Science.gov

Sample records for boreal scots pine

  1. Computations on frost damage to Scots pine under climatic warming in boreal conditions

    SciTech Connect

    Kellomaeki, S.; Haenninen, H.; Kolstroem, M.

    1995-02-01

    To investigate the risk of frost damage to Scots pine (Pinus sylvestris L.) in northern regions under climatic warming, a submodel for such damage to trees was included in a forest ecosystem model of the gap type. An annual growth multiplier describing the effects of frost was calculated with the help of simulated daily frost hardiness and daily minimum temperature. The annual growth multiplier was used in the main ecosystem model when simulating the development of a tree stand using a time step of one year. Simulations of the growth and development of Scots pine stands in southern Finland (61{degrees} N) under an elevating temperature indicated that climatic warming could increase the risk of frost damage due to premature onset of growth during warm spells in the late winter and early spring. Risk of frost damage implies uncertainty in yield expectations from boreal forest ecosystems in the event of climatic warming. 38 refs., 9 figs., 4 tabs.

  2. Above- and belowground fluxes of CH4 from boreal shrubs and Scots pine

    NASA Astrophysics Data System (ADS)

    Halmeenmäki, Elisa; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Pihlatie, Mari

    2016-04-01

    Boreal upland forests are considered as an important sink for the greenhouse gas methane (CH4) due to CH4 oxidizing microbes in the soil. However, recent evidence suggests that vegetation can act as a significant source of CH4. Also, preliminary measurements indicate occasional emissions of CH4 above the tree canopies of a boreal forest. Nevertheless, the sources and the mechanisms of the observed CH4 emissions are still mostly unknown. Furthermore, the majority of CH4 flux studies have been conducted with the soil chamber method, thus not considering the role of the vegetation itself. We conducted a laboratory experiment to study separately the above- and belowground CH4 fluxes of bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), heather (Calluna vulgaris), and Scots pine (Pinus sylvestris), which were grown in microcosms. The above- and belowground fluxes of the plants were measured separately, and these fluxes were compared to fluxes of microcosms containing only humus soil. In addition to the flux measurements, we analysed the CH4 producing archaea (methanogens) and the CH4 consuming bacteria (methanotrophs) with the qPCR method to discover whether these microbes contribute to the CH4 exchange from the plant material and the soil. The results of the flux measurements indicate that the humus soil with roots of lingonberry, heather, and Scots pine consume CH4 compared to bare humus soil. Simultaneously, the shoots of heather and Scots pine emit small amounts of CH4. We did not find detectable amounts of methanogens from any of the samples, suggesting the produced CH4 could be of non-microbial origin, or produced by very small population of methanogens. Based on the first preliminary results, methanotrophs were present in all the studied plant species, and especially in high amounts in the rooted soils, thus implying that the methanotrophs could be responsible of the CH4 uptake in the root-soil systems.

  3. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. PMID:27515733

  4. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools.

  5. Effects of snow condition on microbial respiration of Scots pine needle litter in a boreal forest

    NASA Astrophysics Data System (ADS)

    Ohnuki, Masataka; Domisch, Timo; Dannoura, Masako; Ataka, Mioko; Finér, Leena; Repo, Tapani; Osawa, Akira

    2016-04-01

    Climate warming scenarios predict decreasing snow depths and increasing winter precipitation in boreal forests ("rain on snow"). I These conditions may affect the decomposition and the microbial respiration of leaf litter, contributing a major part of tree litters, To understand how different snow conditions during winter would affect the microbial respiration of Scots pine needle litter in a boreal forest, we conducted a laboratory experiment using needle litter of two age classes (newly dropped and older litter). The experiment simulated four different winter treatments, followed by spring and early summer : (1) ambient snow cover (SNOW), (2) Compressed snow and ice encasement (ICE), (3) frozen flood (FLOOD) and (4) no snow cover at all (NO SNOW). The experiment was carried out in four walk-in dasotrons (n=3) with soil temperatures of -2° C and air temperatures of 2° C during winter and increased to 15° C and 20° C during spring, respectively . Needle litter samples were collected three times (prior to the winter, just after winter and at the end of the experiment). We evaluated the microbial respiration from the litter at several temperatures (-5° C, 0° C, 5° C and 12° C), the SIR index (an index estimating the microbial biomass), and the C/N ratio .And we calculated Q10 value (index of microbial respiration activity) using microbial respiration data. We found significant differences in microbial respiration between the newly dropped and older litter at the beginning and at the end of the experiment. However, there were no significant differences in Q10 value and the SIR (index of microbial biomass) between the different winter treatments. All samples showed decrease of microbial activity with time. Finally, we conclude that the winter snow conditions with mild air temperatures as used in our experiment, are not detrimentally affecting the Scots pine needle litter decomposition and its respiration.

  6. Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Launiainen, S.

    2010-12-01

    Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs) and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2-3 mm s-1 in April) cause the sensible heat flux to peak in May-June while evapotranspiration takes over later in July-August when gs is typically 5-7 mm s-1. Hence, during normal years Bowen ratio decreases from 4-6 in April to 0.7-0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D) was relatively constant but the reference value at D = 1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m-3 occurred during the period. Below this threshold value, transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3-4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought periods. The inter-annual variability of evapotranspiration could not be linked to any mean climate variable while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when a large proportion of available energy is partitioned into sensible heat.

  7. Seasonal and inter annual variability of energy exchange above a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Launiainen, S.

    2010-08-01

    Twelve-years of eddy-covariance measurements conducted above a boreal Scots pine forest in Hyytiälä, Southern Finland, were analyzed to assess the seasonal and inter-annual variability of surface conductance (gs) and energy partitioning. The gs had distinct annual course, driven by the seasonal cycle of the Scots pine. Low gs (2-3 mm s-1 in April) restricted transpiration in springtime and caused the sensible heat flux to peak in May-June while evapotranspiration takes over later in July-August when gs is typically 5-7 mm s-1. Hence, during normal years Bowen ratio decreases from 4-6 in April to 0.7-0.9 in August. Sensitivity of gs to ambient vapor pressure deficit (D) was relatively constant but the reference value at D=1 kPa varied seasonally and between years. Only two drought episodes when volumetric soil moisture content in upper mineral soil decreased below 0.15 m3 m-3 occurred during the period. Below this threshold value transpiration was strongly reduced, which promoted sensible heat exchange increasing Bowen ratio to 3-4. Annual evapotranspiration varied between 218 and 361 mm and accounted between 50% and 90% of equilibrium evaporation. The forest floor contributed between 16 and 25% of the total evapotranspiration on annual scale. The fraction stayed similar over the observed range of environmental conditions including drought. The inter-annual variability of evapotranspiration could not be linked to any mean climate parameter while the summertime sensible heat flux and net radiation were well explained by global radiation. The energy balance closure varied annually between 0.66 and 0.95 and had a distinct seasonal cycle with worse closure in spring when large proportion of available energy is partitioned into sensible heat.

  8. Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.

    NASA Astrophysics Data System (ADS)

    Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny

    2015-04-01

    Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.

  9. Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone

    NASA Astrophysics Data System (ADS)

    Kolari, Pasi; Lappalainen, Hanna K.; Hänninen, Heikki; Hari, Pertti

    2007-07-01

    In earlier studies the seasonal dynamics of photosynthetic capacity in northern conifers has been explained as a slow response to the ambient temperature. We tested this concept with Scots pine (Pinus sylvestris L.). We analysed the seasonal dynamics of photosynthetic efficiency in Scots pine at the timberline in Finnish Lapland, and in a southern boreal forest in Southern Finland. The relationship between the daily photosynthetic efficiency and leaf temperature history was determined from continuous measurements of shoot CO2 exchange. The shoot CO2 exchange and photosynthetic efficiency showed similar seasonal patterns in the northern and in the southern locations, following daily mean temperature with a delay. The relationship between the temperature history and photosynthetic efficiency appeared to be near sigmoidal both in the northern and in the southern trees. The relationship was also consistent from year-to-year, thus the seasonal course of photosynthetic efficiency can be predicted accurately from the ambient temperature using a sigmoidal relationship. A rapid decrease of photosynthetic efficiency was observed when daytime temperature dropped below zero or frost had occurred in the previous night. The difference in the rate of acclimation of photosynthetic efficiency between the north and the south was small.

  10. Nitrogen Fertilization Modifies the Phenology of Ground CO2 Efflux in a Boreal Scots Pine Forest

    NASA Astrophysics Data System (ADS)

    Marshall, J. D.; Näsholm, T.; Linder, S.; Tarvainen, L.; Peichl, M.; Lundmark, T.

    2015-12-01

    Problems with the extraction of ecosystem respiration rates from eddy covariance data have led to renewed interest in chamber-based estimates of CO2 efflux from near the ground surface. However, chamber measurements frequently have their own issues. Here we describe the results of a study using large (≈2 m radius), transparent chambers over intact ground vegetation to describe the net efflux of CO2 and its environmental controls during the growing season at Rosinedal, a research site in northern Sweden. Measurements were made at thirty-minute intervals over the course of three growing seasons in a heavily fertilized and an unfertilized Scots pine stand. Ammonium nitrate was added at rates of 100 kg N ha-1 for the first five years, after which the rate was halved but the additions continued. The CO2 efflux results were simultaneously fitted to a nonlinear model describing the exponential increase in dark efflux with temperature, the Michaelis-Menten saturation of light-driven CO2 uptake in photosynthesis, the reduction in efflux due to soil drying, and a residual term that we ascribe to weekly shifts in the photosynthate partitioning of canopy trees to belowground processes. We found the expected exponential increase in dark efflux with temperature, however the net efflux in daytime was often negative, reflecting the high GPP of the ground vegetation, especially in dense canopies of bilberry (Vaccinium myrtillus L.). There was a clear reduction in dark efflux under dry conditions. The empirical phenology parameters increased sharply in early July, around the time that leaf expansion and rapid cambial growth were completed. This increase was more pronounced on the control plot than on the fertilized plot, consistent with expectations based on the notion that N fertilization should favor aboveground partitioning. The empirical "partitioning coefficient" shifted net efflux by nearly as much as the seasonal temperature range. Dark efflux of CO2 was nearly halved as a

  11. Field and controlled environment measurements show strong seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine.

    PubMed

    Kolari, Pasi; Chan, Tommy; Porcar-Castell, Albert; Bäck, Jaana; Nikinmaa, Eero; Juurola, Eija

    2014-01-01

    Understanding the seasonality of photosynthesis in boreal evergreen trees and its control by the environment requires separation of the instantaneous and slow responses, as well as the dynamics of light reactions, carbon reactions, and respiration. We determined the seasonality of photosynthetic light response and respiration parameters of Scots pine (Pinus sylvestris L.) in the field in southern Finland and in controlled laboratory conditions. CO2 exchange and chlorophyll fluorescence were measured in the field using a continuously operated automated chamber setup and fluorescence monitoring systems. We also carried out monthly measurements of photosynthetic light, CO2 and temperature responses in standard conditions with a portable IRGA and fluorometer instrument. The field and response measurements indicated strong seasonal variability in the state of the photosynthetic machinery with a deep downregulation during winter. Despite the downregulation, the photosynthetic machinery retained a significant capacity during winter, which was not visible in the field measurements. Light-saturated photosynthesis (P sat) and the initial slope of the photosynthetic light response (α) obtained in standard conditions were up to 20% of their respective summertime values. Respiration also showed seasonal acclimation with peak values of respiration in standard temperature in spring and decline in autumn. Spring recovery of all photosynthetic parameters could be predicted with temperature history. On the other hand, the operating quantum yield of photosystem II and the initial slope of photosynthetic light response stayed almost at the summertime level until late autumn while at the same time P sat decreased following the prevailing temperature. Comparison of photosynthetic parameters with the environmental drivers suggests that light and minimum temperature are also decisive factors in the seasonal acclimation of photosynthesis in boreal evergreen trees. PMID:25566291

  12. Seasonal variations in gas-phase alkyl amines in the ambient air of a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Kieloaho, Antti-Jussi; Hellén, Heidi; Hakola, Hannele; Manninen, Hanna; Pihlatie, Mari

    2013-04-01

    Alkyl amines are highly reactive volatile nitrogen compounds that have been suggested to take part in aerosol formation and growth in the atmosphere. Despite this, the sources of these compounds are unknown and there are no long-term measurements available. We measured alkyl amine concentrations from May to October in 2011 in the trunk space of a boreal forest at the SMEAR II station in Hyytiälä, Southern Finland (61°51'N, 24°17'E, 180 m a.s.l.). The weekly air samples were collected into phosphoric acid impregnated glass fibre filters through PTFE filter and analysed by high performance liquid chromatography electrospray ionisation ion trap mass spectrometer (Agilent 1100 series LC/MSD trap). Ethylamine and dimethylamine (EA+DMA), propylamine and trimetylamine (PA+TMA) and diethylamine (DEA) were observed on levels above the detection limits. The highest concentrations were observed from September to October for EA+DMA (157±20 ppt) and for PA+TMA (102±61 ppt). Mixing ratios of EA+DMA also peaked on weeks 24th, 30th and 35th and TMA+PA on week 36th; however, these peaks were approximately half of those observed in the autumn. DEA annual curve was different than that of the other amines. Instead of the autumn peaks, the highest mixing ratios were measured during the summer (max 15.5±0.5 ppt , early July). In the autumn the DEA mixing ratios were slightly higher than in early spring, however about half of that measured in the summer. Amine concentrations were compared to cluster ion and monoterpene concentrations, monoterpene emissions, and to soil and air temperatures and litterfall. Positive and negative cluster ions did not correlate with the measured amine concentrations. However, during the summer, peaks in positive cluster ions occurred simultaneously with peaks in EA+DMA and DEA. During the autumn, negative cluster ions peaked with EA+DMA. Autumnal monoterpene emissions from the forest floor coincide with the elevated or peaked EA+DMA and PA

  13. Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010

    NASA Astrophysics Data System (ADS)

    Yassaa, N.; Song, W.; Lelieveld, J.; Vanhatalo, A.; Bäck, J.; Williams, J.

    2012-08-01

    Branch enclosure based emission rates of monoterpenes and sesquiterpenes from four Scots pines (Pinus sylvestris) and one Norway spruce (Picea abies), as well as the ambient mixing ratios of monoterpenes were determined during the HUMPPA-COPEC 2010 summer campaign. Differences in chemical composition and in emission strength were observed between the different trees, which confirmed that they represented different chemotypes. The chemotypes of Scots pine can be classified according to species with high, no and intermediate content of Δ-3-carene. The "non-Δ-3-carene" chemotype was found to be the strongest emitter of monoterpenes. From this chemotype, β-myrcene, a very reactive monoterpene, was the dominant species accounting for more than 32 % of the total emission rates of isoprenoids followed by β-phellandrene (~27%). Myrcene fluxes ranged from 0.8 to 24 μg g-1 (dw) h-1. α-Farnesene was the dominant sesquiterpene species, with average emission rates of 318 ng g-1 (dw) h-1. In the high Δ-3-carene chemotype, more than 48% of the total monoterpene emission was Δ-3-carene. The average Δ-3-carene emission rate (from chemotype 3), circa 609 ng g-1 (dw) h-1 reported here is consistent with the previously reported summer season value. Daily maximum temperatures varied between 20 and 35 °C during the measurements. The monoterpene emissions from spruce were dominated by limonene (35%), β-phellandrene (15%), α-pinene (14%) and eucalyptol (9%). Total spruce monoterpene emissions ranged from 0.55 up to 12.2 μg g-1 (dw) h-1. Overall the total terpene flux (monoterpenes + sesquiterpenes) from all studied tree species varied from 230 ng g-1 (dw) h-1 up to 66 μg g-1 (dw) h-1. Total ambient monoterpenes (including α-pinene, Δ-3-carene, β-pinene and β-myrcene) measured during the campaign varied in mixing ratio from a few pptv to over one ppbv. The most abundant biogenic VOC measured above the canopy were α-pinene and Δ-3-carene, and these two compounds together

  14. Monoterpene emissions from Scots pine and Norwegian spruce

    SciTech Connect

    Janson, R.W. )

    1993-02-20

    Rates of monoterpene emissions from Scots pine (Pinus sylvestris) and Norwegian spruce (Picea abies) have been measured at four sites in Sweden with a dynamic flow chamber technique. Forest floor emissions have been made in the pine forest with the static chamber technique. The compounds [Delta][sup 3]-carene and [alpha]-pinene were the predominant terpenes emitted from the crown and floor of the Scots pine forest. Alpha-pinene was the main terpene emitted from Norwegian spruce at the sites in southern and central Sweden, while [Delta][sup 3]-carene was predominant at the northern site. Emission rates, normalized to temperature, were seen to vary diurnally with a maximum at midday, and seasonally with maxima in early May and October, and a summer maximum in June-July. The possible dependence of the emission rate on needle growth rate and other plant-physiological processes is discussed. A higher emission rate and different relative composition of the emission was seen to occur when the vegetation was wet, as compared to dry vegetation. The emission from the pine forest floor was seen to have a composition different from that of the crown and a seasonality of the rate similar to that of the crown. The ground emission could not be explained by sources in the litter or ground vegetation alone, and it is suggested that the root system of the trees is also an emission source. The emission rate from the pine forest floor was of the order of 30% of the crown emission. The July rate of emission from the crown of Scots pine, normalized to 20[degrees]C and averaged over four sites in Sweden, was 0.8 [plus minus] 0.4 [mu]g (gdw (grams dry weight) h)[sup [minus]1], and for Norwegian spruce, 0.5 [plus minus] 0.7 [mu]g(gdw h)[sup [minus]1]. It would seem that previous regional and global estimates of hydrocarbon fluxes to the atmosphere have used emission factors which are too high for boreal coniferous forests. 52 refs., 8 figs., 9 tabs.

  15. Responses of Scots pine to waterlogging during growing season

    NASA Astrophysics Data System (ADS)

    Repo, Tapani; Launiainen, Samuli; Lehto, Tarja; Sutinen, Sirkka; Ruhanen, Hanna; Heiskanen, Juha; Laurén, Ari; Silvennoinen, Raimo; Vapaavuori, Elina; Finér, Leena

    2016-04-01

    For the future management and sustainable use of boreal forests it is crucial to consider the rate and strength of tree responses to an elevated water table and the concurrent oxygen limitations, especially in peatlands. We examined the response dynamics of 7-year-old Scots pine (Pinus sylvestris L.) seedlings to a five-week waterlogging (WL) during a growing season in a root lab experiment. WL took place after shoot elongation had ended whereas growth of the trunk diameter was still in progress. We monitored shoots and roots before, during and after WL treatment. Relations between the shoot and root responses, the latter being the primary target of the WL stress, will be discussed. We hypothesize that root responses, in terms of growth by minirhizotron imaging, will appear with delay as compared with the first symptoms in physiology of above-ground organs.

  16. Flux agreement above a Scots pine plantation

    NASA Astrophysics Data System (ADS)

    Gay, L. W.; Vogt, R.; Bernhofer, Ch.; Blanford, J. H.

    1996-03-01

    The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one “low” tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the “high” tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches -1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a “phantom dew” error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent

  17. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests.

    PubMed

    Rigling, Andreas; Bigler, Christof; Eilmann, Britta; Feldmeyer-Christe, Elisabeth; Gimmi, Urs; Ginzler, Christian; Graf, Ulrich; Mayer, Philipp; Vacchiano, Giorgio; Weber, Pascale; Wohlgemuth, Thomas; Zweifel, Roman; Dobbertin, Matthias

    2013-01-01

    An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner-Alpine regions, the species composition in low elevation forests is changing: The sub-boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub-Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger-scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed-effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small-diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and

  18. Duration of shoot elongation in Scots pine varies within the crown and between years

    PubMed Central

    Schiestl-Aalto, Pauliina; Nikinmaa, Eero; Mäkelä, Annikki

    2013-01-01

    Background and Aims Shoot elongation in boreal and temperate trees typically follows a sigmoid pattern where the onset and cessation of growth are related to accumulated effective temperature (thermal time). Previous studies on leader shoots suggest that while the maximum daily growth rate depends on the availability of resources to the shoot, the duration of the growth period may be an adaptation to long-term temperature conditions. However, other results indicate that the growth period may be longer in faster growing lateral shoots with higher availability of resources. This study investigates the interactions between the rate of elongation and the duration of the growth period in units of thermal time in lateral shoots of Scots pine (Pinus sylvestris). Methods Length development of 202 lateral shoots were measured approximately three times per week during seven growing seasons in 2–5 trees per year in a mature stand and in three trees during one growing season in a sapling stand. A dynamic shoot growth model was adapted for the analysis to determine (1) the maximum growth rate and (2) the thermal time reached at growth completion. The relationship between those two parameters and its variation between trees and years was analysed using linear mixed models. Key Results The shoots with higher maximum growth rate within a crown continued to grow for a longer period in any one year. Higher July–August temperature of the previous summer implied a higher requirement of thermal time for growth completion. Conclusions The results provide evidence that the requirement of thermal time for completion of lateral shoot extension in Scots pine may interact with resource availability to the shoot both from year to year and among shoots in a crown each year. If growing season temperatures rise in the future, this will affect not only the rate of shoot growth but its duration also. PMID:23985987

  19. Bio-monitoring the genotoxicity of populations of Scots pine in the vicinity of a radioactive waste storage facility.

    PubMed

    Geras'kin, Stanislav A; Kim, Jin Kyu; Oudalova, Alla A; Vasiliyev, Denis V; Dikareva, Nina S; Zimin, Vladimir L; Dikarev, Vladimir G

    2005-05-01

    Results of a long-term (1997-2002) study of the Scots pine populations growing in the vicinity of the radioactive waste storage facility ('Radon' LWPE) are presented. Cytogenetic disturbances in reproductive (seeds) and vegetative (needles) tissues sampled from Scots pine populations were studied to examine whether Scots pine trees have experienced environmental stress in areas with relatively low levels of pollution. The data clearly indicate the presence of mutagenic contaminants in the environment of the pine trees. An increased number of mitotic abnormalities, especially multipolar mitoses was found in the pine tree populations submitted to man-made exposure, which suggests that the cytogenetic damage is mainly caused by chemical contamination. A higher radioresistance of the Scots pine seeds from the impacted populations was shown by use of acute gamma-irradiation. During the observation period 1997-2002, pine trees exposed to anthropogenic pollution showed a steady increase of cytogenetic alterations in the root meristem cells. PMID:15866466

  20. Tree water relations can trigger monoterpene emissions from Scots pine stems during spring recovery

    NASA Astrophysics Data System (ADS)

    Vanhatalo, A.; Chan, T.; Aalto, J.; Korhonen, J. F.; Kolari, P.; Hölttä, T.; Nikinmaa, E.; Bäck, J.

    2015-09-01

    Tree canopies are known to emit large amounts of VOCs (volatile organic compounds) such as monoterpenes into the surrounding air. High VOC emission rates from boreal forests have been observed during the transition from winter to summer activity. The most important sources of these are considered to be the green foliage, understory vegetation and soil organisms, but emissions from the living stand woody compartments have so far not been quantified. We analyzed whether the non-foliar components could partially explain the springtime high emission rates. We measured the monoterpene emissions from Scots pine (Pinus sylvestris L.) stem and shoots during the dehardening phase of trees in field conditions in two consecutive springs. We observed a large, transient monoterpene burst from the stem, while the shoot monoterpene emissions remained low. The burst lasted about 12 h. Simultaneously, an unusual nighttime sap flow and a non-systematic diurnal pattern of tree diameter were detected. Hence, we suggest that the monoterpene burst was a consequence of the recovery of the stem from wintertime, and likely related to the refilling of embolized tracheids and/or phenological changes in the living cells of the stem. This indicates that the dominant processes and environmental drivers triggering the monoterpene emissions are different between the stem and the foliage.

  1. Needle removal by pine sawfly larvae increases branch-level VOC emissions and reduces below-ground emissions of Scots pine.

    PubMed

    Ghimire, Rajendra P; Markkanen, Juha M; Kivimäenpää, Minna; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K

    2013-05-01

    Climate warming is expected to increase the frequency of insect outbreaks in Boreal conifer forests. We evaluated how needle removal by the larvae of two diprionid sawfly species affects the composition and quantity of VOC emissions from Pinus sylvestris L. saplings. Feeding damage significantly increased the rate of localized VOC emissions from the damaged branch. The emissions of total monoterpenes (MTs) were dominating (96-98% of total VOCs) and increased by14-fold in Neodiprion sertifer-damaged branches and by 16-fold in Diprion pini-damaged branches compared to intact branches. Emissions of δ-3-carene, α-pinene, sabinene, and β-phellandrene were most responsive. Feeding damage by N. sertifer larvae increased the emission rates of total sesquiterpenes by 7-fold (4% of total VOCs) and total green leaf volatiles by 13-fold (<1% of total VOCs). The VOC emissions from N. sertifer larvae constituted nearly 25% of the total branch emissions. N. sertifer feeding in the lower branches induced 4-fold increase in MT emissions in the top crown. Defoliation of Scots pine by D. pini significantly reduced the below-ground emissions of total MTs by approximately 80%. We conclude that defoliators could significantly increase total VOC emissions from the Scots pine canopy including MT emissions from resin storing sawfly larvae.

  2. [Specific Features of Scots Pine Seeds Formation in the Remote Period after the Chernobyl NPP Accident].

    PubMed

    Geras'kin, S A; Vasiliev, D V; Kuzmenkov, A G

    2015-01-01

    The results of long-term (2007-2011) observations on the quality of seed progeny in Scots pine populations inhabiting the sites within the Bryansk region contaminated as a result of the Chernobyl NPP accident are presented. Formed under the chronic exposure seeds are characterized by a high interannual variability, which is largely determined by weather conditions. PMID:26863784

  3. [Specific Features of Scots Pine Seeds Formation in the Remote Period after the Chernobyl NPP Accident].

    PubMed

    Geras'kin, S A; Vasiliev, D V; Kuzmenkov, A G

    2015-01-01

    The results of long-term (2007-2011) observations on the quality of seed progeny in Scots pine populations inhabiting the sites within the Bryansk region contaminated as a result of the Chernobyl NPP accident are presented. Formed under the chronic exposure seeds are characterized by a high interannual variability, which is largely determined by weather conditions.

  4. Estimating Scots Pine Tree Mortality Using High Resolution Multispectral Images

    NASA Astrophysics Data System (ADS)

    Buriak, L.; Sukhinin, A. I.; Conard, S. G.; Ivanova, G. A.; McRae, D. J.; Soja, A. J.; Okhotkina, E.

    2010-12-01

    Scots pine (Pinus sylvestris) forest stands of central Siberia are characterized by a mixed-severity fire regime that is dominated by low- to high-severity surface fires, with crown fires occurring less frequently. The purpose of this study was to link ground measurements with air-borne and satellite observations of active wildfires and older fire scars to better estimate tree mortality remotely. Data from field sampling on experimental fires and wildfires were linked with intermediate-resolution satellite (Landsat Enhanced Thematic Mapper) data to estimate fire severity and carbon emissions. Results are being applied to Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, MERIS, Landsat-ETM, SPOT (i.e., low, middle and high spatial resolution), to understand their remote-sensing capability for mapping fire severity, as indicated by tree mortality. Tree mortality depends on fireline intensity, residence time, and the physiological effects on the cambium layer, foliage and roots. We have correlated tree mortality measured after fires of varying severity with NDVI and other Chlorophyll Indexes to model tree mortality on a landscape scale. The field data obtained on experimental and wildfires are being analyzed and compared with intermediate-resolution satellite data (Landsat7-ETM) to help estimate fire severity, emissions, and carbon balance. In addition, it is being used to monitor immediate ecosystem fire effects (e.g., tree mortality) and long-term postfire vegetation recovery. These data are also being used to validate AVHRR , MODIS, and MERIS estimates of burn area. We studied burned areas in the Angara Region of central Siberia (northeast of Lake Baikal) for which both ground data and satellite data (ENVISAT-MERIS, Spot4, Landsat5, Landsat7-ETM) were available for the 2003 - 2004 and 2006 - 2008 periods. Ground validation was conducted on seventy sample plots established on burned sites differing in

  5. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident.

    PubMed

    Geras'kin, Stanislav; Oudalova, Alla; Dikareva, Nina; Spiridonov, Sergey; Hinton, Thomas; Chernonog, Elena; Garnier-Laplace, Jacqueline

    2011-08-01

    A 6 year study of Scots pine populations inhabiting sites in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident is presented. In six study sites, (137)Cs activity concentrations and heavy metal content in soils, as well as (137)Cs, (90)Sr and heavy metal concentrations in cones were measured. Doses absorbed in reproduction organs of pine trees were calculated using a dosimetric model. The maximum annual dose absorbed at the most contaminated site was about 130 mGy. Occurrence of aberrant cells scored in the root meristem of germinated seeds collected from pine trees growing on radioactively contaminated territories for over 20 years significantly exceeded the reference levels during all 6 years of the study. The data suggest that cytogenetic effects occur in Scots pine populations due to the radioactive contamination. However, no consistent differences in reproductive ability were detected between the impacted and reference populations as measured by the frequency of abortive seeds. Even though the Scots pine populations have occupied radioactively contaminated territories for two decades, there were no clear indications of adaptation to the radiation, when measured by the number of aberrant cells in root meristems of seeds exposed to an additional acute dose of radiation.

  6. Overview of meteorological conditions and micrometeorological CO2 fluxes over a Scots pine forest at Sodankyl during SIFLEX-200

    NASA Astrophysics Data System (ADS)

    Laurila, T.; Thum, T.; Aurela, M.; Lohila, A.; Lindfors, V.

    In the boreal region, length of the growing season is one of the most important factors explaining annual CO2 net flux between the forest and the atmosphere. The timing of spring recovery is crucial because during that season there is plenty of solar radiation for CO2 assimilation. It is difficult to observe the actual photochemical efficiency of coniferous tree species using traditional reflectance based remote sensing methods, such as NDVI. Solar induced, passive, fluorescence would offer a remote sensing method which gives direct information on the activity of photochemistry. For the development of passive fluorescence measurement methods European Space Agency organised a field campaign SIFLEX-2002 at Sodankyl in northern Finland. The Finnish Meteorological Institute participated in the campaign together with a research group from LURE, Laboratoire pour l~@~Y Utilisation du Rayonnement Electromagnetique, France, Principal Investigator Ismael Moya and research groups from University of Valencia, Spain, Principal Investigator Jose Moreno. Our main tasks were observations of CO2 fluxes between the forest and the atmosphere, meteorological parameters, biomass characterisation and measurements of seasonal cycle of maximum photochemical efficiency of Scots pine needles. In this presentation, we show the seasonal courses of canopy scale CO2 fluxes and maximum efficiency of photosystem II of a boreal pine forest in 2001 and during the SIFLEX- campaign in spring 2002. The aim is to show that during the spring recovery cholorophyll fluorescence data indeed follows the development of CO2 assimilation. From micrometeorological CO2 flux measurements daily average CO2 assimilation, total respiration, and net fluxes were calculated. We observed that in 2002: There was less than average snow in late winter. Warm period in the end of April thawed the snow cover two weeks earlier than average. Scots pine recovered during this warm period to the "spring stage". Net CO2 uptake was

  7. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply.

    PubMed

    Gruffman, Linda; Palmroth, Sari; Näsholm, Torgny

    2013-06-01

    In boreal forests, seedling establishment is limited by various factors including soil nitrogen (N) availability. Seedlings may absorb N from soil in a variety of inorganic and organic forms; however, the energy and thus carbohydrate requirements for uptake and assimilation of N vary with N source. We studied the importance of current photoassimilates for the acquisition and allocation of different N sources by Scots pine (Pinus sylvestris (L.)) seedlings. Girdling was used as a tool to impair phloem transport of photoassimilates, and hence gradually deprive roots of carbohydrates. Seedlings were cultivated in a greenhouse on equimolar N concentrations of one of the N sources-arginine, ammonium or nitrate-and then girdled prior to a pulse-chase uptake experiment with isotopically labeled N sources. Girdling proved to be efficient in decreasing levels of soluble sugars and starch in the roots. Uptake rate of arginine N was highest, intermediate for ammonium N and lowest for nitrate N. Moreover, the uptake of arginine N was unaffected by girdling, while the uptake of the two inorganic N sources decreased to 45-56% of the ungirdled controls. In arginine-treated seedlings, 95-96% of the acquired arginine N resided in the roots, whereas a significant shift in the N distribution toward the shoot was evident in girdled seedlings treated with inorganic N. This spatial shift was especially pronounced in nitrate-treated seedlings suggesting that the reduction and following incorporation into roots was limited by the availability of current photoassimilates. These results suggest that there are energetic benefits for seedlings to utilize organic N sources, particularly under circumstances where carbohydrate supply is limited. Hence, these putative benefits might be of importance for the survival and growth of seedlings when carbohydrate reserves are depleted in early growing season, or in light-limited environments, such as those sustained by continuous cover forestry systems

  8. Features of Scots pine radial growth in conditions of provenance trial

    NASA Astrophysics Data System (ADS)

    Kuzmin, S.

    2012-12-01

    Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 C degrees up to 2 C. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed.

  9. Diverging Drought Resistance of Scots Pine Provenances Revealed by Infrared Thermography.

    PubMed

    Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette

    2016-01-01

    With recent climate changes, Scots pine (Pinus sylvestris L.) forests have been affected by die-off events. Assisted migration of adapted provenances mitigates drought impacts and promotes forest regeneration. Although suitable provenances are difficult to identify by traditional ecophysiological techniques, which are time consuming and invasive, plant water status can be easily assessed by infrared thermography. Thus, we examined the stress responses of 2-year-old potted Scots pine seedlings from six provenances (Bulgaria, France, Germany, Italy, Poland, and Spain) based on two thermal indices (crop water stress index and stomatal conductance index). Both indices were derived from infrared images during a 6-week drought/control treatment in a greenhouse in the summer of 2013. The pines were monitored during the stress and subsequent recovery period. After controlling for fluctuating environmental conditions, soil moisture or treatment-specific water supply was the most important driver of drought stress. The stress magnitude and response to soil water deficit depended on provenance. Under moderate drought conditions, pines from western and eastern Mediterranean provenances (Bulgaria, France, and Spain) expressed lower stress levels than those from both continental provenances (Germany and Poland). Moreover, pines from continental provenances were less resilient (showed less recovery after the stress period) than Mediterranean pines. Under extreme drought, all provenances were equally stressed with almost no significant differences in their thermal indices. Provenance-specific differences in drought resistance, which are associated with factors such as summer precipitation at the origin of Scots pine seedlings, may offer promising tracks of adaptation to future drought risks. PMID:27630643

  10. Diverging Drought Resistance of Scots Pine Provenances Revealed by Infrared Thermography

    PubMed Central

    Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette

    2016-01-01

    With recent climate changes, Scots pine (Pinus sylvestris L.) forests have been affected by die-off events. Assisted migration of adapted provenances mitigates drought impacts and promotes forest regeneration. Although suitable provenances are difficult to identify by traditional ecophysiological techniques, which are time consuming and invasive, plant water status can be easily assessed by infrared thermography. Thus, we examined the stress responses of 2-year-old potted Scots pine seedlings from six provenances (Bulgaria, France, Germany, Italy, Poland, and Spain) based on two thermal indices (crop water stress index and stomatal conductance index). Both indices were derived from infrared images during a 6-week drought/control treatment in a greenhouse in the summer of 2013. The pines were monitored during the stress and subsequent recovery period. After controlling for fluctuating environmental conditions, soil moisture or treatment-specific water supply was the most important driver of drought stress. The stress magnitude and response to soil water deficit depended on provenance. Under moderate drought conditions, pines from western and eastern Mediterranean provenances (Bulgaria, France, and Spain) expressed lower stress levels than those from both continental provenances (Germany and Poland). Moreover, pines from continental provenances were less resilient (showed less recovery after the stress period) than Mediterranean pines. Under extreme drought, all provenances were equally stressed with almost no significant differences in their thermal indices. Provenance-specific differences in drought resistance, which are associated with factors such as summer precipitation at the origin of Scots pine seedlings, may offer promising tracks of adaptation to future drought risks.

  11. Diverging Drought Resistance of Scots Pine Provenances Revealed by Infrared Thermography

    PubMed Central

    Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette

    2016-01-01

    With recent climate changes, Scots pine (Pinus sylvestris L.) forests have been affected by die-off events. Assisted migration of adapted provenances mitigates drought impacts and promotes forest regeneration. Although suitable provenances are difficult to identify by traditional ecophysiological techniques, which are time consuming and invasive, plant water status can be easily assessed by infrared thermography. Thus, we examined the stress responses of 2-year-old potted Scots pine seedlings from six provenances (Bulgaria, France, Germany, Italy, Poland, and Spain) based on two thermal indices (crop water stress index and stomatal conductance index). Both indices were derived from infrared images during a 6-week drought/control treatment in a greenhouse in the summer of 2013. The pines were monitored during the stress and subsequent recovery period. After controlling for fluctuating environmental conditions, soil moisture or treatment-specific water supply was the most important driver of drought stress. The stress magnitude and response to soil water deficit depended on provenance. Under moderate drought conditions, pines from western and eastern Mediterranean provenances (Bulgaria, France, and Spain) expressed lower stress levels than those from both continental provenances (Germany and Poland). Moreover, pines from continental provenances were less resilient (showed less recovery after the stress period) than Mediterranean pines. Under extreme drought, all provenances were equally stressed with almost no significant differences in their thermal indices. Provenance-specific differences in drought resistance, which are associated with factors such as summer precipitation at the origin of Scots pine seedlings, may offer promising tracks of adaptation to future drought risks. PMID:27630643

  12. Diverging Drought Resistance of Scots Pine Provenances Revealed by Infrared Thermography.

    PubMed

    Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette

    2016-01-01

    With recent climate changes, Scots pine (Pinus sylvestris L.) forests have been affected by die-off events. Assisted migration of adapted provenances mitigates drought impacts and promotes forest regeneration. Although suitable provenances are difficult to identify by traditional ecophysiological techniques, which are time consuming and invasive, plant water status can be easily assessed by infrared thermography. Thus, we examined the stress responses of 2-year-old potted Scots pine seedlings from six provenances (Bulgaria, France, Germany, Italy, Poland, and Spain) based on two thermal indices (crop water stress index and stomatal conductance index). Both indices were derived from infrared images during a 6-week drought/control treatment in a greenhouse in the summer of 2013. The pines were monitored during the stress and subsequent recovery period. After controlling for fluctuating environmental conditions, soil moisture or treatment-specific water supply was the most important driver of drought stress. The stress magnitude and response to soil water deficit depended on provenance. Under moderate drought conditions, pines from western and eastern Mediterranean provenances (Bulgaria, France, and Spain) expressed lower stress levels than those from both continental provenances (Germany and Poland). Moreover, pines from continental provenances were less resilient (showed less recovery after the stress period) than Mediterranean pines. Under extreme drought, all provenances were equally stressed with almost no significant differences in their thermal indices. Provenance-specific differences in drought resistance, which are associated with factors such as summer precipitation at the origin of Scots pine seedlings, may offer promising tracks of adaptation to future drought risks.

  13. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.

    PubMed

    Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker

    2008-04-01

    Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.

  14. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.

    PubMed

    Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker

    2008-04-01

    Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens. PMID:17482811

  15. [Polymorphism of Glucose-6-phosphate Dehydrogenase in the Chronically Irradiated Scots Pine Populations].

    PubMed

    Kazakova, E A; Volkova, P Yu; Geras'kin, S A; Pomelova, D O

    2015-01-01

    Polymorphism of glucose-6-phosphate dehydrogenase enzyme was studied in the Scots pine populations growing in the sites of Bryansk region which were radioactively contaminated as a result of the Chernobyl accident. It was revealed that the frequency of mutations in isozyme loci increased along with the level of a dose rate (7-130 mGy/year) in the sites under the study. Significant changes in the activity of this enzyme did not depend on the level of radiation exposure.

  16. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine

    PubMed Central

    2014-01-01

    Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769

  17. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    PubMed

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar. PMID:21374054

  18. Features of Scots pine radial growth in conditions of provenance trial.

    NASA Astrophysics Data System (ADS)

    Kuzmin, Sergey; Kuzmina, Nina

    2013-04-01

    Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 down to 2 degree Celsius. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed. Eniseysk and Vikhorevka (from Krasnoyarsk krai and Irkutsk oblast)provenances of pine have the biggest radial increments, the least sensitivity to Cenangium dieback and smallest increments decline. These climatypes are in the group of perspective provenances and in present time they are recommended for wide trial in the region for future use in plantation forest growing. Kandalaksha (Murmansk oblast

  19. Hydrophobicity in sandy soils triggered by the development of Scots Pine stands in southern Brandenburg, Germany

    NASA Astrophysics Data System (ADS)

    Spröte, Roland; Fischer, Thomas; Veste, Maik; Lange, Philipp; Bens, Oliver; Raab, Thomas; Hüttl, Reinhard F.

    2010-05-01

    Soil hydrophobicity is wide-spread in forest soils and many other ecosystems and has important hydrological consequences. Therefore, the development of water repellency is an important controlling factor for hydrological processes, preventing infiltration of precipitation and has large implication for the entire ecosystem functioning. It depends e. g. on plant species, age and season of the year. The phenomenon is defined as a situation during which the cohesive forces of water molecules are stronger than the adhesive forces between the water molecules in the soil, resulting in a high contact angle of water with the surface. Scots Pine is the predominant forest tree on the sandy soils in southern Brandenburg, Germany. Previous studies proved that the development of hydrophobicity on sandy soils in Brandenburg is triggered by Scots Pine (Pinus sylvestris). Investigations of the development of hydrophobicity and their initialisation are rare. Objective of our study was to characterise the initialisation of hydrophobicity and its implication for hydrological processes in the initial phase of ecosystem development. The occurrence of water repellency can be an important abiotic factor for the ecosystem development. We investigated the development of hydrophobicity under Scots Pines of four different age classes (young, juvenescent, mature, old) at Groß Oßnig (approx. 20 km south of Cottbus, Germany, mean annual rainfall approx. 559 mm, mean annual temperature 9.3° C). The study site is characterised by sandy soils with pure Scots Pine forest. Due to former military activities initial stages of ecosystem development with open areas can be found in the landscape. As a pioneer tree species Pinus sylvestris re-colonizes such open spaces. Under juvenescent trees no soil horizons were recognizable. With increasing tree height needles accumulated under the trees and a thicker litter layer has developed. The ´actuaĺ water repellency was determined in situ with the water

  20. Mistletoe (Viscum album) infestation in the Scots pine stimulates drought-dependent oxidative damage in summer.

    PubMed

    Mutlu, Salih; Ilhan, Veli; Turkoglu, Halil Ibrahim

    2016-04-01

    This study sought to contribute to the understanding of the detrimental effect of the mistletoe (Viscum albumL.), a hemiparasitic plant, on the mortality of the Scots pine (Pinus sylvestrisL.). Fieldwork was conducted in the town of Kelkit (Gumushane province, Turkey) from April to October in 2013. Pine needles of similar ages were removed from the branches of mistletoe-infested and noninfested Scots pine plants, then transported to the laboratory and used as research materials. The effects of the mistletoe on the Scots pine during infestation were evaluated by determining the levels of water, electrolyte leakage (EL), malondialdehyde (MDA, being a product of lipid peroxidation) and reactive oxygen species (ROS) such as superoxide anion (O2 (-•)), hydrogen peroxide (H2O2) and hydroxyl radical ((•)OH). In addition, the activities of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were measured in the same samples. The highest level of drought stress was found in summer (especially in August) as a result of the lowest water content in the soil and the highest average temperature occurring in these months. The drought stress induced by mistletoe infestation caused a regular decrease in water content, while it increased the levels of EL, MDA and ROS (H2O2, O2 (-•)and(•)OH). The infestation also stimulated the activities of CAT and POX, with the exception of SOD. On the other hand, in August, when the drought conditions were the harshest, the levels of EL and MDA, which are two of the most important indicator parameters for oxidative stress, as well as the levels of H2O2and(•)OH, which are two of the ROS leading to oxidative stress, reached the highest values in both infested and noninfested needles, whereas the O2 (-•)level decreased. For the same period and needles, CAT activity increased, while SOD activity decreased. Peroxidase activity, however, did not exhibit a significant change. Our findings indicate

  1. Mistletoe (Viscum album) infestation in the Scots pine stimulates drought-dependent oxidative damage in summer.

    PubMed

    Mutlu, Salih; Ilhan, Veli; Turkoglu, Halil Ibrahim

    2016-04-01

    This study sought to contribute to the understanding of the detrimental effect of the mistletoe (Viscum albumL.), a hemiparasitic plant, on the mortality of the Scots pine (Pinus sylvestrisL.). Fieldwork was conducted in the town of Kelkit (Gumushane province, Turkey) from April to October in 2013. Pine needles of similar ages were removed from the branches of mistletoe-infested and noninfested Scots pine plants, then transported to the laboratory and used as research materials. The effects of the mistletoe on the Scots pine during infestation were evaluated by determining the levels of water, electrolyte leakage (EL), malondialdehyde (MDA, being a product of lipid peroxidation) and reactive oxygen species (ROS) such as superoxide anion (O2 (-•)), hydrogen peroxide (H2O2) and hydroxyl radical ((•)OH). In addition, the activities of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were measured in the same samples. The highest level of drought stress was found in summer (especially in August) as a result of the lowest water content in the soil and the highest average temperature occurring in these months. The drought stress induced by mistletoe infestation caused a regular decrease in water content, while it increased the levels of EL, MDA and ROS (H2O2, O2 (-•)and(•)OH). The infestation also stimulated the activities of CAT and POX, with the exception of SOD. On the other hand, in August, when the drought conditions were the harshest, the levels of EL and MDA, which are two of the most important indicator parameters for oxidative stress, as well as the levels of H2O2and(•)OH, which are two of the ROS leading to oxidative stress, reached the highest values in both infested and noninfested needles, whereas the O2 (-•)level decreased. For the same period and needles, CAT activity increased, while SOD activity decreased. Peroxidase activity, however, did not exhibit a significant change. Our findings indicate

  2. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings.

    PubMed

    Lindfors, Lauri; Hölttä, Teemu; Lintunen, Anna; Porcar-Castell, Albert; Nikinmaa, Eero; Juurola, Eija

    2015-12-01

    Boreal trees experience repeated freeze-thaw cycles annually. While freezing has been extensively studied in trees, the dynamic responses occurring during the freezing and thawing remain poorly understood. At freezing and thawing, rapid changes take place in the water relations of living cells in needles and in stem. While freezing is mostly limited to extracellular spaces, living cells dehydrate, shrink and their osmotic concentration increases. We studied how the freezing-thawing dynamics reflected on leaf gas exchange, chlorophyll fluorescence and xylem and living bark diameter changes of Scots pine (Pinus sylvestris L.) saplings in controlled experiments. Photosynthetic rate quickly declined following ice nucleation and extracellular freezing in xylem and needles, almost parallel to a rapid shrinking of xylem diameter, while that of living bark followed with a slightly longer delay. While xylem and living bark diameters responded well to decreasing temperature and water potential of ice, the relationship was less consistent in the case of increasing temperature. Xylem showed strong temporal swelling at thawing suggesting water movement from bark. After thawing xylem diameter recovered to a pre-freezing level but living bark remained shrunk. We found that freezing affected photosynthesis at multiple levels. The distinct dynamics of photosynthetic rate and stomatal conductance reveals that the decreased photosynthetic rate reflects impaired dark reactions rather than stomatal closure. Freezing also inhibited the capacity of the light reactions to dissipate excess energy as heat, via non-photochemical quenching, whereas photochemical quenching of excitation energy decreased gradually with temperature in agreement with the gas exchange data.

  3. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    PubMed Central

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  4. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    PubMed

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  5. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances.

    PubMed

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest.

  6. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil.

    PubMed

    Zhang, Junling; George, Eckhard

    2009-02-01

    Nutrient sources in soils are often heterogeneously distributed. Although many studies have examined the root responses to local N and P enrichments in the soil, less research was conducted on root responses to Mg patches. New roots of pre-grown Mg-insufficient and Mg-sufficient plants of Norway spruce (Picea abies [L.] Karst.) and Scots pine (Pinus sylvestris L.) seedlings were allowed to grow into four other pots of equal size, which were placed under the tree-bearing pot. Soils in the lower pots were either unfertilised, or supplied with Mg, or NPK or a mixture of NPKMg sources. Plants were harvested after 9 months of growth. Compared to the corresponding controls (Mg versus unfertilised and NPKMg versus NPK), Mg additions did not have a significant effect on either root dry matter, total root length (TRL) or specific root length (SRL), irrespective of tree species and plant Mg nutritional status. In contrast, NPK and NPKMg additions significantly increased the root dry matter and TRL in the nutrient-rich soil patch, and decreased SRL in Norway spruce. However, the observed root morphological changes did not occur in Scots pine. Root Mg concentrations were increased in Mg-rich soil patches, but those accumulations varied with tree species. Mg accumulation in a marked patch was measured only in newly grown roots of Mg-sufficient Norway spruce, whereas a more homogenous distribution of Mg concentration was observed for all newly grown roots in Mg-insufficient trees in the four soil treatments. In Scots pine, Mg accumulations occurred in both Mg-insufficient and Mg-sufficient plants. These results suggest that Mg patches in the soil may not lead to a local increase in root growth, but to Mg uptake and root Mg accumulation. Tree roots react differently to Mg patches in comparison to their response to N or P patches in the soil. PMID:19203945

  7. Intraspecific variability in functional traits matters: case study of Scots pine.

    PubMed

    Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier

    2014-08-01

    Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.

  8. Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps.

    PubMed

    Vacchiano, Giorgio; Stanchi, Silvia; Marinari, Giulia; Ascoli, Davide; Zanini, Ermanno; Motta, Renzo

    2014-02-15

    Regeneration of non fire-adapted conifers following crown fires on the European Alps is often delayed or unsuccessful. Fire may limit establishment by eliminating seed trees, altering soil properties, or modifying microsite and soil conditions via disturbance legacies. However, the effect of soil legacies on post-fire establishment has rarely been discussed. We analyzed the abundance of Scots pine regeneration in a 257 ha wildfire in an inner-alpine forest. Our aims were (1) to model fire intensity at the soil surface and topsoil heating along a gradient of increasing fire severities; (2) to assess the differences in soil properties along the fire severity gradient; (3) to model the effect of disturbance and soil legacies on the density of pine seedlings. We reconstructed fire behavior and soil heating with the First Order Fire Effects Model (FOFEM), tested the effect of fire severity on soils by nonparametric distributional tests, and modeled seedling density as a function of site, disturbance and soil legacies by fitting a GLM following a variable selection procedure. Topsoil heating differed markedly between the moderate and high severity fires, reaching temperatures high enough to strongly and permanently alter soil properties only in the latter. High fire severity resulted in decreased soil consistency and wet aggregate stability. Burned soils had lower organic matter and cations than those unburned. Pine seedlings favored low-fertility, eroded, and chemically poor sites. Establishment was facilitated by the presence of coarse woody debris, but hampered by increasing distance from the seed source. These results suggest that in dry, inner-alpine valleys, fire residuals and soil legacies interact in determining the success of Scots pine re-establishment. High severity fire can promote favorable soil conditions, but distance from the seed source and high evaporation rates of bare soils must be mitigated in order to ensure a successful restoration.

  9. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    NASA Astrophysics Data System (ADS)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  10. Growth responses of scots pine seedlings grown in peat-based media amended with natural zeolite.

    PubMed

    Ayan, S; Tufekcioglu, A

    2006-01-01

    Zeolite has many good features that makes it very attractive for nursery use as a growing media over others. This study was designed to investigate influence of different growing media and their mixtures (with zeolite and without zeolite) on morphological characters of scots pine seedlings. Twenty-one treatments of varying amounts of peat, fine pumice, coarse pumice, river sand, perlite and river sand were established and were sown with scots pine seeds. At the end of first growing period, 30 seedlings from each treatment were harvested and measured for height (SH), root collar diameter (RCD), root dry weight (RDW), stem dry weight (SDW) and total dry weight (TSDW). These parameters varied significantly among treatments and were lower in zeolite added media. SH negatively correlated with Na and K content and C/N ratio of growing media but positively correlated with Mn content of media. SDW and TSDW had positive correlation with N, Fe, Mn, total porosity and loss of ignition, and had negative correlation with pH, Ca, Na and K content. PMID:16850871

  11. Analysis and simulation of dynamic response behavior of Scots pine trees to wind loading.

    PubMed

    Schindler, Dirk; Fugmann, Hannes; Mayer, Helmut

    2013-11-01

    This paper presents an empirical approach for the decomposition, simulation, and reconstruction of wind-induced stem displacement of plantation-grown Scots pine trees. Results from singular spectrum analysis (SSA) allow a low-dimensional characterization of the complex and complicated tree motion patterns in response to non-destructive wind excitation. Since motion of the sample trees was dominated by sway in the first mode, the application of SSA on time series of sample trees' stem displacement yielded characteristic and distinguishable non-oscillatory trend components, quasi-oscillatory sway, and noise, of which only the non-oscillatory components were correlated directly with wind characteristics. Although sway in the range of the dominant damped fundamental frequency dominated the measured stem displacement signals, it was almost decoupled from near-surface airflow. The ability to discriminate SSA-components is demonstrated based on correlation and spectral analysis. These SSA-components, as well as wind speed measured in the canopy space of the Scots pine forest, were used to train neural networks, which could then reasonably simulate tree response to wind excitation. PMID:23196785

  12. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient.

    PubMed

    Zadworny, Marcin; McCormack, M Luke; Mucha, Joanna; Reich, Peter B; Oleksyn, Jacek

    2016-10-01

    Patterns of plant biomass allocation and functional adjustments along climatic gradients are poorly understood, particularly belowground. Generally, low temperatures suppress nutrient release and uptake, and forests under such conditions have a greater proportion of their biomass in roots. However, it is not clear whether 'more roots' means better capacity to acquire soil resources. Herein we quantified patterns of fine-root anatomy and their biomass distribution across Scots pine (Pinus sylvestris) populations both along a 2000-km latitudinal gradient and within a common garden experiment with a similar range of populations. We found that with decreasing mean temperature, a greater percentage of Scots pine root biomass was allocated to roots with higher potential absorptive capacity. Similar results were seen in the common experimental site, where cold-adapted populations produced roots with greater absorptive capacity than populations originating from warmer climates. These results demonstrate that plants growing in or originated from colder climates have more acquisitive roots, a trait that is likely adaptive in the face of the low resource availability typical of cold soils. PMID:27301778

  13. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R

    2015-01-01

    Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134).

  14. No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress

    PubMed Central

    Gruber, A.; Pirkebner, D.; Florian, C.; Oberhuber, W.

    2012-01-01

    The physiological mechanisms leading to Scots pine (Pinus sylvestris L.) decline in the dry inner Alpine valleys are still unknown. Testing the carbon starvation hypothesis, we analysed the seasonal course of mobile carbohydrate pools (NSC) of Scots pine growing at a xeric and a dry-mesic site within an inner Alpine dry valley (750 m a.s.l., Tyrol, Austria) during the year 2009, which was characterized by exceptional soil dryness. Although, soil moisture content dropped to c. 10% at both sites during the growing season, NSC concentrations were rising in all tissues (branch, stem, root) till end of July, except in needles where maxima were reached around bud break. NSC concentrations were not significantly different in the analysed tissues at the xeric and the dry-mesic site. At the dry-mesic site NSC concentrations in the above ground tree biomass were significantly higher during the period of radial growth. An accumulation of NSC in roots at the end of July indicates a change in carbon allocation after an early cessation in above ground growth, possibly due to elevated below ground carbon demand. In conclusion our results revealed that extensive soil dryness during the growing season did not lead to carbon depletion. However, even though C-reserves were not exhausted, a sequestration of carbohydrate pools during drought periods might lead to deficits in carbon supply that weaken tree vigour and drive tree mortality. PMID:21974742

  15. Viability and seasonal distribution patterns of Scots pine pollen in Finland.

    PubMed

    Pulkkinen, P.; Rantio-Lehtimäki, A.

    1995-01-01

    Germination ability and airborne counts of Scots pine (Pinus sylvestris L.) pollen were studied during the spring of 1993 at Turku in southern Finland (60 degrees 32' N, 22 degrees 28' E) and at Utsjoki in northern Finland (69 degrees 45' N, 27 degrees 01' E). Pollen waas trapped from the beginning of May to the end of June in a high-volume air sampler. Germination tests were performed to determine the in vitro pollen viability of the trapped pollen. Airborne pine pollen counts were obtained from a continuously operating Burkard trap located near each high-volume sampler. When male flowering began, phenological observations were carried out on pollen grains collected in rotored samplers located in pine and spruce stands and open fields near Turku and Utsjoki. In southern Finland, the peak period of pine pollen production was short, lasting for only 3 days, but it accounted for about 80% of the total germinating pine pollen yield for the year. The peak count was on May 20, with over 2000 germinating pollen grains per cubic meter of air. Pollen germination rates of up to 70% were obtained during the week preceding the local pollen peak, and rates reached almost 90% on the peak day. Pollen viability remained at 45 to 65% for 1 week after the peak. There was no significant difference between the pollen counts for day and night, indicating that during the main pollen season, the pollen source was close to Turku. Before the local pollen peak, the counts of living pine pollen were low, indicating that pine pollen transported over long distances was of little ecological importance in 1993 in the Turku area. In northern Finland, the first pollen grains were caught on July 4, and the peak day was July 13. However, no viable pollen was observed during this period, indicating that there was little gene drift from southern to northern Finland in 1993.

  16. Effects of a long-term heavy-metal pollution on Scots pine forests

    NASA Astrophysics Data System (ADS)

    Nieminen, T. M.

    2003-05-01

    The major source of Cu and Ni emissions in Finland is a Cu-Ni smelter at Harjavalta. The mean, lO-year Cu:Ni ratio of emissions derived from smelting activities is about 3:1. However, the corresponding ratio in the organic layer in an adjacent Scots pine stand is 12:1, suggesting that Cu is retained more efficiently than Ni in the surface soil. The experimentally estimated rate of Cu uptake by the roots of pine seedlings cultivated in smelterpolluted soil was higher than the corresponding Ni uptake rate, but Ni transport from the roots to the shoot was more efficient than that of Cu. This is in agreement with an exposure experiment in which the lethal metal threshold in pine roots was found to be much lower for Ni (less than 100 mg kg^{-1}) than for Cu (less than 1000 mg kg^{-1}). The overall metal uptake rates of the pine seedlings were relatively low and had no reducing effect on the metal concentrations in the soil.

  17. A functional and structural Mongolian Scots pine (Pinus sylvestris var. mongolica) model integrating architecture, biomass and effects of precipitation.

    PubMed

    Wang, Feng; Letort, Véronique; Lu, Qi; Bai, Xuefeng; Guo, Yan; de Reffye, Philippe; Li, Baoguo

    2012-01-01

    Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates. PMID:22927982

  18. A Functional and Structural Mongolian Scots Pine (Pinus sylvestris var. mongolica) Model Integrating Architecture, Biomass and Effects of Precipitation

    PubMed Central

    Wang, Feng; Letort, Véronique; Lu, Qi; Bai, Xuefeng; Guo, Yan; de Reffye, Philippe; Li, Baoguo

    2012-01-01

    Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates. PMID:22927982

  19. Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps

    NASA Astrophysics Data System (ADS)

    Kivimäenpää, Minna; Magsarjav, Narantsetseg; Ghimire, Rajendra; Markkanen, Juha-Matti; Heijari, Juha; Vuorinen, Martti; Holopainen, Jarmo K.

    2012-12-01

    Resin-storing plant species such as conifer trees can release substantial amounts of volatile organic compounds (VOCs) into the atmosphere under stress circumstances that cause resin flow. Wounding can be induced by animals, pathogens, wind or direct mechanical damage e.g. during harvesting. In atmospheric modelling of biogenic VOCs, actively growing vegetation has been mostly considered as the source of emissions. Root systems and stumps of resin-storing conifer trees could constitute a significant store of resin after tree cutting. Therefore, we assessed the VOC emission rates from the cut surface of Scots pine stumps and estimated the average emission rates for an area with a density of 2000 stumps per ha. The experiment was conducted with trees of one Estonian and three Finnish Scots pine provenances covering a 1200 km gradient at a common garden established in central Finland in 1991. VOC emissions were dominated by monoterpenes and less than 0.1% of the total emission was sesquiterpenes. α-Pinene (7-92% of the total emissions) and 3-carene (0-76% of the total emissions) were the dominant monoterpenes. Proportions of α-pinene and camphene were significantly lower and proportions of 3-carene, sabinene, γ-terpinene and terpinolene higher in the southernmost Saaremaa provenance compared to the other provenances. Total terpene emission rates (standardised to +20 °C) from stumps varied from 27 to 1582 mg h-1 m-2 when measured within 2-3 h after tree cutting. Emission rates decreased rapidly to between 2 and 79 mg h-1 m-2 at 50 days after cutting. The estimated daily terpene emission rates on a hectare basis from freshly cut stumps at a cut tree density of 2000 per ha varied depending on provenance. Estimated emission ranges were 100-710 g ha-1 d-1 and 137-970 g ha-1 d-1 in 40 and in 60 year-old forest stands, respectively. Our result suggests that emission directly from stump surfaces could be a significant source of monoterpene emissions for a few weeks after

  20. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas.

    PubMed

    Pietrzykowski, Marcin; Socha, Jarosław; van Doorn, Natalie S

    2014-02-01

    This work deals with bioaccumulation of Zn, Pb, Cu and Cd in foliage of Scots pine, grown on mine soils. Regression models were used to describe relationships between pine elements bioavailability and biological (dehydrogenase activity) and physico-chemical properties of mine soils developed at different parental rocks. Concentration of trace elements in post-mine ecosystems did not differ from data for Scots pine on natural sites. We conclude that, in this part of Europe in afforested areas affected by hard coal, sand, lignite and sulphur mining, there is no risk of trace element concentrations in mine soils. An exception was in the case of Cd in soils on sand quarry and hard coal spoil heap located in the Upper Silesia region, which was more due to industrial pressure and pollutant deposition than the original Cd concentration in parental rocks.

  1. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings.

    PubMed

    Lindfors, Lauri; Hölttä, Teemu; Lintunen, Anna; Porcar-Castell, Albert; Nikinmaa, Eero; Juurola, Eija

    2015-12-01

    Boreal trees experience repeated freeze-thaw cycles annually. While freezing has been extensively studied in trees, the dynamic responses occurring during the freezing and thawing remain poorly understood. At freezing and thawing, rapid changes take place in the water relations of living cells in needles and in stem. While freezing is mostly limited to extracellular spaces, living cells dehydrate, shrink and their osmotic concentration increases. We studied how the freezing-thawing dynamics reflected on leaf gas exchange, chlorophyll fluorescence and xylem and living bark diameter changes of Scots pine (Pinus sylvestris L.) saplings in controlled experiments. Photosynthetic rate quickly declined following ice nucleation and extracellular freezing in xylem and needles, almost parallel to a rapid shrinking of xylem diameter, while that of living bark followed with a slightly longer delay. While xylem and living bark diameters responded well to decreasing temperature and water potential of ice, the relationship was less consistent in the case of increasing temperature. Xylem showed strong temporal swelling at thawing suggesting water movement from bark. After thawing xylem diameter recovered to a pre-freezing level but living bark remained shrunk. We found that freezing affected photosynthesis at multiple levels. The distinct dynamics of photosynthetic rate and stomatal conductance reveals that the decreased photosynthetic rate reflects impaired dark reactions rather than stomatal closure. Freezing also inhibited the capacity of the light reactions to dissipate excess energy as heat, via non-photochemical quenching, whereas photochemical quenching of excitation energy decreased gradually with temperature in agreement with the gas exchange data. PMID:26423334

  2. Characterization of Scots pine stump-root biomass as feed-stock for gasification.

    PubMed

    Eriksson, Daniel; Weiland, Fredrik; Hedman, Henry; Stenberg, Martin; Öhrman, Olov; Lestander, Torbjörn A; Bergsten, Urban; Öhman, Marcus

    2012-01-01

    The main objective was to explore the potential for gasifying Scots pine stump-root biomass (SRB). Washed thin roots, coarse roots, stump heartwood and stump sapwood were characterized (solid wood, milling and powder characteristics) before and during industrial processing. Non-slagging gasification of the SRB fuels and a reference stem wood was successful, and the gasification parameters (synthesis gas and bottom ash characteristics) were similar. However, the heartwood fuel had high levels of extractives (≈19%) compared to the other fuels (2-8%) and thereby ≈16% higher energy contents but caused disturbances during milling, storage, feeding and gasification. SRB fuels could be sorted automatically according to their extractives and moisture contents using near-infrared spectroscopy, and their amounts and quality in forests can be predicted using routinely collected stand data, biomass functions and drill core analyses. Thus, SRB gasification has great potential and the proposed characterizations exploit it.

  3. Canopy Defoliation has More Impact on Carbohydrate Availability than on Hydraulic Function in Declining Scots Pine Populations

    NASA Astrophysics Data System (ADS)

    Poyatos, R.; Aguadé, D.; Gómez, M.; Mencuccini, M.; Martínez-Vilalta, J.

    2013-12-01

    Drought-induced defoliation has recently been associated with depletion of carbohydrate reserves and increased mortality risk in Scots pine (Pinus sylvestris L.) at its dry limit. Are defoliated pines hydraulically impaired compared to non-defoliated pines? Moreover, how do defoliated pines cope with potentially lethal droughts, as compared to non-defoliated pines in the same population? In order to address these questions, we measured the seasonal dynamics of sap flow and needle water potentials (2010-2012), hydraulic function and non-structural carbohydrates (NSC) (2012) in healthy and defoliated pines in the Prades mountains (NE Spain). The summer drought was mild in 2010, intense in 2012 and extremely long in 2011. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but they were more sensitive to summer drought (Figure 1). This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance, which could not be explained by differences in branch vulnerability to embolism across defoliation classes. Accordingly, the native loss of xylem conductivity in branches, measured in 2012, remained similar across defoliation classes and reached >65% at the peak of the drought. However, a steeper vulnerability curve was observed for root xylem of defoliated pines. Xylem diameter variations (2011-2012) will be used to further investigate possible differences in the aboveground/belowground partitioning of hydraulic resistance across defoliation classes. NSC levels varied across tree organs (leaves>branches>roots>trunk) and strongly declined with drought. Defoliated pines displayed reduced NSC levels throughout the study period, despite enhanced water transport capacity and increased gas exchange rates during spring. Overall, the defoliated vs. healthy status seems to be more associated to differences in carbohydrate storage and dynamics than to hydraulic differences per se. However, starch conversion to soluble sugars during

  4. Interannual variability in evapotranspiration and water yield from a temperate Scots pine forest (Brasschaat, Belgium).

    NASA Astrophysics Data System (ADS)

    Gielen, B.; Neirynck, J.; Verbeeck, H.; Janssens, I. A.

    2009-04-01

    By evaporating more than vegetation of different structure and height, forests play an import role in the water and energy balance of the land surface. Consequently, forests influence rainfall patterns and magnitude at regional and global scale by influencing the low level moisture convergence, and determine the amount of water that yield towards the river basin. This study focuses on the drivers of interannual variability of total stand scale evapotranspiration (AET) and water yield for a Scots pine (Pinus sylvestris L.) forest. The study site is located 20 km NE of Antwerp, near Brasschaat (Belgium) and consists of an 80-year-old even aged Scots pine stand, which belongs to a larger mixed coniferous/deciduous forest and is part of the ICP-II and Fluxnet/CarboEurope-IP networks since 1997. To calculate the water balance, five different approaches are used, ranging from eddy covariance (EC) and conservative ions measurements over an empirical model (WATBAL) to two ecosystem Carbon/Water process based models (SECRETS and ORCHIDEE). Model results are evaluated with sapflow, troughfall and EC measurements that were available during the study period. Tree transpiration and AET of both process based models fit well to the EC measurements. In contrast, compared to EC measurements, WATBAL tends to overestimate AET for the seasonal course as well as the yearly totals. No clear driver is found variability in the annual total AET. Furthermore, interannual variability in water yield is clearly determined by total precipitation. Future climate scenarios predict drier summer periods and more precipitation during the winter for the north Belgian region. To study the future trends in both AET and water yield, future climate scenarios will be used as model inputs to simulate the water balance. These data will be presented in this paper.

  5. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R

    2015-01-01

    Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134). PMID:25890976

  6. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings.

    PubMed

    Pumpanen, Jukka; Heinonsalo, Jussi; Rasilo, Terhi; Villemot, Julie; Ilvesniemi, Hannu

    2012-06-01

    Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.

  7. Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient.

    PubMed

    Degtjarenko, Polina; Marmor, Liis; Randlane, Tiina

    2016-09-01

    Dust pollution can cause a significant damage of environment and endanger human health. Our study aimed to investigate epiphytic lichens and bryophytes in relation to long-term alkaline dust pollution and provide new insights into the bioindicators of dust pollution. We measured the bark pH of Scots pines and the species richness and cover of two cryptogam groups in 32 sample plots in the vicinity of limestone quarries (up to ca. 3 km) in northern Estonia. The bark pH decreased gradually with increasing distance from quarries. We recorded the changes in natural epiphytic communities, resulting in diversified artificial communities on pines near the pollution source; the distance over 2 km from the quarries was sufficient to re-establish the normal acidity of the bark and natural communities of both lichens and bryophytes. The cover of lichens and the number of bryophytes are a more promising indicator of environmental conditions than individual species occurrence. We confirmed previously proposed and suggested new bioindicator species of dust pollution (e.g., Lecidella elaeochroma, Opegrapha varia, Schistidium apocarpum). Limestone quarrying activity revealed a "parapositive" impact on cryptogamic communities, meaning that quarrying might, besides disturbances of natural communities, temporarily contribute to the distribution of locally rare species. PMID:27230146

  8. [Dynamics and ecological-genetic variability of cytogenetic disturbances in Scots pine populations experiencing technogenic impact].

    PubMed

    Udalova, A A; Geras'kin, S A

    2011-01-01

    Scots pine (Pinus sylvestris L.) populations in the vicinity of nuclear industry facilities were monitored. Aberrant cells occurrence in root meristem of germinated seeds from the impacted pine populations was found to be significantly above the reference level during all six years of observations. In the reference population, changes of cytogenetic disturbances with time appeared to be cyclic while in the impacted populations, technogenic stress was strong enough to destroy the natural regularities. The increase in cytogenetic disturbances was accompanied by growth of fluctuations magnitude; deviations of basic oscillation parameters from the reference values rose along with technogenic impact level. Variability in cytogenetic response increased under technogenic stress. Inter-family component of variability predominated, though its contribution slightly decreased in impacted populations. A tendency for destabilization of a repetition coefficient dynamics was found under technogenic impact. A portion of the seeds was exposed to 15 Gy of gamma-rays, and higher radio-resistance in the impacted populations was observed. In the reference population, a family-related analysis of cytogenetic variability components after acute y-exposure revealed significant contributions of "family" and "germination conditions" factors as well as their interactions. On the contrary, in populations existing under chronic stress, considerable modifications in the structure of ecological-genetic variability were found, their degree increasing with technogenic impact severity.

  9. Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient.

    PubMed

    Degtjarenko, Polina; Marmor, Liis; Randlane, Tiina

    2016-09-01

    Dust pollution can cause a significant damage of environment and endanger human health. Our study aimed to investigate epiphytic lichens and bryophytes in relation to long-term alkaline dust pollution and provide new insights into the bioindicators of dust pollution. We measured the bark pH of Scots pines and the species richness and cover of two cryptogam groups in 32 sample plots in the vicinity of limestone quarries (up to ca. 3 km) in northern Estonia. The bark pH decreased gradually with increasing distance from quarries. We recorded the changes in natural epiphytic communities, resulting in diversified artificial communities on pines near the pollution source; the distance over 2 km from the quarries was sufficient to re-establish the normal acidity of the bark and natural communities of both lichens and bryophytes. The cover of lichens and the number of bryophytes are a more promising indicator of environmental conditions than individual species occurrence. We confirmed previously proposed and suggested new bioindicator species of dust pollution (e.g., Lecidella elaeochroma, Opegrapha varia, Schistidium apocarpum). Limestone quarrying activity revealed a "parapositive" impact on cryptogamic communities, meaning that quarrying might, besides disturbances of natural communities, temporarily contribute to the distribution of locally rare species.

  10. Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.

    PubMed

    Metslaid, Sandra; Stanturf, John A; Hordo, Maris; Korjus, Henn; Laarmann, Diana; Kiviste, Andres

    2016-07-01

    Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson's correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June-July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated. PMID:26573311

  11. Post-fire succession of ground vegetation of central Siberia in Scots pine forests

    NASA Astrophysics Data System (ADS)

    Kovaleva, N.; Ivanova, G. A.; Conard, S. G.

    2012-04-01

    Extensive wildfires have affected the Russian region in the last decade. Scots pine forests (Pinus sylvestris L.) are widespread in central Siberia and fire occurrence is high in these forests, whose dominant fire regime is one of frequent surface fires. We studied post- fire succession of ground vegetation has been studied on nine experimental fires of varying severity (from 620 to 5220 kW/m) in middle taiga Scots pine forests of central Siberia (Russia). It proved from our study that all species of the succession process are present from initial stages. We did not find any trend of ground vegetation diversity with the time during 8 years after the fire. Our investigation showed that post- fire recovery of the ground vegetation is determined by initial forest type, fire severity and litter burning depth. Fire severity had a clear effect in initial succession in study area and it clearly had an impact on percentage cover, biomass and structure of ground vegetation. In a lesser degree the small shrubs are damaged during ground fires. The dominating species (Vaccinium vitis-idaea and V. myrtillus) regained the cover values above or close to 6—8 years. The post- fire biomass of ground vegetation 93—100% consists of species (Vaccinium vitis-idaea and V. myrtillus) that survived after the fire and increased in the cover with the time. In pine forests mosses and lichens suffer to a greater degree after ground fires. Lichen layer was completely lost after the fires of any severity. Decrease of mosses species diversity takes place after ground fires. The post- fire cover and species diversity of the green mosses were progressively lower with increasing the fire severity during the observation period. Maximum changes are discovered in the post- fire structure of plant microgroups after the high- severity fire which resulted in intensive invasion by the post- fire mosses (Polytrichum strictum and P. commune). There is a positive trend of green moss microgroups recovery

  12. Effects of drought and irrigation on ecosystem functioning in a mature Scots pine forest

    NASA Astrophysics Data System (ADS)

    Dobbertin, Matthias; Brunner, Ivano; Egli, Simon; Eilmann, Britta; Graf Pannatier, Eisabeth; Schleppi, Patrick; Zingg, Andreas; Rigling, Andreas

    2010-05-01

    Climate change is expected to increase temperature and reduce summer precipitation in Switzerland. To study the expected effects of increased drought in mature forests two different approaches are in general possible: water can be partially or completely removed from the ecosystems via above- or below-canopy roofs or water can be added to already drought-prone ecosystems. Both methods have advantages and disadvantages. In our study water was added to a mature 90-year old Scots pine (Pinus sylvestris L.) forest with a few singe pubescent oaks (Quercus pubescens Willd.), located in the valley bottom of the driest region of Switzerland (Valais). In Valais, Scots pines are declining, usually with increased mortality rates following drought years. It was therefore of special interest to study here how water addition is changing forest ecosystem functioning. The irrigation experiment started in the summer of 2003. Out of eight 0.1 ha experimental plots, four were randomly selected for irrigation, the other four left as a control. Irrigation occurred during rainless nights between April and October, doubling the annual rainfall amount from 650 to 1300 mm. Irrigation water, taken from a near-by irrigation channel, added some nutrients to the plots, but nutrients which were deficient on the site, e.g. nitrogen and phosphorus, were not altered. Tree diameter, tree height and crown width were assessed before the start of the irrigation in winter 2002/2003 and after 7 years of the experiment in 2009/2010. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Additionally, tree mortality was annually evaluated. Mycorrhizal fruit bodies were identified and counted at weekly intervals from 2003 until 2007. Root samples were taken in 2004 and 2005. In 2004 and 2005 wood formation of thirteen trees was analysed in weekly or biweekly intervals using the pinning method. These trees were felled in 2006 for stem, shoot and needle growth analysis

  13. Climatic factors and reindeer grazing -- the effects on soil carbon dynamics in subarctic boreal pine forest.

    NASA Astrophysics Data System (ADS)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2016-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems, affecting plant diversity, soil nutrient cycling and soil organic matter decomposition. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil carbon dynamics. In a field experiment in Finnish Lapland, Värriö Strict Nature Reserve (67° 46' N, 29° 35' E) we investigated how the reindeer grazing in subarctic boreal forest combined with climate (air temperature and precipitation) affects soil temperature, soil water content, and ultimately the CO2 efflux from forest soils. The study was carried out in the growing seasons of the years 2013 and 2014, where 2013 was an extremely dry year (specially the summer), and the year 2014 was a "normal" year in means of precipitations. Our study areas are located in the northern boreal subarctic coniferous forest at the zone of the last intact forest landscapes in Fennoscandia, where large areas of relatively undisturbed subarctic Scots pine (Pinus sylvestris L.) forests can still be found. We established the experiment as a split plot experiment with 2 blocks and 5 sub-plots per treatment that were divided into grazed and non-grazed parts, separated with a fence. The sample plots are located along the borderline between Finland and Russia, where the ungrazed area was excluded from reindeer already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. Our study showed that in subarctic mature pine forests, soil temperatures were higher, and soil water content was fluctuating more on grazed areas compared to non-grazed areas in both years. In both years, the soil water content on the grazed area was highest in June. The situation changed somewhere in the second half of July when the moisture content in the non-grazed area was higher. We found

  14. Water availability influences morphology, mycorrhizal associations, PSII efficiency and polyamine metabolism at early growth phase of Scots pine seedlings.

    PubMed

    Muilu-Mäkelä, Riina; Vuosku, Jaana; Läärä, Esa; Saarinen, Markku; Heiskanen, Juha; Häggman, Hely; Sarjala, Tytti

    2015-03-01

    Scots pine (Pinus sylvestris L.) is adapted to various soil types with diverse water availabilities. However, Scots pine seedlings are vulnerable to abiotic stress during the early growth, when they may be exposed to both dry and wet conditions. Here, we focused on the above and below ground coping strategies of Scots pine seedlings under controlled wet, optimal and dry soil conditions by investigating morphological traits including seedling biomass, number of root tips, proportion of mycorrhizal root tips and brown needles. In addition, we studied metabolic and physiological responses including gene expression involved in biosynthesis and catabolism of polyamines (PA), PSII efficiency and the expression of the catalase (CAT) late-embryogenesis abundant protein (LEA), pyruvate decarboxylase (PDC), glutamate-cysteine ligase (GCL) and glutathione synthetase (GS) genes. We found that seedlings invested in shoots by maintaining stable shoot water content and high PSII efficiency under drought stress. Free and soluble conjugated putrescine (Put) accumulated in needles under drought stress, suggesting the role of Put in protection of photosynthesizing tissues. However, the expression of the PA biosynthesis genes, arginine decarboxylase (ADC), spermidine synthase (SPDS) and thermospermine synthase (ACL5) was not affected under drought stress whereas catabolizing genes diamino oxidase (DAO) and polyamine oxidase (PAO) were down-regulated in shoots. The morphology of the roots was affected by peat water content. Furthermore, both drought stress and water excess restricted the seedling ability to sustain a symbiotic relationship. The consistent pattern of endogenous PAs seems to be advantageous to the Scots pine seedlings also under stress conditions. PMID:25666263

  15. Toxic effects of cadmium and zinc on ectomycorrhizal colonization of Scots pine (Pinus sylvestris L.) from soil inoculum

    SciTech Connect

    Hartley-Whitaker, J.; Cairney, J.W.G.; Meharg, A.A.

    2000-03-01

    Scots pine seedlings colonized by ectomycorrhizal (ECM) fungi from natural soil inoculum were exposed to a range of Cd or Zn concentrations to investigate the effects of metals on ECM fungi-Scots pine associations in a realistic soil environment. Experiments focused on the relationship between the sensitivity of ECM fungi and their host plants, the influence of metals on ECM community dynamics on Scots pine roots, and the effects of metal exposure on ECM colonization from soil-borne propagules. Ectomycorrhizal colonization was inhibited by Cd and Zn, with a decrease in the proportion of ECM-colonized root tips. Shoot and root biomass, total root length, and total root-tip density, however, were unaffected by Cd or Zn. A decrease in the diversity of ECM morphotypes also occurred, which could have a negative effect on tree vigor. Overall, colonization by ECM fungi was more sensitive than seedling growth to Cd and Zn, and this could have serious implications for successful tree establishment on metal-contaminated soils.

  16. Scots pine bark, topsoil and pedofauna as indicators of transport pollutions in terrestrial ecosystems.

    PubMed

    Marko-Worłowska, Maria; Chrzan, Anna; Łaciak, Tomasz

    2011-01-01

    The impact of the motorway on pollution was evaluated by determining chosen heavy metals and acid reaction (pH) in the pine bark, in forest and meadow topsoil. The content of these environmental contaminants was determined in the topsoil and in the bark of around 40 year-old Scots pines (Pinus sylvestris L.) growing right next to the soil analyzed. The pollutants were examined at localities situated around 5, 200, 1500 m away from the motorway. To evaluate influence of Cd, Pb, Zn, Cu and the topsoil pH on pedofauna, five meadows localities situated 1, 20, 40, 150, 1550 m away from the motorway were examined. It was detected that in the forest habitats analyzed the bark was characterized by considerably higher acidity (pH 3.14-3.88) than the topsoil of the pines analyzed (pH 5.45-7.22). Except of Cd at locality 200 m and Cu at 1500 m from motorway, the higher concentration of heavy metals was noted in topsoil. In the meadow soil of the locality 150 m from the motorway the highest concentrations of Cd and Zn were detected. The greatest diversity of the meso and macrofauna and trophic relations the most resembling natural were detected in the area furthest away from the motorway, where the content of the heavy metals was the lowest. The lowest density and diversity of meso- and macrofauna were detected in the area situated 40 m, where the concentration of heavy metals was higher than at 1, 20 and 1550 m from the motorway situated localities.

  17. Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study.

    PubMed

    Augustaitis, Algirdas; Bytnerowicz, Andrzej

    2008-10-01

    The study aimed to explore if changes in crown defoliation and stem growth of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone (O(3)) concentration in central Europe. To meet this objective the study was performed in 3 Lithuanian national parks, close to the ICP integrated monitoring stations from which data on meteorology and pollution were provided. Contribution of peak O(3) concentrations to the integrated impact of acidifying compounds and meteorological parameters on pine stem growth was found to be more significant than its contribution to the integrated impact of acidifying compounds and meteorological parameters on pine defoliation. Findings of the study provide statistical evidence that peak concentrations of ambient O(3) can have a negative impact on pine tree crown defoliation and stem growth reduction under field conditions in central and northeastern Europe where the AOT40 values for forests are commonly below their phytotoxic levels.

  18. Diverging drought resistance of Scots pine provenances revealed by infrared thermography and mortality

    NASA Astrophysics Data System (ADS)

    Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette

    2016-04-01

    Climate warming and more frequent and severe drought events will alter the adaptedness and fitness of tree species. Especially, Scots pine forests have been affected above average by die-off events during the last decades. Assisted migration of adapted provenances might help alleviating impacts by recent climate change and successfully regenerating forests. However, the identification of suitable provenances based on established ecophysiological methods is time consuming, sometimes invasive, and data on provenance-specific mortality are lacking. We studied the performance, stress and survival of potted Scots pine seedlings from 12 European provenances grown in a greenhouse experiment with multiple drought and warming treatments. In this paper, we will present results of drought stress impacts monitored with four different thermal indices derived from infrared thermography imaging as well as an ample mortality study. Percent soil water deficit (PSWD) was shown to be the main driver of drought stress response in all thermal indices. In spite of wet and dry reference surfaces, however, fluctuating environmental conditions, mainly in terms of air temperature and humidity, altered the measured stress response. In linear mixed-effects models, besides PSWD and meteorological covariates, the factors provenance and provenance - PSWD interactions were included. The explanatory power of the models (R2) ranged between 0.51 to 0.83 and thus, provenance-specific responses to strong and moderate drought and subsequent recovery were revealed. However, obvious differences in the response magnitude of provenances to drought were difficult to explicitly link to general features such Mediterranean - continental type or climate at the provenances' origin. We conclude that seedlings' drought resistance may be linked to summer precipitation and their experienced stress levels are a.o. dependent on their above ground dimensions under given water supply. In respect to mortality, previous

  19. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.

    PubMed

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2015-07-01

    Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in

  20. Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.).

    PubMed

    Čepl, Jaroslav; Holá, Dana; Stejskal, Jan; Korecký, Jiří; Kočová, Marie; Lhotáková, Zuzana; Tomášková, Ivana; Palovská, Markéta; Rothová, Olga; Whetten, Ross W; Kaňák, Jan; Albrechtová, Jana; Lstibůrek, Milan

    2016-07-01

    Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is

  1. Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.).

    PubMed

    Čepl, Jaroslav; Holá, Dana; Stejskal, Jan; Korecký, Jiří; Kočová, Marie; Lhotáková, Zuzana; Tomášková, Ivana; Palovská, Markéta; Rothová, Olga; Whetten, Ross W; Kaňák, Jan; Albrechtová, Jana; Lstibůrek, Milan

    2016-07-01

    Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is

  2. Monitoring forest structure at landscape level: a case study of Scots pine forest in NE Turkey.

    PubMed

    Terzioğlu, Salih; Başkent, Emin Zeki; Kadioğullari, Ali Ihsan

    2009-05-01

    This study aims to investigate the change in spatial-temporal configuration of secondary forest succession and generate measurements for monitoring the changes in structural plant diversity in Yalnizçam Scots pine forest in NE Turkey from 1972 to 2005. The successional stages were mapped using the combination of Geographic Information System (GIS), Global Positioning System (GPS), aerial photos and high resolution satellite images (IKONOS). Forest structure and its relationship with structural plant diversity along with its changes over time were characterized using FRAGSTATS. In terms of spatial configuration of seral stages, the total number of fragments increased from 572 to 735, and mean size of patch (MPS) decreased from 154.97 ha to 120.60 ha over 33 years. The situation resulted in forestation serving appropriate conditions for plant diversity in the area. As an overall change in study area, there was a net increase of 1823.3 ha forest during the period with an average annual forestation rate of 55.25 ha year(-1) (0.4% per year). In conclusion, the study revealed that stand type maps of forest management plans in Turkey provide a great chance to monitor the changes in structural plant diversity over time. The study further contributes to the development of a framework for effective integration of biodiversity conservation into Multiple Use Forest Management (MUFM) plans using the successional stages as a critical mechanism. PMID:18553149

  3. Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis.

    PubMed Central

    Hurme, P; Sillanpää, M J; Arjas, E; Repo, T; Savolainen, O

    2000-01-01

    We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect. PMID:11063704

  4. One tissue, two fates: different roles of megagametophyte cells during Scots pine embryogenesis.

    PubMed

    Vuosku, Jaana; Sarjala, Tytti; Jokela, Anne; Sutela, Suvi; Sääskilahti, Mira; Suorsa, Marja; Läärä, Esa; Häggman, Hely

    2009-01-01

    In the Scots pine (Pinus sylvestris L.) seed, embryos grow and develop within the corrosion cavity of the megagametophyte, a maternally derived haploid tissue, which houses the majority of the storage reserves of the seed. In the present study, histochemical methods and quantification of the expression levels of the programmed cell death (PCD) and DNA repair processes related genes (MCA, TAT-D, RAD51, KU80, and LIG) were used to investigate the physiological events occurring in the megagametophyte tissue during embryo development. It was found that the megagametophyte was viable from the early phases of embryo development until the early germination of mature seeds. However, the megagametophyte cells in the narrow embryo surrounding region (ESR) were destroyed by cell death with morphologically necrotic features. Their cell wall, plasma membrane, and nuclear envelope broke down with the release of cell debris and nucleic acids into the corrosion cavity. The occurrence of necrotic-like cell death in gymnosperm embryogenesis provides a favourable model for the study of developmental cell death with necrotic-like morphology and suggests that the mechanism underlying necrotic cell death is evolutionary conserved. PMID:19246593

  5. Simulated water balance of Scots pine stands in Sweden for different climate change scenarios

    NASA Astrophysics Data System (ADS)

    Gärdenäs, Annemieke I.; Jansson, Per-Erik

    1995-03-01

    The effects of climate change on the water balance of Scots pine were studied with a coupled water and heat flow model called 'SOIL'. Two forest soil types (a silty-sand and a sand) at five locations in Sweden were chosen to represent sites with different air temperature, growing season length and precipitation excess. The simulated water balance for the period 1961-1987 was compared with those simulated with two climate change scenario schemes: one is based on increased temperature and the other on both increased temperature and increased precipitation. Different assumptions regarding the effects of changes in leaf area index and minimum canopy resistance on transpiration were studied. Water stress increased substantially in the scenarios based on increased temperature only, which prevented transpiration from increasing. But with scenarios based on simultaneous changes in temperature and precipitation, water stress increased mainly during spring and transpiration increased by 50 mm and 100 mm in northern and southern Sweden, respectively, i.e. by 30-50%. When simultaneous changes in climate and stand characteristics were assumed, transpiration increased by 30-70% with the relative change being greatest for northern Sweden. Differences in water balance between the locations and soil types were less pronounced in the climate change scenarios than in the present climate scenario.

  6. Interspecific differences in foliar 1 PAHs load between Scots pine, birch, and wild rosemary from three polish peat bogs.

    PubMed

    Mętrak, Monika; Aneta, Ekonomiuk; Wiłkomirski, Bogusław; Staszewski, Tomasz; Suska-Malawska, Małgorzata

    2016-08-01

    Pine needles are one of the most commonly used bioindicators of polycyclic aromatic hydrocarbons (PAHs) in the environment. Therefore, the main objective of the current research was the assessment of PAHs accumulation potential of Scots pine (Pinus sylvestris L.) needles in comparison to wild rosemary (Rhododendron tomentosum Harmaja) and birch (Betula spp.) leaves. Our study was carried out on three peat bogs subjected to different degree of anthropopression, which gave us also the opportunity to identify local emission sources. Pine needles had the lowest accumulation potential from all the studied species. The highest accumulation potential, and hence carcinogenic potential, was observed for wild rosemary leaves. As far as emission sources are concerned, the most pronounced influence on atmospheric PAHs loads had traditional charcoal production, resulting in great influx of heavy PAHs. Observed seasonal changes in PAHs concentrations followed the pattern of winter increase, caused mainly by heating season, and summer decrease, caused mainly by volatilization of light PAHs.

  7. Interspecific differences in foliar 1 PAHs load between Scots pine, birch, and wild rosemary from three polish peat bogs.

    PubMed

    Mętrak, Monika; Aneta, Ekonomiuk; Wiłkomirski, Bogusław; Staszewski, Tomasz; Suska-Malawska, Małgorzata

    2016-08-01

    Pine needles are one of the most commonly used bioindicators of polycyclic aromatic hydrocarbons (PAHs) in the environment. Therefore, the main objective of the current research was the assessment of PAHs accumulation potential of Scots pine (Pinus sylvestris L.) needles in comparison to wild rosemary (Rhododendron tomentosum Harmaja) and birch (Betula spp.) leaves. Our study was carried out on three peat bogs subjected to different degree of anthropopression, which gave us also the opportunity to identify local emission sources. Pine needles had the lowest accumulation potential from all the studied species. The highest accumulation potential, and hence carcinogenic potential, was observed for wild rosemary leaves. As far as emission sources are concerned, the most pronounced influence on atmospheric PAHs loads had traditional charcoal production, resulting in great influx of heavy PAHs. Observed seasonal changes in PAHs concentrations followed the pattern of winter increase, caused mainly by heating season, and summer decrease, caused mainly by volatilization of light PAHs. PMID:27393196

  8. [Development of New Mitochondrial DNA Markers in Scots Pine (Pinus sylvestris L.) for Population Genetic and Phylogeographic Studies].

    PubMed

    Semerikov, V L; Putintseva, Yu A; Oreshkova, N V; Semerikova, S A; Krutovsky, K V

    2015-12-01

    Fragments of genomic DNA of Scots pine (Pinus sylvestris L.) homologous to the mitochondrial DNA (mtDNA) contigs of Norway spruce (Picea abies (L.) Karst.) and loblolly pine (Pinus taeda L.) were resequenced in a sample of the Scots pine trees of European, Siberian, Mongolian and Caucasian origin in order to develop mtDNA markers. Flanking non-coding regions of some mitochondrial genes were also investigated and resequenced. Five single nucleotide polymorphisms (SNPs) and a single minisatellite locus were identified. Caucasian samples differed from the rest by three SNPs. Two SNPs have been linked to an early described marker in.the first intron of the nad7 gene, and all together revealed three haplotypes in European populations. No variable SNPs were found in the Siberian and Mongolian populations. The minisatellite locus contained 41 alleles across European, Siberian and Mongolian populations, but, this locus demonstrated a weak population differentiation (F(ST) = 0.058), probably due to its high mutation rate. PMID:27055298

  9. Detection of multiple stresses in Scots pine growing at post-mining sites using visible to near-infrared spectroscopy.

    PubMed

    Zuzana, Lhotáková; Lukáš, Brodský; Lucie, Kupková; Veronika, Kopačková; Markéta, Potůčková; Jan, Mišurec; Aleš, Klement; Monika, Kovářová; Jana, Albrechtová

    2013-10-01

    Heavy metal contamination, low pH and high substrate heterogeneity are multiple stress factors that often occur at the post-mining sites and make difficult the biological reclamation. Efficient tools for detection of the status of reclaimed vegetation at post-mining sites are needed. We tested the potential of visible to near-infrared (VNIR) spectroscopy to detect multiple stresses in Scots pine (Pinus sylvestris L.) at acidic substrates rich in As. The needle chemical traits (chlorophyll a + b - Cab; carotenoids - Car; Car/Cab; relative water content - RWC; soluble phenolics; lignin contents) were tested for sensitivity to different soil conditions of post-mining sites. For Scots pine growing on degraded substrates, at least three non-specific stress indicators (RWC, photosynthetic pigments and phenolics) are required to achieve good site separability corresponding to the stress load. We constructed and validated empirical models of selected needle chemical traits using VNIR spectroscopy: calibration of Cab (R(2) = 0.97, RMSE = 0.17 mg g(-1)), RWC (R(2) = 0.88, RMSE = 1.41 mg g(-1)), Car (R(2) = 0.66, RMSE = 0.08 mg g(-1)), phenolics (R(2) = 0.64, RMSE = 23.01 mg g(-1)) and lignin (R(2) = 0.45, RMSE = 3.32 mg g(-1)). The reflectance data yielded comparable site separability with the separability calculated from the laboratory data. The presented approach has potential for large-scale monitoring of Scots pine status, thus, assessment of reclamation quality in post-mining regions using air-born or satellite hyperspectral data. PMID:24108147

  10. Effects of zinc on Scots pine (Pinus sylvestris L.) seedlings grown in hydroculture.

    PubMed

    Ivanov, Yury V; Kartashov, Alexander V; Ivanova, Alexandra I; Savochkin, Yury V; Kuznetsov, Vladimir V

    2016-05-01

    The 6-week-old seedlings of Scots pine (Pinus sylvestris L.) showed high sensitivity to chronic exposure to zinc in hydroculture, which manifested in a significant inhibition of growth. Changes in the architecture of the root system and the suppression of its growth were shown to be the most striking effects of the toxic effect of zinc. Based on the data relating to the accumulation of zinc predominantly in the root system (by up to 35 times at 300 μM ZnSO4) and to the reduction in its translocation into the aerial organs, we concluded that P. sylvestris is related to a group of plants that exclude zinc. The seedlings developed a manganese deficiency (revealed by a reduction in Mn content in the roots and needles of up to 3.5 times at 300 μM ZnSO4) but not an iron deficiency (revealed by an increase in iron content of up to 23.7% in the roots and up to 42.3% in the needles at average). The absence of signs of oxidative stress under the effect of the zinc was detected as evidenced by the reduction in the content of malondialdehyde and 4-hydroxyalkenals in the seedling organs. The leading role of low molecular weight antioxidants in the prevention of oxidative stress in the seedling organs was suggested. Under the influence of zinc, a significant increase in the Trolox Equivalent Antioxidant Capacity of ethanol extracts of the seedling organs was found, which was caused by an increase in the total content of (+)-catechin and proanthocyanidins. PMID:26897114

  11. Controls of Evapotranspiration and CO2 Fluxes from Scots Pine by Surface Conductance and Abiotic Factors

    PubMed Central

    Zha, Tianshan; Li, Chunyi; Kellomäki, Seppo; Peltola, Heli; Wang, Kai-Yun; Zhang, Yuqing

    2013-01-01

    Evapotranspiration (E) and CO2 flux (Fc) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc, surface conductance (gc), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc, gc, and Ω were 1.78 mmol m−2 s−1, −11.18 µmol m−2 s−1, 6.27 mm s−1, and 0.31, respectively, with seasonal averages of 0.71 mmol m−2 s−1, −4.61 µmol m−2 s−1, 3.3 mm s−1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc. Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc, while vapour pressure deficit was the most important environmental factor affecting gc. Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O)−1 and a seasonal average of 7.06 μmol CO2 (μmol H2O)−1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition. PMID:23894401

  12. Seasonal variation of mono- and sesquiterpene emission rates of Scots pine

    NASA Astrophysics Data System (ADS)

    Hakola, H.; Tarvainen, V.; Bäck, J.; Ranta, H.; Bonn, B.; Rinne, J.; Kulmala, M.

    2005-11-01

    The seasonal variation of mono-and sesquiterpene emission rates of Scots pine was measured from April to October in 2004. The emission rates were measured daily in the afternoons with the exception of weekends. Emissions were measured from two branches; one of them was debudded in May (branch A), while the other was allowed to grow new needles (branch B). The monoterpene emission pattern remained almost constant throughout the measurement period, Δ3-carene being the dominant monoterpene (50-70% of the VOC emission). The standard monoterpene emission potential was highest during early summer in June (the average of the two branches 0.55 μg-1(dw) h-1) and lowest during early autumn in September (the average of the two branches 0.12 μg g-1(dw) h-1). The monoterpene emission potential of branch A remained low also during October, whereas the emission potential of branch B was very high in October. The sesquiterpenes were mainly emitted during mid summer, the dominant sesquiterpene being β-caryophyllene. Branch A had a higher sesquiterpene emission potential than branch B and the emission maximum occurred concomitant with the high concentration of airborne pathogen spores indicating the defensive role of the sesquiterpene emissions. The sesquiterpene emissions were well correlated with linalool and 1,8-cineol emissions, but not with monoterpenes. Sesquiterpene and 1,8-cineol emissions were equally well described by the temperature dependent and the temperature and light dependent algorithms. This is due to the saturation of the light algorithm as the measurements were always conducted during high light conditions.

  13. Seasonal variation of mono- and sesquiterpene emission rates of Scots pine

    NASA Astrophysics Data System (ADS)

    Hakola, H.; Tarvainen, V.; Bäck, J.; Ranta, H.; Bonn, B.; Rinne, J.; Kulmala, M.

    2006-03-01

    The seasonal variation of mono-and sesquiterpene emission rates of Scots pine was measured from April to October in 2004. The emission rates were measured daily in the afternoons with the exception of weekends. Emissions were measured from two branches; one of them was debudded in May (branch A), while the other was allowed to grow new needles (branch B). The monoterpene emission pattern remained almost constant throughout the measurement period, Δ3-carene being the dominant monoterpene (50-70% of the VOC emission). The standard monoterpene emission potential (30°C) was highest during early summer in June (the average of the two branches 1.35 µg g-1h-1) and lowest during early autumn in September (the average of the two branches 0.20 µg g-1h-1. The monoterpene emission potential of branch A remained low also during October, whereas the emission potential of branch B was very high in October. The sesquiterpenes were mainly emitted during mid summer, the dominant sesquiterpene being β-caryophyllene. Branch A had a higher sesquiterpene emission potential than branch B and the emission maximum occurred concomitant with the high concentration of airborne pathogen spores suggesting a potential defensive role of the sesquiterpene emissions. The sesquiterpene emissions were well correlated with linalool and 1,8-cineol emissions, but not with monoterpenes. Sesquiterpene and 1,8-cineol emissions were equally well described by the temperature dependent and the temperature and light dependent algorithms. This is due to the saturation of the light algorithm as the measurements were always conducted during high light conditions.

  14. Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Meiresonne, L.; Sampson, D. A.; Kowalski, A. S.; Janssens, I. A.; Nadezhdina, N.; Cermák, J.; Van Slycken, J.; Ceulemans, R.

    2003-01-01

    Four distinct approaches, that vary markedly in the spatial and temporal resolution of their measurement and process-level outputs, are used to investigate the daily and seasonal water vapour exchange in a 70-year-old Belgian Scots pine forest. Transpiration, canopy interception, soil evaporation and evapotranspiration are simulated, using a stand-level process model (SECRETS) and a soil water balance model (WAVE). Simulated transpiration was compared with up-scaled sap flow measurements and simulated evapotranspiration to eddy covariance measurements. Reasonable agreement in the temporal trends and in the annual water balance between the two models was observed, however daily and weekly predictions often diverged. Most notably, WAVE estimated very low, to no transpiration during late autumn, winter and early spring when incident radiation fell below ˜50 W m -2 while SECRETS simulated low (0.1-0.4 mm day -1) fluxes during the same period. Both models exhibited similar daily trends in simulated transpiration when compared with sap flow estimates, although simulations from SECRETS were more closely aligned. In contrast, WAVE over-estimated transpiration during periods of no rainfall and under-estimated transpiration during rainfall. Yearly, total evapotranspiration simulated by the models were similar, i.e. 658 mm (1997) and 632 mm (1998) for WAVE and 567 mm (1997) and 619 mm (1998) for SECRETS. Maximum weekly-average evapotranspiration for WAVE exceeded 5 mm day -1, while SECRETS never exceeded 4 mm day -1. Both models, in general, simulated higher evapotranspiration than that measured with the eddy covariance technique. An impact of the soil water content in the direct relationship between the models and the eddy covariance measurements was found. The results suggest that: (1) different model formulations can reproduce similar results depending on the scale at which outputs are resolved, (2) SECRETS estimates of transpiration were well correlated with the

  15. Functional Multi-Locus QTL Mapping of Temporal Trends in Scots Pine Wood Traits

    PubMed Central

    Li, Zitong; Hallingbäck, Henrik R.; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J.; García-Gil, M. Rosario

    2014-01-01

    Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. PMID:25305041

  16. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia I.; Preston, Caroline M.; Schmidt, Michael W. I.; Schulze, Ernst-Detlef

    2003-03-01

    In boreal forests, fire is a frequent disturbance and converts soil organic carbon (OC) to more degradation-resistant aromatic carbon, i.e., black carbon (BC) which might act as a long-term atmospheric-carbon sink. Little is known on the effects of fires on boreal soil OC stocks and molecular composition. We studied how a surface fire affected the composition of the forest floor of Siberian Scots pine forests by comparing the bulk elemental composition, molecular structure (13C-MAS NMR), and the aromatic carbon fraction (BC and potentially interfering constituents like tannins) of unburned and burned forest floor. Fire reduced the mass of the forest floor by 60%, stocks of inorganic elements (Si, Al, Fe, K, Ca, Na, Mg, Mn) by 30-50%, and of OC, nitrogen, and sulfur by 40-50%. In contrast to typical findings from temperate forests, unburned OC consisted mainly of (di-)O-alkyl (polysaccharides) and few aromatic structures, probably due to dominant input of lichen biomass. Fire converted OC into alkyl and aromatic structures, the latter consisting of heterocyclic macromolecules and small clusters of condensed carbon. The small cluster size explained the small BC concentrations determined using a degradative molecular marker method. Fire increased BC stocks (16 g kg-1 OC) by 40% which translates into a net-conversion rate of 0.7% (0.35% of net primary production) unburned OC to BC. Here, however, BC was not a major fraction of soil OC pool in unburned or burned forest floor, either due to rapid in situ degradation or relocation.

  17. Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest

    NASA Astrophysics Data System (ADS)

    Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.

    2015-02-01

    Vegetation - atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year Eddy Covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all time scales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heat wave of 2003. We conclude that

  18. Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest

    NASA Astrophysics Data System (ADS)

    Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.

    2015-07-01

    The vegetation-atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year eddy covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (Lund-Potsdam-Jena General Ecosystem Simulator; LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all timescales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated

  19. [Dose dependence of the frequency of morphological changes in Scots pine (Pinus sylvestris L.) in Chernobyl exclusion zone].

    PubMed

    Ioshchenko, V I; Bondar', Iu O

    2009-01-01

    Patterns and main parameters of the dynamics of radioactive contamination of organs of Scots pine in the plantations of Chernobyl zone are presented. On the basis of this data and within the frameworks of the microdosimetric approach, the dosimetric model for the apical meristem of the pine trees was created. The dose rates were calculated for the trees of the experimental array growing at three sites in the exclusion zone and one outside, which differed by three orders of magnitude of the trees' radioactive contamination levels. Comparable high, up to several Gy/y, levels of the dose rate of chronic irradiation were shown for the plantation at the Red Forest site. Such an expressed radiation factor results in a high frequency of the morphological changes at this site. The dose rate-effect dependence was formulated for this type of the radiobiological effects. PMID:19368333

  20. [Dose dependence of the frequency of morphological changes in Scots pine (Pinus sylvestris L.) in Chernobyl exclusion zone].

    PubMed

    Ioshchenko, V I; Bondar', Iu O

    2009-01-01

    Patterns and main parameters of the dynamics of radioactive contamination of organs of Scots pine in the plantations of Chernobyl zone are presented. On the basis of this data and within the frameworks of the microdosimetric approach, the dosimetric model for the apical meristem of the pine trees was created. The dose rates were calculated for the trees of the experimental array growing at three sites in the exclusion zone and one outside, which differed by three orders of magnitude of the trees' radioactive contamination levels. Comparable high, up to several Gy/y, levels of the dose rate of chronic irradiation were shown for the plantation at the Red Forest site. Such an expressed radiation factor results in a high frequency of the morphological changes at this site. The dose rate-effect dependence was formulated for this type of the radiobiological effects.

  1. [Cytogenetic effects in Scots pine populations from the Briansk region contaminated by radioactive pollutants as a result of the Chernobyl NPP accident].

    PubMed

    Geras'kin, S A; Dikareva, N S; Udalova, A A; Spiridonov, S I; Dikarev, V G

    2008-01-01

    Aberrant cell frequency in root meristem of germinated seeds collected from four populations of Scots pine in the Bryansk Region that was radioactively contaminated as a result of the accident at the Chernobyl NPP in 1986 significantly exceeded the control level durring all three years of study (2003-2005). An analysis of cytogenetic disturbances occurrence in dependence on radiation situation characteristics such as 137Cs and 90Sr content in pine cones, 137Cs specific activity in soil, and calculated doses absorbed by pine tree generative organs shows an increase in biological effect with dose burden increasing. Findings obtained are in agreement with the results of our previous studies on cytogenetic effects induction in Scots pine populations experiencing chronic radiation (the 30-km zone of the ChNPP) and technogenic (a radioactive waste reprocessing facility) impact.

  2. Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper.

    PubMed

    Roitto, M; Rautio, P; Julkunen-Tiitto, R; Kukkola, E; Huttunen, S

    2005-10-01

    Studies were done on the effects of elevated soil concentrations of copper (Cu) and (Ni) on foliar carbohydrates and phenolics in Scots pine (Pinus sylvestris L.). Four year-old seedlings were planted in pots filled with metal-treated mineral forest soil in early June. The experimental design included all combinations of four levels of Cu (0, 25, 40 and 50 mg kg(-1) soil dw) and Ni (0, 5, 15 and 25 mg kg(-1) soil dw). Current year needles were sampled for soluble sugar, starch and phenolics at the end of September. Ni increased sucrose concentration in the needles, indicating disturbances in carbohydrate metabolism. Trees exposed to Ni had higher concentrations of condensed tannins compared with controls. In contrast, concentrations of several other phenolic compounds decreased when seedlings were exposed to high levels of Cu or to a combination of Ni and Cu. The results suggest that concentrations of phenolics in Scots pine needles vary in their responses to Ni and Cu in the forest soil.

  3. Are N and S deposition altering the mineral composition of Norway spruce and Scots pine needles in Finland?

    PubMed

    Luyssaert, Sebastiaan; Sulkava, Mika; Raitio, Hannu; Hollmén, Jaakko

    2005-11-01

    Data from a large-scale foliar survey were used to calculate the extent to which N and S deposition determined the mineral composition of Scots pine and Norway spruce needles in Finland. Foliar data were available from 367 needle samples collected on 36 plots sampled almost annually between 1987 and 2000. A literature study of controlled experiments revealed that acidifying deposition mediates increasing N and S concentrations, and decreasing Mg:N and Ca:Al ratios in the needles. When this fingerprint for N and S elevated deposition on tree foliage was observed simultaneously with increased N and S inputs, it was considered sufficient evidence for assuming that acidifying deposition had altered the mineral composition of tree needles on that plot in the given year. Evidence for deposition-induced changes in the mineral composition of tree foliage was calculated on the basis of a simple frequency model. In the late eighties the evidence was found on 43% of the Norway spruce and 27% of Scots pine plots. The proportion of changed needle mineral composition decreased to below 8% for both species in the late nineties.

  4. Dynamic relationship between the VOC emissions from a Scots pine stem and the tree water relations

    NASA Astrophysics Data System (ADS)

    Vanhatalo, Anni; Chan, Tommy; Aalto, Juho; Kolari, Pasi; Rissanen, Kaisa; Hakola, Hannele; Hölttä, Teemu; Bäck, Jaana

    2013-04-01

    The stems of coniferous trees contain huge storages of oleoresin. The composition of oleoresin depends on e.g. tree species, age, provenance, health status, and environmental conditions. Oleoresin is under pressure in the extensive network of resin ducts in wood and needles. It flows out from a mechanically damaged site to protect the tree by sealing the wounded site. Once in contact with air, volatile parts of oleoresin evaporate, and the residual compounds harden to make a solid protective seal over damaged tissues. The hardening time of the resin depends on evaporation rate of the volatiles which in turn depends on temperature. The storage is also toxic to herbivores and attracts predators that restrict the herbivore damage. Despite abundant knowledge on emissions of volatile isoprenoids from foliage, very little is known about their emissions from woody plant parts. We set up an experiment to measure emissions of isoprene and monoterpenes as well as two oxygenated VOCs, methanol and acetone, from a Scots pine (Pinus sylvestris) stem and branches. The measurements were started in early April and continued until mid-June, 2012. Simultaneously, we measured the dynamics of whole stem and xylem diameter changes, stem sap flow rate and foliage transpiration rate. These measurements were used to estimate A) pressure changes inside the living stem tissue and the water conducting xylem, B) the refilling of stem water stores after winter dehydration (the ratio of sap flow at the stem base to water loss by foliage), and C) the increase in tree water transport capacity (the ratio of maximum daily sap flow rate to the diurnal variation in xylem pressure) during spring due to winter embolism refilling and/or the temperature dependent root water uptake capacity. The results show that already very early in spring, significant VOC emissions from pine stem can be detected, and that they exhibit a diurnal cycle similar to that of ambient temperature. During the highest emission

  5. Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris).

    PubMed

    Landolt, W; Bühlmann, U; Bleuler, P; Bucher, J B

    2000-09-01

    Current-year seedlings of beech, ash, Norway spruce and Scots pine were exposed during one growing season to different, but moderate, ozone (O(3)) scenarios representative for Switzerland (50, 85, 100% ambient, 50% ambient+30 nl l(-1)) in open-top chambers (OTCs) and to ambient O(3) concentrations in the field. Biomass significantly decreased with increasing O(3) dose in all species except for spruce. Losses of 25.5% (ash), 17.4% (beech), 9.9% (Scots pine) were found per 10 microl l(-1) h accumulated O(3) exposure over a threshold concentration of 40 nl l(-1) during daylight hours (AOT40). Ratios of root/shoot biomass (RSR) also significantly decreased with increasing AOT40 levels in beech and ash, but not in Norway spruce and Scots pine. The data show that the deciduous species beech and ash were more susceptible to O(3) with respect to RSR and biomass than the coniferous species Norway spruce and Scots pine.

  6. The effect of simulated acid rain on the biochemical composition of Scots pine (Pinus sylvestris L.) needles.

    PubMed

    Shumejko, P; Ossipov, V; Neuvonen, S

    1996-01-01

    The effects of prolonged simulated acid rain on the biochemistry of Scots pine needles were studied in Finnish Lapland. Pine trees were exposed by spraying the foliage and soil with either clean water or simulated acid rain (SAR; both sulphuric and nitric acids) over the period 1985-1991. The concentrations of carbohydrates (starch, glucose, fructose, sucrose) in one-year-old pine needles were not affected by SAR-treatments. The SAR-treatments did not have significant effects on protein bound amino acids, which was true also for most of the free amino acids. However, the citrulline concentration was over three-fold greater in the foliage of pines exposed to SAR of pH 3 compared to irrigated controls. The concentrations of total phenolics, individual low molecular weight phenolics and soluble proanthocyanidins were not affected by the treatments, but insoluble proanthocyanidins had increased in acid-treated trees. Some of the studied biochemical compounds showed significant differences between two sub-areas (similar treatments) only 120 m apart.

  7. Seasonal dynamics of mobile carbohydrates and stem growth in Scots pine (Pinus sylvestris) exposed to drought

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter; Kofler, Werner; Schuster, Roman; Swidrak, Irene; Gruber, Andreas

    2014-05-01

    Tree growth requires a continuous supply of carbon as structural material and as a source for metabolic energy. To detect whether intra-annual stem growth is related to changes in carbon allocation, we monitored seasonal dynamics of shoot and radial growth and concentrations of mobile carbohydrates (NSC) in above- and belowground organs of Scots pine (Pinus sylvestris L.). The study area is situated within an inner Alpine dry environment (750 m asl, Tyrol, Austria), which is characterized by recurring drought periods at the start of the growing season in spring and limited water holding capacity of nutrient deficient, shallow stony soils. Shoot elongation was monitored on lateral branches in the canopy and stem radius changes were continuously followed by electronic band dendrometers. Daily radial stem growth and tree water deficit (ΔW) were extracted from dendrometer records. ΔW is regarded a reliable measure of drought stress in trees and develops when transpirational water loss from leaves exceeds water uptake by the root system. Daily radial stem growth and ΔW were related to environmental variables and determination of NSC was performed using specific enzymatic assays. Results revealed quite early culmination of aboveground growth rates in late April (shoot growth) and late May (radial growth), and increasing accumulation of NSC in coarse roots in June. NSC content in roots peaked at the end of July and thereafter decreased again, indicating a shift in carbon allocation after an early cessation of aboveground stem growth. ΔW was found to peak in late summer, when high temperatures prevailed. That maximum growth rates of aboveground organs peaked quite before precipitation increased during summer is related to the finding that ΔW and radial stem growth were more strongly controlled by the atmospheric environment, than by soil water content. We conclude that as a response to the seasonal development of ΔW a shift in carbon allocation from aboveground

  8. Historical changes in lead concentrations in tree-rings of sycamore, oak and Scots pine in north-west England.

    PubMed

    Watmough, Shaun A; Hutchinson, Thomas C

    2002-07-01

    Lead concentrations in tree rings of sycamore (Acer pseudoplatanus L.), oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.) sampled at a parkland in north-west England were measured in wood formed since the mid-1800s. Concentrations of Pb in Scots pine and oak peaked in wood formed between 1900 and 1940, most likely because of Pb accumulation in heartwood, indicating that oak and Scots pine are unsuitable for monitoring temporal changes in Pb deposition at the study site. In contrast, Pb concentrations in sycamore, a species that has similar heartwood and sapwood chemistry, were relatively constant in wood formed between the mid-1800s and 1950. Lead concentrations decreased steadily in sycamore tree rings formed after the 1950s, and decreased more abruptly in wood formed after 1985. This sharp decrease in wood Pb cannot be due to decreases in soil Pb concentration. Stable Pb isotope analysis was used to further investigate Pb patterns in sycamore wood. Excess 206Pb/207Pb ratios in tree-rings of sycamore were relatively constant, approximately 1.17, in wood formed prior to the 1930s, but decreased steadily thereafter reaching a minimum value of approximately 1.16 in wood formed between 1975 and 1985 after which time 206Pb/207Pb ratios increased. This pattern is consistent with changes in Pb isotope ratios measured in peat, sediment and aerosol samples in the UK. However, the magnitude of the decrease in 206Pb/207Pb (largely due to gasoline Pb) is considerably lower than in other studies and our estimates indicate that less than 20% of the total Pb in sycamore wood measured since the mid-1800s is derived from gasoline emissions. A more likely explanation for the pattern of Pb observed in sycamore tree rings is that soil Pb accumulates within rings of the diffuse porous wood over a number of years. Such uptake patterns would result in lower Pb concentrations in the outer (more recently formed) tree rings, which coincide with recent reductions in Pb deposition

  9. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland.

    PubMed

    Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra

    2012-01-01

    Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.

  10. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland.

    PubMed

    Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra

    2012-01-01

    Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology. PMID:21174127

  11. Tree rings of Scots pine ( Pinus sylvestris L.) as a source of information about past climate in northern Poland

    NASA Astrophysics Data System (ADS)

    Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra

    2012-01-01

    Scots pine ( Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.

  12. Mountain pine beetle host-range expansion threatens the boreal forest

    PubMed Central

    Cullingham, Catherine I; Cooke, Janice E K; Dang, Sophie; Davis, Corey S; Cooke, Barry J; Coltman, David W

    2011-01-01

    The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant. PMID:21457381

  13. Mountain pine beetle host-range expansion threatens the boreal forest.

    PubMed

    Cullingham, Catherine I; Cooke, Janice E K; Dang, Sophie; Davis, Corey S; Cooke, Barry J; Coltman, David W

    2011-05-01

    The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant.

  14. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography.

    PubMed

    Ekeberg, Dag; Flaete, Per-Otto; Eikenes, Morten; Fongen, Monica; Naess-Andresen, Carl Fredrik

    2006-03-24

    A method for quantitative determination of extractives from heartwood of Scots pine (Pinus sylvestris L.) using gas chromatography (GC) with flame ionization detection (FID) was developed. The limit of detection (LOD) was 0.03 mg/g wood and the linear range (r = 0.9994) was up to 10 mg/g with accuracy within +/- 10% and precision of 18% relative standard deviation. The identification of the extractives was performed using gas chromatography combined with mass spectrometry (GC-MS). The yields of extraction by Soxhlet were tested for solid wood, small particles and fine powder. Small particles were chosen for further analysis. This treatment gave good yields of the most important extractives: pinosylvin, pinosylvin monomethyl ether, resin acids and free fatty acids. The method is used to demonstrate the variation of these extractives across stems and differences in north-south direction. PMID:16472534

  15. Constraining key hydraulic parameters of Scots Pine through sapflow data assimilation along a climatic gradient

    NASA Astrophysics Data System (ADS)

    Sus, O.; Martínez-Vilalta, J.; Poyatos, R.; Williams, M.

    2012-04-01

    In order to model the water balance of a forest ecosystem and predict its response to environmental changes, the response of tree transpiration to environmental conditions needs to be simulated. The plant hydraulic system can be conceptualised as a series of hydraulic resistances. The flow of water between any two locations of this system is proportional to the hydraulic conductivity and the water potential gradient linking them. The different components of the plant hydraulic system can change during drought as a result of varying stomatal conductance, xylem hydraulics and the regulation of leaf and root area. However, within this soil-plant-atmosphere continuum (SPAC), physical processes of water flow are better understood than plant hydraulics. For example, the effects of leaf microclimate on stomatal regulation of transpiration are not well understood. Moreover, little is known about how key hydraulic traits vary seasonally or as a function of environmental conditions. Within corresponding models, empirical parameters are introduced as surrogates for a range of complex and/or unknown mechanisms. Data assimilation (DA) methodology has shown to be a useful technique for model parameter estimation in various disciplines of the geosciences. However, few studies have applied DA to constrain parameter values within the SPAC in forest transpiration models. DA could prove to be particularly useful in quantifying these parameters, which are often not directly measurable. Sapflow data are highly appropriate for this purpose, as they are the measurable end-product of water transport through the SPAC in response to environmental conditions. Accordingly, these data provide temporally highly resolved, direct constraints on associated key parameters within models. In this study, we assimilated sapflow data from three different Scots Pine sites - following a climatic gradient from the southern dry limit of its distribution (southern Catalunya, Spain) up to the northern

  16. Combined effects of ozone and nitrogen on secondary compounds, amino acids, and aphid performance in Scots pine

    SciTech Connect

    Kainulainen, P.; Holopainen, J.K.; Holopainen, T.

    2000-02-01

    Combined effects of O{sub 3} and N supply on Scots pine (Pinus sylvestris L.) were studied in two separate growth chamber experiments exposing seedlings to 0, 0.075, 0.15, and 0.3 {micro}L/L of O{sub 3} during 8 h/d, 5 d/wk for a period of 5 wk. Seedlings were fertilized with low, medium, and high levels of N. Ozone and N availability affected concentrations of several primary and secondary metabolites. More changes on metabolites were detected in Exp. 1 (with seedlings ceasing their annual growth) than in Exp. 2 (with seedlings actively growing). Overall, high O{sub 3} exposure levels significantly decreased concentrations of monoterpenes and increased concentrations of resin acids. Concentrations of total phenolics were not affected by O{sub 3} exposure. Mostly lower concentrations of monoterpenes and resin acids were found at a medium N-fertilization level than at low and high N-fertilization levels, while total phenolic concentration decreased by enhanced N availability. In Exp. 1, significantly elevated concentrations of free amino acids were found at O{sub 3} concentration of 0.3 {micro}L/L. Nitrogen availability did not have remarkable effects on amino acid concentrations. In Exp. 1, both {sub 3} and N had a significant effect on the MRGR of the aphid Schizolachnus pineti. In Exp. 2, the weight of the females and nymphs and the total number of reproduced nymphs were significantly affected by O{sub 3} and N. Only a few interaction effects were found, suggesting that the N supply does not significantly modify O{sub 3}-induced effects on studied primary and secondary compounds and aphid performance in Scots pine seedlings.

  17. Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions.

    PubMed

    Villari, Caterina; Faccoli, Massimo; Battisti, Andrea; Bonello, Pierluigi; Marini, Lorenzo

    2014-09-01

    Plants protect themselves from pathogens and herbivores through fine-tuned resource allocation, including trade-offs among resource investments to support constitutive and inducible defences. However, empirical research, especially concerning conifers growing under natural conditions, is still scarce. We investigated the complexity of constitutive and induced defences in a natural Scots pine (Pinus sylvestris L.) stand under growth-limiting conditions typical of alpine environments. Phenotypic trade-offs at three hierarchical levels were tested by investigating the behaviour of phenolic compounds and terpenoids of outer bark and phloem. We tested resource-derived phenotypic correlations between (i) constitutive and inducible defences vs tree ring growth, (ii) different constitutive defence metabolites and (iii) constitutive concentration and inducible variation of individual metabolites. Tree ring growth was positively correlated only with constitutive concentration of total terpenoids, and no overall phenotypic trade-offs between different constitutive defensive metabolites were found. At the lowest hierarchical level tested, i.e., at the level of relationship between constitutive and inducible variation of individual metabolites, we found that different compounds displayed different behaviours; we identified five different defensive metabolite response types, based on direction and strength of the response, regardless of tree age and growth rate. Therefore, under growth-limiting field conditions, Scots pine appears to utilize varied and complex outer bark and phloem defence chemistry, in which only part of the constitutive specialized metabolism is influenced by tree growth, and individual components do not appear to be expressed in a mutually exclusive manner in either constitutive or inducible metabolism.

  18. Influence of canopy traits on spatio-temporal variability of throughfall in Mediterranean Downy oak and Scots pine stands

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Gallart, Francesc

    2014-05-01

    The spatio-temporal variability of throughfall is the result of the interaction of biotic factors, related to the canopy traits, and abiotic factors, linked to the meteorological conditions. This variability may lead to significant differences in the volume of water and solutes that reach the ground in each location, and beyond in the hydrological and biogeochemical dynamics of forest soils. Two forest stands in Mediterranean climatic conditions were studied to analyse the role of biotic and abiotic factors in the temporal and spatial redistribution of throughfall. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42º 12'N, 1º 49'E). The study plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consisted of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover were also automatically recorded. Canopy cover as well as biometric characteristics of the plots were also regularly measured. The results indicate a temporal persistence of throughfall in both stands, as observed elsewhere. However, for the oak plot the seasonal evolution of canopy traits added additional variability, with higher variability in summer and different locations of wet and dry spots depending on the season. Furthermore, this work investigates the influence of canopy structure on the spatial variability of throughfall by analysing a large set of forest parameters, from main canopy traits to detailed leaves and wood characteristics

  19. Long term effects of forest fires to soil C content and soil CO_{2} efflux in hemiboreal Scots pine forests of Estonia.

    NASA Astrophysics Data System (ADS)

    Köster, Kajar; Metslaid, Marek; Orumaa, Argo; Parro, Kristi; Jõgiste, Kalev; Berninger, Frank; Pumpanen, Jukka; Köster, Egle

    2016-04-01

    Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon (C) cycle. Especially the soil organic matter pool in boreal forests is an important C storage with a long C turnover time, but fire frequencies that are expected to increase with changing climate, can change that. We compared the initial recovery of C pools and CO2 efflux following fire disturbances in Scots pine (Pinus sylvesteris L.) stands with different time since fire. The study areas are located in hemiboreal vegetation zone, in northwestern Estonia, in Vihterpalu. Six areas (with extensive fires 200 ha and more) were chosen for study: fire in a year 1837, 1940, 1951, 1982, 1997, and 2008. In all areas we are dealing with stand replacing fires where all (or almost all) of the stand was destroyed by fire. On every area we established three permanent sample plots. Soil respiration was measured manually from all sample plots (measuring interval of two - three weeks). Manual chamber measurements are performed on 5 collars (north - south orientated and the distance between collars is 5 m) at each sample plot from May till November 2015. To characterize the soil C and N content and fine root biomass at the sites, 5 soil cores (0.5 m long and 0.05 m in diameter) were taken from each sample plot. Our results show that forest fire has a substantial effect on the C content in the top soil layer, but not in the humus layer and in mineral soil layers. Soil respiration showed similar chronological response to the time since the forest fire indicating that substantial proportion of the respiration was originating from the very top of the soil. Soil respiration values were lowest on the area where the fire was in a year 2008 and the respiration values followed also seasonal pattern being highest in August and lowest in May and November. The CO2 effluxes were lowest on newly burned area through

  20. Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in northern Spain.

    PubMed

    Sanz-Ros, Antonio V; Müller, Michael M; San Martín, Roberto; Diez, Julio J

    2015-10-01

    Most plant species harbour a diverse community of endophytic, but their role is still unknown in most cases, including ecologically and economically important tree species. This study describes the culturable fungal endophytic community of Pinus sylvestris L. twigs in northern Spain and its relationship with diametric growth of the host. In all, 360 twig samples were collected from 30 Scots pines in fifteen stands. Isolates were obtained from all twig samples and 43 fungal taxa were identified by morphogrouping and subsequent ITS rDNA sequencing. All isolates were Ascomycetes, being Dothideomycetes and Sordariomycetes the most abundant classes. Half of the species were host generalists while the others were conifer or pine specialists. We found three new endophytic species for the Pinaceae: Biscogniauxia mediterranea, Phaeomoniella effusa and Plectania milleri, and additional six new species for P. sylvestris: Daldinia fissa, Hypocrea viridescens, Nigrospora oryzae, Ophiostoma nigrocarpum, Penicillium melinii and Penicillium polonicum. The endophytic community of fast and slow growing trees showed differences in species composition, abundance and evenness, but not in diversity. Phoma herbarum was associated to fast growing trees and Hypocrea lixii to those growing slow. Our results support the hypothesis that some endophytic species may affect growth of P. sylvestris.

  1. Chronic irradiation of Scots pine trees (Pinus sylvestris) in the Chernobyl exclusion zone: dosimetry and radiobiological effects.

    PubMed

    Yoschenko, Vasyl I; Kashparov, Valery A; Melnychuk, Maxim D; Levchuk, Svjatoslav E; Bondar, Yulia O; Lazarev, Mykola; Yoschenko, Maria I; Farfán, Eduardo B; Jannik, G Timothy

    2011-10-01

    To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 y old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developed dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y(-1)) to approximately 7 Gy y(-1) in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified, and correlations for radiation effects occurring on the morphological and cellular level were established. PMID:21878765

  2. Microfibril angle in wood of Scots pine trees (Pinus sylvestris) after irradiation from the Chernobyl nuclear reactor accident.

    PubMed

    Tulik, Mirela; Rusin, Aleksandra

    2005-03-01

    The secondary cell wall structure of tracheids of Scots pine (Pinus sylvestris L.), especially the angle of microfibrils in the S(2) layer, was examined in wood deposited prior to and after the Chernobyl accident in 1986. Microscopic analysis was carried out on wood samples collected in October 1997 from breast height of three pine trees 16, 30 and 42 years old. The polluted site was located in a distance of 5 km south from the Chernobyl nuclear power plant where radioactive contamination in 1997 was 3.7 x 10(5) kBq m(-2). Anatomical analysis showed that the structure of the secondary cell wall in tracheids formed after the Chernobyl accident was changed. Changes occurred both in S(2) and S(3) layers. The angle of microfibrils in S(2) layer in wood deposited after the Chernobyl accident was different in comparison to this measured in wood formed prior to the disaster. The intensity of the changes, i.e. alteration of the microfibrils angle in S(2) layer and unusual pattern of the S(3) layer, depended on the age of the tree and was most intensive in a young tree.

  3. Chronic irradiation of Scots pine trees (Pinus sylvestris) in the Chernobyl exclusion zone: dosimetry and radiobiological effects.

    PubMed

    Yoschenko, Vasyl I; Kashparov, Valery A; Melnychuk, Maxim D; Levchuk, Svjatoslav E; Bondar, Yulia O; Lazarev, Mykola; Yoschenko, Maria I; Farfán, Eduardo B; Jannik, G Timothy

    2011-10-01

    To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 y old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developed dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y(-1)) to approximately 7 Gy y(-1) in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified, and correlations for radiation effects occurring on the morphological and cellular level were established.

  4. CHRONIC IRRADIATION OF SCOTS PINE TREES (PINUS SYLVESTRIS) IN THE CHERNOBYL EXCLUSION ZONE: DOSIMETRY AND RADIOBIOLOGICAL EFFECTS

    SciTech Connect

    Farfan, E.; Jannik, T.

    2011-10-01

    To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developed dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.

  5. The use of plants as regular food in ancient subarctic economies: a case study based on Sami use of Scots pine innerbark.

    PubMed

    Bergman, Ingela; Östlund, Lars; Zackrisson, Olle

    2004-01-01

    This study combines ethnological, historical, and dendroecological data from areas north of the Arctic Circle to analyze cultural aspects of Sami use of Scots pine (Pinus sylvestris L.) inner bark as regular food. Bark was peeled in June when trees were at the peak of sapping, leaving a strip of undamaged cambium so the tree survived. As a result, it is possible to date bark-peeling episodes using dendrochronology. The paper argues that the use of Scots pine inner bark reflects Sami religious beliefs, ethical concerns, and concepts of time, all expressed in the process of peeling the bark. A well-developed terminology and a set of specially designed tools reveal the technology involved in bark peeling. Consistent patterns with respect to the direction and size of peeling scars found across the region demonstrate common values and standards. Peeling direction patterns and ceremonial meals relating to bark probably reflect ritual practices connected to the sun deity, Biejvve.

  6. The use of plants as regular food in ancient subarctic economies: a case study based on Sami use of Scots pine innerbark.

    PubMed

    Bergman, Ingela; Östlund, Lars; Zackrisson, Olle

    2004-01-01

    This study combines ethnological, historical, and dendroecological data from areas north of the Arctic Circle to analyze cultural aspects of Sami use of Scots pine (Pinus sylvestris L.) inner bark as regular food. Bark was peeled in June when trees were at the peak of sapping, leaving a strip of undamaged cambium so the tree survived. As a result, it is possible to date bark-peeling episodes using dendrochronology. The paper argues that the use of Scots pine inner bark reflects Sami religious beliefs, ethical concerns, and concepts of time, all expressed in the process of peeling the bark. A well-developed terminology and a set of specially designed tools reveal the technology involved in bark peeling. Consistent patterns with respect to the direction and size of peeling scars found across the region demonstrate common values and standards. Peeling direction patterns and ceremonial meals relating to bark probably reflect ritual practices connected to the sun deity, Biejvve. PMID:21774149

  7. Mycorrhiza formation is not needed for early growth induction and growth-related changes in polyamines in Scots pine seedlings in vitro.

    PubMed

    Sarjala, Tytti; Niemi, Karoliina; Häggman, Hely

    2010-07-01

    Ectomycorrhizal (ECM) fungi have been shown to improve growth of the host plant before the formation of physical ECM structures, i.e. during the so-called pre-mycorrhizal phase. In the present study, changes in growth and the concentrations of individual polyamines (PAs) were followed during the mycorrhiza formation in Scots pine (Pinus sylvestris) seedlings in the presence of two ECM fungi, Pisolithus tinctorius and Paxillus involutus. The two fungus stains were chosen because they differed in infection characteristics as well as in PA and auxin production. The results were compared to our earlier study with two Suillus variegatus strains forming ECMs with Scots pine seedlings in vitro. Paxillus was not able to form ECMs whereas Pisolithus formed ECM association with Scots pine seedlings within two weeks. However, Paxillus enhanced the growth of the seedlings more than Pisolithus. Paxillus also increased putrescine (Put) concentrations of the seedlings in the pre-mycorrhizal phase much more than Pisolithus. A similar trend was observed in the free spermidine (Spd) in stems, whereas in the needles Paxillus decreased free Spd concentration. Pisolithus caused a threefold greater increase in root free Spd than Paxillus. Effects of Paxillus on the growth and PA fluctuation, excluding root free Spd, of the host plant resembled that observed in our previous in vitro study on S. variegatus-Scots pine interaction. Therefore, changes in specific PA concentrations in the pre-mycorrhizal phase seem to be related to growth induction by the ECM fungus rather than to mycorrhiza formation. Moreover, we suggest that growth induction in host plants is not necessarily followed by ECM formation.

  8. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    PubMed

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.

  9. Rapid changes in the range limits of Scots pine 4000 years ago

    SciTech Connect

    Gear, A.J.; Huntley, B. )

    1991-02-01

    Paleoecological data provide estimates of response rates to past climate changes. Fossil Pinus sylvestris stumps in far northern Scotland demonstrate former presence of pine trees where conventional pollen evidence of pine forests is lacking. Radiocarbon, dendrochronological, and fine temporal-resolution palynological data show that pine forest were present for about four centuries some 4,000 years ago; the forests expanded and then retreated rapidly some 70 to 80 kilometers. Despite the rapidity of this response to climate change, it occurred at rates slower by an order of magnitude than those necessary to maintain equilibrium with forecast climate changes attributed to the greenhouse effect.

  10. Nitrogen fertilizer factory effects on the amino acid and nitrogen content in the needles of Scots pine.

    PubMed

    Kupsinskiene, E

    2001-12-01

    The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p < 0.05) differences between the site at a 0.5-km distance from the factory and the site at a 17-km distance from the factory--with the site closest to the factory showing the highest concentrations of protein (119%), total arginine (166%), total other amino acids (depending on amino acid, the effect ranged between 119 and 149%), free arginine (771%), other free amino acids (glutamic acid, threonine, serine, lysine--depending on amino acid, the effect ranged between 162 and 234%), also the longest needles, widest diameter, largest surface area, and heaviest dry weight (respectively, 133, 110, 136, and 169%). The gradient of nitrogen concentration in the needles was assessed on the selected plots over the period of 1995-2000, with the highest concentration (depending on year, 119 to 153%) documented in the site located 0.5 km from the factory. Significant correlations were determined between the total amino acid contents (r = 0.448 -0.939, p < 0.05), some free amino acid (arginine, aspartic acid, glutamic acid, lysine, threonine, and serine) contents (r = 0.418 - 0.975, p < 0.05), and air pollutant concentration at the sites, the distance between the sites and the factory, and characteristics of the needles. No correlation was found between free or total arginine content and defoliation or retention of the needles. In conclusion, it was revealed that elevated mean monthly concentration of ammonia (26 microg m(-3)) near the nitrogen fertilizer factory caused changes in nitrogen metabolism, especially increasing (nearly eight times

  11. Nitrogen fertilizer factory effects on the amino acid and nitrogen content in the needles of Scots pine.

    PubMed

    Kupsinskiene, E

    2001-12-04

    The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p < 0.05) differences between the site at a 0.5-km distance from the factory and the site at a 17-km distance from the factory--with the site closest to the factory showing the highest concentrations of protein (119%), total arginine (166%), total other amino acids (depending on amino acid, the effect ranged between 119 and 149%), free arginine (771%), other free amino acids (glutamic acid, threonine, serine, lysine--depending on amino acid, the effect ranged between 162 and 234%), also the longest needles, widest diameter, largest surface area, and heaviest dry weight (respectively, 133, 110, 136, and 169%). The gradient of nitrogen concentration in the needles was assessed on the selected plots over the period of 1995-2000, with the highest concentration (depending on year, 119 to 153%) documented in the site located 0.5 km from the factory. Significant correlations were determined between the total amino acid contents (r = 0.448 -0.939, p < 0.05), some free amino acid (arginine, aspartic acid, glutamic acid, lysine, threonine, and serine) contents (r = 0.418 - 0.975, p < 0.05), and air pollutant concentration at the sites, the distance between the sites and the factory, and characteristics of the needles. No correlation was found between free or total arginine content and defoliation or retention of the needles. In conclusion, it was revealed that elevated mean monthly concentration of ammonia (26 microg m(-3)) near the nitrogen fertilizer factory caused changes in nitrogen metabolism, especially increasing (nearly eight times

  12. Actinobacteria possessing antimicrobial and antioxidant activities isolated from the pollen of scots pine (Pinus sylvestris) grown on the Baikal shore.

    PubMed

    Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2016-10-01

    Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens. PMID:27392610

  13. Molecular identification and relative abundance of cryptic Lophodermium species in natural populations of Scots pine, Pinus sylvestris L.

    PubMed

    Reignoux, Sabrina N A; Green, Sarah; Ennos, Richard A

    2014-01-01

    The multi-locus phylogenetic species recognition approach and population genetic analysis of Amplified Fragment Length Polymorphism (AFLP) markers were used to delineate Lophodermium taxa inhabiting needles of Scots pine (Pinus sylvestris) in native pinewoods within Scotland. These analyses revealed three major lineages corresponding to the morphological species Lophodermium seditiosum and Lophodermium conigenum, fruiting on broken branches, and Lophodermium pinastri, fruiting on naturally fallen needles. Within L. pinastri three well supported sister clades were found representing cryptic taxa designated L. pinastri I, L. pinastri II, and L. pinastri III. Significant differences in mean growth rate in culture were found among the cryptic taxa. Taxon-specific primers based on ITS sequences were designed and used to classify over 500 Lophodermium isolates, derived from fallen needles of P. sylvestris in three Scottish and one French pinewood site, into the three L. pinastri cryptic taxa. Highly significant differences in the relative abundance of the three taxa were found among the Scottish pinewood sites, and between the French and all of the Scottish sites.

  14. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Rossi, P. M.; Kløve, B.

    2015-04-01

    Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D sandy sediment profile spatially to estimate transient recharge in an unconfined esker aquifer. The modelling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover) and timing (thickness of the unsaturated zone) of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI) using forestry inventory data. Uncertainty in the parameters controlling sediment hydraulic properties and evapotranspiration (ET) was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation (WTF) method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount. Soil evaporation (SE) compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated thickness and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers.

  15. Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scots pine. [Pinus sylvestris L

    SciTech Connect

    Skaerby, L.; Troeng, E.; Bostroem, C.

    1987-09-01

    Ozone uptake, transpiration, net photosynthesis, and dark respiration were studied in the field by using an open gas exchange system in a 20-year-old stand of Scots pine (Pinus sylvestris L.). A current shoot was treated with ozone concentrations ranging from 120 to 400 ..mu..g x m/sup -3/ during one month. During daytime there was a linear relationship between ozone concentration and ozone uptake, and the deposition rate varied between 0.05 and 0.13 cm x s/sup -1/. Ozone at the highest concentrations seemed to decrease transpiration somewhat during daytime. At night, ozone was taken up only at the highest concentration. Both transpiration and stomatal conductance increased at night when ozone concentration was 250..mu..g x m/sup -3/ and higher. There was no significant influence on the net photosynthetic performance during exposure to ozone. Dark respiration, however, increased throughout the experimental period, and the accumulated respiration was about 60% higher for the ozone-exposed shoot at the end of the experiment.

  16. Gene-pool variation in caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats.

    PubMed

    Provan, J; Soranzo, N; Wilson, N J; McNicol, J W; Forrest, G I; Cottrell, J; Powell, W

    1998-09-22

    We have used polymorphic chloroplast simple-sequence repeats to analyse levels of genetic variation within and between seven native Scottish and eight mainland European populations of Scots pine (Pinus sylvestris L.). Diversity levels for the Scottish populations based on haplotype frequency were far in excess of those previously obtained using monoterpenes and isozymes and confirmed lower levels of genetic variation within the derelict population at Glen Falloch. The diversity levels were higher than those reported in similar studies in other Pinus species. An analysis of molecular variance (AMOVA) showed that small (3.24-8.81%) but significant (p < or = 0.001) portions of the variation existed between the populations and that there was no significant difference between the Scottish and the mainland European populations. Evidence of population substructure was found in the Rannoch population, which exhibited two subgroups. Finally, one of the loci studied exhibited an allele distribution uncharacteristic of the stepwise mutation model of evolution of simple-sequence repeats, and sequencing of the PCR products revealed that this was due to a duplication rather than slippage in the repeat region. An examination of the distribution of this mutation suggests that it may have occurred fairly recently in the Wester Ross region or that it may be evidence of a refugial population.

  17. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    PubMed

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. PMID:27217528

  18. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine.

    PubMed

    Salmon, Yann; Torres-Ruiz, José M; Poyatos, Rafael; Martinez-Vilalta, Jordi; Meir, Patrick; Cochard, Hervé; Mencuccini, Maurizio

    2015-12-01

    Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.

  19. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    PubMed

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity.

  20. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine

    PubMed Central

    Torres‐Ruiz, José M.; Poyatos, Rafael; Martinez‐Vilalta, Jordi; Meir, Patrick; Cochard, Hervé; Mencuccini, Maurizio

    2015-01-01

    Abstract Understanding physiological processes involved in drought‐induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought‐exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non‐defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non‐defoliated trees. Defoliated trees maintained gas exchange while non‐defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non‐structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non‐defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees. PMID:25997464

  1. Fungal succession in relation to volatile organic compounds emissions from Scots pine and Norway spruce leaf litter-decomposing fungi

    NASA Astrophysics Data System (ADS)

    Isidorov, Valery; Tyszkiewicz, Zofia; Pirożnikow, Ewa

    2016-04-01

    Leaf litter fungi are partly responsible for decomposition of dead material, nutrient mobilization and gas fluxes in forest ecosystems. It can be assumed that microbial destruction of dead plant materials is an important source of volatile organic compounds (VOCs) emitted into the atmosphere from terrestrial ecosystems. However, little information is available on both the composition of fungal VOCs and their producers whose community can be changed at different stages of litter decomposition. The fungal community succession was investigated in a litter bag experiment with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) needle litter. The succession process can be divided into a several stages controlled mostly by changes in litter quality. At the very first stages of decomposition the needle litter was colonized by ascomycetes which can use readily available carbohydrates. At the later stages, the predominance of Trichoderma sp., the known producers of cellulolytic enzymes, was documented. To investigate the fungi-derived VOCs, eight fungi species were isolated. As a result of gas chromatographic analyses, as many as 75C2sbnd C15 fungal volatile compounds were identified. Most components detected in emissions were very reactive substances: the principal groups of VOCs were formed by monoterpenes, carbonyl compounds and aliphatic alcohols. It was found that production of VOCs by fungi is species specific: only 10 metabolites were emitted into the gas phase by all eight species. The reported data confirm that the leave litter decomposition is important source of reactive organic compounds under the forest canopy.

  2. Did the ambient ozone affect stem increment of Scots Pines (Pinus sylvestris L.) on territories under regional pollution load? Step III of Lithuanian studies.

    PubMed

    Augustaitis, Algirdas; Augustaitiene, Ingrida; Cinga, Gintautas; Mazeika, Juozapas; Deltuvas, Romualdas; Juknys, Romualdas; Vitas, Adomas

    2007-01-01

    This study aimed to explore if changes in stem increment of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone concentration when the impact of tree dendrometric parameters (age, diameter) and crown defoliation are accounted for. More than 200 dominant and codominant trees from 12 pine stands, for which crown defoliation had been assessed since 1994, were chosen for increment boring and basal area increment computing. Stands are located in Lithuanian national parks, where since 1994-95 Integrated Monitoring Stations have been operating. Findings of the study provide statistical evidence that peak concentrations of ambient ozone (O3) can have a negative impact on pine tree stem growth under field conditions where O3 exposure is below phytotoxic levels.

  3. [Genetic variability in Scots pine populations from the Bryansk region contaminated by radioactive pollutants as a result of the Chernobyl NPP accident].

    PubMed

    Geras'kin, S A; Vanina, Iu S; Dikarev, V G; Novikova, T A; Udalova, A A; Spiridonov, S I

    2009-01-01

    The method of isozymic analysis of megagametophytes is used for an estimation of genetic variability in populations of Scots pine (Pinus sylvestris L.), inhabiting contrast on the level of radioactive contamination (60-17800 Bq/kg on 137Cs) sites in the Bryansk region, undergone to radioactive pollution as a result of the Chernobyl accident. Values of all investigated parameters of genetic variability (heterozygosity, frequency of polymorphic loci, Jivotovski index) and frequencies of the mutations for loss of enzymatic activity increase with a doze absorbed by critical organs of pine trees. Presented data show that a high level of mutation occurrence is intrinsic for descendants (seeds) of pine trees in the investigated populations, and genetic diversity in the populations is essentially conditioned by radiation exposure. PMID:19507681

  4. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.

    PubMed

    Subedi, Nirmal; Sharma, Mahadev

    2013-02-01

    To predict the long-term effects of climate change - global warming and changes in precipitation - on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed-effects approach. Our results showed that the variables long-term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041-2070) diameter growth rate may differ from current (1971-2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate-growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.

  5. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    PubMed

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  6. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees

    PubMed Central

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  7. Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms

    NASA Astrophysics Data System (ADS)

    Calvaruso, Christophe; Turpault, Marie-Pierre; Frey-Klett, Pascale; Uroz, Stéphane; Pierret, Marie-Claire; Tosheva, Zornitza; Kies, Antoine

    2013-04-01

    The release of nutritive elements through apatite dissolution represents the main source of phosphorus, calcium, and several micronutrients (e.g., Zn, Cu) for organisms in non-fertilized forest ecosystems. The aim of this study was to quantify, for the first time, the dissolution rate of apatite grains by tree roots that were or were not associated with a mineral weathering bacterial strain, and by various acids known to be produced by tree roots and soil bacterial strains in open-system flow microcosms. In addition, we explored whether the mobilization of trace elements (including rare earth elements) upon apatite dissolution was affected by the presence of trees and associated microorganisms. The dissolution rate of apatite by Scots pine plants that were or were not inoculated with the strain Burkholderia glathei PML1(12)Rp, and by inorganic (nitric) and organic (citric, oxalic and gluconic) acids at pH 5.5, 4.8, 3.8, 3.5, 3.0, and 2.0 was monitored in two controlled experiments: "plant-bacteria interaction" and "inorganic and organic acids". Analyses of the outlet solutions in the "plant-bacteria interaction" experiment showed that Scots pine roots and B. glathei PML1(12)Rp produced protons and organic acids such as gluconate, oxalate, acetate, and lactate. The weathering budget calculation revealed that Scots pines (with or without PML1(12)Rp) significantly increased (factor > 10) the release of Ca, P, As, Sr, Zn, U, Y, and rare earth elements such as Ce, La, Nd from apatite, compared to control abiotic treatment. Scanning electron microscopy observation confirmed traces of apatite dissolution in contact of roots. Most dissolved elements were taken up by Scots pine roots, i.e., approximately 50% of Ca, 70% of P, 30% of As, 70% of Sr, 90% of Zn, and 100% of U, Y, and rare earth elements. Interestingly, no significant additional effect due to the bacterial strain PML1(12)Rp on apatite dissolution and Scots pine nutrition and growth was observed. The "inorganic

  8. Purification and Characterization of NADP+-Linked Isocitrate Dehydrogenase from Scots Pine1

    PubMed Central

    Palomo, Jesús; Gallardo, Fernando; Suárez, Maria F.; Cánovas, Francisco M.

    1998-01-01

    NADP+-isocitrate dehydrogenase (NADP+-IDH; EC 1.1.1.42) is involved in the supply of 2-oxoglutarate for ammonia assimilation and glutamate synthesis in higher plants through the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Only one NADP+-IDH form of cytosolic localization was detected in green cotyledons of pine (Pinus spp.) seedlings. The pine enzyme was purified and exhibited molecular and kinetic properties similar to those described for NADP+-IDH from angiosperm, with a higher catalytic efficiency (105 m−1 s−1) than the deduced efficiencies for GS and GOGAT in higher plants. A polyclonal antiserum was raised against pine NADP+-IDH and used to assess protein expression in the seedlings. Steady-state levels of NADP+-IDH were coordinated with GS during seed germination and were associated with GS/GOGAT enzymes during chloroplast biogenesis, suggesting that NADP+-IDH is involved in the provision of carbon skeletons for the synthesis of nitrogen-containing molecules. However, a noncoordinated pattern of NADP+-IDH and GS/GOGAT was observed in advanced stages of cotyledon development and in the hypocotyl. A detailed analysis in hypocotyl sections revealed that NADP+-IDH abundance was inversely correlated with the presence of GS, GOGAT, and ribulose-1,5-bisphosphate carboxylase/oxygenase but was associated with the differentiation of the organ. These results cannot be explained by the accepted role of the enzyme in nitrogen assimilation and strongly suggest that NADP+-IDH may have other, as-yet-unknown, biological functions. PMID:9765548

  9. Effects of copper deficiency and copper toxicity on organogenesis and some physiological and biochemical responses of Scots pine (Pinus sylvestris L.) seedlings grown in hydroculture.

    PubMed

    Ivanov, Yury V; Kartashov, Alexander V; Ivanova, Alexandra I; Savochkin, Yury V; Kuznetsov, Vladimir V

    2016-09-01

    The morphological, physiological, and biochemical parameters of 6-week-old seedlings of Scots pine (Pinus sylvestris L.) were studied under deficiency (1.2 nM) and chronic exposure to copper (0.32, 1, 2.5, 5, and 10 μM CuSO4) in hydroculture. The deposit of copper in the seed allowed the seedlings to develop under copper deficiency without visible disruption of growth. The high sensitivity of Scots pine to the toxic effects of copper was shown, which manifested as a significant inhibition of growth and development. The loss of dominance of the main root and a strong inhibition of lateral root development pointed to a lack of adaptive reorganization of the root system architecture under copper excess. A preferential accumulation of copper in the root and a minor translocation in aerial organs confirmed that Scots pine belongs to a group of plants that exclude copper. Selective impairment in the absorption of manganese was discovered, under both deficiency and excess of copper in the nutrient solution, which was independent of the degree of development of the root system. Following 10 μM CuSO4 exposure, the absorption of manganese and iron from the nutrient solution was completely suppressed, and the development of seedlings was secured by the stock of these micronutrients in the seed. The absence of signs of oxidative stress in the seedling organs was shown under deficiency and excess of copper, as evidenced by the steady content of malondialdehyde and 4-hydroxyalkenals. Against this background, no changes in total superoxide dismutase activity in the organs of seedlings were revealed, and the increased content of low-molecular-weight antioxidants was observed in the roots under 1 μM and in the needles under 5 μM CuSO4 exposures. PMID:27225009

  10. Carbon and water vapour exchange in a recently burned east boreal jack pine stand, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Nugent, K.; Strachan, I. B.

    2013-12-01

    The circumpolar boreal forest is an extensive carbon (C) reservoir, storing an estimated 88 petagrams (Pg) of C in vegetation biomass with an additional 471 PgC residing within the soil itself. In the North American boreal, fire disturbance acts as the main stand-renewing agent along an approximate 100-year return interval. However, recent studies suggest that fire intensity and severity are increasing, driven by disproportionate climate warming of the northern latitudes. While estimates of direct C emissions from combustion are becoming more accurate, indirect loss due to post-fire effects on decomposition and regeneration has only recently become a focus of research. Paradoxically, it has been estimated that post-fire C releases are in the order of three times the amount directly released during initial combustion. In this study, we examine carbon and water exchange in a 6-year old, post-burn, jack pine stand located in the eastern James Bay region of the Canadian boreal; an area currently under-represented in fire studies. Over 1.5 years, covering two growing seasons and the spring and fall transitions, we measured net CO2 and energy exchange at the ecosystem level using an eddy covariance tower, and supplemented this with chamber measurements of soil respiration. At this stage of recovery, while demonstrating diurnal and seasonal patterns of exchange, overall the site was a net source of C and water to the atmosphere with brief periods of C sink.

  11. Ozone fumigation under dark/light conditions of Norway Spruce (Picea Abies) and Scots Pine (Pinus Sylvestris)

    NASA Astrophysics Data System (ADS)

    Canaval, Eva; Jud, Werner; Hansel, Armin

    2015-04-01

    Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) represent dominating tree species in the northern hemisphere. Thus, the understanding of their ozone sensitivity in the light of the expected increasing ozone levels in the future is of great importance. In our experiments we investigated the emissions of volatile organic compounds (VOCs) of 3-4 year old Norway Spruce and Scots Pine seedlings under ozone fumigation (50-150 ppbv) and dark/light conditions. For the experiments the plants were placed in a setup with inert materials including a glass cuvette equipped with a turbulent air inlet and sensors for monitoring a large range of meteorological parameters. Typical conditions were 20-25°C and a relative humidity of 70-90 % for both plant species. A fast gas exchange rate was used to minimize reactions of ozone in the gas phase. A Switchable-Reagent-Ion-Time-of-Flight-MS (SRI-ToF-MS) was used to analyze the VOCs at the cuvette outlet in real-time during changing ozone and light levels. The use of H3O+ and NO+ as reagent ions allows the separation of certain isomers (e.g. aldehydes and ketones) due to different reaction pathways depending on the functional groups of the molecules. Within the Picea abies experiments the ozone loss, defined as the difference of the ozone concentration between cuvette inlet and outlet, remained nearly constant at the transition from dark to light. This indicates that a major part of the supplied ozone is depleted non-stomatally. In contrast the ozone loss increased by 50 % at the transition from dark to light conditions within Pinus sylvestris experiments. In this case the stomata represent the dominant loss channel. Since maximally 0.1% of the ozone loss could be explained by gas phase reactions with monoterpenes and sesquiterpenes, we suggest that ozone reactions on the surface of Picea abies represent the major sink in this case and lead to an light-independent ozone loss. This is supported by the fact that we detected

  12. Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor

    PubMed Central

    Naydenov, Krassimir; Senneville, Sauphie; Beaulieu, Jean; Tremblay, Francine; Bousquet, Jean

    2007-01-01

    Background At the last glacial maximum, Fennoscandia was covered by an ice sheet while the tundra occupied most of the rest of northern Eurasia. More or less disjunct refugial populations of plants were dispersed in southern Europe, often trapped between mountain ranges and seas. Genetic and paleobotanical evidences indicate that these populations have contributed much to Holocene recolonization of more northern latitudes. Less supportive evidence has been found for the existence of glacial populations located closer to the ice margin. Scots pine (Pinus sylvestris L.) is a nordic conifer with a wide natural range covering much of Eurasia. Fractures in its extant genetic structure might be indicative of glacial vicariance and how different refugia contributed to the current distribution at the continental level. The population structure of Scots pine was investigated on much of its Eurasian natural range using maternally inherited mitochondrial DNA polymorphisms. Results A novel polymorphic region of the Scots pine mitochondrial genome has been identified, the intron 1 of nad7, with three variants caused by insertions-deletions. From 986 trees distributed among 54 populations, four distinct multi-locus mitochondrial haplotypes (mitotypes) were detected based on the three nad7 intron 1 haplotypes and two previously reported size variants for nad1 intron B/C. Population differentiation was high (GST = 0.657) and the distribution of the mitotypes was geographically highly structured, suggesting at least four genetically distinct ancestral lineages. A cosmopolitan lineage was widely distributed in much of Europe throughout eastern Asia. A previously reported lineage limited to the Iberian Peninsula was confirmed. A new geographically restricted lineage was found confined to Asia Minor. A new lineage was restricted to more northern latitudes in northeastern Europe and the Baltic region. Conclusion The contribution of the various ancestral lineages to the current

  13. Impacts of soil moisture on de novo monoterpene emissions from European beech, Holm oak, Scots pine, and Norway spruce

    NASA Astrophysics Data System (ADS)

    Wu, C.; Pullinen, I.; Andres, S.; Carriero, G.; Fares, S.; Goldbach, H.; Hacker, L.; Kasal, T.; Kiendler-Scharr, A.; Kleist, E.; Paoletti, E.; Wahner, A.; Wildt, J.; Mentel, Th. F.

    2015-01-01

    Impacts of soil moisture on de novo monoterpene (MT) emissions from Holm oak, European beech, Scots pine, and Norway spruce were studied in laboratory experiments. The volumetric water content of the soil, Θ, was used as the reference quantity to parameterize the dependency of MT emissions on soil moisture and to characterize the severity of the drought. When Θ dropped from 0.4 m3 × m-3 to ~0.2 m3 × m-3 slight increases of de novo MT emissions were observed but with further progressing drought the emissions decreased to almost zero. In most cases the increases of MT emissions observed under conditions of mild drought were explainable by increases of leaf temperature due to lowered transpirational cooling. When Θ fell below certain thresholds, MT emissions decreased simultaneously with Θ and the relationship between Θ and MT emissions was approximately linear. The thresholds of Θ (0.044-0.19 m3 × m-3) were determined, as well as other parameters required to describe the soil moisture dependence of de novo MT emissions for application in the Model of Emissions of Gases and Aerosols from Nature, MEGAN. A factorial approach was found appropriate to describe the impacts of Θ, temperature, and light. Temperature and Θ influenced the emissions largely independently from each other, and, in a similar manner, light intensity and Θ acted independently on de novo MT emissions. The use of Θ as the reference quantity in a factorial approach was tenable in predicting constitutive de novo MT emissions when Θ changed on a time scale of days. Empirical parameterization with Θ as a reference was only unsuccessful when soil moisture changed rapidly

  14. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Rossi, P. M.; Kløve, B.

    2014-07-01

    Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D soil profile spatially to estimate transient recharge in an unconfined esker aquifer. The modeling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover) and timing (depth of the unsaturated zone) of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI) using forestry inventory data. Uncertainty in the parameters controlling soil hydraulic properties and evapotranspiration was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount, and the modeling approach successfully reduced model uncertainty by allocating the LAI parameter spatially in the model. Soil evaporation compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated depth and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers.

  15. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro.

    PubMed

    Niemi, K; Vuorinen, T; Ernstsen, A; Häggman, H

    2002-12-01

    We studied the ability of the ectomycorrhizal (ECM) fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Paxillus involutus (Batsch) Fr. (Strain H), to produce indole-3-acetic acid (IAA) and to affect the formation and growth of roots on Scots pine (Pinus sylvestris L.) hypocotyl cuttings in vitro. Effects of indole-3-butyric acid (IBA) and the auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA), on rooting and the cutting-fungus interaction were also studied. Both fungi produced IAA in the absence of exogenous tryptophan, but the mycelium and culture filtrate of Pisolithus tinctorius contained higher concentrations of free and conjugated IAA than the mycelium and culture filtrate of Paxillus involutus. Inoculation with either fungus or short-term application of culture filtrate of either fungus to the base of hypocotyl cuttings enhanced root formation. Inoculation with either fungus was even more effective in enhancing root formation than treatment of the hypocotyl bases with IBA. Fungal IAA production was not directly correlated with root formation, because rooting was enhanced more by Paxillus involutus than by Pisolithus tinctorius. This suggests that, in addition to IAA, other fungal components play an important role in root formation. Treatment with 5 microM TIBA increased the rooting percentage of non-inoculated cuttings, as well as of cuttings inoculated with Pisolithus tinctorius, perhaps as a result of accumulation of IAA at the cutting base. However, the marked reduction in growth of Pisolithus tinctorius in the presence of TIBA suggests that the effects of TIBA on rooting are complicated and not solely related to IAA metabolism. The high IAA-producer, Pisolithus tinctorius, formed mycorrhizas, and the IBA treatment increased mycorrhizal frequency in this species, whereas TIBA decreased it. Paxillus involutus did not form mycorrhizas, indicating that a low concentration of IAA together with other fungal components were sufficient to stimulate

  16. Biotic and abiotic factors affecting stemflow variability in downy oak and Scots pine stands in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cayuela, Carles; Garcia-Estringana, Pablo; Latron, Jérôme; Llorens, Pilar

    2015-04-01

    Although stemflow is only a small portion of rainfall, it may represent an important local input of water and nutrients at the plant stem. Previous studies have shown that stemflow has a significant influence on hydrological and biogeochemical processes. Stemflow volume is affected by many biotic factors as species, age, branch or bark characteristics. Moreover, the seasonality of the rainfall regime in Mediterranean areas, which includes both frontal rainfall events and short convective storms, can add complexity to the rainfall-stemflow relationship. This work investigates stemflow dynamics and the influence of biotic and abiotic factors on stemflow rates in two Mediterranean stands during the leafed period - from May to October. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). The monitoring design of each plot consists of 7 stemflow rings connected to tipping-buckets, bulk rainfall measured in a nearby clearing and meteorological conditions above the canopies. All data were recorded at 5 min interval. Biometric characteristics of the measured trees were also measured. The analysis of 39 rainfall events (65% smaller than 10 mm) shows that stemflow accounted for less than 1% of the bulk rainfall in both stands. Results also show that, on average, the rainfall amount required for the start of the stemflow and the time delay between the beginning of the precipitation and the start of stemflow are higher in the Downy oak forest. As suggested by stemflow funneling ratios, these differences might be linked to the canopy structure and bark water storage capacity of the trees, indicating that during low magnitude events, oaks have more difficulty to reach storage capacity. The role of other biotic and abiotic parameters on stemflow variability in both stands is still under investigation.

  17. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.

    PubMed

    Goor, François; Thiry, Yves

    2004-06-01

    In a large forested area affected by the Chernobyl radioactive fallout, especially in CIS, the lasting recycling of radiocaesium (137Cs) by the trees is a source of long-term contamination of woody products. The quantitative description of the 137Cs dynamics in contaminated forest is a prerequisite to predictive modelling and further management of such territories. Three even-aged mono-specific Scots pine stands (17, 37 and 57 years old) were selected in a contaminated woodland in southeastern Belarus to constitute an adequate chronosequence. We determined the potassium and radiocaesium annual fluxes involved in the biological cycling in each stand using a well-documented calculation methodology. Qualitatively, 137Cs was shown to be rapidly recycled in trees through the same pathways as K and to redistribute similarly between the tree components. Compared to K, a higher fraction of 137Cs, corresponding to about the half of the annual uptake, is immobilised in perennial organs. With tree development, trunk wood and bark become prevailing sinks for 137Cs since they represent an increasing pool of biomass. In the pine chronosequence, the current root absorption, respectively, mobilizes 0.53, 0.32 and 0.31% year(-1) of the total 137Cs pool in soil. Variations in the 137Cs uptake do not reflect differences in the 137Cs balance between stands. In the two older stands, 51 and 71% of the current tree contamination are related to earlier accumulation subsequent to the initial fallout interception and recycling. The soil is the dominant source of long-term tree contamination. A simple modelling based on the measured 137Cs fluxes indicates that, for young stands, radioactive decay-corrected contamination would stabilize after reaching a maximum of 25 years after the 137Cs deposition. Stemwood presents a maximum of 15 years after the deposition and decrease afterwards mainly through radioactive decay. In the older stands, the decontamination is constant without local maximum

  18. Influence of Climatic Type of Year on Beech and Scots Pine Eustress

    NASA Astrophysics Data System (ADS)

    Lyubenova, Mariyana; Chikalanov, Alexandre; van Bodegom, Peter; Kattge, Jens; Popova, Silvia; Zlateva, Plamena

    2016-04-01

    The present study deals with the relationships of climate types and the periods with low radial stem growth of black pine and beech locations in Europe. The identification of climatic types (CT) and eustress caused CT, their relative participation in the period of 1901-2009 by locations, the manifestation of main adverse type, led periodically to reduction of tree ring width, as well as the comparison of obtained types by precipitations and the SPI classes were the subjects of investigation. The analyses demonstrated that despite the local differences, the stress impact of dry and wet years, especially if they are accompanied by the cold or hot regimes, is well expressed. The successive changes of climate types at least two years before the eustress year are also relevant. The application of climatic types to study the relationship with trees eustress is more applicable when there are no large deviations in temperatures or precipitations by years and locations. The demonstrated holistic analyses are applicable for the forest areas monitoring and management. Key words Pinus sylvestris L., Fagus sylvatica L., climatic type, SPI, eustress, SPPAM application, SPI

  19. Evidence that the negative relationship between seed mass and relative growth rate is not physiological but linked to species identity: a within-family analysis of Scots pine.

    PubMed

    Castro, Jorge; Reich, Peter B; Sánchez-Miranda, Angela; Guerrero, Juan D

    2008-07-01

    Seed mass and relative growth rate (RGR) are important determinants of early seedling growth, and hence seedling establishment. Although a positive interspecific relationship between seed mass and seedling dry mass is well established, much less is known about the relationships among seed mass, seedling mass and RGR within species. We examined relationships among seed mass, seedling mass and RGR within and among maternal plant lines of Scots pine (Pinus sylvestris L.). To assess the effects of seed mass and maternal origin on RGR, individual seeds from two seed crops (years 2004 and 2005) of ten maternal plants growing under nursery conditions were weighed and then germinated. Seed mass was strongly determined by maternal plant, and seedling mass was largely determined by seed mass, with a positive correlation between these variables both across and within maternal plants. In contrast, RGR was weakly related to seed mass, with no consistent pattern in the sign of the relationship. It is well known that species differ in RGR and that RGR is related to seed mass across species. Lack of consistent evidence for this relationship within maternal lines, and for Scots pine overall, suggests that the relationship is not directly causal, but reflects consistent evolutionary covariation in these two physiologically independent traits. PMID:18450572

  20. Has Scots pine (Pinus sylvestris) co-evolved with Dothistroma septosporum in Scotland? Evidence for spatial heterogeneity in the susceptibility of native provenances.

    PubMed

    Perry, Annika; Brown, Anna V; Cavers, Stephen; Cottrell, Joan E; Ennos, Richard A

    2016-09-01

    Spatial heterogeneity in pathogen pressure leads to genetic variation in, and evolution of, disease-related traits among host populations. In contrast, hosts are expected to be highly susceptible to exotic pathogens as there has been no evolution of defence responses. Host response to pathogens can therefore be an indicator of a novel or endemic pathosystem. Currently, the most significant threat to native British Scots pine (Pinus sylvestris) forests is Dothistroma needle blight (DNB) caused by the foliar pathogen Dothistroma septosporum which is presumed to be exotic. A progeny-provenance trial of 6-year-old Scots pine, comprising eight native provenances each with four families in six blocks, was translocated in April 2013 to a clear-fell site in Galloway adjacent to a DNB-infected forest. Susceptibility to D. septosporum, measured as DNB severity (estimated percentage nongreen current-year needles), was assessed visually over 2 years (2013-2014 and 2014-2015; two assessments per year). There were highly significant differences in susceptibility among provenances but not among families for each annual assessment. Provenance mean susceptibility to D. septosporum was negatively and significantly associated with water-related variables at site of origin, potentially due to the evolution of low susceptibility in the host in response to high historical pathogen pressure. PMID:27606006

  1. The HartX-synthesis: An experimental approach to water and carbon exchange of a Scots pine plantation

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.; Gay, L. W.; Granier, A.; Joss, U.; Kessler, A.; Köstner, B.; Siegwolf, R.; Tenhunen, J. D.; Vogt, R.

    1996-03-01

    In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine ( Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast. Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol

  2. AmeriFlux CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover

    SciTech Connect

    Margolis, Hank A.

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover. Site Description - The ground is gently rolling with a weak slope (<5%). In mesic areas (designated as well to moderately well drained areas, according to the Canadian System of Soil Classification (Agriculture Canada Expert Committee on Soil Survey, 1983)), the soil is a ferro-humic to humic podzol covered by an organic layer having an average depth of 26 cm (Fig. 1). In humid areas, the soil is organic (imperfectly to poorly drained) with an average organic layer of 125 cm. Mesic areas accounted for approximately 75% of the total surface area of the footprint and humid areas accounted for 25%. Full-time continuous measurements eneded in 2011. Intermittent measurements are on-going as resources permit.

  3. The effect of internal and external nitrogen on needle litter decomposition in a Dutch scots pine forest.

    NASA Astrophysics Data System (ADS)

    Tietema, A.; Wessels, W.

    2009-04-01

    A litterbag experiment was carried out in 2001 in a Scots pine (Pinus sylvestris L.) stand in the southern part of The Netherlands, near Ysselsteyn. The region is characterized by high atmoshpheric nitrogen (N) deposition of about 58 kg N ha-1 yr-1. In the winter of 1988-1989 the high N deposition was experimentally decreased to pre-industrial N deposition rates by means of a transparent roof installed about 2-3 m above the forest floor. Decomposition of needles was studied under the roof in the low N deposition plot (about 6 kg N ha-1 yr-1) and in the ambient plot outside the roof, receiving natural N deposition. Needles were separately sampled from the low and the ambient deposition plot and incubated separately in both plots. This made it possible to examine the effect of internal N (origin of needles) and external N (deposition during incubation) in the different stages of decomposition. The original litter revealed significant negative correlations between N content and lignin-to-N ratio, Mn and Ca concentration were found. The lignin content was negatively correlated to Ca and Mn concentration. The N content of the litter increased from 1.3 % to the maximum of 2.0 % during the first 12-18 months. A C/N ratio of 26 was reached within 12 months. During the first three months 30 % of the mass loss occurred in all litter types. After 12 months only 60 % of the original mass remained. Decomposition for the first 18 months mass was lower for both litter types incubated in the low deposition plot. Then the decomposition rate for the low N needles in the high N plot flattened off. No difference in decomposition rate of the litter originating from low or high deposition plots was found during the whole incubation period. This would indicate that external deposition N is more important than internal tissue N in determining the decomposition rate and that low N deposition retarded decomposition in this initial stage of the decomposition process.

  4. Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production.

    PubMed

    Vanninen, Petteri; Mäkelä, Annikki

    2005-01-01

    Time series of carbon fluxes in individual Scots pine (Pinus sylvestris L.) trees were constructed based on biomass measurements and information about component-specific turnover and respiration rates. Foliage, branch, stem sapwood, heartwood and bark components of aboveground biomass were measured in 117 trees sampled from 17 stands varying in age, density and site fertility. A subsample of 32 trees was measured for belowground biomass excluding fine roots. Biomass of fine roots was estimated from the results of an earlier study. Statistical models were constructed to predict dry mass (DW) of components from tree height and basal area, and time derivatives of these models were used to estimate biomass increments from height growth and basal area growth. Biomass growth (G) was estimated by adding estimated biomass turnover rates to increments, and gross photosynthetic production (P) was estimated by adding estimated component respiration rates to growth. The method, which predicts the time course of G, P and biomass increment in individual trees as functions of height growth and basal area growth, was applied to eight example trees representing different dominance positions and site fertilities. Estimated G and P of the example trees varied with competition, site fertility and tree height, reaching maximum values of 22 and 43 kg(DW) year(-1), respectively. The site types did not show marked differences in productivity of trees of the same height, although height growth was greater on the fertile site. The G:P ratio decreased with tree height from 65 to 45%. Growth allocation to needles and branches increased with increasing dominance, whereas growth allocation to the stem decreased. Growth allocation to branches decreased and growth allocation to coarse roots increased with increasing tree size. Trees at the poor site allocated 49% more to fine roots than trees at the fertile site. The belowground parts accounted for 25 to 55% of annual G, increasing with tree size

  5. The Intracellular Scots Pine Shoot Symbiont Methylobacterium extorquens DSM13060 Aggregates around the Host Nucleus and Encodes Eukaryote-Like Proteins

    PubMed Central

    Koskimäki, Janne J.; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi

    2015-01-01

    ABSTRACT Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont’s activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. PMID:25805725

  6. LAI-estimation of boreal forests using C-band VV and HH polarization radar images

    NASA Astrophysics Data System (ADS)

    Manninen, T.; Stenberg, P.; Voipio, P.; Smolander, H.; Häme, T.

    2002-01-01

    The leaf area index (LAI) is directly related to the growth potential of a forest. Therefore it is an important parameter both from economical and environmental point of view. LAI determination using optical images is problematic in boreal forests, but ENVISAT ASAR should have potential in LAI estimation, as its wavelength is close to the needle size of boreal forests. While waiting for ENVISAT data the LAI estimation using VV and HH polarisation has been studied using ERS and Radarsat images. The first results of Scots pine are promising. This research is carried out in the ENVISAT AO-project "ENVISAT in boreal forest mapping and LAI estimation" (=ENBOR FORMAL).

  7. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.).

    PubMed

    Aguadé, D; Poyatos, R; Gómez, M; Oliva, J; Martínez-Vilalta, J

    2015-03-01

    Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. PMID

  8. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings.

    PubMed

    Schulz, Horst; Schäfer, Tina; Storbeck, Veronika; Härtling, Sigrid; Rudloff, Renate; Köck, Margret; Buscot, François

    2012-01-01

    Ectomycorrhiza (EM) formation improves tree growth and nutrient acquisition, particularly that of nitrogen (N). Few studies have coupled the effects of naturally occurring EM morphotypes to the nutrition of host trees. To investigate this, pine seedlings were grown on raw humus substrates collected at two forest sites, R2 and R3. Ectomycorrhiza morphotypes were identified, and their respective N uptake rates from organic (2-(13)C, (15)N-glycine) and inorganic ((15)NH(4)Cl, Na(15)NO(3), (15)NH(4)NO(3), NH(4)(15)NO(3)) sources as well as their phosphate uptake rates were determined. Subsequently, the growth and nutritional status of the seedlings were analyzed. Two dominant EM morphotypes displayed significantly different mycorrhization rates in the two substrates. Rhizopogon luteolus Fr. (RL) was dominant in R2 and Suillus bovinus (Pers.) Kuntze (SB) was dominant in R3. (15)N uptake of RL EM was at all times higher than that of SB EM. Phosphate uptake rates by the EM morphotypes did not differ significantly. The number of RL EM correlated negatively and the number of SB EM correlated positively with pine growth rate. Increased arginine concentrations and critical P/N ratios in needles indicated nutrient imbalances of pine seedlings from humus R2, predominantly mycorrhizal with RL. We conclude that different N supply in raw humus under Scots pine stands can induce shifts in the EM frequency of pine seedlings, and this may lead to EM formation by fungal strains with different ability to support tree growth.

  9. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands.

    PubMed

    Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M

    2008-12-01

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.

  10. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands.

    PubMed

    Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M

    2008-12-01

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem. PMID:18457906

  11. Spring recovery of Scots pines based on dark-adapted fluorescence and canopy scale CO2 fluxes at Sodankyl during SIFLEX-2002

    NASA Astrophysics Data System (ADS)

    Thum, T.; Laurila, T.; Aurela, M.; Lohila, A.

    Measurements of dark-adapted fluorescence and CO2 fluxes were made in Sodankyl during the SIFLEX campaign. The objective was to study the spring recovery of a Scots pine forest and the response of photosynthesis to light and temperature. Here we describe the measurements and show some preliminary results. The dark-adapted fluorescence Fv/Fm, i.e. the maximum efficiency of photosystem II, was measured daily at three different sites during the campaign. The time used for dark-adaptation was at least 30 minutes. The measurements were made using a Hansatech Fluorometer. The CO2 assimilation and respiration of Scots pine shoots were measured with a static cuvette system, which contains a LICOR 6262 CO2/H2O analyzer. Some shoot measurements were made with a LICOR 6400 Portable Photosynthesis system using a conifer chamber. A parallel measurement for comparison between the two cuvettes was also made. The results of these cuvette measurements were compared with the CO2 flux values from the micrometeorological tower. In figure 1 we show the average daily temperature, the CO2 assimilation from the cuvette measurements with LICOR 6262, and the fluorescence values at three different sites. The CO2 assimilation values are shown for only five days. The results indicate that the Fv/Fm values and the CO2 assimilation values follow the trend set by the temperature, with some lag behind the temperature. As for the other results the micrometeorological CO2 flux was observed to follow the same trend with the cuvette CO2 assimilation measurements. The respiration values appeared to rise with higher temperatures.

  12. Influence of throughfall spatial and temporal patterns on soil moisture variability under Downy oak and Scots pine stands in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc

    2015-04-01

    Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on

  13. Energy and CO(2) flux densities above and below a temperate broad-leaved forest and a boreal pine forest.

    PubMed

    Baldocchi, Dennis D.; Vogel, Christoph A.

    1996-01-01

    Fluxes of carbon dioxide, water vapor and energy were measured above and below a temperate broad-leaved forest and a boreal jack pine (Pinus banksiania Lamb.) forest by the eddy covariance method. The aim of the work was to examine differences between the biological and physical processes that control the fluxes of mass and energy over these disparate forest stand types. Carbon and latent heat flux (LE) densities over the temperate broad-leaved forest were about three times larger than those observed over the boreal forest. Available energy was the key variable modulating LE over the temperate broad-leaved forest, whereas LE over the boreal jack pine stand was sensitive to variations in water vapor pressure deficits (VPDs) and available energy. It was also noted that VPDs had different impacts on transpiration rates of the two forest stands. Increasing VPDs forced a negative feedback on jack pine transpiration, whereas transpiration rates of the well-watered broad-leaved forest responded favorably to increasing VPDs. Carbon dioxide flux densities over the broad-leaved forest stand were more sensitive to changes in absorbed photosynthetic photon flux density than those over the boreal forest. The efficiency of CO(2) uptake over the jack pine stand was reduced, in part, because the low leaf area of the stand caused a sizable fraction of available quanta to be absorbed by nonphotosynthetic organs, such as limbs and trunks. Over both forest stands, variations in photosynthetic photon flux density of photosynthetically active radiation (Q(P)) explained only 50 to 60% of the variance of CO(2) exchange rates. Consequently, caution should be exercised when scaling carbon fluxes to regional scales based on unmodified, satellite-derived indices. The more open nature of the boreal jack pine forest caused water vapor, CO(2) and heat fluxes at the forest floor to be a significant component of whole canopy mass and energy exchange rates. About 20 to 30% of net canopy mass and

  14. Spatiotemporal patterns and potential sources of polychlorinated biphenyl (PCB) contamination in Scots pine (Pinus sylvestris) needles from Europe.

    PubMed

    Holt, Eva; Kočan, Anton; Klánová, Jana; Assefa, Anteneh; Wiberg, Karin

    2016-10-01

    Using pine needles as a bio-sampler of atmospheric contamination is a relatively cheap and easy method, particularly for remote sites. Therefore, pine needles have been used to monitor a range of semi-volatile contaminants in the air. In the present study, pine needles were used to monitor polychlorinated biphenyls (PCBs) in the air at sites with different land use types in Sweden (SW), Czech Republic (CZ), and Slovakia (SK). Spatiotemporal patterns in levels and congener profiles were investigated. Multivariate analysis was used to aid source identification. A comparison was also made between the profile of indicator PCBs (ind-PCBs-PCBs 28, 52, 101, 138, 153, and 180) in pine needles and those in active and passive air samplers. Concentrations in pine needles were 220-5100 ng kg(-1) (∑18PCBs - ind-PCBs and dioxin-like PCBs (dl-PCBs)) and 0.045-1.7 ng toxic equivalent (TEQ) kg(-1) (dry weight (dw)). Thermal sources (e.g., waste incineration) were identified as important sources of PCBs in pine needles. Comparison of profiles in pine needles to active and passive air samplers showed a lesser contribution of lower molecular weight PCBs 28 and 52, as well as a greater contribution of higher molecular weight PCBs (e.g., 180) in pine needles. The dissimilarities in congener profiles were attributed to faster degradation of lower chlorinated congeners from the leaf surface or metabolism by the plant. PMID:27392626

  15. Spatiotemporal patterns and potential sources of polychlorinated biphenyl (PCB) contamination in Scots pine (Pinus sylvestris) needles from Europe.

    PubMed

    Holt, Eva; Kočan, Anton; Klánová, Jana; Assefa, Anteneh; Wiberg, Karin

    2016-10-01

    Using pine needles as a bio-sampler of atmospheric contamination is a relatively cheap and easy method, particularly for remote sites. Therefore, pine needles have been used to monitor a range of semi-volatile contaminants in the air. In the present study, pine needles were used to monitor polychlorinated biphenyls (PCBs) in the air at sites with different land use types in Sweden (SW), Czech Republic (CZ), and Slovakia (SK). Spatiotemporal patterns in levels and congener profiles were investigated. Multivariate analysis was used to aid source identification. A comparison was also made between the profile of indicator PCBs (ind-PCBs-PCBs 28, 52, 101, 138, 153, and 180) in pine needles and those in active and passive air samplers. Concentrations in pine needles were 220-5100 ng kg(-1) (∑18PCBs - ind-PCBs and dioxin-like PCBs (dl-PCBs)) and 0.045-1.7 ng toxic equivalent (TEQ) kg(-1) (dry weight (dw)). Thermal sources (e.g., waste incineration) were identified as important sources of PCBs in pine needles. Comparison of profiles in pine needles to active and passive air samplers showed a lesser contribution of lower molecular weight PCBs 28 and 52, as well as a greater contribution of higher molecular weight PCBs (e.g., 180) in pine needles. The dissimilarities in congener profiles were attributed to faster degradation of lower chlorinated congeners from the leaf surface or metabolism by the plant.

  16. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn.

    PubMed

    Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa

    2014-01-01

    We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  17. Soil surface CO2 flux increases with successional time in a fire scar chronosequence of Canadian boreal jack pine forest

    NASA Astrophysics Data System (ADS)

    Smith, D. R.; Kaduk, J. D.; Balzter, H.; Wooster, M. J.; Mottram, G. N.; Hartley, G.; Lynham, T. J.; Studens, J.; Curry, J.; Stocks, B. J.

    2010-05-01

    To fully understand the carbon (C) cycle impacts of forest fires, both C emissions during the fire and post-disturbance fluxes need to be considered. The latter are dominated by soil surface CO2 flux (Fs), which is still subject to large uncertainties. Fire is generally regarded as the most important factor influencing succession in the boreal forest biome and fire dependant species such as jack pine are widespread. In May 2007, we took concurrent Fs and soil temperature (Ts) measurements in boreal jack pine fire scars aged between 0 and 59 years since fire. To allow comparisons between scars, we adjusted Fs for Ts (FsT) using a Q10 of 2. Mean FsT ranged from 0.56 (± 0.30 sd) to 1.94 (± 0.74 sd) μmol CO2 m-2 s-1. Our results indicate a difference in mean FsT between recently burned (4 to 8 days post fire) and non-burned mature (59 years since fire) forest (P < 0.001), though no difference was detected between recently burned (4 to 8 days post fire) and non-burned young (16 years since fire) forest (P = 0.785). There was a difference in mean FsT between previously young (16 years since fire) and intermediate aged (32 years since fire) scars that were both subject to fire in 2007 (P < 0.001). However, there was no difference in mean FsT between mature (59 years since fire) and intermediate aged (32 years since fire) scars that were both subjected to fire in 2007 (P = 0.226). Furthermore, there was no difference in mean FsT between mature (59 years since fire) and young scars (16 years since fire) that were both subjected to fire in 2007 (P = 0.186). There was an increase in FsT with time since fire for the chronosequence 0, 16 and 59 years post fire (P < 0.001). Our results lead us to hypothesise that the autotrophic:heterotrophic soil respiration ratio increases over post-fire successional time in boreal jack pine systems, though this should be explored in future research. The results of this study contribute to a better quantitative understanding of Fs in boreal

  18. Effects of acid rain on growth and nutrient concentrations in Scots pine and Norway spruce seedlings grown in a nutrient-rich soil.

    PubMed

    Bäck, J; Huttunen, S; Turunen, M; Lamppu, J

    1995-01-01

    The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher

  19. Effects of acid rain on growth and nutrient concentrations in Scots pine and Norway spruce seedlings grown in a nutrient-rich soil.

    PubMed

    Bäck, J; Huttunen, S; Turunen, M; Lamppu, J

    1995-01-01

    The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher

  20. Impact of Scots pine (Pinus sylvestris L.) plantings on long term (137)Cs and (90)Sr recycling from a waste burial site in the Chernobyl Red Forest.

    PubMed

    Thiry, Yves; Colle, Claude; Yoschenko, Vasyl; Levchuk, Svjatoslav; Van Hees, May; Hurtevent, Pierre; Kashparov, Valery

    2009-12-01

    Plantings of Scots pine (Pinus sylvestris L.) on a waste burial site in the Chernobyl Red Forest was shown to greatly influence the long term redistribution of radioactivity contained in sub-surfaces trenches. After 15 years of growth, aboveground biomass of the average tree growing on waste trench no.22 had accumulated 1.7 times more (137)Cs than that of trees growing off the trench, and 5.4 times more (90)Sr. At the scale of the trench and according to an average tree density of 3300 trees/ha for the study zone, tree contamination would correspond to 0.024% of the (137)Cs and 2.52% of the (90)Sr contained in the buried waste material. A quantitative description of the radionuclide cycling showed a potential for trees to annually extract up to 0.82% of the (90)Sr pool in the trench and 0.0038% of the (137)Cs. A preferential (90)Sr uptake from the deep soil is envisioned while pine roots would take up (137)Cs mostly from less contaminated shallow soil layers. The current upward flux of (90)Sr through vegetation appeared at least equal to downward loss in waste material leaching as reported by Dewiere et al. (2004, Journal of Environmental Radioactivity 74, 139-150). Using a prospective calculation model, we estimated that maximum (90)Sr cycling can be expected to occur at 40 years post-planting, resulting in 12% of the current (90)Sr content in the trench transferred to surface soils through biomass turnover and 7% stored in tree biomass. These results are preliminary, although based on accurate methodology. A more integrated ecosystem study leading to the coupling between biological and geochemical models of radionuclide cycling within the Red Forest seems opportune. Such a study would help in the adequate management of that new forest and the waste trenches upon which they reside. PMID:19525043

  1. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    NASA Astrophysics Data System (ADS)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  2. Uptake of ¹³⁷Cs by berries, mushrooms and needles of Scots pine in peatland forests after wood ash application.

    PubMed

    Vetikko, Virve; Rantavaara, Aino; Moilanen, Mikko

    2010-12-01

    Increasing use of wood fuels for energy production in Finland since the 1990s implies that large quantities of the generated ashes will be available for forest fertilization. The aim of this study was to analyse the effect of wood ash application on ¹³⁷Cs activity concentrations in Scots pine (Pinus sylvestris L.) needles and certain berries and mushrooms on drained peatlands. The study was based on field experiments carried out on two mires in Finland in 1997-1998. Two different types of wood ash were applied at dosages of 3500, 3700, 10 500 and 11 100 kg ha⁻¹. Wood ash did not increase ¹³⁷Cs activity concentration in plants in the second growing season following application. On the contrary, a decrease in ¹³⁷Cs activity concentration was seen in the plants of the ecosystem on drained peatlands. This result is of importance, for instance, when recycling of ash is being planned.

  3. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine ( Pinus sylvestris) wood . Part I: Lipophilic compounds

    NASA Astrophysics Data System (ADS)

    Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Sundberg, A.; Vuorinen, T.

    2004-11-01

    The wood resin in Scots pine ( Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm -1. Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at ˜1650 cm -1 due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

  4. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds.

    PubMed

    Nuopponen, M; Willför, S; Jääskeläinen, A-S; Sundberg, A; Vuorinen, T

    2004-11-01

    The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

  5. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).

    PubMed

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. PMID:23791043

  6. Seasonal variation in nitrogen net uptake and root plasma membrane H+-ATPase activity of Scots pine seedlings as affected by nutrient availability.

    PubMed

    Iivonen, Sari; Vapaavuori, Elina

    2002-01-01

    We examined changes in nitrogen (N) net uptake and activity and amount of plasma membrane H+-ATPase (PM-ATPase) in roots of hydroponically cultured Scots pine (Pinus sylvestris L.) seedlings throughout a simulated second growing season. Seedlings were grown with low (0.25 mM N) or high (2.5 mM N) nutrient availability to determine whether root PM-ATPase is dependent on an external nutrient supply. Climatic conditions in the growth chamber simulated the mean growing season from May to mid-October in southern Finland. Root PM-ATPase activity varied considerably during the growing season and was higher in current-year roots than in previous-year roots. Total PM-ATPase activity of current-year roots was highest at the end of the growing season, whereas PM-ATPase activity per unit fresh mass of current-year roots and specific absorption rate of N were highest in mid-July and decreased at the end of the growing season. This indicates that the decrease in PM-ATPase activity per unit fresh mass of the roots at the end of the growing season was compensated by the increased size of the root system. Seasonal variation in PM-ATPase activity had no clear dependence on root zone temperature. The response of PM-ATPase to root zone temperature was dependent on the developmental stage of the seedling. High nutrient availability resulted in increased root PM-ATPase activity and an extended period of root growth in autumn. PMID:11772550

  7. Impact of emission from oil shale fueled power plants on the growth and foliar elemental concentrations of Scots pine in Estonia.

    PubMed

    Ots, Katri

    2003-07-01

    To study the impact of air pollution on the growth and elemental composition of conifers, 5 sample plots were established at different distances and directions from the Estonian Power Plant (Northeast Estonia) in 1999-2000. The selected stands were 75-80(85)-yr-old parts (0.05 ha) of (Oxalis)-Myrtillus site type forest of 0.7-0.8 density. The soils of all sample plots were Gleyic Podzols (Lkg) on sands. The several times higher Ca concentration in the humus horizon of the sample plot NE from the Estonian PP is caused by the prevailing westerly and southerly winds which carry more pollutants NE from the power plant than to SSW. To ascertain the effect of power plants on the growth of Scots pine (Pinus sylvestris L.), the length growth of the needles and shoots formed in 1997-2000, dry weight of 100 needles, and density of needles on the shoots were measured. As compared to the control, the strongest inhibition of growth was revealed in the sample plots situated 22 km north-east and 17 km south-west from the Estonian Power Plant. As compared to control, the needles of trees growing on sample plots closer to the power plant showed higher contents of Ca, S and Zn. The content of Mg in needles increased with distance from the pollution source. Current year needles had higher contents of Cu and Zn than older needles. Today the amounts of fly ash emitted from Narva power plants are fallen. Long-term fly ash emission has caused changes in the measurements of morphological parameters and chemical composition of needles.

  8. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    NASA Astrophysics Data System (ADS)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  9. Effect of simulated acid rain on quantity of epiphytic microfungi on Scots pine (Pinus sylvestris L.) needles.

    PubMed

    Ranta, H M

    1990-01-01

    The effects of simulated acid rain on the phyllosphere microflora of pine (Pinus sylvestris L.) were studied experimentally in northern Finland during the summer of 1988. Trees were irrigated with artificial acid rain of pH4 and pH3 (H(2)SO(4) and HNO(3), weight ratio of S:N=2.86:1). Untreated trees and trees irrigated with spring water (pH6) were used as controls. Two sampling heights (0.5m and 2m) were used. The needles were colonized exclusively by epiphytic fungi, mainly Aureobasidium pullulans (de Bary) Arnaud. The lower branches had significantly more epiphytic fungi than the upper branches. Compared to the control trees, the numbers of epiphytic fungi were significantly decreased on the needles of trees irrigated with acid rain. Acid rain affected the number of epiphytic fungi equally at both sampling heights. The species composition of the epiphytic fungi was not affected by the acid treatments.

  10. Carbon balance of an old hemi-boreal pine forest in Southern Estonia determined by different methods

    NASA Astrophysics Data System (ADS)

    Soosaar, Kaido; Repp, Kalev; Lõhmus, Krista; Uri, Veiko; Rannik, Kaire; Krasnova, Alisa; Ostonen, Ivika; Kukumägi, Mai; Maddison, Martin; Mander, Ülo

    2016-04-01

    The Soontaga Forest Station is located in hemi-boreal 200-years old pine forest (South Estonia; 58o01'N 26o04'E) with a second layer of spruce. The station has the instrumentation to assess the exchange of carbon dioxide (net ecosystem exchange, NEE), soil respiration, tree biomass (above and below ground biomass) and different environmental and meteorological parameters. In this study we quantified carbon balance by analyzing eddy-covariance CO2 flux data (carbon exchange) vs chamber-based measurements (ecosystem respiration) and CO2assimilation (soil and biomass). The annual NEE in this mature coniferous forest was -2.3 t C ha yr-1, showing a clear diurnal and seasonal trend. During the daytime in summer the forest sequestered CO2, while during the night and late night CO2 emitted from the ecosystem to the atmosphere. Within the growing period, the sequestration of CO2 by plants was greater than soil respiration. Thus, the ecosystem sequestered carbon. Most of the carbon is bound in tree biomass (above and below ground biomass) but as well into soil, while the sequestration in soil increases with stand age. In addition, the biomass of understory, especially belowground litter, is playing essential part in carbon input. A modelling approach of long-term C budget in the Soontaga pine forest is presented.

  11. Carbon balance of an old hemi-boreal pine forest in Southern Estonia determined by different methods

    NASA Astrophysics Data System (ADS)

    Soosaar, Kaido; Repp, Kalev; Lõhmus, Krista; Uri, Veiko; Rannik, Kaire; Krasnova, Alisa; Ostonen, Ivika; Kukumägi, Mai; Maddison, Martin; Mander, Ülo

    2016-04-01

    The Soontaga Forest Station is located in hemi-boreal 200-years old pine forest (South Estonia; 58o01'N 26o04'E) with a second layer of spruce. The station has the instrumentation to assess the exchange of carbon dioxide (net ecosystem exchange, NEE), soil respiration, tree biomass (above and below ground biomass) and different environmental and meteorological parameters. In this study we quantified carbon balance by analyzing eddy-covariance CO2 flux data (carbon exchange) vs chamber-based measurements (ecosystem respiration) and CO2assimilation (soil and biomass). The annual NEE in this mature coniferous forest was -2.3 t C ha yr‑1, showing a clear diurnal and seasonal trend. During the daytime in summer the forest sequestered CO2, while during the night and late night CO2 emitted from the ecosystem to the atmosphere. Within the growing period, the sequestration of CO2 by plants was greater than soil respiration. Thus, the ecosystem sequestered carbon. Most of the carbon is bound in tree biomass (above and below ground biomass) but as well into soil, while the sequestration in soil increases with stand age. In addition, the biomass of understory, especially belowground litter, is playing essential part in carbon input. A modelling approach of long-term C budget in the Soontaga pine forest is presented.

  12. Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine

    NASA Astrophysics Data System (ADS)

    Bäck, Jaana; Aaltonen, Hermanni; Hellén, Heidi; Kajos, Maija K.; Patokoski, Johanna; Taipale, Risto; Pumpanen, Jukka; Heinonsalo, Jussi

    2010-09-01

    Soils emit a large variety of volatile organic compounds. In natural ecosystems, measurements of microbial volatile organic compound (MVOC) exchange rates between soil and atmosphere are difficult due to e.g. the spatial heterogeneity of the belowground organisms, and due to the many potential sources for the same compounds. We measured in laboratory conditions the MVOC emission rates and spectra of eight typical fungi occurring in boreal forest soils. The studied species are decomposers ( Gymnopilus penetrans, Ophiostoma abietinum), ectomycorrhizal ( Cenococcum geophilum, Piloderma olivaceum, Suillus variegatus, Tomentellopsis submollis) and endophytic fungi ( Meliniomyces variabilis, Phialocephala fortinii). The MVOC emissions contained altogether 21 known and 6 unidentified compounds whose emission rates were >0.1 μg g(DW) -1 h -1. The most abundant compounds were the short-chain carbonyl compounds (acetone and acetaldehyde). The greatest carbonyl emissions were measured from P. olivaceum (1.9 mg acetone g(DW) -1 h -1) and P. fortinii (0.114 mg acetaldehyde g(DW) -1 h -1). Terpenoid emissions (isoprene, mono- and sesquiterpenes) were detected from some fungal cultures, but in relatively small amounts. We conclude that soil micro-organisms can potentially be responsible for significant emissions of volatiles, especially short-chain oxygenated compounds, to the below-canopy atmosphere.

  13. Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex.

    PubMed

    Godbout, Julie; Yeh, Francis C; Bousquet, Jean

    2012-08-01

    Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization. PMID:22957188

  14. Effects of thinning on soil and ecosystem carbon fluxes in a semi-boreal pine and spruce forest

    NASA Astrophysics Data System (ADS)

    Lindroth, Anders; Vestin, Patrik; Mölder, Meelis; Lagergren, Fredrik; Sundkvist, Elin; Hellström, Margareta

    2010-05-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Sweden more than 95% of the forest area is managed with clear cutting and thinning as the main silvicultural methods. Here we study the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The stand level flux measurements showed no effect on total ecosystem respiration, probably because of reduced autotrophic respiration from canopy layer. Initially the GPP was slightly reduced as compared to the non-thinned sector. The thinning effects will be compared with pre-thinning conditions and the results will be put in a general context of management effects on carbon fluxes.

  15. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates.

    PubMed

    Sangüesa-Barreda, Gabriel; Linares, Juan Carlos; Camarero, J Julio

    2012-05-01

    Forest decline has been attributed to the interaction of several stressors including biotic factors such as mistletoes and climate-induced drought stress. However, few data exist on how mistletoes are spatially arranged within trees and how this spatial pattern is related to changes in radial growth, responses to drought stress and carbon use. We used dendrochronology to quantify how mistletoe (Viscum album L.) infestation and drought stress affected long-term growth patterns in Pinus sylvestris L. at different heights. Basal area increment (BAI) trends and comparisons between trees of three different infestation degrees (without mistletoe, ID1; moderately infested trees, ID2; and severely infested trees, ID3) were performed using linear mixed-effects models. To identify the main climatic drivers of tree growth tree-ring widths were converted into indexed chronologies and related to climate data using correlation functions. We performed spatial analyses of the 3D distribution of mistletoe individuals and their ages within the crowns of three severely infested pines to describe their patterns. Lastly, we quantified carbohydrate and nitrogen concentrations in needles and sapwood of branches from severely infested trees and from trees without mistletoe. Mistletoe individuals formed strongly clustered groups of similar age within tree crowns and their age increased towards the crown apex. Mistletoe infestation negatively impacted growth but this effect was stronger near the tree apex than in the rest of sampled heights, causing an average loss of 64% in BAI (loss of BAI was ∼51% at 1.3 m or near the tree base). We found that BAI of severely infested trees and moderately or non-infested trees diverged since 2001 and such divergence was magnified by drought. Infested trees had lower concentrations of soluble sugars in their needles than non-infested ones. We conclude that mistletoe infestation causes growth decline and increases the sensitivity of trees to drought

  16. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates.

    PubMed

    Sangüesa-Barreda, Gabriel; Linares, Juan Carlos; Camarero, J Julio

    2012-05-01

    Forest decline has been attributed to the interaction of several stressors including biotic factors such as mistletoes and climate-induced drought stress. However, few data exist on how mistletoes are spatially arranged within trees and how this spatial pattern is related to changes in radial growth, responses to drought stress and carbon use. We used dendrochronology to quantify how mistletoe (Viscum album L.) infestation and drought stress affected long-term growth patterns in Pinus sylvestris L. at different heights. Basal area increment (BAI) trends and comparisons between trees of three different infestation degrees (without mistletoe, ID1; moderately infested trees, ID2; and severely infested trees, ID3) were performed using linear mixed-effects models. To identify the main climatic drivers of tree growth tree-ring widths were converted into indexed chronologies and related to climate data using correlation functions. We performed spatial analyses of the 3D distribution of mistletoe individuals and their ages within the crowns of three severely infested pines to describe their patterns. Lastly, we quantified carbohydrate and nitrogen concentrations in needles and sapwood of branches from severely infested trees and from trees without mistletoe. Mistletoe individuals formed strongly clustered groups of similar age within tree crowns and their age increased towards the crown apex. Mistletoe infestation negatively impacted growth but this effect was stronger near the tree apex than in the rest of sampled heights, causing an average loss of 64% in BAI (loss of BAI was ∼51% at 1.3 m or near the tree base). We found that BAI of severely infested trees and moderately or non-infested trees diverged since 2001 and such divergence was magnified by drought. Infested trees had lower concentrations of soluble sugars in their needles than non-infested ones. We conclude that mistletoe infestation causes growth decline and increases the sensitivity of trees to drought

  17. Biogenic volatile organic compounds (BVOCs) emission of Scots pine under drought stress - a 13CO2 labeling study to determine de novo and pool emissions under different treatments

    NASA Astrophysics Data System (ADS)

    Lüpke, M.

    2015-12-01

    Plants emit biogenic volatile organic compounds (BVOCs) to e.g. communicate and to defend herbivores. Yet BVOCs also impact atmospheric chemistry processes, and lead to e.g. the built up of secondary organic aerosols. Abiotic stresses, such as drought, however highly influence plant physiology and subsequently BVOCs emission rates. In this study, we investigated the effect of drought stress on BVOCs emission rates of Scots pine trees, a de novo and pool emitter, under controlled climate chamber conditions within a dynamic enclosure system consisting of four plant chambers. Isotopic labeling with 13CO2 was used to detect which ratio of emissions of BVOCs derives from actual synthesis and from storage organs under different treatments. Additionally, the synthesis rate of the BVOCs synthesis can be determined. The experiment consisted of two campaigns (July 2015 and August 2015) of two control and two treated trees respectively in four controlled dynamic chambers simultaneously. Each campaign lasted for around 21 days and can be split into five phases: adaptation, control, dry-out, drought- and re-watering phase. The actual drought phase lasted around five days. During the campaigns two samples of BVOCs emissions were sampled per day and night on thermal desorption tubes and analyzed by a gas chromatograph coupled with a mass spectrometer and a flame ionization detector. Additionally, gas exchange of water and CO2, soil moisture, as well as leaf and chamber temperature was monitored continuously. 13CO2 labeling was performed simultaneously in all chambers during the phases control, drought and re-watering for five hours respectively. During the 13CO2 labeling four BVOCs emission samples per chamber were taken to identify the labeling rate on emitted BVOCs. First results show a decrease of BVOCs emissions during the drought phase and a recovery of emission after re-watering, as well as different strength of reduction of single compounds. The degree of labeling with 13

  18. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest.

    PubMed

    Schaubroeck, Thomas; Deckmyn, Gaby; Giot, Olivier; Campioli, Matteo; Vanpoucke, Charlotte; Verheyen, Kris; Rugani, Benedetto; Achten, Wouter; Verbeeck, Hans; Dewulf, Jo; Muys, Bart

    2016-05-15

    For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary

  19. Oxygen-18 and deuterium spatio-temporal variability in throughfall and stemflow in Scots pine and Downy oaks forests under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Cayuela, Carles; Sánchez-Costa, Elisenda; Latron, Jérôme; Llorens, Pilar

    2016-04-01

    Rainfall partitioning processes can be better understood complementing classical hydrometric techniques with water isotopes. Oxygen-18 and deuterium can be used to shed some light on mechanisms of rainfall evaporation from the canopies, and their relationship with canopy and meteorological variables that are not completely understood. Several mechanisms have been described to explain the differences between event-scale bulk rainfall and throughfall isotopic compositions (i.e. evaporation, selective storage, exchange with ambient vapor, residual moisture), and their relation to factors like the amount of water held in the forest canopy, rainfall intensity, time interval between rainfall events, or meteorological conditions. However, there are much fewer studies examining the spatio-temporal variability of isotopic composition in both throughfall and stemflow along rainfall events. This study aims to characterize the water stable isotopes spatio-temporal variability in throughfall and stemflow in a Downy oak (Quercus pubescens) and a Scots pine (Pinus sylvestris) forests located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E), under Mediterranean climate conditions. The isotopic sampling design of each stand consisted of one automatic sampler to sample the temporal variability of throughfall signature every 5 mm of rainfall, 10 throughfall collectors distributed within the stand to sample the spatial variability and 4 stemflow collectors. Bulk rainfall was collected with automatic samplers and bulk collectors in two open areas near each forest plot. At each stand isotopic sampling was combined with hydrometric measurements that consisted of 20 tipping buckets to measure throughfall spatial variability and 7 stemflow rings connected to tipping buckets to measure stemflow depth. Moreover, rainfall depth was measured in the open areas and meteorological variables in two towers located above canopies. The study started on May 2015 and is still in

  20. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest.

    PubMed

    Schaubroeck, Thomas; Deckmyn, Gaby; Giot, Olivier; Campioli, Matteo; Vanpoucke, Charlotte; Verheyen, Kris; Rugani, Benedetto; Achten, Wouter; Verbeeck, Hans; Dewulf, Jo; Muys, Bart

    2016-05-15

    For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary

  1. Singular and interactive effects of blowdown, salvage logging, and wildfire in sub-boreal pine systems

    USGS Publications Warehouse

    D'Amato, A.W.; Fraver, S.; Palik, B.J.; Bradford, J.B.; Patty, L.

    2011-01-01

    The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part

  2. The fate of lead at abandoned and active shooting ranges in a boreal pine forest.

    PubMed

    Selonen, Salla; Liiri, Mira; Strömmer, Rauni; Setälä, Heikki

    2012-12-01

    Changes in leaching, availability, bioaccumulation, and vertical distribution of lead (Pb) in soil 20 years after the cessation of shooting activity were studied by comparing three pine forest sites in southern Finland: an active shooting range, an abandoned shooting range, and a noncontaminated control site. At both shooting ranges, shooting activity had lasted for 20 years, but it had taken place 20 years earlier at the abandoned range. Up to 4 kg m(-2) of Pb pellets had accumulated in the soil at both shooting ranges, and extremely high Pb concentrations, reaching 50,000 mg kg(-1) , were detected in the organic soil layer. Elevated Pb concentrations were also found in leachate waters and in the biota. Concentrations of Pb in the top organic soil layer and in some of the biota were lower at the abandoned shooting range, which can be taken as a sign of starting recovery of the forest ecosystem. However, the concentration of water-extractable Pb had not decreased in the topsoil, possibly indicating the release of Pb from decaying litter. Deeper in the organic soil layer, weathering of Pb pellets enhanced Pb availability and leaching, indicating an increased risk of groundwater contamination over time at shooting sites located above aquifers.

  3. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest

    NASA Astrophysics Data System (ADS)

    Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari

    2016-03-01

    Boreal forests comprise 73% of the world’s coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.

  4. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest.

    PubMed

    Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari

    2016-01-01

    Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.

  5. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest

    PubMed Central

    Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari

    2016-01-01

    Boreal forests comprise 73% of the world’s coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories. PMID:26997421

  6. Spatial variability of throughfall in a stand of Scots pine (Pinus sylvestris L.) with deciduous admixture as influenced by canopy cover and stem distance

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Boczoń, Andrzej; Hildebrand, Robert; Polkowska, Żaneta

    2016-07-01

    Vegetation cover affects the amount of precipitation, its chemical composition and its spatial distribution, and this may have implications for the distribution of water, nutrients and contaminants in the subsurface soil layer. The aim of this study was a detailed diagnosis of the spatio-temporal variability in the amount of throughfall (TF) and its chemical components in a 72-year-old pine stand with an admixture of oak and birch. The spatio-temporal variability in the amount of TF water and the concentrations and deposition of the TF components were studied. The components that are exchanged in canopy (H+, K, Mg, Mn, DOC, NH4+) were more variable than the components whose TF deposition is the sum of wet and dry (including gas) deposition and which undergo little exchange in the canopy (Na, Cl, NO3-, SO42-). The spatial distribution was temporally stable, especially during the leafed period. This study also investigated the effect of the selected pine stand characteristics on the spatial distribution of throughfall and its chemical components; the characteristics included leaf area index (LAI), the proportion of the canopy covered by deciduous species and pine crowns, and the distance from the nearest tree trunk. The LAI measured during the leafed and leafless periods had the greatest effect on the spatial distribution of TF deposition. No relationship was found between the spatial distribution of the amount of TF water and (i) the LAI; (ii) the canopy cover of broadleaf species or pines; or (iii) the distance from the trunks.

  7. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-11-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  8. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-04-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOA) and will be greatly influenced by increasing temperature. Global warming is predicted to increase emissions of reactive biogenic volatile organic compounds (BVOC) from vegetation directly, but will also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOC. Thus, climate change factors could substantially accelerate the formation of biogenic SOA in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions, respectively, from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold resulting in 200-1000 fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480%) and cloud condensation nuclei concentrations (45%). Satellite observations indicated a two-fold increase in aerosol optical depth (AOD) over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  9. Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures.

    PubMed

    Bomberg, Malin; Münster, Uwe; Pumpanen, Jukka; Ilvesniemi, Hannu; Heinonsalo, Jussi

    2011-07-01

    Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7-11.5°C (night-day temperature), 12-16°C, and 16-22°C, of which 12-16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the

  10. Ground-fire effects on the composition of dissolved and total organic matter in forest floor and soil solutions from Scots pine forests in Germany: new insights from solid state 13C NMR analysis

    NASA Astrophysics Data System (ADS)

    Näthe, Kerstin; Michalzik, Beate; Levia, Delphis; Steffens, Markus

    2016-04-01

    Fires represent an ecosystem disturbance and are recognized to seriously pertubate the nutrient budgets of forested ecosystems. While the effects of fires on chemical, biological, and physical soil properties have been intensively studied, especially in Mediterranean areas and North America, few investigations examined the effects of fire-induced alterations in the water-bound fluxes and the chemical composition of dissolved and particulate organic carbon and nitrogen (DOC, POC, DN, PN). The exclusion of the particulate organic matter fraction (0.45 μm < POM < 500 μm) potentially results in misleading inferences and budgeting gaps when studying the effects of fires on nutrient and energy fluxes. To our best knowledge, this is the first known study to present fire-induced changes on the composition of dissolved and total organic matter (DOM, TOM) in forest floor (FF) and soil solutions (A, B horizon) from Scots pine forests in Germany. In relation to control sites, we test the effects of low-severity fires on: (1) the composition of DOM and TOM in forest floor and soil solutions; and (2) the translocated amount of particulate in relation to DOC and DN into the subsoil. The project aims to uncover the mechanisms of water-bound organic matter transport along an ecosystem profile and its compositional changes following a fire disturbance. Forest floor and soil solutions were fortnightly sampled from March to December 2014 on fire-manipulated and control plots in a Scots pine forest in Central Germany. Shortly after the experimental duff fire in April 2014 pooled solutions samples were taken for solid-state 13C NMR spectroscopy to characterize DOM (filtered solution < 0.8μm pore size) and TOM in unfiltered solutions. Independent from fire manipulation, the composition of TOM was generally less aromatic (aromaticity index [%] according to Hatcher et al., 1981) with values between 18 (FF) - 25% (B horizon) than the DOM fraction with 23 (FF) - 27% (B horizon). For DOM

  11. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis.

    PubMed

    Ghirardo, Andrea; Koch, Kristine; Taipale, Risto; Zimmer, Ina; Schnitzler, Jörg-Peter; Rinne, Janne

    2010-05-01

    Boreal forests emit a large amount of monoterpenes into the atmosphere. Traditionally these emissions are assumed to originate as evaporation from large storage pools. Thus, their diurnal cycle would depend mostly on temperature. However, there is indication that a significant part of the monoterpene emission would originate directly from de novo synthesis. By applying 13CO2 fumigation and analyzing the isotope fractions with proton transfer reaction mass spectrometry (PTR-MS) and classical GC-MS, we determined the fractions of monoterpene emissions originating from de novo biosynthesis in Pinus sylvestris (58%), Picea abies (33.5%), Larix decidua (9.8%) and Betula pendula (100%). Application of the observed split between de novo and pool emissions from P. sylvestris in a hybrid emission algorithm resulted in a better description of ecosystem scale monoterpene emissions from a boreal Scots pine forest stand.

  12. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  13. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance.

    PubMed

    Duursma, R A; Kolari, P; Perämäki, M; Nikinmaa, E; Hari, P; Delzon, S; Loustau, D; Ilvesniemi, H; Pumpanen, J; Mäkelä, A

    2008-02-01

    The effect of drought on forest water use is often estimated with models, but comprehensive models require many parameters, and simple models may not be sufficiently flexible. Many tree species, Pinus species in particular, have been shown to maintain a constant minimum leaf water potential above the critical threshold for xylem embolism during drought. In such cases, prediction of the relative decline in daily maximum transpiration rate with decreasing soil water content is relatively straightforward. We constructed a soil-plant water flow model assuming constant plant conductance and daily minimum leaf water potential, but variable conductance from soil to root. We tested this model against independent data from two sites: automatic shoot chamber data and sap flow measurements from a boreal Scots pine (Pinus sylvestris L.) stand; and sap flow measurements from a maritime pine (Pinus pinaster Ait.) stand. To focus on soil limitations to water uptake, we expressed daily maximum transpiration rate relative to the rate that would be obtained in wet soil with similar environmental variables. The comparison was successful, although the maritime pine stand showed carry-over effects of the drought that we could not explain. For the boreal Scots pine stand, daily maximum transpiration was best predicted by water content of soil deeper than 5 cm. A sensitivity analysis revealed that model predictions were relatively insensitive to the minimum leaf water potential, which can be accounted for by the importance of soil resistance of drying soil. We conclude that a model with constant plant conductance and minimum leaf water potential can accurately predict the decline in daily maximum transpiration rate during drought for these two pine stands, and that including further detail about plant compartments would add little predictive power, except in predicting recovery from severe drought.

  14. Varying impacts of cervid, hare and vole browsing on growth and survival of boreal tree seedlings.

    PubMed

    Lyly, Mari; Klemola, Tero; Koivisto, Elina; Huitu, Otso; Oksanen, Lauri; Korpimäki, Erkki

    2014-01-01

    The negative impacts of mammalian herbivores on plants have been studied quite extensively, but typically with only a single herbivore species at a time. We conducted a novel comparison of the browsing effects of voles, hares and cervids upon the growth and survival of boreal tree seedlings. This was done by excluding varying assemblages of these key mammalian herbivores from silver birch, Scots pine and Norway spruce seedlings for 3 years. We hypothesised that the pooled impacts of the herbivores would be greater than that of any individual group, while the cervids would be the group with the strongest impact. Growth of birch seedlings advanced when cervids were excluded whereas growth of seedlings accessible to cervids was hindered. Survival of all seedlings was lowest when they were accessible to voles and voles plus hares, whereas cervids seemed not to influence seedling survival. Our results show that the impact of herbivores upon woody plants can be potent in the boreal forests, but the mechanism and strength of this link depends on the tree and herbivore species in question. Risk of abated stand regeneration appears highest for the deciduous birch, though there is need for seedling protection also in coniferous stands. The clear cervid-mediated growth limitation of birch also indicates potential for a trophic cascade effect by mammalian top predators, currently returning to boreal ecosystems.

  15. A new model for estimating boreal forest fPAR

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Rautiainen, Miina; Stenberg, Pauline

    2014-05-01

    Life on Earth is continuously sustained by the extraterrestrial flux of photosynthetically active radiation (PAR, 400-700 nm) from the sun. This flux is converted to biomass by chloroplasts in green vegetation. Thus, the fraction of absorbed PAR (fPAR) is a key parameter used in carbon balance studies, and is listed as one of the Essential Climate Variables (ECV). Temporal courses of fPAR for boreal forests are difficult to measure, because of the complex 3D structures. Thus, they are most often estimated based on models which quantify the dependency of absorbed radiation on canopy structure. In this study, we adapted a physically-based canopy radiation model into a fPAR model, and compared modeled and measured fPAR in structurally different boreal forest stands. The model is based on the spectral invariants theory, and uses leaf area index (LAI), canopy gap fractions and spectra of foliage and understory as input data. The model differs from previously developed more detailed fPAR models in that the complex 3D structure of coniferous forests is described using an aggregated canopy parameter - photon recollision probability p. The strength of the model is that all model inputs are measurable or available through other simple models. First, the model was validated with measurements of instantaneous fPAR obtained with the TRAC instrument in nine Scots pine, Norway spruce and Silver birch stands in a boreal forest in southern Finland. Good agreement was found between modeled and measured fPAR. Next, we applied the model to predict temporal courses of fPAR using data on incoming radiation from a nearby flux tower and sky irradiance models. Application of the model to simulate diurnal and seasonal values of fPAR indicated that the ratio of direct-to-total incident radiation and leaf area index are the key factors behind the magnitude and variation of stand-level fPAR values.

  16. The Effect of Bark Borer Herbivory on BVOC Emissions in Boreal Forests and Implications for SOA Formation

    NASA Astrophysics Data System (ADS)

    Faiola, Celia; Joutsensaari, Jorma; Holopainen, Jarmo; Yli-Juuti, Taina; Kokkola, Harri; Blande, James; Guenther, Alex; Virtanen, Annele

    2015-04-01

    Herbivore outbreaks are expected to increase as a result of climate change. These outbreaks can have significant effects on the emissions of biogenic volatile organic compound (BVOC) from vegetation, which contribute to the formation of secondary organic aerosol (SOA). We have synthesized the published results investigating changes to BVOC emissions from herbivory by the pine weevil, Hylobius abietis--a bark borer herbivore. Previous lab experiments have shown that bark borer herbivory on Scots pine trees increases monoterpene emissions 4-fold and sesquiterpene emissions 7-fold. Norway spruce exhibits a similar response. The BVOCs most impacted were linalool, beta-phellandrene, limonene, alpha-pinene, beta-pinene, myrcene, and sesquiterpenes like beta-farnesene, beta-bourbonene, and longifolene. The quantitative results from these studies were used to estimate potential impacts of bark borer herbivory on BVOC emissions at a regional scale using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). MEGAN was run under baseline and herbivore outbreak conditions for a typical boreal forest environment in spring. Emissions output from MEGAN was used to run a microphysical box model to estimate the SOA formation potential under baseline and outbreak conditions. This estimate could provide us with an upper limit to the potential impact of bark borer outbreaks on SOA formation in a boreal forest.

  17. Nitrogen balance along a boreal forest fire chronosequence

    NASA Astrophysics Data System (ADS)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2016-04-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change in boreal regions. Because boreal forests comprise 30% of the global forest area, increases in the annual area burned may have significant implications for global carbon and nitrogen (N) cycles. The productivity of boreal forests is limited by low N availability. Fires cause N loss from ecosystems through oxidation and volatilization of N stored in biomass and soil. N balance may be poorly buffered against forest fires especially in sub-arctic ecosystems where atmospheric N deposition is low. Although forest fires alter N dynamics, there are little quantitative data available on N pools and fluxes through post-fire succession in sub-arctic boreal forests. We studied changes in N pools and fluxes, and the overall N balance across a 155-year forest fire chronosequence in sub-arctic Scots pine (Pinus sylvestris) forests in Värriö Strict Nature Reserve situated in Finnish Lapland (67°46' N, 29°35' E). Soil was the largest N pool in all forest age classes and comprised 69-82% of the total ecosystem N pool. The total ecosystem N pool varied from 622 kg ha-1 in the recently burned forest to 960 kg ha-1 in the 155-year-old forest. The forests were N sinks in all age classes the annual N accumulation rate being 2.28 kg ha-1 yr-1 which was distributed almost equally between soil and biomass. The observed changes in ecosystem N pools were consistent with the computed N balance 2.10 kg ha-1 yr-1 over the 155-year post-fire period (Balance= (atmospheric deposition + N fixation) - (leaching + N2O emissions)). The results indicated that N deposition is an important component of the N balance and the N outputs are small (13% of the inputs) in the studied ecosystems. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) compared to the other N fluxes. The biological N fixation increased with succession and constituted 9% of the total N

  18. Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus.

    PubMed

    Koivula, Teija T; Salkinoja-Salonen, Mirja; Peltola, Rainer; Romantschuk, Martin

    2004-01-01

    The mineralization potential of forest humus and the self-cleaning potential of a boreal coniferous forest environment for polycyclic aromatic hydrocarbon (PAH) compounds was studied using a model ecosystem of acid forest humus (pH = 3.6) and pyrene as the model compound. The matrix was natural humus or humus mixed with oil-polluted soil in the presence and absence of Scots pine (Pinus sylvestris L.) and its mycorrhizal fungus (Paxillus involutus). The rates of pyrene mineralization in the microcosms with humus implants (without pine) were initially insignificant but increased from Day 64 onward to 47 microg kg(-1) d(-1) and further to 144 microg kg(-1) d(-1) after Day 105. In the pine-planted humus microcosms the rate of mineralization also increased, reaching 28 microg kg(-1) d(-1) after Day 105. The 14CO2 emission was already considerable in nonplanted microcosms containing oily soil at Day 21 and the pyrene mineralization continued throughout the study. The pyrene was converted to CO2 at rates of 0.07 and 0.6 microg kg(-1) d(-1) in the oily-soil implanted microcosms with and without pine, respectively. When the probable assimilation of 14CO2 by the pine and ground vegetation was taken into account the most efficient microcosm mineralized 20% of the 91.2 mg kg(-1) pyrene in 180 d. The presence of pine and its mycorrhizal fungus had no statistically significant effect on mineralization yields. The rates of pyrene mineralization observed in this study for forest humus exceeded the total annual deposition rate of PAHs in southern Finland. This indicates that accumulation in forest soil is not to be expected.

  19. Estimation of autotrophic soil respiration in a boreal forest using three different approaches

    NASA Astrophysics Data System (ADS)

    Kulmala, Liisa; Pumpanen, Jukka; Heinonsalo, Jussi

    2016-04-01

    It is generally challenging to separate autotrophic and heterotrophic soil respiration. The reason for these difficulties is connected with the intimate interaction of the key processes in soil. Root-associated microbes practically colonize the whole soil volume while decomposition processes occur in the same matrix. Therefore, autotrophic and heterotrophic processes cannot be separated in natural systems. However, there are several methods that can be used to better understand the dynamics of these two. A classical method is called 'trenching' where a trench is dug around a known volume of soil and the roots entering the soil are cut from the living trees thus blocking the C flow from them. The second way to separate autotrophic and heterotrophic respiration relies on the difference in the isotopic signature (13C) of plant-derived or decomposition-derived CO2. The third way to separate the sources is to study the differences in the short- and long-term temperature dependencies in CO2 soil emissions. This is possible especially in boreal forests where the biological activity has a strong seasonal cycle. We compared these three methods in an experiment conducted in a southern boreal middle-aged Scots pine stand in Finland. Our data provides a unique possibility to critically evaluate current methods for estimating autotrophic and heterotrophic soil respiration. The knowledge is needed to study further plant physiology and plant-microbe interactions in soil.

  20. Effect of Simulated Acid Rain on Bursaphelenchus xylophilus Infection of Pine Seedlings.

    PubMed

    Bolla, R I; Fitzsimmons, K

    1988-10-01

    White, Scots, and Austrian 3-year-old pine seedlings were treated with conditions simulating acid rain and inoculated with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1. Oleoresin concentration increased slightly and carbohydrate concentration decreased in all seedlings treated with simulated acid rain (SAR). The changes were significantly increased after inoculation of SAR-treated white and Scots pine seedlings with VPSt-1. Wilting was delayed and nematode reproduction decreased in SAR-treated white pine seedlings inoculated with VPSt-1. SAR-treated Austrian pine seedlings were resistant to VPSt-1, but SAR-treated Scots pine seedlings lost tolerance to VPSt-1 and wilted 50-60 days after inoculation.

  1. Light-induced diurnal pattern of methane exchange in a boreal forest

    NASA Astrophysics Data System (ADS)

    Sundqvist, Elin; Crill, Patrick; Mölder, Meelis; Vestin, Patrik; Lindroth, Anders

    2013-04-01

    Boreal forests represents one third of the Earth's forested land surface area and is a net sink of methane and an important component of the atmospheric methane budget. Methane is oxidized in well-aerated forest soils whereas ponds and bog soils are sources of methane. Besides the microbial processes in the soil also forest vegetation might contribute to methane exchange. Due to a recent finding of methane consumption by boreal plants that correlated with photosynthetic active radiation (PAR), we investigate the impact of PAR on soil methane exchange at vegetated plots on the forest floor. The study site, Norunda in central Sweden, is a 120 years old boreal forest stand, dominated by Scots pine and Norway spruce. We used continuous chamber measurements in combination with a high precision laser gas analyzer (Los Gatos Research), to measure the methane exchange at four different plots in July-November 2009, and April-June 2010. The ground vegetation consisted almost entirely of mosses and blueberry-shrubs. Two of the plots acted as stable sinks of methane whereas the other two plots shifted from sinks to sources during very wet periods. The preliminary results show a clear diurnal pattern of the methane exchange during the growing season, which cannot be explained by temperature. The highest consumption occurs at high PAR levels. The amplitude of the diurnal methane exchange during the growing season is in the order of 10 μmol m-2 h-1. This indicates that besides methane oxidation by methanotrophs in the soil there is an additional removal of methane at soil level by a process related to ground vegetation.

  2. Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe

    PubMed Central

    Vaganov, Eugene A.; Skomarkova, Marina V.; Knohl, Alexander; Brand, Willi A.; Roscher, Christiane

    2009-01-01

    Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage

  3. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NASA Astrophysics Data System (ADS)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.

    2011-05-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site were characterized by a higher proportion of southerly flow. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  4. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NASA Astrophysics Data System (ADS)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.

    2011-10-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  5. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences.

    NASA Astrophysics Data System (ADS)

    Williams, J.; Petäjä, T.

    2012-04-01

    This submission describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12th July-12th August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  6. Seasonal courses revealed that boreal trees emit methane even during winter time

    NASA Astrophysics Data System (ADS)

    Machacova, Katerina; Halmeenmäki, Elisa; Pihlatie, Mari; Urban, Otmar

    2016-04-01

    Boreal forests are considered to be a significant natural sink of methane (CH4) due to predominant soil deposition of CH4 from the atmosphere. However, plants are known to contribute to the CH4 exchange with the atmosphere. Fluxes of CH4 have been mostly studied on herbaceous plants, whereas investigations on trees, particularly boreal tree species, are sporadic. Therefore we determined CH4 fluxes from common boreal tree species: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and silver birch (Betula pendula). The objectives were to investigate whether these tree species contribute to CH4 exchange with the atmosphere, particularly in winter, how soil water content affects these fluxes, and how trees contribute to overall forest CH4 fluxes. The measurements were performed on mature trees in the boreal forest surrounding the SMEAR II station in Finland. Fluxes of CH4 at stem and forest floor level were simultaneously measured over the whole year (from June 2014 until May 2015) using static chamber systems and quantified by gas chromatographic analyses. Our results show that the trees mostly emitted CH4 in the summer. Birch was the strongest emitter of CH4(9.5 μg CH4 m-2stem area h-1, medians) among the tree species studied, particularly under high soil volumetric water content (0.92 ± 0.01 m3 m-3). Similarly, the forest floor released CH4 into the atmosphere (37 μg CH4 m-2 soil area h-1). Under low soil water content (0.37 ± 0.02 m3 m-3), the flux rates from stems of birch and pine decreased but remained mostly positive (i.e. emissions), whereas forest floor reversed to sink for CH4 (-44 μg CH4 m-2 h-1). In contrast, spruce CH4 emissions increased with decreasing soil water content up to 0.55 μg CH4 m-2 h-1. In general, the emission rates of all the tree species decreased from September/October onwards. In the winter, the tree fluxes remained low, but slightly positive, and increased again in the spring. The CH4 fluxes were modulated by soil water

  7. Seasonal courses revealed that boreal trees emit methane even during winter time

    NASA Astrophysics Data System (ADS)

    Machacova, Katerina; Halmeenmäki, Elisa; Pihlatie, Mari; Urban, Otmar

    2016-04-01

    Boreal forests are considered to be a significant natural sink of methane (CH4) due to predominant soil deposition of CH4 from the atmosphere. However, plants are known to contribute to the CH4 exchange with the atmosphere. Fluxes of CH4 have been mostly studied on herbaceous plants, whereas investigations on trees, particularly boreal tree species, are sporadic. Therefore we determined CH4 fluxes from common boreal tree species: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and silver birch (Betula pendula). The objectives were to investigate whether these tree species contribute to CH4 exchange with the atmosphere, particularly in winter, how soil water content affects these fluxes, and how trees contribute to overall forest CH4 fluxes. The measurements were performed on mature trees in the boreal forest surrounding the SMEAR II station in Finland. Fluxes of CH4 at stem and forest floor level were simultaneously measured over the whole year (from June 2014 until May 2015) using static chamber systems and quantified by gas chromatographic analyses. Our results show that the trees mostly emitted CH4 in the summer. Birch was the strongest emitter of CH4(9.5 μg CH4 m‑2stem area h‑1, medians) among the tree species studied, particularly under high soil volumetric water content (0.92 ± 0.01 m3 m‑3). Similarly, the forest floor released CH4 into the atmosphere (37 μg CH4 m‑2 soil area h‑1). Under low soil water content (0.37 ± 0.02 m3 m‑3), the flux rates from stems of birch and pine decreased but remained mostly positive (i.e. emissions), whereas forest floor reversed to sink for CH4 (-44 μg CH4 m‑2 h‑1). In contrast, spruce CH4 emissions increased with decreasing soil water content up to 0.55 μg CH4 m‑2 h‑1. In general, the emission rates of all the tree species decreased from September/October onwards. In the winter, the tree fluxes remained low, but slightly positive, and increased again in the spring. The CH4 fluxes were

  8. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  9. Spectral reflectance patterns and temporal dynamics of common understory types in hemi-boreal forests in Järvselja, Estonia

    NASA Astrophysics Data System (ADS)

    Nikopensius, Maris; Raabe, Kairi; Pisek, Jan

    2014-05-01

    The knowledge about spectral properties and seasonal dynamics of understory layers in boreal forests currently holds several gaps. This introduces severe uncertainties while modelling the carbon balance of this ecosystem, which is expected to be prone to major shifts with climate change in the future. In this work the seasonal reflectance dynamics in European hemi-boreal forests are studied. The data for this study was collected at Järvselja Training and Experimental Forestry District (Estonia, 27.26°E 58.30°N). Measurements were taken in three different stands. The silver birch (Betula Pendula Roth) stand grows on typical brown gley-soil and its understory vegetation is dominated by a mixture of several grass species. The Scots pine (Pinus sylvestris) stand grows on a bog with understory vegetation composed of sparse labrador tea, cotton grass, and a continuous Sphagnum moss layer. The third stand, Norway spruce (Picea abies), grows on a Gleyi Ferric Podzol site with understory vegetation either partially missing or consisting of mosses such as Hylocomium splendens or Pleurozium schreberi [1]. The sampling design was similar to the study by Rautiainen et al. [3] in northern European boreal forests. At each study site, a 100 m long permanent transect was marked with flags. In addition, four intensive study plots (1 m × 1 m) were marked next to the transects at 20 m intervals. The field campaign lasted from May to September 2013. For each site the fractional cover of understory and understory spectra were estimated ten times i.e. every 2 to 3 weeks. Results from Järvselja forest were compared with the seasonal profiles from boreal forests in Hyytiälä, Finland [2]. References [1] A. Kuusk, M. Lang, J. Kuusk, T. Lükk, T. Nilson, M. Mõttus, M. Rautiainen, and A. Eenmäe, "Database of optical and structural data for validation of radiative transfer models", Technical Report, September 2009 [2] M. Rautiainen, M. Mõttus, J. Heiskanen, A. Akujärvi, T. Majasalmi

  10. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  11. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  12. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest

    PubMed Central

    Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  13. Responses of fungal and plant communities to partial humus removal in mid-boreal N-enriched forests.

    PubMed

    Tarvainen, Oili; Hamberg, Leena; Ohenoja, Esteri; Strömmer, Rauni; Markkola, Annamari

    2012-10-15

    Partial removal of the forest humus layer was performed in nitrogen-enriched urban Scots pine forest stands in the northern Finland in order to improve soil conditions for ectomycorrhizal (ECM) fungi, important symbionts of trees. Aboveground part of understory vegetation and the uppermost half of the humus layer were removed (REMOVAL treatment) from sample plots in six urban and eight rural reference forest sites at the beginning of the 2001 growing season. During the seasons 2001-2005, we inventoried sporocarp production of ECM and saprophytic fungi, and in 2003 the recovery of understory vegetation. The REMOVAL treatment resulted in a higher number of fruiting ECM species and sporocarps than controls at the rural, but not at urban sites. The sporocarp number of saprophytic fungi declined in the REMOVAL subplots at the urban sites. The recovery of bryophytes and lichens in the REMOVAL treatment was slow at both the urban and rural sites, whereas Vaccinium dwarf shrub cover, and herb and grass cover returned rapidly at the urban sites. We conclude that the partial vegetation and humus layer removal as a tool to promote the reproduction of ECM fungal species is limited in the boreal urban forests.

  14. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    PubMed

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years.

  15. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    PubMed

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. PMID:25217744

  16. N cycling and the composition of terpenes and tannins in boreal forest soils: Effects of logging residues

    NASA Astrophysics Data System (ADS)

    Smolander, Aino; Kitunen, Veikko; Kukkola, Mikko; Tamminen, Pekka

    2014-05-01

    There is increasing evidence available that certain terpenes and tannins may mediate substantial changes in nitrogen cycling processes in boreal forest soils. Terpenes and tannins are two important groups of plant secondary metabolites: Terpenes are hydrocarbons having different number of isoprene-derived units and tannins are complex polyphenolic compounds able to interact with proteins. Logging residues, consisting of fresh tree tops and branches with needles contain large amounts of terpenes and tannins. Currently there is increasing demand for forest biomass for bioenergy production. Therefore, harvesting of logging residues has become more common from both clear-cutting and thinning stands, instead of conventional stem-only harvest where logging residues are retained on the site. Our aim was to determine how logging residues affect soil N cycling processes in Scots pine and Norway spruce thinning stands in long-term, and how these processes are related to the composition of terpenes and tannins in the soil. Samples were taken from the humus layer of pine and spruce experiments which had been thinned 4-to-19 years before; in the thinning different amounts of logging residues had been distributed on the plots. Logging residues had only little effect on soil microbial biomass N or C. However, in several sites logging residues increased the rate of net N mineralization and the ratios net N mineralization/ C mineralization and net N mineralization/microbial biomass N, and these positive effects were very long-lasting. Logging residues also changed the composition of different terpenes and condensed tannins in soil. In general, with regard to the processes and ratios indicating N availability, stem-only harvest seems to be more favorable than whole-tree harvest. The results from long-term field experiments will be discussed in relation to the effects of different terpenes and tannins, observed in short-term laboratory experiments, on N cycling processes.

  17. Scots in the Northern Fur Trade: A Middleman Minority Perspective.

    ERIC Educational Resources Information Center

    Zenner, Walter P.; Jarvenpa, Robert

    1980-01-01

    Explores the entrepreneurial role of Scots in the Canadian Northwest since the nineteenth century. Links entrepreneurship behavior with economic and social structural factors. Also discusses relations between Scots and local Indian groups. Attributes differences between Scots and other middleman minorities to the former's position in the powerful…

  18. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    PubMed Central

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  19. Land surface model over forest and lake surfaces in a boreal site - Evaluation of the tiling method

    NASA Astrophysics Data System (ADS)

    Manrique Suñén, A.; Nordbo, A.; Balsamo, G.; Beljaars, A.; Mammarella, I.

    2012-04-01

    Land surface model over forest and lake surfaces in a boreal site - Evaluation of the tiling method Andrea Manrique Suñén1, Annika Nordbo2, Gianpaolo Balsamo1, Anton Beljaars1 and Ivan Mammarella2 1 ECMWF, Reading, UK 2 University of Helsinki, Finland The tiling method is used by many models to represent the surface heterogeneity. Each grid-box is divided into fractions of different types of surface, and an area-weighted average of the energy fluxes is computed to couple with the atmosphere. This method provides a flexible characterisation of land complexity, and separate information of sub grid variables. However, not much assessment of its validity has been carried out. To evaluate results for two contrasting surfaces, the Hydrology Tiled ECMWF Scheme for Surface Exchanges has been run offline for the year 2006, forced by the ERA-Interim reanalysis data over a boreal site in southern Finland for two cases. The first one corresponds to a full coverage of the grid-box by high vegetation, and the second one to a full coverage by a lake. The lake model Flake was incorporated into the system to represent inland water processes. It uses a simple parameterisation which has proved to perform well for numerical weather prediction. The resulting fluxes for both cases have been compared to observational data from two stations situated near each other in a Scots pine forest (Hyytiälä) and in a small boreal lake (Valkea-Kotinen), in southern Finland. The turbulent fluxes at the sites were measured using the Eddy-covariance technique. Net radiation, change in heat storage, wind speed, air temperature, and specific humidity and surface pressure were also available for each site. The diurnal and seasonal cycles of the energy fluxes for these contrasting surfaces have been evaluated, and the different energy partitioning has been explained. In general, the effect of the lake's thermal inertia is well represented by the model. The only shortcoming of the lake model appears to

  20. Scots in Contemporary Social and Educational Context

    ERIC Educational Resources Information Center

    McPake, Joanna; Arthur, Jo

    2006-01-01

    Although Scots is listed by the European Bureau for Lesser Used Languages as one of the UK's minority languages, its historical development and its contemporary standing have been significantly affected by a perception that it is a non-standard dialect of English, to which it is closely related, rather than a language in its own right. By…

  1. Improving the modeling of the seasonal carbon cycle of the boreal forest with chlorophyll fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Thum, Tea; Aalto, Tuula; Aurela, Mika; Laurila, Tuomas; Zaehle, Sönke

    2014-05-01

    The boreal ecosystems are characterized a very strong seasonal cycle and they are very sensitive to the climatic variables. The vegetation's deep wintertime dormancy requires a long recovery time during spring before the plants reach their full photosynthetic capacity. During this recovery time the plants are highly susceptible the night frosts. The transition period is different during spring and autumn for the evergreen plants. During spring there is plenty of light, but cold air temperatures inhibit the photosynthesis. The plants therefore experience to high stress levels, as they need to protect their photosynthetic apparatus from intense light. In autumn the air temperature and light level decrease more concurrently. To have a realistic presentation of the carbon cycle in boreal forests it is important to have these characteristics properly modeled, so that also the implications of changing seasonality under climate change can be more reliably predicted. In this study, we focus on the CO2 exchange of a Scots pine forest Sodankylä located in Finnish Lapland, 100 km north from the Arctic Circle. Micrometeorological flux measurements provide information about the exchanges of carbon, energy and water between atmosphere and vegetation. To complement these fluxes, we use dark-adapted chlorophyll fluorescence (CF) measurements, which is an optical measurement and tracks the development of the photosynthetic capacity. These two approaches combined together are very useful when we want to improve the modeling of the forest's CO2 exchange. We used two models that describe the photosynthesis with the biochemical model of Farquhar et al. The FMI-CANOPY is a canopy level model that is feasible to use in parameter estimation. We used the CF measurements of Fv/Fm, that is a measure of the maximum photosynthetic capacity, to include a seasonal development in the base rate of the maximum carboxylation rate (Vc(max)) in FMI-CANOPY. The simulation results matched the

  2. Molecular identification of Phytoplasmas infecting diseased pine trees in the UNESCO-protected Curonian Spit of Lithuania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although mainly known as pathogens that affect angiosperms, phytoplasmas have recently been detected in diseased coniferous plants. In 2008-2014, we observed, in the Curonian Spit of western Lithuania and in forests of southern Lithuania (Varena district), diseased trees of Scots pine (Pinus sylvest...

  3. Projected dynamics of abiotic risks in boreal forest ecosystems (SRES A1B, B1)

    NASA Astrophysics Data System (ADS)

    Panferov, O.; Ahrends, B.; Doering, C.; Sogachev, A.

    2009-04-01

    The ongoing climate change causes an increasing frequency of weather extremes (Leckebusch et al., 2008), which can result in wide area damage events (drought, windthrows/breaks) within boreal forest ecosystem. The damage effects, however, depend not only on the strength of a driving force itself (e.g. wind speed) but also on combinations of effecting agents and forest structure. Thus, the present study investigates the projected future developments of abiotic risks in different boreal forests during the 21st Century under conditions of SRES scenarios A1B and B1. Climate scenario data of coupled ECHAM5-MPIOM were downscaled by the regional climate model (CLM) to the spatial resolution of 0.2° x 0.2°, using daily time- steps. With these input data the small-scale modelling with coupled process based sub-models (Jansen et al., 2008) was carried out e.g. for Solling region, (Germany) calculating the water and energy balance of forest ecosystems with modified BROOK 90 (Ahrends et al., 2009) and wind loading on trees with 3D ABL model SCADIS (Panferov and Sogachev, 2008). Norway spruce and Scots pine of various ages were chosen as typical tree species for boreal forest ecosystems and cambisols, podzolic cambisols and stagnosols as typical soil types. The risks of drought and windthrow/breaks for a certain forest stand result from daily combinations of soil water characteristics, static and gust wind loads and soil texture. Damaged stands show higher vulnerability and thus - positive feedback to climate forcing (Vygodskaya et al., 2008). Therefore differences of microclimatological conditions in the remaining stand after changes in forest structure (Radler et al, 2008) were taken into account. Modell output was aggregated to 30-years periods and compared to "present conditions" of 1981-2010. The results show an increment of drought risks towards 2100 caused by changes in precipitation pattern and increase of mean air temperature, whereas the A1B scenario is

  4. Relating Radar Backscatter to Boreal Forest Canopy Parameters

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan

    1995-01-01

    During the first intensive field campaign for the Boreal Ecosystem Atmospheric Study (BOREAS) in August of 1993, AIRSAR data were acquired over the entire BOREAS study area. On of the objectives of the AIRSAR deployment was to examine the sensitivity of the radar signal to vegetation type and biomass distribution in the boreal forest and to develop algorithms for inferring vegetation parameters. During the experiment a set of ground measurements were also made to support the AIRSAR data analysis. The dominant stands in the study area consist of black spruce, young jack pine, old jack pine, and aspen. These stands represent a wide range of biomass and canopy architectural variations which can be distinguished in SAR images.

  5. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle.

    PubMed

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (-):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest. PMID:26042134

  6. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle.

    PubMed

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (-):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  7. Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multi-station terrestrial laser scanning. (Polish Title: Automatyczne okreslanie srednicy pnia, podstawy korony oraz wysokosci sosny zwyczajnej (Pinus Silvestris L.) Na podstawie analiz chmur punktow 3D pochodzacych z wielostanowiskowego naziemnego skanowania laserowego)

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Wężyk, P.

    2015-12-01

    Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x

  8. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.

    PubMed

    Hasselquist, Niles J; Metcalfe, Daniel B; Inselsbacher, Erich; Stangl, Zsofia; Oren, Ram; Näsholm, Torgny; Högberg, Peter

    2016-04-01

    The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with -15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched 5NO3(-) label to the EM-dominated mor-layer and followed the fate of the 15N label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater 15N label in tree foliage compared to unshaded control plots, where more 15N label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of 15N label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change. PMID:27220217

  9. Fire and green-tree retention in conservation of red-listed and rare deadwood-dependent beetles in Finnish boreal forests.

    PubMed

    Hyvärinen, Esko; Kouki, Jari; Martikainen, Petri

    2006-12-01

    Habitat loss, fragmentation, and declining habitat quality have created an extinction debt in boreal forests, which could be partly reversed by deliberately improving the habitat quality in managed areas outside reserves. We studied the effects of green-tree retention and controlled burning on red-listed and rare, deadwood-dependent (saproxylic) beetles in a large-scale field experiment in eastern Finland. Our factorial study design included 24 sites dominated by Scots pine (Pinus sylvestris L.) and with three levels of green-tree retention (0, 10, and 50 m3/ha) and uncut controls. Twelve of the 24 sites were burned in 2001. We sampled beetles with 10 flight-intercept traps on each site during the years 2000-2002 (i.e., 1 pretreatment and 2 post-treatment years). A total sample of 153,449 individuals representing 1,160 beetle species yielded 2,107 specimens of 84 red-listed or rare saproxylic species. The richness of these species was higher on the burned than on the unburned sites, and higher levels of green-tree retention promoted species richness, but there were clear differences between the years. The richness of red-listed and rare saproxylic species increased in the first post-treatment year, evidently due to the treatments, continued to increase on the burned sites in the second post-treatment year, but decreased on the unburned sites. Our results showed that the living conditions of many red-listed and rare saproxylic species could be improved significantly with rather simple alterations to forest management methods. Controlled burning with high levels of green-tree retention creates resources for many saproxylic species, but increasing the levels of green-tree retention in unburned areas can also be beneficial.

  10. AmeriFlux CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce

    SciTech Connect

    Margolis, Hank A.

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce. Site Description - 49.69247° N / 74.34204° W, elevation of 387 mm, 90 - 100 yr old Black Spruce, Jack Pine, feather moss

  11. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species.

    PubMed

    Guada, Guillermo; Camarero, J Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  12. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species

    PubMed Central

    Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  13. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    PubMed

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  14. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    PubMed

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  15. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae)

    PubMed Central

    Pitt, Caitlin; Carroll, Allan L.; Lindgren, B. Staffan; Huber, Dezene P.W.

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to

  16. The Energy Balance of the Winter Boreal Landscape.

    NASA Astrophysics Data System (ADS)

    Harding, R. J.; Pomeroy, J. W.

    1996-11-01

    During the winter of 1993/94 a study to quantify the winter energy balance of the main cover types of the boreal landscape took place. The study was based on the southern edge of boreal forest in Canada. Measurements were made over a mature jack pine stand and a frozen lake. Shortwave albedos of 12% to 14% over the jack pine and 20% to 88% on the frozen lake (both depending on snow cover) were measured. There were correspondingly large contrasts in the total radiation inputs and the turbulent heat fluxes. The mean net all-wave radiation input was large and positive into the forest and negative over the lake. The sensible heat fluxes were of the same sign as the radiative inputs with positive values over the forest peaking at +200 W m2 and failing to 100 W m2 over the lake. The evaporation from the forest depended on whether the there was snow on the canopy. When the canopy was snow-free, the evaporation was low, about 50% of net radiation but, when there was snow on the canopy, the evaporation was large, 4 mm over a 36-hour period. The results of these experiments are being used to design much-improved descriptions of boreal forest within the next generation of climate, models.

  17. Lichen conservation in heavily managed boreal forests.

    PubMed

    McMullin, Richard Troy; Thompson, Ian D; Newmaster, Steven G

    2013-10-01

    Lichens are an important component of the boreal forest, where they are long lived, tend to accumulate in older stands, and are a major food source for the threatened woodland caribou (Rangifer tarandus caribou). To be fully sustainable, silvicultural practices in the boreal forest must include the conservation of ecological integrity. Dominant forest management practices, however, have short-term negative effects on lichen diversity, particularly the application of herbicides. To better understand the long-term effects of forest management, we examined lichen regeneration in 35 mixed black spruce (Picea mariana) and jack pine (Pinus banksiana) forest stands across northern Ontario to determine recovery following logging and postharvest silvicultural practices. Our forest stands were 25-40 years old and had undergone 3 common sivilcultural treatments that included harvested and planted; harvested, planted, and treated with N-[phosphonomethyl] glycine (glyphosate); and harvested, planted, and treated with 2,4-dichlorophenoxyacetic acid (2,4-D). Forest stands with herbicide treatments had lower lichen biomass and higher beta and gamma diversity than planted stands that were not treated chemically or control stands. In northwestern Ontario, planted stands that were not treated chemically had significantly greater (p < 0.05) alpha diversity than stands treated with herbicides or control stands. Our results show that common silvicultural practices do not emulate natural disturbances caused by wildfires in the boreal forest for the lichen community. We suggest a reduction in the amount of chemical application be considered in areas where lichen biomass is likely to be high and where the recovery of woodland caribou is an objective. PMID:23869621

  18. Climatic dipoles drive two principal modes of North American boreal bird irruption

    PubMed Central

    Strong, Courtenay; Zuckerberg, Benjamin; Betancourt, Julio L.; Koenig, Walter D.

    2015-01-01

    Pine Siskins exemplify normally boreal seed-eating birds that can be sparse or absent across entire regions of North America in one year and then appear in large numbers the next. These dramatic avian “irruptions” are thought to stem from intermittent but broadly synchronous seed production (masting) in one year and meager seed crops in the next. A prevalent hypothesis is that widespread masting in the boreal forest at high latitudes is driven primarily by favorable climate during the two to three consecutive years required to initiate and mature seed crops in most conifers. Seed production is expensive for trees and is much reduced in the years following masting, driving boreal birds to search elsewhere for food and overwintering habitat. Despite this plausible logic, prior efforts to discover climate-irruption relationships have been inconclusive. Here, analysis of more than 2 million Pine Siskin observations from Project FeederWatch, a citizen science program, reveals two principal irruption modes (North-South and West-East), both of which are correlated with climate variability. The North-South irruption mode is, in part, influenced by winter harshness, but the predominant climate drivers of both modes manifest in the warm season as continental-scale pairs of oppositely signed precipitation and temperature anomalies (i.e., dipoles). The climate dipoles juxtapose favorable and unfavorable conditions for seed production and wintering habitat, motivating a push-pull paradigm to explain irruptions of Pine Siskins and possibly other boreal bird populations in North America. PMID:25964328

  19. Disturbances (fire and grazing by reindeer) and soil methane fluxes -- case studies from the subarctic boreal forest of Finish Lapland.

    NASA Astrophysics Data System (ADS)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2016-04-01

    In aerobic, well-drained environments such as boreal upland forest soils, methane (CH4) is oxidized by microbes, resulting into the soils acting as a sink of atmospheric CH4. The emission of CH4 is controlled primarily by soil moisture and temperature, but also by the availability of organic carbon. Forest fires are one of the predominant natural disturbances in subarctic boreal forests that strongly influence soil moisture and soil temperature values and carbon dynamics of the soils. At the same time also the effect of reindeer (Rangifer tarandus L.) grazing on soil moisture and temperature regimes in the lichen-dominated Arctic ecosystems has been found to be considerable. By removing the lichen carpet and damaging the secondary vegetation mat, reindeer make patches of bare soil common, and these factors in combination with trampling allow for soil to warm up faster, reach higher temperatures, and reduce the soil moisture content. We studied the effect of reindeer grazing and forest fire on fluxes of CH4 in northern boreal subarctic Scots pine forest stands. The study areas are in eastern Lapland, Värriö Strict Nature Reserve, Finland (67° 46' N, 29° 35' E). The sites are situated north of the Arctic Circle, near to the northern timberline at an average of 300 m altitude. For studing the effect of fire we have established sample areas (with three replicate plots in each) in a chronosequence of 4 age classes (2 to 152 years since the last fire). The fire chronosequence consisted of four types of areas with different time since the last forest fire: i) 5 years, ii) 45 years, iii) 70 years and iv) 155 years after fire. For studing the effect of reindeer grazing (comparison of grazed and non-grazed areas) we have established the study areas (10 sample plots in total established in year 2013) along the borderline between Finland and Russia. The ungrazed area was excluded from the reindeer grazing already in 1918, to prevent the Finnish reindeer from going to the

  20. Controls over hydrocarbon emissions from boreal forest conifers

    SciTech Connect

    Lerdau, M.; Litvak, M.; Monson, R. |

    1995-06-01

    The emissions of monoterpenes and isoprene were measured from two species of conifers native to the boreal forest of Canada, jack pine, Pinus rigida, and black spruce, Picea Mariana. We examined the effects of phenology and needle age on the emissions of these compounds, and the variations in tissue concentrations of monoterpenes. We measured photosynthetic carbon uptake and hydrocarbon emissions at two sites in northern Saskatchewan under controlled light, temperatures, and CO{sub 2} concentrations, and analyzed carbon uptake rates using an infra-red gas analyzer and hydrocarbon emissions using a solid sorbent/thermal desorption system coupled to a gas chromatograph with a mass spectrometer. Our data indicate a strong effect of temperature and seasonality on emissions but only small effects of site conditions. These results suggest that regional models of hydrocarbon emissions from boreal forests should focus on temperature and phenology as the most important controlling variables.

  1. Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro.

    PubMed

    Pohjanen, Johanna; Koskimäki, Janne J; Sutela, Suvi; Ardanov, Pavlo; Suorsa, Marja; Niemi, Karoliina; Sarjala, Tytti; Häggman, Hely; Pirttilä, Anna Maria

    2014-09-01

    Tissues of Scots pine (Pinus sylvestris L.) contain several endophytic microorganisms of which Methylobacterium extorquens DSM13060 is a dominant species throughout the year. Similar to other endophytic bacteria, M. extorquens is able to colonize host plant tissues without causing any symptoms of disease. In addition to endophytic bacteria, plants associate simultaneously with a diverse set of microorganisms. Furthermore, plant-colonizing microorganisms interact with each other in a species- or strain-specific manner. Several studies on beneficial microorganisms interacting with plants have been carried out, but few deal with interactions between different symbiotic organisms and specifically, how these interactions affect the growth and development of the host plant. Our aim was to study how the pine endophyte M. extorquens DSM13060 affects pine seedlings and how the co-inoculation with ectomycorrhizal (ECM) fungi [Suillus variegatus (SV) or Pisolithus tinctorius (PT)] alters the response of Scots pine. We determined the growth, polyamine and nutrient contents of inoculated and non-inoculated Scots pine seedlings in vitro. Our results show that M. extorquens is able to improve the growth of seedlings at the same level as the ECM fungi SV and PT do. The effect of co-inoculation using different symbiotic organisms was seen in terms of changes in growth and nutrient uptake. Inoculation using M. extorquens together with ECM fungi improved the growth of the host plant even more than single ECM inoculation. Symbiotic organisms also had a strong effect on the potassium content of the seedling. The results indicate that interaction between endophyte and ECM fungus is species dependent, leading to increased or decreased nutrient content and growth of pine seedlings.

  2. Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro.

    PubMed

    Pohjanen, Johanna; Koskimäki, Janne J; Sutela, Suvi; Ardanov, Pavlo; Suorsa, Marja; Niemi, Karoliina; Sarjala, Tytti; Häggman, Hely; Pirttilä, Anna Maria

    2014-09-01

    Tissues of Scots pine (Pinus sylvestris L.) contain several endophytic microorganisms of which Methylobacterium extorquens DSM13060 is a dominant species throughout the year. Similar to other endophytic bacteria, M. extorquens is able to colonize host plant tissues without causing any symptoms of disease. In addition to endophytic bacteria, plants associate simultaneously with a diverse set of microorganisms. Furthermore, plant-colonizing microorganisms interact with each other in a species- or strain-specific manner. Several studies on beneficial microorganisms interacting with plants have been carried out, but few deal with interactions between different symbiotic organisms and specifically, how these interactions affect the growth and development of the host plant. Our aim was to study how the pine endophyte M. extorquens DSM13060 affects pine seedlings and how the co-inoculation with ectomycorrhizal (ECM) fungi [Suillus variegatus (SV) or Pisolithus tinctorius (PT)] alters the response of Scots pine. We determined the growth, polyamine and nutrient contents of inoculated and non-inoculated Scots pine seedlings in vitro. Our results show that M. extorquens is able to improve the growth of seedlings at the same level as the ECM fungi SV and PT do. The effect of co-inoculation using different symbiotic organisms was seen in terms of changes in growth and nutrient uptake. Inoculation using M. extorquens together with ECM fungi improved the growth of the host plant even more than single ECM inoculation. Symbiotic organisms also had a strong effect on the potassium content of the seedling. The results indicate that interaction between endophyte and ECM fungus is species dependent, leading to increased or decreased nutrient content and growth of pine seedlings. PMID:25149086

  3. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    NASA Astrophysics Data System (ADS)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  4. Comparison of CO2 fluxes in a larch forest on permafrost and a pine forest on non-permafrost soils in Central Siberia

    NASA Astrophysics Data System (ADS)

    Zyryanov, V.; Tchebakova, N. M.; Nakai, Y.; Zyryanova, O.; Parfenova, E. I.; Matsuura, Y.; Vygodskaya, N.

    2013-12-01

    Inter-annual and seasonal variations of energy, water and carbon fluxes and associated climate variables in a middle taiga pine (Pinus sylvestris) forest on warm sandy soils and a northern taiga larch (Larix gmelini) forest on permafrost in Central Siberia were studied from eddy covariance measurements obtained during growing seasons of 1998-2000 and 2004-2008 (except 2006) respectively. Both naturally regenerated after fire forests grew in different environments and differed by their tree stand characteristics. The pure Gmelin larch stand was 105 yr old, stem density of living trees was about 5480 trees/ha, LAI was 0.6 m2/m2, biomass (dry weight) was 0.0044 kg/m2, with average diameter of the trees at breast height 7.1 cm and mean tree height 6.8 m. The pure Scots pine stand was 215 yr old, stand structure was relatively homogenous with a stem density of 468 living trees/ha, LAI was 1.5 m2/m2, biomass (dry weight) was 10.7 kg/m2, with average diameter of the trees at breast height 28 cm and mean tree height 23 m. The climatic and soil conditions of these ecosystems were very distinctive. The habitat of the larch forest was much colder and dryer than that of the pine forest: the growing season was 1 month shorter and growing-degree days 200°C less and winters were about one month longer and colder with January temperature -37°C versus -23°C; annual precipitation was 400 mm in the larch versus 650 mm in the pine forest and maximal snow pack was 40 cm vs 70 cm. The soils were Gelisols with permafrost table within the upper 1 m in the larch stand and Pergelic Cryochrept, alluvial sandy soil with no underlying permafrost. Average daily net ecosystem exchange (NEE) was significantly smaller in the larch ecosystem - (-3-6) μmol/m2s compared to that in the pine forest (-7-8) μmol/m2s, however daily maximal NEE was about the same. Seasonal NEE in the larch forest on continuous permafrost varied from -53 to -107 and in the pine forest on non-permafrost from -180 to

  5. Effect of water stress and fungal inoculation on monoterpene emission from an historical and a new pine host of the mountain pine beetle.

    PubMed

    Lusebrink, Inka; Evenden, Maya L; Blanchet, F Guillaume; Cooke, Janice E K; Erbilgin, Nadir

    2011-09-01

    The mountain pine beetle (Dendroctonus ponderosae, MPB) has killed millions of lodgepole pine (Pinus contorta) trees in Western Canada, and recent range expansion has resulted in attack of jack pine (Pinus banksiana) in Alberta. Establishment of MPB in the Boreal forest will require use of jack pine under a suite of environmental conditions different from those it typically encounters in its native range. Lodgepole and jack pine seedlings were grown under controlled environment conditions and subjected to either water deficit or well watered conditions and inoculated with Grosmannia clavigera, a MPB fungal associate. Soil water content, photosynthesis, stomatal conductance, and emission of volatile organic compounds (VOCs) were monitored over the duration of the six-week study. Monoterpene content of bark and needle tissue was measured at the end of the experiment. β-Phellandrene, the major monoterpene in lodgepole pine, was almost completely lacking in the volatile emission profile of jack pine. The major compound in jack pine was α-pinene. The emission of both compounds was positively correlated with stomatal conductance. 3-Carene was emitted at a high concentration from jack pine seedlings, which is in contrast to monoterpene profiles of jack pine from more southern and eastern parts of its range. Fungal inoculation caused a significant increase in total monoterpene emission in water deficit lodgepole pine seedlings right after its application. By 4 weeks into the experiment, water deficit seedlings of both species released significantly lower levels of total monoterpenes than well watered seedlings. Needle tissue contained lower total monoterpene content than bark. Generally, monoterpene tissue content increased over time independent from any treatment. The results suggest that monoterpenes that play a role in pine-MPB interactions differ between lodgepole and jack pine, and also that they are affected by water availability. PMID:21874397

  6. Effect of water stress and fungal inoculation on monoterpene emission from an historical and a new pine host of the mountain pine beetle.

    PubMed

    Lusebrink, Inka; Evenden, Maya L; Blanchet, F Guillaume; Cooke, Janice E K; Erbilgin, Nadir

    2011-09-01

    The mountain pine beetle (Dendroctonus ponderosae, MPB) has killed millions of lodgepole pine (Pinus contorta) trees in Western Canada, and recent range expansion has resulted in attack of jack pine (Pinus banksiana) in Alberta. Establishment of MPB in the Boreal forest will require use of jack pine under a suite of environmental conditions different from those it typically encounters in its native range. Lodgepole and jack pine seedlings were grown under controlled environment conditions and subjected to either water deficit or well watered conditions and inoculated with Grosmannia clavigera, a MPB fungal associate. Soil water content, photosynthesis, stomatal conductance, and emission of volatile organic compounds (VOCs) were monitored over the duration of the six-week study. Monoterpene content of bark and needle tissue was measured at the end of the experiment. β-Phellandrene, the major monoterpene in lodgepole pine, was almost completely lacking in the volatile emission profile of jack pine. The major compound in jack pine was α-pinene. The emission of both compounds was positively correlated with stomatal conductance. 3-Carene was emitted at a high concentration from jack pine seedlings, which is in contrast to monoterpene profiles of jack pine from more southern and eastern parts of its range. Fungal inoculation caused a significant increase in total monoterpene emission in water deficit lodgepole pine seedlings right after its application. By 4 weeks into the experiment, water deficit seedlings of both species released significantly lower levels of total monoterpenes than well watered seedlings. Needle tissue contained lower total monoterpene content than bark. Generally, monoterpene tissue content increased over time independent from any treatment. The results suggest that monoterpenes that play a role in pine-MPB interactions differ between lodgepole and jack pine, and also that they are affected by water availability.

  7. Determination of isoprene and alpha-/beta-pinene oxidation products in boreal forest aerosols from Hyytiälä, Finland: diel variations and possible link with particle formation events.

    PubMed

    Kourtchev, I; Ruuskanen, T M; Keronen, P; Sogacheva, L; Dal Maso, M; Reissell, A; Chi, X; Vermeylen, R; Kulmala, M; Maenhaut, W; Claeys, M

    2008-01-01

    Biogenic volatile organic compounds (VOCs), such as isoprene and alpha-/beta-pinene, are photo-oxidized in the atmosphere to non-volatile species resulting in secondary organic aerosol (SOA). The goal of this study was to examine time trends and diel variations of oxidation products of isoprene and alpha-/beta-pinene in order to investigate whether they are linked with meteorological parameters or trace gases. Separate day-night aerosol samples (PM(1)) were collected in a Scots pine dominated forest in southern Finland during 28 July-11 August 2005 and analyzed with gas chromatography/mass spectrometry (GC/MS). In addition, inorganic trace gases (SO(2), CO, NO(x), and O(3)), meteorological parameters, and the particle number concentration were monitored. The median total concentration of terpenoic acids (i.e., pinic acid, norpinic acid, and two novel compounds, 3-hydroxyglutaric acid and 2-hydroxy-4-isopropyladipic acid) was 65 ng m(-3), while that of isoprene oxidation products (i.e., 2-methyltetrols and C(5) alkene triols) was 17.2 ng m(-3). The 2-methyltetrols exhibited day/night variations with maxima during day-time, while alpha-/beta-pinene oxidation products did not show any diel variation. The sampling period was marked by a relatively high condensation sink, caused by pre-existing aerosol particles, and no nucleation events. In general, the concentration trends of the SOA compounds reflected those of the inorganic trace gases, meteorological parameters, and condensation sink. Both the isoprene and alpha-/beta-pinene SOA products were strongly influenced by SO(2), which is consistent with earlier reports that acidity plays a role in SOA formation. The results support previous proposals that oxygenated VOCs contribute to particle growth processes above boreal forest.

  8. Pine Island Glacier

    Atmospheric Science Data Center

    2013-04-16

    article title:  Pine Island Glacier, Antarctica     View ... Imaging SpectroRadiometer (MISR) images of the Pine Island Glacier in western Antarctica was acquired on December 12, 2000 during ... sea ice between the glacier and the open water in Pine Island Bay. To the left of the "icebergs" label are chunks of floating ice. ...

  9. Impact of air pollution on pine forests in north-west part of Russia

    SciTech Connect

    Yarmishko, V.T.; Yarmishko, M.A.; Lyanguzova, I.V.

    1995-09-01

    The goal of research-assessment of industrial air contamination on pine stands ecosystems and their components. These studies were made in Pineta Hylocomiosa of III-IV age classes in western part of Leningrad region. Studies did not reveal visible traits of worsening of vitality state of pine forests under air pollution. Fundamental characteristics of vegetation layers (tree, grass-dwarf shrub, moss-lichen and epiphytic lichen cover) are determined mainly by conditions of habitats on permanent sample areas (age of stands, time of fires, cuttings, etc.). At the same time our research of fine roots of Scots pine has shown that with increase of airtechnogenic pollution or with approach to sources of emission in upper parts of soil horizons mycorrhize formation intensifies in 30-40 times. Diversity of mycorrhizas in form, color of mycelia cap, branching pattern and arrangement on sucking roots increase considerably.

  10. Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis.

    PubMed

    Lundborg, Lina; Fedderwitz, Frauke; Björklund, Niklas; Nordlander, Göran; Borg-Karlson, Anna-Karin

    2016-10-01

    The defense of conifers against phytophagous insects relies to a large extent on induced chemical defenses. However, it is not clear how induced changes in chemical composition influence the meal properties of phytophagous insects (and thus damage rates). The defense can be induced experimentally with methyl jasmonate (MeJA), which is a substance that is produced naturally when a plant is attacked. Here we used MeJA to investigate how the volatile contents of Scots pine (Pinus sylvestris L.) tissues influence the meal properties of the pine weevil (Hylobius abietis (L.)). Phloem and needles (both weevil target tissues) from MeJA-treated and control seedlings were extracted by n-hexane and analyzed by two-dimensional gas chromatography-mass spectrometry (2D GC-MS). The feeding of pine weevils on MeJA-treated and control seedlings were video-recorded to determine meal properties. Multivariate statistical analyses showed that phloem and needle contents of MeJA-treated seedlings had different volatile compositions compared to control seedlings. Levels of the pine weevil attractant (+)-α-pinene were particularly high in phloem of control seedlings with feeding damage. The antifeedant substance 2-phenylethanol occurred at higher levels in the phloem of MeJA-treated than in control seedlings. Accordingly, pine weevils fed slower and had shorter meals on MeJA-seedlings. The chemical compositions of phloem and needle tissues were clearly different in control seedlings but not in the MeJA-treated seedlings. Consequently, meal durations of mixed meals, i.e. both needles and phloem, were longer than phloem meals on control seedlings, while meal durations on MeJA seedlings did not differ between these meal contents. The meal duration influences the risk of girdling and plant death. Thus our results suggest a mechanism by which MeJA treatment may protect conifer seedlings against pine weevils. PMID:27417987

  11. Climate signals derived from cell anatomy of Scots pine in NE Germany.

    PubMed

    Liang, Wei; Heinrich, Ingo; Simard, Sonia; Helle, Gerhard; Liñán, Isabel Dorado; Heinken, Thilo

    2013-08-01

    Tree-ring chronologies of Pinus sylvestris L. from latitudinal and altitudinal limits of the species distribution have been widely used for climate reconstructions, but there are many sites within the temperate climate zone, as is the case in northeastern Germany, at which there is little evidence of a clear climate signal in the chronologies. In this study, we developed long chronologies of several cell structure variables (e.g., average lumen area and cell wall thickness) from P. sylvestris growing in northeastern Germany and investigated the influence of climate on ring widths and cell structure variables. We found significant correlations between cell structure variables and temperature, and between tree-ring width and relative humidity and vapor pressure, respectively, enabling the development of robust reconstructions from temperate sites that have not yet been realized. Moreover, it has been shown that it may not be necessary to detrend chronologies of cell structure variables and thus low-frequency climate signals may be retrieved from longer cell structure chronologies. The relatively extensive resource of archaeological material of P. sylvestris covering approximately the last millennium may now be useful for climate reconstructions in northeastern Germany and other sites in the temperate climate zone.

  12. Transpiration and canopy conductance in an inner alpine Scots pine (Pinus sylvestris L.) forest

    PubMed Central

    Wieser, Gerhard; Leo, Marco; Oberhuber, Walter

    2016-01-01

    Canopy transpiration (Ec) of a 150-year old Pinus sylvestris L. stand in an inner alpine dry valley, Tyrol, Austria was estimated throughout two growing seasons 2011 and 2012 by means of xylem sap flow measurements. Although there were prolonged periods of limited soil water availability Ec did not show a clear trend with respect to soil water availability and averaged 0.4 ± 0.19 mm day-1 under conditions of non-limiting soil water availability and 0.37 ± 0.17 mm day-1 when soil water availability was limited. This is because canopy conductance declined significantly with increasing evaporative demand and thus significantly reduced tree water loss. The growing season total of Ec was 74 mm and 88 mm in 2011 and 2012, respectively, which is significantly below the values estimated for other P. sylvestris forest ecosystems in Central Europe, and thus reflecting a strong adaptation to soil drought during periods of high evaporative. PMID:27468179

  13. High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.

    PubMed

    Paananen, Markus; Sixta, Herbert

    2015-10-01

    High-alkali low-temperature polysulfide pulping (HALT) was effectively utilised to prevent major polysaccharide losses while maintaining the delignification rate. A yield increase of 6.7 wt% on wood was observed for a HALT pulp compared to a conventionally produced kappa number 60 pulp with comparable viscosity. Approximately 70% of the yield increase was attributed to improved galactoglucomannan preservation and 30% to cellulose. A two-stage oxygen delignification sequence with inter-stage peroxymonosulphuric acid treatment was used to ensure delignification to a bleachable grade. In a comparison to conventional pulp, HALT pulp effectively maintained its yield advantage. Diafiltration trials indicate that purified black liquor can be directly recycled, as large lignin fractions and basically all dissolved polysaccharides were separated from the alkali-rich BL.

  14. [CYTOGENETIC RESPONSE OF SCOTS PINE (PINUS SYLVESTRIS L.) TO CADMIUM AND NICKEL].

    PubMed

    Belousov, M V; Mashkina, O S

    2015-01-01

    We studied cytogenetic polymorphism of the seeds of Pinus sylvestris L. in response to heavy metals exposure in laboratory settings over 2 years' time. We compared results obtained from the seedlings of different years: 2012 and 2013. With an increase in Ni2+ and Cd2+ concentration we observed a decrease in mitotic activity with concurrent rise in the percentage of cells in the prophase. This fact demonstrates the heavy metals act similar to both fixatives and substances that block cleavage spindle formation. In terms of pathological mitosis and the frequency of micronuclei cells, Cd2+ shows higher mutagenity compared to Ni2+. In addition, in the experimental samples, we have distinguished abnormalities such as fragmentations and agglutinations of chromosomes and especially C mitosis occurrence, which are not observed in the control. PMID:26495713

  15. The May October energy budget of a Scots pine plantation at Hartheim, Germany

    NASA Astrophysics Data System (ADS)

    Gay, L. W.; Vogt, R.; Kessler, A.

    1996-03-01

    This paper describes measurements of the Hartheim forest energy budget for the 157-day period of May 11 Oct. 14, 1992. Data were collected as 30-min means. Energy available to the forest was measured with net radiometers and soil heat flux discs; sensible heat exchange between the canopy and atmosphere was measured with two “One-Propeller Eddy Correlation” (OPEC) systems, and latent energy (evapotranspiration or ET) was determined as a residual in the surface energy balance equation. Net rediation, change in thermal storage, and sensible heat flux were verified by independent measurements during the Hartheim Experiment (HartX, May 11 12), and again during the “HartX2” experiment over 20 days late in the summer (Sep. 10 29). Specifically, sensible heat estimates from the two adjacent OPEC sensor sets were in close agreement throughout the summer, and in excellent agreement with measurements of sonic eddy correlation systems in May and September. The eddy correlation/energy balance technique was observed to overestimate occurrence of dew, leading to an underestimate of daily ET of about 5%. After taking dew into account, estimates of OPEC ET totaled 358 mm over the 5.1-month period, which is in quite good agreement with an ET estimate of 328 mm from a hydrologic water balance. An observed decrease in forest ET in July and August was clearly associated with low rainfall and increased soil water deficit. The OPEC system required only modest technical supervision, and generated a data yield of 99.5% over the period DOY 144 288. The documented verification and precision of this energy budget appears to be unmatched by any other long-term forest study reported to date.

  16. Effects of temperature and drought manipulations on seedlings of Scots pine provenances.

    PubMed

    Taeger, S; Sparks, T H; Menzel, A

    2015-03-01

    Rising temperatures and more frequent and severe climatic extremes as a consequence of climate change are expected to affect growth and distribution of tree species that are adapted to current local conditions. Species distribution models predict a considerable loss of habitats for Pinus sylvestris. These models do not consider possible intraspecific differences in response to drought and warming that could buffer those impacts. We tested 10 European provenances of P. sylvestris, from the southwestern to the central European part of the species distribution, for their response to warming and to drought using a factorial design. In this common-garden experiment the air surrounding plants was heated directly to prevent excessive soil heating, and drought manipulation, using a rain-out shelter, permitted almost natural radiation, including high light stress. Plant responses were assessed as changes in phenology, growth increment and biomass allocation. Seedlings of P. sylvestris revealed a plastic response to drought by increased taproot length and root-shoot ratios. Strongest phenotypic plasticity of root growth was found for southwestern provenances, indicating a specific drought adaptation at the cost of overall low growth of aboveground structures even under non-drought conditions. Warming had a minor effect on growth but advanced phenological development and had a contrasting effect on bud biomass and diameter increment, depending on water availability. The intraspecific variation of P. sylvestris provenances could buffer climate change impacts, although additional factors such as the adaptation to other climatic extremes have to be considered before assisted migration could become a management option. PMID:25262794

  17. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine

    PubMed Central

    Matías, Luis

    2014-01-01

    Ongoing changes in global climate are having a significant impact on the distribution of plant species, with effects particularly evident at range limits. We assessed the capacity of Pinus sylvestris L. populations at northernmost and southernmost limits of the distribution to cope with projected changes in climate. We investigated responses including seed germination and early seedling growth and survival, using seeds from northernmost (Kevo, Finland) and southernmost (Granada, Spain) populations. Seeds were grown under current climate conditions in each area and under temperatures increased by 5 °C, with changes in precipitation of +30% or –30% with reference to current values at northern and southern limits, respectively, in a fully factorial controlled-conditions experimental design. Increased temperatures reduced germination time and enhanced biomass gain at both range edges but reduced survival at the southern range edge. Higher precipitation also increased survival and biomass but only under a southern climate. Seeds from the southern origin emerged faster, produced bigger seedlings, allocated higher biomass to roots, and survived better than northern ones. These results indicate that recruitment will be reduced at the southernmost range of the species, whereas it will be enhanced at the northern limit, and that the southern seed sources are better adapted to survive under drier conditions. However, future climate will impose a trade-off between seedling growth and survival probabilities. At the southern range edge, higher growth may render individuals more susceptible to mortality where greater aboveground biomass results in greater water loss through evapotranspiration. PMID:24220655

  18. Isotope studies to the sorption behavior of atmospheric sulfate in humus layers of scots pine ecosystems.

    PubMed

    Schulz, H; Neue, H-U

    2005-03-01

    The sorption potential for SO4(2-) in humus layer samples from field sites along a deposition gradient was determined experimentally in batch experiments. The Freundlich equation was used to quantify the sorption of added SO4(2-) in humus layer samples and to determine site-dependent sorption parameters. SO4(2-) sorption in humus layers is a concentration-dependent process. The linearity of isotherms reveals that SO4(2-) is reversibly bound in the organic surface layer, as long as soil solution concentrations remain above 26 to 44 mg SO4(2-) L(-1). Natural isotope variations of sulfur in SO4(2-) were analysed to investigate the degree of sorption of dissolved atmospheric and added SO4(2-). Both sulfate species differed significantly in their isotope composition. The pattern of delta34S values for SO4(2-) in all equilibrium solutions confirm the findings from sorption isotherms, showing a close relationship between the sulfur isotope ratios of SO4(2-) in soil solutions and the amount of SO4(2-) sorbed at the humus layer matrix. Stored atmospheric SO4(2-) in humus layers is released at sites where sulfate concentration in throughfall drops below 26 mg SO4(2-) L(-1). Concentration of soluble Fe decreased with increasing sulfate sorption, thus supporting the assumption that active Fe for example is important. Iron probably stabilizes the reactive surface of humus complexes and therefore has a positive influence on the SO4(2-) sorption in humus layers.

  19. Influence of Forest-Cover Types on Spring Thaw Timing in the Southern Boreal Forest

    NASA Astrophysics Data System (ADS)

    Ahmed, H. F.; Helgason, W.; Barr, A.; Black, T. A.

    2015-12-01

    The boreal forest is one of the largest of the world's biomes covering about 11% of its terrestrial surface and accounting for about 18% of its total terrestrial carbon pool. The timing of spring thaw, resulting in a lengthening or shortening of the growing season, has a strong influence on boreal forest productivity and associated carbon dioxide exchange with the atmosphere. A study of the influence of forest-cover type upon spring-thaw timing in the southern Canadian boreal forest has been undertaken using 18 years of soil temperature measurements at depths of 5, 10, 20, 50 and 100 cm. Soil was considered to be thawing during days of consistent near-zero soil temperature (daily mean of -0.5 to 0.5 °C and standard deviation of near zero). We compared the temporal pattern (first and last day) of soil thaw at three mature forest stands: trembling aspen, black spruce, and jack pine located in central Saskatchewan (~54°N, ~105°W). The soil freezing depth was deepest at the jack pine site (>100 cm) and shallowest at the black spruce site (<50 cm during most years). The mean last day of thaw at the 5-cm depth was earliest for the aspen site followed by jack pine and black spruce, respectively, with approximately 4 days difference among sites. Deeper in the soil profile, the trend of soil thaw remained in the same order, however, with much larger differences among sites: jack pine thawed 16 days later than aspen and black spruce thawed 18 days later than jack pine. Our analysis will relate the observed site differences in thaw timing to differences in site (soil and canopy) characteristics. Developing an improved understanding of the factors influencing the inter-annual and inter-site variability of soil thaw at these sites is required to appropriately characterize the ecological and hydrological responses of these sites to projected climate change.

  20. Thresholds for boreal biome transitions.

    PubMed

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes. PMID:23236159

  1. Thresholds for boreal biome transitions

    PubMed Central

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H.; Chapin, F. Stuart

    2012-01-01

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes. PMID:23236159

  2. Pine Island Bay

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Birth of a Large Iceberg in Pine Island Bay, Antarctica     View ... iceberg (42 kilometers x 17 kilometers) broke off Pine Island Glacier, West Antarctica (75°S latitude, 102°W longitude) sometime ...

  3. AmeriFlux CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998.

    SciTech Connect

    Amiro, Brian

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998.. Site Description - The 1998 burn site (F98) was in the east part of Prince Albert National Park, Saskatchewan, in the Waskesiu Fire, ignited by lightning that burned about 1700 ha in July 1998. The pre-fire forest consisted of jack pine and black spruce stands, with some intermixed aspen. The fire was severe, consuming much of the top layer of organic soil and killing all trees. In 2001, much of the regenerating vegetation consisted of aspen saplings about 1 m tall and shorter jack pine and black spruce seedlings. An overstory of dead, leafless jack pine trees dominated at a height of 18 m. Sparse grass and herbs, such as fireweed (Epilobium angustifolium L.) covered the ground. There were a large number of fallen dead trees, mostly perched above the ground and not decomposing quickly.

  4. Climate as a driver of continent-wide irruptions in boreal seed-eating birds (Invited)

    NASA Astrophysics Data System (ADS)

    Strong, C.; Zuckerberg, B.; Betancourt, J. L.

    2013-12-01

    Boreal seed-eating birds regularly breed and overwinter throughout Canada and Alaska, but every few years these species demonstrate impressive irruptive migrations out of the boreal forest and into more southerly regions. It is thought that irruptive migrations are inversely dependent on a circumboreally synchronized pattern of seed crop fluctuations in boreal trees; seed-eating boreal birds stay in the north when food is plentiful, but sojourn south when food is scarce. Because both seed production and bird irruptions are characterized by periodicity ranging from biennial to decadal cycles, there is a strong possibility that these ecological phenomena are driven by climate variability. Using over twenty years of data from Project FeederWatch (a national citizen science project), we found that 'super irruptions' are correlated with continent-wide irruptive events in pine siskin population, and that these irruptions are associated with multi-decadal climate variability of Pacific origin. We also investigate how climate variability may influence the distribution of boreal bird species across different regions of North America during winter, and evaluate results in the context of limited banding data to assess possible geographic pathways of irruptions.

  5. Forest Modeling of Jack Pine Trees for BOREAS

    NASA Technical Reports Server (NTRS)

    Moghhadam, Mahta; Saatchi, Sasan

    1994-01-01

    As a part of the intensive field campaign for the Boreal forest ecosystem-atmosphere research (BOREAS) project in August 1993, the NASA/JPL AIRSAR covered an area of about 100 km by 100 km near the Prince Albert National Park in Saskatchewan, Canada. At the same time, ground-truth measurements were made in several stands which have been selected as the primary study sites, as well as in some auxiliary sites. This paper focuses on an area including Jack Pine stands in the Nipawin area near the park.

  6. Is the expansion of the pine processionary moth, due to global warming, impacting the endangered Spanish moon moth through an induced change in food quality?

    PubMed

    Imbert, Charles-Edouard; Goussard, Francis; Roques, Alain

    2012-06-01

    Recent climate change is known to affect the distribution of a number of insect species, resulting in a modification of their range boundaries. In newly colonized areas, novel interactions become apparent between expanding and endemic species sharing the same host. The pine processionary moth is a highly damaging pine defoliator, extending its range northwards and upwards in response to winter warming. Its expansion in the Alps has resulted in an invasion into the range of the Spanish moon moth, a red listed species developing on Scots pine. Pine processionary moth larvae develop during winter, preceding those of the moon moth, which hatch in late spring. Using pine trees planted in a clonal design, we experimentally tested the effect of previous winter defoliation by pine processionary moth larvae upon the survival and development of moon moth larvae. Feeding on foliage of heavily defoliated trees (>50%) resulted in a significant increase in the development time of moon moth larvae and a decrease in relative growth rate compared to feeding on foliage of undefoliated trees. Dry weight of pupae also decreased when larvae were fed with foliage of defoliated trees, and might, therefore, affect imago performances. However, lower defoliation degrees did not result in significant differences in larval performances compared to the control. Because a high degree of defoliation by pine processionary moth is to be expected during the colonization phase, its arrival in subalpine pine stands might affect the populations of the endangered moon moth.

  7. Scarp within Chasma Boreale

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This HiRISE image is of the north polar layered deposits (PLD) and underlying units exposed along the margins of Chasma Boreale. Chasma Boreale is the largest trough in the north PLD, thought to have formed due to outflow of water from underneath the polar cap, or due to winds blowing off the polar cap, or a combination of both. At the top and left of the image, the bright area with uniform striping is the gently sloping surface of the PLD. In the middle of the image this surface drops off in a steeper scarp, or cliff. At the top of this cliff we see the bright PLD in a side view, or cross-section. From these two perspectives of the PLD it is evident that the PLD are a stack of roughly horizontal layers. The gently sloping top surface cuts through the vertical sequence of layers at a low angle, apparently stretching the layers out horizontally and thus revealing details of the brightness and texture of individual layers. The surface of the PLD on the scarp is also criss-crossed by fine scale fractures. The layers of the PLD are probably composed of differing proportions of ice and dust, believed to be related to the climate conditions at the time they were deposited. In this way, sequences of polar layers are records of past climates on Mars, as ice cores from terrestrial ice sheets hold evidence of past climates on Earth. Further down the scarp in the center of the image the bright layers give way suddenly to a much darker section where a few layers are visible intermittently amongst aprons of dark material. The darkest material, with a smooth surface suggestive of loose grains, is thought to be sandy because similar exposures elsewhere show it to be formed into dunes by the wind. An intermediate-toned material also appears to form aprons draped over layers in the scarp, but its surface contains lobate structures that appear hardened into place and its edges are more abrupt in places, suggesting it may contain some ice or other cementing agent that makes it

  8. Separation of biogenic and biomass burning submicron aerosol from a boreal forest in Hyytiälä, Finland during HUMPPA-COPEC 2010

    NASA Astrophysics Data System (ADS)

    Corrigan, A.; Russell, L.; Äijälä, M.; Petäjä, T.; Kulmala, M.; Song, W.; Williams, J.

    2012-04-01

    campaign are compared with gas-phase biogenic and inorganic aerosol precursors to elucidate controlling factors on SOA formation in the Scots pine forest of Hyytiälä, Finland. Back trajectory analyses indicate that the submicron aerosol was greatly influenced by emissions from Russian wildfires which impacted Hyytiälä in late July and early August. Factor analysis of organic functional groups (FTIR) and organic mass fragments (AMS) provides new insight into organic particle composition as characterized by the two independent methods. PMF analysis of FTIR spectra resulted in clear separation of biogenic and biomass burning organic aerosol, while separation of the AMS data was more complicated and resulted in incomplete separation. PMF analysis on the AMS data generated a biogenic organic aerosol (BOA) factor with a clear diurnal cycle; however, the highly oxidized biomass burning organic aerosol (BBOA) factor may not be entirely separated from other highly oxidized factors. Factor analysis on both FTIR and AMS datasets indicates over 60% of the organic aerosol in Hyytiälä comes from biogenic sources. Other separation techniques, including clustering and regression are investigated, and chemical comparisons of BOA and BBOA factors are explored. [1] Bond et al. (2004). J. Geophys. Res., 109, D14. [2] Seinfeld and Pandis (2006). Atmos. Chem. Phys., 43-46. [3] Hallquist et al. (2009). Atmos. Chem. Phys., 9, 5155-5236. [4] Carlton et al., (2010). Environ. Sci. & Tech., 44, 3376-3380. [5] Paatero & Tapper (1994). Environmetrics, 5, 111-126. [6] Takahama et al., (2011). Atmos. Chem. Phys., 11, 6367-6389.

  9. Pine nut allergy in perspective.

    PubMed

    Falliers, C J

    1989-03-01

    Anaphylaxis and other acute allergic reactions following the ingestion of pine--or pinon--nuts are documented and reviewed in perspective. Systemic allergic reactions to other relatively uncommon or "exotic" foods are also considered. Although hypersensitivity to more than one type of "nuts" is reported by some individuals, no significant cross-reactivity between any of these, or between pine pollen, pine resin, and pine nuts has been demonstrated.

  10. Siberian Pine Decline and Mortality in Southern Siberian Mountains

    NASA Technical Reports Server (NTRS)

    Kharuk, V. I.; Im, S. T.; Oskorbin, P. A.; Petrov, I. A.; Ranson, K. J.

    2013-01-01

    The causes and resulting spatial patterns of Siberian pine mortality in eastern Kuznetzky Alatau Mountains, Siberia were analyzed based on satellite (Landsat, MODIS) and dendrochronology data. Climate variables studied included temperature, precipitation and Standardized Precipitation-Evapotranspiration Index (SPEI) drought index. Landsat data analysis showed that stand mortality was first detected in the year 2006 at an elevation of 650 m, and extended up to 900 m by the year 2012. Mortality was accompanied by a decrease in MODIS derived vegetation index (EVI).. The area of dead stands and the upper mortality line were correlated with increased drought. The uphill margin of mortality was limited by elevational precipitation gradients. Dead stands (i.e., >75% tree mortality) were located mainly on southern slopes. With respect to slope, mortality was observed within a 7 deg - 20 deg range with greatest mortality occurring on convex terrain. Tree radial incrementmeasurements correlate and were synchronous with SPEI (r sq = 0.37, r(sub s) = 80). Increasing synchrony between tree ring growth and SPEI indicates that drought has reduced the ecological niche of Siberian pine. The results also showed the primary role of drought stress on Siberian pine mortality. A secondary role may be played by bark beetles and root fungi attacks. The observed Siberian pine mortality is part of a broader phenomenon of "dark needle conifers" (DNC, i.e., Siberian pine, fir and spruce) decline and mortality in European Russia, Siberia, and the Russian Far East. All locations of DNC decline coincided with areas of observed drought increase. The results obtained are one of the first observations of drought-induced decline and mortality of DNC at the southern border of boreal forests. Meanwhile if model projections of increased aridity are correct DNC, within the southern part of its range may be replaced by drought-resistant Pinus silvestris and Larix sibirica.

  11. Peatland simulator connecting drainage, nutrient cycling, forest growth, economy and GHG efflux in boreal and tropical peatlands

    NASA Astrophysics Data System (ADS)

    Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Lehtonen, Aleksi

    2016-04-01

    the stand growth, nutrient availability, and CO2 efflux. Potassium was the main limiting factor for the forest growth. This indicates that management aiming at decreasing heterotrophic CO2 efflux by raising the ground water table will decrease the forest growth. From the C balance perspective the growth rate of the tree stand becomes essential. Modelling approach enables a search for an optimal management schedule for producing timber in situation when there is a price given for release of C. Ditch network maintenance by ditch cleaning becomes profitable if: i) the initial drainage is very poor, ii) the availability of the critical nutrient is sufficient, iii) during prolonged rainy conditions, and iv) the tree stand is Scots pine (Pinus sylvestris) dominated and v) in a phase where most of the extra yield is allocated into sawlogs. The simulator and its holistic approach has been successfully implemented in both tropical pulpwood plantations in Sumatra, Indonesia and in Finnish boreal forests.

  12. George Scharpe, c.1581-1637. A Scots doctor at Montpellier.

    PubMed

    Hughes, J T

    2002-04-01

    Before the eighteenth century many Scots studied medicine at the medical schools of Europe, of which Montpellier was frequently the choice. George Scharpe, an early student of the University of Edinburgh, graduated in medicine at Montpellier and joined the medical faculty, where his long career can be traced from contemporary records. The practice of Scots studying abroad is described, as is Languedoc in the early seventeenth century a region and period devastated by the religious wars of France.

  13. AmeriFlux CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977.

    SciTech Connect

    Amiro, Brian

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977.. Site Description - Regenerated jack pine (Pinus banksiana) following fire in 1977; canopy height 6 m and LAI = 2.8. Some black spruce understory developing. Trees tend to be clumpy, with some clear spaces that can be easily walked thorugh, and other areas are thick. Fire killed coarse woody debris on the ground, that is soft and decomposing. Very few perched trunks. Understory are short shrubs such as Vaccinium and Arctostaphylus uva-ursi.

  14. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  15. Soil respiration from a boreal forest fire scar chronosequence

    NASA Astrophysics Data System (ADS)

    Smith, D.; Kaduk, J.; Balzter, H.; Wooster, M.; Mottram, G.

    2007-12-01

    Climate change predictions suggest that warming is to be most pronounced at high latitudes, with a possibility of boreal forest warming of 4-6°C in the next 50-100 years. This has lead to the suggestion that changes in boreal forest soil carbon (C) storage could significantly alter the global soil C balance. Fire is the most significant factor controlling succession in the boreal forest biome and it is possible that climate change will lead to an increase in fire regime e.g. size, frequency, intensity, or any combination of these. Our research is investigating C flux dynamics in a Canadian boreal forest jack pine (Pinus banksiana Lamb.) dominated fire scar chronosequence. Fieldwork is carried out at Sharpsand Creek experimental burn site, near Thessalon, Ontario, Canada, where there are numerous fire scars of different ages. In June 2006 soil respiration (Rs), soil temperature (Ts) and soil moisture (Ms) were measured on three replicate scars selected from plot last burnt in 1948 and 1991. Rs values were later adjusted for Ts using a Q10 value of 2. There was no significant difference in mean adjusted Rs between the two scar age categories. It is likely that sample sizes were not large enough here to detect significant differences. In May 2007, large areas of the field site burnt as a result of wildfire; this provided an opportunity to take a large number of Rs measurements from recently burnt fire scars, as well as from those areas unaffected by the burn. Rs, Ts and Ms measurements were taken from 1948, 1975 and 1991 scar age categories (three replicate scars each) that were burnt in 2007, as well as a 1948 and 1991 fire scar that was unaffected by the wildfire. Soil samples were taken from three locations per fire scar surveyed and analysed in the laboratory for total C content. There was a significant difference in mean Rs adjusted for Ts and Ms (Rsadj) between the three pre-2007 fire scar age categories 1948, 1975 and 1991, that were all burnt in 2007. Mean

  16. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  17. Black Pine Circle Project

    SciTech Connect

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  18. Black Pine Circle Project

    ScienceCinema

    Mytko, Christine

    2016-07-12

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  19. Pine (Pinus sylvestris L. ) tree-limit surveillance during recent decades, central Sweden

    SciTech Connect

    Kullman, L. )

    1993-02-01

    The altitudinal tree-limit of Scots pine (Pinus sylvestris L.) has been surveyed at the population level since the early- and mid-1970s in the Swedish Scandes. Elevational tree-limit advance was recorded for the majority of sites, despite statistically stable, although highly fluctuating climate with clusters of exceptionally cold winters and many relatively cool summers. The new tree-limit derived from pines established in the late 1950s. Tree-limit rise was concurrent with net population decline for the period 1972 to 1991, mainly as a result of failing regeneration. The main factor of individual vitality depression and mortality was deduced to be winter desiccation. The progressive tree-limit has a tendency for slow upslope advance during periods of climatic stability, even if punctuated by shorter events of unfavorable climate. Pine tree-limit dynamics is suggested to be a complex of climate/age/disturbance interactions. The tree-limit may decline altitudinally mainly in response to secular climate cooling, which makes it best suited for surveying sustained climatic trends and analogous paleoclimatic reconstruction. 51 refs., 12 figs., 1 tabs.

  20. BOREAS TE-9 In Situ Diurnal Gas Exchange of NAS Boreal Forest Stands

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Coyea, Marie; Dang, Qinglai

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. The purpose of the BOREAS TE-09 study was threefold: 1) to provide in situ gas exchange data that will be used to validate models of photosynthetic responses to light, temperature, and carbon dioxide (CO2); 2) to compare the photosynthetic responses of different tree crown levels (upper and lower); and 3) to characterize the diurnal water potential curves for these sites to get an indication of the extent to which soil moisture supply to leaves might be limiting photosynthesis. The gas exchange data of the BOREAS NSA were collected to characterize diurnal gas exchange and water potential of two canopy levels of five boreal canopy cover types: young jack pine, old jack pine, old aspen, lowland old black spruce, and upland black spruce. These data were collected between 27-May-1994 and 17-Sep-1994. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Enhanced biodegradation of petroleum hydrocarbons in the mycorrhizosphere of sub-boreal forest soils.

    PubMed

    Robertson, Susan J; Kennedy, Nabla M; Massicotte, Hugues B; Rutherford, P Michael

    2010-08-01

    Petroleum hydrocarbon (PHC) contamination is becoming more common in boreal forest soils. However, linkages between PHC biodegradation and microbial community dynamics in the mycorrhizosphere of boreal forest soils are poorly understood. Seedlings (lodgepole pine, paper birch, lingonberry) were established in reconstructed soil systems, consisting of an organic layer (mor humus, coarse woody debris, or previously oil-contaminated mor humus) overlying mineral (Ae, Bf) horizons. Light crude oil was applied to the soil surface after 4 months; systems were destructively sampled at 1 and 16 weeks following treatment. Soil concentrations of four PHC fractions were determined using acetone-hexane extraction followed by gas chromatography - flame ionization detection analysis. Genotypic profiles of root-associated bacterial communities were generated using length heterogeneity-PCR of 16S rDNA. Most plant-soil treatments showed significant loss in the smaller fraction PHCs indicating an inherent capacity for biodegradation. Concentrations of total PHCs declined significantly only in planted (pine-woody debris and birch-humus) systems (averaging 59% and 82% loss between 1 and 16 weeks respectively), reinforcing the importance of the mycorrhizosphere for enhancing microbial catabolism. Bacterial community structure was correlated more with mycorrhizosphere type and complexity than with PHC contamination. However, results suggest that communities in PHC-contaminated and pristine soils may become distinct over time.

  2. Exome capture from the spruce and pine giga-genomes.

    PubMed

    Suren, H; Hodgins, K A; Yeaman, S; Nurkowski, K A; Smets, P; Rieseberg, L H; Aitken, S N; Holliday, J A

    2016-09-01

    Sequence capture is a flexible tool for generating reduced representation libraries, particularly in species with massive genomes. We used an exome capture approach to sequence the gene space of two of the dominant species in Canadian boreal and montane forests - interior spruce (Picea glauca x engelmanii) and lodgepole pine (Pinus contorta). Transcriptome data generated with RNA-seq were coupled with draft genome sequences to design baits corresponding to 26 824 genes from pine and 28 649 genes from spruce. A total of 579 samples for spruce and 631 samples for pine were included, as well as two pine congeners and six spruce congeners. More than 50% of targeted regions were sequenced at >10× depth in each species, while ~12% captured near-target regions within 500 bp of a bait position were sequenced to a depth >10×. Much of our read data arose from off-target regions, which was likely due to the fragmented and incomplete nature of the draft genome assemblies. Capture in general was successful for the related species, suggesting that baits designed for a single species are likely to successfully capture sequences from congeners. From these data, we called approximately 10 million SNPs and INDELs in each species from coding regions, introns, untranslated and flanking regions, as well as from the intergenic space. Our study demonstrates the utility of sequence capture for resequencing in complex conifer genomes, suggests guidelines for improving capture efficiency and provides a rich resource of genetic variants for studies of selection and local adaptation in these species. PMID:27428061

  3. Studies of microwave scattering and canopy architecture for boreal forests

    NASA Technical Reports Server (NTRS)

    Lockhart, G. Lance; Gogineni, S. P.

    1994-01-01

    Our primary objectives during the last year have been to develop a helicopter-borne radar system for measuring microwave backscatter from vegetation and to use this system to study the characteristics of backscatter from the boreal forest. Our research is aimed at refining the current microwave models and using these improvements for more accurate interpretation of SAR data. SAR data are very useful for monitoring the boreal forest region because of the microwave signal's ability to penetrate clouds and to see at night. Meeting these objectives involves several stages of development. The first stage is the design and implementation of a frequency-modulated continuous-wave (FM-CW) radar system with the capability of measuring backscatter at three frequencies and four polarizations at each frequency. These requirements necessitate a twelve-channel radar system. Using three frequencies is advantageous because it allows us to look at different parts of the canopy. For instance, the lower frequency signal penetrates deeper into the canopy and allows us to see the ground while the high frequency signal is scattered more by the leaves and needles and typically does not penetrate to the floor of the forest. We designed the radar starting with the antenna system. We then developed the intermediate frequency (IF) and radio frequency (RF) sections of the radar. Also, the need to collect data from twelve channels during each flight line presented a complex data acquisition problem that we solved by using a high-speed data acquisition board. After construction, the radar was tested at the lab. We performed extensive testing of the IF and RF systems of the radar during this time. Once we were satisfied with the operation of the radar it was shipped to Canada for use in the second intensive field campaign (IFC-2) from July 16 - August 8, 1994. During IFC-2, we collected backscatter data over the experimental sites in the southern study area (SSA). Additionally, we used a ground

  4. The boreal forest as a cultural landscape.

    PubMed

    Johnson, Edward A; Miyanishi, Kiyoko

    2012-02-01

    Because of its generally low density of humans and few settlements, the circumpolar boreal forest is often viewed as an untouched wilderness. However, archeological evidence indicates that humans have inhabited the region since the continental glaciers disappeared 8,000-12,000 years ago. This paper discusses the ecological impacts that humans have had on the boreal forest ecosystem through their activities in prehistoric, historic, and recent times and argues that the boreal forest has always been a cultural landscape with a gradient of impacts both spatially and temporally. These activities include hunting, trapping, herding, agriculture, forestry, hydroelectric dam projects, oil and natural gas development, and mining. In prehistoric times, human impacts would generally have been more temporary and spatially localized. However, the megafaunal extinctions coincident with arrival of humans were very significant ecological impacts. In historic times, the spread of Europeans and their exploitation of the boreal's natural resources as well as agricultural expansion has altered the composition and continuity of the boreal forest ecosystem in North America, Fennoscandia, and Asia. Particularly over the last century, these impacts have increased significantly (e.g., some hydroelectric dams and tar sands developments that have altered and destroyed vast areas of the boreal forest). Although the atmospheric changes and resulting climatic changes due to human activities are causing the most significant changes to the high-latitude boreal forest ecosystem, any discussion of these impacts are beyond the limits of this paper and therefore are not included.

  5. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142

  6. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  7. A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency.

    PubMed

    Shafqat, Naeem; Kavanagh, Kate L; Sass, Jörn Oliver; Christensen, Ernst; Fukao, Toshiyuki; Lee, Wen Hwa; Oppermann, Udo; Yue, Wyatt W

    2013-11-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inherited metabolic disorder of ketone metabolism, characterized by ketoacidotic episodes and often permanent ketosis. To date there are ~20 disease-associated alleles on the OXCT1 gene that encodes the mitochondrial enzyme SCOT. SCOT catalyzes the first, rate-limiting step of ketone body utilization in peripheral tissues, by transferring a CoA moiety from succinyl-CoA to form acetoacetyl-CoA, for entry into the tricarboxylic acid cycle for energy production. We have determined the crystal structure of human SCOT, providing a molecular understanding of the reported mutations based on their potential structural effects. An interactive version of this manuscript (which may contain additional mutations appended after acceptance of this manuscript) may be found on the web address: http://www.thesgc.org/jimd/SCOT . PMID:23420214

  8. Modelling evapotranspiration at three boreal forest stands using the CLASS: tests of parameterizations for canopy conductance and soil evaporation

    NASA Astrophysics Data System (ADS)

    Bartlett, Paul A.; McCaughey, J. Harry; Lafleur, Peter M.; Verseghy, Diana L.

    2003-03-01

    The performance of the Canadian Land Surface Scheme (CLASS) was evaluated in off-line runs, using data collected at three boreal forest stands located near Thompson, Manitoba: young jack pine, mature jack pine, and mature black spruce. The data were collected in the late spring through autumn of 1994 and 1996, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS).The diurnal range in modelled soil heat flux was exaggerated at all sites. Soil evaporation was modelled poorly at the jack pine stands, with overestimation common and a step change to low evaporation as the soil dried. Replacing the soil evaporation algorithm, which was based on the estimation of a surface relative humidity value, with one based on soil moisture in the top soil layer reduced the overestimation and eliminated the step changes. Modelled water movement between soil layers was too slow at the jack pine stands. Modifying the soil hydraulic parameters to match an observed characteristic curve at the young jack pine stand produced a soil water suction that agreed more closely with measurements and improved drainage between soil layers.The latent heat flux was overestimated and the sensible heat flux underestimated at all three stands. New Jarvis-Stewart-type canopy conductance algorithms were developed from stomatal conductance measurements. At the jack pine stands, stomatal conductance scaled by leaf area index reproduced canopy conductance, but a reduction in the scaled stomatal conductance by one half was necessary at the black spruce stand, indicating a nonlinearity in the scaling of stomatal conductance for this ecosystem. The root-mean-squared error for daily average latent heat flux for the control run of the CLASS and for the best test run are 49 W m-2 and 14 W m-2 respectively at the young jack pine stand, 50 W m-2 and 15 W m-2 respectively at the old jack pine stand, and 48 W m-2 and 13 W m-2 respectively at the old black spruce stand.

  9. Pine Island Glacier, Antarctica

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This pair of MISR images of the Pine Island Glacier in western Antarctica was acquired on December 12, 2000 during Terra orbit 5246. At left is a conventional, true-color image from the downward-looking (nadir) camera. The false-color image at right is a composite of red band data taken by the MISR forward 60-degree, nadir, and aftward 60-degree cameras, displayed in red, green, and blue colors, respectively. Color variations in the left (true-color) image highlight spectral differences. In the multi-angle composite, on the other hand, color variations act as a proxy for differences in the angular reflectance properties of the scene. In this representation, clouds show up as light purple. Blue to orange gradations on the surface indicate a transition in ice texture from smooth to rough. For example, the bright orange 'carrot-like' features are rough crevasses on the glacier's tongue. In the conventional nadir view, the blue ice labeled 'rough crevasses' and 'smooth blue ice' exhibit similar coloration, but the multi-angle composite reveals their different textures, with the smoother ice appearing dark purple instead of orange. This could be an indicator of different mechanisms by which this ice is exposed. The multi-angle view also reveals subtle roughness variations on the frozen sea ice between the glacier and the open water in Pine Island Bay.

    To the left of the 'icebergs' label are chunks of floating ice. Additionally, smaller icebergs embedded in the frozen sea ice are visible below and to the right of the label. These small icebergs are associated with dark streaks. Analysis of the illumination geometry suggests that these streaks are surface features, not shadows. Wind-driven motion and thinning of the sea ice in the vicinity of the icebergs is one possible explanation.

    Recently, Robert Bindschadler, a glaciologist at the NASA Goddard Space Flight Center discovered in Landsat 7 imagery a newly-formed crack traversing the Pine Island Glacier. This crack

  10. Organic matter biogeochemistry in the western boreal forest of Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Norris, C. E.; Mercier Quideau, S.

    2013-12-01

    The western boreal forest of Canada is characterized by mixed and pure stands of aspen (Populus tremuloides Michx.), spruce (Picea glauca (Moench) Voss) and pine (Pinus banksiana Lamb.). This study presents results on the characterization and cycling of soil organic matter in these boreal ecosystems derived from examining both climatic and edaphic gradients. The extent of decomposition for pine forest floors was observed to decrease with increasing stand age and decreasing temperature along a latitudinal climatic transect as determined by solid state nuclear magnetic resonance. In a survey of mature aspen, spruce and pine sites, forest floors reflected the dominant vegetative inputs as demonstrated by long chain (≥ C21) n-alkane biomarkers. Utilizing a range of techniques, including compound-specific analysis of phospholipid fatty acids in a laboratory incubation, we determined that while soil microbial communities under aspen and spruce both readily consumed 13C-glucose, their structures remained unique. We also were interested in determining the response of aspen and spruce soil microbial communities to more complex vegetation inputs, and consequently generated double labelled (13C and 15N) aspen litter using multiple pulses of 13CO2(g) and K15NO3(l). Enriched aspen leaves were then applied in the field to the forest floors of aspen and spruce stands. Nitrogen cycling readily occurred on both sites as evidenced by 15N enrichment of above-ground vegetation. While the soil microbial community structures remained distinct between the two stand types across the field incubation, there was overlap in terms of the microorganisms involved in the decomposition of the applied organic matter.

  11. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    PubMed

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  12. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    PubMed

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  13. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure

    PubMed Central

    Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  14. Does bristlecone pine senesce?

    PubMed

    Lanner, R M; Connor, K F

    2001-04-01

    We evaluated hypotheses of senescence in old trees by comparing putative biomarkers of aging in Great Basin bristlecone pine (Pinus longaeva) ranging in age from 23 to 4713 years. To test a hypothesis that water and nutrient conduction is impaired in old trees we examined cambial products in the xylem and phloem. We found no statistically significant age-related changes in tracheid diameter, or in several other parameters of xylem and phloem related to cambial function. The hypothesis of continuously declining annual shoot growth increments was tested by comparing trees of varying ages in regard to stem unit production and elongation. No statistically significant age-related differences were found. The hypothesis that aging results from an accumulation of deleterious mutations was addressed by comparing pollen viability, seed weight, seed germinability, seedling biomass accumulation, and frequency of putative mutations, in trees of varying ages. None of these parameters had a statistically significant relationship to tree age. Thus, we found no evidence of mutational aging. It appears that the great longevity attained by some Great Basin bristlecone pines is unaccompanied by deterioration of meristem function in embryos, seedlings, or mature trees, an intuitively necessary manifestation of senescence. We conclude that the concept of senescence does not apply to these trees. PMID:11295507

  15. Boreal forest health and global change.

    PubMed

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions.

  16. Boreal forest health and global change.

    PubMed

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions. PMID:26293953

  17. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms

    PubMed Central

    Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726

  18. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    PubMed

    Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  19. Chemical properties of litter inputs and organic matter along the Canadian Boreal Forest Transect Case Study

    NASA Astrophysics Data System (ADS)

    Preston, C. M.; Bhatti, J. S.; Norris, C. E.; Quideau, S. A.; Arevalo, C.

    2012-04-01

    To improve prediction of climate change impacts on the carbon balance of boreal forests, we are investigating C stocks, fluxes and organic matter quality of jack pine (Pinus banksiana) and black spruce (Picea mariana) stands in northern Saskatchewan and Manitoba along the Boreal Forest Transect Case Study (BFTCS). Jack pine stands occupy well-drained sandy soils with thin forest floor, whereas poorly-drained black spruce stands have a thick moss-dominated forest floor. Carbon storage for jack pine and black spruce stands respectively was 3.0-5.5 kg m-2 and 5.2-8.2 kg m-2 in vegetation, and 0.20-0.85 kg m-2 and 0.12-0.40 kg m-2 in coarse woody debris. Forest floor C stock was much higher for black spruce (6.0-12.7 kg m-2) than for jack pine (0.6-0.82 kg m-2). Mineral soil C to 50 cm was also significantly higher for black spruce (3.3-12.5 kg m-2) than for jack pine sites (2.2-3.0 kg m-2). Black spruce forest floor properties indicate hindered decomposition and N cycling, with high C/N ratios, strongly stratified and depleted ^13C and ^15N values, high tannins and phenolics, and 13C nuclear magnetic resonance (NMR) spectra typical of poorly decomposed plant material, especially roots and mosses. The thinner jack pine forest floor appears to be dominated by lichen, with charcoal in some samples. These contrasts are unlikely due to the small differences in aboveground litter inputs (110 vs 121 g m-2) for jack pine and black spruce respectively, 2000-2010 means) or litter quality. Development of colder, wetter and thicker black spruce forest floor is more likely associated with soil texture and drainage, further exacerbated by increasing sphagnum coverage and forest floor depth. This suggests that small environmental changes could trigger large C losses through enhanced forest floor decomposition. An investigation of mineral soil C stabilization in four jack pine sites showed that silt plus clay accounted for 15-43 % of 0-1 m C (1.5-2.8 kg m-2); silt held 0.9-3.3% of

  20. Multi-Sensor Characterization of the Boreal Forest: Initial Findings

    NASA Technical Reports Server (NTRS)

    Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.

  1. Remote sensing of hydrologic variables in boreal areas, phase 2

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carroll, Thomas R.

    1995-01-01

    During Phase 2 airborne Gamma Radiation measurements were conducted over 48 BOREAS (boreal ecosystem atmosphere study) flight lines. Ground measurements of the soil moisture (SM) of the mineral soil and the depth and water content (WC) of the moss/humus layer were collected for calibration of the flight lines. Special attention has been given to the flight lines over, and near, the primary tower sites in the southern study area (SSA); Old Black Spruce (OBS), Old Jack Pine, Old Aspen, and Young Aspen. Multiple ground surveys (September 1993, July, August, and September 1994) show the variation of the water content of the moss/humus layers and changes in the amount of standing water near the SSA OBS tower during the period September 1993 to September 1994. All ground data, airborne estimates and locations of flight lines and ground sampling points have been submitted to BORIS (BOREAS Information System). On 8-10 September 1994 exceptionally high values of cosmic radiation were observed by the airborne gamma radiation system over the SSA. Follow up investigation has not determined the source of, or what caused, the high cosmic count rates.

  2. Reindeer grazing in subarctic boreal forest - influences on the soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Koster, Kajar; Berninger, Frank; Köster, Egle; Pumpanen, Jukka

    2015-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems , which have many effects on plant diversity, soil nutrient cycling and soil organic matter decomposition. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil C dynamics. Earlier, the role of reindeer grazing in ground vegetation dynamics and in soil carbon (C) dynamics has been mostly investigated in open tundra heaths. The objectives of this study were to examine if and how the reindeer grazing (and the possible temperature changes in soil caused by heavy grazing) is affecting the soil C dynamics (CO2 efflux from the soil, C storage in soil, microbial biomass in the soil). In a field experiment in Finnish Lapland, in Värriö Strict Nature Reserve (67° 46' N, 29° 35' E) we have assessed the changes occurring in above- and belowground biomasses, and soil C dynamics (CO2 efflux, soil C content, soil microbial biomass C) among areas grazed and ungrazed by reindeer. Our study areas are located in the northern boreal subarctic coniferous forest at the zone of the last intact forest landscapes in Fennoscandia, where large areas of relatively undisturbed subarctic Scots pine (Pinus sylvestris L.) forests can still be found. The sample plots located in the Värriö Strict Nature Reserve (10 sample plots in total established in year 2013) are situated along the borderline between Finland and Russia, where the ungrazed area was excluded from the reindeer grazing already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. To characterize the stands we have established circular sample plots on areas with a radius of 11.28 m, where different tree characteristics were measured (diameter at 1.3 m, height, height of a tree, crown height, crown diameter, stand age, etc.). On every sample plot

  3. Reindeer grazing in subarctic boreal forest - influences on the soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Koster, Kajar; Berninger, Frank; Köster, Egle; Pumpanen, Jukka

    2015-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems , which have many effects on plant diversity, soil nutrient cycling and soil organic matter decomposition. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil C dynamics. Earlier, the role of reindeer grazing in ground vegetation dynamics and in soil carbon (C) dynamics has been mostly investigated in open tundra heaths. The objectives of this study were to examine if and how the reindeer grazing (and the possible temperature changes in soil caused by heavy grazing) is affecting the soil C dynamics (CO2 efflux from the soil, C storage in soil, microbial biomass in the soil). In a field experiment in Finnish Lapland, in Värriö Strict Nature Reserve (67° 46' N, 29° 35' E) we have assessed the changes occurring in above- and belowground biomasses, and soil C dynamics (CO2 efflux, soil C content, soil microbial biomass C) among areas grazed and ungrazed by reindeer. Our study areas are located in the northern boreal subarctic coniferous forest at the zone of the last intact forest landscapes in Fennoscandia, where large areas of relatively undisturbed subarctic Scots pine (Pinus sylvestris L.) forests can still be found. The sample plots located in the Värriö Strict Nature Reserve (10 sample plots in total established in year 2013) are situated along the borderline between Finland and Russia, where the ungrazed area was excluded from the reindeer grazing already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. To characterize the stands we have established circular sample plots on areas with a radius of 11.28 m, where different tree characteristics were measured (diameter at 1.3 m, height, height of a tree, crown height, crown diameter, stand age, etc.). On every sample plot

  4. Effects of mistletoe removal on growth, N and C reserves, and carbon and oxygen isotope composition in Scots pine hosts.

    PubMed

    Yan, Cai-Feng; Gessler, Arthur; Rigling, Andreas; Dobbertin, Matthias; Han, Xing-Guo; Li, Mai-He

    2016-05-01

    Most mistletoes are xylem-tapping hemiparasites, which derive their resources from the host's xylem solution. Thus, they affect the host's water relations and resource balance. To understand the physiological mechanisms underlying the mistletoe-host relationship, we experimentally removed Viscum album ssp. austriacum (Wiesb.) Vollmann from adult Pinus sylvestris L. host trees growing in a Swiss dry valley. We analyzed the effects of mistletoe removal over time on host tree growth and on concentrations of nonstructural carbohydrates (NSC) and nitrogen (N) in needles, fine roots and sapwood. In addition, we assessed the δ(13)C and δ(18)O in host tree rings. After mistletoe removal, δ(13)C did not change in newly produced tree rings compared with tree rings in control trees (still infected with mistletoe), but δ(18)O values increased. This pattern might be interpreted as a decrease in assimilation (A) and stomatal conductance (gs), but in our study, it most likely points to an inadequacy of the dual isotope approach. Instead, we interpret the unchanged δ(13)C in tree rings upon mistletoe removal as a balanced increase in A and gs that resulted in a constant intrinsic water use efficiency (defined as A/gs). Needle area-based concentrations of N, soluble sugars and NSC, as well as needle length, single needle area, tree ring width and shoot growth, were significantly higher in trees from which mistletoe was removed than in control trees. This finding suggests that mistletoe removal results in increased N availability and carbon gain, which in turn leads to increased growth rates of the hosts. Hence, in areas where mistletoe is common and the population is large, mistletoe management (e.g., removal) may be needed to improve the host vigor, growth rate and productivity, especially for relatively small trees and crop trees in xeric growth conditions. PMID:27083524

  5. Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine?

    PubMed

    Vospernik, Sonja; Monserud, Robert A; Sterba, Hubert

    2010-10-15

    Height:diameter ratios are an important measure of stand stability. Because of the importance of height:diameter ratios for forest management, individual-tree growth models should correctly depict height:diameter ratios. In particular, (i) height:diameter ratios should not exceed that of very dense stands, (ii) height:diameter ratios should not fall below that of open-grown trees, (iii) height:diameter ratios should decrease with increasing spacing, (iv) height:diameter ratios for suppressed trees should be higher than ratios for dominant trees. We evaluated the prediction of height:diameter ratios by running four commonly used individual-tree growth models in central Europe: BWIN, Moses, Silva and Prognaus. They represent different subtypes of individual-tree growth models, namely models with and without an explicit growth potential and models that are either distance-dependent (spatial) or distance-independent (non-spatial). Note that none of these simulators predict height:diameter ratios directly. We began by building a generic simulator that contained the relevant equations for diameter increment, height increment, and crown size for each of the four simulators. The relevant measures of competition, site characteristics, and stand statistics were also coded. The advantage of this simulator was that it ensured that no additional constraint was being imposed on the growth equations, and that initial conditions were identical. We then simulated growth for a 15- and 30-year period for Austrian permanent research plots in Arnoldstein and in Litschau, which represent stands at different age-classes and densities. We also simulated growth of open-grown trees and compared the results to the literature. We found that the general pattern of height:diameter ratios was correctly predicted by all four individual-tree growth models, with height:diameter ratios above that of open-grown trees and below that of very dense stands. All models showed a decrease of height:diameter ratios with age and an increase with stand density. Also, the height:diameter ratios of dominant trees were always lower than that of mean trees. Although in some cases the observed and predicted height:diameter ratios matched well, there were cases where discrepancies between observed and predicted height:diameter ratios would be unacceptable for practical management predictions.

  6. Long-term effects of clear-cutting and site preparation on carbon, nitrogen, phosphorus and suspended solids export to boreal first order streams

    NASA Astrophysics Data System (ADS)

    Palviainen, Marjo; Finér, Leena; Laurén, Ari; Launiainen, Samuli; Piirainen, Sirpa; Mattsson, Tuija; Starr, Mike

    2013-04-01

    Clear-cutting has been observed to generally increase leaching and element exports to adjacent watercourses. Most studies on the effects of clear-cutting on nutrient export in north European boreal forests have been short-term and were carried out in the 1970s and 1980s when forestry practices were different from those of today. Nowadays clear-cut areas are smaller, soil preparation methods are lighter (less soil disturbance), and buffer zones are left along watercourses. Several hundred thousand hectares of forests are clear-cut and soils are scarified before regeneration operations in Fennoscandia, but little is known of the long-term impacts of the current methods on the surface water quality. We studied the long-term (14 years) effects of clear-cutting and site preparation on runoff (mm) and the export of total nitrogen (total N), total organic nitrogen (TON), ammonium (NH4-N), nitrate (NO3-N), total phosphorus (total P), phosphate (PO4-P), total organic carbon (TOC) and suspended solids (SS) in two paired-catchments in Eastern Finland. In accordance with current forest management guidelines, clear cutting (stem-only removal) were carried out on 34% (C34) and 12% (C12) of the area of the treated catchments, scarification carried out after 2 years and planting with Scots pine seedlings after 3 years. Buffer zones were left between the clear-cut areas and the catchment outlet stream. In the case of the C34 catchment, clear-cutting increased annual runoff and exports of total N, TON, NO3-N, PO4-P and SS. Annual runoff increased by 4 - 102 mm (1-30%). The annual exports of total N, TON, NO3-N, PO4-P and SS increased by at most 0.36 (72%), 0.35 (76%), 0.15 (1056%), 0.002 (35%) and 2.0 (715%) kg/ha, respectively. For the C12 catchment, annual runoff did not change and only exports of PO4-P and SS increased. Annual export of PO4-P increased by at maximum 0.007 kg/ha (69%) and that of SS by at maximum 0.55 kg/ha (271%). Clear-cutting induced increases in runoff and

  7. Forest and land inventory using ERTS imagery and aerial photography in the boreal forest region of Alberta, Canada

    NASA Technical Reports Server (NTRS)

    Kirby, C. L.

    1974-01-01

    Satellite imagery and small-scale (1:120,000) infrared ektachrome aerial photography for the development of improved forest and land inventory techniques in the boreal forest region are presented to demonstrate spectral signatures and their application. The forest is predominately mixed, stands of white spruce and poplar, with some pure stands of black spruce, pine and large areas of poorly drained land with peat and sedge type muskegs. This work is part of coordinated program to evaluate ERTS imagery by the Canadian Forestry Service.

  8. Pine Island Glacier, Antarctica

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image was acquired on December 12, 2000, and covers an area of 38 x 48 km. Pine Island Glacier has undergone a steady loss of elevation with retreat of the grounding line in recent decades. Now, space imagery has revealed a wide new crack that some scientists think will soon result in a calving event. Glaciologist Robert Bindschadler of NASA's Goddard Space Flight Center predicts this crack will result in the calving of a major iceberg, probably in less than 18 months. Discovery of the crack was possible due to multi-year image archives and high resolution imagery. This image is located at 74.1 degrees south latitude and 105.1 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  9. Strange, incredible and impossible things: the early anthropology of Reginald Scot.

    PubMed

    Littlewood, Roland

    2009-06-01

    Reginald Scot has been acclaimed as an early rationalist for his critical consideration of witchcraft in 1584. At the same time, the Discoverie of Witchcraft appears organized much as later classic anthropological monographs. This article considers whether his methods and writing might indeed correspond to what we recognise as the procedures of medical or psychiatric anthropology.

  10. Boreal Forest Ecosystems Along Canadian Transect in Central Canada:Multivariate Analysis of Species Composition, Detritus and Soil Carbon Data

    NASA Astrophysics Data System (ADS)

    Bhatti, J.; Yu, Z.; Apps, M. J.

    2001-05-01

    The species composition, detritus, and soil data from 97 boreal forest stands along a transect (BFTCS) in central Canada were analyzed using (detrended) (canonical) correspondence analysis to determine the dominant environmental/site variables that differentiate these forest stands. The forests include aspen, jack pine, black spruce and mixed wood stands. Black spruce stands are densely clustered together on understory DCA plot, suggesting that they have consistent understory species composition, such as feathermoss and ericades, whereas aspen stands have most diverse understory species composition (~30 species), mostly shrubs and herbs. Jack pine stands have several characteristic species of reindeer lichens (Cladina spp.), but have rare saplings and seedlings of jack pine. Although climatic variables show large variation along the transect, the CCA results indicate that site conditions are more important in determining species composition and differentiating the stand types. Characteristics of forest floor (duff layer, woody debris, and drainage) appear to be among the most important site variables. The black spruce stands have significantly higher average carbon (C) densities in duff layer (43,530 kg C/ha) than aspen (25,500 kg C/ha) and jack pine stands (19,400 kg C/ha). The thick duff layer in lowland black spruce stands plays an important role in regulating soil temperatures and moistures, and organic-matter decomposition, which in turn affect the ecosystem C dynamics. During forest succession after a stand-replacing disturbance (e.g., fires), tree biomass increases in all stand types as forests recover; however, detritus biomass first decreases and then increases after ~80 years. In all stand types, duff layer thickness increases with stand regrowth ages. Soil C densities show slight decrease with ages in aspen stands, but increase in other stand types. These results indicate the complex C transfer processes among different components (tree biomass, detritus

  11. Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface

    NASA Astrophysics Data System (ADS)

    Choi, Ji Nyeong; Ryu, Dongok; Kim, Sug-Whan; Graves, Logan; Su, Peng; Huang, Run; Kim, Dae Wook

    2015-09-01

    The Software Configurable Optical Testing System (SCOTS) is one of the newest testing methods for large mirror surfaces. The Integrated Ray Tracing (IRT) technique can be applicable to the SCOTS simulation by performing non-sequential ray tracing from the screen to the camera detector in the real scale. Therefore, the radiometry of distorted pattern images are numerically estimated by the IRT simulation module. In this study, we construct an IRT SCOTS simulation model for the Fast Steering Mirror Prototype (FSMP) surface of the Giant Magellan Telescope (GMT). GMT FSMP is an off-axis ellipsoidal concave mirror that is 1064 mm in diameter and has PV 3.1 mm in aspheric departure. The surface error requirement is less than 20 nm rms. The screen is modeled as an array of 1366 by 768 screen pixels of 0.227 mm in pitch size. The screen is considered as a Lambertian scattering surface. The screen and the camera are positioned around 4390 mm away from the mirror and separated by around 132 mm from each other. The light source are scanning lines and sinusoidal patterns generated by 616,050 rays per one screen pixel. Of the initially generated rays, 0.22 % are received by the camera's detector and contribute to form distorted pattern images. These images are converted to the slope and height maps of the mirror surface. The final result for the height difference between input surface and reconstructed surface was 14.14 nm rms. Additionally, the simulated mirror pattern image was compared with the real SCOTS test for the GMT FSMP. This study shows applicability of using the IRT model to SCOTS simulation with nanometer level numerical accuracy.

  12. Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest

    PubMed Central

    Liu, Jushan; Bai, Yuguang; Lamb, Eric G.; Simpson, Dale; Liu, Guofang; Wei, Yongsheng; Wang, Deli; McKenney, Daniel W.; Papadopol, Pia

    2013-01-01

    Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially

  13. Allergic Reactions to Pine Nut: A Review.

    PubMed

    Cabanillas, B; Novak, N

    2015-01-01

    Pine nut is a nutrient-rich food with a beneficial impact on human health. The many bioactive constituents of pine nut interact synergistically to affect human physiology in a favorable way. However, pine nut can trigger dangerous allergic reactions. Severe anaphylactic reactions to pine nut accounted for most of the 45 cases reported in the scientific literature. Pine nut allergy seems to be characterized by low IgE cross-reactivity with other commonly consumed nuts and a high monosensitization rate. The present review provides updated information on allergic reactions to pine nut, molecular characterization of its allergens, and potential homologies with other nut allergens.

  14. Growing Season Length as a Key Factor of Cumulative Net Ecosystem Exchange Over the Pine Forest Ecosystems in Europe

    NASA Astrophysics Data System (ADS)

    Danielewska, Alina; Urbaniak, Marek; Olejnik, Janusz

    2015-04-01

    The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.

  15. Estimating exotic gene flow into native pine stands: zygotic vs. gametic components.

    PubMed

    Unger, G M; Vendramin, G G; Robledo-Arnuncio, J J

    2014-11-01

    Monitoring contemporary gene flow from widespread exotic plantations is becoming an important problem in forest conservation genetics. In plants, where both seed and pollen disperse, three components of exotic gene flow with potentially unequal consequences should be, but have not been, explicitly distinguished: zygotic, male gametic and female gametic. Building on a previous model for estimating contemporary rates of zygotic and male gametic gene flow among plant populations, we present here an approach that additionally estimates the third (female gametic) gene flow component, based on a combination of uni- and biparentally inherited markers. Using this method and a combined set of chloroplast and nuclear microsatellites, we estimate gene flow rates from exotic plantations into two Iberian relict stands of maritime pine (Pinus pinaster) and Scots pine (Pinus sylvestris). Results show neither zygotic nor female gametic gene flow but moderate (6-8%) male gametic introgression for both species, implying significant dispersal of pollen, but not of seeds, from exotic plantations into native stands shortly after introduced trees reached reproductive maturity. Numerical simulation results suggest that the model yields reasonably accurate estimates for our empirical data sets, especially for larger samples. We discuss conservation management implications of observed levels of exposure to nonlocal genes and identify research needs to determine potentially associated hazards. Our approach should be useful for plant ecologists and ecosystem managers interested in the vectors of contemporary genetic connectivity among discrete plant populations.

  16. Mountain Pine Beetles Use Volatile Cues to Locate Host Limber Pine and Avoid Non-Host Great Basin Bristlecone Pine.

    PubMed

    Gray, Curtis A; Runyon, Justin B; Jenkins, Michael J; Giunta, Andrew D

    2015-01-01

    The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species.

  17. Mountain Pine Beetles Use Volatile Cues to Locate Host Limber Pine and Avoid Non-Host Great Basin Bristlecone Pine

    PubMed Central

    Gray, Curtis A.; Runyon, Justin B.; Jenkins, Michael J.; Giunta, Andrew D.

    2015-01-01

    The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species. PMID:26332317

  18. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents.

    PubMed

    Cabo, Sandra; Ferreira, Luciana; Carvalho, Ana; Martins-Lopes, Paula; Martín, António; Lima-Brito, José Eduardo

    2014-08-01

    Hexaploid tritordeum (H(ch)H(ch)AABB; 2n = 42) results from the cross between Hordeum chilense (H(ch)H(ch); 2n = 14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n = 28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70% of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.

  19. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  20. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world.

    PubMed

    Liepe, Katharina J; Hamann, Andreas; Smets, Pia; Fitzpatrick, Connor R; Aitken, Sally N

    2016-02-01

    We investigated adaptation to climate in populations of two widespread tree species across a range of contrasting environments in western Canada. In a series of common garden experiments, bud phenology, cold hardiness, and seedling growth traits were assessed for 254 populations in the interior spruce complex (Picea glauca, P. engelmannii, and their hybrids) and for 281 populations of lodgepole pine (Pinus contorta). Complex multitrait adaptations to different ecological regions such as boreal, montane, coastal, and arid environments accounted for 15-20% of the total variance. This population differentiation could be directly linked to climate variables through multivariate regression tree analysis. Our results suggest that adaptation to climate does not always correspond linearly to temperature gradients. For example, opposite trait values (e.g., early versus late budbreak) may be found in response to apparently similar cold environments (e.g., boreal and montane). Climate change adaptation strategies may therefore not always be possible through a simple shift of seed sources along environmental gradients. For the two species in this study, we identified a relatively small number of uniquely adapted populations (11 for interior spruce and nine for lodgepole pine) that may be used to manage adaptive variation under current and expected future climates. PMID:26834833

  1. Southern Pine Based on Biorefinery Center

    SciTech Connect

    Ragauskas, Arthur J.; Singh, Preet

    2013-12-20

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; The conversion of extracted woodchips to linerboard and bleach grade pulps; and the efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  2. Seasonal change in understory reflectance of boreal forests and influence on canopy vegetation indices

    NASA Astrophysics Data System (ADS)

    Miller, John R.; White, H. Peter; Chen, Jing M.; Peddle, Derek R.; McDermid, Greg; Fournier, Richard A.; Shepherd, Paul; Rubinstein, Irene; Freemantle, Jim; Soffer, Raymond; Ledrew, Ellsworth

    1997-12-01

    One objective of the Boreal Ecosystem-Atmospheric Study (BOREAS) is to increase our understanding of the nature of canopy spectral bidirectional reflectance in the visible/near-infrared regimes for open canopies typical of boreal forest stands. For such stands, the need to characterize the reflectance of the sunlit and shaded vegetated understory is critical. These variables are subject to temporal variability due to differences in species phenology and foliar display as well as diurnal and seasonal changes in solar illumination through a seasonally varying upper canopy foliar area. To provide for this need, a multiteam field effort was mounted to measure the nadir midday understory reflectance for the flux tower sites during 1994 BOREAS field campaigns between February and October, specifically during the winter focused field campaign (FFC-W), the spring thaw focused field campaign (FFC-T), and the three intensive field campaigns (IFC-1, IFC-2, and IFC-3) between June and September, which sample vegetation phenological change. This was accomplished by measuring at near-solar noon the sunlit and shaded nadir reflectance of the understory along a surveyed leaf area index (LAI) transect line at each flux tower site. Site-to-site comparisons of understory reflectance spectra reveal stand differences that become more significant as the season progresses. Mean midday understory reflectance spectra were observed to be remarkably consistent over the season for young jack pine stands, followed by somewhat increased variability for mature jack pine, and significant seasonal variability for black spruce stands. Derived vegetation indices for understories are generally consistent with extrapolations of previous relationships of canopy spectral vegetation indices (VIs) versus leaf area index to zero LAI. Inclusion of these "zeroLAI" understory-derived indices significantly enhance the correlation in the linear VI-LAI relationships.

  3. Chemical characteristics of Siberian boreal forest fire emissions

    NASA Astrophysics Data System (ADS)

    Engling, G.; Popovicheva, O.; Fan, T. S.; Eleftheriadis, K.; Diapouli, E.; Kozlov, V.

    2014-12-01

    Smoke emissions from Siberian boreal forest fires exert critical impacts on the aerosol/climate system of subarctic regions and the Arctic. It is, therefore, crucial to assess the ability of such particles to absorb/scatter incoming solar radiation as well as act as cloud condensation nuclei, which is closely linked to the physical and chemical aerosol properties. However, observations of Siberian wildfire emissions are limited, and no systematic database of smoke particle properties is available for this region to date. As part of this study, ambient aerosol samples were collected during two smoke episodes in Tomsk, Siberia, in the summers of 2012 and 2013. In addition, the chemical composition and optical properties of smoke particles derived from the combustion of typical Siberian fuels, including pine wood and debris, were determined during chamber burn experiments in a large aerosol/combustion chamber under controlled combustion conditions representative of wildfires and prescribed burns. Detailed multi-component characterization of individual particles and bulk properties was accomplished with a suite of techniques, including various types of chromatography, microscopy, spectroscopy, and thermo-optical analysis. Individual particle analysis by SEM-EDX combined with cluster analysis revealed characteristic smoke structural components and major types of particles, which allowed to discriminate between flaming and smoldering regimes, reflected in specific morphological and chemical microstructure. The physicochemical properties representing the combustion phase (smoldering versus flaming) and the degree of processing (fresh versus aged) were assessed in the ambient aerosol based on the chamber burn results. For instance, some chemical transformation (aging of smoke particles) was noticed over a period of two days in the absence of sun light in the combustion chamber for certain chemical species, while the molecular tracer levoglucosan appeared to be rather

  4. Biomass and biomass change in lodgepole pine stands in Alberta.

    PubMed

    Monserud, Robert A; Huang, Shongming; Yang, Yuqing

    2006-06-01

    .992 with n = 3585; note that volume and biomass were calculated independently). We compared total tree biomass for two decades, the 1980s and the 1990s. After correcting for changes in harvest removals over time, the mean change in total biomass was positive (0.99 Mg ha(-1) year(-1)) and differed significantly from zero (n = 421; P < 0.001). Estimates ranged from -13.9 to 8.0 Mg ha(-1) year(-1). The heart of the lodgepole pine distribution (primarily the Foothills subregions) showed an increase in biomass, whereas isolated pockets of lodgepole pine in the boreal northern subregion indicated a decline in biomass. PMID:16510398

  5. Effect of canopy structure and the presence of snow on the albedo of boreal conifer forests

    NASA Astrophysics Data System (ADS)

    Ni, Wenge; Woodcock, Curtis E.

    2000-05-01

    A Geometric-Optical and Radiative Transfer (GORT) approach for modeling the radiation regime within plant canopies is capable of predicting temporal variation in the albedo of boreal conifer forests. Model predictions of daily surface albedo patterns and reflected solar radiation during the winter and summer seasons were validated using field measurements from two forest stands in the northern study area of BOReal Ecosystem-Atmosphere Study (BOREAS) in 1995. The model is able to predict the "W" shape for the daily albedo over the sparse old jack pine forest stand during the snow season and the "bowl" shape of daily albedo during clear days in the summer. Results immediately following new snow and at the end of the snowmelt season indicate the sensitivity of overall forest albedos to the albedo of snow. Incorporation of time-varying values for snow albedo may improve future efforts to estimate forest albedos in the winter. Forest albedos are a complicated function of the canopy structure, the presence or absence of snow on the ground and the angular distribution of irradiance. These effects differ for the visible, near-infrared and midinfrared portions of the solar spectrum. Forest albedos vary dramatically as a function of canopy cover when snow covers the ground, but very little when snow is not present. It is found that for tree cover over about 70%, the presence of snow has little effect on albedo.

  6. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest.

    PubMed

    Poaty, Bouddah; Lahlah, Jasmina; Porqueres, Félicia; Bouafif, Hassine

    2015-06-01

    Essential oils (EOs) were steam-extracted from the needles and twigs of balsam fir, black spruce, white spruce, tamarack, jack pine and eastern white cedar that remained after logging in eastern Canada. These EOs, similarly to that from Labrador tea and other commercial EOs from Chinese cinnamon, clove and lemon eucalyptus, exhibited many common constituent compounds (mainly α-pinene, β-pinene, limonene and bornyl acetate) making up 91% of each oil based on gas chromatography-mass spectrometry analysis. All of these oils exhibited antibacterial properties, especially when examined in closed tube assay compared to the traditional 96-well microliter format. These antimicrobial activities (minimum inhibitory concentration ≥ 0.2% w/v), comparable to those of exotic EOs, were shown against common pathogenic bacteria and fungi. The antioxidant potential of the boreal samples was determined by the 1,1-diphenyl-2-picrylhydrazyl radical scavenging (concentration providing 50% inhibition ≥ 7 mg/ml) and reducing power methods. Finally, this investigation revealed some boreal EOs to be potential antimicrobial and antioxidant agents that would notably benefit products in the personal hygiene and care industry.

  7. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest.

    PubMed

    Poaty, Bouddah; Lahlah, Jasmina; Porqueres, Félicia; Bouafif, Hassine

    2015-06-01

    Essential oils (EOs) were steam-extracted from the needles and twigs of balsam fir, black spruce, white spruce, tamarack, jack pine and eastern white cedar that remained after logging in eastern Canada. These EOs, similarly to that from Labrador tea and other commercial EOs from Chinese cinnamon, clove and lemon eucalyptus, exhibited many common constituent compounds (mainly α-pinene, β-pinene, limonene and bornyl acetate) making up 91% of each oil based on gas chromatography-mass spectrometry analysis. All of these oils exhibited antibacterial properties, especially when examined in closed tube assay compared to the traditional 96-well microliter format. These antimicrobial activities (minimum inhibitory concentration ≥ 0.2% w/v), comparable to those of exotic EOs, were shown against common pathogenic bacteria and fungi. The antioxidant potential of the boreal samples was determined by the 1,1-diphenyl-2-picrylhydrazyl radical scavenging (concentration providing 50% inhibition ≥ 7 mg/ml) and reducing power methods. Finally, this investigation revealed some boreal EOs to be potential antimicrobial and antioxidant agents that would notably benefit products in the personal hygiene and care industry. PMID:25801172

  8. Natural glyphosate tolerance in sweetvetch Hedysarum boreale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetvetch (Hedysarum boreale Nutt.) a legume native to the western USA and Canada, is purported to have tolerance to glyphosate {N-(phosphonomethyl) glycine} herbide. Eight rates of glyphosate were tested for their effect on biomass yield (BMY) and survival of seedlings and mature plants. Treatme...

  9. Latent heat exchange in the boreal and arctic biomes.

    PubMed

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need

  10. Boreal Forest Watch: A BOREAS Outreach Program

    NASA Technical Reports Server (NTRS)

    Rock, Barrett N.

    1999-01-01

    The Boreal Forest Watch program was initiated in the fall of 1994 to act as an educational outreach program for the BOREAS project in both the BOREAS Southern Study Area (SSA) and Northern Study Area (NSA). Boreal Forest Watch (13FW) was designed to introduce area high school teachers and their students to the types of research activities occurring as part of the BOREAS study of Canadian boreal forests. Several teacher training workshops were offered to teachers from central and northern Saskatchewan and northern Manitoba between May, 1995 and February, 1999; teachers were introduced to techniques for involving their students in on-going environmental monitoring studies within local forested stands. Boreal Forest Watch is an educational outreach program which brings high school students and research scientists together to study the forest and foster a sustainable relationship between people and the planetary life-support system we depend upon. Personnel from the University of New Hampshire (UNH), Complex Systems Research Center (CSRC), with the cooperation from the Prince Albert National Park (PANP), instituted this program to help teachers within the BOREAS Study Areas offer real science research experience to their students. The program has the potential to complement large research projects, such as BOREAS, by providing useful student- collected data to scientists. Yet, the primary goal of BFW is to allow teachers and students to experience a hands-on, inquiry-based approach to leaming science - emulating the process followed by research scientists. In addition to introducing these teachers to on-going BOREAS research, the other goals of the BFW program were to: 1) to introduce authentic science topics and methods to students and teachers through hands-on, field-based activities; and, 2) to build a database of student-collected environmental monitoring data for future global change studies in the boreal region.

  11. Browning boreal forests of western North America

    NASA Astrophysics Data System (ADS)

    Verbyla, David

    2011-12-01

    The GIMMS NDVI dataset has been widely used to document a 'browning trend' in North American boreal forests (Goetz et al 2005, Bunn et al 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was based primarily on the fact that GIMMS NDVI did not capture NDVI recovery within most burned areas in boreal Canada, while another dataset consistently showed post-fire increasing NDVI. I believe that the results of Alcaraz-Segura et al (2010) were due simply to different pixel sizes of the two datasets (64 km2 versus 1 km2 pixels). Similar results have been obtained from tundra areas greening in Alaska, with the results simply due to these pixel size differences (Stow et al 2007). Furthermore, recent studies have documented boreal browning trends based on NDVI from other sensors. Beck and Goetz (2011) have shown the boreal browning trend derived from a different sensor (MODIS) to be very similar to the boreal browning trend derived from the GIMMS NDVI dataset for the circumpolar boreal region. Parent and Verbyla (2010) found similar declining NDVI patterns based on NDVI from Landsat sensors and GIMMS NDVI in boreal Alaska. Zhang et al (2008) found a similar 'browning trend' in boreal North America based on a production efficiency model using an integrated AVHRR and MODIS dataset. The declining NDVI trend in areas of boreal North America is consistent with tree-ring studies (D'Arrigo et al 2004, McGuire et al 2010, Beck et al 2011). The decline in tree growth may be due to temperature-induced drought stress (Barber et al 2000) caused by higher evaporative demands in a warming climate (Lloyd and Fastie 2002). In a circumpolar boreal study, Lloyd and Bunn (2007) found that a negative relationship between temperature and tree-ring growth occurred more frequently in warmer parts of species' ranges

  12. Levels and sources of planar and non-planar PCBs in pine needles across Poland.

    PubMed

    Falandysz, Jerzy; Orlikowska, Anna; Jarzyńska, Grażyna; Bochentin, Ilona; Wyrzykowska, Barbara; Drewnowska, Małgorzata; Hanari, Nobuyashi; Horii, Yuichi; Yamashita, Nobuyoshi

    2012-01-01

    Under a small project, one-year-old Scots Pine needles collected from 25 spatially distant sites were examined in monitoring the extent of environmental diffusion and possible sources of polychlorinated biphenyls (PCBs) in ambient air, their depositions and uptake by plants in Poland. The congener-specific determination of planar and non-planar chlorobiphenyls was achieved by isotope dilution HRGC-HRMS method after a highly refined extraction on multi-layer column of silica gel and alumina layer and clean-up, and fractionations, followed by Hypercarb-HPLC and PYE-HPLC sub-fractionation steps. Contents of 117 chlorobiphenyls determined in pine needles varied for the 25 sites studied and is between 2.7 and 49 ng/g wet weight. The PCBs pollution and congener-specific composition of pine needles to some degree varied according to the site or region surveyed depending on population density and industrialization. Many of the country-side areas showed lower concentrations between 2.7 and 8.9 ng/g ww. Pine needles in areas close to well populated and industrial regions of Opole, Kutno, Włocławek and Dębica showed the highest PCB pollution with concentrations varying between 30 and 49 ng/g ww. The Kutno site showed the highest pollution and this fact probably can be explained by possible emission from transformer manufactures located at some distance west of the Kutno area. Factor analysis (FA) and depending on the site revealed on relationship of PCBs composition of pine needles both with highly chlorinated PCB constituents of the mixtures such as Chlorofen, Aroclor 1254, Aroclor 1268 and Sovol but also of lower chlorinated PCB constituents of Aroclor 1242, Aroclor 1248, Clophen A40 or Delor 103. Thermal processes were considered a less significant source of PCBs in ambient air over Poland compared to evaporative sources related to technical PCB formulations. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of

  13. Levels and sources of planar and non-planar PCBs in pine needles across Poland.

    PubMed

    Falandysz, Jerzy; Orlikowska, Anna; Jarzyńska, Grażyna; Bochentin, Ilona; Wyrzykowska, Barbara; Drewnowska, Małgorzata; Hanari, Nobuyashi; Horii, Yuichi; Yamashita, Nobuyoshi

    2012-01-01

    Under a small project, one-year-old Scots Pine needles collected from 25 spatially distant sites were examined in monitoring the extent of environmental diffusion and possible sources of polychlorinated biphenyls (PCBs) in ambient air, their depositions and uptake by plants in Poland. The congener-specific determination of planar and non-planar chlorobiphenyls was achieved by isotope dilution HRGC-HRMS method after a highly refined extraction on multi-layer column of silica gel and alumina layer and clean-up, and fractionations, followed by Hypercarb-HPLC and PYE-HPLC sub-fractionation steps. Contents of 117 chlorobiphenyls determined in pine needles varied for the 25 sites studied and is between 2.7 and 49 ng/g wet weight. The PCBs pollution and congener-specific composition of pine needles to some degree varied according to the site or region surveyed depending on population density and industrialization. Many of the country-side areas showed lower concentrations between 2.7 and 8.9 ng/g ww. Pine needles in areas close to well populated and industrial regions of Opole, Kutno, Włocławek and Dębica showed the highest PCB pollution with concentrations varying between 30 and 49 ng/g ww. The Kutno site showed the highest pollution and this fact probably can be explained by possible emission from transformer manufactures located at some distance west of the Kutno area. Factor analysis (FA) and depending on the site revealed on relationship of PCBs composition of pine needles both with highly chlorinated PCB constituents of the mixtures such as Chlorofen, Aroclor 1254, Aroclor 1268 and Sovol but also of lower chlorinated PCB constituents of Aroclor 1242, Aroclor 1248, Clophen A40 or Delor 103. Thermal processes were considered a less significant source of PCBs in ambient air over Poland compared to evaporative sources related to technical PCB formulations. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of

  14. Journey of water in pine cones

    PubMed Central

    Song, Kahye; Yeom, Eunseop; Seo, Seung-Jun; Kim, Kiwoong; Kim, Hyejeong; Lim, Jae-Hong; Joon Lee, Sang

    2015-01-01

    Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system. PMID:25944117

  15. Journey of water in pine cones

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Seo, Seung-Jun; Kim, Kiwoong; Kim, Hyejeong; Lim, Jae-Hong; Joon Lee, Sang

    2015-05-01

    Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system.

  16. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    PubMed

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. PMID:24681362

  17. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    PubMed

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management.

  18. Anaphylaxis to pine nuts and immunological cross-reactivity with pine pollen proteins.

    PubMed

    Senna, G; Roncarolo, D; Dama, A; Mistrello, G

    2000-01-01

    Despite the wide use of pine nuts, the fruit of Pinus pinea, only a few reports of allergic reactions to them have been published. We present herein a case of food allergy to pine nuts in a patient who showed no clinical symptoms to pine pollen despite the presence in her serum of specific IgE antibodies. In order to verify whether the reaction against pine nuts was IgE mediated, specific IgE against pine nuts and pollen were evaluated by skin-prick test, prick by prick and RAST. Immunoblotting and immunoblotting-inhibition were used to evaluate the allergenic components of both extracts and their cross-reactivity. Prick by prick with fresh pine nuts and RAST with pine nut and pine pollen extracts showed that the patient had high levels of specific IgE against both extracts. Immunoblotting experiments showed the presence in serum of IgE antibodies against several components in pine nuts and pollen. Immunoblotting-inhibition experiments demonstrated the presence of some cross-reacting components. These data confirm the existence of food allergy induced by pine nuts. This sensitization to pine nuts developed with no symptoms of pine pollinosis. Development of pollinosis may require a longer time of exposure to allergens. Based on the cross-reactivity between pine nut and pine pollen extracts, cosensitization to these two allergens could be possible.

  19. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    NASA Astrophysics Data System (ADS)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  20. AmeriFlux CA-SF2 Saskatchewan - Western Boreal, forest burned in 1989.

    SciTech Connect

    Amiro, Brian

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-SF2 Saskatchewan - Western Boreal, forest burned in 1989.. Site Description - Amiro_et_al_2006, AFM/136:...The 1989 burn site (F89) was northeast of Prince Albert National Park, Saskatchewan, with the humancaused fire covering 13,500 ha. Parts of the area had been logged prior to the fire, and slash residues would have been burned in some locations. Parts of the area were aerially seeded with jack pine seeds in the winter of 1990. The present tree canopy was composed of balsam poplar (Populus balsamifera L.), jack pine, trembling aspen, and birch (Betula papyrifera Marsh.) and prior to the fire, the stand consisted of these same species aswell asblack spruce.Deadsnags of black spruce and jack pinewere still standing, althoughmost had fallen over and formed a leaningmix of dry, dead tree boles. The understory vegetation consisted mostly of black spruce saplings, saplings of the tree overstory species, bearberry, blueberry (Vaccinium myrtilloides Michx.), raspberry (Rubus idaeus L.), rose (Rosa acicularis Lindl.), bunchberry (Cornus canadensis L.), and reed grass (Calamagrostis canadensis (Michx.) Nutt.).

  1. Growth of a Pine Tree

    ERIC Educational Resources Information Center

    Rollinson, Susan Wells

    2012-01-01

    The growth of a pine tree is examined by preparing "tree cookies" (cross-sectional disks) between whorls of branches. The use of Christmas trees allows the tree cookies to be obtained with inexpensive, commonly available tools. Students use the tree cookies to investigate the annual growth of the tree and how it corresponds to the number of whorls…

  2. Stable carbon isotopes of glucose received from pine tree-rings as bioindicators of local industrial emission of CO2 in Niepołomice Forest (1950-2000).

    PubMed

    Sensuła, Barbara; Pazdur, Anna

    2013-01-01

    The mass spectrometric investigations of carbon isotope composition of glucose received from α-cellulose samples derived from Scots pine (Pinus sylvestris L.) growing in Niepołomice Forest were the main aim of this study. The annual rings covered the time span from 1950 to 2000. α-Cellulose samples were extracted from increment cores of four representative trees, and then acid hydrolysis was performed. The number of sunshine hours, thermal and pluvial conditions of the growing season and in the preceding months had a significant effect on pine. Also non-climatic factors, most likely by industrial pollution signal, have been recorded in the isotopic composition of glucose. The relationship between climatic conditions, carbon dioxide emission and annual tree-rings carbon isotopic composition was analysed, using methods of correlation and response function, and multiple regression function.

  3. Management effects on carbon fluxes in boreal forests (Invited)

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  4. Pine needle abortion biomarker detected in bovine fetal fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...

  5. Microwave dielectric properties of boreal forest trees

    NASA Technical Reports Server (NTRS)

    Xu, G.; Ahern, F.; Brown, J.

    1993-01-01

    The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.

  6. Best Practices Case Study: Pine Mountain Builders - Pine Mountain, GA

    SciTech Connect

    2011-09-01

    Case study of Pine Mountain Builders who worked with DOE’s IBACOS team to achieve HERS scores of 59 on 140 homes built around a wetlands in Georgia. The team used taped rigid foam exterior sheathing and spray foam insulation in the walls and on the underside of the attic for a very tight 1.0 to 1.8 ACH 50 building shell.

  7. Mineralization of cellulose in frozen boreal soils

    NASA Astrophysics Data System (ADS)

    Oquist, Mats G.; Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jurgen

    2015-04-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon. In boreal forests, the microbial mineralization of soil organic matter (SOM) during winter can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, soluble monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances ultimately depends on whether soil microorganisms can utilize and grow the more complex, polymeric constituents of SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). Freezing of the soil markedly reduced microbial utilization of the cellulose. The [13C]-CO2 production rate in the samples at +4°C were 0.52 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.01 mg CO2 SOM -1 day-1. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming that cellulose can sustain also anabolic activity of the microbial populations under frozen conditions. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero, which involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of

  8. Ecohydrology of Interior Alaska boreal forest systems

    NASA Astrophysics Data System (ADS)

    Cable, J.; Bolton, W. R.

    2012-12-01

    The ecohydrology of boreal forest ecosystems of Interior Alaska is not well understood largely because of challenges posed by the presence of discontinuous permafrost. Near-surface permafrost results in storage-dominated systems with cold, poorly drained soils, and slow growing, low statured coniferous trees (Picea mariana) or CDE's. The transition to permafrost-free areas can occur over a few meters and is accompanied by a vegetation community dominated by large deciduous trees (Populus sp. and Betula sp.) or DDE's. Typically, areas with permafrost are on north facing slopes and valley bottoms, and areas without permafrost are south facing. In Alaska's boreal forest, the permafrost is very warm and vulnerable to the effects of climate change. Once permafrost begins to thaw, the vegetation community shifts from coniferous to deciduous dominated. Streamflow in watersheds with a larger permafrost distribution tends to be higher and more responsive to precipitation events than in watersheds with low permafrost distribution. In fact, precipitation events in the low permafrost areas do not infiltrate past the rooting zone of the deciduous trees (~5-40 cm). This suggests that the deciduous trees may remove water from the system via uptake and transpiration. We focus on how vegetation water use affects boreal forest hydrology in areas of discontinuous permafrost. Specifically, we ask: what are the patterns of vegetation water use in areas with and without permafrost? This study focuses on the CDE and DDE systems. Our research sites are established on low and high locations on each aspect (south facing DDE, north facing CDE) to capture the variability associated with the different hillside drainage properties. At each of the four sites during the growing season, we measured various aspects of plant water use dynamics, including water flux, water content, water sources, depth of water uptake in the soil, and water stress. We use a Bayesian framework to analyze the data. We

  9. Simulated acid rain reduces the susceptibility of the European pine sawfly (Neodiprion sertifer) to its nuclear polyhedrosis virus.

    PubMed

    Neuvonen, S; Saikkonen, K; Haukioja, E

    1990-06-01

    The study dealt with the effect of simulated acid rain (both H(2)SO(4) and HNO(3); acidities of pH 4 and pH 3) on the susceptibility of the larvae of Neodiprion sertifer to its nuclear polyhedrosis virus. Scots pines growing in a subarctic area with low ambient pollution levels were irrigated with simulated acid rain during two summers. Neodiprion larvae fed with foliage from the experimental trees were infected with a dilute virus suspension. The acid treatment of host trees had a significant effect on the proportion of virus-treated larvae alive 16 days after the virus application: there were almost no differences between the controls and the pH 4 irrigation group, but on the needles of pH 3-treated trees larval survival was twice as high as with other treatments. The direct spraying of acid water on the needles before they were fed to the larvae did not significantly affect the survival of virus infected larvae. Our results suggest that acid rain may reduce the susceptibility of Neodiprion larvae to virus disease via changes in the quality of pine foliage.

  10. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach.

    PubMed

    Su, Peng; Wang, Yuhao; Burge, James H; Kaznatcheev, Konstantine; Idir, Mourad

    2012-05-21

    In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and ~200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring a spherical mirror.

  11. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach

    SciTech Connect

    Su P.; Kaznatcheev K.; Wang, Y.; Burge, J.H.; Idir, M.

    2012-05-16

    In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and {approx}200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring a spherical mirror.

  12. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  13. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams

    PubMed Central

    Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488

  14. Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs.

    PubMed

    Selonen, Salla; Setälä, Heikki

    2015-06-15

    The effects of shooting-derived lead (Pb) on the structure and functioning of a forest ecosystem, and the recovery of the ecosystem after range abandonment were studied at an active shotgun shooting range, an abandoned shooting range where shooting ceased 20 years earlier and an uncontaminated control site. Despite numerous lead-induced changes in the soil food web, soil processes were only weakly related to soil food web composition. However, decomposition of Scots pine (Pinus sylvestris) needle litter was retarded at the active shooting range, and microbial activity, microbial biomass and the rate of decomposition of Pb-contaminated grass litter decreased with increasing soil Pb concentrations. Tree (P. sylvestris) radial growth was suppressed at the active shooting range right after shooting activities started. In contrast, the growth of pines improved at the abandoned shooting range after the cessation of shooting, despite reduced nitrogen and phosphorus contents of the needles. Higher litter degradation rates and lower Pb concentrations in the topmost soil layer at the abandoned shooting range suggest gradual recovery after range abandonment. Our findings suggest that functions in lead-contaminated coniferous forest ecosystems depend on the successional stage of the forest as well as the time since the contamination source has been eliminated, which affects, e.g., the vertical distribution of the contaminant in the soil. However, despite multiple lead-induced changes throughout the ecosystem, the effects were rather weak, indicating high resistance of coniferous forest ecosystems to this type of stress.

  15. Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs.

    PubMed

    Selonen, Salla; Setälä, Heikki

    2015-06-15

    The effects of shooting-derived lead (Pb) on the structure and functioning of a forest ecosystem, and the recovery of the ecosystem after range abandonment were studied at an active shotgun shooting range, an abandoned shooting range where shooting ceased 20 years earlier and an uncontaminated control site. Despite numerous lead-induced changes in the soil food web, soil processes were only weakly related to soil food web composition. However, decomposition of Scots pine (Pinus sylvestris) needle litter was retarded at the active shooting range, and microbial activity, microbial biomass and the rate of decomposition of Pb-contaminated grass litter decreased with increasing soil Pb concentrations. Tree (P. sylvestris) radial growth was suppressed at the active shooting range right after shooting activities started. In contrast, the growth of pines improved at the abandoned shooting range after the cessation of shooting, despite reduced nitrogen and phosphorus contents of the needles. Higher litter degradation rates and lower Pb concentrations in the topmost soil layer at the abandoned shooting range suggest gradual recovery after range abandonment. Our findings suggest that functions in lead-contaminated coniferous forest ecosystems depend on the successional stage of the forest as well as the time since the contamination source has been eliminated, which affects, e.g., the vertical distribution of the contaminant in the soil. However, despite multiple lead-induced changes throughout the ecosystem, the effects were rather weak, indicating high resistance of coniferous forest ecosystems to this type of stress. PMID:25770944

  16. Observation and modelling of HOx radicals in a boreal forest

    NASA Astrophysics Data System (ADS)

    Hens, K.; Novelli, A.; Martinez, M.; Auld, J.; Axinte, R.; Bohn, B.; Fischer, H.; Keronen, P.; Kubistin, D.; Nölscher, A. C.; Oswald, R.; Paasonen, P.; Petäjä, T.; Regelin, E.; Sander, R.; Sinha, V.; Sipilä, M.; Taraborrelli, D.; Tatum Ernest, C.; Williams, J.; Lelieveld, J.; Harder, H.

    2014-08-01

    Measurements of OH and HO2 radicals were conducted in a pine-dominated forest in southern Finland during the HUMPPA-COPEC-2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air - Comprehensive Organic Precursor Emission and Concentration study) field campaign in summer 2010. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF), indicating small systematic disagreement, OHLIF / OHCIMS = (1.31 ± 0.14). Subsequently, the LIF instrument was moved to the top of a 20 m tower, just above the canopy, to investigate the radical chemistry at the ecosystem-atmosphere interface. Comprehensive measurements including observations of many volatile organic compounds (VOCs) and the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model. Production rates of OH calculated from measured OH precursors are consistent with those derived from the steady-state assumption and measured total OH loss under conditions of moderate OH reactivity. The primary photolytic sources of OH contribute up to one-third to the total OH production. OH recycling, which occurs mainly by HO2 reacting with NO and O3, dominates the total hydroxyl radical production in this boreal forest. Box model simulations agree with measurements for hydroxyl radicals (OHmod. / OHobs. = 1.00 ± 0.16), while HO2 mixing ratios are significantly under-predicted (HO2mod. / HO2obs. = 0.3 ± 0.2), and simulated OH reactivity does not match the observed OH reactivity. The simultaneous under-prediction of HO2 and OH reactivity in periods in which OH concentrations were simulated realistically suggests that the missing OH reactivity is an unaccounted-for source of HO2. Detailed analysis of the HOx production, loss, and recycling pathways suggests that in periods of high total OH reactivity there are

  17. Observation and modelling of HOx radicals in a boreal forest

    NASA Astrophysics Data System (ADS)

    Hens, K.; Novelli, A.; Martinez, M.; Auld, J.; Axinte, R.; Bohn, B.; Fischer, H.; Keronen, P.; Kubistin, D.; Nölscher, A. C.; Oswald, R.; Paasonen, P.; Petäjä, T.; Regelin, E.; Sander, R.; Sinha, V.; Sipilä, M.; Taraborrelli, D.; Tatum Ernest, C.; Williams, J.; Lelieveld, J.; Harder, H.

    2013-11-01

    Measurements of OH and HO2 radicals were conducted in a~pine dominated forest in Southern Finland during the HUMPPA-COPEC-2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air - Comprehensive Organic Precursor Emission and Concentration study) field campaign in summer 2010. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF), indicating good agreement. Subsequently, the LIF instrument was moved to the top of a 20 m tower, just above the canopy, to investigate the radical chemistry at the ecosystem-atmosphere interface. Comprehensive measurements including observations of many VOCs and the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model. Production rates of OH calculated from measured OH precursors are consistent with those derived from the steady state assumption and measured total OH loss under conditions of moderate OH reactivity. The primary photolytic sources of OH contribute up to one third to the total OH production. OH recycling, which occurs mainly by HO2 reacting with NO and O3, dominates the total hydroxyl radical production in this boreal forest. Box model simulations agree with measurements for hydroxyl radicals (OHmod./OHobs. = 1.04 ± 0.16), while HO2 mixing ratios are significantly underpredicted (HO2mod./HO2obs. = 0.3 ± 0.2) and simulated OH reactivity does not match the observed OH reactivity. The simultaneous underprediction of HO2 and OH reactivity in periods in which OH concentrations were simulated well, suggests that the missing OH reactivity is an unaccounted source of HO2. Detailed analysis of the HOx production, loss, and recycling pathways suggests that in periods of high total OH reactivity there are additional recycling processes forming OH directly, not via reaction of HO2 with NO or O3. Nevertheless

  18. Diprionidae sawflies on lodgepole and ponderosa pines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight species of Diprionidae feed on lodgepole pine (Pinus contorta) and ponderosa pine (P. ponderosa) in western United States: Neodiprion burkei Middleton, N. annulus contortae Ross, N. autumnalis Smith, N. fulviceps (Cresson), N. gillettei (Rohwer), N. mundus Rohwer, N. ventralis Ross, and Zadi...

  19. Phytotoxic evaluation of whole pine tree substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decreased availability and increased cost of quality substrates are issues facing many horticulture crop producers. Peat moss and pine bark are the most widely used substrate components, yet producers have become more aware of acceptable alternative components. Processed whole pine trees have been i...

  20. Pine nuts: the mycobiota and potential mycotoxins.

    PubMed

    Weidenbörner, M

    2001-05-01

    The mycobiota of pine nuts was investigated. In total, 1832 fungi belonging to 31 species and 15 genera (Ascomycota, 2; Zygomycota, 3; mitosporic fungi, 10) could be isolated. Cladosporium spp. dominated the mycobiota with 685 isolations followed by Phoma macrostoma with 351 isolations. Overall, 16 potentially mycotoxigenic species were present on pine nuts.

  1. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  2. Coronary CT Angiography as a Diagnostic and Prognostic Tool: Perspectives from the SCOT-HEART Trial.

    PubMed

    Doris, Mhairi; Newby, David E

    2016-02-01

    Coronary artery disease is the leading cause of death worldwide. Many trials to date have investigated the diagnostic accuracy of coronary computed tomography angiography (CCTA) when compared to the gold standard diagnostic test, invasive coronary angiography. However, whether the use of a non-invasive anatomical test, such as CCTA, can translate into improved patient risk stratification, management and outcome has yet to be established. The Scottish COmputed Tomography of the HEART (SCOT-HEART) trial sought to address these questions and determined whether CCTA, when used in addition to standard care, could aid the diagnosis, further investigation and treatment of patients referred to the cardiology clinic with suspected angina due to coronary heart disease. In this trial, CCTA clarified the diagnosis of angina due to coronary heart disease in a quarter of patients and this led to major alterations in treatment and management that appeared to reduce the risk of subsequent coronary heart disease death or non-fatal myocardial infarction. The SCOT-Heart trial has established that CCTA is a valuable diagnostic test in patients with suspected angina pectoris due to coronary heart disease and leads to greater clarity, more focused appropriate treatments and better coronary heart disease outcomes.

  3. Seasonal and diurnal dynamics of CO2 balance in two hemi-boreal forests in Estonia

    NASA Astrophysics Data System (ADS)

    Mander, Ülo

    2013-04-01

    Two eddy towers, one in the mixed Norway spruce - Silver birch forest in Liispõllu (58°16'N 27°16'E tower height 20 m) and another one in Scots pine forest in Soontaga (58°01'N 26°04'E; 36 m) both located in southern Estonia - were equipped with CO2/H2O analyzer for mixing ratio of CO2 (Licor 7200 Li-Cor Inc, Lincoln, NE, USA) and 3-D ultrasonic anemometer for wind measurements (Gill Windmaster Pro; Solent, Lymington, UK) and used for measurement of carbon dioxide balance and net ecosystem exchange (NEE). In Liispõllu, the studies were conducted in Auguat and September 2011 above the forest canopies and at 1.5 m above the soil surface.. In Soontaga, measurements lasted from April to October 2012. The data acquisition system consists of the LI-7550 Analyzer Interface Unit, 3G wireless router and analog-to-digital converter that were used to record turbulence and scalar signals. Signals from the sensor and anemometer were recorded 20 times sec-1. The eddy fluxes were averaged over 30 minute time intervals. The flux calculations and corrections of were done using EddyPro program. In addition, soil respiration was measured with automatic chambers in Liispõllu and with closed chambers in Soontaga twice a month from April to October 2011 and 2012. In both study areas around the towers, soil physical and chemical parameters in 3 depths, biomass of trees and understory species, C sequestration in biomass and litter decay has been measured. In Soontaga pine forest the average monthly CO2 flux varied from -59.2 to -388.8 mg m-2 h-1 showing a regular seasonal temperature-related variation. CO2 flux from lowered in spring and summer as plants consume the gas through photosynthesis and days are longer, and rise during the autumn and winter as plants go dormant, die and decay and when also the daytime is shorter. The average monthly flux over the analyzed period was -246.5 mg m-2 h-1. In consequence, the CO2 sequestration from the atmosphere was highest in June. In Liisp

  4. Declining pine growth in Central Spain coincides with increasing diurnal temperature range since the 1970s

    NASA Astrophysics Data System (ADS)

    Büntgen, Ulf; Martínez-Peña, Fernando; Aldea, Jorge; Rigling, Andreas; Fischer, Erich M.; Camarero, J. Julio; Hayes, Michael J.; Fatton, Vincent; Egli, Simon

    2013-08-01

    Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May-July diurnal temperature range (r = 0.84; p < 0.00011956-2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.

  5. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.

    PubMed

    Hellgren, Jenny M; Olofsson, Kjell; Sundberg, Björn

    2004-05-01

    Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. However, in planta proof for this model is lacking. Therefore, we have mapped endogenous IAA distribution across the cambial region tissues in both aspen (Populus tremula, denoted poplar) and Scots pine (Pinus sylvestris) trees forming reaction wood, using tangential cryosectioning combined with sensitive gas chromatography-mass spectrometry analysis. Moreover, we have documented the kinetics of IAA during reaction wood induction in these species. Our analysis of endogenous IAA demonstrates that reaction wood is formed without any obvious alterations in IAA balance. This is in contrast to gravitropic responses in roots and shoots where a redistribution of IAA has been documented. It is also of interest that cambial growth on the tension wood side was stimulated without an increase in IAA. Taken together, our results suggest a role for signals other than IAA in the reaction wood response, or that the gravitational stimulus interacts with the IAA signal transduction pathway. PMID:15122024

  6. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests.

    PubMed

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Yuen, Mack; Clark, Erin L; Fraser, Jordie D; Huber, Dezene P W; Liao, Nancy Y; Docking, T Roderick; Birol, Inanc; Chan, Simon K; Taylor, Greg A; Palmquist, Diana; Jones, Steven J M; Bohlmann, Joerg

    2012-08-01

    Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera.

  7. Needle asymmetry, pine vigour and pine selection by the processionary moth Thaumetopoea pityocampa

    NASA Astrophysics Data System (ADS)

    Pérez-Contreras, Tomás; Soler, Juan José; Soler, Manuel

    2008-03-01

    Developmental stability reflects the ability of a genotype to control stable development of a specific phenotype under a wide range of environmental conditions. Developmentally unstable phenotypes can be recognised by deviations from bilateral symmetry in bilaterally symmetrical traits and, because asymmetry might reflect nutritional quality of leaves for phytophagous insects, they therefore may base plant selection depending on leaf asymmetry. In this article we study such hypothetical relationships occurring between Aleppo pine ( Pinus halepensis) and pine-host selection by the pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). Needle length of Aleppo pines indicated directional asymmetry and, as the hypothesis of developmental stability predicts, relative asymmetry was negatively related to needle length and positively to pine growth in height. Moreover, relative asymmetry proved to be negatively related to concentration of limonene, a defensive monoterpene that affects pine selection by adult female moths. In terms of growth, pine variation in needle length can be explained by the increase in volume of the pines from one to the next year, with smaller needles appearing in the pines that most increased their volume and those that least increased their height. Finally, as expected from a phytophagous insect that selects plants in relation to nutritional characteristics and level of chemical defence against herbivorous, the pine processionary moths selectively oviposited in the trees with the largest and most asymmetric needles. With these results, two of the main hypotheses that explain plant selection, plant-stress and plant-vigour hypotheses are discussed.

  8. Scientific designs of pine seeds and pine cones for species conservation

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon

    2015-11-01

    Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  9. Pine nut allergy: clinical features and major allergens characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine nuts, the seeds of pine trees, are widely used for human consumption in Europe, America, and Asia. The aims of this study were to evaluate IgE-mediated hypersensitivity to pine nut in a large number of patients with details of clinical reactions, and to characterize major pine nut allergens. Th...

  10. Factors affecting early seedling development in whole pine tree substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood-based materials derived from pine trees, such as processed whole pine tree (WPT), can be a viable option for producers looking to offset pine bark or peatmoss usage in container substrates. Reduced root development of stem cuttings rooted in WPT compared with pine bark (PB) has been observed, b...

  11. 27 CFR 9.220 - Pine Mountain-Cloverdale Peak.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Pine Mountain-Cloverdale... Areas § 9.220 Pine Mountain-Cloverdale Peak. (a) Name. The name of the viticultural area described in this section is “Pine Mountain-Cloverdale Peak”. For purposes of part 4 of this chapter, “Pine...

  12. 27 CFR 9.220 - Pine Mountain-Cloverdale Peak.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Pine Mountain-Cloverdale... Areas § 9.220 Pine Mountain-Cloverdale Peak. (a) Name. The name of the viticultural area described in this section is “Pine Mountain-Cloverdale Peak”. For purposes of part 4 of this chapter, “Pine...

  13. 27 CFR 9.220 - Pine Mountain-Cloverdale Peak.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Pine Mountain-Cloverdale... Areas § 9.220 Pine Mountain-Cloverdale Peak. (a) Name. The name of the viticultural area described in this section is “Pine Mountain-Cloverdale Peak”. For purposes of part 4 of this chapter, “Pine...

  14. Monoterpene emission from ponderosa pine

    NASA Technical Reports Server (NTRS)

    Lerdau, Manual; Dilts, Stephen B.; Westberg, Hal; Lamb, Brian K.; Allwine, Eugene J.

    1994-01-01

    We explore the variability in monoterpene emissions from ponderosa pine beyond that which can be explained by temperature alone. Specifically, we examine the roles that photosynthesis and needle monoterpene concentrations play in controlling emissions. We measure monoterpene concentrations and emissions, photosynthesis, temperature, and light availability in the late spring and late summer in a ponderosa pine forest in central Oregon. We use a combination of measurements from cuvettes and Teflon bag enclosures to show that photosynthesis is not correlated with emissions in the short term. We also show that needle monoterpene concentrations are highly correlated with emissions for two compounds, alpha-pinene and beta-pinene, but that Delta-carene concentrations are not correlated with emissions. We suggest that direct effects of light and photosynthesis do not need to be included in emission algorithms. Our results indicate that the role of needle concentration bears further investigation; our results for alpha-pinene and beta-pinene are explainable by a Raoult's law relationship, but we cannot yet explain the cause of our results with Delta-carene.

  15. Boreal forest anomalies in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Wylie, B. K.; Rover, J. A.; Murnahan, K.; Long, J.; Tieszen, L. L.; Brisco, B.

    2010-12-01

    Boreal forests are being impacted by climate change though productivity declines (browning), increased fire extents, frequencies, and intensities, more abundant insects, a thickening active layer, and projected increases in deciduous forest components. Quantification of the regional boreal forest impacts in the Yukon River Basin was achieved though remote sensing and productivity modeling which separated weather and non-weather interannual variations in boreal forest productivity. This “ecosystem performance anomaly” approach uses weather data and coarse resolution (250m) Normalized Difference Vegetation Index (NDVI) time series information from the Moderate Resolution Imaging Spectroradiometer (MODIS). Regression tree models developed from 2000-2005 data were robust when applied to 2006-08 data and predicted interannual growing season NDVI with good accuracy (R2=0.84) Confidence intervals of 90 percent were used to determine anomalous vegetation responses to weather conditions. Boreal forest areas which underperformed relative to weather conditions were often associated with fire events, likely reflecting early stages of succession. Areas which overperformed, relative to weather conditions, were associated with Aspen and Birch establishment after older fires and in mesic areas. Time series analysis of performance anomalies tracked non-linear temporal responses which corresponded well with fire burn dates and fire perimeters. Stressed and changing boreal systems can be identified with this approach and boreal forest productivity projections can be made from future climate projections. These data sets can focus field studies and remediation. Potential climate change refugia can be assessed relative to current stressed systems and future expected boreal forest productivity.

  16. Mapping Heterogeneity in the Boreal Forest of North America

    NASA Astrophysics Data System (ADS)

    Lyons, E. A.; Sheng, Y.

    2015-12-01

    It is a common misconception that the boreal forest is a uniform carpet of trees stretching around the top of the globe. In fact, the boreal forest is an extremely heterogeneous and dynamic landscape. This has become even clearer through the use of remote sensing, which finally gives us a high resolution view of the entire boreal forest on the continental scale. The complexity of the boreal forest biome, however, is still often over simplified and poorly parameterized in global climate models. Advances in remote sensing and data analysis technology now give us the ability to map the heterogeneity and spatial complexity of the entire North American boreal forest. This study presents such a map and some analysis and observations of patterns in the data. We found that the boreal forest was dominated by many small land cover patches with high diversity of forest cover types. This map has and will continue to provide its own insight into the spatial structure of the boreal forest but will also provide important spatial heterogeneity metrics to improve land-atmosphere interactions in climate models.

  17. Modeling speciated terpenoid emissions from the European boreal forest

    NASA Astrophysics Data System (ADS)

    Lindfors, V.; Laurila, T.; Hakola, H.; Steinbrecher, R.; Rinne, J.

    We present the first estimates of speciated monoterpene emissions from the North European coniferous forests. Measured emission factors and emission profiles of boreal tree species ( Picea abies, Pinus sylvestris, Betula pendula, Salix phylicifolia, Populus tremula, and Alnus incana) were used together with detailed satellite land cover information and meteorological data in an emission model based on the Guenther emission algorithms. The variation of the coniferous biomass within the boreal region (60°N to 70°N) was obtained from forest inventory data, and the seasonal variability of the deciduous biomass was taken into account through simple boreal climatology parameterisation. The annual biogenic emissions in the boreal zone are dominated by coniferous species, but in the summer months, the deciduous contribution to the monoterpene and isoprene emissions is considerable. Norway spruce ( Picea abies) is the most important isoprene emitter in the north European boreal forests. The biogenic emission fluxes in the South boreal zone are approximately twice as high as fluxes in the North boreal zone. α- and β-pinene, carene, and cineole are the most abundant emitted terpenes, with a strong contribution of isoprene and linalool during the summer months.

  18. Anaphylaxis induced by pine nuts in two young girls.

    PubMed

    Ibáñez, M Dolores; Lombardero, Manuel; San Ireneo, Mercedes Martinez; Muñoz, M Carmen

    2003-08-01

    Pine nuts are the seeds of Pinus pinea. There are few reported cases of allergy to pine nut. We describe two young girls with anaphylaxis caused by small amounts of pine nuts. Specific IgE to pine nut was demonstrated by skin prick tests and RAST but no IgE to other nuts and pine pollen was detected. The patients had IgE against a pine nut protein band with apparent molecular weights of approximately 17 kDa that could be considered as the main allergen. Our patients were monosensitized to pine nut and the 17-kDa protein could be correlated with the severe clinical symptoms.

  19. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.

    PubMed

    Angstmann, J L; Ewers, B E; Kwon, H

    2012-05-01

    Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.

  20. New datasets for quantifying snow-vegetation-atmosphere interactions in boreal birch and conifer forests

    NASA Astrophysics Data System (ADS)

    Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.

    2012-12-01

    applications, for example in forest ecology, canopy radiative transfer models, snow hydrological modelling, and land surface schemes, for a variety of canopy types from sparse, leafless birch to dense pine and spruce. The work also allows the comparison of modern, highly detailed methods such as laser scanning and thermal imagery with older, well-established data collection methods. By combining these data with airborne and satellite remote sensing data, snow-vegetation-atmosphere interactions could be estimated over a wide area of the heterogeneous boreal landscape. This could improve estimates of crucial parameters such as land surface albedo on the grid scales required for global or regional weather and climate models.

  1. [Pine mouth syndrome: a global problem].

    PubMed

    Redal-Baigorri, Ana Belén

    2011-12-01

    Pinemouth syndrome is characterised by the development of metallogeusia two days after the ingestion of Chinese pine nuts. The symptoms disappear 7-14 days later. The distribution of Chinese pine nuts not suitable for human consumption, is caused by an increasing demand due to price differences. The reason for the taste disturbances is unknown, some suggest turpentine-based products in its composition, and others have studied the fatty acid content of pine nuts and the properties of pinolenic acid. So far the presence of pesticides or mycotoxins is been ruled out, but the puzzle remains unsolved.

  2. Systemic allergic reaction to pine nuts.

    PubMed

    Nielsen, N H

    1990-02-01

    This case report describes a systemic reaction due to ingestion of pine nuts, confirmed by an open, oral provocation test. Skin prick testing with the aqueous allergen revealed an immediate positive prick test, and histamine release from basophil leukocytes to the aqueous allergen was demonstrated. Radioallergosorbent test demonstrated specific IgE antibodies to pine nuts. In a review of medical literature, we found no reports of either oral provocation tests confirming a systemic reaction due to ingestion of pine nuts or demonstration of specific IgE antibodies.

  3. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP).

    PubMed

    Hajibarat, Zahra; Saidi, Abbas; Hajibarat, Zohreh; Talebi, Reza

    2015-07-01

    To evaluate the genetic diversity among 48 genotypes of chickpea comprising cultivars, landraces and internationally developed improved lines genetic distances were evaluated using three different molecular marker techniques: Simple Sequence Repeat (SSR); Start Codon Targeted (SCoT) and Conserved DNA-derived Polymorphism (CDDP). Average polymorphism information content (PIC) for SSR, SCoT and CDDP markers was 0.47, 0.45 and 0.45, respectively, and this revealed that three different marker types were equal for the assessment of diversity amongst genotypes. Cluster analysis for SSR and SCoT divided the genotypes in to three distinct clusters and using CDDP markers data, genotypes grouped in to five clusters. There were positive significant correlation (r = 0.43, P < 0.01) between similarity matrix obtained by SCoT and CDDP. Three different marker techniques showed relatively same pattern of diversity across genotypes and using each marker technique it's obvious that diversity pattern and polymorphism for varieties were higher than that of genotypes, and CDDP had superiority over SCoT and SSR markers. These results suggest that efficiency of SSR, SCOT and CDDP markers was relatively the same in fingerprinting of chickpea genotypes. To our knowledge, this is the first detailed report of using targeted DNA region molecular marker (CDDP) for genetic diversity analysis in chickpea in comparison with SCoT and SSR markers. Overall, our results are able to prove the suitability of SCoT and CDDP markers for genetic diversity analysis in chickpea for their high rates of polymorphism and their potential for genome diversity and germplasm conservation.

  4. Effects of a clear-cut harvest on soil respiration in a jack pine - Lichen woodland

    USGS Publications Warehouse

    Striegl, R.G.; Wickland, K.P.

    1998-01-01

    Quantification of the components of ecosystem respiration is essential to understanding carbon (C) cycling of natural and disturbed landscapes. Soil respiration, which includes autotrophic and heterotrophic respiration from throughout the soil profile, is the second largest flux in the global carbon cycle. We measured soil respiration (soil CO2 emission) at an undisturbed mature jack pine (Pinus banksiana Lamb.) stand in Saskatchewan (old jack pine, OJP), and at a formerly continuous portion of the stand that was clear-cut during the previous winter (clear-cut, CC). Tree harvesting reduced soil CO2 emission from ???22.5 to ???9.1 mol CO2??m2 for the 1994 growing season. OJP was a small net sink of atmospheric CO2, while CC was a net source of CO2. Winter emissions were similar at both sites. Reduction of soil respiration was attributed to disruption of the soil surface and to the death of tree roots. Flux simulations for CC and OJP identify 40% of CO2 emission at the undisturbed OJP site as near-surface respiration, 25% as deep-soil respiration, and 35% as tree-root respiration. The near-surface component was larger than the estimated annual C input to soil, suggesting fast C turnover and no net C accumulation in these boreal uplands in 1994.

  5. Holocene disturbance dynamics from a pine-dominated forest in central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, N.; Condor, N.; Hebda, R.; Hawkes, B.

    2013-12-01

    A lake sediment record was retrieved from the Sub-Boreal Pine-Spruce biogeoclimatic zone on the Chilcotin Plateau in central British Columbia, Canada. The record is being analyzed for charcoal, pollen, and magnetic susceptibility, as well as insect and mollusc content. The oldest radiocarbon age is 9.2 cal BP, illustrating that the record spans most of the Holocene. Regarding fire disturbance, charcoal fragments are persistent throughout the core, revealing that fire disturbance has characterized the site for millennia. In total, 74 fire events were recognized. During the warm dry early Holocene, fire frequency was 12-15 fires 2000 yr-1 and peak magnitudes were low, possibly in response to a more open landscape. A change in fire regime occurred at ca. 5000 cal BP, as fire frequency increased, peaking at ca. 20 fires 2000 yr-1 by 3000 cal BP. Peak magnitude likewise increased notably, possibly in response to the development of denser forest cover. On-going analysis of pollen will better constrain the vegetation history in this poorly sampled region. In contrast to charcoal, which was pervasive, Dendroctonus ponderosae (mountain pine beetle) remains were absent in both modern and paleo samples. Given that several insect outbreaks have occurred in the region in the last 100 years, the scarcity of remains is likely related to taphonomic issues.

  6. "Pine mouth" syndrome: cacogeusia following ingestion of pine nuts (genus: pinus). An emerging problem?

    PubMed

    Munk, Marc-David

    2010-06-01

    We report a case of cacogeusia, specifically metallogeusia (a perceived metallic or bitter taste) following pine nut ingestion. A 36-year-old male presented with cacogeusia one day following ingestion of 10-15 roasted pine nuts (genus: Pinus). Symptoms became worst on post-exposure day 2 and progressively improved without treatment over 5 days. There were no other symptoms and physical examination was unrevealing. All symptoms resolved without sequalae. We contemporaneously report a rise in pine nut-associated cacogeusia reported online during the first quarter of 2009, and a significant rise in online searches related to pine nut-associated cacogeusia (or what the online public has termed "pine mouth") during this time. Most online contributors note a similar cacogeusia 1-3 days following pine nut ingestion lasting for up to 2 weeks. All cases seem self-limited. Patients occasionally describe abdominal cramping and nausea after eating the nuts. Raw, cooked, and processed nuts (in pesto, for example) are implicated. While there appears to be an association between pine nut ingestion and cacogeusia, little is known about this condition, nor can any specific mechanism of specific cause be identified. It is not known if a specific species of pine nut can be implicated. "Pine mouth" appears to be an emerging problem.

  7. Gaseous emissions from Canadian boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1990-01-01

    CO2-normalized emission ratios for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were determined from smoke samples collected during low-altitude helicopter flights over two prescribed fires in northern Ontario, Canada. The emission ratios determined from these prescribed boreal forest fires are compared to emission ratios determined over two graminoid (grass) wetlands fires in central Florida and are found to be substantially higher (elevated levels of reduced gas production relative to CO2) during all stages of combustion. These results argue strongly for the need to characterize biomass burning emissions from the major global vegetation/ecosystems in order to couple combustion emissions to their vegetation/ecosystem type.

  8. Effect of a long-term afforestation of pine in a beech domain in NE-Spain revealed by analytical pyrolysis (Py-GC/MS)

    NASA Astrophysics Data System (ADS)

    Girona García, Antonio; Badía-Villas, David; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara; González-Pérez, José Antonio

    2015-04-01

    The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) [1]. It is known that the products generated by Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) pyrolysis of organic matter are related to their origin [2 and references therein]. Therefore this technique can be used to investigate said changes. In this work, Py-GC/MS is used to study changes in SOM quality surrogated to the effect of the centennial replacement of beech by Scots pine. The soils studied were two acid soil profiles developed on quartzites under a humid climate at an altitude of 1400-1500 masl from Moncayo (Iberian range, NE-Spain). For each soil profile three organic layers (litter: OL, fragmented litter OF and humified litter OH) and the mineral soil horizons (Ah, E, Bhs and C) were sampled. After 100 years since the pine afforestation, differences in the relative abundance of lipids released by pyrolysis were observed in the O-layers ranging from 3.82-7.20% in pine soils and 0.98-1.25% in beech soils. No differences were observed in mineral horizons with depth except for the C horizons where beech lipid content was much higher (21.25%) than in that under pine (1.07%). Both pine and beech soils show similar nitrogen compounds relative contents along the soil profile, increasing from OL to Ah (3.49-9.11% and 2.75-11.73% in beech and pine respectively) with a conspicuous reduction in the E horizon. It is remarkable the absence of nitrogen compounds in beech Bhs and C horizons. The relative content of aromatic compounds in O-layers show opposite trends for beech and pine; an enrichment in aromatic compounds is observed in beech OL layer (12.39%) decreasing to 4.11% in OH layer in contrast, whereas for pine O-layers the aromatic compounds relative abundance was higher in the OH (5.83%) than in the OL layer (2.8%). Mineral Ah and E horizons show similar values in

  9. Aspects of Boreal Forest Hydrology: From Stand to Watershed

    NASA Technical Reports Server (NTRS)

    Nijssen, B.

    2000-01-01

    This report evaluates land surface hydrologic processes in the boreal forest using observations collected during the Boreal Ecosystem Atmospheric Study (BOREAS), carried out in the boreal forest of central Canada from 1994 to 1996. Three separate studies, each of which constitutes a journal publication, are included. The first study describes the application of a spatially-distributed hydrologic model, originally developed for mid-latitude forested environments, to selected BOREAS flux measurement sites. Compared to point observations at the flux towers, the model represented energy and moisture fluxes reasonably well, but shortcomings were identified in the soil thermal submodel and the partitioning of evapotranspiration into canopy and subcanopy components. As a first step towards improving this partitioning, the second study develops a new parameterization for transmission of shortwave radiation through boreal forest canopies. The new model accounts for the transmission of diffuse and direct shortwave radiation and accounts for multiple scattering in the canopy and multiple reflections between the canopy layers.

  10. Developing a Student-Scientist Partnership: Boreal Forest Watch.

    ERIC Educational Resources Information Center

    Spencer, Shannon; Huczek, George; Muir, Bradley

    1998-01-01

    Explains the functions of the Boreal Forest Watch including the scope, level of student involvement, goals, and nature of the data collection. Details student involvement at the forest site. Contains 18 references. (DDR)

  11. Habitat Suitability Index Models: Pine warbler

    USGS Publications Warehouse

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the pine warbler (Dendroica pinus) are described in this publication, which is one of a series of Habitat Suitability Index (HSI) models. Habitat use information is presented in a synthesis of the literature on the species-habitat requirements of the pine warbler, followed by the development of the HSI model. The model is presented in three formats: graphic, word, and mathematical, and is designed to provide information for use in impact assessment and habitat management activities.

  12. Relationship between basal soil respiration rate, tree stand and soil characteristics in boreal forests.

    PubMed

    Vanhala, P; Tamminen, P; Fritze, H

    2005-02-01

    Soil respiration is considered to represent the overall microbial activity reflecting mineralisation of organic matter in soil. It is the most commonly used biological variable in soil studies. In long-term monitoring of forested areas, there is a need for reference values for soil microbiological variables in different forest ecosystems. In this study we describe the relationship between soil respiration rate, tree stand and humus chemical characteristics of boreal coniferous forests stands. Soil respiration rate was higher in pine dominated than in spruce dominated study sites when the result was calculated on dry matter bases. However, when calculated on area bases, the result was opposite and no difference was found when the soil respiration rate was calculated on organic carbon bases. Irrespective of the main tree species, the soil respiration rate was equal in different development classes but not equal in soil fertility classes, i.e. within forest site types based on differences in ground vegetation. Respiration rates were clearly higher in mesic sites when calculated on dry matter, C(org) or area bases. However, soil respiration rate did not correlate with soil chemical variables indicating site fertility. Soil respiration rate on dry matter basis was at a lower level in the south and on more fertile sites, and on the other hand at a higher level in older stands and on sites with a thicker organic layer. PMID:15736877

  13. Resistance of the boreal forest to high burn rates.

    PubMed

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-09-23

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981

  14. Resistance of the boreal forest to high burn rates.

    PubMed

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-09-23

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.

  15. Severe White Pine Blister Rust Infection in Whitebark Pine Alters Mountain Pine Beetle (Coleoptera: Curculionidae) Attack Density, Emergence Rate, and Body Size.

    PubMed

    Dooley, Edith M; Six, Diana L

    2015-10-01

    Exotic tree pathogens can cause devastating ecological effects on forests that can be exacerbated when infections increase the likelihood of attack by insects. Current high rates of mortality of whitebark pine (Pinus albicaulis Engelm.) are due to white pine blister rust caused by the exotic fungus, Cronartium ribicola J.C. Fisch, and the native mountain pine beetle (Dendroctonus ponderosae Hopkins). These two mortality agents interact in whitebark pine; mountain pine beetle preferentially selects white pine blister rust-infected whitebark pine over healthy trees, and likelihood of attack has been observed to increase with infection severity. We examined attack and emergence rates, and size and sex ratio of mountain pine beetle in whitebark pines exhibiting varying white pine blister rust infection severities. Mountain pine beetle attack density was lowest on the most severely infected trees, but emergence rates and size of beetles from these trees were greater than those from uninfected and less severely infected trees. Low attack rates on severely infected whitebark pine may indicate these trees have lower defenses and that fewer beetle attacks are needed to kill them. Higher beetle emergence rates from severely infected trees may be due to low intraspecific competition resulting from low attack rates or differences in nutrient quality.

  16. Severe White Pine Blister Rust Infection in Whitebark Pine Alters Mountain Pine Beetle (Coleoptera: Curculionidae) Attack Density, Emergence Rate, and Body Size.

    PubMed

    Dooley, Edith M; Six, Diana L

    2015-10-01

    Exotic tree pathogens can cause devastating ecological effects on forests that can be exacerbated when infections increase the likelihood of attack by insects. Current high rates of mortality of whitebark pine (Pinus albicaulis Engelm.) are due to white pine blister rust caused by the exotic fungus, Cronartium ribicola J.C. Fisch, and the native mountain pine beetle (Dendroctonus ponderosae Hopkins). These two mortality agents interact in whitebark pine; mountain pine beetle preferentially selects white pine blister rust-infected whitebark pine over healthy trees, and likelihood of attack has been observed to increase with infection severity. We examined attack and emergence rates, and size and sex ratio of mountain pine beetle in whitebark pines exhibiting varying white pine blister rust infection severities. Mountain pine beetle attack density was lowest on the most severely infected trees, but emergence rates and size of beetles from these trees were greater than those from uninfected and less severely infected trees. Low attack rates on severely infected whitebark pine may indicate these trees have lower defenses and that fewer beetle attacks are needed to kill them. Higher beetle emergence rates from severely infected trees may be due to low intraspecific competition resulting from low attack rates or differences in nutrient quality. PMID:26314009

  17. Disturbance Regimes and Landscape Heterogeneity in the Boreal Forest

    NASA Astrophysics Data System (ADS)

    Lyons, Evan Albert

    The boreal forest circles the high northern latitudes but it is far from a continuous carpet of evergreen trees. Rather, the boreal forest is a patchwork of land cover types in constant flux as they recover from wildfire and then are burned again. This fast turnover of land cover makes the boreal forest particularly susceptible to rapid change in response to climate. Furthermore, the boreal forest is an important component of the climate system that pumps heat into the atmosphere and significantly raises northern hemisphere temperatures year-round. As both a major component of the climate system and a sensitive indicator of climate change, the boreal forest is in a feedback loop. The direction of that feedback loop, positive or negative, depends largely on the strength of the land-atmosphere exchange of heat and momentum driven by forest cover and its spatial structure. That spatial structure has yet to be comprehensively measured. This dissertation used newly available, high resolution, satellite based forest cover data to quantify the heterogeneity of the boreal forest in North America. First, at the local scale, the pattern of forest cover patches within fires were found to be larger, more regularly shaped, and clustered than in unburned forest. The heterogeneity metrics also returned to pre-fire levels relatively quickly. At the continental scale, the landscape heterogeneity maps were analyzed by region, with respect to the northern extent of trees, and disturbance regimes. The boreal forest regions had smaller, more complicated forest patches, and no single dominant forest cover class which was significantly different than the temperate forests that border the region to the south. When compared to two preexisting maps of the boreal treeline, the patch cohesion metric indicated that the tundra ecoregion extended further south into the forested Central and Eastern Canada. Based on this finding, a new patch cohesion-based treeline was drawn which divides the

  18. Investigations of boreal forest bidirectional reflectance factor

    NASA Astrophysics Data System (ADS)

    White, H. Peter

    To monitor the Earth's biosphere using satellites, remote sensing science must develop robust forest reflectance models with which to extract canopy properties such as leaf area index, biomass, and percentage canopy cover from observed canopy reflectance values. At present such algorithms are generally based on regression equations which have been derived and evaluated at localized areas of solar zenith and view angles, and incorporate a priori knowledge of the scene. Of particular interest here is the treatment of the understorey which has distinct spectral reflectance properties. Recent studies suggest this layer in the boreal ecosphere has a significant influence on the CO2 budget during the northern growing season. Previous treatments of this layer in canopy reflectance models have been limited, often treating the layer as either non-reflecting, or isotropic with the same average reflectance as the overstorey. In-field observations demonstrate that this isn't the case. The recently developed Four-Scale Model [Chen and Leblanc, 1997] provides a new description of canopy reflectance that considers four levels of canopy architecture, the distributions of tree crowns, branches, shoots, and leaves. In doing so, the four proportions of sunlit and shaded overstorey and understorey are determined and treated as relevant contributors to the overall canopy reflectance. One purpose of this study is to examine the potential of further developing this model into a linear kernel form suitable for inversion, providing both the ability to extrapolate from observed reflectance values at certain view/illumination geometries to canopy BRF at other geometries and to allow extraction of information about the canopy based on observed BRF values. The FLAIR model (F_our- Scale L_inear Kernel Model for A_ni_sotropic R_eflectance) is the result of this development, following the philosophy that the model must remain applicable to a wide range of canopy types, understorey conditions, and

  19. Methane metabolism in a stratified boreal lake

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Peura, Sari; Kankaala, Paula; Jones, Roger

    2013-04-01

    Stratified lakes, typical of the boreal zone, are naturally anoxic from their bottoms. In these lakes methanogenesis can account for up to half of organic matter degradation. However, a major part of the methane (CH4) is oxidized in the water column before reaching the atmosphere. Since methanotrophs use CH4 as their sole carbon and energy source, much CH4-derived carbon is incorporated into their biomass. Microbially produced CH4 has strongly negative δ13C compared to other carbon forms in ecosystems, making it possible to follow its route in food webs. However, only a few studies have estimated the amount of this microbial biomass or its carbon stable isotopic composition due to difficulties in separating it from other biomass or from other carbon forms in the water column. We estimated methanotrophic biomass from measured CH4 oxidation, and δ13C of the biomass from measured δ13C values of CH4, DIC, POM and DOC. An estimate of the fraction of methanotrophs in total microbial biomass is derived from bacterial community composition measurements. The study was made in, Alinen Mustajärvi, a small (area 0.75 ha, maximum depth 6.5 m, mean depth 4.2 m,), oligotrophic, mesohumic headwater lake located in boreal coniferous forest in southern Finland. CH4 and DIC concentrations and their δ13C were measured over the deepest point of the lake at 1 m intervals. 13C of DOM and POM were analyzed from composite samples from epi-, meta-, and hypolimnion. Evasion of CH4 and carbon dioxide from the lake surface to the atmosphere was estimated with boundary layer diffusion equations. CH4oxidation was estimated by comparing differences between observed concentrations and CH4potentially transported by turbulent diffusion between different vertical layers in the lake and also by actual methanotrophy measurements and from vertical differences in δ13C-CH4. The estimate of CH4 production was based on the sum of oxidized and released CH4. Molecular microbiology methods were used to

  20. Snow and Vegetation Interactions at Boundaries in Alaska's Boreal Forest

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Sturm, M.

    2012-12-01

    There has been increased attention on snow-vegetation interactions in Arctic tundra because of rapid climate-driven changes affecting that snow-dominated ecosystem. Yet, far less attention is paid to boreal forest snow-vegetation interactions even though climatic conditions are changing there as well. Further, it is the prevalent terrestrial biome on the planet. The forest is a variable patchwork of trees, shrubs, grasses, and forbs shaped by wind, fire, topography, water drainage, and permafrost. These patches and their boundaries have a corresponding effect on boreal snow distributions; however, measurements characterizing boreal snow are sparse and focus within patches (vs. between patches). Unfortunately, remote sensing approaches in such forested areas frequently fall short due to coarse footprint size and dense canopy cover. Over the last several years we have been examining the characteristics of snow cover within and across boundaries in the boreal forest, seeking to identify gradients in snow depth due to snow-vegetation interactions as well identifying methods whereby boreal forest surveys could be improved. Specifically, we collected end-of-season snow measurements in the Alaska boreal forest during long-distance traverses in the Tanana Basin in 2010 (26 sites) and within the Yukon Flats National Wildlife Refuge in 2011 (26 sites). At each site (all relatively flat), hundreds of snow depths were collected using a GPS-equipped Magnaprobe, which is an automated tool for measuring and locating individual snow depths. Corresponding canopy properties included NDVI determined from high-resolution satellite imagery; canopy properties were variable among the 1ha sites and some areas had recently burned. Among sites, NDVI had the largest correlation with snow depths; elevation was not significant. Vegetation transition zones play important roles in explaining observed snow depth. Similar to treeline work showing nutrient and energy gradients are influenced by

  1. Aromatic biosynthesis in pine tissues

    NASA Technical Reports Server (NTRS)

    Cowles, J. R.

    1984-01-01

    Pinus elliotti is a woody plant species responsive to gravity and capable of synthesizing large quantities of lignin. Lignification begins very quickly after germination; lignin is detected in the vascular region within 4 days after germination and rapidly progresses up the hypocotyl. Young pine seedlings bend in response to geostimulation for about 10 days after germination, with the most rapid response time occurring in 4- to 5-day-old seedlings. Various chemicals were used to establish their effects on the geotropic response in this gymnosperm species. IAA completely arrests the geotropic response for 18 to 24 hr. Afterward the seedlings respond geostimulation as if they were not treated. The same pattern of response will occur with a second IAA treatment. If the synthetic auxin, 2-4,D, is used, the georesponse is permanently blocked. The method of application does not appear to be critical; addition of auxin to only one side of the seedling gave results similar to those obtained by treating the entire seedling.

  2. Is vanadium a biometal for boreal cyanolichens?

    PubMed

    Darnajoux, Romain; Constantin, Jérôme; Miadlikowska, Jolanta; Lutzoni, François; Bellenger, Jean-Philippe

    2014-05-01

    Molybdenum (Mo) nitrogenase has long been considered the predominant isoenzyme responsible for dinitrogen fixation worldwide. Recent findings have challenged the paradigm of Mo hegemony, and highlighted the role of alternative nitrogenases, such as the vanadium-nitrogenase. Here, we first characterized homeostasis of vanadium (V) along with other metals in situ in the dinitrogen fixing cyanolichen Peltigera aphthosa. These lichens were sampled in natural sites exposed to various levels of atmospheric metal deposition. These results were compared with laboratory experiments where Anabaena variabilis, which is also hosting the V-nitrogenase, and a relatively close relative of the lichen cyanobiont Nostoc, was subjected to various levels of V. We report here that V is preferentially allocated to cephalodia, specialized structures where dinitrogen fixation occurs in tri-membered lichens. This specific allocation is biologically controlled and tightly regulated. Vanadium homeostasis in lichen cephalodia exposed to various V concentrations is comparable to the one observed in Anabaena variabilis and other dinitrogen fixing organisms using V-nitrogenase. Overall, our findings support current hypotheses that V could be a more important factor in mediating nitrogen input in high latitude ecosystems than previously recognized. They invite the reassessment of current theoretical models linking metal dynamics and dinitrogen fixation in boreal and subarctic ecosystems.

  3. Ground beetle (Coleoptera, Carabidae) assemblages inhabiting Scots pine stands of Puszcza Piska Forest: six-year responses to a tornado impact.

    PubMed

    Skłodowski, Jarosław; Garbalińska, Paulina

    2011-01-01

    Ground beetle assemblages were studied during 2003-08 in the Pisz Forest by comparing stands disturbed by a tornado to undisturbed control stands. The following exploratory questions were put forward. (1) How do the carabid assemblages change during six years following the tornado impact? (2) Does the carabid assemblage recovery begin during the six first post-tornado years? To assess the state of carabid assemblages we used two indices: the MIB (Mean Individual Biomass) and the SPC (Sum of Progressive Characteristics). Carabid assemblages in the disturbed and in the control stands, as expressed by these two indices, were compared using the length of a regression distance (sample distance in a MIB:SPC coordinate system). A cluster analysis revealed that the assemblages of the disturbed and the control stands were different. The tornado-impacted stands produced lower carabid catch rates, but species richness was significantly higher there than in the control stands. They hosted lower proportions of individuals of European species, of large zoophages, and of forest and brachypterous species, than the control stands. The observed reduction in SPC and MIB, and an increase in the regression distances may indicate that the carabid assemblages had not started to recover from the tornado-caused disturbance. Carabid assemblages apparently responded to the tornado in two steps. Firstly, the first three years were characterized by moderate decreases of index values. Secondly, from the fourth to the sixth year after the tornado, many observed changes became magnified. We did not observe clear signals of the recovery of forest carabid assemblages during the six follow-up years.

  4. Comparison of VOC emissions between air-dried and heat-treated Norway spruce ( Picea abies), Scots pine ( Pinus sylvesteris) and European aspen ( Populus tremula) wood

    NASA Astrophysics Data System (ADS)

    Hyttinen, Marko; Masalin-Weijo, Marika; Kalliokoski, Pentti; Pasanen, Pertti

    2010-12-01

    Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.

  5. Ground beetle (Coleoptera, Carabidae) assemblages inhabiting Scots pine stands of Puszcza Piska Forest: six-year responses to a tornado impact

    PubMed Central

    Skłodowski, Jarosław; Garbalińska, Paulina

    2011-01-01

    Abstract Ground beetle assemblages were studied during 2003-08 in the Pisz Forest by comparing stands disturbed by a tornado to undisturbed control stands. The following exploratory questions were put forward. (1) How do the carabid assemblages change during six years following the tornado impact? (2) Does the carabid assemblage recovery begin during the six first post-tornado years? To assess the state of carabid assemblages we used two indices: the MIB (Mean Individual Biomass) and the SPC (Sum of Progressive Characteristics). Carabid assemblages in the disturbed and in the control stands, as expressed by these two indices, were compared using the length of a regression distance (sample distance in a MIB:SPC coordinate system). A cluster analysis revealed that the assemblages of the disturbed and the control stands were different. The tornado-impacted stands produced lower carabid catch rates, but species richness was significantly higher there than in the control stands. They hosted lower proportions of individuals of European species, of large zoophages, and of forest and brachypterous species, than the control stands. The observed reduction in SPC and MIB, and an increase in the regression distances may indicate that the carabid assemblages had not started to recover from the tornado-caused disturbance. Carabid assemblages apparently responded to the tornado in two steps. Firstly, the first three years were characterized by moderate decreases of index values. Secondly, from the fourth to the sixth year after the tornado, many observed changes became magnified. We did not observe clear signals of the recovery of forest carabid assemblages during the six follow-up years. PMID:21738422

  6. [Genetic Variation, Population Structure and Differentiation in Scots Pine (Pinus sylvestris L.) from the Northeast of the Russian Plain as Inferred from the Molecular Genetic Analysis Data].

    PubMed

    Vidyakin, A I; Boronnikiva, S V; Nechayeva, Yu S; Nechayeva, Ya S; Prysimivskaya, Ya V; Boboshina, I V

    2015-12-01

    The DNA polymorphism in Pinus sylvestris from Severodvinsk, Upper Vetluga, and Vetluga-Vyatka populations, which were isolated earlier based on specific features of the geographic variation of allometric cone indices, was examined by the ISSR method. It was demonstrated that the Severodvinsk population of P. sylvestris differed from the chorologically adjacent Upper Vetluga population with respect to all of the examined genetic indices, and the Upper Vetluga population differed from the Vetluga-Vyatka population. It was suggested that the main the reason for the lack of statistically significant differences between Upper Vetluga and Vetluga-Vyatka samples of P. silvestris with respect to genetic variation indices (P95, H(E), n(a), n(e)) may be their formation based on the gene pools of two glacial refugia. It was demonstrated that the proportion of the interpopulation component of total genetic diversity (G(ST)), as calculated based on the ISSR marker polymorphism, reached a value of 0.488, which was an order of magnitude higher than the previous estimates obtained based on data from allozyme analysis. It was concluded that P. sylvestris cone allometric indices reflected the specificity of spatial population subdivision, like the genetic diversity and population genetic structure indices calculated based on ISSR-marker polymorphism. Population isolation and mapping based on two-step phenogenetic studies is suggested. PMID:27055300

  7. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain.

    PubMed

    Rincón, Ana; Santamaría-Pérez, Blanca; Rabasa, Sonia G; Coince, Aurore; Marçais, Benoit; Buée, Marc

    2015-08-01

    Fungi are principal actors of forest soils implied in many ecosystem services and the mediation of tree's responses. Forecasting fungal responses to environmental changes is necessary for maintaining forest productivity, although our partial understanding of how abiotic and biotic factors affect fungal communities is restricting the predictions. We examined fungal communities of Pinus sylvestris along elevation gradients to check potential responses to climate change-associated factors. Fungi of roots and soils were analysed at a regional scale, by using a high-throughput sequencing approach. Overall soil fungal richness increased with pH, whereas it did not vary with climate. However, when representative sub-assemblages, i.e. Ascomycetes/Basidiomycetes, and families were analysed, they differentially answered to climatic and edaphic variables. This response was dependent on where they settled, i.e. soil versus roots, and/or on their lifestyle, i.e. mycorrhizal or not, suggesting different potential functional weights within the community. Our results revealed a highly compartmentalized and contrasted response of fungal communities in forest soils. The different response of fungal sub-assemblages indicated a range of possible selective direct and indirect (i.e. via host) impacts of climatic variations on these communities, of unknown functional consequences, that helps in understanding potential fungal responses under future global change scenarios. PMID:25953485

  8. Do Pine Beetles Fan the Flames in Western Forests?

    NASA Video Gallery

    As mountain pine beetles damage whole regions of Western forests, some worry that the dead trees left behind have created a tinderbox ready to burn. But do pine beetles really increase fire risk? I...

  9. Global estimates of boreal forest carbon stocks and flux

    NASA Astrophysics Data System (ADS)

    Bradshaw, Corey J. A.; Warkentin, Ian G.

    2015-05-01

    The boreal ecosystem is an important global reservoir of stored carbon and a haven for diverse biological communities. The natural disturbance dynamics there have historically been driven by fire and insects, with human-mediated disturbances increasing faster than in other biomes globally. Previous research on the total boreal carbon stock and predictions of its future flux reveal high uncertainty in regional patterns. We reviewed and standardised this extensive body of quantitative literature to provide the most up-to-date and comprehensive estimates of the global carbon balance in the boreal forest. We also compiled century-scale predictions of the carbon budget flux. Our review and standardisation confirmed high uncertainty in the available data, but there is evidence that the region's total carbon stock has been underestimated. We found a total carbon store of 367.3 to 1715.8 Pg (1015 g), the mid-point of which (1095 Pg) is between 1.3 and 3.8 times larger than any previous mean estimates. Most boreal carbon resides in its soils and peatlands, although estimates are highly uncertain. We found evidence that the region might become a net carbon source following a reduction in carbon uptake rate from at least the 1980s. Given that the boreal potentially constitutes the largest terrestrial carbon source in the world, in one of the most rapidly warming parts of the globe (Walsh, 2014), how we manage these stocks will be influential on future climate dynamics.

  10. Boreal forests, aerosols and the impacts on clouds and climate.

    PubMed

    Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S

    2008-12-28

    Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.

  11. Developing a Student-Scientist Partnership: Boreal Forest Watch

    NASA Astrophysics Data System (ADS)

    Spencer, Shannon; Huczek, George; Muir, Bradley

    1998-03-01

    A student-scientist partnership outreach program was funded by the U.S. National Aeronautics and Space Administration's Boreal Ecosystem-Atmosphere Study (BOREAS) to involve students and teachers in scientific investigations pertinent to global change research occurring within the boreal region of Canada. Boreal Forest Watch was planned, designed and piloted by an interdisciplinary group of education and science professionals from the University of New Hampshire, the Prince Albert National Park, and several schools in central Saskatchewan, Canada. A two goal approach was adopted to 1) ensure the educational significance of the program and 2) introduce scientifically valid methods for collection of research data pertinent to global change scientists. Professional educators and school administrators from Saskatchewan were recruited to assist in project planning to ensure that the proposed activities fit within the existing curriculum framework. This process was essential for successful adoption of the program by participating teachers. The process and approach of initiating Boreal Forest Watch are presented in this paper. This program became fully functional in September, 1996 with the training of several participating teachers. Perspectives of the program and its future are provided by members of the design team. Boreal Forest Watch is a unique opportunity for both Canadian students and their teachers to explore their natural environment, learn scientific methods and principles, and contribute data to the global change research community.

  12. Characterization of pine nuts in the U.S. market, including those associated with "pine mouth", by GC-FID.

    PubMed

    Fardin-Kia, Ali Reza; Handy, Sara M; Rader, Jeanne I

    2012-03-14

    Taste disturbances following consumption of pine nuts, referred to as "pine mouth", have been reported by consumers in the United States and Europe. Nuts of Pinus armandii have been associated with pine mouth, and a diagnostic index (DI) measuring the content of Δ5-unsaturated fatty acids relative to that of their fatty acid precursors has been proposed for identifying nuts from this species. A 100 m SLB-IL 111 GC column was used to improve fatty acid separations, and 45 pine nut samples were analyzed, including pine mouth-associated samples. This study examined the use of a DI for the identification of mixtures of pine nut species and showed the limitation of morphological characteristics for species identification. DI values for many commercial samples did not match those of known reference species, indicating that the majority of pine nuts collected in the U.S. market, including those associated with pine mouth, are mixtures of nuts from different Pinus species.

  13. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species

    PubMed Central

    Satya, Pratik; Karan, Maya; Jana, Sourav; Mitra, Sabyasachi; Sharma, Amit; Karmakar, P.G.; Ray, D.P.

    2015-01-01

    Twenty-four start codon targeted (SCoT) markers were used to assess genetic diversity and population structure of indigenous, introduced and domesticated ramie (Boehmeria nivea L. Gaudich.). A total of 155 genotypes from five populations were investigated for SCoT polymorphism, which produced 136 amplicons with 87.5% polymorphism. Polymorphism information content and resolving power of the SCoT markers were 0.69 and 3.22, respectively. The Indian ramie populations exhibited high SCoT polymorphism (> 50%), high genetic differentiation (GST = 0.27) and moderate gene flow (Nm = 1.34). Analysis of molecular variance identified significant differences for genetic polymorphism among the populations explaining 13.1% of the total variation. The domesticated population exhibited higher genetic polymorphism and heterozygosity compared to natural populations. Cluster analysis supported population genetic analysis and suggested close association between introduced and domesticated genotypes. The present study shows effectiveness of employing SCoT markers in a cross pollinated heterozygous species like Boehmeria, and would be useful for further studies in population genetics, conservation genetics and cultivar improvement. PMID:25750860

  14. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species.

    PubMed

    Satya, Pratik; Karan, Maya; Jana, Sourav; Mitra, Sabyasachi; Sharma, Amit; Karmakar, P G; Ray, D P

    2015-02-01

    Twenty-four start codon targeted (SCoT) markers were used to assess genetic diversity and population structure of indigenous, introduced and domesticated ramie (Boehmeria nivea L. Gaudich.). A total of 155 genotypes from five populations were investigated for SCoT polymorphism, which produced 136 amplicons with 87.5% polymorphism. Polymorphism information content and resolving power of the SCoT markers were 0.69 and 3.22, respectively. The Indian ramie populations exhibited high SCoT polymorphism (> 50%), high genetic differentiation (GST = 0.27) and moderate gene flow (Nm = 1.34). Analysis of molecular variance identified significant differences for genetic polymorphism among the populations explaining 13.1% of the total variation. The domesticated population exhibited higher genetic polymorphism and heterozygosity compared to natural populations. Cluster analysis supported population genetic analysis and suggested close association between introduced and domesticated genotypes. The present study shows effectiveness of employing SCoT markers in a cross pollinated heterozygous species like Boehmeria, and would be useful for further studies in population genetics, conservation genetics and cultivar improvement. PMID:25750860

  15. Potential Start Codon Targeted (SCoT) and Inter-retrotransposon Amplified Polymorphism (IRAP) Markers for Evaluation of Genetic Diversity and Conservation of Wild Pistacia Species Population.

    PubMed

    Sorkheh, Karim; Amirbakhtiar, Nazanin; Ercisli, Sezai

    2016-08-01

    Wild pistachio species is important species in forests regions Iran and provide protection wind and soil erosion. Even though cultivation and utilization of Pistacia are fully exploited, the evolutionary history of the Pistacia genus and the relationships among the species and accessions is still not well understood. Two molecular marker strategies, SCoT and IRAP markers were analyzed for assessment of 50 accessions of this species accumulated from diverse geographical areas of Iran. A thorough of 115 bands were amplified using eight IRAP primers, of which 104 (90.4 %) have been polymorphic, and 246 polymorphic bands (68.7 %) had been located in 358 bands amplified by way of forty-four SCoT primers. Average PIC for IRAP and SCoT markers became 0.32 and 0.48, respectively. This is exposed that SCoT markers have been extra informative than IRAP for the assessment of variety among pistachio accessions. Primarily based on the two extraordinary molecular markers, cluster evaluation revealed that the 50 accessions taken for the evaluation may be divided into three distinct clusters. Those results recommend that the performance of SCoT and IRAP markers was highly the equal in fingerprinting of accessions. The results affirmed a low genetic differentiation among populations, indicating the opportunity of gene drift most of the studied populations. These findings might render striking information in breeding management strategies for genetic conservation and cultivar improvement. PMID:27056191

  16. [Systemic allergic reaction after ingestion of pine nuts, Pinus pinea].

    PubMed

    Nielsen, N H

    1990-11-26

    An in vivo open oral provocation with pine nuts (Pinus pinea) confirmed information about systemic reaction after ingestion of pine nuts. In vitro tests suggested a systemic IgE allergic reaction. Pine nuts are employed in sweets and cakes and, as in the present case, in green salads.

  17. Evolutionary fire ecology: lessons learned from pines.

    PubMed

    Pausas, Juli G

    2015-05-01

    Macroevolutionary studies of the genus Pinus provide the oldest current evidence of fire as an evolutionary pressure on plants and date back to ca. 125 million years ago (Ma). Microevolutionary studies show that fire traits are variable within and among populations, especially among those subject to different fire regimes. In addition, there is increasing evidence of an inherited genetic basis to variability in fire traits. Added together, pines provide compelling evidence that fire can exert an evolutionary pressure on plants and, thus, shape biodiversity. In addition, evolutionary fire ecology is providing insights to improve the management of pine forests under changing conditions. The lessons learned from pines may guide research on the evolutionary ecology of other taxa.

  18. Pyrolysis of pine and gasification of pine chars--influence of organically bound metals.

    PubMed

    Aho, A; DeMartini, N; Pranovich, A; Krogell, J; Kumar, N; Eränen, K; Holmbom, B; Salmi, T; Hupa, M; Murzin, D Yu

    2013-01-01

    Pyrolysis of pine and gasification of pine chars was studied in this work, focusing on the influence of organically bound metals. Selective leaching of the major ash-forming elements in pine wood was performed with different acids, namely, nitric, sulfuric, hydrochloric and oxalic acids. No other major changes in the chemical composition of the biomass were observed except the removal of the metals. The effect of organically bound sodium, potassium, magnesium and calcium was studied in both pyrolysis and gasification. Removal of the metals had a positive effect on the pyrolysis, resulting in higher bio-oil, lower char and gas yields. PMID:23196217

  19. First record of the Kuwana pine mealybug Crisicoccus pini (Kuwana) in Italy: a new threat to Italian pine forests?

    PubMed

    Boselli, Mauro; Pellizzari, Giuseppina

    2016-01-01

    The Asiatic Kuwana pine mealybug, Crisicoccus pini (Kuwana, 1902) (Hemiptera, Pseudococcidae), is reported in Italy for the first time. It was detected in September 2015 on maritime pine, Pinus pinaster, and stone pine, Pinus pinea, trees growing in the town of Cervia (Ravenna Province), Northern Italy. The mealybug has caused yellowing and decline of the pine trees. Pinus pinea is recorded here as a new host for C. pini. PMID:27394232

  20. First record of the Kuwana pine mealybug Crisicoccus pini (Kuwana) in Italy: a new threat to Italian pine forests?

    PubMed

    Boselli, Mauro; Pellizzari, Giuseppina

    2016-01-01

    The Asiatic Kuwana pine mealybug, Crisicoccus pini (Kuwana, 1902) (Hemiptera, Pseudococcidae), is reported in Italy for the first time. It was detected in September 2015 on maritime pine, Pinus pinaster, and stone pine, Pinus pinea, trees growing in the town of Cervia (Ravenna Province), Northern Italy. The mealybug has caused yellowing and decline of the pine trees. Pinus pinea is recorded here as a new host for C. pini.

  1. Pine Hollow Watershed Project : FY 2000 Projects.

    SciTech Connect

    Sherman County Soil and Water Conservation District

    2001-06-01

    The Pine Hollow Project (1999-010-00) is an on-going watershed restoration effort administered by Sherman County Soil and Water Conservation District and spearheaded by Pine Hollow/Jackknife Watershed Council. The headwaters are located near Shaniko in Wasco County, and the mouth is in Sherman County on the John Day River. Pine Hollow provides more than 20 miles of potential summer steelhead spawning and rearing habitat. The watershed is 92,000 acres. Land use is mostly range, with some dryland grain. There are no water rights on Pine Hollow. Due to shallow soils, the watershed is prone to rapid runoff events which scour out the streambed and the riparian vegetation. This project seeks to improve the quality of upland, riparian and in-stream habitat by restoring the natural hydrologic function of the entire watershed. Project implementation to date has consisted of construction of water/sediment control basins, gradient terraces on croplands, pasture cross-fences, upland water sources, and grass seeding on degraded sites, many of which were crop fields in the early part of the century. The project is expected to continue through about 2007. From March 2000 to June 2001, the Pine Hollow Project built 6 sediment basins, 1 cross-fence, 2 spring developments, 1 well development, 1 solar pump, 50 acres of native range seeding and 1 livestock waterline. FY2000 projects were funded by BPA, Oregon Watershed Enhancement Board, US Fish and Wildlife Service and landowners. In-kind services were provided by Sherman County Soil and Water Conservation District, USDA Natural Resources Conservation Service, USDI Bureau of Land Management, Oregon Department of Fish and Wildlife, Pine Hollow/Jackknife Watershed Council, landowners and Wasco County Soil and Water Conservation District.

  2. Trace gas and energy exchange above a pine afforestation: past, present and future research

    NASA Astrophysics Data System (ADS)

    Urbaniak, Marek; Chojnicki, Bogdan; Danielewska, Alina; Baran, Marcin; Ziemblinska, Klaudia; Merbold, Lutz; Olejnik, Janusz

    2013-04-01

    Forests are among the most important elements of the Earth's biosphere, providing In the context of global climate change forest plays an important role as a sink of CO2, besides providing other ecological advantages such as favourable habitat for plant and animal species. Changes in the global environment are likely to severely affect the functioning of forest ecosystems. The direction and intensity of these changes can be assessed by the analysis of mass and energy fluxes exchanged between the forest canopy and the atmosphere. Water vapour (H2O) and carbon dioxide (CO2) fluxes were measured using the eddy covariance (EC) method in order to obtain long-term data series. Measurements started in January 2008 and continue until today. The EC tower was established within a 56 year and 24 m tall scots pine (pinus sylvestris L.), located nearby the town of Tuczno (North-West Poland). This forest is representative for the large areas that are under the management of one national company (State Forests National Forest Holding). It has been hypothesized that this type of forest (same stand age and structure) are responsible for the major net uptake of atmospheric CO2 in Poland. Annual sequestration during the first two years of measurements was shown to be as high as (702 g C·m-2 in 2008 and 747 g C·m-2 in 2009. However, less carbon was sequestered during the years 2010 and 2011, 546gC·m-2 and 592 gC·m-2, respectively. During the upcoming years we aim at answering the following question: which variables, meteorological or air quality, determine the annual variance of net ecosystem productivity (NEP)? Therefore the existing EC tower was additionally instrumented with devices measuring basic meteorological parameters (solar radiation, air and soil temperature, precipitation). Research will further be extended by studying the hydrology, nutrient cycling and soil properties in order to derive a combined knowledge on forest ecosystem functioning in Poland.

  3. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest.

    PubMed

    Curiel Yuste, J; Janssens, I A; Carrara, A; Meiresonne, L; Ceulemans, R

    2003-12-01

    Soil respiration (SR) was monitored periodically throughout 2001 in a Scots pine (Pinus sylvestris L.) stand located in the Belgian Campine region. As expected for a temperate maritime forest, temperature was the dominant control over SR during most of the year. However, during late spring and summer, when soil water content (SWC) was limiting, SR was insensitive to temperature (Q(10) = 1.24). We observed that during prolonged rain-free periods, when SWC was less than 15% (v/v), SR decreased dramatically (up to 50%) and SWC took over control of SR. During such drought periods, however, rain events sometimes stimulated SR and restored temperature control over SR, even though SWC in the mineral soil was low. We hypothesize that restoration of temperature control occurred only when rain events adequately rewetted the uppermost soil layers, where most of the respiratory activity occurred. To quantify the rewetting capacity of rain events, an index (I(w)) was designed that incorporated rainfall intensity, time elapsed since the last rain event, and atmospheric vapor pressure deficit (a proxy for evaporative water losses). To simulate SR fluxes, a model was developed that included the effects of soil temperature and, under drought and non-rewetting conditions (I(w) and SWC < threshold), an SWC response function. The model explained 95% of the temporal variability in SR observed during summer, whereas the temperature function alone explained only 73% of this variability. Our results revealed that, in addition to temperature and SWC, rain plays a role in determining the total amount of carbon released from soils, even in a maritime climate.

  4. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland.

    PubMed

    Salemaa, Maija; Derome, John; Helmisaari, Heljä-Sisko; Nieminen, Tiina; Vanha-Majamaa, Ilkka

    2004-05-25

    Macronutrient (N, P, K, Mg, S, Ca), heavy metal (Fe, Zn, Mn, Cu, Ni, Cd, Pb) and Al concentrations in understorey bryophytes, lichens and vascular plant species growing in Scots pine forests at four distances from the Harjavalta Cu-Ni smelter (0.5, 2, 4 and 8 km) were compared to those at two background sites in Finland. The aim was to study the relationship between element accumulation and the distribution of the species along a pollution gradient. Elevated sulfur, nitrogen and heavy metal concentrations were found in all species groups near the pollution source. Macronutrient concentrations tended to decrease in the order: vascular plants>bryophytes>lichens, when all the species groups grew on the same plot. Heavy metal concentrations (except Mn) were the highest in bryophytes, followed by lichens, and were the lowest in vascular plants. In general, vascular plants, being capable of restricting the uptake of toxic elements, grew closer to the smelter than lichens, while bryophytes began to increase in the understorey vegetation at further distances from the smelter. A pioneer moss (Pohlia nutans) was an exception, because it accumulated considerably higher amounts of Cu and Ni than the other species and still survived close to the smelter. The abundance of most of the species decreased with increasing Cu and Ni concentrations in their tissues. Cetraria islandica, instead, showed a positive relationship between the abundance and Cu, Ni and S concentrations of the thallus. It is probable that, in addition to heavy metals, sporadically high SO(2) emissions have also affected the distribution of the plant species.

  5. Simple and Multiple Endmember Mixture Analysis in the Boreal Forest

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie

    2000-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.

  6. Environmental factors and ecological processes in boreal forests

    SciTech Connect

    Bonan, G.B. ); Shugart, H.H. )

    1989-01-01

    This paper reports on the boreal forest, a broad, circumpolar mixture of cool coniferous and deciduous tree species which covers over 14.7 million km{sup 2}, or 11%, of the earth's terrestrial surface. At these latitudes, a strong correlation exists between the seasonal dynamics of atmospheric carbon dioxide and the seasonal dynamics of the greenness of the earth. A possible causal relation, in which the dynamics of the forests at these latitudes regulates the atmospheric carbon concentrations, appears to be consistent with the present-day understanding of ecological processes in these ecosystems. Along with its familiar role in plant photosynthesis, carbon dioxide is a greenhouse gas that markedly affects the heat budget of the earth. Thus the possibility that boreal forests may actively participate in the dynamics of atmospheric carbon dioxide is of considerable significance, especially since the climatic response to elevated atmospheric carbon dioxide concentrations seems to be strongly directed to the boreal forests of the world.

  7. Urgent preservation of boreal carbon stocks and biodiversity.

    PubMed

    Bradshaw, Corey J A; Warkentin, Ian G; Sodhi, Navjot S

    2009-10-01

    Containing approximately one-third of all remaining global forests, the boreal ecosystem is a crucial store of carbon and a haven for diverse biological communities. Historically, fire and insects primarily drove the natural dynamics of this biome. However, human-mediated disturbances have increased in these forests during recent years, resulting in extensive forest loss for some regions, whereas others face heavy forest fragmentation or threat of exploitation. Current management practices are not likely to maintain the attendant boreal forest communities, nor are they adequate to mitigate climate change effects. There is an urgent need to preserve existing boreal forests and restore degraded areas if we are to avoid losing this relatively intact biodiversity haven and major global carbon sink.

  8. Collected Data of The Boreal Ecosystem and Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Newcomer, J. (Editor); Landis, D. (Editor); Conrad, S. (Editor); Curd, S. (Editor); Huemmrich, K. (Editor); Knapp, D. (Editor); Morrell, A. (Editor); Nickerson, J. (Editor); Papagno, A. (Editor); Rinker, D. (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) was a large-scale international interdisciplinary climate-ecosystem interaction experiment in the northern boreal forests of Canada. Its goal was to improve our understanding of the boreal forests -- how they interact with the atmosphere, how much CO2 they can store, and how climate change will affect them. BOREAS wanted to learn to use satellite data to monitor the forests, and to improve computer simulation and weather models so scientists can anticipate the effects of global change. This BOREAS CD-ROM set is a set of 12 CD-ROMs containing the finalized point data sets and compressed image data from the BOREAS Project. All point data are stored in ASCII text files, and all image and GIS products are stored as binary images, compressed using GZip. Additional descriptions of the various data sets on this CD-ROM are available in other documents in the BOREAS series.

  9. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  10. China's Masson pine forests: Cure or curse

    SciTech Connect

    Wilson, L.F.

    1993-01-01

    Masson pine, which grows well on rocky montane soil where it can be aerial seeded, has long been one of southern China's better sources for timber, fuel, and various wood products. However, although it has been widely planted in reforestation projects, expected yields will never be realized because of poor quality seed, poor site selection, and aggressive insect attacks. The pine needle scale is discussed in detail. Scale control options are presented: biological control, cultural control, and isolation of infected stands. Also discussed are other forestry approaches such as alternative species and alternative planting systems.

  11. Chemical linkage of pine polysaccharides to lignin

    SciTech Connect

    Minor, J.L.

    1982-01-01

    Methylation analysis was used to investigate the bonds to lignin of the carbohydrates remaining after enzymatic hydrolysis and alkaline reduction of ball-milled loblolly pine wood and red pine compression wood. The carbohydrates exist as oligomeric chains with degrees of polymerization of 7-14. Approximately one sugar unit per oligomer chain is bonded to lignin. Bonding at C-6 of the hexose units if favored, and the arabinose is bonded exclusively at C-5. Galactan and arabinan are structurally of the so-called ''pectin group substances''. 16 references.

  12. Extracting DNA from submerged pine wood.

    PubMed

    Reynolds, M Megan; Williams, Claire G

    2004-10-01

    A DNA extraction protocol for submerged pine logs was developed with the following properties: (i) high molecular weight DNA, (ii) PCR amplification of chloroplast and nuclear sequences, and (iii) high sequence homology to voucher pine specimens. The DNA extraction protocol was modified from a cetyltrimehtylammonium bromide (CTAB) protocol by adding stringent electrophoretic purification, proteinase K, RNAse, polyvinyl pyrrolidone (PVP), and Gene Releaser. Chloroplast rbcL (ribulose-1,5-bisphosphate carboxylase) could be amplified. Nuclear ribosomal sequences had >95% homology to Pinus taeda and Pinus palustris. Microsatellite polymorphism for PtTX2082 matched 2 of 14 known P. taeda alleles. Our results show DNA analysis for submerged conifer wood is feasible.

  13. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils. PMID:14759831

  14. Ecosystem, location, and climate effects on foliar secondary metabolites of lodgepole pine populations from central British Columbia.

    PubMed

    Wallis, Christopher M; Huber, Dezene P W; Lewis, Kathy J

    2011-06-01

    Lodgepole pines, Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson, are encountering increased abiotic stress and pest activity due to recent increases in temperature and changes in precipitation throughout their range. This tree species counters these threats by producing secondary metabolites, including phenolics and terpenoids. We examined foliar levels of lignin, soluble phenolics, monoterpenoids, sesquiterpenoids, and diterpenoids in 12 stands in British Columbia, Canada. We used these data to assess associations among foliar secondary metabolite levels and ecosystem, geographic, and climatic variables. Regressions were also performed to observe which combinations of variables best explained secondary metabolite variance. Stands of P. c. latifolia in the Coastal Western Hemlock and Interior Cedar/Hemlock biogeoclimatic zones had consistently greater foliar levels of almost all measured secondary metabolites than did other stands. Lignin was present in greater amounts in Boreal White/Black Spruce ecosystem (i.e., northern) stands than in southern stands, suggesting a role for this metabolite in pine survival in the boreal forest. Attempts to develop regression models with geographic and climatic variables to explain foliar secondary metabolite levels resulted in multiple models with similar predictive capability. Since foliar secondary metabolite levels appeared to vary most between stand ecosystem types and not as much due to geographic and climatic variables, metabolic profiles appeared best matched to the stress levels within local environments. It is unknown if differences in secondary metabolite levels are the result of genetic adaptation or phenotypic plasticity, but results from this and other studies suggest that both are important. These results are interpreted in light of ongoing efforts to assist in the migration of certain populations of P. c. latifolia northward in an effort to counter predicted effects of climate change. PMID

  15. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater f