1984-01-01

    Historically, management of forests for wildlife has emphasized creation of openings and provision for a maximum of edge habitats. Wildlife managers have believed, quite logically, that increased sunlight enhances productivity among plants and insects, resulting in greater use by game animals and other wildlife. Recent studies comparing breeding bird populations of extensive forests with those of isolated woodlots have shown that the smaller woodlots, especially those under 35 ha (about 85 acres), lack many species that are typical of the larger tracts. The missing species can be predicted, and basically are the neotropical migrants. These long-distance migrants share several characteristics that make them especially vulnerable to reproductive failure in situations where predation and cowbird parasitism are high: they are primarily single-brooded, open nesters that lay small clutches on or near the ground. Edge habitats and forest openings attract cowbirds and predators. The edge species of birds, which are mostly permanent residents or short-distance migrants, are well adapted to survive and reproduce in small isolated woodlands without the benefit of special habitat management. The obligate forest interior species, on the other hand, are decreasing in those parts of North America where extensive forests are being replaced by isolated woodlands. If we are to preserve ecosystems intact for the benefit of future generations, and maintain a viable gene pool for the scarcer species, we must think in terms of retaining large, unbroken tracts of forest and of limiting disturbance in the more remote portions of these tracts.

  14. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    PubMed

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  15. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

    PubMed

    Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D

    2015-03-01

    Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests.

  16. Comprehensive radiative forcing assesment highlights trade-offs in climate mitigation potential of managed boreal forests

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Tuomo; Berninger, Frank; Bäck, Jaana; Boy, Michael; Kuusinen, Nea; Mäkelä, Annikki; Matthies, Brent; Minkkinen, Kari; Mogensen, Ditte; Peltoniemi, Mikko; Sievänen, Risto; Zhou, Luxi; Vanhatalo, Anni; Valsta, Lauri; Nikinmaa, Eero

    2016-04-01

    Boreal forests have an important role in the mitigation of climate change. In this study we evaluated four key climate impacts of forest management: (1) carbon sequestration (in forest ecosystems and wood products), (2) surface albedo of forest area, (3) forest originating Secondary Organic Aerosols (SOA) and (4) avoided CO2-emissions from wood energy and product substitution. We calculated their net effect at both a single stand and regional level using Finland as a case study. We made analyses both in current climate up to a year 2050 and in the projected climate of year 2050. At the stand level, the carbon sequestration effect and avoided CO2 emissions due to substituted materials dominated in net RF in current climate. The warming effect of surface albedo of forest cover was lower or of same magnitude than cooling effect of SOAs. Together, the rarely considered SOAs and product substitution corresponded over 70% of the total cooling effect of forest cover. The cooling effect of net radiative forcing increased along the increasing site fertility. Although the carbon stocks of broadleaved trees were smaller than that of conifers their total radiative cooling effect was larger due to the integrated albedo and aerosol effects. In the projected climate of 2050, the radiative cooling of aerosols approached the level of forest carbon fixation. These results emphasize the need for holistic evaluation of climate impacts over simple carbon sequestration analysis to understand the role of forest management in climate change mitigation. Landscape level analyses emphasized the broad range of options to reach the cooling effect. The lowest harvest regime, 50% of current annual increment (CAI), yielded the largest cooling effect. Yet, harvests up to CAI produced only slightly less cooling RF if avoided emissions were considered. This result was highly sensitive to used substitution factors. Our result highlights that the combination of intensive harvests and the use of wood

  17. Tracking changes of forest carbon density following mega-fires: comparison studies in the Yellowstone National Park and Boreal Forests of Northeast China

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Huang, Chengquan; Huang, Chao; He, Hong; Zhu, Zhiliang

    2016-04-01

    Wildfires and post-fire management directly change C stored in biomass and soil pools, and can have indirect impacts on long-term C balance. Two mega fires occurred in the Yellowstone National Park (YNP) and the boreal forests of Northeast China in 1988 and 1987, respectively, making them ideal sites to examine and compare the effects of management and disturbances on regional carbon dynamics. In this study, we quantified effects of the 1988 Yellowstone fires on YNP carbon storages and fluxes. And then we tracked and modeled post-1988 forest carbon stocks change in YNP, and compared with simulation results of carbon stock changes in post-1987 fire boreal forests of Northeast China. Preliminary results show that in YNP, the mega fires in 1988 were responsible for an immediate loss of 900 g/m2 ecosystem average C density and it would take about a decade before the YNP ecosystem recover to the pre-fire average C condition. In boreal forests of Northeast China, fire reduced aboveground and belowground carbon by 230±60 g/m2 and 460±340 g/m2, respectively.

  18. [Biogeneous carbon fluxes in the boreal forests of Central Siberia].

    PubMed

    Vedrova, É F

    2011-01-01

    The assessments of the carbon pool and rate of plant biomass production, phytodetritus destruction, new formations of humic matters, and removal of water-soluble decomposition products for the forest ecosystems of the forest tundra and the northern and southern parts of the Central Siberian taiga were given. The rates of the main processes (organic-matter production and degradation) were demonstrated to be balanced in the ecosystems of the forest tundra. The larch forests of the northern taiga serve as a stock for a C atmosphere, which are equivalent to 32-34% of net primary production (NPP). The secondary birch growth where the understory needle-leaved trees have been formed and the primary old-growth fir forests are characterized by the balance of the main carbon fluxes in the southern taiga. The birch forests where the understory trees are just being formed and the fir forests at the age of 50-90 years serve as a stock for an average of 26% of carbon extracted as dioxide to make NPP.

  19. Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada

    NASA Astrophysics Data System (ADS)

    Nalder, Ian A.; Wein, Ross W.

    1999-12-01

    We examined the long-term dynamics of upland boreal forest floors after disturbance by fire. We selected two important and contrasting upland tree species, Pinus banksiana (jack pine) and Populus tremuloides (trembling aspen), in three distinct climatic zones across the boreal forest of western Canada, and sampled 80 fire-originated stands divided into six chronosequences with ages ranging from 14 to 149 years. The forest floor was a large component of carbon storage. Averaged across ages and zones, it was 1.31 and 2.78 kg C m-2 for P. banksiana and P. tremuloides, respectively, compared with 4.03 and 5.56 kg C m-2 in aboveground trees. These data exclude decomposing coarse woody debris, which was a significant component of the forest floor (0.18/0.13 kg C m-2 ) and requires further study. The contributions from shrubs (0.035/0.151 kg C m-2), ground vegetation (0.019/0.026 kg C m-2), and moss-plus-lichen (0.179/0.004 kg C m-2) were relatively small. An analysis of covariance (ANCOVA) model showed that forest floor carbon was positively related to stand age, as well as being affected by species and climatic zone. Much of the variability was explained by species, and species-specific regression models showed that for P. tremuloides forest floor carbon was strongly related to stand age, mean annual temperature, and mean annual precipitation, and for P. banksiana, forest floor carbon was strongly related to an index of moss dominance. The regression models suggest that the forest floor carbon pool in upland forests of the western Canadian boreal will be sensitive to climate change, but this sensitivity would need to be tested with process-based models.

  20. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia

    NASA Astrophysics Data System (ADS)

    Mackay, Anson W.; Bezrukova, Elena V.; Leng, Melanie J.; Meaney, Miriam; Nunes, Ana; Piotrowska, Natalia; Self, Angela; Shchetnikov, Alexander; Shilland, Ewan; Tarasov, Pavel; Wang, Luo; White, Dustin

    2012-05-01

    Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1-15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, δ13C values increased steadily from -34.9‰ during the early Holocene (9.3 ka BP) to -24.8‰ by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 °N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic

  1. Temperate and boreal forest mega-fires: characteristics and challenges

    USGS Publications Warehouse

    Stephens, Scott L.; Burrows, Neil; Buyantuyev, Alexander; Gray, Robert W.; Keane, Robert E.; Kubian, Rick; Liu, Shirong; Seijo, Francisco; Shu, Lifu; Tolhurst, Kevin G.; Van Wagtendonk, Jan W.

    2014-01-01

    Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors – climate change, fire exclusion, and antecedent disturbance, collectively referred to as the “mega-fire triangle” – likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate historical fire regimes and can therefore sustain healthy fire-prone ecosystems, but other attributes decrease ecosystem resiliency. A good example of a program that seeks to mitigate mega-fires is located in Western Australia, where prescribed burning reduces wildfire intensity while conserving ecosystems. Crown-fire-adapted ecosystems are likely at higher risk of frequent mega-fires as a result of climate change, as compared with other ecosystems once subject to frequent less severe fires. Fire and forest managers should recognize that mega-fires will be a part of future wildland fire regimes and should develop strategies to reduce their undesired impacts.

  2. Fire dynamics and implications for nitrogen cycling in boreal forests

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Mack, Michelle; Veldhuis, Hugo; Gower, S. T.

    2003-02-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  3. Fire dynamics and implications for nitrogen cycling in boreal forests

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Mack, Michelle; Veldhuis, Hugo; Gower, S. T.

    2002-02-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  4. Fire dynamics and implications for nitrogen cycling in boreal forests

    USGS Publications Warehouse

    Harden, J.W.; Mack, M.; Veldhuis, H.; Gower, S.T.

    2003-01-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  5. Boreal ditched forest and peatland are more vulnerable to forest fire than unditched areas

    NASA Astrophysics Data System (ADS)

    Köhler, Stephan J.; Granath, Gustav; Landahl, Anna; Fölster, Jens

    2016-04-01

    During summer of 2014 the largest wildfire in Swedish modern history occurred. The fire was ignited in a forest close to the Swedish town Sala and incinerated a total of 14 000 ha. The frequency of wildfires is expected to increase, due to effects of climate change such as increased temperature and decreased precipitation during the summer months. Wildfires can have a considerable impact on aquatic ecosystems and previous studies of wildfires have shown elevated concentrations of nutrients, cat- and anions. The area of the fire mainly consists of forestland, peatland and lakes and has been affected by acidification and intensive forestry. To assess the fire severity and the effects on the water chemistry, the fire severity were analyzed and classified using aerial phtographs and high resolution LIDAR data. The analysis indicated that increased fire intensity caused increased fire severity and that drained forested areas were more vulnerable to fire than undrained peatland. Measurements of water chemistry were conducted at nine streams and ten lakes inside the affected area. At two sites sensors for multiple parameters were deployed. During the initial three months of the post-fire period large peaks of ammonia-N and sulphate were observed in the streams and in a majority of the lakes while DOC was suppressed. In one stream Gärsjöbäcken the median concentrations of ammonia-N were 79 times higher after the fire. Due to nitrification the elevated concentrations of ammonia-N-nitrogen caused elevated concentrations of nitrate-nitrogen. The initial peak of sulphate caused a drop in ANC but after the peak had past ANC increased due to elevated concentrations of base cations. Correlation analysis of fire severity and water chemistry indicated that the maximum concentrations of ammonia-N increased with severely burned canopies in drained forested peatlands and in scorched open peatland. In a future climate with increased dry spells extensive ditching operations in

  6. Acid Precipitation and the Forest Ecosystem

    ERIC Educational Resources Information Center

    Dochinger, Leon S.; Seliga, Thomas A.

    1975-01-01

    The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)

  7. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    PubMed

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  8. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    SciTech Connect

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    2015-08-01

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.

  9. A boreal invasion in response to climate change? Range shifts and community effects in the borderland between forest and tundra.

    PubMed

    Elmhagen, Bodil; Kindberg, Jonas; Hellström, Peter; Angerbjörn, Anders

    2015-01-01

    It has been hypothesized that climate warming will allow southern species to advance north and invade northern ecosystems. We review the changes in the Swedish mammal and bird community in boreal forest and alpine tundra since the nineteenth century, as well as suggested drivers of change. Observed changes include (1) range expansion and increased abundance in southern birds, ungulates, and carnivores; (2) range contraction and decline in northern birds and carnivores; and (3) abundance decline or periodically disrupted dynamics in cyclic populations of small and medium-sized mammals and birds. The first warm spell, 1930-1960, stands out as a period of substantial faunal change. However, in addition to climate warming, suggested drivers of change include land use and other anthropogenic factors. We hypothesize all these drivers interacted, primarily favoring southern generalists. Future research should aim to distinguish between effects of climate and land-use change in boreal and tundra ecosystems.

  10. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change

    USGS Publications Warehouse

    Yuan, F.M.; Yi, S.H.; McGuire, A.D.; Johnson, K.D.; Liang, J.; Harden, J.W.; Kasischke, E.S.; Kurz, W.A.

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ∼0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink

  11. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change.

    PubMed

    Yuan, F M; Yi, S H; McGuire, A D; Johnson, K D; Liang, J; Harden, J W; Kasischke, E S; Kurz, W A

    2012-12-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at -0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink

  12. Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change

    SciTech Connect

    Yuan, Fengming; Yi, Shuhua; McGuire, A. David; Johnson, Kristopher D; Liang, Jingjing; Harden, Jennifer; Kasischke, Eric S.; Kurz, Werner

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink

  13. CO2 balance of boreal, temperate, and tropical forests derived from a global database

    SciTech Connect

    Luyssaert, S.; Inglima, I.; Jung, M.; Reichstein, Markus; Papale, D.; Piao, S.; Schulze, E.-D.; Wingate, L.; Matteucci, G.; Aubinet, M.; Beer, C.; Bernhofer, C.; Black, K. G.; Bonal, D.; Chambers, J.; Ciais, P.; Davis, Ken J.; Delucia, Evan H.; Dolman, A. J.; Don, A.; Gielen, B.; Grace, John; Granier, A.; Grelle, A.; Griffis, T.; Grunwald, T.; Guidolotti, G.; Hanson, P. J.; Harding, R.; Hollinger, D.; Kolari, P.; Kruijt, B.; Kutsch, W.; Lagergren, F.; Laurila, T.; Law, B.; Le Maire, G.; Lindroth, A.; Magnani, F.; Marek, M.; Mateus, J.; Migliavacca, M.; Mission, L.; Montagnani, L.; Moncrief, J.; Moors, E.; Munger, J. W.; Nikinmaa, E.; Loustau, D.; Pita, G.; Rebmann, C.; Richardson, A. D.; Roupsard, O.; Saigusa, N.; Sanz, M. J.; Seufert, G.; Sorensen, L.; Tang, J.; Valentini, R.; Vesala, T.; Janssens, I. A.

    2007-01-01

    Forests sequester large amounts of atmospheric carbon. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties have been and are being collected at many sites around the world, but synthesis of these data is still sparse. To facilitate synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age) as well as ancillary site information such as management regime, climate and soil characteristics. This can be used to: quantify global, regional to biome-specific carbon-budgets, to re-examine established relationships, test emerging hypotheses about ecosystem functioning (e.g. a constant NEP to GPP), and provide benchmarks for model evaluations. Our synthesis highlighted that globally, gross primary production of forests benefited from higher temperatures and precipitation whereas net primary production saturated beyond a threshold of 1500 mm precipitation or a mean annual temperature of 10 C. The global pattern in NEP was found insensitive to climate and appears to be mainly determined by non-climatic conditions such as successional stage, management, site history and site disturbance. At the biome level, only the carbon fluxes in temperate humid evergreen and temperate humid deciduous forests were sufficiently robust. All other biomes still need further study to reduce uncertainties in their carbon balance. Carbon budgets of boreal semi-arid and tropical semi-arid forests would benefit most from additional data inputs. Closing the CO2-balances of specific biomes required the introduction of closure terms. These closure terms were substantial for all biomes and suggested that to better close carbon balances, more data are needed especially on respiratory processes, advection and on non-CO2 carbon fluxes.

  14. Preliminary Assessment of JERS-1 SAR to Discriminating Boreal Landscape Features for the Boreal Forest Mapping Project

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle; Williams, Cynthia; Podest, Erika; Chapman, Bruce

    1999-01-01

    This paper presents an overview of the JERS-1 North American Boreal Forest Mapping Project and a preliminary assessment of JERS-1 SAR imagery for application to discriminating features applicable to boreal landscape processes. The present focus of the JERS-1 North American Boreal Forest Mapping Project is the production of continental scale wintertime and summertime SAR mosaics of the North American boreal forest for distribution to the science community. As part of this effort, JERS-1 imagery has been collected over much of Alaska and Canada during the 1997-98 winter and 1998 summer seasons. To complete the mosaics, these data will be augmented with data collected during previous years. These data will be made available to the scientific community via CD ROM containing these and similar data sets compiled from companion studies of Asia and Europe. Regional landscape classification with SAR is important for the baseline information it will provide about distribution of woodlands, positions of treeline, current forest biomass, distribution of wetlands, and extent of major rivercourses. As well as setting the stage for longer term change detection, comparisons across several years provides additional baseline information about short-term landscape change. Rapid changes, including those driven by fire, permafrost heat balance, flooding, and insect outbreaks can dominate boreal systems. We examine JERS-1 imagery covering selected sites in Alaska and Canada to assess quality and applicability to such relevant ecological and hydrological issues. The data are generally of high quality and illustrate many potential applications. A texture-based classification scheme is applied to selected regions to assess the applicability of these data for distinguishing distribution of such landcover types as wetland, tundra, woodland and forested landscapes.

  15. Patterns of NPP, GPP, Respiration and NEP During Boreal Forest Succession

    SciTech Connect

    Goulden, Michael L.; McMillan, Andrew; Winston, Greg; Rocha, Adrian; Manies, Kristen; Harden, Jennifer W.; Bond-Lamberty, Benjamin

    2010-12-15

    We deployed a mesonet of year-round eddy covariance towers in boreal forest stands that last burned in ~1850, ~1930, 1964, 1981, 1989, 1998, and 2003 to understand how CO2 exchange changes during secondary succession.The strategy of using multiple methods, including biometry and micrometeorology, worked well. In particular, the three independent measures of NEP during succession gave similar results. A stratified and tiered approach to deploying eddy covariance systems that combines many lightweight and portable towers with a few permanent ones is likely to maximize the science return for a fixed investment. The existing conceptual models did a good job of capturing the dominant patterns of NPP, GPP, Respiration and NEP during succession. The initial loss of carbon following disturbance was neither as protracted nor large as predicted. This muted response reflects both the rapid regrowth of vegetation following fire and the prevalence of standing coarse woody debris following the fire, which is thought to decay slowly. In general, the patterns of forest recovery from disturbance should be expected to vary as a function of climate, ecosystem type and disturbance type. The NPP decline at the older stands appears related to increased Rauto rather than decreased GPP. The increase in Rauto in the older stands does not appear to be caused by accelerated maintenance respiration with increased biomass, and more likely involves increased allocation to fine root turnover, root metabolism, alternative forms of respiration, mycorrhizal relationships, or root exudates, possibly associated with progressive nutrient limitation. Several studies have now described a similar pattern of NEP following boreal fire, with 10-to-15 years of modest carbon loss followed by 50-to-100 years of modest carbon gain. This trend has been sufficiently replicated and evaluated using independent techniques that it can be used to quantify the likely effects of changes in boreal fire frequency and

  16. The impact of boreal deciduous and evergreen forests on atmospheric CO2 seasonality

    NASA Astrophysics Data System (ADS)

    Welp, L.; Graven, H. D.; Keeling, R. F.; Bi, J.

    2015-12-01

    The seasonal cycle of atmospheric CO2 is largely controlled by the terrestrial biosphere. It is well known that the seasonal amplitude of net ecosystem productivity (NEP) is the largest in the far north, where forest productivity is compressed into a short growing season. Since 1960, the seasonal amplitude of atmospheric CO2 north of 45N has increased by 35-55%. The increase in the seasonal amplitude is a difficult benchmark for coupled climate-carbon models to replicate. In fact, the models vary widely in their mean seasonal cycle representation. The boreal region has a strong influence on CO2 seasonality at Barrow. Deciduous and evergreen plant functional types (PFTs) have different patterns of NEP. We identified four pairs of nearby deciduous and evergreen forest PFTs with eddy covariance measurements. Evergreen forests show an early peak in NEP in May-June, while deciduous forests have a larger peak in NEP later in June-July. The influence of each PFT on the seasonal cycle at Barrow was computed from atmospheric transport results. We normalized the amplitude influence by the growing season NEP of the tower-based PFT flux and found that deciduous forests have 1.4 to 1.8 times more influence (per unit of growing season NEP) at Barrow than evergreen PFT. This diagnosis depends on the timing of the sharp seasonal draw-down at Barrow, which occurs too late to be explained by evergreen forests. The cycle at Barrow therefore appears to be strongly influenced by deciduous PFT, despite the dominance of evergreen PFTs in boreal forests. This paradoxical conclusion is also reached when examining the seasonality of land surface fluxes calculated using atmospheric inverse methods. We examine how these different PFTs, and possible trends in relative abundance, affect the seasonality of atmosphere CO2 using FluxNet data and atmospheric transport modelling. Our results highlight the importance of parameterizing multiple PFTs or individual species within grid cells in models in

  17. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China

    PubMed Central

    Liu, Zhihua

    2016-01-01

    Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states. PMID:27857204

  18. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China

    NASA Astrophysics Data System (ADS)

    Liu, Zhihua

    2016-11-01

    Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states.

  19. Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives

    PubMed Central

    2012-01-01

    Background The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research. Methods A review of the literature published in scientific journals, books, theses and reports. Results A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed. Conclusion To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention, particularly those of the western

  20. Connecting forest ecosystem and microwave backscatter models

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Christensen, Norman L., Jr.

    1990-01-01

    A procedure is outlined to connect data obtained from active microwave remote sensing systems with forest ecosystem models. The hierarchy of forest ecosystem models is discussed, and the levels at which microwave remote sensing data can be used as inputs are identified. In addition, techniques to utilize forest ecosystem models to assist in the validation of theoretical microwave backscatter models are identified. Several examples to illustrate these connecting processes are presented.

  1. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).

    PubMed

    Ueyama, Masahito; Iwata, Hiroki; Harazono, Yoshinobu; Euskirchen, Eugénie S; Oechel, Walter C; Zona, Donatella

    2013-12-01

    To better understand the spatial and temporal dynamics of CO2 exchange between Arctic ecosystems and the atmosphere, we synthesized CO2 flux data, measured in eight Arctic tundra and five boreal ecosystems across Alaska (USA) and identified growing season and spatial variations of the fluxes and environmental controlling factors. For the period examined, all of the boreal and seven of the eight Arctic tundra ecosystems acted as CO2 sinks during the growing season. Seasonal patterns of the CO2 fluxes were mostly determined by air temperature, except ecosystem respiration (RE) of tundra. For the tundra ecosystems, the spatial variation of gross primary productivity (GPP) and net CO2 sink strength were explained by growing season length, whereas RE increased with growing degree days. For boreal ecosystems, the spatial variation of net CO2 sink strength was mostly determined by recovery of GPP from fire disturbance. Satellite-derived leaf area index (LAI) was a better index to explain the spatial variations of GPP and NEE of the ecosystems in Alaska than were the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Multiple regression models using growing degree days, growing season length, and satellite-derived LAI explained much of the spatial variation in GPP and net CO2 exchange among the tundra and boreal ecosystems. The high sensitivity of the sink strength to growing season length indicated that the tundra ecosystem could increase CO2 sink strength under expected future warming, whereas ecosystem compositions associated with fire disturbance could play a major role in carbon release from boreal ecosystems.

  2. 3D simulation of boreal forests: structure and dynamics in complex terrain and in a changing climate

    NASA Astrophysics Data System (ADS)

    Brazhnik, Ksenia; Shugart, Herman H.

    2015-10-01

    To understand how the Siberian boreal forests may respond to near-future climate change, we employed a modeling approach and examined thresholds for significant and irreversible changes in forest structure and composition that are likely to be reached by mid-21st century. We applied the new spatially-explicit gap-dynamics model SIBBORK toward the understanding of how transition zones, namely treelines, which are notoriously undersampled and difficult to model, may change in the near future. We found that a 2 °C change in annual average air temperature significantly altered the structure, composition, and productivity of boreal forests stands both in the northern and the southern treeline ecotones. Treeline migration occurs at smaller temperature changes. Based on the current (1990-2014) observed warming trends, a 2 °C increase in annual average temperature compared to historical climate (1961-1990) is likely to be experienced at the northern treeline by 2040 and at the southern treeline by 2050. With regards to the forest biome, the most significant warming to date has been predicted and observed in Siberia. A 2 °C increase in annual average temperature compared to the second half of the 19th century is smaller than the predictions of even the most conservative RCP2.6 climate change scenario (IPCC 2013), and has previously been assumed to not likely result in dramatic changes to ecosystems or biome shifts. We show that at a +2 °C change, biome shifts from forest to steppe are likely to occur across a large area in southern Siberia. These changes in land cover will inevitably result in changes in the biodiversity, carbon storage, and the ecosystem services provided by the boreal forests of southern Siberia.

  3. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    NASA Astrophysics Data System (ADS)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  4. UAVSAR's first campaign over temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Simard, M.; Pinto, N.; Dubayah, R.; Hensley, S.

    2009-12-01

    We present the first analysis and results of the August 2009 UAVSAR and field campaign in temperate and boreal forests. UAVSAR is an airborne fully polarimetric L-band radar capable of repeat-pass interferometry (inSAR). We focus on 3 sites located in New Hampshire, Maine and Québec. The UAVSAR sites covered Bartlett, Hubbard Brook, Penobscot, Howland and Mont-Morency experimental forests in addition to covering part of White Mountain National Forest, Laurentides Wildlife Reserve, Jacques-Cartier and Grand-Jardins National Parks. We collected field data on forest structure in a total of 50 plots with measurements including tree height, DBH, species as well as crown sizes. We compiled the field data to derive canopy structure metrics such as canopy height and tree size class distribution. UAVSAR collected data over the 3 sites on 4 different days spread throughout the 11-day campaign. This timing strategy was to enable us to investigate the impact of temporal change on inSAR coherence. However, in this presentation, we focus on the analysis of single coherence measurements and polarimetric radar backscatter. We investigate their dependence on vegetation type, slope as well as weather. This is achieved by direct comparison with field, forestry and lidar data, and with a 3D vegetation model. We use a "Regression Tree" model with explicit relationships between field- and lidar-estimated canopy heights, environmental variables, radar backscatter and coherence, and MODIS percent tree cover. We assess the potential of this approach and the usefulness of each input datasets. Finally, we report on the specific accuracy of L-band radar polarimetry to estimate biomass throughout the UAVSAR sites. UAVSAR first image near Quebec city.

  5. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components

    NASA Astrophysics Data System (ADS)

    Blanken, P. D.; Black, T. A.; Yang, P. C.; Neumann, H. H.; Nesic, Z.; Staebler, R.; den Hartog, G.; Novak, M. D.; Lee, X.

    1997-12-01

    The energy balance components were measured throughout most of 1994 in and above a southern boreal aspen (Populus tremuloides Michx.) forest (53.629°N 106.200°W) with a hazelnut (Corylus cornuta Marsh.) understory as part of the Boreal Ecosystem-Atmosphere Study. The turbulent fluxes were measured at both levels using the eddy-covariance technique. After rejection of suspect data due to instationarity or inhomogeneity, occasional erratic behavior in turbulent fluxes and lack of energy balance closure led to a recalculation of the fluxes of sensible and latent heat using their ratio and the available energy. The seasonal development in leaf area was reflected in a strong seasonal pattern of the energy balance. Leaf growth began during the third week of May with a maximum forest leaf area index of 5.6 m2 m-2 reached by mid-July. During the full-leaf period, aspen and hazelnut accounted for approximately 40 and 60% of the forest leaf area, respectively. Sensible heat was the dominant consumer of forest net radiation during the preleaf period, while latent heat accounted for the majority of forest net radiation during the leafed period. Hazelnut transpiration accounted for 25% of the forest transpiration during the summer months. During the full-leaf period (June 1 to September 7) daytime dry-canopy mean aspen and hazelnut canopy conductances were 330 mmol m-2 s-1 (8.4 mm s-1) (70% of the total forest conductance) and 113 mmol m-2 s-1 (2.9 mm s-1) (24% of the total forest conductance), respectively. Maximum aspen and hazelnut canopy conductances were 1200 mmol m-2 s-1 (30 mm s-1) and 910 mmol m-2 s-1 (23 mm s-1 ), respectively, and maximum stomatal conductances were 490 mmol m-2 s-1 (12.5 mm s-1) and 280 mmol m-2 s-1 (7 m s-1), aspen and hazelnut, respectively. Both species showed a decrease in canopy conductance as the saturation deficit increased and both showed an increase in canopy conductance as the photosynthetic active radiation increased. There was a linear

  6. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    PubMed

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.

  7. Variations in methane and nitrous oxide mixing ratios at the southern boundary of a Canadian boreal forest

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Edwards, G. C.; Thurtell, G. W.

    Diurnal and seasonal variations in methane (CH 4) and nitrous oxide (N 2O) mixing ratios were measured above a boreal aspen stand at the southern boundary of the Canadian boreal forest, about 5 km north of agricultural land. The research was conducted between 16 April and 16 September 1994, in the Prince Albert National Park, Saskatchewan, to better understand patterns of CH 4 and N 2O cycling in boreal ecosystems. The research also presents a method for detecting the long-range transport of trace gases using a micrometeorological, laser-based gas monitoring system. Both CH 4 and N 2O featured diurnal cycles consistent with a pattern of net emission for each trace gas. The CH 4 mixing ratio displayed a seasonal variation that was strongly related to soil temperature, with measured values roughly 30 ppb higher in the late summer than in spring. During the latter half of the experiment, the CH 4 mixing ratios varied with wind direction and suggested areas of higher emission to the northeast and east of the measurement tower. The N 2O fluxes also showed favoured directions, although in this case the highest mixing ratios were measured during the springtime in air masses originating south and southwest of the tower. The high springtime values coincided with spring thaw emissions of N 2O from agricultural fields to the south, and the results suggest that the trace gas analysis system detected the long-range transport of N 2O from the agricultural land. Ammonia and ammonium likewise may be transported to the southern boreal forest from agricultural land, and a future investigation at this site could seek to determine the effect of their long-range transport on the southern boreal forest.

  8. Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems

    NASA Astrophysics Data System (ADS)

    Manies, Kristen L.; Harden, Jennifer W.; Fuller, Christopher C.; Turetsky, Merritt R.

    2016-08-01

    Boreal soils play a critical role in the global carbon (C) cycle; therefore, it is important to understand the mechanisms that control soil C accumulation and loss for this region. Examining C & nitrogen (N) accumulation rates over decades to centuries may provide additional understanding of the dominant mechanisms for their storage, which can be masked by seasonal and interannual variability when investigated over the short term. We examined longer-term accumulation rates, using 210Pb and 14C to date soil layers, for a wide variety of boreal ecosystems: a black spruce forest, a shrub ecosystem, a tussock grass ecosystem, a sedge-dominated ecosystem, and a rich fen. All ecosystems had similar decadal C accumulation rates, averaging 84 ± 42 gC m-2 yr-1. Long-term (century) C accumulation rates were slower than decadal rates, averaging 14 ± 5 gC m-2 yr-1 for all ecosystems except the rich fen, for which the long-term C accumulation rates was more similar to decadal rates (44 ± 5 and 76 ± 9 gC m-2 yr-1, respectively). The rich fen also had the highest long-term N accumulation rates (2.7 gN m-2 yr-1). The lowest N accumulation rate, on both a decadal and long-term basis, was found in the black spruce forest (0.2 and 1.4 gN m-2 yr-1, respectively). Our results suggest that the controls on long-term C and N cycling at the rich fen is fundamentally different from the other ecosystems, likely due to differences in the predominant drivers of nutrient cycling (oxygen availability, for C) and reduced amounts of disturbance by fire (for C and N). This result implies that most shifts in ecosystem vegetation across the boreal region, driven by either climate or succession, will not significantly impact regional C or N dynamics over years to decades. However, ecosystem transitions to or from a rich fen will promote significant shifts in soil C and N storage.

  9. Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems

    USGS Publications Warehouse

    Manies, Kristen L.; Harden, Jennifer W.; Fuller, Christopher C.; Turetsky, Merritt

    2016-01-01

    Boreal soils play a critical role in the global carbon (C) cycle; therefore, it is important to understand the mechanisms that control soil C accumulation and loss for this region. Examining C & nitrogen (N) accumulation rates over decades to centuries may provide additional understanding of the dominant mechanisms for their storage, which can be masked by seasonal and interannual variability when investigated over the short term. We examined longer-term accumulation rates, using 210Pb and 14C to date soil layers, for a wide variety of boreal ecosystems: a black spruce forest, a shrub ecosystem, a tussock grass ecosystem, a sedge-dominated ecosystem, and a rich fen. All ecosystems had similar decadal C accumulation rates, averaging 84 ± 42 gC m−2 yr−1. Long-term (century) C accumulation rates were slower than decadal rates, averaging 14 ± 5 gC m−2 yr−1 for all ecosystems except the rich fen, for which the long-term C accumulation rates was more similar to decadal rates (44 ± 5 and 76 ± 9 gC m−2 yr−1, respectively). The rich fen also had the highest long-term N accumulation rates (2.7 gN m−2 yr−1). The lowest N accumulation rate, on both a decadal and long-term basis, was found in the black spruce forest (0.2 and 1.4 gN m−2 yr−1, respectively). Our results suggest that the controls on long-term C and N cycling at the rich fen is fundamentally different from the other ecosystems, likely due to differences in the predominant drivers of nutrient cycling (oxygen availability, for C) and reduced amounts of disturbance by fire (for C and N). This result implies that most shifts in ecosystem vegetation across the boreal region, driven by either climate or succession, will not significantly impact regional C or N dynamics over years to decades. However, ecosystem transitions to or from a rich fen will promote significant shifts in soil C and N storage.

  10. Who is the new sheriff in town regulating boreal forest growth?

    NASA Astrophysics Data System (ADS)

    Park Williams, A.; Xu, Chonggang; McDowell, Nate G.

    2011-12-01

    G P, Alix C, Barber V A, Winslow S E, Sousa E E, Heiser P, Herriges J D and Goetz S J 2011 Changes in forest productivity across Alaska consistent with biome shift Ecol. Lett. 14 373-9 Berner L T, Beck P S A, Bunn A G, Lloyd A H and Goetz S J 2011 High-latitude tree growth and satellite vegetation indices: correlations and trends in Russia and Canada (1982-2008) J. Geophys. Res. 116 G01015 Bunn A G and Goetz S J 2006 Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density Earth Interact. 10 1-19 D'Arrigo R, Jacoby G, Buckley B, Sakulich J, Frank D, Wilson R, Curtis A and Anchukaitis K 2009 Tree growth and inferred temperature variability at the North American Arctic treeline Glob. Planet. Change 65 71-82 D'Arrigo R, Wilson R, Liepert B, Cherubini P 2008 On the 'divergence problem' in northern forests: a review of the tree-ring evidence and possible causes Glob. Planet. Change 60 289-305 Davi N K, Jacoby G C and Wiles G C 2003 Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska Quatern. Res. 60 252-62 Flexas J, Bota J, Loreto F, Cornic G and Sharkey T 2004 Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants Plant Biol. 6 269-79 Goetz S J, Bunn A G, Fiske G J and Houghton R 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521-5 Goetz S J, Kimball J S, Mack M C and Kasischke E S 2011 Scoping completed for an experiment to assess vulnerability of Arctic and boreal ecosystems EOS Trans. Am. Geophys. Union 92 150-1 McDowell N G 2011 Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality Plant Physiol. 155 1051-9 McGuire A D, Ruess R W, Lloyd A, Yarie J, Clein J S and Juday G P 2010 Vulnerability of white spruce tree growth in interior

  11. Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest.

    PubMed

    Hasselquist, N J; Metcalfe, D B; Marshall, J D; Lucas, R W; Högberg, P

    2016-03-01

    Given the strong coupling between the carbon (C) and nitrogen (N) cycles, there is substantial interest in understanding how N availability affects C cycling in terrestrial ecosystems, especially in ecosystems limited by N. However, most studies in temperate and boreal forests have focused on the effects of N addition on tree growth. By comparison, less is known about the effects of N availability on the cycling of C in understory vegetation despite some evidence that dwarf shrubs, mosses, and lichens play an important role in the forest C balance. In this study, we used an in situ 13CO2 pulse-labeling technique to examine the short-term dynamics of C partitioning in understory vegetation in three boreal Pinus sylvestris forest stands exposed to different rates of N addition: a low and high N addition that receive annual additions of NH4NO3 of 20 and 100 kg N/ha, respectively, and this is a typo. It should be an unfertilized control. Labeling was conducted at two distinct periods (early vs. late growing season), which provided a seasonal picture of how N addition affects C dynamics in understory vegetation. In contrast to what has been found in trees, there was no obvious trend in belowground C partitioning in ericaceous plants in response to N additions or seasonality. Increasing N addition led to a greater percentage of 13C being incorporated into ericaceous leaves with a high turnover, whereas high rates of N addition strongly reduced the incorporation of 13C into less degradable moss tissues. Addition of N also resulted in a greater percentage of the 13C label being respired back to the atmosphere and an overall reduction in total understory carbon use efficiency. Taken together, our results suggest a faster cycling of C in understory vegetation with increasing N additions; yet the magnitude of this general response was strongly dependent on the amount of N added and varied seasonally. These results provide some of the first in situ C and N partitioning

  12. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    USGS Publications Warehouse

    Goulden, M.L.; Mcmillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.

    2011-01-01

    We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, 74, and 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (Clive) was low in the 1 and 6 year old stands, and increased following a logistic pattern to high levels in the 74 and 154year old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1year old stand, reduced in the 6 through 40year old stands, and highest in the 74 and 154year old stands. Total net primary production (TNPP) was reduced in the 1 and 6year old stands, highest in the 23 through 74year old stands and somewhat reduced in the 154year old stand. The NPP decline at the 154year old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1 and 6 year old stands were losing carbon, the 15year old stand was gaining a small amount of carbon, the 23 and 74year old stands were gaining considerable carbon, and the 40 and 154year old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6 and 15year old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154year old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. ?? 2010 Blackwell Publishing Ltd.

  13. No growth stimulation of Canada's boreal forest under half-century of combined warming and CO2 fertilization.

    PubMed

    Girardin, Martin P; Bouriaud, Olivier; Hogg, Edward H; Kurz, Werner; Zimmermann, Niklaus E; Metsaranta, Juha M; de Jong, Rogier; Frank, David C; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar

    2016-12-27

    Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration.

  14. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization

    PubMed Central

    Girardin, Martin P.; Hogg, Edward H.; Kurz, Werner; Zimmermann, Niklaus E.; Metsaranta, Juha M.; de Jong, Rogier; Frank, David C.; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar

    2016-01-01

    Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada’s boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada’s National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration. PMID:27956624

  15. Impact of forest harvesting on trophic structure of eastern Canadian Boreal Shield lakes: insights from stable isotope analyses.

    PubMed

    Glaz, Patricia; Sirois, Pascal; Archambault, Philippe; Nozais, Christian

    2014-01-01

    Perturbations on ecosystems can have profound immediate effects and can, accordingly, greatly alter the natural community. Land-use such as forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. The objective of this study was to evaluate the impact of forest harvesting on trophic structure in eastern Canadian Boreal Shield lakes. We measured carbon and nitrogen stable isotopes values for aquatic primary producers, terrestrial detritus, benthic macroinvertebrates, zooplankton and brook trout (Salvelinus fontinalis) over a three-year period in eight eastern Boreal Shield lakes. Four lakes were studied before, one and two years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. Stable isotope mixing models showed leaf-litter to be the main food source for benthic primary consumers in both perturbed and unperturbed lakes, suggesting no logging impact on allochthonous subsidies to the littoral food web. Brook trout derived their food mainly from benthic predatory macroinvertebrates in unperturbed lakes. However, in perturbed lakes one year after harvesting, zooplankton appeared to be the main contributor to brook trout diet. This change in brook trout diet was mitigated two years after harvesting. Size-related diet shift were also observed for brook trout, indicating a diet shift related to size. Our study suggests that carbon from terrestrial habitat may be a significant contribution to the food web of oligotrophic Canadian Boreal Shield lakes. Forest harvesting did not have an impact on the diet of benthic primary consumers. On the other hand, brook trout diet composition was affected by logging with greater zooplankton contribution in perturbed lakes, possibly induced by darker-colored environment in these lakes one year after logging.

  16. Influence of Forest-Cover Types on Spring Thaw Timing in the Southern Boreal Forest

    NASA Astrophysics Data System (ADS)

    Ahmed, H. F.; Helgason, W.; Barr, A.; Black, T. A.

    2015-12-01

    The boreal forest is one of the largest of the world's biomes covering about 11% of its terrestrial surface and accounting for about 18% of its total terrestrial carbon pool. The timing of spring thaw, resulting in a lengthening or shortening of the growing season, has a strong influence on boreal forest productivity and associated carbon dioxide exchange with the atmosphere. A study of the influence of forest-cover type upon spring-thaw timing in the southern Canadian boreal forest has been undertaken using 18 years of soil temperature measurements at depths of 5, 10, 20, 50 and 100 cm. Soil was considered to be thawing during days of consistent near-zero soil temperature (daily mean of -0.5 to 0.5 °C and standard deviation of near zero). We compared the temporal pattern (first and last day) of soil thaw at three mature forest stands: trembling aspen, black spruce, and jack pine located in central Saskatchewan (~54°N, ~105°W). The soil freezing depth was deepest at the jack pine site (>100 cm) and shallowest at the black spruce site (<50 cm during most years). The mean last day of thaw at the 5-cm depth was earliest for the aspen site followed by jack pine and black spruce, respectively, with approximately 4 days difference among sites. Deeper in the soil profile, the trend of soil thaw remained in the same order, however, with much larger differences among sites: jack pine thawed 16 days later than aspen and black spruce thawed 18 days later than jack pine. Our analysis will relate the observed site differences in thaw timing to differences in site (soil and canopy) characteristics. Developing an improved understanding of the factors influencing the inter-annual and inter-site variability of soil thaw at these sites is required to appropriately characterize the ecological and hydrological responses of these sites to projected climate change.

  17. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NASA Astrophysics Data System (ADS)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.

    2011-05-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site were characterized by a higher proportion of southerly flow. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  18. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NASA Astrophysics Data System (ADS)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.

    2011-10-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  19. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences.

    NASA Astrophysics Data System (ADS)

    Williams, J.; Petäjä, T.

    2012-04-01

    This submission describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12th July-12th August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  20. Spatial variations in the molecular diversity of dissolved organic matter in water moving through a boreal forest in eastern Finland

    PubMed Central

    Ide, Jun’ichiro; Ohashi, Mizue; Takahashi, Katsutoshi; Sugiyama, Yuko; Piirainen, Sirpa; Kortelainen, Pirkko; Fujitake, Nobuhide; Yamase, Keitaro; Ohte, Nobuhito; Moritani, Mina; Hara, Miyako; Finér, Leena

    2017-01-01

    Dissolved organic matter (DOM) strongly affects water quality within boreal forest ecosystems. However, how the quality of DOM itself changes spatially is not well understood. In this study, to examine how the diversity of DOM molecules varies in water moving through a boreal forest, the number of DOM molecules in different water samples, i.e., rainwater, throughfall, soil water, groundwater, and stream water was determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in Norway spruce and Scots pine stands in eastern Finland during May and June 2010. The number of molecular compounds identified by FT-ICR MS (molecular diversity) ranged from 865 to 2,194, revealing large DOM molecular diversity in the water samples. Additionally, some of the molecular compounds were shared between different water samples. The DOM molecular diversity linearly correlated with the number of low-biodegradable molecules, such as, lignin-like molecules (lignins), but not with dissolved organic carbon concentration. The number of lignins shared between different sampling locations was larger than that of any other biomolecular class. Our results suggest that low-biodegradable molecules, especially lignins, regulate spatial variations in DOM molecular diversity in boreal forests. PMID:28186141

  1. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  2. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome

    NASA Technical Reports Server (NTRS)

    Kimball, John; Kang, Sinkyu

    2003-01-01

    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  3. Carbon balance of an old hemi-boreal pine forest in Southern Estonia determined by different methods

    NASA Astrophysics Data System (ADS)

    Soosaar, Kaido; Repp, Kalev; Lõhmus, Krista; Uri, Veiko; Rannik, Kaire; Krasnova, Alisa; Ostonen, Ivika; Kukumägi, Mai; Maddison, Martin; Mander, Ülo

    2016-04-01

    The Soontaga Forest Station is located in hemi-boreal 200-years old pine forest (South Estonia; 58o01'N 26o04'E) with a second layer of spruce. The station has the instrumentation to assess the exchange of carbon dioxide (net ecosystem exchange, NEE), soil respiration, tree biomass (above and below ground biomass) and different environmental and meteorological parameters. In this study we quantified carbon balance by analyzing eddy-covariance CO2 flux data (carbon exchange) vs chamber-based measurements (ecosystem respiration) and CO2assimilation (soil and biomass). The annual NEE in this mature coniferous forest was -2.3 t C ha yr-1, showing a clear diurnal and seasonal trend. During the daytime in summer the forest sequestered CO2, while during the night and late night CO2 emitted from the ecosystem to the atmosphere. Within the growing period, the sequestration of CO2 by plants was greater than soil respiration. Thus, the ecosystem sequestered carbon. Most of the carbon is bound in tree biomass (above and below ground biomass) but as well into soil, while the sequestration in soil increases with stand age. In addition, the biomass of understory, especially belowground litter, is playing essential part in carbon input. A modelling approach of long-term C budget in the Soontaga pine forest is presented.

  4. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.

    PubMed

    Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar

    2012-02-01

    Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.

  5. Management of forest fires to maximize carbon sequestration in temperate and boreal forests

    SciTech Connect

    Guggenheim, D.E. |

    1996-12-31

    This study examines opportunities for applying prescribed burning strategies to forest stands to enhance net carbon sequestration and compared prescribed burning strategies with more conventional forestry-based climate change mitigation alternatives, including fire suppression and afforestation. Biomass burning is a major contributor to greenhouse gas accumulation in the atmosphere. Biomass burning has increased by 50% since 1850. Since 1977, the annual extent of burning in the northern temperate and boreal forests has increased dramatically, from six- to nine-fold. Long-term suppression of fires in North America, Russia, and other parts of the world has led to accumulated fuel load and an increase in the destructive power of wildfires. Prescribed burning has been used successfully to reduce the destructiveness of wildfires. However, across vast areas of Russia and other regions, prescribed burning is not a component of forest management practices. Given these factors and the sheer size of the temperate-boreal carbon sink, increasing attention is being focused on the role of these forests in mitigating climate change, and the role of fire management strategies, such as prescribed burning, which could work alongside more conventional forestry-based greenhouse gas offset strategies, such as afforestation.

  6. Importance of climate, forest fires and human population size on the long-term boreal forest dynamics in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kuosmanen, Niina; Seppä, Heikki; Alenius, Teija; Bradshaw, Richard; Clear, Jennifer; Filimonova, Fludmila; Heikkilä, Maija; Renssen, Hans; Tallavaara, Miikka; Reitalu, Triin

    2016-04-01

    Palaeoecological data provides valuable information for understanding the processes behind the past changes in forest composition, and hence can provide important knowledge regarding the potential effects of future changes in climate on boreal vegetation. Furthermore, it is essential to consider both regional and local factors in order to better understand the processes behind the boreal forest dynamics. The relative importance of climate, forest fires and human population size on long-term boreal forest composition were statistically investigated at regional and local scales in Fennoscandia. Statistical method variation partitioning was employed to assess the relative importance of these three variables. Fossil pollen data reflecting long-term boreal forest composition, at both regional (lake records) and local (small hollow records) scales from Russia, Finland and Sweden, were used as response matrix. Climate, generated from a climate model and oxygen isotope data, past forest fires generated from sedimentary charcoal data and human population size derived from radiocarbon dated archaeological findings were used as potential drivers of long-term boreal vegetation. Though the results clearly demonstrate that climate is the main driver of long-term vegetation changes at the regional scale, the role of climate notably is smaller at local scale and the influence of local site specific factors increases. However, the relative importance of forest fires on long-term changes in boreal forest composition remain generally low both at regional and local scale. The relatively low importance of both climate and forest fires on the variation in long-term boreal forest composition at local scale demonstrates the complexity of factors affecting stand-scale forest dynamics. In general, the relative importance of human population size on long-term changes in boreal vegetation was low. However, this was the first time that this type of human population size data was statistically

  7. Form, quantity, and fate of nitrogen inputs along a boreal forest climate transect

    NASA Astrophysics Data System (ADS)

    VandenBoer, T. C.; Edwards, K.; Ziegler, S. E.

    2013-12-01

    The cycling and fate of soil organic matter, a globally significant carbon (C) reservoir, is intimately linked to the availability and form of nitrogen (N). Nitrogen inputs to remote ecosystems from the atmosphere have been accelerated by increases in agricultural fertilizer use, and fossil fuel use. Such inputs may influence the biogeochemistry of high latitude ecosystems where soil organic matter reservoirs are particularly vulnerable to climate change. The Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect (NL-BELT) network has been actively monitoring C and N pools across three watershed regions spanning 47° to 53° N to understand boreal forest ecosystem responses to a warming climate. Litterfall inputs exhibited decreasing stable nitrogen isotope (d15N) values from south to north along the transect (-2, -3, and -6 ‰) and also among litter sources (deciduous > green needles > brown needles). These regional trends in d15N persist in the bryophytic biomass and throughout the soil organic horizons. Litterfall C:N increased from approximately 55 in the south to 75 in the north. In each region, C:N also exhibited consistent patterns between litterfall input types, with C:N of brown needles > deciduous > green needles. Differences between green and brown needle litterfall C:N increased along this climate gradient indicating that trees increased their N-resorption from south to north, perhaps due to increased N-limitation. Two possible phenomena could explain the trends observed: i) atmospheric N-inputs vary in quantity and composition with latitude along the transect; and/or ii) more rapid recycling of N at the most southern site reduces N-limitation relative to cooler regions. Fractionation during long-range transport of atmospheric reactive-N leads to depletion of 15N and subsequent deposition to the NL-BELT regions could explain these observations. The forms and quantities of atmospheric N-inputs are not constrained for the NL-BELT forests and

  8. Global greenhouse to icehouse and back again: The origin and future of the Boreal Forest biome

    NASA Astrophysics Data System (ADS)

    Taggart, Ralph E.; Cross, Aureal T.

    2009-02-01

    The Boreal Forest biome (Taiga), dominated by evergreen and deciduous coniferous trees (Pinaceae), is circumpolar in its present distribution, covering a significant part of the total land area of the Northern Hemisphere and representing perhaps a third of the total forest area of the planet. Nothing comparable to this extant biome existed during the global "greenhouse" interval of the Late Mesozoic and Paleogene. Latitudinal temperature gradients should have confined boreal taxa to extremely high latitudes, but evergreen taxa do not appear to have been competitive in the lowlands of the high arctic, where the vegetation consisted of a unique circumpolar forest dominated by deciduous conifers and broad-leaved taxa. Probable sources for the pinaceous taxa that now characterize boreal latitudes were the Paleogene evergreen montane coniferous forests of the western North American Cordillera. Taphonomic factors limit the fossil record for such forests, but assemblages such as the Eocene Thunder Mountain (Idaho) and Bull Run (Nevada) floras were dominated by evergreen and deciduous Pinaceae that dominate extant montane, subalpine, and Boreal Forest associations. In response to post-Eocene global cooling, such forests presumably would have migrated to lower elevations, eventually spreading across high-latitude North America, subsequently reaching Eurasia via the Beringian corridor. This high-diversity coniferous forest was differentially winnowed and modified during subsequent migration southward in both the New and Old World. Despite its extensive geographic distribution, the Boreal Forest may be the youngest of the major forest biomes. If global warming ultimately results in a significant redistribution of terrestrial vegetation, the history of the Boreal Forest may well be reversed. Northward migration of the Boreal Forest may be characterized by loss of taxa and extensive community reorganization as individual taxa are pushed to their limits with respect to rates of

  9. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Barr, A. G.; Barr, J. G.; Black, T. A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K. L.; Davis, K. J.; Desai, A. R.; Dore, S.; Engel, V.; Fuentes, J. D.; Goldstein, A. H.; Goulden, M. L.; Kolb, T. E.; Lavigne, M. B.; Law, B. E.; Margolis, H. A.; Martin, T.; McCaughey, J. H.; Misson, L.; Montes-Helu, M.; Noormets, A.; Randerson, J. T.; Starr, G.; Xiao, J.

    2010-12-01

    Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m-2y-1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m-2y-1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

  10. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Barr, A. G.; Barr, J. G.; Black, T. A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K. L.; Davis, K. J.; Desai, A. R.; Dore, S.; Engel, V.; Fuentes, J. D.; Goldstein, A. H.; Goulden, M. L.; Kolb, T. E.; Lavigne, M. B.; Law, B. E.; Margolis, H. A.; Martin, T.; McCaughey, J. H.; Misson, L.; Montes-Helu, M.; Noormets, A.; Randerson, J. T.; Starr, G.; Xiao, J.

    2010-10-01

    Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m-2y-1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m-2y-1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

  11. Connection of sulfuric acid to atmospheric nucleation in boreal forest.

    PubMed

    Nieminen, T; Manninen, H E; Sihto, S L; Yli-Juuti, T; Mauldin, R L; Petäjä, T; Riipinen, I; Kerminen, V M; Kulmala, M

    2009-07-01

    Gas to particle conversion in the boundary layer occurs worldwide. Sulfuric acid is considered to be one of the key components in these new particle formation events. In this study we explore the connection between measured sulfuric acid and observed formation rate of both charged 2 nm as well as neutral clusters in a boreal forest environment A very short time delay of the order of ten minutes between these two parameters was detected. On average the event days were clearly associated with higher sulfuric acid concentrations and lower condensation sink (CS) values than the nonevent days. Although there was not a clear sharp boundary between the nucleation and no-nucleation days in sulfuric acid-CS plane, at our measurement site a typical threshold concentration of 3.10(5) molecules cm(-3) of sulfuric acid was needed to initiate the new particle formation. Two proposed nucleation mechanisms were tested. Our results are somewhat more in favor of activation type nucleation than of kinetic type nucleation, even though our data set is too limited to omit either of these two mechanisms. In line with earlier studies, the atmospheric nucleation seems to start from sizes very close to 2 nm.

  12. Multi-Sensor Characterization of the Boreal Forest: Initial Findings

    NASA Technical Reports Server (NTRS)

    Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.

  13. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China.

    PubMed

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.

  14. Climatic factors and reindeer grazing -- the effects on soil carbon dynamics in subarctic boreal pine forest.

    NASA Astrophysics Data System (ADS)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2016-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems, affecting plant diversity, soil nutrient cycling and soil organic matter decomposition. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil carbon dynamics. In a field experiment in Finnish Lapland, Värriö Strict Nature Reserve (67° 46' N, 29° 35' E) we investigated how the reindeer grazing in subarctic boreal forest combined with climate (air temperature and precipitation) affects soil temperature, soil water content, and ultimately the CO2 efflux from forest soils. The study was carried out in the growing seasons of the years 2013 and 2014, where 2013 was an extremely dry year (specially the summer), and the year 2014 was a "normal" year in means of precipitations. Our study areas are located in the northern boreal subarctic coniferous forest at the zone of the last intact forest landscapes in Fennoscandia, where large areas of relatively undisturbed subarctic Scots pine (Pinus sylvestris L.) forests can still be found. We established the experiment as a split plot experiment with 2 blocks and 5 sub-plots per treatment that were divided into grazed and non-grazed parts, separated with a fence. The sample plots are located along the borderline between Finland and Russia, where the ungrazed area was excluded from reindeer already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. Our study showed that in subarctic mature pine forests, soil temperatures were higher, and soil water content was fluctuating more on grazed areas compared to non-grazed areas in both years. In both years, the soil water content on the grazed area was highest in June. The situation changed somewhere in the second half of July when the moisture content in the non-grazed area was higher. We found

  15. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss

    USGS Publications Warehouse

    Potapov, P.; Hansen, M.C.; Stehman, S.V.; Loveland, T.R.; Pittman, K.

    2008-01-01

    Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5??km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss. ?? 2008 Elsevier Inc.

  16. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.

    2016-09-01

    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.

  17. Spectral reflectance patterns and temporal dynamics of common understory types in hemi-boreal forests in Järvselja, Estonia

    NASA Astrophysics Data System (ADS)

    Nikopensius, Maris; Raabe, Kairi; Pisek, Jan

    2014-05-01

    The knowledge about spectral properties and seasonal dynamics of understory layers in boreal forests currently holds several gaps. This introduces severe uncertainties while modelling the carbon balance of this ecosystem, which is expected to be prone to major shifts with climate change in the future. In this work the seasonal reflectance dynamics in European hemi-boreal forests are studied. The data for this study was collected at Järvselja Training and Experimental Forestry District (Estonia, 27.26°E 58.30°N). Measurements were taken in three different stands. The silver birch (Betula Pendula Roth) stand grows on typical brown gley-soil and its understory vegetation is dominated by a mixture of several grass species. The Scots pine (Pinus sylvestris) stand grows on a bog with understory vegetation composed of sparse labrador tea, cotton grass, and a continuous Sphagnum moss layer. The third stand, Norway spruce (Picea abies), grows on a Gleyi Ferric Podzol site with understory vegetation either partially missing or consisting of mosses such as Hylocomium splendens or Pleurozium schreberi [1]. The sampling design was similar to the study by Rautiainen et al. [3] in northern European boreal forests. At each study site, a 100 m long permanent transect was marked with flags. In addition, four intensive study plots (1 m × 1 m) were marked next to the transects at 20 m intervals. The field campaign lasted from May to September 2013. For each site the fractional cover of understory and understory spectra were estimated ten times i.e. every 2 to 3 weeks. Results from Järvselja forest were compared with the seasonal profiles from boreal forests in Hyytiälä, Finland [2]. References [1] A. Kuusk, M. Lang, J. Kuusk, T. Lükk, T. Nilson, M. Mõttus, M. Rautiainen, and A. Eenmäe, "Database of optical and structural data for validation of radiative transfer models", Technical Report, September 2009 [2] M. Rautiainen, M. Mõttus, J. Heiskanen, A. Akujärvi, T. Majasalmi

  18. Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests.

    PubMed

    Kranabetter, J M; Friesen, J; Gamiet, S; Kroeger, P

    2009-10-01

    Soil fertility and associated nitrogen (N) status was a key ecosystem attribute, and surveys of ectomycorrhizal fungal (EMF) communities via epigeous fruiting bodies could provide an effective biotic indicator of forest soil productivity. We explored the utility of aboveground EMF communities in this regard by surveying sporocarps over a 3-year period from contrasting plant associations of southern old-growth boreal forests of British Columbia (Canada). Cumulative richness ranged from 39 to 89 EMF species per plot (0.15 ha) and followed a skewed parabolic correlation with foliar N concentrations and soil N availability. EMF species composition was consistently distinct in ordinations and strongly correlated to the increasing rates of N mineralization aligned with soil productivity. Approximately 40 EMF species were specialists, as they collectively indicated oligotrophic, mesotrophic, and eutrophic nutrient regimes, while the remaining species were categorized as broadly tolerant (distributed over 100% of the N gradient), partially intolerant (approximately 70%), or satellites (rare). The functional organization of EMF communities reflected by distribution classes could help define the ecological integrity of forests, which was characterized in this boreal landscape by an average allotment of 20 broadly tolerant, 25 partially intolerant, 15 specialist, and ten satellite species per plot. Epigeous fruiting bodies provided a disparate yet complementary view to the belowground assessment of EMF communities that was valuable in identifying indicators for ecosystem monitoring.

  19. Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal.

    PubMed

    Hobbie, John E; Hobbie, Erik A; Drossman, Howard; Conte, Maureen; Weber, J C; Shamhart, Julee; Weinrobe, Melissa

    2009-01-01

    Symbiotic fungi's role in providing nitrogen to host plants is well-studied in tundra at Toolik Lake, Alaska, but little-studied in the adjoining boreal forest ecosystem. Along a 570 km north-south transect from the Yukon River to the North Slope of Alaska, the 15N content was strongly reduced in ectomycorrhizal and ericoid mycorrhizal plants including Betula, Salix, Picea mariana (P. Mill.) B.S.P., Picea glauca Moench (Voss), and ericaceous plants. Compared with the 15N content of soil, the foliage of nonmycorrhizal plants (Carex and Eriophorum) was unchanged, whereas content of the ectomycorrhizal fungi was very much higher (e.g., Boletaceae, Leccinum and Cortinarius). It is hypothesized that similar processes operate in tundra and boreal forest, both nitrogen-limited ecosystems: (i) mycorrhizal fungi break down soil polymers and take up amino acids or other nitrogen compounds; (ii) mycorrhizal fungi fractionate against 15N during production of transfer compounds; (iii) host plants are accordingly depleted in 15N; and (iv) mycorrhizal fungi are enriched in 15N. Increased N availability for plant roots or decreased light availability to understory plants may have decreased N allocation to mycorrhizal partners and increased delta15N by 3-4 parts per million for southern populations of Vaccinium vitis-idaea L. and Salix. Fungal biomass, measured as ergosterol, correlated strongly with soil organic matter and attained amounts similar to those in temperate forest soils.

  20. Changing Boreal Fire Regimes: Impacts on Permafrost Soils and Forest Succession in Siberian Larch Forests

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Mack, M. C.; Natali, S.; Loranty, M. M.; Davydov, S. P.; Zimov, N.

    2014-12-01

    Fire activity has increased across the boreal forest biome in conjuction with climate warming and drying. Because these forests contain a large proportion of global terrestrial carbon (C) stocks, there has been great interest in understanding feedbacks between a changing fire regime and climate warming. An important mechanism by which increased fire activity may alter boreal C balance is by consuming the soil organic layer (SOL). Fire removal of the SOL may alter germination microsites and tree recruitment, thereby altering forest successional trajectories and C accumulation and storage. In permafrost soils, loss of the insulating SOL can increase soil temperature and active layer depth, impacting growth and survival conditions for both soil microbes and vegetation. To assess fire severity effects on permafrost soils and tree recruitment, we conducted plot-level experimental burns in July 2012 in a larch forest near Cherskii, Siberia. We achieved four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). For two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature. We sowed larch seeds in fall 2012 and 2013 and quantified seedling establishment and vegetation re-growth for two growing seasons. Immediately post-fire, thaw depth increased rapidly with increasing fire severity, and this trend has persisted for two years. In 2013 and 2014, thaw depth was ~ 40 cm deeper in high severity plots compared to controls, likely due to lower summer soil insulation, higher black char cover, and higher surface soil temperatures. We observed little to no larch recruitment in unburned and low severity plots, but new seedling density was ~5 seedlings m-2 in moderate and high severity plots, which had low cover of other vegetation types and high soil moisture. Findings suggest that increased fire severity may increase larch recruitment and provide favorable soil conditions for

  1. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    PubMed

    Grainger, Tess Nahanni; Turkington, Roy

    2013-01-01

    Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually) on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest understory.

  2. Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests.

    PubMed

    Terraube, Julien; Villers, Alexandre; Poudré, Léo; Varjonen, Rauno; Korpimäki, Erkki

    2016-07-02

    There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food-store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability.

  3. Transpiration response of boreal forest plants to permafrost thaw

    NASA Astrophysics Data System (ADS)

    Cable, J.; Ogle, K.; Welker, J. M.

    2011-12-01

    than the site with stable permafrost. In terms of the "base" gs rate, current soil temperature positively affects gs in the deciduous functional types. The prior year's soil temperature positively affected the black spruce base rate at the end of the season, but negatively affected the evergreen sub-shrubs at the beginning of the season. Soil temperature the prior year's May was most important at the site with thawing permafrost, but May and June were important for the site with stable permafrost. These preliminary results suggest that (1) we must account for within-season and the prior year's antecedent conditions when quantifying the effects of permafrost thaw on plant function, and (2) permafrost thaw changes how boreal forest plant species respond to climate and soil conditions. Next, we must quantify the mechanisms of the antecedent response to determine thresholds in thaw that could result in shifts in species composition.

  4. Atmospheric ions, boreal forests and impacts on climate

    NASA Astrophysics Data System (ADS)

    Manninen, H. E.; Nieminen, T.; Franchin, A.; Järvinen, E.; Kontkanen, J.; Hirsikko, A.; Hõrrak, U.; Mirme, A.; Tammet, H.; Kerminen, V.-M.; Petäjä, T.; Kulmala, M.

    2012-04-01

    than 2 nm in diameter by charging the aerosol sample with unipolar corona chargers (Manninen et al., 2009). According to earlier studies, the atmospheric nucleation and cluster activation take place at the mobility diameter range of 1.5-2 nm. Therefore, the ion spectrometers allow direct measurements at exactly the size where atmospheric nucleation takes place. The results indicate that the ion-induced nucleation contributes ~1-30% to the NPF events in most atmospheric conditions (Manninen et al., 2010). In other words, neutral particle formation seems to dominate over ion-mediated mechanisms, at least in the boreal forest conditions. Acknowledgements. This research was supported by the Academy of Finland Center of Excellence program (project number 1118615). Hirsikko, A. et al.: Atmospheric ions and nucleation: a review of observations, Atmos. Chem. Phys., 11, 767-798, 2011. IPCC, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp, 2007. Kulmala, M., and Kerminen, V.-M.: On the growth of atmospheric nanoparticles, Atmos. Res., 90, 132-150, 2008. Manninen, H.E. et al.: Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS). Boreal Env. Res. 14, 591-605, 2009. Manninen, H.E. et al., EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events, Atmos. Chem. Phys., 10, 7907-7927, 2010. Mirme, A. et al.: A Wide-range multi-channel Air Ion Spectrometer, Boreal Environ. Res., 12, 247-264, 2007. Tammet, H.: Symmetric inclined grid mobility analyzer for the measurement of charged clusters and fine nanoparticles in atmospheric air. Aerosol Science and Technology, 45, 468 - 479, 2011.

  5. Slope aspect modifies community responses to clear-cutting in boreal forests.

    PubMed

    Aström, Marcus; Dynesius, Mats; Hylander, Kristoffer; Nilsson, Christer

    2007-03-01

    Slope aspect modifies microclimate and influences ecological processes and spatial distribution of species across forest landscapes, but the impact of slope aspect on community responses to disturbance is poorly understood. Such insight is necessary to understand landscape community dynamics and resilience. We compared bryophyte (liverworts and mosses) communities in matched 0.02-ha plots of four boreal stand types in central Sweden: recently clear-felled and mature stands dominated by Norway spruce in south-facing and north-facing slopes. Differences between forests and clear-cuts were interpreted as effects of clear-cutting, and differences between south- and north-facing slopes as effects of aspect. In response to clear-cutting, bryophyte cover and composition changed more in south-facing slopes. Only one out of ten significantly declining species in south-facing slopes also declined significantly in north-facing slopes. North-facing slopes lost fewer bryophyte species, and among those, fewer forest species and fewer species associated with wood and bark. In north-facing slopes, the average proportions of mosses and liverworts shared between the forest and the clear-cut plot were 88% and 74%, respectively. Corresponding numbers for south-facing slopes were 79% and 33%. In addition, more bryophyte species were added in north- than south-facing slopes after clear-cutting, somewhat reducing the difference in compositional change between aspects. South- and north-facing mature forests differed in species composition, mostly due to higher richness of mosses in south-facing slopes. The smaller changes in bryophyte communities on north-facing slopes in response to clear-cutting have implications for ecosystem dynamics and management as high local survival may enhance landscape-level resilience.

  6. Use of Radarsat-2 Polarimetric SAR Images for Fuel Moisture Mapping in Alaska Boreal Forests and South Africa Savannahs

    NASA Astrophysics Data System (ADS)

    Leblon, B.; Bourgeau-Chavez, L. L.; Kong, M.; Buckley, J. R.; Mathieu, R. M.; Charbonneau, F.; Gross, C. P.; Naidoo, L.

    2014-12-01

    The study reported a comparison between two Radarsat-2 polarimetric SAR (polSAR) images from extreme dry versus wet conditions are compared in an effort to determine the value of using polarimetric SAR data for estimating fuel moisture over South Africa savannahs and Alaska boreal forests. The savannahs study area is located into the Kruger National Park area and has 36 sites of lowveld savannas from bare overgrazed sites to medium-dense savannahs. The boreal forest study area has a chronosequence of black spruce ecosystems (recent burns, shrub-dominated regenerating forests , open canopied forests, moderately dense forest cover). Both study areas have a fairly level topography suitable for radar studies. The polSAR images were acquired using the same beam mode (FQ5 (23-25° incidence angle over the boreal sites, FQ15 (34.47-36.05° incidence angle) over the savannahs sites). Over each study area, soil moisture and vegetation structural data were measured in situ concurrently to the acquisition of the SAR imagery. The polSAR images were filtered for speckle noise using a Lee sigma filter and several polarimetric products were computed, such as those directly derived from the images (single linear and polairzed backscatters, polarimetric discriminators) and from target decompositions (Freeman-Durden, new van Zyl, Cloude-Pottier). Because most of these variables have a different unit, a normalized difference (in %) for each variable was calculated using the median values of the dry and wet dates for easier comparison of variable changes between the dates. Over both study areas, the normalized difference between wet and dry conditions was lower when higher tree canopy occurs. Results show utility of C-HH and C-RR polarized backscatters. Several polarimetric discriminators (dmin, Pr max, Pr min, Smax, Smin) were also significantly affected by the soil wetness. The Freeman Durden and van Zyl decomposition parameters outperformed the Cloude-Pottier decomposition

  7. AmeriFlux CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.

    SciTech Connect

    McCaughey, Harry

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.. Site Description - Groundhog River (FCRN or CCP site "ON-OMW") is situated in a typical boreal mixedwood forest in northeastern Ontario (48.217 degrees north and 82.156 degrees west) about 80 km southwest of Timmins in Reeves Twp. near the Groundhog River. Rowe (1972) places the site in the Missinaibi-Cabonga Section of the Boreal Forest Region. In terms of ecoregion and ecozone, the site is in the Lake Timiskaming Lowlands of the Boreal Shield. The forest developed after high-grade logging in the 1930's. The average age in 2013 is estimated at beteen 75 and 80 years. The forest is dominated by five species characteristic of Ontario boreal mixedwoods: trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench.) Voss.), white birch (Betula papyrifera Marsh.), and balsam fir (Abies balsamea (L.) Mill.). The surficial geology is a lacustrine deposit of varved or massive clays, silts and silty sands. The soil is an orthic gleysol with a soil moisture regime classified as fresh to very fresh. Plonski (1974) rates it as a site class 1. The topography is simple and flat with an overall elevation of 340 m ASL.

  8. Forest ecosystems in the Alaskan taiga

    SciTech Connect

    Van Cleve, K.; Chapin, F.S. III; Flanagan, P.W.; Viereck, L.A.

    1986-01-01

    This volume in the series ''Ecological Studies'' provides an overview and synthesis of research on the structure and function of taiga forest ecosystems of interior Alaska. The first section discusses the nature of the taiga environment and covers climate, forest ecosystem distribution, natural regeneration of vegetation, and the role of fire. The second edition focuses on environmental controls over organism activity with discussions on growth and nutrient use, nitrogen fixation, physiological ecology of mosses, and microbial activity and element availability. The final section considers environmental controls over ecosystem processes with discussions of processes, plant-animal interactions, and a model of forest growth and yield.

  9. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.

    PubMed

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-10-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.

  10. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape

    PubMed Central

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-01-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010–2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710–6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance. PMID:24198936

  11. A study of boreal forest dynamic parameters by an example of the Krasnoyarskii Krai using satellite data

    NASA Astrophysics Data System (ADS)

    Pasko, Irina; Chernetskiy, Maxim; Shevyrnogov, Anatoly

    Forest vegetation phenology is known to be connected with anthropogenic and climatic in- fluence on forest ecosystems. Studying this phenololy can result in obtaining input data for carbon cycle models, since the rate, the beginning and the end of the greening period have great importance when estimating carbon dioxide consumption by plants. In the present work Enhanced vegetation index (EVI) and normalized difference water index (NDWI) obtained with the help of TERRA/MODIS equipment have been used. Applying the above mentioned indexes, dynamic parameters of canopies of the Krasnoyarsk territory have been investigated. According to snow melting data (using NDWI), the dates of the beginning of spring transition period have been obtained. On the basis of EVI data for many years, greening rates during the transition periods (spring, autumn) have been calculated. The obtained data allowed us to investigate both forest phenology rate and anthropogenic influence on forest ecosystems. High efficiency of applying the principal component method for studying the annual variability of the obtained greening rates is shown. A comparison is made of the obtained results with such parameters as density, biomass, species composition of boreal forests etc., taken from forest vegetation maps. Also the obtained results are compared with the climatic data and the satellite data of temperatures, which allowed us to judge about the factors influencing the rates of vegetation greening and degradation.

  12. The Cooperative Forest Ecosystem Research Program

    USGS Publications Warehouse

    ,

    2002-01-01

    Changes in priorities for forest management on federal and state lands in the Pacific Northwest have raised many questions about the best ways to manage young-forest stands, riparian areas, and forest landscapes. The Cooperative Forest Ecosystem Research (CFER) Program draws together scientists and managers from the U.S. Geological Survey, Bureau of Land Management, Oregon Department of Forestry, and Oregon State University to find science-based answers to these questions. Managers, researchers, and decisionmakers, working within the CFER program, are helping develop and disseminate the knowledge needed to carry out ecosystem-based management successfully in the Pacific Northwest.

  13. A Geographic Perspective on Factors Controlling Post-Fire Succession in Boreal Black Spruce Forests in Western North America

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Kane, E. S.; Genet, H.; Turetsky, M. R.; ODonnell, J. A.; Hoy, E.; Barrett, K.; Baltzer, J. L.

    2014-12-01

    Recent changes to climate and the fire regime have resulted in a number of distinct changes to patterns of post-fire succession in the boreal forest region of western North America. In interior Alaska and Yukon, these responses include a shift from spruce to deciduous dominated forests in black spruce forests that experienced exposure of mineral soils from deep burning of surface organic soils, as well as low seedling recruitment in white spruce forests as a result of moisture stress. In this presentation, we will use a physical geography framework to analyze factors controlling low seedling recruitment in recently burned black spruce forests in Alaska. This approach allows for understanding how changes in the biologic components of black spruce forest ecosystems (e.g., biogeography) are controlled by factors related to geomorphology and climate over multiple spatial and temporal scales. In particular, this framework will be used to examine how the interactions between fire, climate, topography and soil texture influence pre-fire and post-fire permafrost conditions, which interact to have a strong influence on variations in soil moisture. In turn, recent changes to climate combined with variations in soil moisture controlled by differences in permafrost conditions (ground ice content, active layer thickness) can be used to explain variations in post-fire seedling recruitment in black spruce forests, where low recruitment is occurring on the sites with the driest soils. In addition, we will examine the need for further research in other boreal forest regions of western North America where the presence of pine species (jack and lodgepole) that are absent in Alaska, as well as differences in soils and permafrost conditions, are likely resulting in additional patterns of post-fire succession as a result of recent changes to climate and the fire regime.

  14. VIIRS active fire detection in Siberian boreal forests

    NASA Astrophysics Data System (ADS)

    Shvetsov, Eugene; Ponomarev, Evgenii

    2015-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides 12h global coverage at spatial resolutions of 375 m and 750 m. Current operational VIIRS Active Fire Product builds on the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 4 fire algorithm applying the similar combination of tests to the corresponding VIIRS 750 m data. This study investigates the application of VIIRS fire detection approaches based on 750m and 375m data in boreal forests of Siberia. VIIRS active fire detection product is compared to current Terra/ Aqua MODIS 1 km active fire product (MOD14/ MYD14) and Landsat-8 images are used for visual interpretation of areas containing active biomass burning. We utilize two VIIRS active fire products: based on MODIS Collection 6 algorithm for 750m data, and based on fire algorithm for 375 m data proposed by Schroeder et al. (2014). Both day and night fire detections are used for the analysis. In the present study we consider large fires complexes in the Eastern Siberia which burned for several weeks in July and August of 2014. We perform the comparison using 0.25 x 0.25 degree grid on a daily basis. Another objective of this study is to investigate the consistency of fire radiative power (FRP) retrievals between MODIS active fire product and VIIRS active fire product and to include VIIRS data into fire radiative energy (FRE) calculation which is related linearly to the total biomass consumption and pyrogenic emissions.

  15. [Approaches for assessing forest ecosystem health].

    PubMed

    Chen, Gao; Deng, Hongbing; Wang, Qingli; Dai, Limin; Hao, Zhanqing

    2003-06-01

    Assessment and indicator system become the key issues in the research on ecosystem health in 21st century. Assessing forest ecosystem health gradually attach much attention because it is an important component of terrestrial ecosystem. The definition, measurement, evaluation and its management had been discussed broadly, and some theories, assessing methods and frameworks had been proposed, which provides a new concept and a serial research approaches for dealing with the crisis of terrestrial ecosystems, even the environment problems in the world. Now, the common operational models for assessing forest ecosystem health do not exist owing to the manifold limitations. This paper discussed forest ecosystem health problem, and brought forward three preconditions for assessing forest ecosystem health: 1) a clear conceptual framework; 2) adequate data sets; 3) proper research and analysis techniques. The issues of three preconditions were discussed, and the possible approaches for the assessing research on forest ecosystem health, e.g., long-term studies and environment monitoring, space-for-time substation studies, e.g., history approaches, economics valuation and others were expariated.

  16. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest

    PubMed Central

    Xiang, Xingjia; Shi, Yu; Yang, Jian; Kong, Jianjian; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Chu, Haiyan

    2014-01-01

    Fires affect hundreds of millions of hectares annually. Above-ground community composition and diversity after fire have been studied extensively, but effects of fire on soil bacterial communities remain largely unexamined despite the central role of bacteria in ecosystem recovery and functioning. We investigated responses of bacterial community to forest fire in the Greater Khingan Mountains, China, using tagged pyrosequencing. Fire altered soil bacterial community composition substantially and high-intensity fire significantly decreased bacterial diversity 1-year-after-burn site. Bacterial community composition and diversity returned to similar levels as observed in controls (no fire) after 11 years. The understory vegetation community typically takes 20–100 years to reach pre-fire states in boreal forest, so our results suggest that soil bacteria could recover much faster than plant communities. Finally, soil bacterial community composition significantly co-varied with soil pH, moisture content, NH4+ content and carbon/nitrogen ratio (P < 0.05 in all cases) in wildfire-perturbed soils, suggesting that fire could indirectly affect bacterial communities by altering soil edaphic properties. PMID:24452061

  17. Transformations of snow chemistry in the boreal forest: Accumulation and volatilization

    USGS Publications Warehouse

    Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.

    1999-01-01

    This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation

  18. Northeastern North America as a potential refugium for boreal forests in a warming climate.

    PubMed

    D'Orangeville, L; Duchesne, L; Houle, D; Kneeshaw, D; Côté, B; Pederson, N

    2016-06-17

    High precipitation in boreal northeastern North America could help forests withstand the expected temperature-driven increase in evaporative demand, but definitive evidence is lacking. Using a network of tree-ring collections from 16,450 stands across 583,000 km(2) of boreal forests in Québec, Canada, we observe a latitudinal shift in the correlation of black spruce growth with temperature and reduced precipitation, from negative south of 49°N to largely positive to the north of that latitude. Our results suggest that the positive effect of a warmer climate on growth rates and growing season length north of 49°N outweighs the potential negative effect of lower water availability. Unlike the central and western portions of the continent's boreal forest, northeastern North America may act as a climatic refugium in a warmer climate.

  19. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

    PubMed Central

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V.; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532

  20. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    PubMed

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  1. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    PubMed

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol(-1) . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends.

  2. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  3. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems.

    PubMed

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-19

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  4. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    PubMed Central

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems. PMID:26781165

  5. The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal terrestrial ecosystems of northern Eurasia

    USGS Publications Warehouse

    Hayes, Daniel J.; McGuire, Anthony; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.

    2010-01-01

    Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.

  6. Moss species benefits from breakdown of cyclic rodent dynamics in boreal forests.

    PubMed

    Rydgren, Knut; Økland, Rune H; Picó, F Xavier; de Kroon, Hans

    2007-09-01

    Bryophytes have increased in abundance in northern regions, and climate changes have been proposed to account for this change. However, changes in the population dynamics of microtine rodents may also contribute to changes in bryophyte abundance. New evidence indicates a tendency for microtine rodent population oscillations to change from periodicity of 3-5 years to become irregular or acyclic. The impact on ecosystem functioning is potentially great. We study the impact of variation in microtine rodent population characteristics, such as cycle length and amplitude, on the population dynamics of the boreal, clonal moss Hylocomium splendens. We use experimental and observational demographic data to construct 127 scenarios representing all combinations of disturbance type (gap formation and/or clipping), period (cyclic with 4, 6, 12, or 24 years between rodent peaks; or acyclic with constant or stochastically varying annual disturbance severity) and disturbance severity (fraction of individuals affected by disturbance in each year relative to the maximum disturbance carried out in the field experiment; seven levels). Population data collected in the field during 13 years were used as a baseline scenario. By subjecting all scenarios to stochastic matrix modeling, we demonstrate considerable impact of microtine rodent on the population dynamics of H. splendens, most notably when rodent populations fluctuate with short periods and high peak disturbance severities. Under the same average disturbance severity, H. splendens population growth rates are highest in acyclic scenarios and are progressively reduced with increasing peak disturbance severities (i.e., with increasing period). Stochastic elasticity analyses show that in less variable environments mature segment survival contributes more to the population growth rate, while in more variable environments the regeneration pathway (branching of older parts of the plant) plays a stronger role, inevitably leading to lower

  7. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections

    PubMed Central

    Reich, Peter B.; Rich, Roy L.; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek

    2014-01-01

    Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions. PMID:25225397

  8. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections.

    PubMed

    Reich, Peter B; Rich, Roy L; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek

    2014-09-23

    Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north-south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions.

  9. Nonlinear response of canopy developmental rate to temperature in temperate and boreal forest in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Park, H.; Ho, C. H.; Jeong, S. J.

    2015-12-01

    Understanding the changes in vegetation annual cycle is crucial for improving our knowledge about various interactions between the terrestrial ecosystem and climate. However, our understanding about the vegetation seasonality is mostly confined to some phenological timings such as spring emergence and fall senescence. This study assessed large-scale variations in the vegetation green-up rate (VGrate), which indicates the rate of canopy development from winter dormancy to summer maturity, and its relationship over Northern Hemisphere temperate and boreal forests for 1982-2011. VGrate and local temperature changes show a positive correlation over the region of interest, and it indicates that a temperature increase during green-up period leads to faster canopy development. The responses of VGrate tend to be more sensitive to positive temperature anomalies than negative anomalies despite same magnitude of the temperature changes. These nonlinear responsiveness of VGrate to local temperature change is clearly observed in deciduous broadleaf forests over Eurasia compared to woodlands over North America. These results suggest that anomalous warming in green-up period would make canopy developments faster over wide temperate and boreal forest areas.

  10. Gas-phase alkyl amines in urban air; comparison with a boreal forest site and importance for local atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Hellén, H.; Kieloaho, A.-J.; Hakola, H.

    2014-09-01

    Low-molecular-weight aliphatic amines were measured in the ambient urban background air at the SMEAR III station (Station for Measuring Forest Ecosystem-Atmosphere Relations III) in Helsinki, Finland, from May until late August 2011. The alkyl amines measured were dimethylamine (DMA), ethylamine (EA), trimethylamine (TMA), propylamine (PA), diethylamine (DEA), butylamine (BA) and triethylamine (TEA). Of these amines, DMA + EA and TMA + PA were the most abundant, with average concentrations of 24 and 8 ppt. The ranges of weekly mean concentrations of DMA + EA and TMA + PA were

    boreal forest site (SMEAR II), indicating the presence at the latter site of some additional sources. Amine lifetimes are short, varying from 2.3 h to 7.6 h against hydroxyl (OH) radicals. The amine concentrations were scaled against OH reactivity and compared with the OH reactivities of aromatic hydrocarbons and terpenes. The results showed that amines strongly influenced the total OH reactivity, especially at the boreal forest site in May, September and October, showing contributions almost as high as those of monoterpenes.

  11. Sorption and speciation of selenium in boreal forest soil.

    PubMed

    Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka

    2016-11-01

    Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, Kd, for both species. Both SeO3(2-) and SeO4(2-) proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the Kd values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The Kd values for these minerals were 18, 14, 8 and 7

  12. Chemical characteristics of Siberian boreal forest fire emissions

    NASA Astrophysics Data System (ADS)

    Engling, G.; Popovicheva, O.; Fan, T. S.; Eleftheriadis, K.; Diapouli, E.; Kozlov, V.

    2014-12-01

    Smoke emissions from Siberian boreal forest fires exert critical impacts on the aerosol/climate system of subarctic regions and the Arctic. It is, therefore, crucial to assess the ability of such particles to absorb/scatter incoming solar radiation as well as act as cloud condensation nuclei, which is closely linked to the physical and chemical aerosol properties. However, observations of Siberian wildfire emissions are limited, and no systematic database of smoke particle properties is available for this region to date. As part of this study, ambient aerosol samples were collected during two smoke episodes in Tomsk, Siberia, in the summers of 2012 and 2013. In addition, the chemical composition and optical properties of smoke particles derived from the combustion of typical Siberian fuels, including pine wood and debris, were determined during chamber burn experiments in a large aerosol/combustion chamber under controlled combustion conditions representative of wildfires and prescribed burns. Detailed multi-component characterization of individual particles and bulk properties was accomplished with a suite of techniques, including various types of chromatography, microscopy, spectroscopy, and thermo-optical analysis. Individual particle analysis by SEM-EDX combined with cluster analysis revealed characteristic smoke structural components and major types of particles, which allowed to discriminate between flaming and smoldering regimes, reflected in specific morphological and chemical microstructure. The physicochemical properties representing the combustion phase (smoldering versus flaming) and the degree of processing (fresh versus aged) were assessed in the ambient aerosol based on the chamber burn results. For instance, some chemical transformation (aging of smoke particles) was noticed over a period of two days in the absence of sun light in the combustion chamber for certain chemical species, while the molecular tracer levoglucosan appeared to be rather

  13. Improving the modeling of the seasonal carbon cycle of the boreal forest with chlorophyll fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Thum, Tea; Aalto, Tuula; Aurela, Mika; Laurila, Tuomas; Zaehle, Sönke

    2014-05-01

    The boreal ecosystems are characterized a very strong seasonal cycle and they are very sensitive to the climatic variables. The vegetation's deep wintertime dormancy requires a long recovery time during spring before the plants reach their full photosynthetic capacity. During this recovery time the plants are highly susceptible the night frosts. The transition period is different during spring and autumn for the evergreen plants. During spring there is plenty of light, but cold air temperatures inhibit the photosynthesis. The plants therefore experience to high stress levels, as they need to protect their photosynthetic apparatus from intense light. In autumn the air temperature and light level decrease more concurrently. To have a realistic presentation of the carbon cycle in boreal forests it is important to have these characteristics properly modeled, so that also the implications of changing seasonality under climate change can be more reliably predicted. In this study, we focus on the CO2 exchange of a Scots pine forest Sodankylä located in Finnish Lapland, 100 km north from the Arctic Circle. Micrometeorological flux measurements provide information about the exchanges of carbon, energy and water between atmosphere and vegetation. To complement these fluxes, we use dark-adapted chlorophyll fluorescence (CF) measurements, which is an optical measurement and tracks the development of the photosynthetic capacity. These two approaches combined together are very useful when we want to improve the modeling of the forest's CO2 exchange. We used two models that describe the photosynthesis with the biochemical model of Farquhar et al. The FMI-CANOPY is a canopy level model that is feasible to use in parameter estimation. We used the CF measurements of Fv/Fm, that is a measure of the maximum photosynthetic capacity, to include a seasonal development in the base rate of the maximum carboxylation rate (Vc(max)) in FMI-CANOPY. The simulation results matched the

  14. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    NASA Astrophysics Data System (ADS)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.

  15. Forest restoration, biodiversity and ecosystem functioning.

    PubMed

    Aerts, Raf; Honnay, Olivier

    2011-11-24

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  16. Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II

    NASA Astrophysics Data System (ADS)

    Patokoski, J.; Ruuskanen, T. M.; Kajos, M. K.; Taipale, R.; Rantala, P.; Aalto, J.; Ryyppö, T.; Nieminen, T.; Hakola, H.; Rinne, J.

    2015-12-01

    In this study a long-term volatile organic compound (VOCs) concentration data set, measured at the SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations) boreal forest site in Hyytiälä, Finland during the years 2006-2011, was analyzed in order to identify source areas and profiles of the observed VOCs. VOC mixing ratios were measured using proton transfer reaction mass spectrometry. Four-day HYSPLIT 4 (Hybrid Single Particle Lagrangian Integrated Trajectory) backward trajectories and the Unmix 6.0 receptor model were used for source area and source composition analysis. Two major forest fire events in Russia took place during the measurement period. The effect of these fires was clearly visible in the trajectory analysis, lending confidence to the method employed with this data set. Elevated volume mixing ratios (VMRs) of non-biogenic VOCs related to forest fires, e.g. acetonitrile and aromatic VOCs, were observed. Ten major source areas for long-lived VOCs (methanol, acetonitrile, acetaldehyde, acetone, benzene, and toluene) observed at the SMEAR II site were identified. The main source areas for all the targeted VOCs were western Russia, northern Poland, Kaliningrad, and the Baltic countries. Industrial areas in northern continental Europe were also found to be source areas for certain VOCs. Both trajectory and receptor analysis showed that air masses from northern Fennoscandia were less polluted with respect to both the VOCs studied and other trace gases (CO, SO2 and NOx), compared to areas of eastern and western continental Europe, western Russia, and southern Fennoscandia.

  17. Restoring the Nitrogen Cycle in the Boreal Forest - a Case Study from Northern Alberta

    NASA Astrophysics Data System (ADS)

    Masse, Jacynthe; Grayston, Sue; Prescott, Cindy; Quideau, Sylvie

    2014-05-01

    The Athabasca oil sands deposit, located in the boreal forests of Northern Alberta, is one of the largest single oil deposits in the world. This deposit rests underneath 40,200 square kilometres of land. To date, an area of about 715 square kilometres has been disturbed by oil sands mining activity (Government of Alberta, 2013). Following surface mining, companies have the legal obligation to restore soil-like profiles that can support the previous land capabilities (Powter et al., 2012). Because of its importance for site productivity, re-establishment of the nitrogen cycle between these reconstructed soils and plants is one of the most critical factors required to insure long term sustainability of reclaimed boreal landscape. High nitrogen deposition recorded in the oil sands area combined with the high level of nitrate found in reclaimed soils raised concerns about the possibility of these reclaimed soils being in early stages of N saturation (Laxton et al 2010; Hemsley, 2012), although little evidence of net nitrification in these reclaimed soils suggests the contrary (Laxton et al. 2012). To date, results on the behaviour of the nitrogen cycle in the reclaimed sites are contradictory. A systematic study of the nitrogen cycle, and especially rates of gross mineralization, nitrification and denitrification, is needed. Our research aimed at 1) measuring the gross rates of nitrogen transformations under different vegetation treatments in both reclaimed and naturally-disturbed (fire) sites and 2) characterizing the microbial communities participating in the nitrogen cycle within the same soils. A series of 20 soils, covering different vegetation treatments (plots planted with aspen (Populus tremuloides), spruce (Picea glauca) and grassland) were investigated. Gross nitrogen transformation rates were measured using 15N pool-dilution (Müller et al. 2007). Microbial communities participating in the N-cycle were characterized using qPCR and pyrosequencing. Differences

  18. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  19. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  20. Neighbourhood-scale urban forest ecosystem classification.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Duinker, Peter N; Nowak, David J; Robinson, Pamela J

    2015-11-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply.

  1. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    NASA Astrophysics Data System (ADS)

    Kontkanen, Jenni; Paasonen, Pauli; Aalto, Juho; Bäck, Jaana; Rantala, Pekka; Petäjä, Tuukka; Kulmala, Markku

    2016-10-01

    The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006-2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  2. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    PubMed

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in

  3. The Future of Eurasian Boreal Forests: Ecological Modeling Projections in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Shugart, H.

    2008-12-01

    Ecological modeling is one of the primary methodologies for making predictions on future changes in forested ecosystems such as those occurring in Northern Eurasia and Siberia. In particular, combining ecological modeling with global circulation model simulation outputs is a method in which scientists can forecast the impact of climate change on biodiversity (Thuiller, 2007) as well as the forested landscape. Dynamic global vegetation models (DGVMs) have been designed for specifically this purpose, however, these vegetation models run at large spatial scales and as a result make predictions that are highly uncertain (Purves and Pacala, 2008). In previous papers, we discussed the FAREAST forest gap model and its ability to accurately predict boreal forest dynamics at smaller scales and higher resolution than DGVMs. This presentation investigates the use of the FAREAST gap model, modified for spatial expansion to cover the entire country of Russia, to predict future land cover trends under different warming scenarios. The poster provides the initial framework for the project, as well as some initial results. The collection of input variables needed by FAREAST to model the Russian continent will involve collaboration with the Russian Academy of Sciences (CEPF). Together we have developed a framework in which to amalgamate both original (temperature, precipitation, soil values) parameters as well as new parameters (fire probability, logging probability) into a GIS database that can be integrated with the FAREAST model. This framework will be capable of providing visual and graphical output for interpretation of large model runs. In order to ensure accuracy in FAREAST's ability to simulate the current environment, a run of the model under current-day conditions will be compared to recent remote sensing land cover maps. The GLC2000 land cover classification project (EU JRC) will be the primary validation method with additional validation through other biophysical

  4. Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems.

    PubMed

    Galand, P E; Fritze, H; Conrad, R; Yrjälä, K

    2005-04-01

    The main objectives of this study were to uncover the pathways used for methanogenesis in three different boreal peatland ecosystems and to describe the methanogenic populations involved. The mesotrophic fen had the lowest proportion of CH4 produced from H2-CO2. The oligotrophic fen was the most hydrogenotrophic, followed by the ombrotrophic bog. Each site was characterized by a specific group of methanogenic sequences belonging to Methanosaeta spp. (mesotrophic fen), rice cluster-I (oligotrophic fen), and fen cluster (ombrotrophic bog).

  5. Methane production and consumption in grassland and boreal ecosystems

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Burke, Ingrid C.; Johnston, Carol; Pastor, John

    1994-01-01

    The objectives of the this project were to develop a mechanistic understanding of methane production and oxidation suitable for incorporation into spatially explicit models for spatial extrapolation. Field studies were undertaken in Minnesota, Canada, and Colorado to explore the process controls over the two microbial mediated methane transformations in a range of environments. Field measurements were done in conjunction with ongoing studies in Canada (the Canadian Northern Wetlands Projects: NOWES) and in Colorado (The Shortgrass Steppe Long Term Ecological Research Project: LTER). One of the central hypotheses of the proposal was that methane production should be substrate limited, as well as being controlled by physical variables influencing microbial activity (temperature, oxidation status, and pH). Laboratory studies of peats from Canada and Minnesota (Northern and Southern Boreal) were conducted with amendments of a methanogenic substrate at multiple temperatures and at multiple pHs (the latter by titrating samples). The studies showed control by substrate, pH, and temperature in order in anaerobic samples. Field and laboratory manipulations of natural plant litter, rather than an acetogenic substrate, showed similarly large effects. The studies concluded that substrate is an important control over methanogenesis, that substrate availability in the field is closely coupled to the chemistry of the dominant vegetation influencing its decomposition rate, that most methane is produced from recent plant litter, and that landscape changes in pH are an important control, highly correlated with vegetation.

  6. Interactive effects of burn severity and canopy cover on ecophysiology of tree seedlings in boreal forests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wildfires are an important disturbance because they improve habitat conditions for establishing plants. Fires of differing severity can have dramatically different impacts on habitat, particularly when coupled with canopy-level disturbances. In a boreal forest, we outplanted seedlings of four specie...

  7. Estimation of carbon emissions from wildfires in Alaskan boreal forests using AVHRR data

    SciTech Connect

    Kasischke, E.S.; French, N.H.F.; Bourgeau-Chavez, L.L )

    1993-06-01

    The objectives of this research study were to evaluate the utility of using AVHRR data for locating and measuring the areal extent of wildfires in the boreal forests of Alaska and to estimate the amount of carbon being released during these fires. Techniques were developed to using the normalized difference vegetation signature derived from AVHRR data to detect and measure the area of fires in Alaska. A model was developed to estimate the amount of biomass/carbon being stored in Alaskan boreal forests, and the amount of carbon released during fires. The AVHRR analysis resulted in detection of > 83% of all forest fires greater than 2,000 ha in size in the years 1990 and 1991. The areal estimate derived from AVHRR data were 75% of the area mapped by the Alaska Fire Service for these years. Using fire areas and locations for 1954 through 1992, it was determined that on average, 13.0 gm-C-m-2 of boreal forest area is released during fires every year. This estimate is two to six times greater than previous reported estimates. Our conclusions are that the analysis of AVHRR data represents a viable means for detecting and mapping fires in boreal regions on a global basis.

  8. CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS

    EPA Science Inventory

    Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...

  9. Temperature regimes and turbulent heat fluxes across a heterogeneous canopy in an Alaskan boreal forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluate local differences in thermal regimes and turbulent heat fluxes across the heterogeneous canopy of a black spruce boreal forest on discontinuous permafrost in interior Alaska. The data was taken during an intensive observing period in the summer of 2013 from two micrometeorological tower...

  10. Coupling of Water and Carbon Cycles in Boreal Ecosystems at Watershed and National Scales

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Ju, W.; Govind, A.; Sonnentag, O.

    2009-05-01

    The boreal landscapes is relatively flat giving the impression of spatial homogeneity. However, glacial activities have left distinct fingerprints on the vegetation distribution on moderately rolling terrains over the boreal landscape. Upland or lowland forests types or wetlands having various degrees of hydrological connectivitiy to the surrounding terrain are typical of the boreal landscape. The nature of the terrain creates unique hydrological conditions affecting the local-scale ecophysiological and biogeochemical processes. As part of the Canadian Carbon Program, we investigated the importance of lateral water redistribution through surface and subsurface flows in the spatial distribution of the vertical fluxes of water and carbon. A spatially explicit hydroecological model (BEPS-TerrainLab) has been developed and tested in forested and wetland watersheds . Remotely sensed vegetation parameters along with other spatial datasets are used to run this model, and tower flux data are used for partial validation. It is demonstrated in both forest and wetland watersheds that ignoring the lateral water redistribution over the landscape, commonly done in 1-dimensional bucket models, can cause considerable biases in the vertical carbon and water flux estimation, in addition to the distortion of the spatial patterns of these fluxes. The biases in the carbon flux are considerably larger than those in the water flux. The significance of these findings in national carbon budget estimation is demonstrated by separate modeling of 2015 watersheds over the Canadian landmass.

  11. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.

    PubMed

    Helbig, Manuel; Chasmer, Laura E; Desai, Ankur R; Kljun, Natascha; Quinton, William L; Sonnentag, Oliver

    2017-01-28

    In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO2 exchange (NEELAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature- and light-limited NEELAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (-20 g C m(-2) ) and wetland NEE (-24 g C m(-2) ) were similar, suggesting negligible wetland expansion effects on NEELAND . In contrast, we find non-negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m(-2) for a moderate and 103 ± 38 g C m(-2) for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by

  12. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    PubMed

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  13. Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America

    NASA Astrophysics Data System (ADS)

    Remy, Cécile C.; Hély, Christelle; Blarquez, Olivier; Magnan, Gabriel; Bergeron, Yves; Lavoie, Martin; Ali, Adam A.

    2017-03-01

    Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.

  14. Mountain pine beetle host-range expansion threatens the boreal forest

    PubMed Central

    Cullingham, Catherine I; Cooke, Janice E K; Dang, Sophie; Davis, Corey S; Cooke, Barry J; Coltman, David W

    2011-01-01

    The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant. PMID:21457381

  15. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services

    PubMed Central

    Seidl, Rupert; Spies, Thomas A.; Peterson, David L.; Stephens, Scott L.; Hicke, Jeffrey A.

    2016-01-01

    Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept – characterizing and bounding the long-term behaviour of ecosystems – to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5. Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We

  16. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services.

    PubMed

    Seidl, Rupert; Spies, Thomas A; Peterson, David L; Stephens, Scott L; Hicke, Jeffrey A

    2016-02-01

    1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept - characterizing and bounding the long-term behaviour of ecosystems - to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5.Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We conclude that

  17. Why should we consider alternative nitrogenases in boreal ecosystems?

    NASA Astrophysics Data System (ADS)

    Bellenger, Jean-Philippe

    2014-05-01

    Biological nitrogen fixation (BNF) is the main source of new nitrogen (N) for the biosphere, accounting for up to 97% of N input in unmanaged terrestrial ecosystems. This reaction is catalysed by the enzyme nitrogenase (Nase). In N2 fixers associated with higher plants, only the molybdenum (Mo) dependent nitrogenase (Mo-Nase) has been identified. However, in many other N2 fixers two additional isoenzymes have been reported; the vanadium (V) dependent (V-Nase) and iron-only dependent nitrogenase (Fe-Nase). The role of these alternative nitrogenases (V-Nase and Fe-Nase) in natural habitats has been mostly overlooked, because they are found in communities that were not considered major contributors to N inputs. In recent years, N2 fixation associated with mosses and lichens has captured the interest of the scientific community for its importance toward global N input in high latitude ecosystems. Within this context, it is imperative to reconsider the role of alternative nitrogenases in these biomes. Here, I will present an overview of various findings, provided by different research groups, in the last two decade, suggesting that alternative nitrogenases could play an important role on N2 fixation in terrestrial ecosystems, especially in high latitude ones. I will discuss how these findings challenge the traditional view of Mo hegemony on N input in natural habitats and how it affects our conceptual models relating N2 fixation and trace metal dynamics in the environment. I will conclude by presenting my views on the importance to improve our understanding of the role of alternative nitrogenase in high latitude ecosystems; not only will this affect our fundamental understanding of N2 fixation and N cycling, it will also impact our ability to predict the response of these ecosystems to global climate change.

  18. Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil

    USGS Publications Warehouse

    Carrasco, J.J.; Neff, J.C.; Harden, J.W.

    2006-01-01

    Boreal soils are important to the global C cycle owing to large C stocks, repeated disturbance from fire, and the potential for permafrost thaw to expose previously stable, buried C. To evaluate the primary mechanisms responsible for both short- and long-term C accumulation in boreal soils, we developed a multi-isotope (12,14C) Soil C model with dynamic soil layers that develop through time as soil organic matter burns and reaccumulates. We then evaluated the mechanisms that control organic matter turnover in boreal regions including carbon input rates, substrate recalcitrance, soil moisture and temperature, and the presence of historical permafrost to assess the importance of these factors in boreal C accumulation. Results indicate that total C accumulation is controlled by the rate of carbon input, decomposition rates, and the presence of historical permafrost. However, unlike more temperate ecosystems, one of the key mechanisms involved in C preservation in boreal soils examined here is the cooling of subsurface soil layers as soil depth increases rather than increasing recalcitrance in subsurface soils. The propagation of the 14C bomb spike into soils also illustrates the importance of historical permafrost and twentieth century warming in contemporary boreal soil respiration fluxes. Both 14C and total C simulation data also strongly suggest that boreal SOM need not be recalcitrant to accumulate; the strong role of soil temperature controls on boreal C accumulation at our modeling test site in Manitoba, Canada, indicates that carbon in the deep organic soil horizons is probably relatively labile and thus subject to perturbations that result from changing climatic conditions in the future. Copyright 2006 by the American Geophysical Union.

  19. The Climate Mitigation Potential of Managed Boreal Forests Exceeds Their Carbon Store Effect

    NASA Astrophysics Data System (ADS)

    Kalliokoski, T.; Nikinmaa, E.; Minkkinen, K.; Matthies, B. D.; Back, J. K.; Boy, M.; Kuusinen, N.; Makela, A.; Mogensen, D.; Peltoniemi, M.; Sievänen, R.; Zhou, L.; Vanhatalo, A.; Valsta, L.; Berninger, F.

    2015-12-01

    Boreal forests has important role for the mitigation of adverse effects of climate change. They form 1/5 of terrestrial carbon sink and secondary organic aerosols (SOAs) production through biogenic volatile organic carbon emissions further increase the cooling effect of this biome. The balance between these and the warming effect through surface albedo effects is still unclear. Moreover, boreal forests provide up to 17% of the global industrial roundwood harvest thus substituting other carbon intense materials. Here we modeled this integrated effect of boreal forest management on Earth radiative forcing (RF) using Finland as a case. We made analyses both in current climate and in the projected climate of year 2050. At the stand level, the carbon sequestration effect and avoided CO2 emissions due to substituted materials dominated in net RF in current climate. The warming effect of low surface albedo of forest cover was lower or of same magnitude than cooling effect of SOAs. The cooling effect of net radiative forcing increased along the increasing site fertility. Although the carbon stocks of broadleaved trees were smaller than that of conifers their total radiative cooling effect was larger due to the integrated albedo and aerosol effects. In the projected climate of 2050, the radiative cooling of aerosols increased to the level equaling forest carbon fixation. Landscape level analyses emphasized the broad range of options to reach the cooling effect. The lowest harvest regime, 50% of current annual increment (CAI), yielded the largest cooling effect. Yet, harvests up to CAI produced only slightly less cooling RF if avoided emissions were considered. This result was highly sensitive to used substitution factors. If the goal is to mitigate climate change, boreal forest management should favor mixed forest stands and intensive harvests are preferable only if coupled with long lasting end products.

  20. Impact of forest harvesting on water quality and fluorescence characteristics of dissolved organic matter in Eastern Canadian Boreal Shield lakes

    NASA Astrophysics Data System (ADS)

    Glaz, P.; Gagné, J.-P.; Archambault, P.; Sirois, P.; Nozais, C.

    2015-06-01

    Forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. Water quality and fluorescence characteristics of dissolved organic matter (DOM) were measured over a three-year period in eight Eastern Boreal Shield lakes: four lakes were studied before, one and two years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. ANOVAs showed a significant increase in total phosphorus (TP) in perturbed lakes when the three sampling dates were considered and in DOC concentrations when considering one year before and one year after the perturbation only. At one year post-clear cutting DOC concentrations were about 15 % greater in the perturbed lakes at ~15 mg C L-1 compared to 12.5 mg C L-1 in the unperturbed lakes. In contrast, absorbance and fluorescence measurements showed that all metrics remained within narrow ranges compared to the range observed in natural waters, indicating that forest harvesting did not affect the nature of DOM characterised with spectroscopic techniques. Multivariate statistical analysis showed lakes to be significantly different one year after the perturbation. These results confirm an impact of forestry activities one year after the perturbation. However, this effect seems to be mitigated two years after, indicating that the system shows high resilience and may be able to return to its original condition.

  1. Carbon-sequestration and ecosystem services in the boreal ecoregion of Alaska

    NASA Astrophysics Data System (ADS)

    Wang, B.; Manies, K.; Labay, K.; Johnson, W. N.; Harden, J. W.

    2011-12-01

    Managing public lands for carbon (C) sequestration is increasingly discussed as a component of national carbon policies. However, management of public land to facilitate carbon sequestration must be considered in the context of other management mandates and the effects on other ecosystem services. Of the United States Fish and Wildlife Service's (USFWS) National Wildlife Refuge lands in Alaska, about 35% are in the boreal ecoregion; primarily in the Intermountain and the Alaska Range Transition ecoregions. These refuges were established to conserve wildlife habitat, fulfill treaty obligations, provide for continued subsistence uses, and ensure necessary water quality and quantity. One of the major factors in determining ecosystem distribution in the boreal ecoregion is disturbance. Fire is the dominant disturbance for Alaska's boreal region. Most USFWS refuge lands are managed with "limited" suppression, where fires burn naturally and are monitored to assure the protection of human life, property, and site specific values (such as historical or religious). However, there is increasing interest in biomass harvest and combustion for local energy production. Harvest and fire can have differing effects on both the spatial and temporal aspects of carbon storage. The current biomass harvest for energy production proposals are considered to be C neutral because they focus on "hazardous" biomass which would burn naturally or in a prescribed burn. The goal of this effort is to explore the relation between C storage and other public land management priorities, as well as, to explore how disturbance type (fire and harvest) affect C storage and boreal ecosystem distribution in the context of wildlife habitat and subsistence use management priorities. We present a conceptual model that defines the linkages among these management priorities, a data gap analysis, and scenarios to be evaluated.

  2. Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China

    PubMed Central

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252

  3. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

    PubMed

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.

  4. Monitoring of the effects of fire in North American boreal forests using ERS SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; French, N. H. F.; Bourgeau-Chavez, L. L.

    1997-01-01

    ERS synthetic aperture radar (SAR) imagery represents a tool for monitoring the effects of fires in boreal regions. Fire-scar signatures from ERS SAR collected over Canada and Alaska are presented. The temporal variability exhibited throughout the growing season is underlined. The investigation showed that these signatures have a seasonal trend related to the patterns of soil moisture originating from snow melts in the spring and precipitation during the growing season. These signatures appear in all the regions of the North American boreal forest and remain visible for up to 13 years after a fire.

  5. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests.

    PubMed

    Gundale, Michael J; Nilsson, Madeleine; Bansal, Sheel; Jäderlund, Anders

    2012-04-01

    Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses.

  6. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    NASA Astrophysics Data System (ADS)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  7. Warmer Boreal Forest Organic Soil Horizons are Associated with Larger Fluxes of Dissolved Organic Carbon than their Cooler Climate Counterparts.

    NASA Astrophysics Data System (ADS)

    Bowering, K.; Edwards, K. A.; Ziegler, S. E.

    2015-12-01

    Boreal forest soils are characterized by large stocks of carbon associated with relatively slow decomposition and deep organic horizons. Dissolved organic carbon (DOC) loss from organic soil horizons occurs through hydrologically-mediated leaching processes, and contributes to downstream carbon both in deeper mineral soils and also in connected aquatic systems. However, the amount of DOC that leaves organic horizons and the environmental controls on this flux are poorly understood and are likely to be affected by climate changes. We sampled zero-tension lysimeters along 3 forested sites of a boreal climate transect to estimate DOC export from organic soil horizons of mesic boreal podzols (spodosols), and to investigate the climatic drivers of this flux. The sites are part of the Newfoundland and Labrador Boreal Ecosystems Latitudinal Transect (NL-BELT) and span approximately 5°C in mean annual temperature. Lysimeters were sampled over 4 years and DOC flux was calculated for each seasonal period (summer, fall, and winter) of each year. DOC flux was greatest in the warmest site (114 mg C day-1 m-2), with the two cooler sites having lower flux rates (40 and 36 mg C day-1 m-2 in the intermediate and coolest sites respectively). Seasonal variation was most pronounced in the warmest site where more DOC exited the organic soil horizons during fall than during summer or winter. DOC flux was correlated with the volume of soil solution collected in the lysimeters (R2 = .46), however the larger sample volumes collected in the warmest climate do not reflect greater overall precipitation. During the 4-year period of this study, similar amounts of precipitation were recorded in all regions, and the number of days with >10mm precipitation did not differ. The greater DOC flux in the warmer climate site may be due to higher rates of both litterfall and decomposition, contributing to increased labile DOC sources in the warmer climate. Analyses of the carbon quality of these samples

  8. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice.

    PubMed

    Girardin, Martin P; Guo, Xiao Jing; De Jong, Rogier; Kinnard, Christophe; Bernier, Pierre; Raulier, Frédéric

    2014-03-01

    The 20th century was a pivotal period at high northern latitudes as it marked the onset of rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data records. Here, we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP) and tree-ring width measurements covering the last 300 years. Climatic and proxy-climatic data sets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large number of black spruce (Picea mariana) trees entered into a period of growth decline during the late-20th century (62% of sampled trees; n = 724 cross sections of age >70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300-year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature-driven drought stress and tree mortality with ongoing climatic changes.

  9. Divergent nonlinear responses of the boreal forest field layer along an experimental gradient of deer densities.

    PubMed

    Tremblay, Jean-Pierre; Huot, Jean; Potvin, François

    2006-11-01

    The early responses of the field layer to changes in biotic and abiotic conditions are key determinants of the future composition and structure of forests where sustained heavy browsing pressure has depauperated the shrub understory. We investigated the relationships between white-tailed deer density and field layer plant community dynamics in boreal forests managed for wildlife and timber production. We hypothesized that the growth and reproduction of field layer plants are either: (H(1)) directly proportional to deer density, or (H(2)) related to deer density through nonlinear relationships or (H(3)) through nonlinear relationships with thresholds. We tested these hypotheses using data from a controlled browsing experiment involving a gradient of deer densities (0, 7.5, 15, 27 and 56 deer km(-2)) in interaction with timber harvesting conducted on Anticosti Island, Canada. In recent clearcuts, the dominant responses of the field layer plants were exponential recovery in growth and reproduction with decreasing deer densities. The abundance of browse-tolerant species such as grasses was positively related to deer density, suggesting an apparent competitive gain. These results support the prediction from our second hypothesis, although the presence of ecological thresholds should not be ruled out. Rapid changes in the early successional stages have potentially long-term consequences on successional patterns through processes such as the modulation of germination and early establishment success of seedlings from later successional species. Quantitative data as those presented here are essential for the development of ecosystem management prescriptions. On Anticosti Island, reduction of local deer densities to levels <15-7.5 deer km(-2) in the first 3 years following timber harvesting appears to be compatible with the regeneration dynamics of this system although lower levels of deer densities may be required for the conservation of browse-sensitive plant species.

  10. Changes in fungal communities along a boreal forest soil fertility gradient.

    PubMed

    Sterkenburg, Erica; Bahr, Adam; Brandström Durling, Mikael; Clemmensen, Karina E; Lindahl, Björn D

    2015-09-01

    Boreal forests harbour diverse fungal communities with decisive roles in decomposition and plant nutrition. Although changes in boreal plant communities along gradients in soil acidity and nitrogen (N) availability are well described, less is known about how fungal taxonomic and functional groups respond to soil fertility factors. We analysed fungal communities in humus and litter from 25 Swedish old-growth forests, ranging from N-rich Picea abies stands to acidic and N-poor Pinus sylvestris stands. 454-pyrosequencing of ITS2 amplicons was used to analyse community composition, and biomass was estimated by ergosterol analysis. Fungal community composition was significantly related to soil fertility at the levels of species, genera/orders and functional groups. Ascomycetes dominated in less fertile forests, whereas basidiomycetes increased in abundance in more fertile forests, both in litter and humus. The relative abundance of mycorrhizal fungi in the humus layer remained high even in the most fertile soils. Tolerance to acidity and nitrogen deficiency seems to be of greater importance than plant carbon (C) allocation patterns in determining responses of fungal communities to soil fertility, in old-growth boreal forests.

  11. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  12. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    NASA Astrophysics Data System (ADS)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  13. Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites

    NASA Astrophysics Data System (ADS)

    Burke, Roger A.; Zepp, Richard G.; Tarr, Matthew A.; Miller, William L.; Stocks, Brian J.

    1997-12-01

    During the spring and summer of 1994 we monitored soil-atmosphere exchanges of methane and carbon dioxide at upland sites in the Canadian boreal forest near the northern study area (NSA) of the Boreal Ecosystem-Atmosphere Study (BOREAS). The effects of fire on methane and carbon dioxide exchange in black spruce stands developed on clay soils were evaluated by measuring fluxes with dark chambers in unburned stands and stands burned in 1994, 1992, and 1987. Similar measurements were made in jack pine stands developed on sandy soils, one unburned and the other burned in 1989. All of the sites were net sinks of atmospheric methane with median fluxes ranging from -0.3 to -1.4 mg CH4-C m-2 d-1. Median fluxes of carbon dioxide from the forest floor to the atmosphere ranged between 1 and 2 g C m-2 d-1. Both ecosystem characteristics (e.g., soil and vegetation type) and burning history (time since burn and fire intensity) appear to have some effect on atmospheric methane consumption and carbon dioxide emission by these forest soils. In general, the jack pine sites were stronger methane sinks and had lower carbon dioxide emissions than the black spruce sites. After a few years of recovery, the burned sites tended to be slightly stronger methane sinks than unburned controls. Our results suggest that soil CO2 effluxes from upland black spruce stands may not be immediately impacted by fire, possibly maintained at preburn levels by microbial decomposition of labile compounds released as a result of the fire. By 2 years postfire there appears to be a significant reduction in soil CO2 flux, due to the loss of tree root and moss respiration and possibly to the depletion of fire-related labile compounds. The observed recovery of soil respiration rates to preburn levels by 7 years postburn is probably due to the respiration of regrowing vegetation and the combined effects of elevated soil temperatures (about 4° to 5°C warmer than unburned sites) and improved litter quality on soil

  14. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    PubMed

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as <75% of the territory had burned over the 100-yr-long period. Our long-term net carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be.

  15. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net

  16. Forest and land inventory using ERTS imagery and aerial photography in the boreal forest region of Alberta, Canada

    NASA Technical Reports Server (NTRS)

    Kirby, C. L.

    1974-01-01

    Satellite imagery and small-scale (1:120,000) infrared ektachrome aerial photography for the development of improved forest and land inventory techniques in the boreal forest region are presented to demonstrate spectral signatures and their application. The forest is predominately mixed, stands of white spruce and poplar, with some pure stands of black spruce, pine and large areas of poorly drained land with peat and sedge type muskegs. This work is part of coordinated program to evaluate ERTS imagery by the Canadian Forestry Service.

  17. Multidecadal analysis of forest growth and albedo in boreal Finland

    NASA Astrophysics Data System (ADS)

    Lukeš, Petr; Stenberg, Pauline; Mõttus, Matti; Manninen, Terhikki; Rautiainen, Miina

    2016-10-01

    It is well known that forests serve as carbon sinks. However, the balancing effect of afforestation and increased forest density on global warming due to carbon storage may be lost by low albedo (thus high absorption) of the forests. In the last 30 years, there has been a steady increase in the growing stock of Finnish forests by nearly a quarter while the area of the forests has remained virtually unchanged. Such increase in forest density together with the availability of detailed forest inventories provided by the Multi-Source National Forest Inventory (MS-NFI) in high spatial resolution makes Finland an ideal candidate for exploring the effects of increased forest density on satellite derived estimates of bio-geochemical products e.g. albedo (directional-hemispherical reflectance, DHR), fraction of photosynthetically active radiation absorbed by canopies (fAPAR), leaf area index (LAI) and normalized difference vegetation index (NDVI) in both current and long-term perspective. In this study, we first used MODIS-based vegetation satellite products for Finnish forests to study their seasonal patterns and interrelations. Next, the peak growing season observations are linked to the MS-NFI database to yield the generic relationships between forest density and the satellite-derived vegetation indicators. Finally, long-term GIMMS3g datasets between 1982 and 2011 (2008 for DHR) are analyzed and interpreted using forest inventory data. The vegetation peak growing season NIR DHR and VIS DHR showed weak to moderate negative correlation with fAPAR, whereas there was no correlation between NIR DHR and fAPAR. Next, we show that the spectral albedos in the near-infrared region (NIR DHR) showed weak negative correlation with forest biomass, basal area or canopy cover whereas, as expected, the spectral albedo in the visible region (VIS DHR) correlated negatively with these measures of forest density. Interestingly, the increase in forest density (biomass per ha) of Finnish

  18. Photosynthetic properties of boreal bog plant species and their contribution to ecosystem level carbon sink

    NASA Astrophysics Data System (ADS)

    Korrensalo, Aino; Hájek, Tomas; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina

    2016-04-01

    Boreal bogs have a low number of plant species, but a large diversity of growth forms. This heterogeneity might explain the seasonally less varying photosynthetic productivity of these ecosystems compared to peatlands with vegetation consisting of fewer growth forms. The differences in photosynthetic properties within bog species and phases of growing season has not been comprehensively studied. Also the role of different plant species for the ecosystem level carbon (C) sink function is insufficiently known. We quantified the seasonal variation of photosynthetic properties in bog plant species and assessed how this variation accounts for the temporal variation in the ecosystem C sink. Photosynthetic light response of 11 vascular plant and 8 Sphagnum moss species was measured monthly over the growing season of 2013. Based on the species' light response parameters, leaf area development and areal coverage, we estimated the ecosystem level gross photosynthesis rate (PG) over the growing season. The level of upscaled PG was verified by comparing it to the ecosystem gross primary production (GPP) estimate calculated based on eddy covariance (EC) measurements. Although photosynthetic parameters differed within plant species and months, these differences were of less importance than expected for the variation in ecosystem level C sink. The most productive plant species at the ecosystem scale were not those with the highest maximum potential photosynthesis per unit of leaf area (Pmax), but those having the largest areal coverage. Sphagnum mosses had 35% smaller Pmax than vascular plants, but had higher photosynthesis at the ecosystem scale throughout the growing season. The contribution of the bog plant species to the ecosystem level PG differed over the growing season. The seasonal variation in ecosystem C sink was mainly controlled by phenology. Sedge PG had a sharp mid-summer peak, but the PG of evergreen shrubs and Sphagna remained rather stable over the growing season

  19. Differences in satellite-derived NOx emission factors between Eurasian and North American boreal forest fires

    NASA Astrophysics Data System (ADS)

    Schreier, S. F.; Richter, A.; Schepaschenko, D.; Shvidenko, A.; Hilboll, A.; Burrows, J. P.

    2015-11-01

    Current fire emission inventories apply universal emission factors (EFs) for the calculation of NOx emissions over large biomes such as boreal forest. However, recent satellite-based studies over tropical and subtropical regions have indicated spatio-temporal variations in EFs within specific biomes. In this study, satellite measurements of tropospheric NO2 vertical columns (TVC NO2) from the GOME-2 instrument and fire radiative power (FRP) from MODIS are used for the estimation of fire emission rates (FERs) of NOx over Eurasian and North American boreal forests. The retrieval of TVC NO2 is based on a stratospheric correction using simulated stratospheric NO2 instead of applying the reference sector method, which was used in a previous study. The model approach is more suitable for boreal latitudes. TVC NO2 and FRP are spatially aggregated to a 1° × 1° horizontal resolution and temporally averaged to monthly values. The conversion of the satellite-derived tropospheric NO2 columns into production rates of NOx from fire (Pf) is based on the NO2/NOx ratio as obtained from the MACC reanalysis data set and an assumed lifetime of NOx. A global land cover map is used to define boreal forests across these two regions in order to evaluate the FERs of NOx for this biome. The FERs of NOx, which are derived from the gradients of the linear relationship between Pf and FRP, are more than 30% lower for North American than for Eurasian boreal forest fires. We speculate that these discrepancies are mainly related to the variable nitrogen content in plant tissues, which is higher in deciduous forests dominating large parts in Eurasia. In order to compare the obtained values with EFs found in the literature, the FERs are converted into EFs. The satellite-based EFs of NOx are estimated at 0.83 and 0.61 g kg-1 for Eurasian and North American boreal forests, respectively, which is in good agreement with the value found in a recent emission factor compilation. However, recent fire

  20. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  1. Significant Increase in Ecosystem C Can Be Achieved with Sustainable Forest Management in Subtropical Plantation Forests

    PubMed Central

    Wei, Xiaohua; Blanco, Juan A.

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha−1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr−1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber

  2. Significant increase in ecosystem C can be achieved with sustainable forest management in subtropical plantation forests.

    PubMed

    Wei, Xiaohua; Blanco, Juan A

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500-2500 trees ha⁻¹. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir--Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr⁻¹, offsetting 1.9% of China's annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products

  3. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    NASA Astrophysics Data System (ADS)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  4. Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil.

    NASA Astrophysics Data System (ADS)

    Lindén, A.; Heinonsalo, J.; Oinonen, M.; Sonninen, E.; Hilasvuori, E.; Pumpanen, J.

    2012-04-01

    In boreal zone, soil organic matter (SOM) contains a substantial amount of recalcitrant material and forms a large nitrogen pool. However, this pool is to a great extent inaccessible to plants, due to its low decomposability. Although, the nitrogen supply is the most limiting factor of net ecosystem production (NEP) in boreal forests, it has been speculated that as a result of the accelerated decomposition of SOM induced by climate warming, part of this nitrogen pool could be released. It has also been shown that a substantial proportion of gross primary production (GPP) is allocated below ground and acts as an energy source for decomposing rhizomicrobial organisms, and that changes in the GPP rate could therefore increase the belowground turn over rate of otherwise recalcitrant nitrogen-rich SOM. We were studying the effects of increasing labile carbon input on the symbiotic microbial N acquisition and protease activities in a controlled microcosm experiment. We compared the natural abundance of isotope ratios of 13C and 14C in soil CO2efflux, protease enzyme activity, natural abundance of 15N in the needles, and microbial biomass in microcosms containing bare soil and tree seedlings. In addition, we had treatments were additional energy was given to the bare soil and seedling microcosms in the form of glucose. The age of the CO2 originating from the decomposition process of SOM was older in all treatments where easily decomposable carbon (energy) was available for soil microorganisms. The increased natural abundance of 15N in the needles of the seedlings treated with glucose, suggests a shift in nitrogen acquisition to different SOM pool, which was reflected strongly to the total N content of the SOM and evolving 13C signature in soil CO2 efflux. The protease activity was highest in treatments with artificial glucose addition. Our results suggest that the increased input of easily available carbon from aboveground enables the decomposition of recalcitrant

  5. BorealScat: A Tower Experiment for Understanding Temporal Changes in P- and L-Band Backscattering from a Boreal Forest

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Soja, Maciej J.; Monteith, Albert R.; Eriksson, Leif E. B.; Fransson, Johan E. S.; Persson, Henrik, J.

    2016-08-01

    This paper describes the tower-based radar BorealScat, which is being developed for polarimetric, tomographic and Doppler measurements at the hemi-boreal forest test site in Remningstorp, Sweden. The facility consists of a 50-m high tower equipped with an antenna array at the top of the tower, a 20-port vector network analyser (VNA), 20 low-loss cables for interconnection, and a calibration loop with a switching network. The first version of BorealScat will perform the full set of measurements in the frequency range 0.4 - 1.4 GHz, i.e. P-band and L-band. The tower is currently under construction at a forest stand dominated by Norway spruce (Picea abies (L.) Karst.). The mature stand has an above-ground dry biomass of 300 tons/ha. Data collections are planned to commence in autumn 2016.

  6. Water, Energy and Carbon Balance Research: Recovery Trajectories For Oil Sands Reclamation and Disturbed Watersheds in the Western Boreal Forest

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Carey, S. K.

    2014-12-01

    The Oil Sand Region (OSR) of North-Central Alberta exists within the sub-humid Boreal Plains (BP) ecozone, with a slight long-term moisture deficit regime. Despite this deficit, the BP is comprised of productive wetland and mixed wood (aspen and conifer dominated) forests. Reclamation activities are now underway at a large number of surface mining operations in the OSR, where target ecosystems are identified, soil prescriptions placed and commercial forest species planted. Some watersheds have been created that now contain wetlands. However, recent work in the BP suggests that over time wetlands supply moisture for the productivity of upland forests. Thus, water use of reclaimed forests is going to be critical in determining the sustainability of these systems and adjacent wetlands, and whether in time, either will achieve some form of equivalent capability that will allow for certification by regulators. A critical component in the success of any reclamation is that sufficient water is available to support target ecosystems through the course of natural climate cycles in the region. Water Use Efficiency (WUE), which links photosynthesis (GEP) with water use (Evapotranspiration (ET)), provides a useful metric to compare ecosystems and evaluate their utilization of resources. In this study, 41 site years of total growing season water and carbon flux data over 8 sites (4 reclamation, 4 regeneration) were evaluated using eddy covariance micrometeorological towers. WUE shows clear discrimination among ecosystem types as aspen stands assimilate more carbon per unit weight of water than conifers. WUEs also change with time as ecosystems become more effective at transpiring water through plant pathways compared with bare-soil evaporation, which allows an assessment of ability to limit water loss without carbon uptake. In addition, clonal rooting systems allow aspen forests to recover quicker after disturbance than reclamation sites in terms of their WUE. For reclamation

  7. Environmental factors regulating winter CO2 flux in snow-covered boreal forest soil, interior Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kodama, Y.

    2012-01-01

    Winter CO2 flux is an important element to assess when estimating the annual carbon budget on regional and global scales. However, winter observation frequency is limited due to the extreme cold weather in sub-Arctic and Arctic ecosystems. In this study, the continuous monitoring of winter CO2 flux in black spruce forest soil of interior Alaska was performed using NDIR CO2 sensors at 10, 20, and 30 cm above the soil surface during the snow-covered period (DOY 357 to 466) of 2006/2007. The atmospheric pressure was divided into four phases: >1000 hPa (HP: high pressure); 985boreal black spruce forest soil. Atmospheric temperature, pressure, and soil temperature correlate at levels of 56, 25, and 31 % to winter CO2 flux, respectively, during the snow-covered period of 2006/2007, when snow depth experienced one of its lowest totals of the past 80 years. Atmospheric temperature and soil temperature at 5 cm depth, modulated by atmospheric pressure, were found to be significant factors in determining winter CO2 emission and fluctuation in snowpack. Regional/global process-based carbon cycle models should be reassessed to account for the effect of winter CO2 emissions, regulated by temperature and soil latent-heat flux, in the snow-covered soils of Arctic and sub-Arctic terrestrial ecosystems of the Northern Hemisphere.

  8. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-11-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  9. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-04-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOA) and will be greatly influenced by increasing temperature. Global warming is predicted to increase emissions of reactive biogenic volatile organic compounds (BVOC) from vegetation directly, but will also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOC. Thus, climate change factors could substantially accelerate the formation of biogenic SOA in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions, respectively, from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold resulting in 200-1000 fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480%) and cloud condensation nuclei concentrations (45%). Satellite observations indicated a two-fold increase in aerosol optical depth (AOD) over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  10. Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Kieloaho, Antti-Jussi; Pihlatie, Mari; Launiainen, Samuli; Kulmala, Markku; Riekkola, Marja-Liisa; Parshintsev, Jevgeni; Mammarella, Ivan; Vesala, Timo; Heinonsalo, Jussi

    2017-03-01

    Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 ± 51 nmol m-2 day-1) and a sink of DEA (-1.2 ± 1.2 nmol m-2 day-1). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.

  11. The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada

    NASA Astrophysics Data System (ADS)

    Blanken, P. D.; Black, T. A.

    2004-06-01

    Annual fluxes of canopy-level heat, water vapour and carbon dioxide were measured using eddy covariance both above the aspen overstory (Populus tremuloides Michx.) and hazelnut understory (Corylus cornuta Marsh.) of a boreal aspen forest (53.629 °N 106.200 °W). Partitioning of the fluxes between overstory and understory components allowed the calculation of canopy conductance to water vapour for both species. On a seasonal basis, the canopy conductance of the aspen accounted for 70% of the surface conductance, with the latter a strong function of the forest's leaf area index. On a half-hour basis, the canopy conductance of both species decreased non-linearly as the leaf-surface saturation deficits increased, and was best parameterized and showed similar sensitivities to a modified form of the Ball-Berry-Woodrow index, where relative humidity was replaced with the reciprocal of the saturation deficit. The negative feedback between the forest evaporation and the saturation deficit in the convective boundary layer varied from weak when the forest was at full leaf to strong when the forest was developing or loosing leaves. The coupling between the air at the leaf surface and the convective boundary layer also varied seasonally, with coupling decreasing with increasing leaf area. Compared with coniferous boreal forests, the seasonal changes in leaf area had a unique impact on vegetation-atmosphere interactions.

  12. A simplified gross primary production and evapotranspiration model for boreal coniferous forests - is a generic calibration sufficient?

    NASA Astrophysics Data System (ADS)

    Minunno, F.; Peltoniemi, M.; Launiainen, S.; Aurela, M.; Lindroth, A.; Lohila, A.; Mammarella, I.; Minkkinen, K.; Mäkelä, A.

    2015-07-01

    The problem of model complexity has been lively debated in environmental sciences as well as in the forest modelling community. Simple models are less input demanding and their calibration involves a lower number of parameters, but they might be suitable only at local scale. In this work we calibrated a simplified ecosystem process model (PRELES) to data from multiple sites and we tested if PRELES can be used at regional scale to estimate the carbon and water fluxes of Boreal conifer forests. We compared a multi-site (M-S) with site-specific (S-S) calibrations. Model calibrations and evaluations were carried out by the means of the Bayesian method; Bayesian calibration (BC) and Bayesian model comparison (BMC) were used to quantify the uncertainty in model parameters and model structure. To evaluate model performances BMC results were combined with more classical analysis of model-data mismatch (M-DM). Evapotranspiration (ET) and gross primary production (GPP) measurements collected in 10 sites of Finland and Sweden were used in the study. Calibration results showed that similar estimates were obtained for the parameters at which model outputs are most sensitive. No significant differences were encountered in the predictions of the multi-site and site-specific versions of PRELES with exception of a site with agricultural history (Alkkia). Although PRELES predicted GPP better than evapotranspiration, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. Our analyses underlined also the importance of using long and carefully collected flux datasets in model calibration. In fact, even a single site can provide model calibrations that can be applied at a wider spatial scale, since it covers a wide range of variability in climatic conditions.

  13. Fire Characterization and Fire-Related Land Cover Classification Using Hyperion Data over Selected Alaskan Boreal Forest Fires

    NASA Astrophysics Data System (ADS)

    Waigl, C. F.; Prakash, A.; Stuefer, M.; Dennison, P. E.

    2014-12-01

    In this study, NIR and SWIR EO-1 Hyperion data acquired over two large Alaskan forest fires are used to detect active fires, map their immediate vicinity, and retrieve fire temperatures. The study sites are located in black spruce stands within the 2004 Boundary fire (215,000 ha total affected area) and the 2009 Wood River 1 fire (50,000 ha). Even though fires in the North American boreal forest ecosystem contribute greatly to global carbon cycling and large-scale air pollution, they have been less studied so far using satellite-borne imaging spectroscopy. We adapted the Hyperspectral Fire Detection Index (HFDI) so that it worked well for the high-latitude Hyperion data. This involved selecting suitable bands which best separated fire from non-fire pixels and averaging them to further improve the detection signal. Resulting fire detection maps compare favorably to uniform radiance thresholding of the Hyperion data and are consistent with fires detected on near-simultaneous Landsat 7 ETM+ data. Unsupervised classification of the vicinity of the active fire zones served to delineate 5 to 6 well separated classes: high- and low-intensity fire, various unburnt vegetation classes, recent fire scar, and a transitional zone ahead of the active fire front that shows evidence of fire impact but no emitted radiance component. Furthermore, MODTRAN5 was used for atmospheric correction to retrieve fire temperatures by modeling a mixture of emitted and reflected radiance signatures of the fire and background areas, respectively. As most of the carbon consumption and subsequent emissions in boreal forest fires stem from the combustion of dead plant material on the forest floor, estimates on fire intensities and high/low intensity burn areas provide valuable insight into the amount of carbon cycling in the system. Imaging spectroscopy can therefore contribute an important step forward in quantitative studies of boreal fires and their impacts. These techniques are set to advance

  14. Boreal Forests Sequester Large Amounts of Mercury over Millennial Time Scales in the Absence of Wildfire.

    PubMed

    Giesler, Reiner; Clemmensen, Karina E; Wardle, David A; Klaminder, Jonatan; Bindler, Richard

    2017-03-07

    Alterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R(2) = 0.94, p < 0.001). Our data clearly show that northern boreal forest soils have a strong sink capacity for Hg, and indicate that the sequestered Hg is bound in soil organic matter pools accumulating over millennia. Our results also suggest that more than half of the Hg stock in the sites with the longest time since fire originates from deposition predating the onset of large-scale anthropogenic emissions. This study emphasizes the importance of boreal forest humus soils for Hg storage and reveals that this pool is likely to persist over millennial time scales in the prolonged absence of fire.

  15. A molecular identification protocol for roots of boreal forest tree species1

    PubMed Central

    Randall, Morgan J.; Karst, Justine; Pec, Gregory J.; Davis, Corey S.; Hall, Jocelyn C.; Cahill, James F.

    2014-01-01

    • Premise of the study: Roots play a key role in many ecological processes, yet our ability to identify species from bulk root samples is limited. Molecular tools may be used to identify species from root samples, but they have not yet been developed for most systems. Here we present a PCR-based method previously used to identify roots of grassland species, modified for use in boreal forests. • Methods: We used repeatable interspecific size differences in fluorescent amplified fragment length polymorphisms of three noncoding chloroplast DNA regions to identify seven woody species common to boreal forests in Alberta, Canada. • Results: Abies balsamea, Alnus crispa, Betula papyrifera, Pinus contorta, and Populus tremuloides were identifiable to species, while Picea glauca and Picea mariana were identifiable to genus. In mixtures of known composition of foliar DNA, species were identified with 98% accuracy using one region. Mixed root samples of unknown composition were identified with 100% accuracy; four species were identified using one region, while three species were identified using two regions. • Discussion: This methodology is accurate, efficient, and inexpensive, and thus a valuable approach for ecological studies of roots. Furthermore, this method has now been validated for both grassland and boreal forest systems, and thus may also have applications in any plant community. PMID:25383267

  16. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

    PubMed

    Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo

    2016-12-01

    Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO2 , H2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m(2) m(-2) . Both ET and Gs experienced a minimum in the LAI range 1-2 m(2) m(-2) caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m(2) m(-2) ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m(2) m(-2) ). This finding emphasizes the significance of stand-replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in

  17. Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest

    USGS Publications Warehouse

    Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.

    2016-01-01

    Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression

  18. Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability

    USGS Publications Warehouse

    Wickland, K.P.; Neff, J.C.; Aiken, G.R.

    2007-01-01

    The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV-Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13-15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation

  19. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    USGS Publications Warehouse

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  20. Microbial community response to permafrost thaw after wildfire in an Alaskan upland boreal forest

    NASA Astrophysics Data System (ADS)

    Tas, N.; Jorgenson, M. T.; Wang, S.; Berhe, A. A.; Wickland, K. P.; Waldrop, M. P.; Jansson, J. K.

    2012-12-01

    Fire is a major factor controlling the long-term dynamics of soil carbon in Alaskan boreal forests. Wildfire not only contributes to a significant global emission of greenhouse gasses but also can indirectly result in the deepening of the active layer and thawing of near-surface permafrost due to reductions in organic layer depth and increases in heat flux through soil. Although boreal ecosystems are fire-adapted, increased fire frequency and rising global temperatures may result in warmer soils and therefore increase the metabolic rates of decomposer microbes and result in accelerated permafrost decomposition and greenhouse gas fluxes. In addition to fire-mediated changes in soil and vegetation structure, changes in the soil microbial community structure are likely to have consequences for rates of soil carbon cycling. In this study we aimed to define the impact of fire on soil microbial communities in an upland black spruce forest and to assess microbial metabolic potential for soil respiration, methanogenesis, and nitrous oxide (N2O) flux. Soil samples from two fire impacted and three control (unburned) locations were collected near Nome Creek, AK, an upland moderately drained black spruce forest. This location was within the Boundary fire that burned between mid-June and the end of August 2004. Soil temperature measurements from before and after the fire showed that soils were warmer after the fire event and the permafrost thawed below 1m. At each sampling location, soil and permafrost samples were collected every 10 cm to a depth of 1 m. Besides biochemical characterization, CO2, CH4, N2O fluxes and potential activities of enzymes involved in extracellular decomposition of complex organic molecules (hemicellulose, chitin and lignin) were measured. The microbial community composition in the samples was determined by sequencing of 16S rRNA genes and microbial metabolic potential was assessed via sequencing of total genomic DNA (metagenomics) in selected active

  1. Light-induced diurnal pattern of methane exchange in a boreal forest

    NASA Astrophysics Data System (ADS)

    Sundqvist, Elin; Crill, Patrick; Mölder, Meelis; Vestin, Patrik; Lindroth, Anders

    2013-04-01

    Boreal forests represents one third of the Earth's forested land surface area and is a net sink of methane and an important component of the atmospheric methane budget. Methane is oxidized in well-aerated forest soils whereas ponds and bog soils are sources of methane. Besides the microbial processes in the soil also forest vegetation might contribute to methane exchange. Due to a recent finding of methane consumption by boreal plants that correlated with photosynthetic active radiation (PAR), we investigate the impact of PAR on soil methane exchange at vegetated plots on the forest floor. The study site, Norunda in central Sweden, is a 120 years old boreal forest stand, dominated by Scots pine and Norway spruce. We used continuous chamber measurements in combination with a high precision laser gas analyzer (Los Gatos Research), to measure the methane exchange at four different plots in July-November 2009, and April-June 2010. The ground vegetation consisted almost entirely of mosses and blueberry-shrubs. Two of the plots acted as stable sinks of methane whereas the other two plots shifted from sinks to sources during very wet periods. The preliminary results show a clear diurnal pattern of the methane exchange during the growing season, which cannot be explained by temperature. The highest consumption occurs at high PAR levels. The amplitude of the diurnal methane exchange during the growing season is in the order of 10 μmol m-2 h-1. This indicates that besides methane oxidation by methanotrophs in the soil there is an additional removal of methane at soil level by a process related to ground vegetation.

  2. Spatial climate-dependent growth response of boreal mixedwood forest in western Canada

    NASA Astrophysics Data System (ADS)

    Jiang, Xinyu; Huang, Jian-Guo; Stadt, Kenneth J.; Comeau, Philip G.; Chen, Han Y. H.

    2016-04-01

    The western Canadian mixedwood boreal forests were projected to be significantly affected by regional drought. However, drought degrees were spatially different across elevations, longitudes and latitudes, which might cause different tree growth responses to climate change in different sub-regions within western Canada. In this way, regional classification of western Canadian boreal forests and understanding spatial tree growth responses to climate might be necessary for future forest management and monitoring. In this paper, tree-ring chronologies of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were obtained from mixed forest stands distributed across western Canada to study spatial tree growth response to climate based on three regional classification schemes (a phytogeographic sub-region classification, a natural sub-region classification and non-classification). Phytogeographic sub-region classification was estimated based on tree ring samples we collected in this study, while natural sub-region classification was previously developed based on analysis of regional differences in vegetation, soil, site and climate conditions. Results showed that air temperature did not significantly increase, while drought stress became more severe between 1985 to 2010. Relationships between trembling aspen growth and temperature differed between north and south parts of the study area, resulting from spatial difference in water supply. Trembling aspen growth was influenced by temperature or moisture variables of the previous years. White spruce growth was influenced primarily by moisture variables (current or previous year), and response coefficients between white spruce and drought conditions (represented by drought code) were negative in all phytogeographic sub-regions, suggesting that white spruce was more sensitive to drought stress under climate change. As a late-successional dominant species

  3. The accuracy of large-area forest canopy cover estimation using Landsat in boreal region

    NASA Astrophysics Data System (ADS)

    Hadi; Korhonen, Lauri; Hovi, Aarne; Rönnholm, Petri; Rautiainen, Miina

    2016-12-01

    Large area prediction of continuous field of tree cover i.e., canopy cover (CC) using Earth observation data is of high interest in practical forestry, ecology, and climate change mitigation activities. We report the accuracy of using Landsat images for CC prediction in boreal forests validated with field reference plots (N = 250) covering large variation in latitude, forest structure, species composition, and site type. We tested two statistical models suitable for estimating CC: the beta regression (BetaReg) and random forest (RanFor). Landsat-based predictors utilized include individual bands, spectral vegetation indices (SVI), and Tasseled cap (Tass) features. Additionally, we tested an alternative model based on spectral mixture analysis (SMA). Finally, we carried out a first validation in boreal forests of the recently published Landsat Tree Cover Continuous (TCC) global product. Results showed simple BetaReg with red band reflectance provided the highest prediction accuracy (leave-site-out RMSECV 13.7%; R2CV 0.59; biasCV 0.5%). Spectral transformations into SVI and Tass did not improve accuracy. Including additional predictors did not significantly improve accuracy either. Nonlinear model RanFor did not outperform BetaReg. The alternative SMA model did not outperform the empirical models. However, empirical models cannot resolve the underestimation of high cover and overestimation of low cover. SMA prediction errors appeared less dependent on forest structure, while there seemed to be a potential for improvement by accounting for endmember variability of different tree species. Finally, using temporally concurrent observations, we showed the reasonably good accuracy of Landsat TCC product in boreal forests (RMSE 13.0%; R2 0.53; bias -2.1%), however with a tendency to underestimate high cover.

  4. Cryptic Methane Emissions from Upland Forest Ecosystems

    SciTech Connect

    Megonigal, Patrick; Pitz, Scott

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  5. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    USGS Publications Warehouse

    Steyaert, L.T.; Hall, F.G.; Loveland, T.R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  6. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Steyaert, L. T.; Hall, F. G.; Loveland, T. R.

    1997-12-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous