Waste isolation pilot plant (WIPP) borehole plugging program description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, C.L.; Hunter, T.O.
1979-08-01
The tests and experiments described attempt to provide a mix of borehole (with limited access) and in-mine (with relatively unlimited access) environments in which assessment of the various issues involved can be undertaken. The Bell Canyon Test provides the opportunity to instrument and analyze a plug in a high pressure region. The Shallow Hole Test permits application of best techniques for plugging and then access to both the top and bottom of the plug for further analysis. The Diagnostic Test Hole permits recovery of bench scale size samples for analysis and establishes an in-borehole laboratory in which to conduct testingmore » and analysis in all strata from the surface into the salt horizon. The additional in mine experiments provide the opportunity to investigate in more detail specific effects on plugs in the salt region and allows evaluation of instrumentation systems.« less
Method of measuring material properties of rock in the wall of a borehole
Overmier, David K.
1985-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Method of measuring material properties of rock in the wall of a borehole
Overmier, D.K.
1984-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Canister, Sealing Method And Composition For Sealing A Borehole
Brown, Donald W.; Wagh, Arun S.
2005-06-28
Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.
Ceramic Borehole Seals for Nuclear Waste Disposal Applications
NASA Astrophysics Data System (ADS)
Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.
2015-12-01
Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural effects the plug will have on surrounding media. This paper will report on the state of the development effort and plans for a field demonstration in early 2016 in a cased well with traditional plug seal and strength measurements.
Geomechanical Considerations for the Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Park, B. Y.
2015-12-01
Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-07-01
In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC)more » of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.« less
Borehole Plugging Program (Waste Disposal). Report 1. Initial Investigations and Preliminary Data
1978-01-01
on current technology, they are believed to be capable of being developed to have physical and chemical properties compatible with the various earth...attack, low permeability to both water and gas, and controlled expansive characteristics along with the normal properties of hardened and unhardened...American Admixtures Co. Sika Chemical Corp. Diamond Shamrock Chemical Co. Halliburton Co. * Natural pozzolans: Filter-Cel is uncalcined diatomite
Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Price, Laura L.
This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less
Method for isolating two aquifers in a single borehole
Burklund, P.W.
1984-01-20
A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.
Method for isolating two aquifers in a single borehole
Burklund, Patrick W.
1985-10-22
A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.
Methane-related metabolisms of deep-sea sediments captured with a colonization experiment.
NASA Astrophysics Data System (ADS)
Carr, S. A.; Wheat, C. G.; Orcutt, B.; Kopf, A.; Saffer, D. M.; Toczko, S.
2016-12-01
NanTroSEIZE is a multi-expedition project of the International Ocean Discovery Program (IODP) designed to investigate the Nankai Trough subduction zone. In 2016, a long-term borehole instrument package known as the "GeniusPlug" was collected from Hole C0010A after a six-year deployment within the sediment of a major fault zone, at a depth of 400 mbsf. This GeniusPlug included a set of osmotically-driven pumps, which continuously pumped in situ deep seated, formation water through a microbiological colonization experiment (flow-through osmo colonization system (FLOCS)). This FLOCS experiment contained cassettes of olivine, barite, and sediment collected from nearby Hole C0004D, to serve as colonization substrates. While similar FLOCS have been deployed within boreholes in the igneous oceanic crust, this FLOCS experiment represents the first to be deployed within a sedimentary environment, and thus represents the first opportunity to observe how pore water communities colonize sediment and rock substrates. Initial geochemistry results suggest that conditions within the FLOCS experiment were similar to a methane-sulfate transition zone, and initial enrichment cultures inoculated with the FLOCS substrates demonstrate methane production. Here, we will present integrated results of culturing experiments and culture-independent genomic investigations as a means to elucidate the methane-related metabolisms of these colonizing communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.R.; Aguilar, R.; Mercer, J.W.
This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with boreholemore » locations and times-of-drilling charts are included.« less
Subsurface microbial diversity in deep-granitic-fracture water in Colorado
Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿
Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950
Permanent installation of fibre-optic DTS cables in boreholes for temperature monitoring
NASA Astrophysics Data System (ADS)
Henninges, J.; Schrötter, J.; Erbas, K.; Böde, S.; Huenges, E.
2003-04-01
Temperature measurements have become an important tool for the monitoring of dynamic processes in the subsurface both in academia and industry. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions during a field experiment, which was carried out within the framework of the Mallik 2002 Production Research Well Program*. Three 40 m spaced, 1200 m deep wells were equipped with permanent fibre-optic sensor cables and the variation of temperature was measured deploying the Distributed Temperature Sensing (DTS) technology. The used DTS system enables the simultaneous online registration of temperature profiles along the three boreholes with a maximum spatial resolution of 0.25 m and a minimum sampling interval of 7 sec. After an individual calibration of the fibre-optic sensor cables a resolution of 0.3 °C of the measured temperature data could be achieved. A special feature of the experiment design is the installation of the sensor cables outside the borehole casing. The fibre-optic cables were attached to the outer side of the casing at every connector within intervals of approx. 12 m with cable clamps. The clamps enable a defined positioning of the cable around the perimeter of the casing and are protecting the cable from mechanical damage during installation. After completion the sensor cables are located in the cement annulus between casing and borehole wall. As an example of the performance of the described temperature logging technology data from the reaming of a 300 m thick cement plug inside the borehole is displayed, offering a unique opportunity to explore thermal processes in the near vicinity of a borehole during drilling. The temperature changes image the progress of the drill bit as well as changes in the mud circulation. Furthermore, local effects can be observed that relate to local thermal properties and technical features of the cable installation. (*) The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group.
NASA Astrophysics Data System (ADS)
Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba
2015-04-01
The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile fractures are produced, and that borehole breakouts are episodic and suggests a NE-SW minimum horizontal stress direction
75 FR 3255 - Petitions for Modification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
..., located in Barbour County, West Virginia. Regulation Affected: 30 CFR 75.1700 (Oil and gas wells... the immediate return. If mine air flows into the lateral as expected, or if gas inflow is acceptably... borehole plugging. If gas inflow from the well is unacceptably high (1.0% methane by volume, or higher, as...
Potential for water-quality degradation of interconnected aquifers in west-central Florida
Metz, P.A.; Brendle, D.L.
1996-01-01
Thousands of deep artesian wells were drilled into the Upper Floridan aquifer in west-central Florida prior to well-drilling regulations adopted in the 1970's. The wells were usually completed with a short length of casing through the unconsolidated sediments and were left open to multiple aquifers containing water of varying quality. These open boreholes serve as a potential source of water-quality degradation within the aquifers when vertical internal borehole flow is induced by hydraulic-head differences. Thispotential for water-quality degradation exists in west-central Florida where both the intermediate aquifer system and Upper Floridan aquifer exist. Measurements of caliper, temperature, gamma, fluid conductivity, and flow were obtained in 87 wells throughout west-central Florida to determine the occurrence of interaquifer borehole flow between the intermediate aquifer system and the Upper Floridan aquifer. Flow measurements were made using an impeller flowmeter, a heat-pulse flowmeter, and a video camera with an impeller flowmeter attachment. Of the 87 wells measured with the impeller flowmeter, 17 had internal flow which ranged from 10 to 300 gallons per minute. A heat-pulse flowmeter was used in 19 wells in which flow was not detected using the impeller flowmeter. Of these 19 wells, 18 had internal flow which ranged from 0.3 to 10gallons per minute. Additionally, water-quality samples were collected from specific contributing zones in wells that had internal flow. Analysis of geophysical and water-quality data indicates degradation of water quality has occurred from mineralized ground water flowing upward from the Upper Floridan aquifer into the intermediate aquifer system through both uncased boreholes and corroded black-iron well casings. In areas where there is a downward component of flow, data indicate that potable water from the intermediate aquifer system is artificially recharging the Upper Floridan aquifer through open boreholes. A geographical area was defined where there is a potential for water- quality degradation due to improperly cased wells. This area was delineated based on where there is an upward component of ground-water flow and where there is an occurrence of poor-quality water. The delineated area includes parts of Hillsborough, Manatee, Sarasota, Charlotte, De Soto, and Hardee Counties. To prevent further contamination of the aquifers, the Southwest Florida Water Management District began the Quality of Water Improvement Program in 1974 to restore hydrologic conditions altered by improperly constructed wells or deteriorating casings. As of May 1994, more than 3,000 wells have been inspected and approximately 1,350 have been plugged. To minimize interaquifer contamination, existing wells, especially ones with black-iron casing, should be inspected and, if necessary, repaired with new casing or plugged.
Conceptual waste packaging options for deep borehole disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiann -Cherng; Hardin, Ernest L.
This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to sealmore » the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low-profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.« less
Project Plan: Salt in Situ Heater Test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, Kristopher L.; Mills, Melissa Marie; Herrick, Courtney G.
This project plan gives a high-level description of the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Disposition (SFWD) campaign in situ borehole heater test project being planned for the Waste Isolation Pilot Plant (WIPP) site This plan provides an overview of the schedule and responsibilities of the parties involved. This project is a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to execute a series of small-diameter borehole heater tests in salt for the DOE-NE SFWD campaign. Design of a heater test in salt at WIPP has evolved over several years.more » The current design was completed in fiscal year 2017 (FY17), an equipment shakedown experiment is underway in April FY18, and the test implementation will begin in summer of FY18. The project comprises a suite of modular tests, which consist of a group of nearby boreholes in the wall of drifts at WIPP. Each test is centered around a packer-isolated heated borehole (5" diameter) containing equipment for water-vapor collection and brine sampling, surrounded by smaller-diameter (2" diameter) satellite observation boreholes. Observation boreholes will contain temperature sensors, tracer release points, electrical resistivity tomography (ERT) sensors, fiber optic sensing, and acoustic emission (AE) measurements, and sonic velocity sources and sensors. These satellite boreholes will also be used for plugging/sealing tests. The first two tests to be implemented will have the packer-isolated borehole heated to 120°C, with one observation borehole used to monitor changes. Follow-on tests will be designed using information gathered from the first two tests, will be conducted at other temperatures, will use multiple observation boreholes, and may include other measurement types and test designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Pin; Wang, Yifeng; Rodriguez, Mark A.
The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficientmore » adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.« less
Das Bremerhavener Grundwasser im Klimawandel - Eine FREEWAT-Fallstudie
NASA Astrophysics Data System (ADS)
Panteleit, Björn; Jensen, Sven; Seiter, Katherina; Siebert, Yvonne
2018-01-01
A 3D structural model was created for the state of Bremen based on an extensive borehole database. Parameters were assigned to the model by interpretation and interpolation of the borehole descriptions. This structural model was transferred into a flow model via the FREEWAT platform, an open-source plug-in of the free QGIS software, with connection to the MODFLOW code. This groundwater management tool is intended for long-term use. As a case study for the FREEWAT Project, possible effects of climate change on groundwater levels in the Bremerhaven area have been simulated. In addition to the calibration year 2010, scenarios with a sea-level rise and decreasing groundwater recharge were simulated for the years 2040, 2070 and 2100. In addition to seawater intrusion in the coastal area, declining groundwater levels are also a concern. Possibilities for future groundwater management already include active control of the water level of a lake and the harbor basin. With the help of a focused groundwater monitoring program based on the model results, the planned flow model can become an important forecasting tool for groundwater management within the framework of the planned continuous model management and for representing the effects of changing climatic conditions and mitigation measures.
Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
South, D.L.; Daemen, J.J.K.
1986-10-01
Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer thanmore » the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.« less
Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Hammerschmidt, S.; Davis, E.; Saffer, D.; Wheat, G.; LaBonte, A.; Meldrum, R.; Heesemann, M.; Villinger, H.; Freudenthal, T.; Ratmeyer, V.; Renken, J.; Bergenthal, M.; Wefer, G.
2012-04-01
Around 20 years ago, the scientific community started to use borehole observatories, so-called CORKs or Circulation Obviation Retrofit Kits, which are installed inside submarine boreholes, and which allow the re-establishment and monitoring of in situ conditions. From the first CORKs which allowed only rudimentary fluid pressure and temperature measurements, the instruments evolved to multi-functional and multi-level subseafloor laboratories, including, for example, long-term fluid sampling devices, in situ microbiological experiments or strainmeter. Nonetheless, most boreholes are still left uninstrumented, which is a major loss for the scientific community. In-stallation of CORKs usually requires a drillship and subsequent ROV assignments for data download and instru-ment maintenance, which is a major logistic and financial effort. Moreover, the increasing complexity of the CORK systems increased not only the expenses but led also to longer installation times and a higher sensitivity of the in-struments to environmental constraints. Here, we present three types of Mini-CORKs, which evolved back to more simple systems yet providing a wide range of possible in situ measurements. As a regional example the Nankai Trough is chosen, where repeated subduction thrust earthquakes with M8+ occurred. The area has been investigated by several drilling campaigns of the DSDP, ODP and IODP, where boreholes were already instrumented by different CORKs. Unfortunately, some of the more complex systems showed incomplete functionality, and moreover, the increased ship time forced IODP to rely on third party funds for the observatories. Consequently, the need for more affordable CORKs arose, which may be satisfied by the systems presented here. The first type, the so-called SmartPlug, provides two pressure transducers and four temperature sensors, and monitors a hydrostatic reference section and an isolated zone of interest. It was already installed at the Nankai Trough accretionary prism during IODP Exp. 319 and successfully recovered during IODP Exp. 332, both cruises being part of NanTroSEIZE (Nankai Trough Seismogenic Zone Experiment). The 15-months long data showed transients related to the arrival of seismic waves, storms and can further be used for detection of seismogenic strain events. Moreover, based on tidal signals in the pressure data, it was possible to make assumptions regarding the elastic properties of the surrounding formation. The SmartPlug was exchanged by an enhanced version, the GeniusPlug, which provides additional fluid sampling devices and microbiological experiments during the monitoring period. Its recovery is planned for 2013. Going one step further in simplicity, a Mini-CORK has recently developed especially designed for the portable seafloor drill rig MeBo (MARUM, Univ. Bremen, Germany), which can be installed without a drillship and which, due to its telemetric unit, makes costly recovery operations obsolete. The MeBo can be operated from any re-search vessel and allows coring to a depth of 70 m, which may be followed by instrumentation of the borehole with the MeBo-CORK. Two designs are available: the first design allows in situ measurement of pressure and temperature solely, whereas the second design consists of a seafloor unit including additional mission specific sensors (osmo-samlers for geochemistry and microbiology, etc.). A first field test for the MeBo-CORKs into mud volcanoes in the Kumano forearc basin is envisaged for summer 2012 to complement IODP project NanTroSEIZE.
Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Wefer, G.
2014-12-01
Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: The development and installation of shallow borehole observatories. Three different systems have been developed for the MeBo seafloor drill, which is operated by MARUM, Univ. Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: The CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hostab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to two weeks while sending the long-term data sets to shore. In 2012, 2 MeBoPLUGs, 1 MeBoCORK-A and 1 MeBoCORK-B were installed with MeBo in the Nankai Trough, Japan, and data were successfully downloaded from the CORKs.
Optimization of Deep Borehole Systems for HLW Disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo
2015-09-09
This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone havingmore » a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.« less
Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.
1986-01-01
The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous factors that may be relevant to this interpretation also is presented. (Lantz-PTT)
Rock Melt Borehole Sealing System, Final Technical Report for SBIR Phase I Grant No. DE-SC0011888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osnes, John D.; Vining, Cody A.; Nopola, Jay R.
Purpose of Research Deep borehole disposal is one option that has received attention in recent years as a possible strategy for long-term disposal of the tens of thousands of tons of spent nuclear fuel. The feasibility of the deep borehole option relies upon designing and constructing an effective seal within the borehole to ensure that the waste package does not communicate with the shallow subsurface biosphere through the borehole itself. Some of the uncertainty associated with the long-term suitability of the deep borehole option is related to (1) the degradation of traditional sealing materials over time and (2) the inabilitymore » of traditional sealing methods to adequately seal a Disturbed Rock Zone surrounding the borehole. One possible system to address these concerns consists of encapsulating the waste in a melt generated from either the waste itself or a plug above the waste. This current project expanded on previous work to further advance the deep borehole disposal concept. Research Objectives & Findings The overarching objective of the study was to evaluate the feasibility of constructing a downhole heater that is capable of meeting the technical and logistical requirements to melt rock. This ultimate objective was accomplished by two primary approaches. The first approach was to define the heater requirements and conceptually design a system that is capable of melting rock. The second approach was to determine the feasibility of conducting an in situ, field-scale melting experiment to validate the suitability of the rock melt seal concept. The evaluation and conceptual design of the heater system resulted in the following primary findings: • Borehole wall temperatures capable of producing a partial melt are achievable under most expected thermal conductivities with a 12-kilowatt heater. • Commercially available components have been identified that meet the requirements of the heater system, including resistive elements that are capable of providing the required heat generation, container materials that can withstand the anticipated temperatures, and a system capable of providing power to the heater. Evaluating the feasibility of performing field-scale experiments resulted in the following major findings: • The Sanford Underground Research Facility (SURF) has been identified as a host site for field testing of prototype heaters. The technical and logistical requirements for performing the rock melt tests can be met by using or expanding the existing infrastructure at SURF with on-site personnel and contractors. • In situ hydraulic conductivity test using packers can test the effectiveness of the rock melt seal, while a mine back performed from a lower level can further evaluate the recrystallized melt. • Preliminary costing indicates that a field-scale melting experiment at SURF is feasible within a Phase II Small Business Innovation Research budget while allowing sufficient budget for refining the heater design, coordinating the test program, and interpreting the results. Application of Research The rock melt sealing concept has the potential to reduce uncertainty associated with the long-term storage of nuclear waste. Preliminary efforts of this study defined the requirements of a downhole heater system capable of melting rock and indicated that developing such a system is feasible using available technology. The next logical step is designing and manufacturing prototype heaters. Concurrent with prototype development is coordinating robust field-scale experiments that are capable of validating the design for marketing to potential users.« less
40 CFR 146.10 - Plugging and abandoning Class I, II, III, IV, and V wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General... of drinking water. The Director may allow Class III wells to use other plugging materials if the... sources of drinking water. (2) Placement of the cement plugs shall be accomplished by one of the following...
Friction pull plug welding: dual chamfered plate hole
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.
Automated inverse computer modeling of borehole flow data in heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Sawdey, J. R.; Reeve, A. S.
2012-09-01
A computer model has been developed to simulate borehole flow in heterogeneous aquifers where the vertical distribution of permeability may vary significantly. In crystalline fractured aquifers, flow into or out of a borehole occurs at discrete locations of fracture intersection. Under these circumstances, flow simulations are defined by independent variables of transmissivity and far-field heads for each flow contributing fracture intersecting the borehole. The computer program, ADUCK (A Downhole Underwater Computational Kit), was developed to automatically calibrate model simulations to collected flowmeter data providing an inverse solution to fracture transmissivity and far-field head. ADUCK has been tested in variable borehole flow scenarios, and converges to reasonable solutions in each scenario. The computer program has been created using open-source software to make the ADUCK model widely available to anyone who could benefit from its utility.
Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling
NASA Astrophysics Data System (ADS)
Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua
2018-02-01
Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.
40 CFR 147.3011 - Plugging and abandonment of Class III wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3011 Plugging and...
City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-12-31
The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.
Simple, affordable and sustainable borehole observatories for complex monitoring objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.
2014-12-01
Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: the CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hotstab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to two weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on German RV Sonne in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by ROV is planned for 2016.
KINKFOLD—an AutoLISP program for construction of geological cross-sections using borehole image data
NASA Astrophysics Data System (ADS)
Özkaya, Sait Ismail
2002-04-01
KINKFOLD is an AutoLISP program designed to construct geological cross-sections from borehole image or dip meter logs. The program uses the kink-fold method for cross-section construction. Beds are folded around hinge lines as angle bisectors so that bedding thickness remains unchanged. KINKFOLD may be used to model a wide variety of parallel fold structures, including overturned and faulted folds, and folds truncated by unconformities. The program accepts data from vertical or inclined boreholes. The KINKFOLD program cannot be used to model fault drag, growth folds, inversion structures or disharmonic folds where the bed thickness changes either because of deformation or deposition. Faulted structures and similar folds can be modelled by KINKFOLD by omitting dip measurements within fault drag zones and near axial planes of similar folds.
Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells
NASA Astrophysics Data System (ADS)
Herrick, C. G.; Haimson, B. C.; Lee, M.
2015-12-01
Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A
Deployment of the Oklahoma borehole seismic experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P.E.; Rock, D.W.
1989-01-20
This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted inmore » a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.« less
Modeling and visualizing borehole information on virtual globes using KML
NASA Astrophysics Data System (ADS)
Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing
2014-01-01
Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.
Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Perez-Cruz, L.
2007-05-01
The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected the impact breccias at about 1 km and the melt and melt- rich breccias at some 1.3-1.4 km.
Borehole Disposal and the Cradle-To-Grave Management Program for Radioactive Sealed Sources in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.R.; Carson, S.D.; El-Adham, K.
2006-07-01
The Integrated Management Program for Radioactive Sealed Sources (IMPRSS) is greatly improving the management of radioactive sealed sources (RSSs) in Egypt. When completed, IMPRSS will protect the people and the environment from another radioactive incident. The Government of Egypt and Sandia National Laboratories are collaboratively implementing IMPRSS. The integrated activities are divided into three broad areas: the safe management of RSSs in-use, the safe management of unwanted RSSs, and crosscutting infrastructure. Taken together, these work elements comprise a cradle-to-grave program. To ensure sustainability, the IMPRSS emphasizes such activities as human capacity development through technology transfer and training, and development ofmore » a disposal facility. As a key step in the development of a disposal facility, IMPRSS is conducting a safety assessment for intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S.'s Greater Confinement Disposal boreholes. This safety assessment of borehole disposal is being supported by the International Atomic Energy Agency (IAEA) through an IAEA Technical Cooperation Project. (authors)« less
Bartholomay, R.C.
1993-01-01
Water from 11 wells completed in the Snake River Plain aquifer at the Idaho National Engineering Laboratory was sampled as part of the U.S. Geological Survey's quality assurance program to determine the effect of purging different borehole volumes on tritium and strontium-90 concentrations. Wells were selected for sampling on the basis of the length of time it took to purge a borehole volume of water. Samples were collected after purging one, two, and three borehole volumes. The U.S. Department of Energy's Radiological and Environmental Sciences Laboratory provided analytical services. Statistics were used to determine the reproducibility of analytical results. The comparison between tritium and strontium-90 concentrations after purging one and three borehole volumes and two and three borehole volumes showed that all but two sample pairs with defined numbers were in statistical agreement. Results indicate that concentrations of tritium and strontium-90 are not affected measurably by the number of borehole volumes purged.
FD_BH: a program for simulating electromagnetic waves from a borehole antenna
Ellefsen, Karl J.
2002-01-01
Program FD_BH is used to simulate the electromagnetic waves generated by an antenna in a borehole. The model representing the antenna may include metallic parts, a coaxial cable as a feed to the driving point, and resistive loading. The program is written in the C programming language, and the program has been tested on both the Windows and the UNIX operating systems. This Open-File Report describes • The contents and organization of the Zip file (section 2). • The program files, the installation of the program, the input files, and the execution of the program (section 3). • Address to which suggestions for improving the program may be sent (section 4).
Simple, affordable, and sustainable borehole observatories for complex monitoring objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.
2015-05-01
Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo (Meeresboden-Bohrgerat) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (Circulation Obviation Retrofit Kit), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data on command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to 2 weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on RV Sonne, Germany, in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked, and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by a ROV is planned for 2016.
A plug-in to Eclipse for VHDL source codes: functionalities
NASA Astrophysics Data System (ADS)
Niton, B.; Poźniak, K. T.; Romaniuk, R. S.
The paper presents an original application, written by authors, which supports writing and edition of source codes in VHDL language. It is a step towards fully automatic, augmented code writing for photonic and electronic systems, also systems based on FPGA and/or DSP processors. An implementation is described, based on VEditor. VEditor is a free license program. Thus, the work presented in this paper supplements and extends this free license. The introduction characterizes shortly available tools on the market which serve for aiding the design processes of electronic systems in VHDL. Particular attention was put on plug-ins to the Eclipse environment and Emacs program. There are presented detailed properties of the written plug-in such as: programming extension conception, and the results of the activities of formatter, re-factorizer, code hider, and other new additions to the VEditor program.
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Hagemann, G.; Immich, H.
2003-01-01
A three dimensional linear plug nozzle of area ratio 12.79 was designed by EADS Space Transportation (former Astrium Space Infrastructure). The nozzle was tested within the German National Technology Program 'LION' in a cold air wind tunnel by TU Dresden. The experimental hardware and test conditions are described. Experimental data was obtained for the nozzle without plug side wall fences at a nozzle pressure ratio of 116 and then with plug side wall fences at NPR 110. Schlieren images were recorded and axial profiles of plug wall static pressures were measured at several spanwise locations and on the plug base. Detailed CFD analysis was performed for these nozzle configurations at NPR 116 by NASA MSFC. The CFD exhibits good agreement with the experimental data. A detailed comparison of the CFD results and the experimental plug wall pressure data are given. Comparisons are made for both the without and with plug side wall fence configurations. Numerical results for density gradient are compared to experimental Schlieren images. Experimental nozzle thrust efficiencies are calculated based on the CFD results. The CFD results are used to illustrate the plug nozzle fluid dynamics. The effect of the plug side wall is emphasized.
Initial Study of Friction Pull Plug Welding
NASA Technical Reports Server (NTRS)
Rich, Brian S.
1999-01-01
Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.
A gas sampling system for withdrawing humid gases from deep boreholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.
A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deepmore » boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomay, R.C.
1993-12-31
Water from 11 wells completed in the Snake River Plain aquifer at the Idaho National Engineering Laboratory was sampled as Part of the US. Geological Survey`s quality assurance program to determine the effect of Purging different borehole volumes on tritium and strontium-90 concentrations. Wells were selected for sampling on the basis of the length of time it took to purge a borehole volume of water. Samples were collected after purging one, two, and three borehole volumes. The US Department of Energy`s Radiological and Environmental Sciences Laboratory provided analytical services. Statistics were used to determine the reproducibility of analytical results. Themore » comparison between tritium and strontium-90 concentrations after purging one and three borehole volumes and two and three borehole volumes showed that all but two sample pairs with defined numbers were in statistical agreement. Results indicate that concentrations of tritium and strontium-90 are not affected measurably by the number of borehole volumes purged.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chace, D.A.; Roberts, R.M.; Palmer, J.B.
WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbedmore » and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.« less
Cost-benefit comparisons of investments in improved water supply and cholera vaccination programs.
Jeuland, Marc; Whittington, Dale
2009-05-18
This paper presents the first cost-benefit comparison of improved water supply investments and cholera vaccination programs. Specifically, we compare two water supply interventions -- deep wells with public hand pumps and biosand filters (an in-house, point-of-use water treatment technology) -- with two types of cholera immunization programs with new-generation vaccines -- general community-based and targeted and school-based programs. In addition to these four stand-alone investments, we also analyze five combinations of water and vaccine interventions: (1) borehole+hand pump and community-based cholera vaccination, (2) borehole+hand pump and school-based cholera vaccination, (3) biosand filter and community-based cholera vaccination, (4) biosand filter and school-based cholera vaccination, and (5) biosand filter and borehole+hand pump. Using recent data applicable to developing country locations for parameters such as disease incidence, the effectiveness of vaccine and water supply interventions against diarrheal diseases, and the value of a statistical life, we construct cost-benefit models for evaluating these interventions. We then employ probabilistic sensitivity analysis to estimate a frequency distribution of benefit-cost ratios for all four interventions, given a wide variety of possible parameter combinations. Our results demonstrate that there are many plausible conditions in developing countries under which these interventions will be attractive, but that the two improved water supply interventions and the targeted cholera vaccination program are much more likely to yield attractive cost-benefit outcomes than a community-based vaccination program. We show that implementing community-based cholera vaccination programs after borehole+hand pump or biosand filters have already been installed will rarely be justified. This is especially true when the biosand filters are already in place, because these achieve substantial cholera risk reductions on their own. On the other hand, implementing school-based cholera vaccination programs after the installation of boreholes with hand pump is more likely to be economically attractive. Also, if policymakers were to first invest in cholera vaccinations, then subsequently investing in water interventions is still likely to yield positive economic outcomes. This is because point-of-use water treatment delivers health benefits other than reduced cholera, and deep boreholes+hand pumps often yield non-health benefits such as time savings. However, cholera vaccination programs are much cheaper than the water supply interventions on a household basis. Donors and governments with limited budgets may thus determine that cholera vaccination programs are more equitable than water supply interventions because more people can receive benefits with a given budget. Practical considerations may also favor cholera vaccination programs in the densely crowded slums of South Asian and African cities where there may be insufficient space in housing units for some point-of-use technologies, and where non-networked water supply options are limited.
Parallel Eclipse Project Checkout
NASA Technical Reports Server (NTRS)
Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Powell, Mark W.; Bachmann, Andrew G.
2011-01-01
Parallel Eclipse Project Checkout (PEPC) is a program written to leverage parallelism and to automate the checkout process of plug-ins created in Eclipse RCP (Rich Client Platform). Eclipse plug-ins can be aggregated in a feature project. This innovation digests a feature description (xml file) and automatically checks out all of the plug-ins listed in the feature. This resolves the issue of manually checking out each plug-in required to work on the project. To minimize the amount of time necessary to checkout the plug-ins, this program makes the plug-in checkouts parallel. After parsing the feature, a request to checkout for each plug-in in the feature has been inserted. These requests are handled by a thread pool with a configurable number of threads. By checking out the plug-ins in parallel, the checkout process is streamlined before getting started on the project. For instance, projects that took 30 minutes to checkout now take less than 5 minutes. The effect is especially clear on a Mac, which has a network monitor displaying the bandwidth use. When running the client from a developer s home, the checkout process now saturates the bandwidth in order to get all the plug-ins checked out as fast as possible. For comparison, a checkout process that ranged from 8-200 Kbps from a developer s home is now able to saturate a pipe of 1.3 Mbps, resulting in significantly faster checkouts. Eclipse IDE (integrated development environment) tries to build a project as soon as it is downloaded. As part of another optimization, this innovation programmatically tells Eclipse to stop building while checkouts are happening, which dramatically reduces lock contention and enables plug-ins to continue downloading until all of them finish. Furthermore, the software re-enables automatic building, and forces Eclipse to do a clean build once it finishes checking out all of the plug-ins. This software is fully generic and does not contain any NASA-specific code. It can be applied to any Eclipse-based repository with a similar structure. It also can apply build parameters and preferences automatically at the end of the checkout.
Tectonics and crustal structure of the Saurashtra peninsula: based on Gravity and Magnetic data
NASA Astrophysics Data System (ADS)
Mishra, A. K.; Singh, A.; Singh, U. K.
2016-12-01
The Saurashtra peninsula is located at the North Western margin of the Indian shield which occurs as a horst block between the rifts namely as Kachchh, Cambay and Narmada. It is important because of occurrence of moderate earthquake and presence of mesozoic sediments below the Deccan trap. The maps of bouguer gravity anomaly and the total intensity magnetic anomalies of Saurashtra have delineated six circular gravity highs of magnitudes 40-60 mGal and 800-1000 nT respectively. In order to understand the location, structure and depth of the source body, methods like continuous wavelet transform (CWT), Euler deconvolution and power spectrum analysis have been implemented in the potential field data. The CWT and Euler deconvolution give 16-18 km average depth of volcanic plug in Junagadh and Rajula region. From the power spectrum analysis, it is found that average Moho depth in the Saurashtra is about 36-38 km. Keeping the constraints obtained from geophysical studies like borehole, deep seismic survey, receiver function analysis and geological information, combined gravity and magnetic modeling have been performed. Detailed crustal structure of the Saurashtra region has been delineated along two profiles which pass from prominent geological features Junagadh and Rajula volcanic plugs respectively.
Oman Drilling Project Phase I Borehole Geophysical Survey
NASA Astrophysics Data System (ADS)
Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.
2017-12-01
The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for holes BT1, GT3 and BA2 due to hole obstruction (e.g. collapsed borehole wall). Results from the geophysical survey including preliminary log analysis will be presented for each OmanDP Phase I borehole.
Infrastructure for Rapid Development of Java GUI Programs
NASA Technical Reports Server (NTRS)
Jones, Jeremy; Hostetter, Carl F.; Wheeler, Philip
2006-01-01
The Java Application Shell (JAS) is a software framework that accelerates the development of Java graphical-user-interface (GUI) application programs by enabling the reuse of common, proven GUI elements, as distinguished from writing custom code for GUI elements. JAS is a software infrastructure upon which Java interactive application programs and graphical user interfaces (GUIs) for those programs can be built as sets of plug-ins. JAS provides an application- programming interface that is extensible by application-specific plugins that describe and encapsulate both specifications of a GUI and application-specific functionality tied to the specified GUI elements. The desired GUI elements are specified in Extensible Markup Language (XML) descriptions instead of in compiled code. JAS reads and interprets these descriptions, then creates and configures a corresponding GUI from a standard set of generic, reusable GUI elements. These elements are then attached (again, according to the XML descriptions) to application-specific compiled code and scripts. An application program constructed by use of JAS as its core can be extended by writing new plug-ins and replacing existing plug-ins. Thus, JAS solves many problems that Java programmers generally solve anew for each project, thereby reducing development and testing time.
True Triaxial Failure of Granite: Implications for Deep Borehole Waste Disposal
NASA Astrophysics Data System (ADS)
Williams, M.; Ingraham, M. D.; Cheung, C.; Haimson, B. C.
2016-12-01
A series of tests have been completed to determine the failure of Sierra White Granite under a range of true triaxial stress conditions ranging from axisymmetric compression to axisymmetric extension. Tests were performed under constant mean stress conditions. Results show a significant difference in failure due to the intermediate principal stress. Borehole breakout, a significant issue for deep borehole disposal, occurs in line with the least principal stress, which in the United States at great depth is almost certainly a horizontal stress. This means that any attempt to dispose of waste in deep boreholes will have to overcome this phenomenon. This work seeks to determine the full 3D failure surface for granite such that it can be applied to determining the likelihood of borehole breakout occurring under different stress conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Pirmoradi, Reza; Wolfmayr, Mariella; Bauer, Helene; Decker, Kurt
2017-04-01
This study presents porosity and permeability data for a suite of different carbonate rocks from two major groundwater reservoirs in eastern Austria that supply more than 60% of Vienna`s drinking water. Data includes a set of lithologically different, unfractured host rocks, fractured rocks with variable fracture intensities, and fault rocks such as dilation breccias, different cataclasites and dissolution-precipitation fault rocks. Fault rock properties are of particular importance, since fault zones play an important role in the hydrogeology of the reservoirs. The reservoir rocks are exposed at two major alpine karst plateaus in the Northern Calcareous Alps. They comprise of various Triassic calcareous strata of more than 2 km total thickness that reflect facies differentiation since Anisian times. Rocks are multiply deformed resulting in a partly dense network of fractures and faults. Faults differ in scale, fault rock content, and fault rock volumes. Methods used to quantify the porosity and permeability of samples include a standard industry procedure that uses the weight of water saturated samples under hydrostatic uplift and in air to determine the total effective (matrix and fracture) porosity of rocks, measurements on plugs with a fully automated gas porosity- and permeameter using N2 gas infiltrating plugs under a defined confining pressure (Coreval Poro 700 by Vinci technologies), and percolation tests. The latter were conducted in the field along well known fault zones in order to test the differences in fractured rock permeability in situ and on a representative volume, which is not ensured with plug measurements. To calculate hydraulic conductivity by the Darcy equation the measured elapsed time for infiltrating a standard volume of water into a small borehole has been used. In general, undisturbed host rock samples are all of low porosity (average around 1%). The open porosity of the undisturbed rocks belonging to diverse formations vary from 0.18% to 2.35%. Klinkenberg permeabilities of plugs range from 0.001mD to about 0.6mD thus spreading over three orders of magnitude. Fractured rocks show significantly higher porosities (3% average) with respect to the undeformed country rocks. Plug measurements reveal quite low permeabilities (< 1mD) for this type of rock, which is owed to the measuring technique, where fractures are closed under confining pressure. A second important point is that intensely fractured rocks are underrepresented in the data as they cannot be plugged adequately. Percolation tests give better information for fractured rock permeabilities and revealed hydraulic conductivities of 10-6 m/sec for little fractured to 5x10-5 m/sec for intensely fractured rocks. Plug and rock sample data show that cataclastic fault rocks can have quite high porosities (up to 4.1%). However, plug permeabilities down to 0.03mD demonstrate that pores are too small to result in any significant permeability. Breccias show high porosities of 4% in average and very variable permeabilities between 2.2mD and 2214mD depending mainly on the degree of cementation.
Back-Up/ Peak Shaving Fuel Cell System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda L.
2008-05-28
This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.« less
May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.
2009-01-01
This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillets of channel catfish (Ictalurus punctatus), bass (Micropterus salmoides, Micropterus dolomieu, Morone chrysops), walleye (Sander vitreus), common carp (Cyprinus carpio), lake sturgeon (Acipenser fulvescens), northern hog sucker (Hypentelium nigricans), and rainbow trout (Oncorhynchus mykiss) were collected from 21 sites as part of the Department's Fish Contaminant Monitoring Program. Long-pincered crayfish (Orconectes longidigitus) were collected from one site to assess trophic transfer of metals to fish. Fish muscle plugs were collected from smallmouth bass (Micropterus dolomieu) at two different locations from one site.
May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.
2009-01-01
This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in whole-body fish, fish fillets, fish muscle plugs, and fish eggs. Whole-body, fillet, or egg samples of catfish (Ictalurus punctatus, Ictalurus furcatus, Pylodictis olivaris), largemouth bass (Micropterus salmoides), walleye (Sander vitreus), crappie (Pomoxis annularis, Pomoxis nigromaculatus), shovelnose sturgeon (Scaphirhynchus platorynchus), northern hog sucker (Hypentelium nigricans), and Missouri saddled darter (Etheostoma tetrazonum) were collected from 23 sites as part of the Missouri Department of Conservation's Fish Contaminant Monitoring Program. Fish dorsal muscle plugs also were collected from walleye (Sander vitreus) at one of the sites.
Friction Pull Plug Welding in Aluminum Alloys
NASA Technical Reports Server (NTRS)
Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon
2011-01-01
NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.
Friction Pull Plug Welding in Aluminum Alloys
NASA Technical Reports Server (NTRS)
Brooke, Shane A.; Bradford, Vann
2012-01-01
NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.
NASA Astrophysics Data System (ADS)
Lee, S. M.; Parq, J. H.
2017-12-01
An accurate measurement of magnetic field inside the borehole, together with a right set of paleomagnetic measurements on the recovered core samples, should allow one to resolve important elements such as the rotation of the basin or the plate on which the basin is located. The ability to resolve the rotation of the basin can be crucial during drilling experiments by International Continental Scientific Drilling Program (ICDP) and International Ocean Discovery Program (IODP). A good example where the rotation is a central question is the Philippine Sea Plate, which is thought to have rotated about 90° clockwise during the last 55 million years. Despite the significance, previous borehole magnetometers were not accurate enough to achieve such a goal because, among various technical issues, determining the orientation of the sensor inside the borehole to a very high level of accuracy was not easy. The next-generation (third-generation) borehole magnetometer (3GBM) was developed to overcome this difficulty and to bring paleomagnetic investigations to a new level. Even with the new development, however, there are still concerns whether the new instrument can really resolve the rotation because the magnetic field anomalies generated by the sediment is generally very low. In this paper, we present numerical simulations based on finite element method of the magnetic field inside the borehole that were conducted as part of a test to demonstrate that, despite low levels of magnetization, the magnetic fields can be resolved. The results also served as an important input on the design requirements of the borehole magnetometer. Various cases were considered, including the situation where the sedimentary layer is horizontal and inclined. We also explored the cases where volcanic sills were present within the sedimentary layer as they may provide a greater magnetic signature than having sediment alone, and thus improving our chances of determining the rotation. Simulations are necessary because they provide us useful guidelines for planning a future drill experiment as well as on the first-hand interpretation of the borehole measurement results.
NASA Astrophysics Data System (ADS)
Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre
Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.
Holcomb, L. Gary; Sandoval, Leo; Hutt, Bob
1998-01-01
Tilt has been the nemesis of horizontal long period seismology since its inception. Modern horizontal long period seismometers with their long natural periods are incredibly sensitive to tilt. They can sense tilts smaller than 10-11 radians. To most readers, this is just a very very small number, so we will begin with an example, which should help to illustrate just how small 10-11 radians is.Suppose we have an absolutely rigid rod which is approximately 4170 kilometers long; this just happens to be the Rand McNally map scaled crow flight distance between Los Angeles and Boston. Tilting this rod 10-11 radians corresponds to raising one end of the rod 0.0000417 meters. Alas, this is just another very very small number! However, this corresponds to slipping a little less than one third a sheet of ordinary copying paper under one end of this perfectly rigid rod. To clarify, we mean, take a sheet of paper just like the paper this report is printed on and split it a little less than one third in the thickness direction, then put it under the end of the 4170 kilometer long rod! This will tilt the rod 10-11 radians.Real world seismometers are nowhere near the length of this rod. A KS-54000 is about two meters long. Tilting a rod only two meters long 10~n radians corresponds to moving one end of this rod a mere 0.00000000002 meters or 0.02 millimicrons. As one of the authors old math teachers used to say, "That's PDS" (PDS = Pretty Damn Small). Unfortunately, the long period seismologist does not have the luxury of ignoring PDS numbers when it suits him as the mathematician frequently does. He must live in the real world in which tilts this small create severe contamination of long period seismic data.At periods longer than 20 seconds, tilt noise contaminates the long period data from all instruments installed on or near the earth's surface. Many years of experimentation revealed that installing the sensors at depth in deep mines drastically reduced the level of tilt noise in long period data. However, low levels of tilt noise persisted even at great depth; this noise was caused by air convection in the vault in which the sensors were installed. Over the years, methods were developed to control the air motion with mechanical barriers (boxes) around the sensors and by stratifying (creating a situation in which the air temperature increases with height) the air in the vault near the seismometer. These methods decreased tilt noise in deep mines to very low levels. However, deep mines, that are economically and environmentally suitable and accessible to seismology, are not plentiful and are not evenly distributed over the earth's surface. Therefore, the borehole deployable Teledyne Geotech KS-36000 and later the KS-54000 sensor systems were developed to fulfill the need for instruments that could be installed at depth wherever high quality long period data was desired. Early in the development program, it became evident to the Teledyne Geotech personnel that air convection within the borehole was going to be a significant problem in KS deployments. Experimental and theoretical investigations conducted by Teledyne Geotech (see Douze and Sherwin, 1975, and Sherwin and Cook, 1976) produced a list of recommended installation procedures for reducing the effects of air convection. These procedures consisted of wrapping the sensor in a relatively thin layer of foam insulation, filling the free space volume in the vicinity of the centralizer-bail assembly with foam insulation, and the installation of styrofoam hole plugs immediately above the cable strain relief assembly at the top of the sensor package and at the top of the borehole. This technology has performed quite satisfactorily for over 20 years but evidence of tilt noise in the system output has persisted throughout the KS deployment program (the evidence was that the horizontal components were usually noisier than the vertical components) even in deep boreholes. Some deep borehole sites have been plagued by quite high levels of horizontal noise. Therefore, there has been a definite need for a new technique for controlling low level tilt noise in deep boreholes and the use of sand has been under consideration for several years.Figure 1 contains conceptual illustrations of both the conventional holelock installed KS sensor system and the same sensor installed in sand. This figure demonstrates the major differences between the two installation methods. The curved arrows in the borehole on the left in the figure denote possible air convection cells which are believed to be the source of tilt noise in some of the conventional installations. This air motion is eliminated in a sand installation by filling most of the free air volume surrounding the seismometer with sand as shown in the right hand portion of the figure. The sand actually performs two functions; it prevents air motion and provides a remarkably ridgid clamping of the seismometer in the borehole. This report presents the results of quantitative experimental investigations into the effectiveness of controlling low level air convection in seismic borehole installations with sand. The main body of the experimental effort consisted of installing two KS-540001 sensor systems in closely spaced shallow boreholes, allowing the sensors to reach equilibrium operation, and then pouring sand into both boreholes to observe any changes caused by pouring sand into the holes. The hypothesis of the experiment was that the sand would fill up the entire free air volume between the sensor package and the borehole walls thereby preventing movement of the air in the vicinity of the sensor package. The validity of this hypothesis had been qualitatively proven by earlier experiments at ASL and by the sand installations at the IRIS/ASL stations ANMO in 1995 and COLA in 1996. This experiment documents the degree of improved noise levels to be expected if KS instruments are installed in sand instead of in the conventional manner.
NASA Astrophysics Data System (ADS)
Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng
2014-06-01
This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The U.S. Department of Energy and the U.S. Department of Transportation have published a guide to highlight examples of federal support and technical assistance for plug-in electric vehicles (PEVs) and charging stations. The guide provides a description of each opportunity and a point of contact to assist those interested in advancing PEV technology. The Department of Energy’s Alternative Fuels Data Center provides a comprehensive database of federal and state programs that support plug-in electric vehicles and infrastructure.
Trial coring in LLRW trenches at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donders, R.E.; Killey, R.W.D.; Franklin, K.J.
1996-12-31
As part of a program to better characterize the low-hazard radioactive waste managed by AECL at Chalk River, coring techniques in waste trenches are being assessed. Trial coring has demonstrated that sampling in waste regions is possible, and that boreholes can be placed through the waste trenches. Such coring provides a valuable information gathering technique. Information available from trench coring includes: (1) trench cover depth, waste region depth, waste compaction level, and detailed stratigraphic data; (2) soil moisture content and facility drainage performance; (3) borehole gamma logs that indicate radiation levels in the region of the borehole; (4) biochemical conditionsmore » in the waste regions, vadose zone, and groundwater; (5) site specific information relevant to contaminant migration modelling or remedial actions; (6) information on contaminant releases and inventories. Boreholes through the trenches can also provide a means for early detection of potential contaminant releases.« less
Nelson, Philip H.; Kibler, Joyce E.
2014-01-01
As part of a site investigation for the disposal of radioactive waste, numerous boreholes were drilled into a sequence of Miocene pyroclastic flows and related deposits at Yucca Mountain, Nevada. This report contains displays of data from 25 boreholes drilled during 1979–1984, relatively early in the site investigation program. Geophysical logs and hydrological tests were conducted in the boreholes; core and cuttings analyses yielded data on mineralogy, fractures, and physical properties; and geologic descriptions provided lithology boundaries and the degree of welding of the rock units. Porosity and water content were computed from the geophysical logs, and porosity results were combined with mineralogy from x-ray diffraction to provide whole-rock volume fractions. These data were composited on plates and used by project personnel during the 1990s. Improvements in scanning and computer technology now make it possible to publish these displays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Alastair; Mathew, Paul A.; Regnier, Cynthia
This program manual contains detailed technical information for implementing an incentive program for task-ambient lighting and occupancy-based plug load control. This manual was developed by Lawrence Berkeley National Laboratory, in collaboration with the California Publicly-Owned Utilities (CA POUs) as a partner in the ‘Beyond Widgets’ program funded by the U.S. Department of Energy Building Technologies Office. The primary audience for this manual is the program staff of the various CA POUs. It may also be used by other utility incentive programs to help develop similar programs. It is anticipated that the content of this manual be utilized by the CAmore » POU staff for developing related documents such as the Technical Resource Manual and other filings pertaining to the rollout of an energy systems-based rebate incentive program.« less
Innovations for ISS Plug-In Plan (IPiP) Operations
NASA Technical Reports Server (NTRS)
Moore, Kevin D.
2013-01-01
Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.
Characterization Efforts in a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.
2016-12-01
The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Angie; Moore, Ray; Rowden, Tim
Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supplymore » Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.« less
Ackerson, J.R.; Schmitt, C.J.; McKee, M.J.; Brumbaugh, W.G.
2013-01-01
A non-lethal biopsy method for monitoring mercury (Hg) concentrations in smallmouth bass (Micropterus dolomieu; smallmouth) from the Eleven Point River in southern Missouri USA was evaluated. A biopsy punch was used to remove a muscle tissue plug from the area immediately below the anterior dorsal fin of 31 smallmouth. An additional 35 smallmouth (controls) were held identically except that no tissue plug was removed. After sampling, all fish were held in a concrete hatchery raceway for 6 weeks. Mean survival at the end of the holding period was 97 % for both groups. Smallmouth length, weight and Fulton’s condition factor at the end of the holding period were also similar between plugged and non-plugged controls, indicating that the biopsy procedure had minimal impact on growth under these conditions. Tissue plug Hg concentrations were similar to smallmouth Hg data obtained in previous years by removing the entire fillet for analysis.
Ackerson, R.J.; McKee, J.M.; Schmitt, C.J.; Brumbaugh, William G.
2014-01-01
A non-lethal biopsy method for monitoring mercury (Hg) concentrations in smallmouth bass (Micropterus dolomieu; smallmouth) from the Eleven Point River in southern Missouri USA was evaluated. A biopsy punch was used to remove a muscle tissue plug from the area immediately below the anterior dorsal fin of 31 smallmouth. An additional 35 smallmouth (controls) were held identically except that no tissue plug was removed. After sampling, all fish were held in a concrete hatchery raceway for 6 weeks. Mean survival at the end of the holding period was 97 % for both groups. Smallmouth length, weight and Fulton’s condition factor at the end of the holding period were also similar between plugged and non-plugged controls, indicating that the biopsy procedure had minimal impact on growth under these conditions. Tissue plug Hg concentrations were similar to smallmouth Hg data obtained in previous years by removing the entire fillet for analysis.
GIS Application System Design Applied to Information Monitoring
NASA Astrophysics Data System (ADS)
Qun, Zhou; Yujin, Yuan; Yuena, Kang
Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.
Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyasato, Matt; Kosowski, Mark
2015-10-01
The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests weremore » run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.« less
NASA Astrophysics Data System (ADS)
Fruh-Green, G. L.; Orcutt, B.; Green, S.; Cotterill, C.
2016-12-01
We present an overview of IODP Expedition 357, which successfully used two seabed rock drills to core 17 shallow holes at 9 sites across Atlantis Massif (Mid-Atlantic Ridge 30°N). A major goal of this expedition is to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration. The cores show highly heterogeneous rock type, bulk rock chemistry and alteration that reflect multiple phases of magmatism and fluid-rock interaction within the detachment fault zone. In cores along an E-W transect of the southern wall, recovered mantle peridotites are locally intruded by gabbroic and doleritic dikes and veins. The proportion of mafic rocks are volumetrically less than the amount of mafic rocks recovered previously in the central dome at IODP Site U1309, suggesting a lower degree of melt infiltration into mantle peridotite at the ridge-transform intersection. New technologies were developed and successfully applied for the first time: (1) an in-situ sensor package and water sampling system on each seabed drill measured real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential, temperature, and conductivity during drilling and took water samples after drilling; (2) a borehole plug system to seal the boreholes was successfully deployed at two sites to allow access for future sampling; and (3) delivery of chemical tracers into the drilling fluids for contamination testing. We will provide an overview of the drilling strategy and preliminary results of Expedition 357, and highlight the role of serpentinization in sustaining microbial communities in a region of active serpentinization and low temperature hydrothermal alteration.
Smith, W.K.
1982-01-01
The mathematical method of determining in-situ stresses by overcoring, using either the U.S. Bureau of Mines Borehole Deformation Gage or the Commonwealth Scientific and Industrial Research Organisation Hollow Inclusion Stress Cell, is summarized, and data reduction programs for each type of instrument, written in BASIC, are presented. The BASIC programs offer several advantages over previously available FORTRAN programs. They can be executed on a desk-top microcomputer at or near the field site, allowing the investigator to assess the quality of the data and make decisions on the need for additional testing while the crew is still in the field. Also, data input is much simpler than with currently available FORTRAN programs; either English or SI units can be used; and standard deviations of the principal stresses are computed as well as those of the geographic components.
NREL's Work for the U.S. Navy Illuminates Energy and Cost Savings | News
load controls and whole-building energy efficiency retrofits as good investments for the Navy. " Program Director Steve Gorin said. Advanced power strips, a plug load control technology that cuts power and an office building with capacity for roughly 100 staff. While plug load savings depend on what can
DOE Office of Scientific and Technical Information (OSTI.GOV)
This software is a plug-in that interfaces between the Phoenix Integration's Model Center and the Base SAS 9.2 applications. The end use of the plug-in is to link input and output data that resides in SAS tables or MS SQL to and from "legacy" software programs without recoding. The potential end users are users who need to run legacy code and want data stored in a SQL database.
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Liberty, L. M.; Kessler, J. A.; Kueck, J.; Kofman, R. S.; Bishop, R. A.; Shervais, J. W.; Evans, J. P.; Champion, D. E.
2012-12-01
The recently completed ICDP Hotspot drilling program consisted of drilling of three scientific drill holes each to at least 1800 m depth across the Snake River Plain of Idaho. The three boreholes include i) Kimama: thick sequences of basalt flows with sediment interbeds; ii) Kimberley: near surface basalt flows overlying rhyolite deposits, and iii) Mountain Home: geothermally altered basalts overlain by lacustrine sediments. The program consisted of high resolution 2D surface tied to vertical and walk-a-way borehole seismic profiles and an extensive suite of full waveform sonic, ultrasonic televiewer, electrical resistivity, magnetic susceptibility, and hydrogen index neutron logging. There are a number of highlights out of this work. First, seismic imaging beneath basalt flows is a classic problem in reflection seismology and has long been believed to be due to rapid attenuation of the downgoing seismic pulse. Here, however, we observed strong arrivals at all depths suggesting that seismic energy is penetrating such formations and that issues in imaging may be a result of the heterogeneous nature of the formations. Second, the neutron log responses correlate well with the structure of individual basalt flows. High and low backscattered neutron counts correspond to massive low porosity basalt rock and with the higher porosity and sediment filled flow tops, respectively. Third, the ultrasonic borehole televiewer information is being used to orient the nearly complete sets of core in order to obtain information on the azimuths of natural and drilling induced core fractures. This together with examination of borehole breakouts and drilling induced tensile fractures on the wellbore wall will allow for semi-quantitative stress estimates across the Snake River Plain. Finally, the Mountain Home borehole provides an unique opportunity to study the geothermally altered basalts. There are a number of correlations between, for example, the sonic and electrical logs that must relate to the style of alteration.
Gohel, Mukesh C; Sumitra G, Manhapra
2002-02-19
The objective of the present study was to obtain programmed drug delivery from hard gelatin capsules containing a hydrophilic plug (HPMC or guar gum). The significance of factors such as type of plug (powder or tablet), plug thickness and the formulation of fill material on the release pattern of diltiazem HCl, a model drug, was investigated. The body portion of the hard gelatin capsules was cross-linked by the combined effect of formaldehyde and heat treatment. A linear relationship was observed between weight of HPMC K15M and log % drug released at 4 h from the capsules containing the plug in powder form. In order to accelerate the drug release after a lag time of 4 h, addition of an effervescent blend, NaHCO(3) and citric acid, in the capsules was found to be essential. The plugs of HPMC in tablet form, with or without a water soluble adjuvant (NaCl or lactose) were used for obtaining immediate drug release after the lag time. Sodium chloride did not cause significant influence on drug release whereas lactose favourably affected the drug release. The capsules containing HPMC K15M tablet plug (200 mg) and 35 mg effervescent blend in body portion of the capsule met the selection criteria of less than 10% drug release in 4 h and immediate drug release thereafter. It is further shown that the drug release was also dependant on the type of swellable hydrophilic agent (HPMC or guar gum) and molecular weight of HPMC (K15M or 20 cPs). The results reveal that programmed drug delivery can be obtained from hard gelatin capsules by systemic formulation approach.
RCC Plug Repair Thermal Tools for Shuttle Mission Support
NASA Technical Reports Server (NTRS)
Rodriguez, Alvaro C.; Anderson, Brian P.
2010-01-01
A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Nigro, Lisa M; Harris, Kate; Orcutt, Beth N; Hyde, Andrew; Clayton-Luce, Samuel; Becker, Keir; Teske, Andreas
2012-01-01
The microbiology of subsurface, hydrothermally influenced basaltic crust flanking mid-ocean ridges has remained understudied, due to the difficulty in accessing the subsurface environment. The instrumented boreholes resulting from scientific ocean drilling offer access to samples of the formation fluids circulating through oceanic crust. We analyzed the phylogenetic diversity of bacterial communities of fluid and microbial mat samples collected in situ from the observatory at Ocean Drilling Program Hole 896A, drilled into ~6.5 million-year-old basaltic crust on the flank of the Costa Rica Rift in the equatorial Pacific Ocean. Bacterial 16S rRNA gene sequences recovered from borehole fluid and from a microbial mat coating the outer surface of the fluid port revealed both unique and shared phylotypes. The dominant bacterial clones from both samples were related to the autotrophic, sulfur-oxidizing genus Thiomicrospira. Both samples yielded diverse gamma- and alphaproteobacterial phylotypes, as well as members of the Bacteroidetes, Planctomycetes, and Verrucomicrobia. Analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL and cbbM) from the sampling port mat and from the borehole fluid demonstrated autotrophic carbon assimilation potential for in situ microbial communities; most cbbL genes were related to those of the sulfur-oxidizing genera Thioalkalivibrio and Thiomicrospira, and cbbM genes were affiliated with uncultured phylotypes from hydrothermal vent plumes and marine sediments. Several 16S rRNA gene phylotypes from the 896A observatory grouped with phylotypes recovered from seawater-exposed basalts and sulfide deposits at inactive hydrothermal vents, but there is little overlap with hydrothermally influenced basaltic boreholes 1026B and U1301A on the Juan de Fuca Ridge flank, suggesting that site-specific characteristics of Hole 896A (i.e., seawater mixing into borehole fluids) affect the microbial community composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, David F.; Bartel, Lewis C.
Program LETS calculates the electric current distribution (in space and time) along an electrically energized steel-cased geologic borehole situated within the subsurface earth. The borehole is modeled as an electrical transmission line that “leaks” current into the surrounding geology. Parameters pertinent to the transmission line current calculation (i.e., series resistance and inductance, shunt capacitance and conductance) are obtained by sampling the electromagnetic (EM) properties of a three-dimensional (3D) geologic earth model along a (possibly deviated) well track.
Nanosatellite and Plug-and-Play Architecture 2 (NAPA 2)
2017-02-28
potentially other militarily relevant roles. The "i- Missions" focus area studies the kinetics of rapid mission development. The methodology involves...the US and Sweden in the Nanosatellite and Plug-and-play Architecture or "NAPA" program) is to pioneer a methodology for creating mission capable 6U...spacecraft. The methodology involves interchangeable blackbox (self-describing) components, software (middleware and applications), advanced
Seismic noise on Rarotonga: Surface versus downhole
Butler, Rhett; Hutt, C.R.
1992-01-01
Seismic noise data are presented from the new Global Seismographic Network station, RAR, on the Island of Rarotonga in the South Pacific. Data from the first new borehole site in the GSN are compared with a surface vault installation. Initial indications from the data show that borehole siting on a small island significantly reduces long-period (>20 s) horizontal seismic noise levels during the daytime, but little or no improvement is evident at periods shorter than 20 s or on the vertical component.The goal of the Incorporated Research Institutions for Seismology (IRIS) GSN program is broad, uniform coverage of the Earth with a 128-station network. To achieve this goal and provide coverage in oceanic areas, many stations will be sited on islands. A major siting consideration for these new stations is whether to build a surface vault or drill a borehole. Neither option is inexpensive. The costs for drilling a cased hole and a borehole sensor are large, but the benefit of a borehole site is that seismic noise is reduced during certain periods when a surface installation may be subject to wind, weather, and thermal effects. This benefit translates into recording greater numbers of smaller earthquakes and higher signal-to-noise ratio.
Performance of a Borehole XRF Spectrometer for Planetary Exploration
NASA Technical Reports Server (NTRS)
Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; WIllard-Schmoe, Ella
2007-01-01
We have designed and constructed a borehole XRF Spectrometer (XRFS) as part of the Mars Subsurface Access program. It will be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary performance metrics for the instrument are the lower limits of detection over a wide range of the periodic table. Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight parts-per-million for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.
Excess plutonium disposition: The deep borehole option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, K.L.
1994-08-09
This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues relatedmore » to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.« less
NASA Astrophysics Data System (ADS)
Benaouda, D.; Wadge, G.; Whitmarsh, R. B.; Rothwell, R. G.; MacLeod, C.
1999-02-01
In boreholes with partial or no core recovery, interpretations of lithology in the remainder of the hole are routinely attempted using data from downhole geophysical sensors. We present a practical neural net-based technique that greatly enhances lithological interpretation in holes with partial core recovery by using downhole data to train classifiers to give a global classification scheme for those parts of the borehole for which no core was retrieved. We describe the system and its underlying methods of data exploration, selection and classification, and present a typical example of the system in use. Although the technique is equally applicable to oil industry boreholes, we apply it here to an Ocean Drilling Program (ODP) borehole (Hole 792E, Izu-Bonin forearc, a mixture of volcaniclastic sandstones, conglomerates and claystones). The quantitative benefits of quality-control measures and different subsampling strategies are shown. Direct comparisons between a number of discriminant analysis methods and the use of neural networks with back-propagation of error are presented. The neural networks perform better than the discriminant analysis techniques both in terms of performance rates with test data sets (2-3 per cent better) and in qualitative correlation with non-depth-matched core. We illustrate with the Hole 792E data how vital it is to have a system that permits the number and membership of training classes to be changed as analysis proceeds. The initial classification for Hole 792E evolved from a five-class to a three-class and then to a four-class scheme with resultant classification performance rates for the back-propagation neural network method of 83, 84 and 93 per cent respectively.
AGScan: a pluggable microarray image quantification software based on the ImageJ library.
Cathelin, R; Lopez, F; Klopp, Ch
2007-01-15
Many different programs are available to analyze microarray images. Most programs are commercial packages, some are free. In the latter group only few propose automatic grid alignment and batch mode. More often than not a program implements only one quantification algorithm. AGScan is an open source program that works on all major platforms. It is based on the ImageJ library [Rasband (1997-2006)] and offers a plug-in extension system to add new functions to manipulate images, align grid and quantify spots. It is appropriate for daily laboratory use and also as a framework for new algorithms. The program is freely distributed under X11 Licence. The install instructions can be found in the user manual. The software can be downloaded from http://mulcyber.toulouse.inra.fr/projects/agscan/. The questions and plug-ins can be sent to the contact listed below.
The automation of an inlet mass flow control system
NASA Technical Reports Server (NTRS)
Supplee, Frank; Tcheng, Ping; Weisenborn, Michael
1989-01-01
The automation of a closed-loop computer controlled system for the inlet mass flow system (IMFS) developed for a wind tunnel facility at Langley Research Center is presented. This new PC based control system is intended to replace the manual control system presently in use in order to fully automate the plug positioning of the IMFS during wind tunnel testing. Provision is also made for communication between the PC and a host-computer in order to allow total animation of the plug positioning and data acquisition during the complete sequence of predetermined plug locations. As extensive running time is programmed for the IMFS, this new automated system will save both manpower and tunnel running time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, H.E.; Lin, J.W. III; Macha, E.S.
1984-12-04
A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approachingmore » ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.« less
A novel hydrogel plug of Sterculia urens for pulsatile delivery: in vitro and in vivo evaluation.
Amrutkar, Jitendra R; Gattani, Surendra G
2012-01-01
The objective of this study was to investigate a novel hydrogel plug using isolated root mucilage of Sterculia urens to obtain a desired lag time for an oral chronotherapeutic colon-specific pulsatile drug delivery of indomethacin. Pulsatile drug delivery was developed using chemically treated hard gelatin capsule bodies filled with eudragit multiparticulates of indomethacin, and sealed with different hydrogel plugs (root mucilage of S. urens, xanthan gum, guar gum, HPMC K4M and combination of maltodextrin with guar gum). Indomethacin multiparticulates were prepared using extrusion spheronization, spray drying and solvent evaporation techniques with Eudragit® L-100 and S-100 (1:2) by varying drug-to-polymer ratio. After oral administration, the water-soluble cap of capsule dissolved in the intestinal fluid and the hydrogel plug swells. After a controlled time, the swollen plug subsequently ejected from the dosage form, releases the contents of the capsule. The formulation factors affecting the drug release were concentration and types of hydrogel plug used. In vivo gamma scintigraphy study in healthy rabbits proved the capability of the system to release drug in lower parts of the gastrointestinal tract after a programmed lag time. This study demonstrates that the indomethacin multiparticulates could be successfully colon-targeted by the design of time and pH-dependent modified chronopharmaceutical formulation. In conclusion, the investigated novel hydrogel plug could be a valuable tool for achieving desired lag time.
openBEB: open biological experiment browser for correlative measurements
2014-01-01
Background New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy, microfluidic control and visual proteomics. In this example, measurements from diverse complementary techniques are combined and correlated. PMID:24666611
Nuclear thermal rocket nozzle testing and evaluation program
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.; Kacynski, Kenneth J.
1993-01-01
Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinehart, Ben N.
1994-08-01
A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana--the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete,more » utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports, and cost and salvage reports. Site locations, grid maps, and photographs are provided.« less
NASA Astrophysics Data System (ADS)
Jungbluth, S.; Bowers, R.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappé, M.
2012-12-01
Three generations of sampling and instrumentation platforms known as Circulation Obviation Retrofit Kit (CORK) observatories affixed to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) boreholes are providing unrivaled access to fluids originating from 1.2-3.5 million-years (Myr) old basaltic crust of the eastern flank of the Juan de Fuca ridge. Borehole fluid samples obtained via a custom seafloor fluid pumping and sampling system coupled to CORK continuous fluid delivery lines are yielding critical insights into the biogeochemistry and nature of microbial life inhabiting the sediment-covered basement environment. Direct microscopic enumeration revealed microbial cell abundances that are 2-41% of overlying bottom seawater. Snapshots of basement fluid microbial diversity and community structure have been obtained through small subunit ribosomal RNA (SSU rRNA) gene cloning and sequencing from five boreholes that access a range of basement ages and temperatures at the sediment-basement interface. SSU rRNA gene clones were derived from four different CORK installations (1026B, 1301A, 1362A, and 1362B) accessing relatively warmer (65°C) and older (3.5 Myr) ridge flank, and one location (1025C) accessing relatively cooler (39°C) and younger (1.2 Myr) ridge flank, revealing that warmer basement fluids had higher microbial diversity. A sampling time-series collected from borehole 1301A has revealed a microbial community that is temporally variable, with the dominant lineages changing between years. Each of the five boreholes sampled contained a unique microbial assemblage, however, common members are found from both cultivated and uncultivated lineages within the archaeal and bacterial domains, including meso- and thermophilic microbial lineages involved with sulfur cycling (e.g Thiomicrospira, Sulfurimonas, Desulfocapsa, Desulfobulbus). In addition, borehole fluid environmental gene clones were also closely related to uncultivated lineages recovered from both terrestrial and marine hydrothermal systems (e.g. Candidatus Desulforudis, Candidate Phylum OP8) as well as globally distributed marine sediments (e.g. Miscellaneous Crenarchaeotic Group, JTB35). This analysis provides a framework for future research investigating the evolutionary and functional diversity, population genetics, and activity of the poorly understood habitat. These ongoing sampling expeditions greatly benefit from improvements to both CORK observatories and evolving sampling equipment including microbiologically-friendly materials and dependable access to pristine fluids from the ocean crust.
A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA
NASA Astrophysics Data System (ADS)
Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert
2017-04-01
Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.
Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.
1997-12-31
Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples.more » Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available.« less
Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core
NASA Astrophysics Data System (ADS)
Blacklock, Natalie Erin
During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of Young's modulus. This indicated that the test procedure will require modifications to improve coupling of the transducers to the core surface. In order to assess whether laboratory testing can be an alternative to borehole surveys, laboratory velocity testing must be directly assessed with results from acoustic borehole logging. There is also potential for the laboratory velocity program to be used to assess small scale stiffness changes, differences in mineral composition and the degree of fracturing of drill core.
Map_plot and bgg_plot: software for integration of geoscience datasets
NASA Astrophysics Data System (ADS)
Gaillot, Philippe; Punongbayan, Jane T.; Rea, Brice
2004-02-01
Since 1985, the Ocean Drilling Program (ODP) has been supporting multidisciplinary research in exploring the structure and history of Earth beneath the oceans. After more than 200 Legs, complementary datasets covering different geological environments, periods and space scales have been obtained and distributed world-wide using the ODP-Janus and Lamont Doherty Earth Observatory-Borehole Research Group (LDEO-BRG) database servers. In Earth Sciences, more than in any other science, the ensemble of these data is characterized by heterogeneous formats and graphical representation modes. In order to fully and quickly assess this information, a set of Unix/Linux and Generic Mapping Tool-based C programs has been designed to convert and integrate datasets acquired during the present ODP and the future Integrated ODP (IODP) Legs. Using ODP Leg 199 datasets, we show examples of the capabilities of the proposed programs. The program map_plot is used to easily display datasets onto 2-D maps. The program bgg_plot (borehole geology and geophysics plot) displays data with respect to depth and/or time. The latter program includes depth shifting, filtering and plotting of core summary information, continuous and discrete-sample core measurements (e.g. physical properties, geochemistry, etc.), in situ continuous logs, magneto- and bio-stratigraphies, specific sedimentological analyses (lithology, grain size, texture, porosity, etc.), as well as core and borehole wall images. Outputs from both programs are initially produced in PostScript format that can be easily converted to Portable Document Format (PDF) or standard image formats (GIF, JPEG, etc.) using widely distributed conversion programs. Based on command line operations and customization of parameter files, these programs can be included in other shell- or database-scripts, automating plotting procedures of data requests. As an open source software, these programs can be customized and interfaced to fulfill any specific plotting need of geoscientists using ODP-like datasets.
NASA Astrophysics Data System (ADS)
Horikawa, H.; Takaesu, M.; Sueki, K.; Araki, E.; Sonoda, A.; Takahashi, N.; Tsuboi, S.
2015-12-01
The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP).We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real-time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough.We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site (*1). Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor information. In addition, before data download, user can check that data is available or not by data check function.In this presentation, we briefly introduce NanTroSEIZE and then show our web application system. We also discuss our future plans for developments of monitoring data download system.*1 Long-Term Borehole Monitoring Data Site http://join-web.jamstec.go.jp/borehole/borehole_top_e.html
Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Annunzio, Julie; Slezak, Lee; Conley, John Jason
2014-03-26
This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology andmore » interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.« less
Geothermal state and fluid flow within ODP Hole 843B: results from wireline logging
NASA Astrophysics Data System (ADS)
Wiggins, Sean M.; Hildebrand, John A.; Gieskes, Joris M.
2002-02-01
Borehole fluid temperatures were measured with a wireline re-entry system in Ocean Drilling Program Hole 843B, the site of the Ocean Seismic Network Pilot Experiment. These temperature data, recorded more than 7 years after drilling, are compared to temperature data logged during Leg 136, approximately 1 day after drilling had ceased. Qualitative interpretations of the temperature data suggest that fluid flowed slowly downward in the borehole immediately following drilling, and flowed slowly upward 7 years after drilling. Quantitative analysis suggests that the upward fluid flow rate in the borehole is approximately 1 m/h. Slow fluid flow interpreted from temperature data only, however, requires estimates of other unmeasured physical properties. If fluid flows upward in Hole 843B, it may have led to undesirable noise for the borehole seismometer emplaced in this hole as part of the Ocean Seismic Network Pilot Experiment. Estimates of conductive heat flow from ODP Hole 843B are 51 mW/m 2 for the sediment and the basalt. These values are lower than the most recent Hawaiian Arch seafloor heat flow studies.
NASA Astrophysics Data System (ADS)
Bourgine, Bernard; Lasseur, Éric; Leynet, Aurélien; Badinier, Guillaume; Ortega, Carole; Issautier, Benoit; Bouchet, Valentin
2015-04-01
In 2012 BRGM launched an extensive program to build the new French Geological Reference platform (RGF). Among the objectives of this program is to provide the public with validated, reliable and 3D-consistent geological data, with estimation of uncertainty. Approx. 100,000 boreholes over the whole French national territory provide a preliminary interpretation in terms of depths of main geological interfaces, but with an unchecked, unknown and often low reliability. The aim of this paper is to present the procedure that has been tested on two areas in France, in order to validate (or not) these boreholes, with the aim of being generalized as much as possible to the nearly 100,000 boreholes waiting for validation. The approach is based on the following steps, and includes the management of uncertainty at different steps: (a) Selection of a loose network of boreholes owning a logging or coring information enabling a reliable interpretation. This first interpretation is based on the correlation of well log data and allows defining 3D sequence stratigraphic framework identifying isochronous surfaces. A litho-stratigraphic interpretation is also performed. Be "A" the collection of all boreholes used for this step (typically 3 % of the total number of holes to be validated) and "B" the other boreholes to validate, (b) Geostatistical analysis of characteristic geological interfaces. The analysis is carried out firstly on the "A" type data (to validate the variogram model), then on the "B" type data and at last on "B" knowing "A". It is based on cross-validation tests and evaluation of the uncertainty associated to each geological interface. In this step, we take into account inequality constraints provided by boreholes that do not intersect all interfaces, as well as the "litho-stratigraphic pile" defining the formations and their relationships (depositing surfaces or erosion). The goal is to identify quickly and semi-automatically potential errors among the data, up to the geologist to check and correct the anomalies, (c) Consistency tests are also used to verify the appropriateness of interpretations towards other constraints (geological map, maximal formation extension limits, digital terrain model ...), (d) Construction of a 3D geological model from "A"+ "B" boreholes: continuous surfaces representation makes it possible to assess the overall consistency and to validate or invalidate interpretations. Standard-deviation maps allow visualizing areas where data from available but not yet validated boreholes could be added to reduce uncertainty. Maps of absolute or relative errors help to quantify and visualize model uncertainty. This procedure helps to quickly identify the main errors in the data. It guarantees rationalization, reproducibility and traceability of the various stages of validation. Automation aspect is obviously important when it comes to dealing with datasets that can contain tens of thousands of surveys. For this, specific tools have been developed by BRGM (GDM/ MultiLayer software, R scripts, GIS tools).
Navy Littoral Combat Ship (LCS) Program: Oversight Issues and Options for Congress
2007-06-11
Summary The Littoral Combat Ship (LCS) is a small, fast ship that uses modular “plug- and-fight” mission packages, including unmanned vehicles (UVs). The...small, fast ship that uses modular “plug-and- fight” mission packages, including unmanned vehicles (UVs). The basic version of the LCS, without any...including unmanned vehicles (UVs). Rather than being a multimission ship like the Navy’s current large surface combatants, the LCS is a focused-mission ship
May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.
2013-01-01
This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillet samples of yellow bullhead (Ameiurus natalis), golden redhorse (Moxostoma erythrurum), longear sunfish (Lepomis megalotis), and channel catfish (Ictalurus punctatus) were collected from six sites as part of the Missouri Department of Conservation’s Fish Contaminant Monitoring Program. Fish dorsal muscle plugs were collected from largemouth bass (Micropterus salmoides) at eight of the sites, and crayfish from two sites. Following preparation and analysis of the samples, highlights of the data were as follows: cadmium and lead residues were most elevated in crayfish tissue samples from the Big River at Cherokee Landing, with 1 to 8 micrograms per gram dry weight and 22 to 45 micrograms per gram dry weight, respectively. Some dorsal muscle plugs from largemouth bass collected from Clearwater Lake, Lake St. Louis, Noblett Lake, Hazel Creek Lake, and Harrison County Lake contained mercury residues (1.7 to 4.7 micrograms per gram dry weight) that exceeded the U.S. Environmental Protection Agency Water Quality Criterion of 1.5 micrograms per gram dry weight of fish tissue (equivalent to 0.30 micrograms per gram wet weight).
Nuclear thermal rocket nozzle testing and evaluation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidian, K.O.; Kacynski, K.J.
Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulsemore » values are expected to be within plus or minus 1.17%.« less
Performance of a Borehole X-ray Fluorescence Spectrometer for Planetary Exploration
NASA Technical Reports Server (NTRS)
Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; Willard-Schmoe, Ella
2008-01-01
We have designed and constructed a borehole X-ray Fluorescence Spectrometer (XRFS) as part of the Mars Subsurface Access program [1]. It can be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary requirements and performance metrics for the instrument are to obtain parts-per-million (ppm) lower limits of detection over a wide range of elements in the periodic table (Magnesium to Lead). Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight ppm for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.
NASA Astrophysics Data System (ADS)
Tivey, M.; Farr, N.; Ware, J.; Pontbriand, C.
2010-12-01
We report the successful deployment and testing of an underwater optical communication system that provides high data rate communications over a range of 100 meters from a deep sea borehole observatory located in the northeast Pacific. Optical underwater communications offers many advantages over acoustic or underwater wet mateable connections (UWMC). UMWCs requires periodic visits from a submersible or ROV to plug in and download data. Typically, these vehicles cannot perform any other tasks during these download periods - their time on station is limited, restricting the amount of data that can be downloaded. To eliminate the need for UWMCs requires the use of remote communication techniques such as acoustics or optical communications. Optical communications is capable of high data rates up to 10 mega bits per sec (Mbps) compared to acoustic data rates of 57 Kbps. We have developed an integrated optical/acoustic telemetry system (OTS) that uses an acoustic command system to control a high bandwidth, low latency optical communication system. In July 2010, we used the deep submersible ALVIN to install the Optical Telemetry System (OTS) at CORK 857D. The CORK is instrumented with a thermistor string and pressure sensors that record downhole formation pressures and temperatures within oceanic basement that is pressure sealed from the overlying water column. The seafloor OTS was plugged into the CORK’s existing UWMC to provide an optical and acoustic communication interface and additional data storage and battery power for the CORK to sample at 1 Hz data-rate, an increase over the normal 15 sec data sample rate. Using a CTD-mounted OTS lowered by wire from a surface ship, we established an optical communication link at 100 meters range at rates of 1, 5 and 10 Mbps with no bit errors. Tests were also done to establish the optical range of various data rates and the optical power of the system. After a week, we repeated the CTD-OTS experiment and downloaded 20 Mbytes of data over a 5 Mbps link at a range of 80 m. The OTS will remain installed at CORK 857D for a year. Our OTS enables faster data rates to be employed for in situ measurements that were previously limited by data download times from a submersible. The OTS also permits non submersible-equipped vessels to interrogate the CORK borehole observatory on a more frequent basis using a receiver lowered by wire from a ship of opportunity. In the future, autonomous vehicles could interrogate such seafloor observatories in a “data-mule” configuration and then dock at a seafloor cabled node to download data. While borehole observatories may ultimately be linked into undersea cables relaying real-time data back to shore they represent a superb opportunity to test free water optical communication methods. The lessons learned from our CORK development efforts will go a long way towards establishing the viability of underwater optical communications for a host of autonomous seafloor sensor systems in the future.
Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich Chartrand
A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer.more » Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.« less
Combination gas producing and waste-water disposal well
Malinchak, Raymond M.
1984-01-01
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
Combination gas-producing and waste-water disposal well. [DOE patent application
Malinchak, R.M.
1981-09-03
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
MassCascade: Visual Programming for LC-MS Data Processing in Metabolomics.
Beisken, Stephan; Earll, Mark; Portwood, David; Seymour, Mark; Steinbeck, Christoph
2014-04-01
Liquid chromatography coupled to mass spectrometry (LC-MS) is commonly applied to investigate the small molecule complement of organisms. Several software tools are typically joined in custom pipelines to semi-automatically process and analyse the resulting data. General workflow environments like the Konstanz Information Miner (KNIME) offer the potential of an all-in-one solution to process LC-MS data by allowing easy integration of different tools and scripts. We describe MassCascade and its workflow plug-in for processing LC-MS data. The Java library integrates frequently used algorithms in a modular fashion, thus enabling it to serve as back-end for graphical front-ends. The functions available in MassCascade have been encapsulated in a plug-in for the workflow environment KNIME, allowing combined use with e.g. statistical workflow nodes from other providers and making the tool intuitive to use without knowledge of programming. The design of the software guarantees a high level of modularity where processing functions can be quickly replaced or concatenated. MassCascade is an open-source library for LC-MS data processing in metabolomics. It embraces the concept of visual programming through its KNIME plug-in, simplifying the process of building complex workflows. The library was validated using open data.
Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid
2014-01-01
The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.
Telemetry and Communication IP Video Player
NASA Technical Reports Server (NTRS)
OFarrell, Zachary L.
2011-01-01
Aegis Video Player is the name of the video over IP system for the Telemetry and Communications group of the Launch Services Program. Aegis' purpose is to display video streamed over a network connection to be viewed during launches. To accomplish this task, a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming. The program was then customized to be used during launches. The VLC plug-in can be configured programmatically to display a single stream, but for this project multiple streams needed to be accessed. To accomplish this, an easy to use, informative menu system was added to the program to enable users to quickly switch between videos. Other features were added to make the player more useful, such as watching multiple videos and watching a video in full screen.
Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N. D.; Aldridge, D. F.; Preston, L. A.; Ober, C.
2012-12-01
In support of the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS), we have conducted two cross-borehole seismic experiments in the Climax Stock. The first experiment was conducted prior to the third shot in this multi-detonation program using two available boreholes and the shot hole, while the second experiment was conducted after the shot using four of the available boreholes. The first study focused on developing a well-characterized 2D pre-explosion Vp model including two VSPs and a seismic refraction survey, as well as quantifying baseline waveform similarity at reoccupied sites. This was accomplished by recording both "sparker" and accelerated weight drop sources on a hydrophone string and surface geophones. In total more than 18,500 unique source-receiver pairs were acquired during this testing. In the second experiment, we reacquired aproximately 8,800 source-receiver pairs and performed a cross-line survey allowing for a 3D post-explosion Vp model. The data acquired from the reoccupied sites was processed using cross-correlation methods and change detection methodologies, including comparison of the tomographic images. The survey design and subsequent processing provided an opportunity to investigate seismic wave propagation through damaged rock. We also performed full waveform forward modelling for a granitic body hosting a perched aquifer. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Kopf, A.; Saffer, D. M.; Toczko, S.
2016-12-01
NanTroSEIZE is a multi-expedition IODP project to investigate fault mechanics and seismogenesis along the Nankai Trough subduction zone through direct sampling, in situ measurements, and long-term monitoring. Recent Expedition 365 had three primary objectives at a major splay thrust fault (termed the "megasplay") in the forearc: (1) retrieval of a temporary observatory (termed a GeniusPlug) that has been monitoring temperature and pore pressure within the fault zone at 400 meters below seafloor for since 2010; (2) deployment of a complex long-term borehole monitoring system (LTBMS) across the same fault; and (3) coring of key sections of the hanging wall, deformation zone and footwall of the shallow megasplay. Expedition 365 achieved its primary monitoring objectives, including recovery of the GeniusPlug with a >5-year record of pressure and temperature conditions, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 2011 M9 Tohoku and the 1 April Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the fault zone, and microbes were successfully cultivated from the colonization unit. The LTBMS incorporates multi-level pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. This multi-level hole completion was meanwhile connected to the DONET seafloor cabled network for tsunami early warning and earthquake monitoring. Coring the shallow megasplay site in the Nankai forearc recovered ca. 100m of material across the fault zone, which contained indurated silty clay with occasional ash layers and sedimentary breccias in the hangingwall and siltstones in the footwall of the megasplay. The mudstones show different degrees of deformation spanning from occasional fractures to intensely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2cm) is seen with both normal and reverse sense of slip. Post-cruise rock deformation experiments will relate physical properties to the earthquake response monitored by the observatory array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2015-02-28
To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Renken, J.; Zabel, M.; Wefer, G.
2011-12-01
State of the art technology for long-term monitoring of fluid migration within the sea floor is the sealing of a borehole with a Circulation Obviation Retrofit Kit (CORK) after sensor installation and/or fluid sampling devices within the drill string. However, the combined used of a drilling vessels and a remotely operated drilling (ROV) required for a CORK installation in the deep sea is a costly exercise that limits the number of monitoring stations installed. Robotic sea floor drill rigs are a cost effective alternative for shallow drillings down to 50-100 m below sea floor. Here we present a Mini-CORK system that is developed for installation with the sea floor drill rig MeBo. This rig was developed at MARUM Research Centre, University of Bremen in 2005 and can sample the sea floor in water depths up to 2000 m. The MeBo is deployed on the seabed and remotely controlled from the vessel. All required drill tools for wire-line core drilling down to 70 m below sea floor are stored on two rotating magazines and can be loaded below the top drive drill head for assembling the drill string. For one of the upcoming cruises with RV Sonne offshore Japan (Nankai Trough accretionary prism), MeBo will be used for the first time to place observatories. Two different designs have been developed. The first, relatively simple long-term device resembles a MeBo drill rod in its geometry, and contains a pressure and temperature transducer in the borehole plus an identical pair of transducers for seafloor reference. The device also contains a data logger, battery unit, and an acoustic modem so that data can be downloaded at any time from a ship of opportunity. The key element at the base of the observatory rod is a seal at the conical thread to separate the borehole hydraulically from the overlying water body. It is realized by an adapter, which also contains a hotstab hydraulic connection and an electrical connection. The second observatory device is a seafloor unit, which replaces part of the first unit and which is deployed by ROV. In essence, the upper portion of the former observatory is taken away by ROV, and an umbilical containing hydraulic lines and tubing to withdraw formation water from the borehole is plugged into the hotstab female adapter by ROV. At the far end, the umbilical is connected to a seafloor unit with battery power, data logger, P and T transducers, and the same acoustic modem as the former one. In addition, the latter contains osmo samplers and biological chambers (FLOCS) for in situ sampling and experiments. After the envisaged deployment period, the entire unit is replaced while an identical one is prepared on deck and lowered from the vessel. In theory, the MeBo hole infinitely serves as an access to depth since no electronic, but only tubing is lowered into the (open) hole. In summary, long-term borehole installations with MeBo offer an affordable way to measure key physical properties over time and sample the formation fluids for geochemistry and microbiology (in case of the second, ROV-deployed CORK).
Climate reconstruction from borehole temperatures influenced by groundwater flow
NASA Astrophysics Data System (ADS)
Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.
2017-12-01
Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.
Site Characterization for a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.
2015-12-01
The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Present-day stress state in the Outokumpu deep drill hole, Finland
NASA Astrophysics Data System (ADS)
Pierdominici, Simona; Ask, Maria; Kukkonen, Ilmo; Kueck, Jochem
2017-04-01
This study aims to investigate the present-day stress field in the Outokumpu area, eastern Finland, using interpretation of borehole failure on acoustic image logs in a 2516 m deep hole. Two main objectives of this study are: i. to constrain the orientation of maximum horizontal stress by mapping the occurrence of stress-induced deformation features using two sets of borehole televiewer data, which were collected in 2006 and 2011; and ii. to investigate whether any time dependent deformation of the borehole wall has occurred (creep). The Outokumpu deep hole was drilled during 2004-2005 to study deep structures and seismic reflectors within the Outokumpu formation and conducted within the International Continental Scientific Drilling Program (ICDP). The hole was continuously core-drilled into Paleoproterozoic formation of metasediments, ophiolite-derived altered ultrabasic rocks and pegmatitic granite. In 2006 and 2011 two downhole logging campaigns were performed by the Operational Support Group of ICDP to acquire a set of geophysical data. Here we focus on a specific downhole logging measurement, the acoustic borehole televiewer (BHTV), to determine the present-day stress field in the Outokumpu area. We constrain the orientation and magnitude of in situ stress tensor based on borehole wall failures detected along a 2516 m deep hole. Horizontal stress orientation was determined by interpreting borehole breakouts (BBs) and drilling-induced tensile fractures (DIFs) from BHTV logs. BBs are stress-induced enlargements of the borehole cross section and occur in two opposite zones at angles around the borehole where the wellbore stress concentration (hoop stress) exceeds the value required to cause compressive failure of intact rock. DIFs are caused by tensile failure of the borehole wall and form at two opposite spots on the borehole where the stress concentration is lower than the tensile strength of the rock. This occurs at angles 90° apart from the center of the breakout zone. Acoustic imaging logs provide a high-resolution oriented picture of the borehole wall that allows for the direct observation of BBs, which appear as two almost vertical swaths on the borehole image separated by 180°. BBs show poor sonic reflectivity and long travel times due to the many small brittle fractures and the resulting spalling. DIFs appear as two narrow stripes of low reflectivity separated by 180° and typically sub-parallel or slightly inclined to the borehole axis. The analysis of these images shows a distinct compressive failure area consistent with major geological and tectonic lineaments of the area. Deviations from this trend reflect local structural perturbations. Additionally, the 2006 and 2011 dataset are used to compare the changes of breakout geometry and to quantify the growth of the breakouts in this time span from differences in width, length and depth to estimate the magnitude of the horizontal stress tensors. Our study contributes to understand the structure of the shallow crust in the Outokumpu area by defining the current stress field. Furthermore, a detailed understanding of the regional stress field is a fundamental contribution in several research areas such as exploration and exploitation of underground resources, and geothermal reservoir studies.
Test wells T21, T22, and T25, White Sands Missile Range, Dona Ana County, New Mexico
Myers, R.G.
1983-01-01
Three test wells, T21, T22, and T25, were drilled at White Sands Missile Range in south-central New Mexico as part of a joint military program sponsored by the U.S. Army in September 1982. T21 and T22 were drilled as observation wells for two old landfills. T25 was drilled as an exploratory hole to obtain lithologic and borehole-geophysical data in the vicinity of the proposed replacement well for Supply Well 15. Information obtained from these wells includes borehole-geophysical and driller's logs.
PBO Integrated Real-Time Observing Sites at Volcanic Sites
NASA Astrophysics Data System (ADS)
Mencin, D.; Jackson, M.; Borsa, A.; Feaux, K.; Smith, S.
2009-05-01
The Plate Boundary Observatory, an element of NSF's EarthScope program, has six integrated observatories in Yellowstone and four on Mt St Helens. These observatories consist of some combination of borehole strainmeters, borehole seismometers, GPS, tiltmeters, pore pressure, thermal measurements and meteorological data. Data from all these instruments have highly variable data rates and formats, all synchronized to GPS time which can cause significant congestion of precious communication resources. PBO has been experimenting with integrating these data streams to both maximize efficiency and minimize latency through the use of software that combines the streams, like Antelope, and VPN technologies.
NASA Astrophysics Data System (ADS)
Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer
2018-05-01
We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.
A computer program for borehole compensation of dual-detector density well logs
Scott, James Henry
1978-01-01
The computer program described in this report was developed for applying a borehole-rugosity and mudcake compensation algorithm to dual-density logs using the following information: the water level in the drill hole, hole diameter (from a caliper log if available, or the nominal drill diameter if not), and the two gamma-ray count rate logs from the near and far detectors of the density probe. The equations that represent the compensation algorithm and the calibration of the two detectors (for converting countrate or density) were derived specifically for a probe manufactured by Comprobe Inc. (5.4 cm O.D. dual-density-caliper); they are not applicable to other probes. However, equivalent calibration and compensation equations can be empirically determined for any other similar two-detector density probes and substituted in the computer program listed in this report. * Use of brand names in this report does not necessarily constitute endorsement by the U.S. Geological Survey.
CORRELATOR 5.2 - A program for interactive lithostratigraphic correlation of wireline logs
Olea, R.A.
2004-01-01
The limited radius of investigation of petrophysical measurements made in boreholes and the relatively large distances between wells result in an incomplete sensing of the subsurface through well logging. CORRELATOR is a program for estimating geological properties between logged boreholes. An initial and fundamental step is the lithostratigraphic correlation of logs in different wells. The method employed by the program closely emulates the process of visual inspection used by experienced subsurface geologists in manual correlation. Mathematically, the determination of lithostratigraphical equivalence is based on the simultaneous assessment of similarity in shale content, similarity in the patterns of vertical variation in a petrophysical property that is measured with high vertical resolution, and spatial consistency of stratigraphic relationships as determined by an expert system. Multiple additional options for processing log readings allow maximization in the extraction of information from pairs of logs per well and great flexibility in the final display of results in the form of cross sections and dip diagrams. ?? 2004 Elsevier Ltd. All rights reserved.
Advanced wiring technique and hardware application: Airplane and space vehicle
NASA Technical Reports Server (NTRS)
Ernst, H. L.; Eichman, C. D.
1972-01-01
An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.
Experimental study of flow due to an isolated suction hole and a partially plugged suction slot
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Wilkinson, S. P.
1980-01-01
Details for construction of a model of a partially plugged, laminar flow control, suction slot and an isolated hole are presented. The experimental wind tunnel facility and instrumentation is described. Preliminary boundary layer velocity profiles (without suction model) are presented and shown to be in good agreement with the Blasius laminar profile. Recommendations for the completion of the study are made. An experimental program for study of transition on a rotating disk is described along with preliminary disturbance amplification rate data.
Tipping, R.G.; Runkel, Anthony C.; Alexander, E.C.; Alexander, S.C.; Green, J.A.
2006-01-01
In southeastern Minnesota, Paleozoic bedrock aquifers have typically been represented in groundwater flow simulations as isotropic, porous media. To obtain a more accurate hydrogeologic characterization of the Ordovician Prairie du Chien Group, a new approach was tested, combining detailed geologic observations, particularly of secondary porosity, with hydraulic data. Lithologic observations of the depositional and erosional history of the carbonate-dominated bedrock unit constrained characterization of both primary (matrix) and secondary porosity from outcrops and core. Hydrostratigraphic data include outcrop and core observations along with core plug permeability tests. Hydrogeologic data include discrete interval aquifer tests, borehole geophysics, water chemistry and isotope data, and dye trace studies. Results indicate that the Prairie du Chien Group can be subdivided into the Shakopee aquifer at the top, consisting of interbedded dolostone, sandstone and shale, and the underlying Oneota confining unit consisting of thickly bedded dolostone. The boundary between these two hydrogeologic units does not correspond to lithostratigraphic boundaries, as commonly presumed. Groundwater flow in the Shakopee aquifer is primarily through secondary porosity features, most commonly solution-enlarged bedding planes and sub-horizontal and vertical fractures. Regional scale preferential development of cavernous porosity and permeability along specific stratigraphic intervals that correspond to paleokarst were also identified, along with a general depiction of the distribution of vertical and horizontal fractures. The combination of outcrop and core investigations, along with borehole geophysics, discrete interval aquifer tests, water chemistry and isotope data and dye trace studies show that the Prairie du Chien Group is best represented hydrogeologically as heterogeneous and anisotropic. Furthermore, heterogeneity and anisotropy within the Prairie du Chien Group is mappable at a regional scale (>15,000 km2). ?? 2005 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hageage, Ana
2011-01-01
This report profiles the National Council of La Raza (NCLR) Escalera Program: Taking Steps to Success, a Latino-serving, community-based youth workforce development program, which was developed in 2001 in partnership with the PepsiCo Foundation and PepsiCo, Inc. and expanded in 2008 with the support of Shell Oil Company. The Escalera Program:…
2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk; Jeffrey Wishart
2013-07-01
The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on themore » AVTA for the Vehicle Technologies Program of the DOE.« less
Present-day stress state analysis on the Big Island of Hawaíi, USA
NASA Astrophysics Data System (ADS)
Pierdominici, Simona; Kueck, Jochem; Millett, John; Planke, Sverre; Jerram, Dougal A.; Haskins, Eric; Thomas, Donald
2017-04-01
We analyze and interpret the stress features from a c. 1.5 km deep fully cored borehole (PTA2) on the Big Island of Hawaíi within the Humúula saddle region, between the Mauna Kea and Mauna Loa volcanoes. The Big Island of Hawaii comprises the largest and youngest island of the Hawaiian-Emperor seamount chain and is volumetrically dominated by shield stage tholeiitic volcanic rocks. Mauna Kea is dormant whereas Mauna Loa is still active. There are also a series of normal faults on Mauna Loa's northern and western slopes, between its two major rift zones, that are believed to be the result of combined circumferential tension from the two rift zones and from added pressure due to the westward growth of the neighboring Kīlauea volcano. The PTA2 borehole was drilled in 2013 into lava dominated formation (Pahoehoe and Aā) as part of the Humúula Groundwater Research Project (HGPR) with the purpose of characterizing the groundwater resource potential in this area. In 2016 two downhole logging campaigns were performed by the Operational Support Group of the International Continental Scientific Drilling Program (ICDP) to acquire a set of geophysical data as part of the Volcanic Margin Petroleum Prospectivity (VMAPP) project. The main objective of the logging campaign was to obtain high quality wireline log data to enable a detailed core-log integration of the volcanic sequence and to improve understanding of the subsurface expression of volcanic rocks. We identify stress features (e.g. borehole breakouts) and volcanic structures (e.g. flow boundaries, vesicles and jointing) at depth using borehole images acquired with an ABI43 acoustic borehole televiewer. We analyzed and interpreted the stress indicators and compared their orientation with the regional stress pattern. We identified a set of stress indicators along the hole dominantly concentrated within the lower logged interval of the PTA2 borehole. Two primary horizontal stress indicators have been taken into account: borehole breakouts (bidirectional enlargements) (BB) and drilling induced tensile fractures (DIF). BB and DIF occur when the stresses around the borehole exceed the compressive and tensile yield stress of the borehole wall rock respectively causing failure. A breakout is caused by the development of intersecting conjugate shear planes that cause pieces of the borehole wall to spall off. For a breakout to develop, the stress concentration around a vertical borehole is largest in the direction of the minimum horizontal stress. Hence, BB develops approximately parallel to the orientation of the minimum horizontal stress. For the DIF, the stress concentration around a vertical borehole is at a minimum in the maximum horizontal stress direction. Hence, DIF develop approximately parallel to the orientation of the maximum horizontal stress. Based on the World Stress Map, the present-day stress in this area is defined only by focal mechanism solutions. These data give a unique opportunity to characterize the orientation of the present-day stress field between two large volume shield volcanoes on an active volcanic island using a different approach and stress indicators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.; Thornburg, Jon A.; He, Ruiqing
2015-04-21
Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The currentmore » state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.6 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). Simultaneously with the fiber optic based seismic 3C vector sensors we are using the lead-in fiber to acquire Distributed Acoustic Sensor (DAS) data from the surface to the bottom of the vector array. While the DAS data is of much lower quality than the vector sensor data it provides a 1 m spatial sampling of the downgoing wavefield which will be used to build the high resolution velocity model which is an essential component in high resolution imaging and monitoring.« less
Vehicle Technologies Program Educational Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-12-13
Description of educational activities including: EcoCAR2: Plugging In to the Future, EcoCAR: The NeXt Challenge, Green Racing, Automotive X Prize, Graduate Technology Automotive Education (GATE), and Hydrogen Education.
NASA Astrophysics Data System (ADS)
El Araby, Mahmoud; Odling, Noelle; Clark, Roger; West, Jared
2010-05-01
Borehole water levels fluctuate in response to deformation of the surrounding aquifer caused by surface loading due to barometric pressure or strain caused by Earth and ocean tides. The magnitude and nature of this response mainly depend on the hydraulic properties of the aquifer and overlying units and borehole design. Thus water level responses reflect the effectiveness of a confining unit as a protective layer against aquifer contamination (and therefore groundwater vulnerability) and to potential aquifer recharge/discharge zones. In this study, time series of borehole water levels and barometric pressure are being investigated using time series analysis and signal processing techniques with the aim of developing a methodology for assessing recharge/discharge distribution and groundwater vulnerability in the confined/semi-confined part of the Chalk aquifer in East Yorkshire, UK. The chalk aquifer in East Yorkshire is an important source for industrial and domestic water supply. The aquifer water quality is threatened by surface pollution particularly by nitrates from agricultural fertilizers. The confined/semi-confined part of this aquifer is covered by various types of superficial deposits resulting in a wide range of the aquifer's degree of confinement. A number of boreholes have been selected for monitoring to cover all these various types of confining units. Automatic pressure transducers are installed to record water levels and barometric pressure measurements at each borehole on 15 minutes recording intervals. In strictly confined aquifers, borehole water level response to barometric pressure is an un-drained instantaneous response and is a constant fraction of the barometric pressure changes. This static confined constant is called the barometric efficiency which can be estimated simply by the slope of a regression plot of water levels versus barometric pressure. However, in the semi confined aquifer case this response is lagged due to water movement between the aquifer and the confining layer. In this case the static constant barometric efficiency is not applicable and the response is represented by a barometric response function which reflects the timing and frequency of the barometric pressure loading. In this study, the barometric response function is estimated using de-convolution techniques both in the time domain (least squares regression de-convolution) and in the frequency domain (discrete Fourier transform de-convolution). In order to estimate the barometric response function, borehole water level fluctuations due to factors other than barometric pressure should be removed (de-trended) as otherwise they will mask the response relation of interest. It is shown from the collected borehole data records that the main four factors other than barometric pressure contribute to borehole water level fluctuations. These are the rainfall recharge, Earth tides, sea tides and pumping activities close to the borehole location. Due to the highly variable nature of the UK weather, rainfall recharge shows a wide variation throughout the winter and summer seasons. This gives a complicated recharge signal over a wide range of frequencies which must be de-trended from the borehole water level data in order to estimate the barometric response function. Methods for removing this recharge signal are developed and discussed. Earth tides are calculated theoretically at each borehole location taking into account oceanic loading effects. Ocean tide effects on water levels fluctuations are clear for the boreholes located close to the coast. A Matlab code has been designed to calculate and de-trend the periodic fluctuations in borehole water levels due to Earth and ocean tides using the least squares regression technique based on a sum of sine and cosine fitting model functions. The program results have been confirmed using spectral analysis techniques.
Paillet, Frederick L.
1993-01-01
Nearly a decade of intensive geophysical logging at fractured rock hydrology research sites indicates that geophysical logs can be used to identify and characterize fractures intersecting boreholes. However, borehole-to-borehole flow tests indicate that only a few of the apparently open fractures found to intersect boreholes conduct flow under test conditions. This paper presents a systematic approach to fracture characterization designed to define the distribution of fractures along boreholes, relate the measured fracture distribution to structure and lithology of the rock mass, and define the nature of fracture flow paths across borehole arrays. Conventional electrical resistivity, gamma, and caliper logs are used to define lithology and large-scale structure. Borehole wall image logs obtained with the borehole televiewer are used to give the depth, orientation, and relative size of fractures in situ. High-resolution flowmeter measurements are used to identify fractures conducting flow in the rock mass adjacent to the boreholes. Changes in the flow field over time are used to characterize the hydraulic properties of fracture intersections between boreholes. Application of this approach to an array of 13 boreholes at the Mirror Lake, New Hamsphire site demonstrates that the transient flow analysis can be used to distinguish between fractures communicating with each other between observation boreholes, and those that are hydraulically isolated from each other in the surrounding rock mass. The Mirror Lake results also demonstrate that the method is sensitive to the effects of boreholes on the hydraulic properties of the fractured-rock aquifer. Experiments conducted before and after the drilling of additional boreholes in the array and before and after installation of packers in existing boreholes demonstrate that the presence of new boreholes or the inflation of packers in existing boreholes has a large effect on the measured hydraulic properties of the rock mass surrounding the borehole array. ?? 1993.
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Krishnakumar, Kalmaje
2005-01-01
The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.
Stumm, Frederick; Chu, Anthony; Monti, Jack
2004-01-01
Advanced borehole-geophysical techniques were used to assess the geohydrology of crystalline bedrock in 20 boreholes on the southern part of Manhattan Island, N.Y., in preparation for construction of a third water tunnel for New York City. The borehole-logging techniques included natural gamma, single-point resistance, short-normal resistivity, mechanical and acoustic caliper, magnetic susceptibility, borehole-fluid temperature and resistivity, borehole-fluid specific conductance, dissolved oxygen, pH, redox, heatpulse flowmeter (at selected boreholes), borehole deviation, acoustic and optical televiewer, and borehole radar (at selected boreholes). Hydraulic head and specific-capacity test data were collected from 29 boreholes. The boreholes penetrated gneiss, schist, and other crystalline bedrock that has an overall southwest to northwest-dipping foliation. Most of the fractures penetrated are nearly horizontal or have moderate- to high-angle northwest or eastward dip azimuths. Foliation dip within the potential tunnel-construction zone is northwestward and southeastward in the proposed North Water-Tunnel, northwestward to southwestward in the proposed Midtown Water-Tunnel, and northwestward to westward dipping in the proposed South Water-Tunnel. Fracture population dip azimuths are variable. Heat-pulse flowmeter logs obtained under pumping and nonpumping (ambient) conditions, together with other geophysical logs, indicate transmissive fracture zones in each borehole. The 60-megahertz directional borehole-radar logs delineated the location and orientation of several radar reflectors that did not intersect the projection of the borehole.Fracture indexes range from 0.12 to 0.93 fractures per foot of borehole. Analysis of specific-capacity tests from each borehole indicated that transmissivity ranges from 2 to 459 feet squared per day; the highest transmissivity is at the Midtown Water-Tunnel borehole (E35ST-D).
Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabello, D.P.; Felts, L.L.; Hayoz, F.P.
1981-05-01
The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annualmore » mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.« less
Rapid fibrin plug formation within cutaneous ablative fractional CO2 laser lesions.
Kositratna, Garuna; Evers, Michael; Sajjadi, Amir; Manstein, Dieter
2016-02-01
Ablative fractional laser procedures have been shown to facilitate topical drug delivery into the skin. Past studies have mainly used ex vivo models to demonstrate enhanced drug delivery and in vivo studies have investigated laser created channels over a time course of days and weeks rather than within the first few minutes and hours after exposures. We have noticed rapid in vivo fibrin plug formation within ablative fractional laser lesions impairing passage through the laser created channels. In vivo laser exposures were performed in a porcine model. A fractional CO2 laser (AcuPulse™ system, AcuScan 120™ handpiece, Lumenis, Inc., Yokneam, Israel) was programmed in quasi-continuous wave (QCW) mode, at 40W, 50 mJ per pulse, 5% coverage, nominal 120 µm spot size, 8 × 8 mm square pattern, 169 MTZs per scan. Six millimeters punch biopsies were procured at 0, 2, 5, 10, 15, 30, 60, 90 minutes after completion of each scan, then fixed in 10% formalin. 12 repeats were performed of each time point. Skin samples were processed for serial vertically cut paraffin sections (5 μm collected every 25 μm) then H&E and special immunohistochemistry staining for fibrin and platelet. Dimensions of Microscopic Treatment Zones (MTZs) and extent of fibrin plug were assessed and quantified histologically. Ex vivo laser exposures of the identical laser parameter were performed on porcine and human skin at different storage conditions. Histology procured at various predetermined time intervals after in vivo fractional CO2 laser exposures revealed a rapidly forming fibrin plug initiating at the bottom of the MTZ lesions. At longer time intervals, the fibrin plug was extending towards the superficial sections. Within the first 5 minutes, more than 25% length of the entire laser-ablated channel was filled with a fibrin plug. With increased time intervals, the cavity was progressively filled with a fibrin plug. At 90 minutes, more than 90% length of the entire laser-ablated channel was occluded. Ex vivo exposures failed to produce any significant fibrin plug formation. The current study has demonstrated rapid fibrin plug formation after ablative fractional laser procedures. It was shown that the passage through laser created pathways is critically time dependent for in vivo exposures. In contrast, ex vivo exposures do not exhibit such time dependent passage capacity. In particular, drug, substance, and cell delivery studies for ablative fractional laser treatments should take early fibrin plug formation into consideration and further investigate the impact on transdermal delivery. © 2015 Wiley Periodicals, Inc.
MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.
Bradley, Jerry A.; Wright, David L.
1987-01-01
An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.
NASA Astrophysics Data System (ADS)
Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi
2016-04-01
The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for developments of monitoring data download system.
Field Test to Evaluate Deep Borehole Disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan
The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors. For such nations the cost for disposing of volumetrically limited waste streams could be lower than mined geologic repositories.« less
Hydrogen and Plug-In Electric Vehicle (PEV) Rebate The Hydrogen and Electric Automobile Purchase Rebate Program (CHEAPR) offers rebates for the incremental cost of the purchase or lease of a hydrogen
Medical Device Plug-and-Play (MD PnP) Interoperability Standardization Program Development
2009-08-01
TATRC / DoD Sandy Weininger, FDA / CDRH ICE-PAC / Industry Tracy Rausch, DocBox Inc. Ken Fuchs, Draeger Medical Carl Wallroth, Draeger Medical...Systems (LSTAT) Paul Jones, FDA / CDRH Kamran Sayrafian-Pour, NIST © 2006-2009 a white paper from the MD PnP Program rev July 2009 Advancing
Isotherm Sensor Calibration Program for Mars Science Laboratory Heat Shield Flight Data Analysis
NASA Technical Reports Server (NTRS)
Santos, Jose A.; Oishi, Tomo; Martinez, Ed R.
2011-01-01
Seven instrumented sensor plugs were installed on the Mars Science Laboratory heat shield in December 2008 as part of the Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) project. These sensor plugs contain four in-depth thermocouples and one Hollow aErothermal Ablation and Temperature (HEAT) sensor. The HEAT sensor follows the time progression of a 700 C isotherm through the thickness of a thermal protection system (TPS) material. The data can be used to infer char depth and, when analyzed in conjunction with the thermocouple data, the thermal gradient through the TPS material can also be determined. However, the uncertainty on the isotherm value is not well defined. To address this uncertainty, a team at NASA Ames Research Center is carrying out a HEAT sensor calibration test program. The scope of this test program is described, and initial results from experiments conducted in the laboratory to study the isotherm temperature of the HEAT sensor are presented. Data from the laboratory tests indicate an isotherm temperature of 720 C 60 C. An overview of near term arc jet testing is also given, including preliminary data from 30.48cm 30.48cm PICA panels instrumented with two MEDLI sensor plugs and tested in the NASA Ames Panel Test Facility. Forward work includes analysis of the arc jet test data, including an evaluation of the isotherm value based on the instant in time when it reaches a thermocouple depth.
Freifeld, Barry; Daley, Tom; Cook, Paul; ...
2014-12-31
Understanding the impacts caused by injection of large volumes of CO 2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO 2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Boreholemore » Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO 2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM work scope, the fibre-optic cable was able to also be used for the emergent technology of distributed acoustic sensing. The MBM monitoring string was installed in March, 2012. To date, the Citronelle MBM instruments continue to operate reliably. Results and lessons learned from the Citronelle MBM deployment are addressed along with examples of data being collected.« less
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.
Sloto, R.A.; Macchiaroli, Paola; Towle, M.T.
1996-01-01
The study area consists of a 9-square-mile area underlain by sedimentary rocks of the middle arkose member of the Stockton Formation of Upper Triassic age. In the Hatboro area, the Stockton Formation strikes approximately N. 65 degrees E. and dps approximately 9 degrees NW. The rocks are chiefly arkosic sandstone and siltstone. Rocks of the Stocton Formation form a complex, heterogeneous, multiaquifer system consisting of a series of gently dipping lithologic units with different hydraulic properties. Most ground water in the unweathered zone moves through a network of interconnecting secondary openigns-fractures, bedding plans, and joints. Ground water is unconfined in the shallower part of the aquifer and semiconfined or confined in the deeper part of the aquifer. Nearly all deep wells in the Stockton Formation are open to several water-bearing zones and are multiaquifer wells. Each water-bearing zone usually has a different hydraulic head. Where differences in hydraulic head exist between water-bearing zones, water in the well bore flows under nonpumping conditions in the direction of decreasing head. Determination of the potential for borehole flow was based on caliper, natural-gamma, single- point-resistance, fluid-resistivity, and (or) fluid-temperature logs that were run in 162 boreholes 31 to 655 feet deep. The direction and rate of borehole-fluid movement were determined in 83 boreholes by the bring-tracing method and in 10 boreholes by use of a heat-pulse flowmeter. Borehole flow was measurable in 65 of the 93 boreholes (70 percent). Fluid movement at rates up to 17 gallons per minute was measured. Downward flow was measured in 36 boreholes, and upward flow was measured in 23 boreholes, not including those boreholes in which two directions of flow were measured. Both upward and downward vertical flow was measured in six boreholes; these boreholes are 396 to 470 feet deep and were among the deepest boreholes logged. Fluid movement was upward in the upper part of the borehole and downward in the lower part of the borehole in two boreholes. Fluid movement wad downward in the upper part of the borehole and upward in the lower part of the borehole in three boreholes. Groung-water contamination by volatile organic compounds (VOC's) is widespread in the study area. Detectable concentrations of VOC's were present in water samples from 24 wells sampled in Hatboro Brough and in water samples for 10 of 14 wells (71 percent) samples in Warminster Township. Samples of borehole flow from nine boreholes in the industrial area of Hatboro were collected for laboratory analysis to estimate the quantity of VOC's in borehole flow. Downward flow was measured in all of these boreholes. Concentrations of TCE, TCA, and 1,1-DCE as great at 5,800, 1,400 and 260 micrograms per liter, respectively, show that some water moving downward in the aquifer through these open boreholes is highly contaminated and that open boreholes may contribute substantially to ground-water contamination. An estimated 14.7 gallons per year of VOC's were moving downward through the nine open boreholes sampled from the contaminated, upper part of the aquifer to the lower part, which is tapped by public supply wells. Borehole geophysical logs were used as a guide to design and construct monitor-well networks at three National Priorities List sites in the area. An open borehole was dirlled, and a suite of geophysical logs was run. Interpretation of geophysical logs enabled the identification of water-bearing zones that produce and receive water; these are zones that should not be connected. From the logs, discrete intervals to be monitored were selected. In the Stockton Formation, the same water-bearing zone may not be intersected in adjacent boreholes, especially if it is a vertical fracture with a diffident magnetic orientation than that of the adjacent boreholes. In most areas of the stockton Formation, depth of water-bearing zones in an are
Kock, Niels B; Van Susante, Job L C; Buma, Pieter; Van Kampen, Albert; Verdonschot, Nico
2006-06-01
Osteochondral autologous transplantation is used for the treatment of full-thickness articular cartilage lesions of a joint. Press-fit stability is an important factor for good survival of the transplanted plugs. 36 plugs of three different lengths were transplanted in fresh-frozen human knees. On one condyle, 3 plugs were exactly matched to the depth of the recipient site ("bottomed" plugs) and on the opposite condyle 3 plugs were 5 mm shorter than the depth of the recipient site ("unbottomed" plugs). Plugs were left protruding and then pushed in until flush, and then to 2 mm below flush level, using a loading apparatus. Longer plugs needed higher forces to begin displacement. At flush level, bottomed plugs needed significantly higher forces than unbottomed plugs to become displaced below flush level (mean forces of 404 N and 131 N, respectively). Shorter bottomed plugs required higher forces than longer bottomed ones. Bottomed plugs generally provide much more stability than unbottomed ones. Short bottomed plugs are more stable than long bottomed plugs. Thus, in clinical practice it is advisable to use short bottomed plugs. If, however, unbottomed plugs are still chosen, the longer the plug the higher the resulting stability will be because of higher frictional forces.
Alternative Fuels Data Center: Arizona Transportation Data for Alternative
Additions and Updates Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Tucson Electric Power (TEP School Bus/Vehicle Incentive, and Green Jobs Outreach Program Heavy-Duty Natural Gas Drayage Truck
NASA Astrophysics Data System (ADS)
Kessels, W.; Wuttke, M. W.
2007-05-01
A single well technique to determine groundwater flow values and transport parameters is presented. Multielectrode arrays are placed at the filtered casing depth by an inflatable packer or are installed on the borehole wall behind the casing.Tracer water with a higher or lower specific electrical conductivity (salinity) which is injected between the electrodes. This tracer plume then moves into the natural groundwater flow field. The observation of this movement by geoelectric logging enables the determination of the groundwater velocity and salinity. The transport parameters "effective porosity" and "dispersion length" can also be derived. The geoelectric logging uses n borehole electrodes and two grounding electrodes. Thus, either n independent two point measurements or n*(n-1)/2 pole-to-pole measurements can be conducted to obtain a full set of geoelectric measurements. This set is used to derive all electrode combinations by applying the law of superposition and reciprocity. The tracer distribution around the borehole during and after injection depends on the hydraulic and transport parameters of the aquifer and the filter sand. The transport parameter "porosity" plus the total injected tracer volume determines the tracer distribution around the borehole. The transport parameter "dispersivity" determines the abruptness of the tracer front. The method was tested by undertaking measurements in a lab aquifer filled with sand. The results are discussed and the limitations of the method are shown. Multielectrode installations behind casing were tested in situ in the two scientific boreholes CAT-LUD-1 and CAT- LUD-1A drilled in the northern part of Germany. A multielectrode packer system was designed, built and tested in these boreholes. The results are compared with colloid observations in the borehole and hydraulic triangulation in surrounded observation wells. Here, the interpretation of these in situ measurements is mainly restricted to two point geoelectric measurements and vertical four point electrode interpretations. The transport equation for NaCl-tracered water is the basic rule to determine the groundwater transport velocity. Numerical calculations to simulate the measurement are carried out with the program FEFLOW. Due to the density contrast, the tracer undergoes vertical movement. Kessels, W., Zoth, G.(1998): Doppelmantel - Packer mit geoelektrischer Meßtechnik zur Bestimmung der Abstandsgeschwindigkeit des Grundwassers, Patent Az:19855048.0, GGA-Institut, Germany, Hannover. KESSELS, W., RIFAI, H., THORENZ, C., ZOTH, G.(2002): Multi Electrode Geoelectric on the Borehole Wall- Determination of groundwater velocity and dispersion parameters, AGU spring meeting, Washington KESSELS, W., ZOTH, G., WONIK, T., FULDA, C. (1999): THE USE OF SALT CARTRIDGES FOR FLUID LOGGING. XXIV GENERAL ASSEMBLY OF E.G.S. THE HAGUE, THE NETHERLANDS PANTELEIT,B., KESSELS, W., BINOT, F (2006): MUD TRACER TEST DURING SOFT ROCK DRILLING; W.R.R., VOL. 42, W11415, DOI:10.1029/2005WR004487
Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng
2017-05-01
Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Hodgkinson, Kathleen M.; Agnew, Duncan; Roeloffs, Evelyn A.
2013-01-01
The Plate Boundary Observatory (PBO), the geodetic component of the U.S. National Science Foundation–funded Earthscope program, includes 75 borehole and 6 laser strainmeters (http://pbo.unavco.org). The strainmeters are installed at several locations: on the Cascadia forearc in Washington state and on Vancouver Island, Canada; in arrays of two to nine instruments along the North American–Pacific plate boundary in California; at Mount St. Helens; and in Yellowstone National Park. For deformation signals seconds to weeks in duration, strainmeters have a resolution and a signal-to-noise ratio superior to those of seismometers and GPS. However, this high sensitivity can introduce nontectonic signals into strain data, presenting data interpretation challenges, especially for borehole strainmeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queen, J.H.; Rizer, W.D.
1990-07-10
A significant body of published work has developed establishing fracture-related seismic anisotropy as an observable effect. To further the understanding of seismic birefringence techniques in characterizing natural fracture systems at depth, an integrated program of seismic and geologic measurements has been conducted at Conoco's Borehole Test Facility in Kay County, Oklahoma. Birefringence parameters inferred from the seismic data are consistent with a vertical fracture model of density 0.04 striking east-northeast. That direction is subparallel to a fracture set mapped both on the surface and from subsurface data, to the in situ maximum horizontal stress, and to the inferred microfabric.
Low, Dennis J.; Conger, Randall W.
2003-01-01
Between October 2002 and January 2003, geophysical logging was conducted in six boreholes at the Berks Sand Pit Superfund Site, Longswamp Township, Berks County, Pa., to determine (1) the waterproducing zones, water-receiving zones, zones of vertical borehole flow, orientation of fractures, and borehole and casing depth; and (2) the hydraulic interconnection between the six boreholes and the site extraction well. The boreholes range in depth from 61 to 270 feet. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-temperature, fluid-flow, and acoustic-televiewer logs. Caliper and acoustic-televiewer logs were used to locate fractures, joints, and weathered zones. Inflections on fluid-temperature and single-point-resistance logs indicated possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance, natural-gamma, and geologist logs provided information on stratigraphy. Flowmeter measurements were conducted while the site extraction well was pumping and when it was inactive to determine the hydraulic connections between the extraction well and the boreholes.Borehole geophysical logging and heatpulse flowmetering indicate active flow in the boreholes. Two of the boreholes are in ground-water discharge areas, two boreholes are in ground-water recharge areas, and one borehole is in an intermediate regime. Flow was not determined in one borehole. Heatpulse flowmetering, in conjunction with the geologist logs, indicates highly weathered zones in the granitic gneiss can be permeable and effective transmitters of water, confirming the presence of a two-tiered ground-water-flow system. The effort to determine a hydraulic connection between the site extraction well and six logged boreholes was not conclusive. Three boreholes showed decreases in depth to water after pumping of the site extraction well; in two boreholes, the depth to water increased. One borehole was cased its entire depth and was not revisited after it was logged by the caliper log. Substantial change in flow rates or direction of borehole flow was not observed in any of the three wells logged with the heatpulse flowmeter when the site extraction well was pumping and when it was inactive.
Deep Borehole Field Test Research Activities at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy
The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less
La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.
2006-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.
Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher
2013-10-08
In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.
NASA Astrophysics Data System (ADS)
Jannasch, H. W.; Wheat, G. C.; Hulme, S.; Becker, K.; Fisher, A. T.; Davis, E. E.
2008-12-01
Holes 1301A and 1301B were drilled, cased, and instrumented with long-term, subseafloor observatories (CORKs) on the eastern flank of the Juan de Fuca Ridge in Summer 2004. These holes penetrate 265 m of sediment and the uppermost 108 to 318 m of 3.5 Ma basaltic basement, in an area of vigorous, warm (64C) hydrothermal circulation. The new boreholes were located 1 km south and 2.4 km southwest of instrumented Holes 1026B and 1027C, respectively, that were emplaced eight years earlier. This network of four instrumented boreholes was established as part of a long-term, cross-hole experiment that will elucidate hydrologic properties and the nature and dynamics of microbial ecosystems within the upper oceanic crust, in a well defined geochemical and physical context. Downhole instrumented OsmoSampler packages in Holes 1301A and 1026B were replaced by submersible in summer 2008, as part of a program of observatory servicing in preparation for the next drilling expedition and the initiation of cross-hole experiments in this area. The borehole instrument package from Hole 1301A sampled borehole fluids within the upper 107.5 m of basaltic crust during a four-year period of drilling disturbance, self-sustaining flow of cold bottom water into basement, and subsequent recovery to near-predrilling chemical and thermal conditions. Because the borehole was incompletely sealed at the time of initial installation, bottom seawater flowed down into the borehole during the first three years following emplacement, driven by the higher density of cold bottom water relative to warm formation fluid. Borehole thermal records during the first 1.5 years show that temperatures in basement were below 10 C, and fluid samples from the borehole have a chemical composition similar to bottom seawater. Temperatures fluctuated for the next 1.5 years between 10 and 30 C, and the fluid composition began to shift towards that seen in regional basement fluids sampled at nearby Baby Bare outcrop and from Hole 1026B. In early September 2007 the natural formation overpressure overcame the excess pressure of cold bottom water and began to vent a mixture of recently-recharged bottom water and warm formation fluid. The present day composition of fluid venting from Hole 1301A is very similar to that sampled from Baby Bare outcrop. The progression from bottom seawater to formation fluid chemistry is not conservative relative to temperature, most likely because of water-rock and microbial reactions within basaltic basement.
Borehole sealing method and apparatus
Hartley, James N.; Jansen, Jr., George
1977-01-01
A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.
uPy: a ubiquitous CG Python API with biological-modeling applications.
Autin, Ludovic; Johnson, Graham; Hake, Johan; Olson, Arthur; Sanner, Michel
2012-01-01
The uPy Python extension module provides a uniform abstraction of the APIs of several 3D computer graphics programs (called hosts), including Blender, Maya, Cinema 4D, and DejaVu. A plug-in written with uPy can run in all uPy-supported hosts. Using uPy, researchers have created complex plug-ins for molecular and cellular modeling and visualization. uPy can simplify programming for many types of projects (not solely science applications) intended for multihost distribution. It's available at http://upy.scripps.edu. The first featured Web extra is a video that shows interactive analysis of a calcium dynamics simulation. YouTube URL: http://youtu.be/wvs-nWE6ypo. The second featured Web extra is a video that shows rotation of the HIV virus. YouTube URL: http://youtu.be/vEOybMaRoKc.
Energy Efficient Engine Exhaust Mixer Model Technology
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Larkin, M.
1981-01-01
An exhaust mixer test program was conducted to define the technology required for the Energy Efficient Engine Program. The model configurations of 1/10 scale were tested in two phases. A parametric study of mixer design options, the impact of residual low pressure turbine swirl, and integration of the mixer with the structural pylon of the nacelle were investigated. The improvement of the mixer itself was also studied. Nozzle performance characteristics were obtained along with exit profiles and oil smear photographs. The sensitivity of nozzle performance to tailpipe length, lobe number, mixer penetration, and mixer modifications like scalloping and cutbacks were established. Residual turbine swirl was found detrimental to exhaust system performance and the low pressure turbine system for Energy Efficient Engine was designed so that no swirl would enter the mixer. The impact of mixer/plug gap was also established, along with importance of scalloping, cutbacks, hoods, and plug angles on high penetration mixers.
NASA Astrophysics Data System (ADS)
Karner, Donald; Francfort, James
The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.
Conger, Randall W.; Low, Dennis J.
2006-01-01
Between August 2002 and March 2004, geophysical logging was conducted in 23 boreholes at the Crossley Farm Superfund Site, Hereford Township, Berks County, Pa., to determine the water-producing zones, water-receiving zones, zones of vertical-borehole flow, and fracture orientation where applicable. The boreholes ranged in depth from 71 to 503 ft (feet) below land surface. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper (22 boreholes), fluid-temperature (17 boreholes), single-pointresistance (17 boreholes), natural-gamma (17 boreholes), fluidflow (18 boreholes), and acoustic-televiewer (13 boreholes) logs. Caliper and acoustic-televiewer logs were used to locate fractures, joints, and weathered zones. Inflections on fluid-temperature and single-point-resistance logs indicated possible water-bearing zones, and flowmeter measurements verified these locations. Single-point-resistance, natural-gamma, and geologist logs provided information on stratigraphy; the geologist log also provided information on the location of possible water-producing zones.Borehole geophysical logging and heatpulse flowmetering indicated active flow in 10 boreholes. Seven of the boreholes are in ground-water discharge areas and three boreholes are in ground-water recharge areas. Heatpulse flowmetering, in conjunction with the geologist logs, indicates lithologic contacts (changes in lithology from a gneiss dominated by quartz-plagioclase-feldspar mineralogy to a gneiss dominated by hornblende mineralogy) are typically fractured, permeable, and effective transmitters of water. Single-well, aquifer-isolation (packer) tests were performed on two boreholes. Packers were set at depths ranging from 210 to 465 ft below land surface to isolate water-bearing zones at discrete intervals. Placement and inflation of the packers provided information on hydraulic heads, specific capacities, the hydraulic connection between intervals, and depth-specific water-quality samples. Upon completion of borehole geophysical logging and interpretation of geophysical logs, geologist logs, drillers notes, and packer work, 13 boreholes were reconstructed such that water levels could be monitored and water samples could be collected from discrete shallow, intermediate, and deep waterbearing fractures in each borehole. Boreholes BE-1672, BE-1674, BE-1676, and BE-1677 remained open-hole for sampling purposes. Boreholes RI-2, RI-3, and RI-4 remained openhole for injection purposes. Boreholes P-1, P-2, and P-3 remained open and were converted to pumping wells.
Collaborative WorkBench for Researchers - Work Smarter, Not Harder
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Kuo, Kwo-sen; Maskey, Manil; Lynnes, Christopher
2014-01-01
It is important to define some commonly used terminology related to collaboration to facilitate clarity in later discussions. We define provisioning as infrastructure capabilities such as computation, storage, data, and tools provided by some agency or similarly trusted institution. Sharing is defined as the process of exchanging data, programs, and knowledge among individuals (often strangers) and groups. Collaboration is a specialized case of sharing. In collaboration, sharing with others (usually known colleagues) is done in pursuit of a common scientific goal or objective. Collaboration entails more dynamic and frequent interactions and can occur at different speeds. Synchronous collaboration occurs in real time such as editing a shared document on the fly, chatting, video conference, etc., and typically requires a peer-to-peer connection. Asynchronous collaboration is episodic in nature based on a push-pull model. Examples of asynchronous collaboration include email exchanges, blogging, repositories, etc. The purpose of a workbench is to provide a customizable framework for different applications. Since the workbench will be common to all the customized tools, it promotes building modular functionality that can be used and reused by multiple tools. The objective of our Collaborative Workbench (CWB) is thus to create such an open and extensible framework for the Earth Science community via a set of plug-ins. Our CWB is based on the Eclipse [2] Integrated Development Environment (IDE), which is designed as a small kernel containing a plug-in loader for hundreds of plug-ins. The kernel itself is an implementation of a known specification to provide an environment for the plug-ins to execute. This design enables modularity, where discrete chunks of functionality can be reused to build new applications. The minimal set of plug-ins necessary to create a client application is called the Eclipse Rich Client Platform (RCP) [3]; The Eclipse RCP also supports thousands of community-contributed plug-ins, making it a popular development platform for many diverse applications including the Science Activity Planner developed at JPL for the Mars rovers [4] and the scientific experiment tool Gumtree [5]. By leveraging the Eclipse RCP to provide an open, extensible framework, a CWB supports customizations via plug-ins to build rich user applications specific for Earth Science. More importantly, CWB plug-ins can be used by existing science tools built off Eclipse such as IDL or PyDev to provide seamless collaboration functionalities.
Study on Initiation Mechanisms of Hydraulic Fracture Guided by Vertical Multi-radial Boreholes
NASA Astrophysics Data System (ADS)
Guo, Tiankui; Liu, Binyan; Qu, Zhanqing; Gong, Diguang; Xin, Lei
2017-07-01
The conventional hydraulic fracturing fails in the target oil development zone (remaining oil or gas, closed reservoir, etc.) which is not located in the azimuth of maximum horizontal in situ stress of available wellbores. The technology of directional propagation of hydraulic fracture guided by vertical multi-radial boreholes is innovatively developed. The effects of in situ stress, wellbore internal pressure and fracturing fluid percolation effect on geostress field distribution are taken into account, a mechanical model of two radial boreholes (basic research unit) is established, and the distribution and change rule of the maximum principal stress on the various parameters have been studied. The results show that as the radial borehole azimuth increases, the preferential rock tensile fracturing in the axial plane of radial boreholes becomes increasingly difficult. When the radial borehole azimuth increases to a certain extent, the maximum principal stress no longer appears in the azimuth of the radial boreholes, but will go to other orientations outside the axial plane of radial boreholes and the maximum horizontal stress orientation. Therefore, by reducing the ratio between the distance of the radial boreholes and increasing the diameter of the radial boreholes can enhance the guiding strength. In the axial plane of the radical boreholes, particularly in the radial hole wall, position closer to the radial boreholes is more prone to rock tensile destruction. Even in the case of large radial borehole azimuth, rock still preferentially ruptures in this position. The more the position is perpendicularly far from the axis of the wellbore, the lesser it will be affected by wellbore, and the lesser the tensile stress of each point. Meanwhile, at a certain depth, due to the decrease in the impact of the wellbore and the impact of the two radial boreholes increases accordingly, at the further position from the wellbore axis, the tensile fracture is the most prone to occur and it will be closer to the axial plane of the two radial boreholes. The study provides theoretical support for the technology of directional propagation of hydraulic fracture promoted by radial borehole, which is helpful for planning well-completion parameters in technology of hydraulic fracturing promoted by radial borehole.
Air and ground temperatures along elevation and continentality gradients in Southern Norway
NASA Astrophysics Data System (ADS)
Farbrot, Herman; Hipp, Tobias; Etzelmüller, Bernd; Humlum, Ole; Isaksen, Ketil; Strand Ødegârd, Rune
2010-05-01
The modern southern boundary for Scandinavian permafrost is located in the mountains of Southern Norway. Permafrost and seasonal frost are considered key components of the cryosphere, and the climate-permafrost relation has acquired added importance with the increasing awareness and concern of rising air temperatures. The three-year research project CRYOLINK ("Permafrost and seasonal frost in southern Norway") aims at improving knowledge on past and present ground temperatures, seasonal frost, and distribution of mountain permafrost in Southern Norway by addressing the fundamental problem of heat transfer between the atmosphere and the ground surface. Hence, several shallow boreholes have been drilled, and a monitoring program to measure air and ground temperatures was started August 2008. The borehole areas (Juvvass, Jetta and Tron) are situated along a west-east transect and, hence, a continentality gradient, and each area provides boreholes at different elevations. Here we present the first year of air and ground temperatures from these sites and discuss the influence of air temperature and ground surface charcteristics (snow conditions, sediments/bedrock, vegetation) on ground temperatures.
NASA Astrophysics Data System (ADS)
Delay, Jacques; Distinguin, Marc; Dewonck, Sarah
Andra (Agence Nationale pour la Gestion des Déchets Radioactifs - National Radioactive Waste Management Agency) has developed specific tools and methodologies to evaluate and understand the main transport mechanisms of solute species in an argillaceous rock in the framework of the scientific program of the Meuse/Haute-Marne Underground Research Laboratory. This paper focuses on three specific equipments already installed in boreholes for the determination of convection and diffusion parameters in a very low permeability environment. The first one is a specific borehole completion for head and permeability measurements with an integrated wireless telemetry device. In 1995, Andra devised a probe equipped with a pressure sensor to monitor the long-term evolution of electro-magnetically transmitted pore pressures. The data gathered by this first device, and a second one installed in 2001, have shown the occurrence of overpressures in very low permeability formations. The second device is derived from the multipacker system used for monitoring the drainage of the Oxfordian limestone due to the sinking of the shaft above the Callovo-Oxfordian. It is used for obtaining from a single borehole, a pressure profile of the argillaceous formation and its encasing units. To date, the major information obtained with these two borehole equipments is the existence of a 25-35 m anomalous excess hydraulic head in the 130 m thick Callovo-Oxfordian argillaceous formation. Head values in the argillaceous rock exceed those in the overlying Oxfordian limestone by 25-35 m, and those in the underlying Dogger by over 45 m. The third equipment described in the paper, is derived from the experiment carried out at the Mont Terri rock laboratory since 1996 for the characterization of diffusion and retention processes. The system is adapted for a borehole drilled from the surface. The objectives of this experiment are as follows: Verification of the predominant role played by molecular diffusion compared with convection; Acquisition of data required to extrapolate and /or interpolate chemical retention and diffusion parameters. The diffusion test performed from the borehole makes it possible to test in situ a small number of tracers (HTO, 36Cl, 134Cs) at a scale of 10 cm for the non sorbing tracers.
NASA Astrophysics Data System (ADS)
Olcott, K. A.; Saffer, D. M.; Elsworth, D.
2013-12-01
One method used to constrain principal stress orientations and magnitudes in the crust combines estimates of rock strength with observations of wellbore failures, including drilling-induced tensile fractures (DITF) and compressional borehole breakouts (BO). This method has been applied at numerous Integrated Ocean Drilling Program (IODP) boreholes drilled into sediments in a wide range of settings, including the Gulf of Mexico, the N. Japan and Costa Rican subduction margins, and the Nankai Trough Accretionary Prism. At Nankai and N. Japan, BO widths defined by logging-while-drilling (LWD) resistivity images have been used to estimate magnitudes of far-field horizontal tectonic stresses. At several drillsites (C0010, C0002, and C0011), sections of the borehole were relogged with LWD after the hole was left open for times ranging from ~30 min to 3 days; times between acquisition were associated with pipe connections (~30 min), cleaning and circulating the hole (up to ~3 hr), and evacuation of the site for weather (~3 days). Relogged portions exhibit widening of BO, hypothesized to reflect time-dependent re-equilibration of instantaneous changes in pore fluid pressure (Pf) induced by opening the borehole. In this conceptual model, Pf decrease caused by initial excavation of the borehole and resulting changes in the state of stress at the borehole wall lead to an initial strengthening of the sediment. Re-equilibration of Pf results in time-dependent weakening of the sediment and subsequent BO growth. If correct, this hypothesis implies that stress magnitudes estimated by BO widths could be significantly underestimated. We test this idea using a finite-element model in COMSOL multiphysics that couples fluid flow and deformation in a poroelastic medium. We specify far-field horizontal principal stresses (SHmax and Shmin) in the model domain. At the start of simulations/at the time of borehole opening, we impose a decreased stress at the borehole wall. We consider a range of sediment permeability from 10-18 m2 to 10-14 m2. We find Pf initially increases at the borehole wall over a range of azimuths +/-~60° from Shmin, with a maximum increase of 10 MPa (4.4% of the maximum principal stress (σ1) at the borehole wall) and would lead to weakening of the rock. Pf decreases over a range of azimuths +/- ~30° from SHmax, with a maximum decrease of 10 MPa (8.8% of σ1), leading to initial strengthening of the rock. Evolution of Pf depends strongly on sediment permeability: Pf is 90% equilibrated at the borehole wall in ~43 minutes for a permeability of 10-18 m2, whereas for a permeability of 10-14 m2, Pf equilibrates nearly instantaneously. Since BO form parallel to Shmin, BO growth driven by drilling-induced Pf changes require that the initial BO be wider than ~120°, or outside the zone of initially increased Pf. This is not consistent with observations of BO growth, where initial BO are 0-25° and grow up to 125°. In contrast, our results imply that analyses based on BO measured immediately after drilling could overestimate far-field stresses because the BO are formed in sediments weakened by poroelastic pressure changes. Future work will focus on systematic investigation of the role of far field stresses and different sediment rheologies on the distribution of pore pressure change around the wellbore.
3D joint inversion of gravity-gradient and borehole gravity data
NASA Astrophysics Data System (ADS)
Geng, Meixia; Yang, Qingjie; Huang, Danian
2017-12-01
Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.
Plug-In Electric Vehicle (PEV) Discounts - People's Power & Light (PP&L) PP&L's Drive Green with PP&L program provides discounts on qualified PEVs purchased or leased from participating , see the Drive Green with PP&L website.
NASA Astrophysics Data System (ADS)
Sass, Ingo; Heldmann, Claus-Dieter; Schäffer, Rafael
2016-06-01
Karst aquifers may on one hand improve the efficiency of geothermal systems due to increased permeabilities, but on the other hand, high groundwater velocities can reduce the efficiency of the underground heat storage capacity. The marble karst aquifer of the Hochstegen formation was explored and developed for the first time as an intermediate-depth geothermal energy storage system at Finkenberg, Tux valley (Tyrol, Austria). Geological field studies and a spring monitoring program for the project revealed characteristic hydro-chemical signatures related to the catchments in specific tectonic units depending on their lithology. Observations showed that the catchment area of the Hochstegen formation karst aquifer extends up to 2650 m a.s.l. southwest of Finkenberg. In the boreholes, karstification was detected to 400 m below surface (Sass et al., 2016). A monitoring program involving seven springs downgradient of the boreholes has shown that the geothermal project has had no long-term impact on groundwater quality.
Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited
NASA Astrophysics Data System (ADS)
Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.
2008-12-01
Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP programs.
PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.
Lee, M.W.
1987-01-01
Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.
Huffman, Lester H.; Knoke, Gerald S.
1985-08-20
A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2005-01-01
The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.
NASA Astrophysics Data System (ADS)
Bian, Shiyao; Zheng, Ying; Grotberg, James B.
2008-11-01
Mucus plugging may occur in pulmonary airways in asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. How to clear the mucus plug is essential and of fundamental importance. Mucus is known to have a yield stress and a mucus plug behaves like a solid plug when the applied stresses are below its yield stress τy. When the local stresses reaches τy, the plug starts to move and can be cleared out of the lung. It is then of great importance to examine how the mucus plug deforms and what is the minimum pressure required to initiate its movement. The present study used the finite element method (FEM) to study the stress distribution and deformation of a solid mucus plug under different pressure loads using ANSYS software. The maximum shear stress is found to occur near the rear transition region of the plug, which can lead to local yielding and flow. The critical pressure increases linearly with the plug length and asymptotes when the plug length is larger than the half channel width. Experimentally a mucus simulant is used to study the process of plug deformation and critical pressure difference required for the plug to propagate. Consistently, the fracture is observed to start at the rear transition region where the plug core connects the films. However, the critical pressure is observed to be dependent on not only the plug length but also the interfacial shape.
Performance of MarSite Multi parameter Borehole Instrumentation
NASA Astrophysics Data System (ADS)
Guralp, Cansun; Tunc, Suleyman; Ozel, Oguz; Meral Ozel, Nurcan; Necmioglu, Ocal
2017-04-01
In this paper we present two year results obtained from the integrated multiparameter borehole system at Marsite. The very broad band (VBB) system have been operating since installation in November 2014; one year in a water filled borehole and one year in a dry Borehole. from January 2016. The real time data has been available to the community. The two Borehole environments are compared showing the superior performance of dry borehole environ- ment compared to water filled for a very broad band (VBB) seismometer. The practical considerations applied in both borehole installations are compared and the best borehole practical installation techniques are presented and discussed. The data is also compared with a surface 120 second broad band sensor and the seismic arrays with in MarSite region. The very long term performance, (one year data in a dry hole) of the VBB Borehole seismometer and the Dilatometer will be presented The high frequency performance of the VBB seismometer which extends to 150 Hz and the dilatometer are compared characterizing the results from the dilatometer.
Electrical resistance tomography from measurements inside a steel cased borehole
Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.
2000-01-01
Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.
[Evidence of lacrimal plugs via high resolution ultrasound].
Tost, Frank H W; Darman, Jacques
2003-07-01
The practical value of high-frequency ultrasound (transducer frequency of 20 MHz) for studying lacrimal plugs positioned into canaliculi was proved. Twelve patients with twenty intracanalicular plugs and two punctum plugs were examined via high-frequency B-scan ultrasonography using 20 MHz transducer (model I3 Sacramento, USA). Detection and localisation of the intracanalicular plugs was made by a 20 MHz sector scanner. The ultrasound examinations were performed 1 - 24 month after the placement of lacrimal plugs. After patient's head positioning, the high-frequency ultrasound investigation was done via immersion fluid (2 % methylcellulose). All patients with dry eye treated by lacrimal plug implant showed echographic structure in the lacrimal canaliculus. In transversal echograms it was possible to image both canaliculi together when the lids were half-closed. Contrary to the normal state, it was not necessary to inject viscous fluid into the canaliculus. High-resolution ultrasound was able to differentiate the normal canaliculus from the findings after plug placement. The echograms can vary from one plug type to another. Highly reflective structures were found after the placement of silicone intracanalicular plugs, e. g. HERRICK-Plug. In contrast, the ultrasonic image taken through acrylic polymer intracanalicular plugs showed homogeneous small reflective inner structure, e. g. SMART-Plug. However, smooth and flat acoustic interface between acrylic polymer plug and the lacrimal canaliculus produced strong echoes. 20 MHz ultrasound seems to be well suited for the detection and localisation of intracanalicular plugs. By use of 20 MHz ultrasound scans it is possible to get high-quality images of the intracanalicular plug and around lacrimal canaliculus. Compared with UBM, the depth of penetration is much higher with negligible resolution. On the whole, we believe that 20 MHz ultrasound can become a useful tool for evaluating the placement of intracanalicular plugs after insertion.
10 CFR 60.142 - Design testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and the... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.142 - Design testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and the... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.142 - Design testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and the... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.142 - Design testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and the... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.142 - Design testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and the... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
How Schools Can Plug the Energy Drain
ERIC Educational Resources Information Center
Nation's Schools, 1973
1973-01-01
Schools could conserve energy by following recommendations by Educational Facilities Laboratories: (1) review operations and maintenance personnel qualifications to handle mechanical-electrical equipment, (2) analyze energy consumption to identify waste sources in schools, (3) incorporate energy conservation into all architectural programs for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, J.A.; Case, J.B.; Givens, C.A.
1994-04-01
This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place sealsmore » are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.« less
PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals
NASA Astrophysics Data System (ADS)
Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.
2017-12-01
UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are available at 2-hour latency while the pore pressure data are available in real-time. Links for data access, instrument and borehole information and station histories are available from UNAVCO's Borehole Data web page (https://www.unavco.org/data/strain-seismic/bsm-data/bsm-data.html ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2016-06-29
To address the critical site characterization and monitoring needs for Enhance Geothermal Systems (EGS) programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2011 a contract to design, build and test a high temperature fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying a large number of 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor podmore » design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-4.0 at frequencies over 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The data telemetry fibers used for the seismic vector sensors in the system are also used to simultaneously record Distributed Temperature Sensor (DTS) and Distributed Acoustic Sensor (DAS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
NASA Astrophysics Data System (ADS)
Pierdominici, S.; Schleicher, A.; Kueck, J.; Rodbell, D. T.; Abbott, M. B.
2017-12-01
The lake Junin drilling project, co-funded by the International Continental Drilling Program (ICDP), is located at 4000 m a.s.l. in the tropical Andes of Peru. Several boreholes were drilled with the goal to obtain both high-resolution paleoclimate records from lacustrine sediments and to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is characterized by a thick package of lacustrine sediments (> 125 m) deposited at a high rate (0.2 to 1.0 mm yr-1), and it is one of the few lakes in the tropical Andes that is hundreds of thousands of years old with a continuous sedimentation rate preserving a very long and continuous record of past ice age cycles. The boreholes reached a maximum depth of 110.08 m and continuous coring was performed at three sites with 11 boreholes. Additionally, an extensive geophysical downhole logging campaign was performed on five boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. Downhole logging measurements comprise total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic p-wave velocity. In order to fit the downhole logging depths to the composite profile depths, each borehole was depth-matched with the core data. Interpreting the downhole logging data permits to establish a complete lithological log, to characterize the in-situ physical properties of drilled lacustrine sediments, to determine sedimentary structures and to obtain evidences about palaeoclimatic conditions during up to 200 ka. Th and K values are used as a proxy for a first estimate and characterization of clay content in the sediments, which are present as montmorillonite, smectite, illite, and kaolinite in different amounts. Linking the clay minerals that occur in the core material with the downhole logging data allows assessing the geological history of the lake and the relationship to climate change processes. Additional laboratory analysis will be carried out to understand fluid-rock interaction processes, transport processes, and porosity-permeability changes.
Locke, Glenn L.
2008-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.
DAVE: A plug and play model for distributed multimedia application development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mines, R.F.; Friesen, J.A.; Yang, C.L.
1994-07-01
This paper presents a model being used for the development of distributed multimedia applications. The Distributed Audio Video Environment (DAVE) was designed to support the development of a wide range of distributed applications. The implementation of this model is described. DAVE is unique in that it combines a simple ``plug and play`` programming interface, supports both centralized and fully distributed applications, provides device and media extensibility, promotes object reuseability, and supports interoperability and network independence. This model enables application developers to easily develop distributed multimedia applications and create reusable multimedia toolkits. DAVE was designed for developing applications such as videomore » conferencing, media archival, remote process control, and distance learning.« less
Hydraulically controlled discrete sampling from open boreholes
Harte, Philip T.
2013-01-01
Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.
NASA Astrophysics Data System (ADS)
Yang, Huiming; Hu, Liangping
2017-05-01
In order to study the coalbed gas drainage effect and economy of long directional roof borehole, 2 boreholes were laid out in Xinji No. 2 mine to analyze its gas drainage and investment costs comparing with high position roof borehole and high position roof roadway. The result indicates that the long directional roof borehole save investment by 44.8% and shorten the construction period by 30%, comparing with high position roof roadway for controlling gas in the working face. Investment slightly less and shorten the construction period by 47.5%, comparing with the roof high position borehole. Therefore, the method of the long directional roof borehole to drain coalbed gas in working face is the most cost-effective.
NASA Astrophysics Data System (ADS)
Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong
2015-03-01
Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.
A PLUG-AND-PLAY ARCHITECTURE FOR PROBABILISTIC PROGRAMMING
2017-04-01
programs that use discrete numerical distributions, but even then, the space of possible outcomes may be uncountable (as a solution can be infinite...also identify conditions guaranteeing that all possible outcomes are finite (and then the probability space is discrete ). 2.2.2 The PlogiQL...and not determined at runtime. Nevertheless, the PRAiSE team plans to extend their solution to support numerical (continuous or discrete
10 CFR 63.133 - Design testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as the...
Componentware Approaches in Management Information Systems
2000-11-01
functionality. It offers plug & play readiness for service and is cooperative in combination with other programs Model ( Griffel 1998). The component view has...ISO195, DI199).terns: Elements of Reusable Object-Oriented Software.SAddison-Wesley 1995. Componentware approaches provide means that support Griffel
Plug-In Electric Vehicle (PEV) Discounts - Mass Energy Mass Energy's Drive Green with Mass Energy discount program is available to all consumers, including those that are not in Mass Energy's service Drive Green with Mass Energy
Paillet, Frederick L.; Williams, John H.; Urik, Joseph; Lukes, Joseph; Kobr, Miroslav; Mares, Stanislav
2012-01-01
Application of the cross-borehole flow method, in which short pumping cycles in one borehole are used to induce time-transient flow in another borehole, demonstrated that a simple hydraulic model can characterize the fracture connections in the bedrock mass between the two boreholes. The analysis determines the properties of fracture connections rather than those of individual fractures intersecting a single borehole; the model contains a limited number of adjustable parameters so that any correlation between measured and simulated flow test data is significant. The test was conducted in two 200-m deep boreholes spaced 21 m apart in the Melechov Granite in the Bohemian-Moravian Highland, Czech Republic. Transient flow was measured at depth stations between the identified transmissive fractures in one of the boreholes during short-term pumping and recovery periods in the other borehole. Simulated flows, based on simple model geometries, closely matched the measured flows. The relative transmissivity and storage of the inferred fracture connections were corroborated by tracer testing. The results demonstrate that it is possible to assess the properties of a fracture flow network despite being restricted to making measurements in boreholes in which a local population of discrete fractures regulates the hydraulic communication with the larger-scale aquifer system.
NASA Astrophysics Data System (ADS)
Wu, H.; Kido, Y. N.; Kinoshita, M.; Saito, S.
2013-12-01
Wellbore instability is a major challenge for the engineer evaluating borehole and formation conditions. Instability is especially important to understand in areas with high stress variations, significant structure anisotropy, or pre-existing fracture systems. Borehole (in)stability is influenced by rock strength, structural properties, and near-field principal stresses. During drilling, the borehole conditions also impact borehole integrity. Factors that we can measure in the borehole during with logging while drilling (LWD) to understand these conditions include mud weight, mud loss, ROP (Rate of Penetration), RPM (Rotation Per Minute), WOB (Weight on Bit), and TORQ (Power swivel torque value). We conducted borehole instability analysis for Site C0002 of the Nankai Trough transect based on riser and riserless drilling during IODP Expedition 338. The borehole shape, determined from LWD resistivity images, indicates that most of drilling occurred in stable environments, however, in a few instances the bottom hole assembly became stuck. We used our stress profile model to evaluate the mud weight required to drill a stable borehole for the estimated rock strength and physical properties. Based on our analysis, we interpret that borehole instability during IODP Expedition 338 may have been caused by weak bedding plane and fluid overpressure state. Future work with this model will investigate the roles of these conditions.
Amplification Factors for Spectral Acceleration Using Borehole Seismic Array in Taiwan
NASA Astrophysics Data System (ADS)
Lai, T. S.; Yih-Min, W.; Chao, W. A.; Chang, C. H.
2017-12-01
In order to reduce the noise from surface to get the high-quality seismic recordings, there are 54 borehole seismic arrays have been installed in Taiwan deployed by Central Weather Bureau (CWB) until the end of 2016. Each array includes two force balance accelerometers, one at the surface and other inside the borehole, as well as one broadband seismometer inside the borehole. The downhole instruments are placed at a depth between 120 and 400 m. The background noise level are lower at the borehole stations, but the amplitudes recorded by borehole stations are smaller than surface stations for the same earthquake due to the different geology conditions. Therefore, the earthquake magnitude estimated by borehole station is smaller than surface station. So far, CWB only use the surface stations in the magnitude determination due to this situation. In this study, we investigate the site effects between surface and downhole for borehole seismic arrays. Using the spectral ratio derived by the two-station spectral method as the transfer function, simulated the waveform recorded by borehole stations to the surface stations. In the future, through the transfer function, the borehole stations will be included in the estimation of earthquake magnitude and the results of amplification factors can provide the information of near-surface site effects for the ground motion simulation applications.
Paillet, Frederick L.
1998-01-01
A numerical model of flow in the vicinity of a borehole is used to analyze flowmeter data obtained with high-resolution flowmeters. The model is designed to (1) precisely compute flow in a borehole, (2) approximate the effects of flow in surrounding aquifers on the measured borehole flow, (3) allow for an arbitrary number (N) of entry/exit points connected to M < N far-field aquifers, and (4) be consistent with the practical limitations of flowmeter measurements such as limits of resolution, typical measurement error, and finite measurement periods. The model is used in three modes: (1) a quasi-steady pumping mode where there is no ambient flow, (2) a steady flow mode where ambient differences in far-field water levels drive flow between fracture zones in the borehole, and (3) a cross-borehole test mode where pumping in an adjacent borehole drives flow in the observation borehole. The model gives estimates of transmissivity for any number of fractures in steady or quasi-steady flow experiments that agree with straddle-packer test data. Field examples show how these cross-borehole-type curves can be used to estimate the storage coefficient of fractures and bedding planes and to determine whether fractures intersecting a borehole at different locations are hydraulically connected in the surrounding rock mass.
Boring and Sealing Rock with Directed Energy Millimeter-Waves
NASA Astrophysics Data System (ADS)
Woskov, P.; Einstein, H. H.; Oglesby, K.
2015-12-01
Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.
Seismic Endoscopy: Design of New Instruments
NASA Astrophysics Data System (ADS)
Conil, F.; Nicollin, F.; Gibert, D.
2003-04-01
In order to perform 3D images around shallow-depth boreholes, in conditions in the field and within reasonable times of data acquisitions, several instrumental developments have been performed. The first development concerns the design of a directional probe working in the 20-100 kHz frequency range; the idea is to create a tool composed of multiple elementary piezoelectric entities able to cover the whole space to explore; made of special polyurethane rigid foam with excellent attenuation performances, the prototypes are covered by flexible polyurethane electric resin. By multiplying the number of elementary receptors around the vertical axes and piling up each elementary sensor, a complete design of multi-azimuth and multi-offset has been concepted. In addition to this, a test site has been built in order to obtain a controlled medium at typical scales of interest for seismic endoscopy and dedicated to experiment near the conditions in the field. Various reflectors are placed in well known positions and filled in an homogeneous cement medium; the whole edifice (2.2 m in diameter and 8 metres in depth) also contains 4 PVC tubes to simulate boreholes. The second part of this instrumental developments concern the synthesis of input signals; indeed, many modern devices used in ultrasonic experiment have non linear output response outside their nominal range: this is especially true in geophysical acoustical experiments when high acoustical power is necessary to insonify deep geological targets. Thanks to the high speed electronic and computerised devices now available, it is possible to plug in experimental set-ups into non linear inversions algorithms like simulated annealing. First experiments showed the robustness of the method in case of non linear analogic architecture. Large wavelet families have or example been constructed thanks to the method and multiscale Non Destructive Testing Method have been performed as an efficient method to detect and characterise discontinuities or velocities variations of a material.
NASA Astrophysics Data System (ADS)
Stryczek, Stanisław; Wiśniowski, Rafał; Gonet, Andrzej; Złotkowski, Albert
2012-11-01
New generation fly ashes come from the combustion of coal in fluid-bed furnaces with simultaneous sulphur-removal from gases at ca. 850°C. Accordingly, all produced ashes basically differ in their physicochemical properties from the traditional silica ones. The aim of the laboratory analyses was determining the influence of specific surface and granular composition of fluidal ash on rheological properties of slurries used for sealing up the ground and rock mass media with hole injection methods, geoengineering works and cementing casing pipes in deep boreholes. Fluidal ash from the combustion of lignite contain active Puzzolan appearing in the form of dehydrated clayey minerals and active components activating the process of hydration ashes, i.e. CaO, anhydrite II and CaCO3. The ashes have a weak point, i.e. their high water diment, which the desired rheological properties related with the range of their propagation in the rock mass cannot not be acquired for injection works in the traditional sealing slurries technology. Increasing the water-to-mixture ratio should eliminate this feature of fluidal ashes. Laboratory analyses were performed for slurries based on metallurgical cement CEM III/A 32,5 having water-to-mixture ratios: 0.5; 0.6 ; 0.7 and 0.8; the fluidal ash concentration in the slurries was 30 wt.% (with respect to the mass of dry cement). Basing on the obtained results there were determined optimum recipes of sealing slurries in view of their rheological parameters which could be applied both in drilling technologies (cementing casing pipes, closing of boreholes, plugging) and in geoengineering works related with sealing up and reinforcing ground and rock mass media.
Eads, David E.; Biggins, Dean E.
2012-01-01
Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).
Borehole Stability in High-Temperature Formations
NASA Astrophysics Data System (ADS)
Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang
2014-11-01
In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.
Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003
Johnson, Carole D.; Joesten, Peter K.
2005-01-01
In December 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole-radar reflection logs in two boreholes in Machiasport, Maine. These bedrock boreholes were drilled as part of a hydrogeologic investigation of the area surrounding the former Air Force Radar Tracking Station site on Howard Mountain near Bucks Harbor. The boreholes, MW09 and MW10, are located approximately 50 meters (m) from, and at the site of, respectively, the locations of former buildings where trichloroethylene was used as part of defense-site operations. These areas are thought to be potential source areas for contamination that has been detected in downgradient bedrock wells. This investigation focused on testing borehole-radar methods at this site. Single-hole radar-reflection surveys were used to identify the depth, orientation, and spatial continuity of reflectors that intersect and surround the boreholes. In addition, the methods were used to (1) identify the radial depth of penetration of the radar waves in the electrically resistive bimodal volcanic formation at the site, (2) provide information for locating additional boreholes at the site, and (3) test the potential applications of borehole-radar methods for further aquifer characterization and (or) evaluation of source-area remediation efforts. Borehole-radar reflection logging uses a pair of downhole transmitting and receiving antennas to record the reflected wave amplitude and transit time of high-frequency electromagnetic waves. For this investigation, 60- and 100-megahertz antennas were used. The electromagnetic waves emitted by the transmitter penetrate into the formation surrounding the borehole and are reflected off of a material with different electromagnetic properties, such as a fracture or change in rock type. Single-hole directional radar surveys indicate the bedrock surrounding these boreholes is highly fractured, because several reflectors were identified in the radar-reflection data. There are several steeply dipping reflectors with orientations similar to the fracture patterns observed with borehole imaging techniques and in outcrops. The radar-reflection data showed that the vitrophyre in borehole MW09 was more highly fractured than the underlying gabbroic unit. The velocities of radar waves in the bedrock surrounding the boreholes were determined using single-hole vertical radar profiling. Velocities of 114 and 125 meters per microsecond were used to determine the distance to reflectors, the radial depth of penetration, and the dip of reflectors. The bimodal volcanic units appear to be ideal for radar-wave propagation. For the radar surveys collected at this site, radar reflections were detected up to 40 m into the rock from the borehole. These results indicate that boreholes could conservatively be spaced about 15-20 m apart for hole-to-hole radar methods to be effective for imaging between the boreholes and monitoring remediation. Integrated analysis of drilling and borehole-geophysical logs indicates the vitrophyric formation is more fractured than the more mafic gabbroic units in these boreholes. There does not, however, appear to be a quantifiable difference in the radar-wave penetration in these two rock units.
Stumm, Frederick; Chu, Anthony; Como, Michael D.; Noll, Michael L.; Joesten, Peter K.
2015-01-01
Advanced borehole-geophysical methods were used to investigate the hydrogeology of the crystalline bedrock in three boreholes on Roosevelt Island, New York County, New York. Cornell University was evaluating the feasibility of using geothermal energy for a future campus at the site. The borehole-logging techniques were used to delineate bedrock fractures, foliation, and groundwater-flow zones of the Fordham Gneiss in test boreholes at the site. Three fracture populations dominated by small (0.04 in or less) fractures were delineated in the three boreholes. A sub-horizontal population with low to moderate dipping fractures, a northeast dipping population with moderate to high angle fractures, and a small northwest dipping high angle fracture population. One large southwest dipping transmissive fracture underlies the entire study area with a mean dip azimuth of 235º southwest and a dip angle of 31º (N325ºW 31ºSW). The mean foliation dip azimuth was 296º northwest with a mean dip angle of 73º (N26ºE 73ºNW). Groundwater appears to flow through a network of fractures dominated by a large fracture underlying the site that is affected by tidal variations from the nearby East River. The total number of fractures penetrated by each borehole was 95, 63, and 68, with fracture indices of 0.26, 0.20, and 0.20 in GT-1 (NY292), GT-2 (NY293), and GT-3 (NY294), respectively. Aquifer test data indicate the specific capacity of boreholes GT-1 (NY292), GT-2 (NY293), and GT-3 (NY294) was 1.9, 1.5, and 3.7 gal/min/ft, respectively. The large contribution of flow from the leaking casing in borehole GT-3 (NY294) caused the doubling in specific capacity compared to boreholes GT-1 (NY292) and GT-2 (NY293). The transmissivities of the large fracture intersected by the three boreholes tested (GT-1, GT-2, and GT-3), calculated from aquifer-test analyses of time-drawdown data and flowmeter differencing, were 133, 124, and 65 feet squared per day (ft2/d), respectively. Gringarten analysis indicated the large fracture intersects a low transmissivity boundary or distant fracture network with an average transmissivity of 69 ft2/d, this distant hydraulic boundary averages about 200 ft away from boreholes GT-1 and GT-2. Field measurements of specific conductance of the three boreholes under ambient conditions at the site indicate an increase in conductivity toward the southwest part of the site. Specific conductance was 5, 6, and 23 millisiemens per centimeter (mS/cm) in boreholes GT-2, GT-3, and GT-1, respectively. Three borehole radar reflection logs collected at each of the boreholes indicated increased penetration with depth and the large fracture intersecting all three boreholes was imaged as far as 80 ft from the boreholes. A borehole radar attenuation tomogram from GT-1 to GT-2 indicated the large fracture intersected by the boreholes extends between the boreholes with a low angle southwest dip.
Potential effects of deep-well waste disposal in western New York
Waller, Roger Milton; Turk, John T.; Dingman, Robert James
1978-01-01
Mathematical and laboratory models were used to observe, respectively, the hydraulic and chemical reactions that may take place during proposed injection of a highly acidic, iron-rich waste pickle liquor into a deep waste-disposal well in western New York. Field temperature and pressure conditions were simulated in the tests. Hydraulic pressure in the middle stages of the initial (1968) injection test had probably hydraulically fractured the Cambrian sandstone-dolomite formation adjacent to the borehole. Transmissivity of the formation is 13 feet squared per day. The proposed rate of injection (72,000 gallons per day) of waste pickle liquor would approach a wellhead pressure of 600 pounds per square inch in about a year. Hydraulic fracturing would reoccur at about 580 pounds per square inch. The measurable cone of influence would extend about 22 miles after injection for 1 year. Chemical reactions between acidic wastes and brine-saturated dolomite would create precipitates that would drastically reduce the permeability of the unfractured part of the dolomite. Nondolomitic sandstone permeability would not be affected by chemical reactions, but the pores might be plugged by the iron-bearing waste. The digital model can be used for qualitative predictions on a regional scale. (Woodard-USGS)
Aeroacoustics of supersonic jet flows from contoured and solid/porous conical plug-nozzles
NASA Technical Reports Server (NTRS)
Dosanjh, Darshan S.; Das, Indu S.
1987-01-01
The results of an experimental study of the acoustic far-field, the shock associated noise, and the nature of the repetitive shock structure of supersonic jet flows issuing from plug-nozzles having externally-expanded plugs with pointed termination operated at a range of supercritical pressure ratios Xi approaching 2 to 4.5 are reported. The plug of one of these plug-nozzles was contoured. The other plug-nozzles had short conical plugs with either a solid surface or a combination of solid/porous surface of different porosities. The contoured and the uncontoured plug-nozzles had the same throat area and the same annulus-radius ratio K = R sub p/R sub N = 0.43. As the result of modifications of the shock structure, the acoustic performance of improperly expanded jet flows of an externally-expanded short uncontoured plug of an appropriate geometry with suitably perforated plug and a pointed termination, is shown to approach the acoustic performance of a shock-free supersonic jet issuing from an equivalent externally-expanded contoured plug-nozzle.
NASA Astrophysics Data System (ADS)
Jiang, Guangzheng; Tang, Xiaoyin; Rao, Song; Gao, Peng; Zhang, Linyou; Zhao, Ping; Hu, Shengbiao
2016-03-01
Very few of heat flow data have come from the crystalline basement in the North China Craton but rather from boreholes in the sedimentary cover of oil-gas basins. Explorations for hot dry rock (HDR) geothermal resources and porphyry gold deposits in eastern China offer now valuable opportunities to study the terrestrial heat flow in the crystalline basement. In this study, we obtained continuous temperature logs from two boreholes (the LZ borehole with a depth of 3471 m and the DR borehole with a depth of 2179 m) located in the south-east margin of the North China Craton. The boreholes have experienced long shut-in times (442 days and 261 days for the LZ borehole and DR borehole, respectively); thus, it can be expected that the temperature conditions have re-equilibrated after drilling and drill-mud circulation. Rock thermal conductivity and radiogenic heat production were measured for 68 crystalline rock samples from these two boreholes. The measured heat-flow density was determined to be 71.8 ± 2.3 mW m-2 (for the LZ borehole) and 91.5 ± 1.2 mW m-2 (for the DR borehole). The heat flow for the LZ borehole is close to the value of 75 mW m-2 determined in the Chinese Continental Scientific Drilling main hole (CCSD MH), both being in the Sulu-Dabie orogenic belt and thus able to verify each other. The value for the DR borehole is higher than the above two values, which supports former high heat-flow values determined in the Bohai Bay Basin.
Maine Geological Survey Borehole Temperature Profiles
Marvinney, Robert
2013-11-06
This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.
30 CFR 75.1322 - Stemming boreholes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
30 CFR 75.1322 - Stemming boreholes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
30 CFR 75.1322 - Stemming boreholes
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
30 CFR 75.1322 - Stemming boreholes
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
Paillet, Frederick L.; Singhroy, V.H.; Hansen, D.T.; Pierce, R.R.; Johnson, A.I.
2002-01-01
Integration of geophysical data obtained at various scales can bridge the gap between localized data from boreholes and site-wide data from regional survey profiles. Specific approaches to such analysis include: 1) comparing geophysical measurements in boreholes with the same measurement made from the surface; 2) regressing geophysical data obtained in boreholes with water-sample data from screened intervals; 3) using multiple, physically independent measurements in boreholes to develop multivariate response models for surface geophysical surveys; 4) defining subsurface cell geometry for most effective survey inversion methods; and 5) making geophysical measurements in boreholes to serve as independent verification of geophysical interpretations. Integrated analysis of surface electromagnetic surveys and borehole geophysical logs at a study site in south Florida indicates that salinity of water in the surficial aquifers is controlled by a simple wedge of seawater intrusion along the coast and by a complex pattern of upward brine seepage from deeper aquifers throughout the study area. This interpretation was verified by drilling three additional test boreholes in carefully selected locations.
Xie, James Y; Wong, Jane C Y; Dumont, Clement P; Goodkin, Nathalie; Qiu, Jian-Wen
2016-07-15
Borehole density on the surface of Porites has been used as an indicator of water quality in the Great Barrier Reef. We assessed the relationship between borehole density on Porites and eight water quality parameters across 26 sites in Hong Kong. We found that total borehole densities on the surface of Porites at 16 of the studied sites were high (>1000individualsm(-2)), with polychaetes being the dominant bioeroders. Sedimentation rate was correlated positively with total borehole density and polychaete borehole density, with the latter relationship having a substantially higher correlation of determination. None of the environmental factors used were significantly correlated with bivalve borehole density. These results provide a baseline for assessing future changes in coral bioerosion in Hong Kong. This present study also indicates that polychaete boreholes can be used as a bioindicator of sedimentation in the South China Sea region where polychaetes are numerically dominant bioeroders. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thamir, F.; Thordarson, W.; Kume, J.
Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includesmore » drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.« less
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
A new flexible plug and play scheme for modeling, simulating, and predicting gastric emptying
2014-01-01
Background In-silico models that attempt to capture and describe the physiological behavior of biological organisms, including humans, are intrinsically complex and time consuming to build and simulate in a computing environment. The level of detail of description incorporated in the model depends on the knowledge of the system’s behavior at that level. This knowledge is gathered from the literature and/or improved by knowledge obtained from new experiments. Thus model development is an iterative developmental procedure. The objective of this paper is to describe a new plug and play scheme that offers increased flexibility and ease-of-use for modeling and simulating physiological behavior of biological organisms. Methods This scheme requires the modeler (user) first to supply the structure of the interacting components and experimental data in a tabular format. The behavior of the components described in a mathematical form, also provided by the modeler, is externally linked during simulation. The advantage of the plug and play scheme for modeling is that it requires less programming effort and can be quickly adapted to newer modeling requirements while also paving the way for dynamic model building. Results As an illustration, the paper models the dynamics of gastric emptying behavior experienced by humans. The flexibility to adapt the model to predict the gastric emptying behavior under varying types of nutrient infusion in the intestine (ileum) is demonstrated. The predictions were verified with a human intervention study. The error in predicting the half emptying time was found to be less than 6%. Conclusions A new plug-and-play scheme for biological systems modeling was developed that allows changes to the modeled structure and behavior with reduced programming effort, by abstracting the biological system into a network of smaller sub-systems with independent behavior. In the new scheme, the modeling and simulation becomes an automatic machine readable and executable task. PMID:24917054
Aspergillus fumigatus colonization of punctal plugs.
Tabbara, Khalid F
2007-01-01
Punctal plugs are used in patients with dry eye syndrome to preserve the tears. In this report, I present two cases of Aspergillus fumigatus colonization of punctal plugs. Observational series of two cases. Approval was obtained from the institutional review board. Two men aged 29 and 31 years developed black spots inside the hole of punctal plug, which looked like eyeliner deposits. The deposits inside the hole of the plug in each patient were removed and cultured. Cultures of the two punctal plugs black deposits grew A fumigatus. Bacterial cultures were negative. Colonization of the punctal plug hole with A fumigatus was observed in two cases. It is recommended that punctal plugs be removed in patients undergoing refractive or intraocular procedures or in patients who are receiving topical corticosteroids. Current punctal plugs should be redesigned to avoid the presence of an inserter hole.
Demonstration of catalytic combustion with residual fuel
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1981-01-01
An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.
Deep Space Habitat Wireless Smart Plug
NASA Technical Reports Server (NTRS)
Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.
2014-01-01
NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.
ERIC Educational Resources Information Center
ERIC Review, 1993
1993-01-01
The "ERIC Review" is published three times a year and announces research results, publications, and new programs relevant to each issue's theme topic. This issue explores computer networking in elementary and secondary schools via two principal articles: "Plugging into the 'Net'" (Michael B. Eisenberg and Donald P. Ely); and…
ERIC Educational Resources Information Center
Vander Linden, Doug; Clark, Larry
1994-01-01
Stand-alone, single-user software programs for classroom use can be prohibitively expensive, compared to information-sharing network systems. Based on a Kansas district's experience, this article explains three types of networks (device-sharing, operating-system-based, and client-server-based) and discusses network protocols, software choices,…
Plug cluster module demonstration
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1978-01-01
The low pressure, film cooled rocket engine design concept developed during two previous ALRC programs was re-evaluated for application as a module for a plug cluster engine capable of performing space shuttle OTV missions. The nominal engine mixture ratio was 5.5 and the engine life requirements were 1200 thermal cycles and 10 hours total operating life. The program consisted of pretest analysis; engine tests, performed using residual components; and posttest analysis. The pretest analysis indicated that operation of the operation of the film cooled engine at O/F = 5.5 was feasible. During the engine tests, steady state wall temperature and performance measurement were obtained over a range of film cooling flow rates, and the durability of the engine was demonstrated by firing the test engine 1220 times at a nominal performance ranging from 430 - 432 seconds. The performance of the test engine was limited by film coolant sleeve damage which had occurred during previous testing. The post-test analyses indicated that the nominal performance level can be increased to 436 seconds.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
Methods for enhancing the efficiency of creating a borehole using high power laser systems
Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.
2014-06-24
Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.
Leyde, Brian P; Klein, Sanford A; Nellis, Gregory F; Skye, Harrison
2017-03-01
This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model.
NASA Astrophysics Data System (ADS)
Malinverno, A.; Saito, S.
2013-12-01
Borehole breakouts are sub-vertical hole enlargements that form on opposite sides of the borehole wall by local rock failure due to non-uniform stress. In a vertical borehole, the breakout direction is perpendicular to the maximum principal horizontal stress. Hence, borehole breakouts are key indicators of the present state of stress in the subsurface. Borehole breakouts were imaged by logging-while drilling (LWD) measurements collected in the Costa Rica Seismogenesis Project (CRISP, IODP Expedition 334). The borehole radius was estimated from azimuthal LWD density and ultrasonic measurements. The density-based borehole radius is based on the difference in scattered gamma rays measured by a near and a far detector, which is a function of the standoff between the tool and the borehole. Borehole radius can also be measured from the travel time of an ultrasonic wave reflected by the borehole wall. Density and ultrasonic measurements are sampled in 16 azimuthal sectors, i.e., every 22.5°. These measurements are processed to generate images that fully cover the borehole wall and that display borehole breakouts as two parallel, vertical bands of large hole radius 180° apart. For a quantitative interpretation, we fitted a simple borehole shape to the measured borehole radii using a Monte Carlo sampling algorithm that quantifies the uncertainty in the estimated borehole shape. The borehole shape is the outer boundary of a figure consisting of a concentric circle and an ellipse. The ellipse defines the width, depth, and orientation of the breakouts. We fitted the measured radii in 2 m depth intervals and identified reliable breakouts where the breakout depth was significant and where the orientation uncertainty and the angle spanned by the breakout were small. The results show breakout orientations that differ by about 90° in Sites U1378 (about 15 km landward of the deformation front, 525 m water depth) and U1379 (about 25 km landward of the deformation front, 126 m water depth). The maximum principal horizontal stress is directed NNE-SSW at Site U1378 and WSW-ENE at Site U1379. These directions are approximately parallel and perpendicular to NNE-directed GPS deformation vectors on land. On erosive convergent margins, a transition is expected to take place from a compressive regime near a frontal wedge to extension and subsidence moving landward of the deformation front. Our working hypothesis is that this transition may take place between Sites U1378, where the breakout orientation is consistent with NNE-SSW compression, and Site U1379, where the breakouts indicate NNE-SSW extension.
NASA Astrophysics Data System (ADS)
Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.
2017-12-01
Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).
Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique
NASA Astrophysics Data System (ADS)
Chirindja, F. J.; Dahlin, T.; Juizo, D.
2017-08-01
Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (<600 L/h). Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.
Adamowicz, S.C.; Roman, C.T.
2002-01-01
This study evaluates the response of three salt marshes, associated with the Rachel Carson National Wildlife Refuge (Maine), to the practice of ditch plugging. Drainage ditches, originally dug to drain the marsh for mosquito control or to facilitate salt hay farming, are plugged with marsh peat in an effort to impound water upstream of the plug, raise water table levels in the marsh, and increase surface water habitat. At two study sites, Moody Marsh and Granite Point Road Marsh, ditch plugs were installed in spring 2000. Monitoring of hydrology, vegetation, nekton and bird utilization, and marsh development processes was conducted in 1999, before ditch plugging, and then in 2000 and 2001 (all parameters except nekton), after ditch plugging. Each study site had a control marsh that was monitored simultaneously with the plugged marsh, and thus, we employed a BACI study design (before, after, control, impact). A third site, Marshall Point Road Marsh, was plugged in 1998. Monitoring of the plugged and control sites was conducted in 1999 and 2000, with limited monitoring in 2001, thus there was no ?before? plug monitoring. With ditch plugging, water table levels increased toward the marsh surface and the areal extent of standing water increased. Responding to a wetter substrate, a vegetation change from high marsh species (e.g., Spartina patens) to those more tolerant of flooded conditions (e.g., Spartina alterniflora) was noted at two of the three ditch plugged sites. Initial response of the nekton community (fishes and decapod crustaceans) was evaluated by monitoring utilization of salt marsh pools using a 1m2 enclosure trap. In general, nekton species richness, density, and community structure remained unchanged following ditch plugging at the Moody and Granite Point sites. At Marshall Point, species richness and density (number of individuals per m2) were significantly greater in the experimental plugged marsh than the control marsh (<2% of the control marsh was open water habitat vs. 11% of the plugged marsh). The response of birds, categorized as waterfowl & waterbirds, shorebirds & wading birds, gulls & terns, and miscellaneous (raptors, passerines, other), was variable. Following ditch plugging, bird species richness increased at the Granite Point site (1999 pre-plug = 15.4, 2000 post-plug = 26.2, 2001 post-plug = 38.7). Because of a low sample size at Moody Marsh, reliable statements on species richness cannot be made. Density of birds (no. of birds per ha) remained unchanged with ditch plugging at Granite Point Marsh, although there was a strong, but not statistically significant, trend toward increased density. This study only reports on initial responses of marsh functions to ditch plugging. Monitoring should continue at these sites, and perhaps at additional sites, for the next decade or so. A monitoring plan is recommended. Long-term monitoring will include evaluation of salt marsh development processes using SET (surface elevation table) methodology. There is concern, although not confirmed, that as ditch-plugged marshes become wetter and marsh grass production declines their ability to keep pace with sea level rise could be jeopardized. It is suggested that ditch plugging should be considered an experimental marsh management technique. Additional monitoring on the physical and habitat responses of ditch-plugged marshes is required, along with assessments of other techniques aimed at restoring open water habitat to the marsh surface.
NASA Astrophysics Data System (ADS)
Bobek, Kinga; Jarosiński, Marek; Pachytel, Radomir
2017-04-01
Structural analysis of borehole core and microresistivity images yield an information about geometry of natural fracture network and their potential importance for reservoir stimulation. Density of natural fractures and their orientation in respect to the maximum horizontal stress has crucial meaning for hydraulic fractures propagation in unconventional reservoirs. We have investigated several hundred meters of continuous borehole core and corresponding microresistivity images (mostly XRMI) from six boreholes in the Pomeranian part of the Early Paleozoic Baltic Basin. In general, our results challenge the question about representatives of statistics based on structural analyses on a small shale volume represented by borehole core or borehole wall images and credibility of different sets of data. Most frequently, fractures observed in both XRMI and cores are steep, small strata-bound fractures and veins with minor mechanical aperture (0,1 mm in average). These veins create an orthogonal joint system, locally disturbed by fractures associated with normal or by gently dipping thrust faults. Mean fractures' height keeps in a range between 30-50 cm. Fracture density differs significantly among boreholes and Consistent Lithological Units (CLUs) but the most frequent means falls in a range 2-4 m-1. We have also payed an attention to bedding planes due to their expected coupling with natural fractures and their role as structural barriers for vertical fracture propagation. We aimed in construction for each CLU the so-called "mean brick", which size is limited by an average distance between two principal joint sets and between bedding fractures. In our study we have found out a discrepancy between structural profiles based on XRMI and core interpretation. For some CLUs joint fractures densities, are higher in cores than in XRMI. In this case, numerous small fractures were not recorded due to the limits of XRMI resolution. However, the most veins with aperture 0,1 mm, cemented with calcite, were clearly visible in scanner image. We have also observed significantly lower density of veins in core than in the XRMI that occurs systematically in one formation enriched with carbonate and dolomite. In this case, veins are not fractured in core and obliterated for bare eye by dolomitization, but are still contrastive in respect of electric resistance. Calculated density of bedding planes per 1 meter reveals systematically higher density of fractures observed on core than in the XRMI (depicted automatically by interpretation program). This difference may come from additional fracking due to relaxation of borehole core while recovery. Comparison of vertical joint fractures density with thickness of mechanical beds shows either lack of significant trends or a negative correlation (greater density of bedding fractures correspond to lower density of joints). This result, obtained for shale complexes contradict that derived for sandstone or limestone. Boundary between CLUs are visible on both: joint and bedding fracture density profiles. Considering small-scale faults and slickensides we have obtained good agreement between results of core and scanner interpretation. This study in the frame of ShaleMech Project funded by Polish Committee for Scientific Research is in progress and the results are preliminary.
A numerical investigation of head waves and leaky modes in fluid- filled boreholes.
Paillet, Frederick L.; Cheng, C.H.
1986-01-01
Although synthetic borehole seismograms can be computed for a wide range of borehole conditions, the physical nature of shear and compressional head waves in fluid-filled boreholes is poorly understood. Presents a series of numerical experiments designed to explain the physical mechanisms controlling head-wave propagation in boreholes. These calculations demonstrate the existence of compressional normal modes equivalent to shear normal modes, or pseudo-Rayleigh waves, with sequential cutoff frequencies spaced between the cutoff frequencies for the shear normal modes.-from Authors
Method and system for advancement of a borehole using a high power laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.
2014-09-09
There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.
Said, Azza Mohamed Ahmed; Farag, Mona Elsayed; Abdulla, Tarek Mohamed; Ziko, Othman Ali Othman; Osman, Wesam Mohamed
2016-01-01
AIM To evaluate the effect of punctal occlusion using thermosensitive (smart plug) versus silicone plug for management of aqueous deficient dry eye on corneal sensitivity, ocular surface health and tear film stability. METHODS A comparative prospective interventional case study included 45 patients with bilateral severe form of aqueous deficient dry eye. In each patient, the smart plug was inserted in the lower punctum of the right eye which was considered as study group 1 and silicone plug was inserted in the lower punctum of the left eye of the same patient which was considered as study group 2. All patients were subjected to careful history taking and questionnaire for subjective assessment of severity of symptoms. Corneal sensitivity, corneal fluorescein, rose bengal staining, Schirmer's I test, tear film break up time and conjunctival impression cytology were performed pre and 1, 3 and 6mo post plug insertion. RESULTS A statistically significant improvement in subjective and objective manifestations occurred following treatment with both types of plugs (P<0.01). The thermosensitive plug caused significant overall improvement, decrease in frequency of application of tear substitutes and improvement of conjunctival impression cytology parameters in the inserted side (P<0.01). Canaliculitis was reported in two eyes (4.4%) following punctal occlusion using thermosensitive plug (study group 1). Spontaneous plug loss occurred in 21 eyes (46.6%) in the silicone plug group (study group 2). CONCLUSION Improvement of subjective and objective manifestations of aqueous deficient dry eye occurs following punctal plug occlusion. Thermosensitive plug has good patient's compliance with fewer complications and lower rates of loss compared to the silicone plug. PMID:27990362
Light-Duty Alternative Fuel Vehicle Rebates Clean Vehicle and Infrastructure Grants Clean Fleet Grants Clean School Bus Program Clean Vehicle Replacement Vouchers Diesel Fuel Blend Tax Exemption Idle Reduction Weight Exemption Natural Gas Vehicle (NGV) Weight Exemption Utility/Private Incentives Plug-In
Plug and Play web-based visualization of mobile air monitoring data (Abstract)
EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...
Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher
2013-11-05
In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.
Method and apparatus for coupling seismic sensors to a borehole wall
West, Phillip B.
2005-03-15
A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.
NASA Astrophysics Data System (ADS)
Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Davy, Philippe
2011-09-01
SummaryTemperature profiles in the subsurface are known to be sensitive to groundwater flow. Here we show that they are also strongly related to vertical flow in the boreholes themselves. Based on a numerical model of flow and heat transfer at the borehole scale, we propose a method to invert temperature measurements to derive borehole flow velocities. This method is applied to an experimental site in fractured crystalline rocks. Vertical flow velocities deduced from the inversion of temperature measurements are compared with direct heat-pulse flowmeter measurements showing a good agreement over two orders of magnitudes. Applying this methodology under ambient, single and cross-borehole pumping conditions allows us to estimate fracture hydraulic head and local transmissivity, as well as inter-borehole fracture connectivity. Thus, these results provide new insights on how to include temperature profiles in inverse problems for estimating hydraulic fracture properties.
Gas bubble formation and its pressure signature in T-junction of a microreactor
NASA Astrophysics Data System (ADS)
Pouya, Shahram; Koochesfahani, Manoochehr
2013-11-01
The segmented gas-liquid flow is of particular interest in microreactors used for high throughput material synthesis with enhanced mixing and more efficient reaction. A typical geometry to introduce gas plugs into the reactor is a T-junction where the dispersed liquid is squeezed and pinched by the continuous fluid in the main branch of the junction. We present experimental data of time resolved pressure along with synchronous imaging of the drop formation at the junction to show the transient behavior of the process. The stability of the slug regime and the regularity of the slug/plug pattern are investigated in this study. This work was supported by the CRC Program of the National Science Foundation, Grant Number CHE-0714028.
Generalizing the extensibility of a dynamic geometry software
NASA Astrophysics Data System (ADS)
Herceg, Đorđe; Radaković, Davorka; Herceg, Dejana
2012-09-01
Plug-and-play visual components in a Dynamic Geometry Software (DGS) enable development of visually attractive, rich and highly interactive dynamic drawings. We are developing SLGeometry, a DGS that contains a custom programming language, a computer algebra system (CAS engine) and a graphics subsystem. The basic extensibility framework on SLGeometry supports dynamic addition of new functions from attribute annotated classes that implement runtime metadata registration in code. We present a general plug-in framework for dynamic importing of arbitrary Silverlight user interface (UI) controls into SLGeometry at runtime. The CAS engine maintains a metadata storage that describes each imported visual component and enables two-way communication between the expressions stored in the engine and the UI controls on the screen.
Architectural Implementation of NASA Space Telecommunications Radio System Specification
NASA Technical Reports Server (NTRS)
Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.
2012-01-01
This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.
Experimental study of moving throat plug in a shock tunnel
NASA Astrophysics Data System (ADS)
Lee, J. K.; Park, C.; Kwon, O. J.
2015-07-01
An experimental study has been carried out to investigate the flow in the KAIST shock tunnel with two moving throat plugs at a primary shock velocity of 1.19 km/s. The nozzle reservoir pressure and the Pitot pressure at the exit of the nozzle were measured to examine the influence of the moving throat plugs on the shock tunnel flow. To assess the present experimental results, comparisons with previous work using a stationary throat plug were made. The mechanism for closing the moving throat plug was developed and verified. The source of the force to move the plug was the pressure generated when the primary shock was reflected at the bottom of the plug. It was observed that the two plugs terminated the shock tunnel flow after the steady flow. .The time for the plugs to terminate the flow showed good agreement with the calculation of the proposed simple analytic solution. There was a negligible difference in flow values such as the reflected pressure and the Pitot pressure between the moving and the stationary plugs.
Generation 1.5 High Speed Civil Transport (HSCT) Exhaust Nozzle Program
NASA Technical Reports Server (NTRS)
Thayer, E. B.; Gamble, E. J.; Guthrie, A. R.; Kehret, D. F.; Barber, T. J.; Hendricks, G. J.; Nagaraja, K. S.; Minardi, J. E.
2004-01-01
The objective of this program was to conduct an experimental and analytical evaluation of low noise exhaust nozzles suitable for future High-Speed Civil Transport (HSCT) aircraft. The experimental portion of the program involved parametric subscale performance model tests of mixer/ejector nozzles in the takeoff mode, and high-speed tests of mixer/ejectors converted to two-dimensional convergent-divergent (2-D/C-D), plug, and single expansion ramp nozzles (SERN) in the cruise mode. Mixer/ejector results show measured static thrust coefficients at secondary flow entrainment levels of 70 percent of primary flow. Results of the high-speed performance tests showed that relatively long, straight-wall, C-D nozzles could meet supersonic cruise thrust coefficient goal of 0.982; but the plug, ramp, and shorter C-D nozzles required isentropic contours to reach the same level of performance. The computational fluid dynamic (CFD) study accurately predicted mixer/ejector pressure distributions and shock locations. Heat transfer studies showed that a combination of insulation and convective cooling was more effective than film cooling for nonafterburning, low-noise nozzles. The thrust augmentation study indicated potential benefits for use of ejector nozzles in the subsonic cruise mode if the ejector inlet contains a sonic throat plane.
NASA Astrophysics Data System (ADS)
Ehmann, S.; Hördt, A.; Leven, M.; Virgil, C.
2015-01-01
We carried out measurements of the magnetic field vector at two sites during Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamount Chain. The aim was to impose constraints on the magnetization direction and to contribute to the reconstruction of possible hot spot motion. The measurements were conducted using the Göttingen Borehole Magnetometer (GBM). It comprises three fiber optic gyros (FOG) that can be used to reorient the magnetic field data. To improve accuracy, we are using a new algorithm that combines FOG data and data of two inclinometers. As can be evaluated by comparing downlog and uplog of the measurements, the three-dimensional magnetic field data obtained is of good quality. An interpretation of the magnetic field data using a state of the art method based on horizontal layers yields results inconsistent with measurements of the natural remanent magnetization (NRM) of drill core samples. In the following, we define the magnetization from the horizontal layer as apparent magnetization and develop a new interpretation method based on dipping layers. Our method includes a new approximate forward modeling algorithm and considerably improves the consistency of the borehole measurements and the NRM data. We show that a priori information about the geometry of a layer is required to constrain the inclination and declination of magnetization. Especially the azimuth of a layer and the declination of magnetization cannot be determined separately. Using azimuth and layer dip information from borehole images, we obtain constraints on inclination and declination for one particular layer.
Response of surface-to-borehole SOTEM method on 2D earth
NASA Astrophysics Data System (ADS)
Chen, Weiying; Younis Khan, Muhammad; Xue, Guoqiang
2017-08-01
Borehole TEM methods are mostly based on a ground loop source. In this paper, we propose a new surface-to-borehole SOTEM method that uses a horizontal grounded-wire source. In this method, the transmitter is deployed on the ground near a borehole and the receiver is moved along the borehole to record the transient signal. In order to gain a basic understanding of this method, we analyzed the response characteristics of a rectangular body in a homogeneous half space based on a pure two-dimensional (2D) modeling scheme. The electric field and magnetic field (time derivative) are obtained by using 2D finite-difference time-domain (FDTD) modeling. We demonstrated that the targets—especially the conductive targets—can be reflected according to the borehole SOTEM responses. The location and the electrical properties of the targets can also be estimated by qualitatively analyzing the response curves. However, the anomalous amplitude is weakened when the surface layer contains local inhomogeneous bodies or exhibits a conductive overburden. Compared with a loop source borehole TEM, electromagnetic fields for a borehole SOTEM decay more slowly and show greater sensitivity to anomalous bodies. This study provides aid for further data interpretation, and also indicates that surface-to-borehole SOTEM is an effective method for underground detection.
Xue, Fei; Zhang, Nong; Feng, Xiaowei; Zheng, Xigui; Kan, Jiaguang
2015-01-01
A monitoring trial was carried out to investigate the effect of boreholes configuration on the stability and gas production rate. These boreholes were drilled from the retaining roadway at longwall mining panel 1111(1) of the Zhuji Coalmine, in China. A borehole camera exploration device and multiple gas parameter measuring device were adopted to monitor the stability and gas production rate. Research results show that boreholes 1~8 with low intensity and thin casing thickness were broken at the depth of 5~10 m along the casing and with a distance of 2~14 m behind the coal face, while boreholes 9~11 with a special thick-walled high-strength oil casing did not fracture during the whole extraction period. The gas extraction volume is closely related to the boreholes stability. After the stability of boreholes 9~11 being improved, the average gas flow rate increased dramatically 16-fold from 0.13 to 2.21 m3/min, and the maximum gas flow rate reached 4.9 m3/min. Strengthening boreholes configuration is demonstrated to be a good option to improve gas extraction effect. These findings can make a significant contribution to the reduction of greenhouse gas emissions from the coal mining industry. PMID:25633368
Pasini, III, Joseph; Shuck, Lowell Z.; Overbey, Jr., William K.
1977-01-01
This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.
Leyde, Brian P.; Klein, Sanford A; Nellis, Gregory F.; Skye, Harrison
2017-01-01
This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model. PMID:28785125
Deep Borehole Field Test Laboratory and Borehole Testing Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.
2016-09-19
Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuelmore » and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).« less
Vascular plugs - A key companion to Interventionists - 'Just Plug it'.
Ramakrishnan, Sivasubramanian
2015-01-01
Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.
There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivitymore » constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured rock through 3D inversion and accurate modeling of boreholes. However, deregularization of localized features can result in significant electrical conductivity artifacts, especially when representing features with a high degree of spatial uncertainty.« less
The Role of Active Fractures on Borehole Breakout Development
NASA Astrophysics Data System (ADS)
Sahara, D.; Kohl, T.; Schoenball, M.; Müller, B.
2013-12-01
The properties of georeservoirs are strongly related to the stress field and their interpretation is a major target in geotechnical management. Borehole breakouts are direct indicators of the stress field as they develop due to the concentration of the highest compressional stress toward the minimum horizontal stress direction. However, the interaction with fractures might create local perturbations. Such weakened zones are often observed by localized anomalies of the borehole breakout orientation. We examined high-quality acoustic borehole televiewer (UBI) logs run in the entire granite sections at the deep well GPK4 at Soultz-sous-Forêts, France. The borehole is moderately inclined (15° - 35°) in its middle section. Detailed analysis of 1221 borehole elongation pairs in the vicinity of 1871 natural fractures observed in GPK4 well is used to infer the role of fractures on the borehole breakouts shape and orientation. Patterns of borehole breakout orientation in the vicinity of active fractures suggest that the wavelength of the borehole breakout orientation anomalies in this granite rock depend on the scale of the fracture while the rotation amplitude and direction is strongly influenced by the fracture orientation. In the upper and middle part of the well even a linear trend between fracture and breakout orientations could be established. In addition to the rotation, breakouts typically are found to be asymmetrically formed in zones of high fracture density. We find that major faults tend to create a systematic rotation of borehole breakout orientation with long spatial wavelength while abrupt changes are often observed around small fractures. The finding suggest that the borehole breakout heterogeneities are not merely governed by the principal stress heterogeneities, but that the effect of mechanical heterogeneities like elastic moduli changes, rock strength anisotropy and fracturing must be taken into account. Thus, one has to be careful to infer the principal stress orientation from borehole breakout data observed in fractured rock.
NASA Astrophysics Data System (ADS)
Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.
2008-12-01
Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on initial results from this new joint project for the carbonate sequences and impact lithologies.
Geochemical and petrographic studies of melt-rich breccias from the Chicxulub crater
NASA Astrophysics Data System (ADS)
Vera-Sanchez, P.; Urrutia-Fucugauchi, J.; Morton-Bermea, O.; Soler-Arechalde, A.; Reyes-Salas, M.; Lozano-Santamaria, R.; Linares-Lopez, C.; Rebolledo-Vieyra, M.
2003-04-01
The proposal by Alvarez et al. (1980) for an extraterrestrial bolide impact marking the Cretaceous/Tertiary boundary was based on the anomalous Ir content in Italian and Danish K/T clay layers. The clay layer with a worldwide distribution and enriched in platinum group elements, shocked quartz and other impact-generated features has come to be interpreted as the global ejecta layer produced by a large impact that formed the Chicxulub crater. The ~200 km diameter crater is located in the carbonate platform of northwestern Yucatan peninsula, Mexico. The crater is covered by a thick sequence of Tertiary sediments, with no surface exposures. The National University of Mexico conducted a drilling program with continuous core recovery, in which three boreholes (UNAM wells 5, 6 and 7) sampled the impact breccia sequences. Deeper drilling inside the carter has been carried out as part of the ICDP program with drilling of the Yaxcopoil-1 borehole, which also cored a section of the impact breccias. The Yaxcopoil-1 borehole has been completed as part of the Chicxulub Scientific Drilling Project. In this work, we report on the geochemical and petrographic studies of selected samples from the impact breccia sequence recovered in the Yaxcopoil-1 borehole inside the Chicxulub crater. One of the major questions emerging after the interpretation of Chicxulub as the K/T boundary impact site and its link to the global ejecta layer has been the nature of the impacting body. Studies have addressed this question from distinct fields, including investigation of the ejecta deposits near and far from the crater, from the crater itself, from impact records on the Moon and other bodies, searching for surviving fragments in K/T boundary sections, etc. The search for material with a possible small component associated to the impactor could open unique research opportunities to further understand the impact event. The melt breccia samples examined exhibit different textures and chemical composition, suggesting a complex composition. Rare earth element plots for the various fragments are on the other hand similar. We report the initial results of the petrographic, microprobe, ICP-MS, X-ray fluorescence and X-ray diffraction studies.
Biggins, Dean E.; Ramakrishnan, Shantini; Goldberg, Amanda R.; Eads, David A.
2012-01-01
Black-tailed prairie dogs (Cynomys ludovicianus) plug burrows occupied by black-footed ferrets (Mustela nigripes), and they also plug burrows to entomb dead prairie dogs. We further evaluated these phenomena by sampling connectivity and plugging of burrow openings on prairie dog colonies occupied by ferrets, colonies where recreational shooting was allowed, and colonies with neither shooting nor ferrets. We counted burrow openings on line surveys and within plots, classified surface plugging, and used an air blower to examine subsurface connectivity. Colonies with ferrets had lower densities of openings, fewer connected openings (suggesting increased subsurface plugging), and more surface plugs compared to colonies with no known ferrets. Colonies with recreational shooting had the lowest densities of burrow openings, and line-survey data suggested colonies with shooting had intermediate rates of surface plugging. The extent of surface and subsurface plugging could have consequences for the prairie dog community by changing air circulation and escape routes of burrow systems and by altering energetic relationships. Burrow plugging might reduce prairie dogs' risk of predation by ferrets while increasing risk of predation by American badgers (Taxidea taxus); however, the complexity of the trade-off is increased if plugging increases the risk of predation on ferrets by badgers. Prairie dogs expend more energy plugging and digging when ferrets or shooting are present, and ferrets increase their energy expenditures when they dig to remove those plugs. Microclimatic differences in plugged burrow systems may play a role in flea ecology and persistence of the flea-borne bacterium that causes plague (Yersinia pestis).
Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.
2002-01-01
The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring in nearby boreholes under pumping conditions identified hydraulic connections along a northeast-southwest trend between boreholes as far as 560 ft apart. The vertical distribution of fractures can be described by power law functions, which suggest that the fracture network contains transmissive zones consisting of closely spaced fractures surrounded by a less fractured and much less permeable rock mass.
NASA Astrophysics Data System (ADS)
Maxwell, O.; Wagiran, H.; Lee, S. K.; Embong, Z.; Ugwuoke, P. E.
2015-02-01
The activity concentrations of uranium and toxic elements in Dei-Dei borehole, Kubwa borehole, Water Board and hand-dug well water samples in Abuja area were measured using inductively coupled plasma mass spectrometry (ICP-MS) system. The results obtained were used to calculate human radiological risk over lifetime consumption by the inhabitants in the area. The activity concentrations of 238U in all the water supplies for drinking ranges from 0.849 mBq L-1 to 2.699 mBq L-1 with the highest value of 2.699 mBq L-1 noted at Dei-Dei borehole whereas the lowest value of 0.849 mBq L-1 was noted in Kubwa borehole. The highest annual effective dose from natural 238U in all the water samples was found in Dei-Dei borehole with a value of 8.9×10-5 mSv y-1 whereas the lowest value was noted in Kubwa borehole with a value of 2.8×10-5 mSv y-1. The radiological risks for cancer mortality were found distinctly low, with the highest value of 1.01×10-7 reported at Dei-Dei borehole compared to Kubwa borehole with a value of 3.01×10-8. The cancer morbidity risk was noted higher in Dei-Dei borehole with a value of 1.55×10-7 whereas lower value of 4.88×10-9 was reported in Kubwa borehole. The chemical toxicity risk of 238U in drinking water over a lifetime consumption has a value of 0.006 μg kg-1 day-1 in Dei-Dei borehole whereas lower value of 0.002 μg kg-1 day-1 was found in Kubwa borehole. Measured lead (Pb) and chromium (Cr) concentrations reported higher in Water Board compared to Dei-Dei and Kubwa borehole samples. Significantly, this study inferred that the 238U concentrations originate from granitic strata of the tectonic events in the area; thus, there was a trend of diffusion towards north to south and re-deposition towards Dei-Dei area.
NASA Astrophysics Data System (ADS)
Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.
2012-12-01
Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity measurements with different electrode configurations are affected by borehole design. Finally, the plausibility of our results was verified by comparing the simulation results with borehole EIT measurements made at the test site Krauthausen.
NASA Astrophysics Data System (ADS)
Wenning, Q.; Zappone, A.; Berthet, T.; Ask, M. V. S.; Rosberg, J. E.; Almqvist, B. S. G.
2017-12-01
Borehole breakouts are often assumed to form near instantaneously due to stress perturbations around boreholes after the rock mass was removed. Recent observations in sediments [e.g., Moore et al., 2011] and crystalline rocks [e.g., Berard and Cornet, 2003], as well as numerical modelling results [e.g., Schoenball et al., 2014], suggest that there are cases in which borehole breakout grows radially over time, forcing us to reconsider subsurface stress estimation. These observations are rare due to drilling difficulties (i.e., cementing and casing the borehole after drilling), often only allowing a single image logging campaign. In 2014, the Collisional Orogeny in the Scandinavian Caledonides deep scientific borehole (COSC-1) was drilled to a depth of 2.5 km. To date the borehole is open and uncased, allowing two acoustic televiewer logging campaigns, with more than one year between campaigns. The borehole is still available for supplementary data collactions. These logs provide detailed images along the full length of the 2.5 km deep borehole with 1.6 km of overlapping logs for breakout and drilling induced tensile fracture analysis. The results show from the sparse occurrence of breakouts and drilling induced tensile fractures a NW-SE average maximum horizontal stress direction, consistent with the general trend in Scandinavia. The unique acquisition of image logs in two successions allows for analysis of time-dependent borehole deformation, indicating that six breakout zones have crept, both along the borehole axis and radially (up to 20° growth) around the borehole. While some breakouts have grown, the formation of new breakouts has not occurred. The occurrence of breakouts and their growth appear to be independent of lithology. The observed growth after the second logging campaign suggests that under conditions where the stress exceeded the strength of the rock, the resulting breakout causes perturbations in the stresses around the borehole in the near vicinity. As those stresses are redistributed around the breakouts over the course of the year, the breakouts widen. The fact that no new breakout zones have formed suggests that the brittle creeping is not likely to initiate breakouts and that an initial perturbation during drilling (i.e., a breakout) is required to observe such a phenomenon.
Fisher, Jason C.; Twining, Brian V.
2011-01-01
During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients generally were downward in boreholes USGS 133, 134, and MIDDLE 2050A, zero in boreholes USGS 103 and 132, and exhibited a reversal in direction in borehole MIDDLE 2051. Water temperatures in all boreholes ranged from 10.2 to 16.3 degrees Celsius. Boreholes USGS 103 and 132 are in an area of concentrated volcanic vents and fissures, and measurements show water temperature decreasing with depth. All other measurements in boreholes show water temperature increasing with depth. A comparison among boreholes of the normalized mean head over time indicates a moderately positive correlation.
Stumm, Frederick; Chu, Anthony; Lange, Andrew D.; Paillet, Frederick L.; Williams, John H.; Lane, John W.
2001-01-01
Advanced borehole geophysical methods were used to assess the geohydrology of crystalline bedrock along the course of a new water tunnel for New York City. The logging methods include natural gamma, spontaneous potential, single-point resistance, mechanical and acoustic caliper, focused electromagnetic induction, electromagnetic resistivity, magnetic susceptibility, borehole-fluid temperature and conductance, differential temperature, heat-pulse flowmeter, acoustic televiewer, borehole deviation, optical televiewer, and borehole radar. Integrated interpretation of the geophysical logs from an 825-foot borehole (1) provided information on the extent, orientation, and structure (foliation and fractures) within the entire borehole, including intensely fractured intervals from which core recovery may be poor; (2) delineated transmissive fracture zones intersected by the borehole and provided estimates of their transmissivity and hydraulic head; and (3) enabled mapping of the location and orientation of structures at distances as much as 100 ft from the borehole.Analyses of the borehole-wall image and the geophysical logs from the borehole on Crescent Street, in northern Queens County, are presented here to illustrate the application of the methods. The borehole penetrates gneiss and other crystalline bedrock that has predominantly southeastward dipping foliation and nearly horizontal and southeastward-dipping fractures. The heat-pulse flowmeter logs obtained under pumping and nonpumping conditions, together with the other geophysical logs, indicate five transmissive fracture zones. More than 90 percent of the open-hole transmissivity is associated with a fracture zone 272 feet BLS (below land surface). A transmissive zone at 787 feet BLS that consists of nearly parallel fractures lies within the projected tunnel path; here the hydraulic head is 12 to 15 feet lower than that of transmissive zones above the 315-foot depth. The 60-megahertz directional borehole radar logs indicate the location and orientation of two closely spaced radar reflectors that would intersect the projection of the borehole below its drilled depth.Subsequent excavation of the tunnel past the borehole allowed comparison of the log analysis with conditions observed in the tunnel. The tunnel was found to intersect gneiss with southeastward dipping foliation; many nearly horizontal fractures; and a southeastward dipping fracture zone whose location, character, and orientation was consistent with that of the mapped radar reflectors. The fracture zone produced inflow to the tunnel at a rate of 50 to 100 gallons per minute. All conditions indicated by the logging methods were consistent with those observed within the tunnel.
Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld
NASA Technical Reports Server (NTRS)
Littell, Justin Anderson (Inventor)
2016-01-01
A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2006-03-01
Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7more » 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.« less
Odyne Plug-In Hybrid Electric Utility Truck Testing | Transportation
Research | NREL Odyne Plug-In Hybrid Electric Utility Truck Evaluation Odyne Plug-In Hybrid data on plug-in hybrid electric utility trucks operated by a variety of companies. Photo courtesy of Odyne, NREL NREL is evaluating the in-service performance of about 120 plug-in hybrid electric utility
NASA Astrophysics Data System (ADS)
Bobek, Kinga; Jarosiński, Marek; Stadtmuller, Marek; Pachytel, Radomir; Lis-Śledziona, Anita
2016-04-01
Natural fractures in gas-bearing shales has significant impact on reservoir stimulation and increase of exploitation. Density of natural fractures and their orientation in respect to the maximum horizontal stress are crucial for propagation of technological hydraulic fractures. Having access to continuous borehole core profile and modern geophysical logging from several wells in the Pomeranian part of the Early Paleozoic Baltic Basin (Poland) we were able to compare the consistency of structural interpretation of several data sets. Although, final aim of our research is to optimize the method of fracture network reconstruction on a reservoir scale, at a recent stage we were focused on quantitative characterization of tectonic structures in a direct vicinity of boreholes. The data we have, cover several hundred meters long profiles of boreholes from the Ordovician and Silurian shale complexes. Combining different sets of data we broaden the scale of observation from borehole core (5 cm radius), through XRMI scan of a borehole wall (10 cm radius), up to penetration of a signal of an acoustic dipole logging (several tens of cm range). At the borehole core we examined the natural tectonic structures and mechanically significant features, like: mineral veins, fractured veins, bare fractures, slickensides, fault zones, stylolites, bedding plane and mechanically contrasting layers. We have also noticed drilling-induced features like centerline fractures and core disking, controlled by a recent tectonic stress. We have measured the orientation of fractures, their size, aperture and spacing and also describe the character of veins and tried to determine the stress regime responsible for fault slippage and fracture propagation. Wide range of analyzed features allowed us to discriminate fracture sets and reconstruct tectonic evolution of the complex. The most typical for analyzed shale complexes are steep and vertical strata-bound fractures that create an orthogonal joint system, which is locally disturbed by small-scale faults and fractures, associated with them. For regular joints, observed on borehole core, we have calculated variation of mean height and area and volume of mineralization for veins. Fracture density variation reveals good correlation with lithological shale formations which are comparable with Consistent Mechanical Units differentiated based on detailed lithological profiling and geophysical data (see Pachytel et al., this issue).We have also proposed a new method of a rose diagram construction presenting strike of fractures taking into account their size and angular error bar in strike determination. Each fracture was weighted with its length or aperture and an angular error was included by blurring the less credible records. This allowed for more precise adjustment of fracture sets direction in comparison to conventional diagrams without weighting procedure. Recently, we are processing acoustic dipole logs for anisotropy analyses aiming in comparison with density of fracture sets. Our study, which is conducted in the frame of ShaleMech Project (within Blue Gas Program) is in progress, thus the presented results should be considered as preliminary.
The Race Toward Becoming Operationally Responsive in Space
NASA Astrophysics Data System (ADS)
Nagy, J.; Hernandez, V.; Strunce, R.
The US Air Force Research Laboratory (AFRL) is currently supporting the joint Operationally Responsive Space (ORS) program with two aggressive research space programs. The goal of the ORS program is to improve the responsiveness of space capabilities to meet national security requirements. ORS systems aim to provide operational space capabilities as well as flexibility and responsiveness to the theater that do not exist today. ORS communication, navigation, and Intelligence, Surveillance and Reconnaissance (ISR) satellites are being designed to rapidly meet near term space needs of in-theater tactical forces by supporting contingency operations, such as increased communication bandwidth, and ISR imagery over the theater for a limited period to support air, ground, and naval force missions. This paper will discuss how AFRL/RHA is supporting the ORS effort and describe the hardware and software being developed with a particular focus on the Satellite Design Tool for plug-n-play satellites (SDT). AFRLs Space Vehicles Directorate together with the Scientific Simulation, Inc. was the first to create the Plug-and-play (PnP) satellite design for rapid construction through modular components that encompass the structural panels, as well as the guidance and health/status components. Expansion of the PnP technology is currently being led by AFRL's Human Effectiveness Directorate and Star Technologies Corp. by pushing the boundaries of mobile hardware and software technology through the development of the teams "Training and Tactical ORS Operations (TATOO) Laboratory located in Great Falls, VA. The TATOO Laboratory provides a computer-based simulation environment directed at improving Warfighters space capability responsiveness by delivering the means to create and exercise methods of in-theater tactical satellite tasking for and by the Warfighter. In an effort to further support the evolution of ORS technologies with Warfighters involvement, Star recently started coordinating the integration of the TATOO Laboratory with a satellite robotics test bed. Accessible via the TATOO Lab, the robotics test bed will be used to demonstrate and evaluate leading edge satellite technologies, such as Guidance Navigation and Control, attitude control, formation flying, and plug-and-play electronics. The test bed will consist of a Mission Control Center with wireless control and telemetry, an exceptionally flat and smooth floor area, and two robotic satellite simulators equipped with next generation plug-and-play hardware.
30 CFR 57.12083 - Support of power cables in shafts and boreholes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...
30 CFR 57.12083 - Support of power cables in shafts and boreholes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...
30 CFR 57.12083 - Support of power cables in shafts and boreholes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...
30 CFR 57.12083 - Support of power cables in shafts and boreholes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...
30 CFR 57.12083 - Support of power cables in shafts and boreholes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...
30 CFR 57.22241 - Advance face boreholes (I-C mines).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...
30 CFR 57.22241 - Advance face boreholes (I-C mines).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...
30 CFR 57.22241 - Advance face boreholes (I-C mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...
30 CFR 57.22241 - Advance face boreholes (I-C mines).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place is...
30 CFR 57.22241 - Advance face boreholes (I-C mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Boreholes shall be drilled in such a manner to insure that the advancing face will not accidently break into... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Pye, Steven; Hardin, Ernest
This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.
Analyzed DTS Data, Guelph, ON Canada
Coleman, Thomas
2015-07-01
Analyzed DTS datasets from active heat injection experiments in Guelph, ON Canada is included. A .pdf file of images including borehole temperature distributions, temperature difference distributions, temperature profiles, and flow interpretations is included as the primary analyzed dataset. Analyzed data used to create the .pdf images are included as a matlab data file that contains the following 5 types of data: 1) Borehole Temperature (matrix of temperature data collected in the borehole), 2) Borehole Temperature Difference (matrix of temperature difference above ambient for each test), 3) Borehole Time (time in both min and sec since the start of a DTS test), 4) Borehole Depth (channel depth locations for the DTS measurements), 5) Temperature Profiles (ambient, active, active off early time, active off late time, and injection).
Numerical Simulation of Sediment Plug Formation in Alluvial Channels
NASA Astrophysics Data System (ADS)
Posner, A. J.; Duan, J. G.
2011-12-01
A sediment plug is the aggregation of sediment in a river reach that completely blocks the original channel resulting in plug growth upstream by accretion and flooding in surrounding areas. Sediment plugs historically form over relatively short periods, in many cases a matter of weeks. Although sediment plugs are much more common in reach constrictions associated with large woody debris, the mouths of tributaries, and along coastal regions, this investigation focuses on sediment plug formation in an alluvial river. During high flows in the years 1991, 1995, 2005, and 2008, a sediment plug formed in the San Marcial reach of the Middle Rio Grande. The Bureau of Reclamation has had to spend millions of dollars dredging the channel to restore flows to Elephant Butte Reservoir. The hydrodynamic and sediment transport processes, associated with plug formation, occurring in this reach are driven by 1) a flow constriction associated with a rock outcrop, 2) a railroad bridge, and 3) the water level of the downstream reservoir. The three-dimensional hydrodynamic model, Delft3D, was implemented to determine the hydrodynamic and sediment transport parameters and variables required to simulate plug formation in an effort to identify hydro- and morphodynamic thresholds. Several variables were identified by previous studies as metrics for plug formation. These variables were used in our investigation to detect the relative magnitude of each process. Both duration and degree of high flow events were simulated, along with extent of cohesive sediment deposits, reservoir level, and percent of fines in suspended sediment distribution. Results of this analysis illustrate that this model is able to reproduce the sediment plug formation. Model calibration was based on measured water levels and changes in bathymetry using both sediment transport and morphologic change parameters. Changes to hydraulic and sediment parameters are not proportional to morphologic changes and are asymptotic in their response. These results suggest that there are thresholds to predict plug formation and that the contribution of specific variables to plug formation is not uniform. Sediment plug formation is a costly and dangerous phenomenon, especially in large alluvial rivers. This investigation yielded specific insights into the hydrodynamic and morphologic processes occurring during sediment plug formation. These insights can be used to reduce the risk of plug formation and predict the locations and times of other sediment plugs.
40 CFR 86.1867-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers...) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types... extent that such vehicles are not being used to generate early advanced technology vehicle credits under...
Plugging into Pop at the Junior High Level.
ERIC Educational Resources Information Center
Thompson, Dick
1979-01-01
Describes a junior high music program in Ridgewood, New Jersey, which capitalizes on student interest in popular music through courses in rock music history, pop music choral concerts, and facilities offering modern music production and performance equipment. This article is part of a theme issue on popular music. (SJL)
Plug into PR. NJLA Public Relations Handbook.
ERIC Educational Resources Information Center
New Jersey Library Association, Trenton.
A guide to using public relations techniques to promote both everyday services and special events at libraries, this handbook describes and suggests ways to use library displays; in-house printing; the local media, e.g., radio spots and cable television; library programs; marketing and promotion; and fundraising, including the formation of a…
High Occupancy Vehicle (HOV) Lane Exemption Through the Clean Pass Program, eligible plug-in number of occupants in the vehicle. Vehicles must display the Clean Pass vehicle sticker, which is . For a list of eligible vehicles and Clean Pass sticker application instructions, see the Clean Pass
40 CFR 146.14 - Information to be considered by the Director.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., logging procedures, deviation checks, and a drilling, testing, and coring program; and (16) A certificate... information listed below which are current and accurate in the file. For a newly drilled Class I well, the..., construction, date drilled, location, depth, record of plugging and/or completion, and any additional...
40 CFR 86.429-78 - Maintenance, unscheduled; test vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicles in use, and does not require direct access to the combustion chamber, except for spark plug, fuel... vehicles. 86.429-78 Section 86.429-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...
40 CFR 86.1867-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under paragraph (a)(1) of...
40 CFR 86.1871-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... manufacturer may use such an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under...
40 CFR 86.1867-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers...) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types... extent that such vehicles are not being used to generate early advanced technology vehicle credits under...
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.
Protection Against Hearing Loss in General Aviation Operations, Phase II
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.
1972-01-01
An inflight evaluation of four aural protectors is presented. The hearing protection devices studied were ear muffs, plastic ear plugs, rubber ear plugs, and wax ear plugs. It is concluded that ear plugs are satisfactory for providing adequate sound attenuation in general aviation aircraft. However, two problems were found in the use of ear plugs; comfort and interference with cabin communications.
Whealton, John H.; Tsai, Chin-Chi
2003-05-27
A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.
Hydrological responses to channelization and the formation of valley plugs and shoals
Pierce, Aaron R.; King, Sammy L.
2017-01-01
Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.
Borehole geophysical investigation of a formerly used defense site, Machiasport, Maine, 2003-2006
Johnson, Carole D.; Mondazzi, Remo A.; Joesten, Peter K.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole geophysical logs in 18 boreholes and interpreted the data along with logs from 19 additional boreholes as part of an ongoing, collaborative investigation at three environmental restoration sites in Machiasport, Maine. These sites, located on hilltops overlooking the seacoast, formerly were used for military defense. At each of the sites, chlorinated solvents, used as part of defense-site operations, have contaminated the fractured-rock aquifer. Borehole geophysical techniques and hydraulic methods were used to characterize bedrock lithology, fractures, and hydraulic properties. In addition, each geophysical method was evaluated for effectiveness for site characterization and for potential application for further aquifer characterization and (or) evaluation of remediation efforts. Results of borehole geophysical logging indicate the subsurface is highly fractured, metavolcanic, intrusive, metasedimentary bedrock. Selected geophysical logs were cross-plotted to assess correlations between rock properties. These plots included combinations of gamma, acoustic reflectivity, electromagnetic induction conductivity, normal resistivity, and single-point resistance. The combined use of acoustic televiewer (ATV) imaging and natural gamma logs proved to be effective for delineating rock types. Each of the rock units in the study area could be mapped in the boreholes, on the basis of the gamma and ATV reflectivity signatures. The gamma and mean ATV reflectivity data were used along with the other geophysical logs for an integrated interpretation, yielding a determination of quartz monzonite, rhyolite, metasedimentary units, or diabase/gabbro rock types. The interpretation of rock types on the basis of the geophysical logs compared well to drilling logs and geologic mapping. These results may be helpful for refining the geologic framework at depth. A stereoplot of all fractures intersecting the boreholes indicates numerous fractures, a high proportion of steeply dipping fractures, and considerable variation in fracture orientation. Low-dip-angle fractures associated with unloading and exfoliation are also present, especially at a depth of less than 100 feet below the top of casing. These sub-horizontal fractures help to connect the steeply dipping fractures, making this a highly connected fracture network. The high variability in the fracture orientations also increases the connectivity of the fracture network. A preliminary comparison of all fracture data from all the boreholes suggests fracturing decreases with depth. Because all the boreholes were not drilled to the same depth, however, there is a clear sampling bias. Hence, the deepest boreholes are analyzed separately for fracture density. For the deepest boreholes in the study, the intensity of fracturing does not decline significantly with depth. It is possible the fractures observed in these boreholes become progressively tighter or closed with depth, but this is difficult to verify with the borehole methods used in this investigation. The fact that there are more sealed fractures at depth (observed in optical televiewer logs in some of the boreholes) may indicate less opening of the sealed fractures, less water moving through the rock, and less weathering of the fracture infilling minerals. Although the fracture orientation remained fairly constant with depth, differences in the fracture patterns for the three restoration sites indicate the orientation of fractures varies across the study area. The fractures in boreholes on Miller Mountain predominantly strike northwest-southeast, and to a lesser degree they strike northeast. The fractures on or near the summit of Howard Mountain strike predominantly east-west and dip north and south, and the fractures near the Transmitter Site strike northeast-southwest and dip northwest and southeast. The fracture populations for the boreholes on or near the summit of Howard Mountain show more variation than at the other two sites. This variation may be related to the proximity of the fault, which is northeast of the summit of Howard Mountain. In a side-by-side comparison of stereoplots from selected boreholes, there was no clear correspondence between fracture orientation and proximity to the fault. There is, however, a difference in the total populations of fractures for the boreholes on or near the summit of Howard Mountain and the boreholes near the Transmitter Site. Further to the southwest and further away from the fault, the fractures at the Transmitter Site predominantly strike northeast-southwest and northwest-southeast.Heat-pulse flowmeter (HPFM) logging was used to identify transmissive fractures and to estimate the hydraulic properties along the boreholes. Ambient downflow was measured in 13 boreholes and ambient upflow was measured in 9 boreholes. In nine other bedrock boreholes, the HPFM did not detect measurable vertical flow. The observed direction of vertical flow in the boreholes generally was consistent with the conceptual flow model of downward movement in recharge locations and upward flow in discharge locations or at breaks in the slope of land surface. Under low-rate pumping or injection rates [0.25 to 1 gallon per minute (gal/min)], one to three inflow zones were identified in each borehole. Two limitations of HPFM methods are (1) the HPFM can only identify zones within 1.5 to 2 orders of magnitude of the most transmissive zone in each borehole, and (2) the HPFM cannot detect flow rates less than 0.010 + or - 0.005 gal/min, which corresponds to a transmissivity of about 1 foot squared per day (ft2/d). Consequently, the HPFM is considered an effective tool for identifying the most transmissive fractures in a borehole, down to its detection level. Transmissivities below that cut-off must be measured with another method, such as packer testing or fluid-replacement logging. Where sufficient water-level and flowmeter data were available, HPFM results were numerically modeled. For each borehole model, the fracture location and measured flow rates were specified, and the head and transmissivity of each fracture zone were adjusted until a model fit was achieved with the interpreted ambient and stressed flow profiles. The transmissivities calculated by this method are similar to the results of an open-hole slug test; with the added information from the flowmeter, however, the head and transmissivity of discrete zones also can be determined. The discrete-interval transmissivities ranged from 0.16 to 330 ft2/d. The flowmeter-derived open-hole transmissivity, which is the combined total of each of the transmissive zones, ranged from 1 to 511 ft2/d. The whole-well open-hole transmissivity values determined with HPFM methods were compared to the results of open-hole hydraulic tests. Despite the fact that the flowmeter-derived transmissivities consistently were lower than the estimates derived from open-hole hydraulic tests alone, the correlation was very strong (with a coefficient of determination, R2, of 0.9866), indicating the HPFM method provides a reasonable estimate of transmissivities for the most transmissive fractures in the borehole. Geologic framework, fracture characterization, and estimates of hydraulic properties were interpreted together to characterize the fracture network. The data and interpretation presented in this report should provide information useful for site investigators as the conceptual site groundwater flow model is refined. Collectively, the results and the conceptual site model are important for evaluating remediation options and planning or implementing the design of a well field and borehole completions that will be adequate for monitoring flow, remediation efforts, groundwater levels, and (or) water quality. Similar kinds of borehole geophysical logging (specifically the borehole imaging, gamma, fluid logs, and HPFM) should be conducted in any newly installed boreholes and integrated with interpretations of any nearby boreholes. If boreholes are installed close to existing or other new boreholes, cross-hole flowmeter surveys may be appropriate and may help characterize the aquifer properties and connections between the boreholes.
Methods and apparatus for removal and control of material in laser drilling of a borehole
Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F
2014-01-28
The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.
Methods and apparatus for removal and control of material in laser drilling of a borehole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.
2016-12-06
The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.
McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.
1997-01-01
The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.
Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattler, A.R.; Harding, R.S.; Jacobson, R.D.
1996-10-01
A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drillingmore » method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).« less
Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.
1992-01-01
Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.
Bailey, Z.C.; Hanchar, D.W.
1988-01-01
Twenty-four wells were constructed at nine sites at Bear Creek Valley to provide geologic and hydrologic information. Lithologic samples and suits of geophysical logs were obtained from the deepest boreholes at six of the sites. Two of these boreholes at the base of Chestnut Ridge were completed in the Maynardville Limestone and two were completed in the Nolichucky Shale. Two boreholes along Pine Ridge were completed in the Rome Formation. Zones of similar lithology within a borehole were delineated from rock cutting refined by examination of geophysical logs. The contact between the Maynardville Limestone and Nolichucky Shale was identified in two of the boreholes. Fractures and cavities were readily identifiable on the acoustic-televiewer and caliper logs. Distinct water-bearing intervals were also identified from the temperature, fluid resistance, and resistivity logs. Depths at which the drilling encounterd a thrust were identified in two boreholes in the Rome Formation from both rock cutting and geophysical logs. (USGS)
Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.
1987-04-20
Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.
Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher
2017-07-27
Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows ranged in thickness from about 2 to 100 ft and varied from highly fractured to dense, and ranged from massive to diktytaxitic to scoriaceous, in texture.Geophysical logs were collected on completion of drilling at boreholes USGS 142 and USGS 142A. Geophysical logs were examined with available core material to describe basalt, sediment and sedimentary rock layers, and rhyolite. Natural gamma logs were used to confirm sediment layer thickness and location; neutron logs were used to examine basalt flow units and changes in hydrogen content; gamma-gamma density logs were used to describe general changes in rock properties; and temperature logs were used to understand hydraulic gradients for deeper sections of borehole USGS 142. Gyroscopic deviation was measured to record deviation from true vertical at all depths in boreholes USGS 142 and USGS 142A.
Borehole sounding device with sealed depth and water level sensors
Skalski, Joseph C.; Henke, Michael D.
2005-08-02
A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.
Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.
2012-01-01
In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels.Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt.A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d.Water samples were analyzed for cations, anions, metals, nutrients, total organic carbon, volatile organic compounds, stable isotopes, and radionuclides. Water samples from borehole USGS 136 indicated that concentrations of tritium, sulfate, and chromium were affected by wastewater disposal practices at the Advanced Test Reactor Complex. Depth-discrete groundwater samples were collected in the open borehole USGS 136 near 965, 710, and 573 ft BLS using a thief sampler; on the basis of selected constituents, deeper groundwater samples showed no influence from wastewater disposal at the Advanced Test Reactor Complex.
An analysis of the lithology to resistivity relationships using airborne EM and boreholes
NASA Astrophysics Data System (ADS)
Barfod, Adrian A. S.; Christiansen, Anders V.; Møller, Ingelise
2014-05-01
We present a study of the relationship between dense airborne SkyTEM resistivity data and sparse lithological borehole data. Understanding the geological structures of the subsurface is of great importance to hydrogeological surveys. Large scale geological information can be gathered directly from boreholes or indirectly from large geophysical surveys. Borehole data provides detailed lithological information only at the position of the borehole and, due to the sparse nature of boreholes, they rarely provide sufficient information needed for high-accuracy groundwater models. Airborne geophysical data, on the other hand, provide dense spatial coverage, but are only indirectly bearing information on lithology through the resistivity models. Hitherherto, the integration of the geophysical data into geological and hydrogeological models has been often subjective, largely un-documented and painstakingly manual. This project presents a detailed study of the relationships between resistivity data and lithological borehole data. The purpose is to objectively describe the relationships between lithology and geophysical parameters and to document these relationships. This project has focused on utilizing preexisting datasets from the Danish national borehole database (JUPITER) and national geophysical database (GERDA). The study presented here is from the Norsminde catchment area (208 sq. km), situated in the municipality of Odder, Denmark. The Norsminde area contains a total of 758 boreholes and 106,770 SkyTEM soundings. The large amounts of data make the Norsminde area ideal for studying the relationship between geophysical data and lithological data. The subsurface is discretized into 20 cm horizontal sampling intervals from the highest elevation point to the depth of the deepest borehole. For each of these intervals a resistivity value is calculated at the position of the boreholes using a kriging formulation. The lithology data from the boreholes are then used to categorize the interpolated resistivity values according to lithology. The end result of this comparison is resistivity distributions for different lithology categories. The distributions provide detailed objective information of the resistivity properties of the subsurface and are a documentation of the resistivity imaging of the geological lithologies. We show that different lithologies are mapped at distinctively different resistivities but also that the geophysical inversion strategies influences the resulting distributions significantly.
NASA Astrophysics Data System (ADS)
Lofi, Johanna; Smith, Dave; Delahunty, Chris; Le Ber, Erwan; Mellet, Claire; Brun, Laurent; Henry, Gilles; Paris, Jehanne
2017-04-01
Expedition 364 was a joint IODP/ICDP mission specific platform expedition to explore the Chicxulub impact crater buried below the Yucatán continental shelf. In April and May 2016, our Expedition drilled a single borehole at Site M0077A into the crater's peak ring. It allowed recovering 303 excellent quality cores from 505.7 to 1334.7 meters below sea floor and acquiring more than 5.8 km of high resolution open hole logs. Downhole logs are rapidly collected, continuous with depth, and measured in situ; these data are classically interpreted in terms of stratigraphy, lithology, porosity, fluid content, geochemical composition and structure of the formation drilled. Downhole logs also allow assessing borehole quality (eg. shape and trajectory), and can provide assistance for decision support during drilling operations. In this work, Expedition 364 downhole logs are used to improve our understanding of the drilling/coring operation history. Differentiating between natural geological features and borehole artifacts are also critical for data quality assessment. The set of downhole geophysical tools used during Expedition 364 was constrained by the scientific objectives, drilling/coring technique, hole conditions and temperature at the drill site. Wireline logging data were acquired with slimline tools in three logging phases at intervals 0-503, 506-699 and 700-1334 mbsf. Logs were recorded either with standalone logging tools or, for the first time in IODP, with stackable slimline tools. Log data included total gamma radiation, sonic velocity, acoustic and optical borehole images, resistivity, conductivity, magnetic susceptibility, caliper and borehole fluid parameters. The majority of measurements were performed in open borehole conditions. During the drilling operations some problems were encountered directly linked to the geology of the drilled formation. For example, two zones of mud circulation losses correlate in depth with the presence of karst cavities or open faults, as evidenced from borehole wall images. Both form conduits probably open at a large scale as suggested by associated anomalies in the borehole fluid temperature profiles. When coring the basement, pieces of metal trapped outside the drill bit apparently led to an increase of the borehole tilt as well as to an enlargement of the hole, although this later remained sub-circular. In the post impact carbonates, 6-7 m long apparent cyclic oscillations in the magnetic field coupled to a spiral shape trajectory of the same wavelength suggest drilling induced artifacts and formation re-magnetization. Acknowledgements: Expedition 364 was funded by IODP with co-funding from ICDP and implemented by ECORD, with contributions and logistical support from the Yucatán state government and Universidad Nacional Autónoma de México. Drilling Services were provided by DOSECC Exploration Services. The downhole logging program was coordinated by EPC, as part of ESO. Expedition 364 Scientists: S. Gulick, J.V. Morgan, E. Chenot, G. Christeson, P. Claeys, C. Cockell, M.J. L. Coolen, L. Ferrière, C. Gebhardt, K. Goto, H. Jones, D.A. Kring, J. Lofi, X. Long, C. Lowery, C. Mellett, R. Ocampo-Torres, L. Perez-Cruz, A. Pickersgill, M. Poelchau, A. Rae, C. Rasmussen, M. Rebolledo-Vieyra, U. Riller, H. Sato, J. Smit, S. Tikoo, N. Tomioka, M. Whalen, A. Wittmann, J. Urrutia-Fucugauchi, K.E. Yamaguchi, W. Zylberman.
Karacan, C. Özgen
2015-01-01
Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2–3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam. PMID:26435557
Karacan, C Özgen
2013-07-30
Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.
NASA Astrophysics Data System (ADS)
MacAllister, DJ.; Jackson, M. D.; Butler, A. P.; Vinogradov, J.
2018-03-01
Two years of self-potential (SP) measurements were made in a monitoring borehole in the coastal UK Chalk aquifer. The borehole SP data showed a persistent gradient with depth, and temporal variations with a tidal power spectrum consistent with ocean tides. No gradient with depth was observed at a second coastal monitoring borehole ca. 1 km further inland, and no gradient or tidal power spectrum were observed at an inland site ca. 80 km from the coast. Numerical modeling suggests that the SP gradient recorded in the coastal monitoring borehole is dominated by the exclusion-diffusion potential, which arises from the concentration gradient across a saline front in close proximity to, but not intersecting, the base of the borehole. No such saline front is present at the two other monitoring sites. Modeling further suggests that the ocean tidal SP response in the borehole, measured prior to breakthrough of saline water, is dominated by the exclusion-diffusion potential across the saline front, and that the SP fluctuations are due to the tidal movement of the remote front. The electrokinetic potential, caused by changes in hydraulic head across the tide, is one order of magnitude too small to explain the observed SP data. The results suggest that in coastal aquifers, the exclusion-diffusion potential plays a dominant role in borehole SP when a saline front is nearby. The SP gradient with depth indicates the close proximity of the saline front to the borehole and changes in SP at the borehole reflect changes in the location of the saline front. Thus, SP monitoring can be used to facilitate more proactive management of abstraction and saline intrusion in coastal aquifers.
BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool
NASA Astrophysics Data System (ADS)
Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass
2017-04-01
Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.
Paillet, Dr. Fredrick L.; Olson, James D.
1994-01-01
Hydraulic fracture-stimulation procedures typical of those provided by contractors in the water-well industry were applied to two boreholes in basaltic and gabbroic rocks near Grand Portage, Minnesota.These boreholes were considered incapable of supplying adequate ground water for even a single household although geophysical logs showed both boreholes were intersected by many apparently permeable fractures. Tests made before and after stimulation indicated that the two boreholes would produce about 0.05 and 0.25 gallon per minute before stimulation, and about 1.5 and 1.2 gallons per minute after stimulation. These increases would be enough to obtain adequate domestic water supplies from the two boreholes but would not furnish enough water for more than a single household from either borehole. Profiles of high-resolution flow made during pumping after stimulation indicated that the stimulation enhanced previously small inflows or stimulated new inflow from seven fractures or fracture zones in one borehole and from six fractures or fracture zones in the other.Geophysical logs obtained after stimulation showed no specific changes in these 13 fractures that could be related to stimulation other than the increases in flow indicated by the flowmeter logs. The results indicate that the stimulation has increased inflow to the two boreholes by improving the connectivity of favorably orientated fractures with larger scale flow zones in the surrounding rocks. Three of four possible diagnostics related to measured pressure and flow during the stimulation treatments were weakly correlated with the increases in production associated with each treatment interval. These correlations are not statistically significant on the basis of the limited sample of 16 treatment intervals in two boreholes, but the results indicate that significant correlations might be established from a much larger data set.
Lin, Tung-Liang; Sheen, Huey-Min; Chung, Chin-Teng; Yang, Sai-Wei; Lin, Shih-Yi; Luo, Hong-Ji; Chen, Chung-Yu; Chan, I-Cheng; Shih, Hsu-Sheng; Sheu, Wayne Huey-Herng
2013-07-29
Removable plug insoles appear to be beneficial for patients with diabetic neuropathic feet to offload local plantar pressure. However, quantitative evidence of pressure reduction by means of plug removal is limited. The value of additional insole accessories, such as arch additions, has not been tested. The purpose of this study was to evaluate the effect of removing plugs from foam based insoles, and subsequently adding extra arch support, on plantar pressures. In-shoe plantar pressure measurements were performed on 26 patients with diabetic neuropathic feet at a baseline condition, in order to identify the forefoot region with the highest mean peak pressure (MPP). This was defined as the region of interest (ROI) for plug removal.The primary outcome was measurement of MPP using the pedar® system in the baseline and another three insole conditions (pre-plug removal, post-plug removal, and post-plug removal plus arch support). Among the 26 ROIs, a significant reduction in MPP (32.3%, P<0.001) was found after removing the insole plugs. With an arch support added, the pressure was further reduced (9.5%, P<0.001). There were no significant differences in MPP at non-ROIs between pre- and post-plug removal conditions. These findings suggest that forefoot plantar pressure can be reduced by removing plugs and adding arch support to foam-based insoles. This style of insole may therefore be clinically useful in managing patients with diabetic peripheral neuropathy.
30 CFR 75.1318 - Loading boreholes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock... the borehole; and (2) The explosive cartridges shall be loaded in a manner that provides contact...
West, Phillip B.
2006-01-17
A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.
Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves
2013-01-01
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves
2012-10-16
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Paillet, Frederick L.; Ollila, P.W.
1994-01-01
A suite of geophysical logs designed to identify and characterize fractures and water production in fractures was run in six bedrock boreholes at a ground-water contamination site near the towns of Millville and Uxbridge in south-central Massachusetts. The geophysical logs used in this study included conventional gamma, single-point resistance, borehole fluid resistivity, caliper, spontaneous potential, and temperature; and the borehole televiewer and heat-pulse flowmeter, which are not usually used to log bedrock water-supply wells. Downward flow under ambient hydraulic-head conditions was measured in three of the boreholes at the site, and the profile of fluid column resistivity inferred from the logs indicated downward flow in all six boreholes. Steady injection tests at about 1.0 gallon per minute were used to identify fractures capable of conducting flow under test conditions. Sixteen of 157 fracturesidentified on the televiewer logs and interpreted as permeable fractures in the data analysis were determined to conduct flow under ambient hydraulic-head conditions or during injection. Hydraulic-head monitoring in the bedrock boreholes indicated a consistent head difference between the upper and lower parts of the boreholes. This naturally occurring hydraulic-head condition may account, in part, for the transport of contaminants from the overlying soil into the bedrock aquifer. The downward flow may also account for the decrease in contaminant concentrations found in some boreholes after routine use of the boreholes as water-supply wells was discontinued.
Williams, J.H.; Paillet, Frederick L.
2002-01-01
Cross-borehole flowmeter pulse tests define subsurface connections between discrete fractures using short stress periods to monitor the propagation of the pulse through the flow system. This technique is an improvement over other cross-borehole techniques because measurements can be made in open boreholes without packers or previous identification of water-producing intervals. The method is based on the concept of monitoring the propagation of pulses rather than steady flow through the fracture network. In this method, a hydraulic stress is applied to a borehole connected to a single, permeable fracture, and the distribution of flow induced by that stress monitored in adjacent boreholes. The transient flow responses are compared to type curves computed for several different types of fracture connections. The shape of the transient flow response indicates the type of fracture connection, and the fit of the data to the type curve yields an estimate of its transmissivity and storage coefficient. The flowmeter pulse test technique was applied in fractured shale at a volatile-organic contaminant plume in Watervliet, New York. Flowmeter and other geophysical logs were used to identify permeable fractures in eight boreholes in and near the contaminant plume using single-borehole flow measurements. Flowmeter cross-hole pulse tests were used to identify connections between fractures detected in the boreholes. The results indicated a permeable fracture network connecting many of the individual boreholes, and demonstrated the presence of an ambient upward hydraulic-head gradient throughout the site.
Stumm, F.; Chu, A.; Joesten, P.K.; Lane, J.W.
2007-01-01
Advanced borehole-geophysical methods were used to assess the geohydrology of fractured crystalline bedrock in 31 of 64 boreholes on the southern part of Manhattan Island, NY in preparation of the construction of a new water tunnel. The study area is located in a highly urbanized part of New York City. The boreholes penetrated gneiss, schist, and other crystalline bedrock that has an overall southwest-to northwest-dipping foliation. Most of the fractures intersected are nearly horizontal or have moderate- to high-angle northwest or eastward dip azimuths. Heat-pulse flowmeter logs obtained under nonpumping (ambient) and pumping conditions, together with other geophysical logs, delineated transmissive fracture zones in each borehole. Water-level and flowmeter data suggest the fractured-rock ground-water-flow system is interconnected. The 60 MHz directional borehole-radar logs delineated the location and orientation of several radar reflectors that did not intersect the projection of the borehole. A total of 53 faults intersected by the boreholes have mean orientation populations of N12??W, 66??W and N11??W, 70??E. A total of 77 transmissive fractures delineated using the heat-pulse flowmeter have mean orientations of N11??E, 14??SE (majority) and N23??E, 57??NW (minority). The transmissivity of the bedrock boreholes ranged from 0.7 to 870 feet squared (ft2) per day (0.07 to 81 metres squared (m2) per day). ?? 2007 Nanjing Institute of Geophysical Prospecting.
Cross-borehole flowmeter tests for transient heads in heterogeneous aquifers.
Le Borgne, Tanguy; Paillet, Frederick; Bour, Olivier; Caudal, Jean-Pierre
2006-01-01
Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.
Song, Helen; Li, Hung-Wing; Munson, Matthew S.; Van Ha, Thuong G.; Ismagilov, Rustem F.
2006-01-01
This paper describes extending plug-based microfluidics to handling complex biological fluids such as blood, solving the problem of injecting additional reagents into plugs, and applying this system to measuring of clotting time in small volumes of whole blood and plasma. Plugs are droplets transported through microchannels by fluorocarbon fluids. A plug-based microfluidic system was developed to titrate an anticoagulant (argatroban) into blood samples and to measure the clotting time using the activated partial thromboplastin time (APTT) test. To carry out these experiments, the following techniques were developed for a plug-based system: (i) using Teflon AF coating on the microchannel wall to enable formation of plugs containing blood and transport of the solid fibrin clots within plugs, (ii) using a hydrophilic glass capillary to enable reliable merging of a reagent from an aqueous stream into plugs, (iii) using bright-field microscopy to detect the formation of a fibrin clot within plugs and using fluorescent microscopy to detect the production of thrombin using a fluorogenic substrate, and (iv) titration of argatroban (0–1.5 μg/mL) into plugs and measurement of the resulting APTTs at room temperature (23 °C) and physiological temperature (37 °C). APTT measurements were conducted with normal pooled plasma (platelet-poor plasma) and with donor’s blood samples (both whole blood and platelet-rich plasma). APTT values and APTT ratios measured by the plug-based microfluidic device were compared to the results from a clinical laboratory at 37 °C. APTT obtained from the on-chip assay were about double those from the clinical laboratory but the APTT ratios from these two methods agreed well with each other. PMID:16841902
Biomass plug development and propagation in porous media.
Stewart, T L; Fogler, H S
2001-02-05
Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright 2001 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackley, Rob D.; Last, George V.; Allwardt, Craig H.
2008-09-24
The Hanford Borehole Geologic Information System (HBGIS) is a prototype web-based graphical user interface (GUI) for viewing and downloading borehole geologic data. The HBGIS is being developed as part of the Remediation Decision Support function of the Soil and Groundwater Remediation Project, managed by Fluor Hanford, Inc., Richland, Washington. Recent efforts have focused on improving the functionality of the HBGIS website in order to allow more efficient access and exportation of available data in HBGIS. Users will benefit from enhancements such as a dynamic browsing, user-driven forms, and multi-select options for selecting borehole geologic data for export. The need formore » translating borehole geologic data into electronic form within the HBGIS continues to increase, and efforts to populate the database continue at an increasing rate. These new web-based tools should help the end user quickly visualize what data are available in HBGIS, select from among these data, and download the borehole geologic data into a consistent and reproducible tabular form. This revised user’s guide supersedes the previous user’s guide (PNNL-15362) for viewing and downloading data from HBGIS. It contains an updated data dictionary for tables and fields containing borehole geologic data as well as instructions for viewing and downloading borehole geologic data.« less
Clarke, John S.; Hamrick, Michael D.; Holloway, O. Gary
2011-01-01
Borehole geophysical logs and flowmeter data were collected in April 2011 from eight boreholes to identify the depth and orientation of cavernous zones within the Miocene Tampa Limestone in the vicinity of Jim Woodruff Lock and Dam in Jackson County, Florida. These data are used to assess leakage near the dam. Each of the eight boreholes was terminated in limestone at depths ranging from 84 to 104 feet. Large cavernous zones were encountered in most of the borings, with several exceeding 20-inches in diameter. The cavernous zones generally were between 1 and 5 feet in height, but a cavern in one of the borings reached a height of about 6 feet. The resistivity of limestone layers penetrated by the boreholes generally was less than 1,000 ohm-meters. Formation resistivity near the cavernous zones did not show an appreciable contrast from surrounding bedrock, probably because the bedrock is saturated, owing to its primary permeability. Measured flow rates in the eight boreholes determined using an electromagnetic flowmeter were all less than ±0.1 liter per second. These low flow rates suggest that vertical hydraulic gradients in the boreholes are negligible and that hydraulic head in the various cavernous zones shows only minor, if any, variation.
Williams, John H.; Lane, John W.; Singha, Kamini; Haeni, F. Peter
2002-01-01
An integrated suite of advanced geophysical logging methods was used to characterize the geology and hydrology of three boreholes completed in fractured-sedimentary bedrock in Ventura County, California. The geophysical methods included caliper, gamma, electromagnetic induction, borehole deviation, optical and acoustic televiewer, borehole radar, fluid resistivity, temperature, and electromagnetic flowmeter. The geophysical logging 1) provided insights useful for the overall geohydrologic characterization of the bedrock and 2) enhanced the value of information collected by other methods from the boreholes including core-sample analysis, multiple-level monitoring, and packer testing.The logged boreholes, which have open intervals of 100 to 200 feet, penetrate a sequence of interbedded sandstone and mudstone with bedding striking 220 to 250 degrees and dipping 15 to 40 degrees to the northwest. Fractures intersected by the boreholes include fractures parallel to bedding and fractures with variable strike that dip moderately to steeply. Two to three flow zones were detected in each borehole. The flow zones consist of bedding-parallel or steeply dipping fractures or a combination of bedding-parallel fractures and moderately to steeply dipping fractures. About 75 to more than 90 percent of the measured flow under pumped conditions was produced by only one of the flow zones in each borehole.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... phasing inspections and magnetic plug inspections for metal particles on the drain plug using detailed... inspections and magnetic plug inspections for metal particles on the drain plug using detailed inspection..., but the magnetic plug inspection reveals metal particles with dimensions greater than 1.5 mm (0.059 in...
Securing Voice over IP Conferencing with Decentralized Group Encryption
2007-09-04
media stream. Call data can then be encrypted and decrypted. Zfone is available as a plug-in for a number of VoIP programs, including Gizmo [13...Terminal. http://www.l- 3com.com/csw/product/specs/Airborne/TCDLAir.asp. [13] The Gizmo Project. http://gizmoproject.com. [14] The OpenSSL
Plug-In Electric Vehicle (PEV) Charging Rate and Infrastructure Rebate - Lansing BWL The Lansing Board of Water & Light (BWL) offers a pilot PEV time-of-use charging rate to single- or multi-family installation of EVSE for customers that have enrolled in the PEV charging rate. The program is limited to the
40 CFR 600.514-12 - Reports to the Environmental Protection Agency.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-cycle technology, and various early credit programs; (vi) A description of the method which will be used to calculate the carbon-related exhaust emissions for any electric vehicles, fuel cell vehicles and... number of electric vehicles, fuel cell vehicles and plug-in hybrid vehicles using (or projected to use...
ERIC Educational Resources Information Center
Cesarini, Paul
2007-01-01
This article describes The Onion Router (TOR). It is a freely available, open-source program developed by the U.S. Navy about a decade ago. A browser plug-in, it thwarts online traffic analysis and related forms of Internet surveillance by sending your data packets through different routers around the world. As each packet moves from one router to…
SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions.
Breßler, Ingo; Kohlbrecher, Joachim; Thünemann, Andreas F
2015-10-01
SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102).
40 CFR 144.63 - Financial assurance for plugging and abandonment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current plugging and abandonment cost estimate, except as provided in § 144.70(g), divided by the number... days after receiving bills for plugging and abandonment activities, the Regional Administrator will... abandonment activities, the Regional Administrator will determine whether the plugging and abandonment...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan
USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons frommore » escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.« less
Marcet, Marcus M; Shtein, Roni M; Bradley, Elizabeth A; Deng, Sophie X; Meyer, Dale R; Bilyk, Jurij R; Yen, Michael T; Lee, W Barry; Mawn, Louise A
2015-08-01
To review the published literature assessing the efficacy and safety of lacrimal drainage system plug insertion for dry eye in adults. Literature searches of the PubMed and Cochrane Library databases were last conducted on March 9, 2015, without date restrictions and were limited to English language abstracts. The searches retrieved 309 unique citations. The primary authors reviewed the titles and abstracts. Inclusion criteria specified reports that provided original data on plugs for the treatment of dry eyes in at least 25 patients. Fifty-three studies of potential relevance were assigned to full-text review. The 27 studies that met the inclusion criteria underwent data abstraction by the panels. Abstracted data included study characteristics, patient characteristics, plug type, insertion technique, treatment response, and safety information. All studies were observational and rated by a methodologist as level II or III evidence. The plugs included punctal, intracanalicular, and dissolving types. Fifteen studies reported metrics of improvement in dry eye symptoms, ocular-surface status, artificial tear use, contact lens comfort, and tear break-up time. Twenty-five studies included safety data. Plug placement resulted in ≥50% improvement of symptoms, improvement in ocular-surface health, reduction in artificial tear use, and improved contact lens comfort in patients with dry eye. Serious complications from plugs were infrequent. Plug loss was the most commonly reported problem with punctal plugs, occurring on average in 40% of patients. Overall, among all plug types, approximately 9% of patients experienced epiphora and 10% required removal because of irritation from the plugs. Canaliculitis was the most commonly reported problem for intracanalicular plugs and occurred in approximately 8% of patients. Other complications were reported in less than 4% of patients on average and included tearing, discomfort, pyogenic granuloma, and dacryocystitis. On the basis of level II and III evidence in these studies, plugs improve the signs and symptoms of moderate dry eye that are not improved with topical lubrication, and they are well tolerated. There are no level I studies that describe the efficacy or safety of lacrimal drainage system plugs. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Surveillance of Site A and Plot M, Report for 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golchert, N. W.
2010-04-21
The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for Calendar Year 2009 are presented. Based on the results of the 1976-1978 radiological characterization of the site, a determination was made that a surveillance program be established. The characterization study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current surveillance program began in 1980 and consists of sample collection and analysis of surface and subsurface water. The results of the analyses are usedmore » to monitor the migration pathway of hydrogen-3 contaminated water from the burial ground (Plot M) to the hand-pumped picnic wells and monitor for the presence of radioactive materials in the environment of the area. Hydrogen-3 in the Red Gate Woods picnic wells was still detected this year, but the average and maximum concentrations were significantly less than found earlier. Hydrogen-3 continues to be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since 1984 have indicated the presence of low levels of strontium-90 in water from a number of boreholes next to Plot M. The results of the surveillance program continue to indicate that the radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public visiting the site, using the picnic area, or living in the vicinity.« less
Surveillance of Site A and Plot M report for 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golchert, N. W.
2011-05-31
The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for Calendar Year 2010 are presented. Based on the results of the 1976-1978 radiological characterization of the site, a determination was made that a surveillance program be established. The characterization study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current surveillance program began in 1980 and consists of sample collection and analysis of surface and subsurface water. The results of the analyses are usedmore » to monitor the migration pathway of hydrogen-3 contaminated water from the burial ground (Plot M) to the hand-pumped picnic wells and monitor for the presence of radioactive materials in the environment of the area. Hydrogen-3 in the Red Gate Woods picnic wells was still detected this year, but the average and maximum concentrations were significantly less than found earlier. Hydrogen-3 continues to be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since 1984 have indicated the presence of low levels of strontium-90 in water from a number of boreholes next to Plot M. The results of the surveillance program continue to indicate that the radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public visiting the site, using the picnic area, or living in the vicinity.« less
Borehole radar interferometry revisited
Liu, Lanbo; Ma, Chunguang; Lane, John W.; Joesten, Peter K.
2014-01-01
Single-hole, multi-offset borehole-radar reflection (SHMOR) is an effective technique for fracture detection. However, commercial radar system limitations hinder the acquisition of multi-offset reflection data in a single borehole. Transforming cross-hole transmission mode radar data to virtual single-hole, multi-offset reflection data using a wave interferometric virtual source (WIVS) approach has been proposed but not fully demonstrated. In this study, we compare WIVS-derived virtual single-hole, multi-offset reflection data to real SHMOR radar reflection profiles using cross-hole and single-hole radar data acquired in two boreholes located at the University of Connecticut (Storrs, CT USA). The field data results are similar to full-waveform numerical simulations developed for a two-borehole model. The reflection from the adjacent borehole is clearly imaged by both the real and WIVS-derived virtual reflection profiles. Reflector travel-time changes induced by deviation of the two boreholes from the vertical can also be observed on the real and virtual reflection profiles. The results of this study demonstrate the potential of the WIVS approach to improve bedrock fracture imaging for hydrogeological and petroleum reservoir development applications.
Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes
NASA Astrophysics Data System (ADS)
Geerits, Tim W.; Kranz, Burkhard
2017-04-01
In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.
2009-07-16
Frequency (MHz) Figure 3.4: CABLE SMA/SMA 24" RG-316DS. CABLE SMA PLUG-PLUG HF -.086 8" 3.1. TRANSMITTER IMPLEMENTATION 13 Length: 8.0" (203.2mm) Color...Gray RG Type: Hand Formable .086 Connector: Type SMA Male to SMA Male Features: Shielded "• JI Figure 3.5: CABLE SMA PLUG-PLUG HF -.086 8...34 . • CABLE SMA PLUG-PLUG HF -.141 8" Length: 8.0" (203.2mm) Color: Gray RG Type: Hand Formable .141 14 CHAPTER 3. 2 BY I MISO SYSTEM DEVELOPMENT
Hot cell shield plug extraction apparatus
Knapp, Philip A.; Manhart, Larry K.
1995-01-01
An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.
3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model
NASA Astrophysics Data System (ADS)
Hoi, Cory; Raessi, Mehdi
2017-11-01
Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.
Effects of Proud Large Osteochondral Plugs on Contact Forces and Knee Kinematics: A Robotic Study.
Du, Peter Z; Markolf, Keith L; Boguszewski, Daniel V; Yamaguchi, Kent T; Lama, Christopher J; McAllister, David R; Jones, Kristofer J
2018-05-01
Osteochondral allograft (OCA) transplantation is used to treat large focal femoral condylar articular cartilage defects. A proud plug could affect graft survival by altering contact forces (CFs) and knee kinematics. A proud OCA plug will significantly increase CF and significantly alter knee kinematics throughout controlled knee flexion. Controlled laboratory study. Human cadaver knees had miniature load cells, each with a 20-mm-diameter cylinder of native bone/cartilage attached at its exact anatomic position, installed in both femoral condyles at standardized locations representative of clinical defects. Spacers were inserted to create proud plug conditions of +0.5, +1.0, and +1.5 mm. CFs and knee kinematics were recorded as a robot flexed the knee continuously from 0° to 50° under 1000 N of tibiofemoral compression. CFs were increased significantly (vs flush) for all proudness conditions between 0° and 45° of flexion (medial) and 0° to 50° of flexion (lateral). At 20°, the average increases in medial CF for +0.5-mm, +1-mm, and +1.5-mm proudness were +80 N (+36%), +155 N (+70%), and +193 N (+87%), respectively. Corresponding increases with proud lateral plugs were +44 N (+14%), +90 N (+29%), and +118 N (+38%). CF increases for medial plugs at 20° of flexion were significantly greater than those for lateral plugs at all proudness conditions. At 50°, a 1-mm proud lateral plug significantly decreased internal tibial rotation by 15.4° and decreased valgus rotation by 2.5°. A proud medial or lateral plug significantly increased CF between 0° and 45° of flexion. Our results suggest that a medial plug at 20° may be more sensitive to graft incongruity than a lateral plug. The changes in rotational kinematics with proud lateral plugs were attributed to earlier contact between the proud plug's surface and the lateral meniscus, leading to rim impingement with decreased tibial rotation. Increased CF and altered knee kinematics from a proud femoral plug could affect graft viability. Plug proudness of only 0.5 mm produced significant changes in CF and knee kinematics, and the clinically accepted 1-mm tolerance may need to be reexamined in view of our findings.
NASA Astrophysics Data System (ADS)
Ning, F.; Wu, N.; Jiang, G.; Zhang, L.
2009-12-01
Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around bohole. If the formation has a low permeability and is heated quickly, the dissociated gas and water couldn’t flow away in time, which is likely to bring a hazard of excess pore pressure. Especially in the area near the wall of borehole, the increase degree of pore pressure is high than other area because the dissociation of gas hydrates is relatively violent and hydraulic gradient is bigger. We also studied the distribution of water saturation around borehole after 10min, 30min and 60min respectively. It revealed that along with the invasion of drilling fluid and dissociation of gas hydrate, the degree of water saturation increased gradually. The effect of gas hydrate dissociation and drilling fluids invasion on borehole stability is to weaken mechanical properties of wellbore and change the pore pressure, then changes the effective stress of gas hydrates-bearing sediment. So temperature, pressure in the borehole and filter loss of drilling fluids should be controlled strictly to prevent gas hydrates from decomposing largely and in order to keep the borehole stability in the gas hydrates-bearing formations.
Aeroacoustics of contoured and solid/porous conical plug-nozzle supersonic jet flows
NASA Technical Reports Server (NTRS)
Dosanjh, D. S.; Das, I. S.
1985-01-01
The acoustic far field, the shock-associated noise and characteristics of the repetitive shock structure of supersonic jet flows issuing from a contoured plug-nozzle and uncontoured plug-nozzle having a short conical plug of either a solid or a combination of solid/porous surface with pointed termination operated at a range of supercritical pressure are reported. The contoured and the uncontoured plug-nozzles had the same throat area and the same annular-radius ratio.
An objective comparison of leakage between commonly used earplugs.
Alt, Jeremiah A; Collins, William O
2012-01-01
We sought to determine the efficacy of commonly used earplugs using an anatomically correct ear model. The total volume and rate of water that leaked past the earplug and subsequent defect in the tympanic membrane over separately measured 30, 60, 120, and 180-second intervals were recorded. Scenarios tested included a control with no earplug, custom molded earplug (Precision Laboratories, Orlando, FL), Mack's plug (Warren, MI), Doc's plug (Santa Cruz, CA), and cotton balls coated with petroleum jelly. All plugs tested resulted in less leakage at all time points when compared with no plug (P < .05). At 30 seconds, the custom molded, Mack's and Doc's plugs all showed significantly less leakage when compared with the cotton ball coated with petroleum jelly (P < .05). At 60, 120, and 180 seconds, Mack's, Doc's, and the cotton plugs all showed significantly less leakage compared with the customized plug (P < .05). At 120 and 180 seconds, Mack's plugs had significant less leakage than the cotton plug (P < .05). Among the types of plugs, the molded variety (Mack's) showed the least volume and lowest leakage rate (f(4,45) = 94 [P < .001]). In addition, Doc's and cotton balls coated with petroleum jelly were more effective than the customized earplugs. If the clinician feels that middle ear and external canal water exposure should be minimized, then use of earplugs, particularly the moldable variety, merits further consideration. Copyright © 2012 Elsevier Inc. All rights reserved.
Geostatistical borehole image-based mapping of karst-carbonate aquifer pores
Michael Sukop,; Cunningham, Kevin J.
2016-01-01
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.
NASA Astrophysics Data System (ADS)
Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.
2011-12-01
In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.
Electrostatic networks control plug stabilization in the PapC usher.
Pham, Thieng; Henderson, Nadine S; Werneburg, Glenn T; Thanassi, David G; Delcour, Anne H
2015-01-01
The PapC usher, a β-barrel pore in the outer membrane of uropathogenic Escherichia coli, is used for assembly of the P pilus, a key virulence factor in bacterial colonization of human kidney cells. Each PapC protein is composed of a 24-stranded β-barrel channel, flanked by N- and C-terminal globular domains protruding into the periplasm, and occluded by a plug domain (PD). The PD is displaced from the channel towards the periplasm during pilus biogenesis, but the molecular mechanism for PD displacement remains unclear. Two structural features within the β-barrel, an α-helix and β5-6 hairpin loop, may play roles in controlling plug stabilization. Here we have tested clusters of residues at the interface of the plug, barrel, α-helix and hairpin, which participate in electrostatic networks. To assess the roles of these residues in plug stabilization, we used patch-clamp electrophysiology to compare the activity of wild-type and mutant PapC channels containing alanine substitutions at these sites. Mutations interrupting each of two salt bridge networks were relatively ineffective in disrupting plug stabilization. However, mutation of two pairs of arginines located at the inner and the outer surfaces of the PD resulted in an enhanced propensity for plug displacement. One arginine pair involved in a repulsive interaction between the linkers that tether the plug to the β-barrel was particularly sensitive to mutation. These results suggest that plug displacement, which is necessary for pilus assembly and translocation, may require a weakening of key electrostatic interactions between the plug linkers, and the plug and the α-helix.
Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F
2006-09-01
This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.
After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.
2004-01-22
This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers.more » This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, D; Anderson, C; Mayo, C
Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less
Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In
Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E -mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In
40 CFR 146.92 - Injection well plugging.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner or operator must flush each Class VI injection well with a buffer fluid, determine bottomhole reservoir...
40 CFR 144.62 - Cost estimate for plugging and abandonment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... must revise the plugging and abandonment cost estimate whenever a change in the plugging and... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Cost estimate for plugging and abandonment. 144.62 Section 144.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER...
Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.P. McGrail; E. C. Sullivan; F. A. Spane
2009-12-01
The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less
Sloto, Ronald A.
1997-01-01
A suite of borehole geophysical logs and heat-pulse-flowmeter measurements run in the former production well at the John Wagner and Sons, Inc. plant indicate two zones of borehole flow. In the upper part of the well, water enters the borehole through a fracture at 90 ft (feet) below floor level, moves upward, and exits the borehole through a fracture at 72 ft below floor level. Water also enters the borehole through fractures at 205-213, 235, and 357 ft below floor level; moves downward; and exits the borehole through fractures at 450-459, 468-470, and 483-490 ft below floor level. Five zones were selected for aquifer-isolation (packer) tests on the basis of borehole geophysical logs. The zones were isolated using a straddle-packer assembly. The lowermost three zones (below 248, 223 to 248, and 198 to 223 ft below floor level) were hydraulically isolated from zones above and below. Specific capacities were 0.12, 0.034, and 0.15 gallons per minute per foot, respectively. The hydrograph from zone 2 (223 to 248 ft below floor level) showed interference from a nearby pumping well. For the upper two zones (81 to 106 and 57 to 81 ft below floor level), similar drawdowns in the isolated zone and the zones above and below the isolated zone indicate that these fractures are hydraulically connected outside the borehole in the unconfined part of the Stockton Formation. The specific capacity of zones 4 and 5 are similar—0.82 and 0.61, respectively.
NASA Technical Reports Server (NTRS)
Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John
2006-01-01
CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.
Sloto, Ronald A.; Grazul, Kevin E.
1998-01-01
Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA, to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large difference in head (as much as greater then 49 ft) between water-bearing fractured in the upper and lower part of the borehole. Vertical distribution of specific capacity between land surface and 250 ft below land surface is not related to depth.
Canister, sealing method and composition for sealing a borehole
Brown, Donald W [Los Alamos, NM; Wagh, Arun S [Orland Park, IL
2003-05-13
Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.
Borehole-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut
Johnson, Carole D.; Haeni, F.P.; Lane, John W.; White, Eric A.
2002-01-01
A borehole-geophysical investigation was conducted to help characterize the hydrogeology of the fractured-rock aquifer and the distribution of unconsolidated glacial deposits near the former landfill and chemical waste-disposal pits at the University of Connecticut in Storrs, Connecticut. Eight bedrock boreholes near the landfill and three abandoned domestic wells located nearby were logged using conventional and advanced borehole-geophysical methods from June to October 1999. The conventional geophysical-logging methods included caliper, gamma, fluid temperature, fluid resistivity, and electromagnetic induction. The advanced methods included deviation, optical and acoustic imaging of the borehole wall, heat-pulse flowmeter, and directional radar reflection. Twenty-one shallow piezometers (less than 50-feet deep) were logged with gamma and electromagnetic induction tools to delineate unconsolidated glacial deposits. Five additional shallow bedrock wells were logged with conventional video camera, caliper, electromagnetic induction, and fluid resistivity and temperature tools. The rock type, foliation, and fracturing of the site were characterized from high-resolution optical-televiewer (OTV) images of rocks penetrated by the boreholes. The rocks are interpreted as fine- to medium-grained quartz-feldspar-biotite-garnet gneiss and schist with local intrusions of quartz diorite and pegmatite and minor concentrations of sulfide mineralization similar to rocks described as the Bigelow Brook Formation on regional geologic maps. Layers containing high concentrations of sulfide minerals appear as high electrical conductivity zones on electromagnetic-induction and borehole-radar logs. Foliation in the rocks generally strikes to the northeast-southwest and dips to the west, consistent with local outcrop observations. The orientation of foliation and small-scale gneissic layering in the rocks, however, varies locally and with depth in some of the boreholes. In two of the boreholes, the foliation strikes predominantly to the northwest and dips to the northeast. Although small-scale faults and lithologic discontinuities were observed in the OTV data, no large-scale faults were observed that appear on regional geologic maps. Fractures were located and characterized through the use of conventional geophysical, OTV, acoustic-televiewer (ATV), and borehole-radar logs. The orientation of fractures varies considerably across the site; some fractures are parallel to the foliation, whereas others cross-cut the foliation. Many of the transmissive fractures in the bedrock boreholes strike about N170?E and N320?E with dips of less than 45?. Other transmissive fractures strike about N60?E with dips of more than 60?. Most of the transmissive fractures in the domestic wells strike about N60?E and N22?E with dips of more than 45?. The strike of N60?E is parallel to the trend of a thrust fault that appears on regional geologic maps. Vertical flow in the boreholes was measured with the heat-pulse flowmeter under ambient and (or) pumping conditions. Results of ATV, OTV, and conventional logs were used to locate specific zones for flowmeter testing. Ambient downflow was measured in three boreholes, ambient upflow was measured in two other boreholes, and both ambient downflow and upflow were measured in a sixth borehole. The other five bedrock boreholes and domestic wells did not have measurable vertical flow. The highest rate of ambient flow was measured in the background borehole in which upflow and downflow converged and exited the borehole at a fracture zone near a depth of 62 feet. Ambient flow of about 340 gallons per day was measured. In the other five wells, ambient flow of about 20 to 35 gallons per day was measured. Under low-rate pumping (0.25 to 1 gallon per minute), one to six inflow zones were identified in each well. Usually the fractures that are active under ambient conditions contribute to the well under pumping conditions. To prevent
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.; Garcia, R.; Dejong, F. J.; Sabnis, J. S.; Pribik, D. A.
1989-01-01
An analysis of Space Shuttle Main Engine high-pressure oxygen turbopump nozzle plug trajectories has been performed, using a Lagrangian method to track nozzle plug particles expelled from a turbine through a high Reynolds number flow in a turnaround duct with turning vanes. Axisymmetric and parametric analyses reveal that if nozzle plugs exited the turbine they would probably impact the LOX heat exchanger with impact velocities which are significantly less than the penetration velocity. The finding that only slight to moderate damage will result from nozzle plug failure in flight is supported by the results of a hot-fire engine test with induced nozzle plug failures.
NASA Astrophysics Data System (ADS)
Zhao, Xinglong; Huang, Bingxiang; Wang, Zhen
2018-06-01
Directional rupture is a significant and routine problem for ground control in mines. Directional hydraulic fracturing controlled by dense linear multi-hole drilling was proposed. The physical model experiment, performed by the large-scale true triaxial hydraulic fracturing experimental system, aims to investigate the basic law of directional hydraulic fracturing controlled by dense linear multi-hole drilling, the impact of three different pumping modes on the initiation and propagation of hydraulic fractures among boreholes are particular investigated. The experimental results indicated that there are mutual impacts among different boreholes during crack propagation, which leads to a trend of fracture connection. Furthermore, during propagation, the fractures not only exhibit an overall bias toward the direction in which the boreholes are scattered but also partially offset against the borehole axes and intersect. The directional fracturing effect of equivalent pumping rate in each borehole is better than the other two pumping modes. In practical applications, because of rock mass heterogeneity, there may be differences in terms of filtration rate and effective input volume in different boreholes; thus, water pressure increase and rupture are not simultaneous in different boreholes. Additionally, if the crack initiation directions of different boreholes at different times are not consistent with each other, more lamellar failure planes will occur, and the mutual influences of these lamellar failure planes cause fractures to extend and intersect.
Twining, Brian V.; Fisher, Jason C.
2015-01-01
Normalized mean head values were analyzed for all 11 multilevel monitoring wells for the period of record (2007–13). The mean head values suggest a moderately positive correlation among all boreholes and generally reflect regional fluctuations in water levels in response to seasonal climatic changes. Boreholes within volcanic rift zones and near the southern boundary (USGS 103, USGS 105, USGS 108, USGS 132, USGS 135, USGS 137A) display a temporal correlation that is strongly positive. Boreholes in the Big Lost Trough display some variations in temporal correlations that may result from proximity to the mountain front to the northwest and episodic flow in the Big Lost River drainage system. For example, during June 2012, boreholes MIDDLE 2050A and MIDDLE 2051 showed head buildup within the upper zones when compared to the June 2010 profile event, which correlates to years when surface water was reported for the Big Lost River several months preceding the measurement period. With the exception of borehole USGS 134, temporal correlation between MLMS wells completed within the Big Lost Trough is generally positive. Temporal correlation for borehole USGS 134 shows the least agreement with other MLMS boreholes located within the Big Lost Trough; however, borehole USGS 134 is close to the mountain front where tributary valley subsurface inflow is suspected.
Instruments and methods acoustic televiewer logging in glacier boreholes
Morin, R.H.; Descamps, G.E.; Cecil, L.D.
2000-01-01
The acoustic televiewer is a geophysical logging instrument that is deployed in a water-filled borehole and operated while trolling. It generates a digital, magnetically oriented image of the borehole wall that is developed from the amplitudes and transit times of acoustic waves emitted from the tool and reflected at the water-wall interface. The transit-time data are also converted to radial distances, from which cross-sectional views of the borehole shape can be constructed. Because the televiewer is equipped with both a three-component magnetometer and a two-component inclinometer, the borehole's trajectory in space is continuously recorded as well. This instrument is routinely used in mining and hydrogeologic applications, but in this investigation it was deployed in two boreholes drilled into Upper Fremont Glacier, Wyoming, U.S.A. The acoustic images recorded in this glacial setting are not as clear as those typically obtained in rocks, due to a lower reflection coefficient for water and ice than for water and rock. Results indicate that the depth and orientation of features intersecting the boreholes can be determined, but that interpreting their physical nature is problematic and requires corroborating information from inspection of cores. Nevertheless, these data can provide some insight into englacial structural characteristics. Additional information derived from the cross-sectional geometry of the borehole, as well as from its trajectory, may also be useful in studies concerned with stress patterns and deformation processes.
Formation of slot-shaped borehole breakout within weakly cementedsandstones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakagawa, Seiji; Tomutsa, Liviu; Myer, Larry R.
2005-06-10
Breakout (wall failure) of boreholes within the earth can take several forms depending upon physical properties of the surrounding rock and the stress and flow conditions. Three distinctive modes of breakout are (I) extensile breakout observed in brittle rocks (e.g., Haimson and Herrick, 1986), (II) shear breakout in soft and clastic rocks (Zoback et al., 1985), and (III) fracture-like, slot-shaped breakout within highly porous granular rocks (Bessinger et al., 1997; Haimson and Song, 1998). During fluid production and injection within weakly cemented high-porosity rocks, the third type of failure could result in sustained and excessive sand production (disintegration of themore » rock's granular matrix and debris production). An objective of this research is to investigate the physical conditions that result in the formation of slot-shaped borehole breakout, via laboratory experiments. Our laboratory borehole breakout experiment was conducted using synthetic high-porosity sandstone with controlled porosity and strength. Block samples containing a single through-goring borehole were subjected to anisotropic stresses within a specially designed tri-axial loading cell. A series of studies was conducted to examine the impact of (1) stress anisotropy around the borehole, (2) rock strength, and (3) fluid flow rate within the borehole on the formation of slot-shaped borehole breakout. The geometry of the breakout was determined after the experiment using X-ray CT. As observed in other studies (Hamison and Song, 1998; Nakagawa and Myer, 2001), flow within a borehole plays a critical role in extending the slot-shaped breakout. The results of our experiments indicated that the width of the breakout was narrower for stronger rock, possibly due to higher resistance to erosion, and the orientation of the breakout plane was better defined for a borehole subjected to stronger stress anisotropy. In most cases, the breakout grew rapidly once the borehole wall started to fail. This 'run-away' failure growth is induced by monotonically increasing stress concentration at the breakout tips, although this effect may be augmented by the finite size of the sample.« less
Stumm, Frederick; Chu, Anthony; Joesten, Peter K.; Noll, Michael L.; Como, Michael D.
2013-01-01
Advanced borehole-geophysical methods were used to investigate the hydrogeology of the crystalline bedrock in 36 boreholes on the northernmost part of New York County, New York, for the construction of a utilities tunnel beneath the Harlem River. The borehole-logging techniques were used to delineate bedrock fractures, foliation, and groundwater-flow zones in test boreholes at the site. Fracture indexes of the deep boreholes ranged from 0.65 to 0.76 per foot. Most of the fracture populations had either northwest to southwest or east to southeast dip azimuths with moderate dip angles. The mean foliation dip azimuth ranged from 100º to 124º southeast with dip angles of 52º to 60º. Groundwater appears to flow through an interconnected network of fractures that are affected by tidal variations from the nearby Harlem River and tunnel construction dewatering operations. The transmissivities of the 3 boreholes tested (USGS-1, USGS-3, and USGS-4), calculated from specific capacity data, were 2, 48, and 30 feet squared per day (ft2/d), respectively. The highest transmissivities were observed in wells north and west of the secant ring. Three borehole-radar velocity tomograms were collected. In the USGS-1 and USGS-4 velocity tomogram there are two areas of low radar velocity. The first is at the top of the tomogram and runs from 105 ft below land surface (BLS) at USGS-4 and extends to 125 ft BLS at USGS-1, the second area is centered at a depth of 150 ft BLS at USGS-1 and 135 to 150 ft BLS at USGS-4. Field measurements of specific conductance of 14 boreholes under ambient conditions at the site indicate an increase in conductivity toward the southwest part of the site (nearest the Harlem River). Specific conductance ranged from 107 microsiemens per centimeter (μS/cm) (borehole 63C) to 11,000 μS/cm (borehole 79B). The secant boreholes had the highest specific conductance.
Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.
1983-01-01
The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.
ERIC Educational Resources Information Center
Thompson, Douglas E.
2013-01-01
In today's complex music software packages, many features can remain unexplored and unused. Software plug-ins--available in most every music software package, yet easily overlooked in the software's basic operations--are one such feature. In this article, I introduce readers to plug-ins and offer tips for purchasing plug-ins I have…
40 CFR 144.62 - Cost estimate for plugging and abandonment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Cost estimate for plugging and... Waste Injection Wells § 144.62 Cost estimate for plugging and abandonment. (a) The owner or operator must prepare a written estimate, in current dollars, of the cost of plugging the injection well in...
Steady propagation of Bingham plugs in 2D channels
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James
2009-11-01
The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.
Portal vein embolization with plug/coils improves hepatectomy outcome.
Malinowski, Maciej; Geisel, Dominik; Stary, Victoria; Denecke, Timm; Seehofer, Daniel; Jara, Maximillian; Baron, Annekathrin; Pratschke, Johann; Gebauer, Bernhard; Stockmann, Martin
2015-03-01
Portal vein embolization (PVE) has become the standard of care before extended hepatectomy. Various PVE methods using different embolization materials have been described. In this study, we compared PVE with polyvinyl alcohol particles alone (PVA only) versus PVA with plug or coils (PVA + plug/coils). Patients undergoing PVE before hepatectomy were included. PVA alone was used until December 2013, thereafter plug or coils were placed in addition. The volume of left lateral liver lobe (LLL), clinical parameters, and liver function tests were measured before PVE and resection. A total of 43 patients were recruited into the PVA only group and 42 were recruited into the PVA + plug/coils group. There were no major differences between groups except significantly higher total bilirubin level before PVE in the PVA only group, which improved before hepatectomy. Mean LLL volume increased by 25.7% after PVE in the PVA only group and by 44% in the PVA + plug/coils group (P < 0.001). Recanalization was significantly less common in the PVA + plug/coils group. In multivariate regression, initial LLL volume and use of plug or coils were the only parameters influencing LLL volume increase. The postoperative liver failure rate was significantly reduced in PVA + plug/coils group (P = <0.001). PVE using PVA particles together with plug or coils is a safe and efficient method to increase future liver remnant volume. The additional central embolization with plug or coils led to an increased hypertrophy, due to lower recanalization rates, and subsequently decreased incidence of postoperative liver failure. No additional procedure-specific complications were observed in this series. Copyright © 2015 Elsevier Inc. All rights reserved.
Paillet, Frederick L.
1985-01-01
Acoustic-waveform and acoustic-televiewer logs were obtained for a 400-meter interval of deeply buried basalt flows in three boreholes, and over shorter intervals in two additional boreholes located on the U.S. Department of Energy 's Hanford site in Benton County, Washington. Borehole-wall breakouts were observed in the unaltered interiors of a large part of individual basalt flows; however, several of the flows in one of the five boreholes had almost no breakouts. The distribution of breakouts observed on the televiewer logs correlated closely with the incidence of core disking in some intervals, but the correlation was not always perfect, perhaps because of the differences in the specific fracture mechanisms involved. Borehole-wall breakouts were consistently located on the east and west sides of the boreholes. The orientation is consistent with previous estimates of the principal horizontal-stress field in south-central Washington, if breakouts are assumed to form along the azimuth of the least principal stress. The distribution of breakouts repeatedly indicated an interval of breakout-free rock at the top and bottom of flows. Because breakouts frequently terminate at major low-angle fractures, the data indicate that fracturing may have relieved some of the horizontal stresses near flow tops and bottoms. Unaltered and unfractured basalt appeared to have a uniform compressional velocity of 6.0 + or - 0.1 km/sec and a uniform shear velocity of 3.35 + or - 0.1 km/sec throughout flow interiors. Acoustics-waveform logs also indicated that borehole-wall breakouts did not affect acoustic propagation along the borehole; so fracturing associated with the formation of breakouts appeared to be confined to a thin annulus of stress concentration around the borehole. Televiewer logs obtained before and after hydraulic fracturing in these boreholes indicated the extent of induced fractures, and also indicated minor changes to pre-existing fractures that may have been inflated during fracture generation. (USGS)
Paillet, Frederick L.
1988-01-01
Various conventional geophysical well logs were obtained in conjunction with acoustic tube-wave amplitude and experimental heat-pulse flowmeter measurements in two deep boreholes in granitic rocks on the Canadian shield in southeastern Manitoba. The objective of this study is the development of measurement techniques and data processing methods for characterization of rock volumes that might be suitable for hosting a nuclear waste repository. One borehole, WRA1, intersected several major fracture zones, and was suitable for testing quantitative permeability estimation methods. The other borehole, URL13, appeared to intersect almost no permeable fractures; it was suitable for testing methods for the characterization of rocks of very small permeability and uniform thermo-mechanical properties in a potential repository horizon. Epithermal neutron , acoustic transit time, and single-point resistance logs provided useful, qualitative indications of fractures in the extensively fractured borehole, WRA1. A single-point log indicates both weathering and the degree of opening of a fracture-borehole intersection. All logs indicate the large intervals of mechanically and geochemically uniform, unfractured granite below depths of 300 m in the relatively unfractured borehole, URL13. Some indications of minor fracturing were identified in that borehole, with one possible fracture at a depth of about 914 m, producing a major acoustic waveform anomaly. Comparison of acoustic tube-wave attenuation with models of tube-wave attenuation in infinite fractures of given aperture provide permeability estimates ranging from equivalent single-fractured apertures of less than 0.01 mm to apertures of > 0.5 mm. One possible fracture anomaly in borehole URL13 at a depth of about 914 m corresponds with a thin mafic dike on the core where unusually large acoustic contrast may have produced the observed waveform anomaly. No indications of naturally occurring flow existed in borehole URL13; however, flowmeter measurements indicated flow at < 0.05 L/min from the upper fracture zones in borehole WRA1 to deeper fractures at depths below 800 m. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong
2013-06-01
To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling measurements need to be adopted to reduce the risk of well-logging distortion and borehole instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, A.L.; Howard, C.L.; Jones, R.L.
Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones atmore » the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.« less
Experiments on stress dependent borehole acoustic waves.
Hsu, Chaur-Jian; Kane, Michael R; Winkler, Kenneth; Wang, Canyun; Johnson, David Linton
2011-10-01
In the laboratory setup, a borehole traverses a dry sandstone formation, which is subjected to a controlled uniaxial stress in the direction perpendicular to the borehole axis. Measurements are made in a single loading-unloading stress cycle from zero to 10 MPa and then back down to zero stress. The applied stress and the presence of the borehole induce anisotropy in the bulk of the material and stress concentration around the borehole, both azimuthally and radially. Acoustic waves are generated and detected in the water-filled borehole, including compressional and shear headwaves, as well as modes of monopole, dipole, quadrupole, and higher order azimuthal symmetries. The linear and non-linear elastic parameters of the formation material are independently quantified, and utilized in conjunction with elastic theories to predict the characteristics of various borehole waves at zero and finite stress conditions. For example, an analytic theory is developed which is successfully used to estimate the changes of monopole tube mode at low frequency resulted from uniaxial stress, utilizing the measured material third order elasticity parameters. Comparisons between various measurements as well as that between experiments and theories are also presented. © 2011 Acoustical Society of America
McAuley, Steven D.
2004-01-01
On April 14?15, 2003, geophysical logging was conducted in five open-borehole wells in and adjacent to the Sharon Steel Farrell Works Superfund Site, Mercer County, Pa. Geophysical-logging tools used included caliper, natural gamma, single-point resistance, fluid temperature, and heatpulse flowmeter. The logs were used to determine casing depth, locate subsurface fractures, identify water-bearing fractures, and identify and measure direction and rate of vertical flow within the borehole. The results of the geophysical logging were used to determine the placement of borehole screens, which allows monitoring of water levels and sampling of water-bearing zones so that the U.S. Environmental Protection Agency can conduct an investigation of contaminant movement in the fractured bedrock. Water-bearing zones were identified in three of five boreholes at depths ranging from 46 to 119 feet below land surface. Borehole MR-3310 (MW03D) showed upward vertical flow from 71 to 74 feet below land surface to a receiving zone at 63-68 feet below land surface, permitting potential movement of ground water, and possibly contaminants, from deep to shallow zones. No vertical flow was measured in the other four boreholes.
NASA Astrophysics Data System (ADS)
Pressling, Nicola; Morris, Antony; John, Barbara; MacLeod, Christopher
2010-05-01
Continuous wireline logging data are invaluable when less than 100% of drilled core material is recovered. The data provide information on missing units, record the true depth of features and uniquely constrain spatial orientation. Only by fully integrating continuous, oriented logging data and discrete, finer-scale core data can we develop a complete structural interpretation for drill holes that is not limited by sampling bias. Integrated Ocean Drilling Program (IODP) Expedition 304/305 sampled the Atlantis Massif oceanic core complex at the intersection between the Mid-Atlantic Ridge and the Atlantis Transform fault at 30°N. Hole U1309D penetrated 1415.5m into the central dome of the massif, which exposes the corrugated detachment fault surface denuding the lower crust and upper mantle. The recovered section is dominated by gabbro compositions that are complexly faulted and layered on a variety of scales, reflecting the complicated interplay between magmatic and tectonic processes controlling the formation, evolution and deformation of oceanic crust at slow-spreading ridges. The average core recovery at Atlantis Massif was 74%. Therefore, to augment and constrain structural interpretations based on limited core material, we used the Formation MicroScanner (FMS) wireline logging tool that measures microresistivity contrasts in the immediate vicinity of the borehole wall formation. The data are presented as an unwrapped image of the borehole cylinder, and inclined planar structural features that intersect the borehole, such as faults or veins, are shown as darker (more conductive) sinusoidal traces. The true dip and azimuth of these features can be calculated directly due to the inclusion of an accelerometer and magnetometer on the toolstring, which record the position and spatial orientation (with respect to magnetic north) of the tool within the borehole, respectively. 4324 distinct structural features have been identified in the FMS images between 97 and 1415mbsf (metres below sea floor). Distinctly different structural trends are seen across the five sub-units that are based on petrological and geochemical observations of the recovered core. In addition, variations in the borehole dimensions are used to define 115 zones of borehole breakout, with a cumulative extent of 434.76m (31% of the total drilled). Such regions often correspond to areas of poor recovery and are consequently poorly characterised using core samples. The extensive FMS-based structural database allows the variation in fracture networks and areas of weakness to be quantified at a high-resolution, leading to improved understanding of the hydrothermal fluid flow and melt pathways in the footwall section.
Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring
NASA Astrophysics Data System (ADS)
Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.
2005-12-01
Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).
GTKDynamo: a PyMOL plug-in for QC/MM hybrid potential simulations
Bachega, José Fernando R.; Timmers, Luís Fernando S.M.; Assirati, Lucas; Bachega, Leonardo R.; Field, Martin J.; Wymore, Troy
2014-01-01
Hybrid quantum chemical (QC)/molecular mechanical (MM) potentials are very powerful tools for molecular simulation. They are especially useful for studying processes in condensed phase systems, such as chemical reactions, that involve a relatively localized change in electronic structure and where the surrounding environment contributes to these changes but can be represented with more computationally efficient functional forms. Despite their utility, however, these potentials are not always straightforward to apply since the extent of significant electronic structure changes occurring in the condensed phase process may not be intuitively obvious. To facilitate their use we have developed an open-source graphical plug-in, GTKDynamo, that links the PyMOL visualization program and the pDynamo QC/MM simulation library. This article describes the implementation of GTKDynamo and its capabilities and illustrates its application to QC/MM simulations. PMID:24137667
High strain rate method of producing optimized fracture networks in reservoirs
Roberts, Jeffery James; Antoun, Tarabay H.; Lomov, Ilya N.
2015-06-23
A system of fracturing a geological formation penetrated by a borehole. At least one borehole is drilled into or proximate the geological formation. An energetic charge is placed in the borehole. The energetic charge is detonated fracturing the geological formation.
Publications - GMC 408 | Alaska Division of Geological & Geophysical
locations, and sampling report for the Picnic Creek/Hot (boreholes 1, 2, and 7) and Sun (boreholes 2, 3, 4 , drill collar locations, and sampling report for the Picnic Creek/Hot (boreholes 1, 2, and 7) and Sun
Technology Tools for the Tough Tasks: Plug in for Great Outcomes
ERIC Educational Resources Information Center
Simon, Fran
2012-01-01
There are a lot of easy-to-use online tools that can help teachers and administrators with the tough tasks involved in running efficient, responsive, and intentional programs. The efficiencies offered through these systems allow busy educators to spend less time managing information and more time doing the work that matters the most--working with…
Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric
free charger or a rebate toward qualified equipment purchases. Residential customers are sometimes Authority and others offer PEV purchase rebates. Utility programs offering free or reduced-cost EVSE are , also known as Pepco, to pilot discounted time-of-use rates and free EVSE. This has enabled utilities to
Teaching 2.0: Teams Keep Teachers and Students Plugged into Technology
ERIC Educational Resources Information Center
Bourgeois, Michelle; Hunt, Bud
2011-01-01
A Colorado district develops a two-year program that gives teacher teams an opportunity to learn how to use digital tools in the classroom. Called the Digital Learning Collaborative, it is built on three things about professional learning: (1) Learning takes time; (2) Learning is a social process; and (3) Learning about technology should be…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxberry, Geoffrey
Google Test MPI Listener is a plugin for the Google Test c++ unit testing library that organizes test output of software that uses both the MPI parallel programming model and Google Test. Typically, such output is ordered arbitrarily and disorganized, making difficult the process of interpreting test output. This plug organizes output in MPI rank order, enabling easy interpretation of test results.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
..., or (ii) in the case of an article which consists in whole or in part of materials from another... programming of a foreign PROM (Programmable Read-Only Memory chip) in the United States substantially... Plugs. ``The term `character' is defined as `one of the essentials of structure, form, materials, or...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-29
... controverted. In addition, the requestor/petitioner shall provide a brief explanation of the bases for the... against burst, as discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized... Institute] 97-06, Revision 3, ``Steam Generator Program Guidelines'' (Reference 1) and RG 1.121, ``Bases for...
MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walkowicz, K.; Ramroth, L.; Duran, A.
2012-01-01
This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.
Lessons Learned From the Analysis of the SAFOD Downhole Instrument Package.
NASA Astrophysics Data System (ADS)
Johnson, Wade; Mencin, David; Mattioli, Glen
2013-04-01
In September of 2008 a downhole instrument package (DIP) consisting of a string of seismometers and tilt meters in isolated pressure vessels (PODs) was installed in the SAFOD main borehole. This package was designed to protect the sensors from the corrosive borehole environment and to operate for two years. The SAFOD borehole is not sealed at the bottom allowing borehole gasses and fluids infiltratration. Previous short-term installations of instruments in the SAFOD main borehole had also failed as a result of corrosion of the wireline cable head. The average failure time for these installations was two weeks. The use of stainless steel tubing connected to the pressure vessels through gas tight fittings was designed to block borehole fluid and gas infiltration of the individual instruments within the PODs. Unfortunately, the DIP completely failed within a month of its installation. In October of 2010, the DIP was removed from the borehole and a failure analysis was performed. This analysis involved to following steps: 1. Analysis of data to understand timeline of failure 2. Remove instrument safely, maintaining integrity of spliced section and documenting any external clues. Test instrument at surface 3. Open PODs in a way that allows for sampling and avoids damaging instruments. 4. Chemical analysis of fluids recovered from splices and PODs. 5. Instrument failure analysis by the instrument manufacturers. The analysis found that there were several design flaws in the DIP. This included the use of motor oil to take up air space in the individual PODs, use of a large number of gas tight seals, lack of internal seals, poorly done solder joints, use of non-temperature rated sensors, and lack of management oversight. The lessons learned from the attempts to instrument the SAFOD borehole are critical to the success of future deep borehole projects.
Langbein, John O.
2015-01-01
The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain fit from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although the borehole strainmeter accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.
NASA Astrophysics Data System (ADS)
Wood, Christopher J.
2016-12-01
The Aucellina biostratigraphy of the Upper Albian Kirchrode Marls Member succession in the Kirchrode I (1/91) cored borehole is described and the fauna illustrated. The borehole commenced at an unknown depth below the Early Cenomanian marls of the Bemerode Member, but higher beds of the Kirchrode Marls and the basal beds of the Bemerode Member were exposed in the Mittellandkanal and its Stichkanal extension at Misburg. The borehole and surface exposures permit a virtually complete Late Albian succession of Aucellina species to be observed. Published Aucellina range data from the borehole are reassessed and it is suggested that the lower part of the recorded range is based partly on misidentifications of fragments of thin-shelled bivalves such as Syncyclonema and Amussium. Aucellina appears in the borehole succession within the upper part of the Callihoplites auritus ammonite Subzone (Mortoniceras inflatum Zone) and continues to the top of the borehole succession within the Preaeschloenbachia briacensis ammonite Subzone (Stoliczkaia spp. Zone). Aucellina from higher in the briacensis Subzone collected from the Misburg Mittellandkanal section are also discussed and illustrated. There is some evidence that Aucellina occurs typically at levels in the borehole containing predominantly Boreal European Province ammonites, supporting the general inference that Aucellina lived in cooler northern waters. In contrast, Aucellina is poorly represented in intervals with Tethyan ammonites and thin-shelled inoceramids (e.g. the Mortoniceras (Durnovarites) perinflatum Subzone, Stoliczkaia spp. Zone). The briacensis Subzone, with an admixture of Tethyan (Stoliczkaia) and Boreal ammonites contains a distinctive, taxonomically highly diverse Aucellina assemblage. Relevant taxonomic research on European Late Albian and Early Cenomanian Aucellina faunas is reviewed. The Late Albian Aucellina succession in the borehole differs from that established from partially correlative successions in England.
Using Boreholes as Windows into Groundwater Ecosystems
Sorensen, James P. R.; Maurice, Louise; Edwards, François K.; Lapworth, Daniel J.; Read, Daniel S.; Allen, Debbie; Butcher, Andrew S.; Newbold, Lindsay K.; Townsend, Barry R.; Williams, Peter J.
2013-01-01
Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits) intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m). These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m3 at 0.4–1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied. PMID:23936176
Paillet, F.L.
1995-01-01
Hydraulic properties of heterogeneous fractured aquifers are difficult to characterize, and such characterization usually requires equipment-intensive and time-consuming applications of hydraulic testing in situ. Conventional coring and geophysical logging techniques provide useful and reliable information on the distribution of bedding planes, fractures and solution openings along boreholes, but it is often unclear how these locally permeable features are organized into larger-scale zones of hydraulic conductivity. New boreholes flow-logging equipment provides techniques designed to identify hydraulically active fractures intersecting boreholes, and to indicate how these fractures might be connected to larger-scale flow paths in the surrounding aquifer. Potential complications in interpreting flowmeter logs include: 1) Ambient hydraulic conditions that mask the detection of hydraulically active fractures; 2) Inability to maintain quasi-steady drawdowns during aquifer tests, which causes temporal variations in flow intensity to be confused with inflows during pumping; and 3) Effects of uncontrolled background variations in hydraulic head, which also complicate the interpretation of inflows during aquifer tests. Application of these techniques is illustrated by the analysis of cross-borehole flowmeter data from an array of four bedrock boreholes in granitic schist at the Mirror Lake, New Hampshire, research site. Only two days of field operations were required to unambiguously identify the few fractures or fracture zones that contribute most inflow to boreholes in the CO borehole array during pumping. Such information was critical in the interpretation of water-quality data. This information also permitted the setting of the available string of two packers in each borehole so as to return the aquifer as close to pre-drilling conditions as possible with the available equipment.
Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public
in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in
Plug-In Hybrid Electric Vehicle Basics | NREL
Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to fuel from its onboard tank, and this provides a driving range (the distance a vehicle can travel
Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In
Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
A Report on Superfluid Helium Flow Through Porous Plugs for Space Science Applications
NASA Technical Reports Server (NTRS)
Mason, F. C.
1983-01-01
As a background for the study of the nature of superfluid helium flow through porous plugs for other space science uses, preliminary tests on various plugs of a given material, diameter, height, and filtration grade have been performed. Two characteristics of the plugs, pore size and number of channels, have been determined by the bubble test and warm flow test of helium gas through the plugs, respectively. Tests on the flow of He II through the plugs have also been performed. An obvious feature of the results of these tests is that for isothermal measurements of pressure versus mass flow rate below approximately 2.10 K, the flow is separated into two different regimes, indicative of the occurrence of a critical phenomenon.
Rotzoll, Kolja
2012-01-01
The Pearl Harbor aquifer in southern O‘ahu is one of the most important sources of freshwater in Hawai‘i. A thick freshwater lens overlays brackish and saltwater in this coastal aquifer. Salinity profiles collected from uncased deep monitor wells (DMWs) commonly are used to monitor freshwater-lens thickness. However, vertical flow in DMWs can cause the measured salinity to differ from salinity in the adjacent aquifer or in an aquifer without a DWM. Substantial borehole flow and displacement of salinity in DMWs over several hundred feet have been observed in the Pearl Harbor aquifer. The objective of this study was to evaluate the effects of borehole flow on measured salinity profiles from DMWs. A numerical modeling approach incorporated aquifer hydraulic characteristics and recharge and withdrawal rates representative of the Pearl Harbor aquifer. Borehole flow caused by vertical hydraulic gradients associated with both the natural regional flow system and groundwater withdrawals was simulated. Model results indicate that, with all other factors being equal, greater withdrawal rates, closer withdrawal locations, or higher hydraulic conductivities of the well cause greater borehole flow and displacement of salinity in the well. Borehole flow caused by the natural groundwater-flow system is five orders of magnitude greater than vertical flow in a homogeneous aquifer, and borehole-flow directions are consistent with the regional flow system: downward flow in inland recharge areas and upward flow in coastal discharge areas. Displacement of salinity inside the DMWs associated with the regional groundwater-flow system ranges from less than 1 to 220 ft, depending on the location and assumed hydraulic conductivity of the well. For example, upward displacements of the 2 percent and 50 percent salinity depths in a well in the coastal discharge part of the flow system are 17 and 4.4 ft, respectively, and the average salinity difference between aquifer and borehole is 0.65 percent seawater salinity. Groundwater withdrawals and drawdowns generally occur at shallow depths in the freshwater system with respect to the depth of the DMW and cause upward flow in the DMW. Simulated groundwater withdrawal of 4.3 million gallons per day that is 100 ft from a DMW causes thirty times more borehole flow than borehole flow that is induced by the regional flow field alone. The displacement of the 2 percent borehole salinity depth increases from 17 to 33 ft, and the average salinity difference between aquifer and borehole is 0.85 percent seawater salinity. Peak borehole flow caused by local groundwater withdrawal near DMWs is directly proportional to the pumping rate in the nearby production well. Increasing groundwater withdrawal to 16.7 million gallons per day increases upward displacement of the 50 percent salinity depth (midpoint of the transition zone) from 4.6 to 77 ft, and the average salinity difference between aquifer and borehole is 1.4 percent seawater salinity. Simulated groundwater withdrawal that is 3,000 ft away from DMWs causes less borehole flow and salinity displacements than nearby withdrawal. Simulated effects of groundwater withdrawal from a horizontal shaft and withdrawal from a vertical well in a homogeneous aquifer were similar. Generally, the 50 percent salinity depths are less affected by borehole flow than the 2 percent salinity depths. Hence, measured salinity profiles are useful for calibration of regional numerical models despite borehole-flow effects. Commonly, a 1 percent error in salinity is acceptable in numerical modeling studies. Incorporation of heterogeneity in the model is necessary to simulate long vertical steps observed in salinity profiles in southern O‘ahu. A thick zone of low aquifer hydraulic conductivity limits exchange of water between aquifer and well and creates a long vertical step in the salinity profile. A heterogeneous basalt-aquifer scenario simulates observed vertical salinity steps and borehole flow that is consistent with measured borehole flow from DMWs in southern O‘ahu. However, inclusion of local-scale heterogeneities in regional models generally is not warranted.
Borehole induction coil transmitter
Holladay, Gale; Wilt, Michael J.
2002-01-01
A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.
System for plotting subsoil structure and method therefor
NASA Technical Reports Server (NTRS)
Narasimhan, K. Y.; Nathan, R.; Parthasarathy, S. P. (Inventor)
1980-01-01
Data for use in producing a tomograph of subsoil structure between boreholes is derived by pacing spaced geophones in one borehole, on the Earth surface if desired, and by producing a sequence of shots at spaced apart locations in the other borehole. The signals, detected by each of the geophones from the various shots, are processed either on a time of arrival basis, or on the basis of signal amplitude, to provide information of the characteristics of a large number of incremental areas between the boreholes. Such information is useable to produce a tomograph of the subsoil structure between the boreholes. By processing signals of relatively high frequencies, e.g., up to 100 Hz, and by closely spacing the geophones, a high resolution tomograph can be produced.
Method and apparatus for suppressing waves in a borehole
West, Phillip B.
2005-10-04
Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.
10 CFR 63.133 - Design testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as the... placement is begun. (d) Tests must be conducted to evaluate the effectiveness of borehole, shaft, and ramp seals before full-scale operation proceeds to seal boreholes, shafts, and ramps. ...
Three-component borehole wall-locking seismic detector
Owen, Thomas E.
1994-01-01
A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.
An experimental study of the mechanism of failure of rocks under borehole jack loading
NASA Technical Reports Server (NTRS)
Van, T. K.; Goodman, R. E.
1971-01-01
Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.
Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.
Sukop, Michael C; Cunningham, Kevin J
2016-03-01
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. © 2015, National Ground Water Association.
DICOM router: an open source toolbox for communication and correction of DICOM objects.
Hackländer, Thomas; Kleber, Klaus; Martin, Jens; Mertens, Heinrich
2005-03-01
Today, the exchange of medical images and clinical information is well defined by the digital imaging and communications in medicine (DICOM) and Health Level Seven (ie, HL7) standards. The interoperability among information systems is specified by the integration profiles of IHE (Integrating the Healthcare Enterprise). However, older imaging modalities frequently do not correctly support these interfaces and integration profiles, and some use cases are not yet specified by IHE. Therefore, corrections of DICOM objects are necessary to establish conformity. The aim of this project was to develop a toolbox that can automatically perform these recurrent corrections of the DICOM objects. The toolbox is composed of three main components: 1) a receiver to receive DICOM objects, 2) a processing pipeline to correct each object, and 3) one or more senders to forward each corrected object to predefined addressees. The toolbox is implemented under Java as an open source project. The processing pipeline is realized by means of plug ins. One of the plug ins can be programmed by the user via an external eXtensible Stylesheet Language (ie, XSL) file. Using this plug in, DICOM objects can also be converted into eXtensible Markup Language (ie, XML) documents or other data formats. DICOM storage services, DICOM CD-ROMs, and the local file system are defined as input and output channel. The toolbox is used clinically for different application areas. These are the automatic correction of DICOM objects from non-IHE-conforming modalities, the import of DICOM CD-ROMs into the picture archiving and communication system and the pseudo naming of DICOM images. The toolbox has been accepted by users in a clinical setting. Because of the open programming interfaces, the functionality can easily be adapted to future applications.
Vargas, Roger I; Mau, Ronald F L; Stark, John D; Piñero, Jaime C; Leblanc, Luc; Souder, Steven K
2010-04-01
Methyl eugenol (ME) and cue-lure (C-L) traps with solid lure dispensers were deployed in areas with low and high populations of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), respectively. In low-density areas, standard Jackson traps or Hawaii Fruit Fly Areawide Pest Management (AWPM) traps with FT Mallet ME wafers impregnated with dimethyl dichloro-vinyl phosphate (DDVP) or AWPM traps with Scentry ME cones and vapor tape performed equally as well as standard Jackson traps with liquid ME/C-L and naled. Standard Jackson traps or AWPM traps with FT Mallet C-L wafers impregnated with DDVP or AWPM traps with Scentry C-L plugs with vapor tape performed equally as well as standard Jackson traps with a lure-naled solution. In high density areas, captures with traps containing FT Mallet wafers (ME and C-L) outperformed AWPM traps with Scentry cones and plugs (ME and C-L) with DDVP insecticidal strips over a 6-mo period. Captures of B. dorsalis and B. cucurbitae with wafers containing both ME and raspberry ketone (FT Mallet MC) were equivalent to those containing separate lures. From a worker safety and convenience standpoint, FT Mallet ME and C-L wafers with DDVP or Scentry plugs, with or without DDVP vapor tape, are more convenient and safer to handle than standard liquid insecticide formulations used for monitoring and male annihilation programs in Hawaii, and for detections traps used on the U.S. mainland. Furthermore, the FT Mallet MC wafer might be used in a single trap in place of two separate traps for detection of both ME and C-L responding fruit flies.
Thermal Impact of Medium Deep Borehole Thermal Energy Storage on the Shallow Subsurface
NASA Astrophysics Data System (ADS)
Welsch, Bastian; Schulte, Daniel O.; Rühaak, Wolfram; Bär, Kristian; Sass, Ingo
2017-04-01
Borehole heat exchanger arrays are a well-suited and already widely applied method for exploiting the shallow subsurface as seasonal heat storage. However, in most of the populated regions the shallow subsurface also comprises an important aquifer system used for drinking water production. Thus, the operation of shallow geothermal heat storage systems leads to a significant increase in groundwater temperatures in the proximity of the borehole heat exchanger array. The magnitude of the impact on groundwater quality and microbiology associated with this temperature rise is controversially discussed. Nevertheless, the protection of shallow groundwater resources has priority. Accordingly, water authorities often follow restrictive permission policies for building such storage systems. An alternative approach to avoid this issue is the application of medium deep borehole heat exchanger arrays instead of shallow ones. The thermal impact on shallow aquifers can be significantly reduced as heat is stored at larger depth. Moreover, it can be further diminished by the installation of a thermally insulating materials in the upper section of the borehole heat exchangers. Based on a numerical simulation study, the advantageous effects of medium deep borehole thermal energy storage are demonstrated and quantified. A finite element software is used to model the heat transport in the subsurface in 3D, while the heat transport in the borehole heat exchangers is solved analytically in 1D. For this purpose, an extended analytical solution is implemented, which also allows for the consideration of a thermally insulating borehole section.
Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography
Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.
2016-01-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.
NASA Astrophysics Data System (ADS)
Wu, H. Y.; Lin, W.; Yamada, Y.
2015-12-01
One of IODP expedition (Borehole C0020A) is located in the forearc basin formed by the subducting between Pacific plate and Eurasian plate off Shimokita Peninsula. This ~2.5km deep scientific drilling collected the high-resolution wire-line resistivity logging, caliper data, Dipole Sonic waveforms; geophysical properties measurements and core samples. The riser drilling operations produced one good conditions borehole even this drilling operation was applied right after 311 Tohoku earthquake. Based on the high-resolutions Formation Micro Imager (FMI) images, both breakout and tensile fractures along the borehole wall indicating the in-situ stress orientation are detected in the unwrapped resistivity images. In this research, a reasonable geomechanical model based on the breakout width and physical properties is constructed to estimate the stress magnitude profile in this borehole. Besides, the openhole leak-off test revealed the information of Shmin magnitude. In general, stress direction along the borehole is slight rotated to east with drilling to the bottom of the borehole. Geomechanical model constarined the principal stresses in Strike-slip stress regime to satisfy the occurrences of borehole enlargements and tensile fractures. Some blank zones with no borehole wall failure and vertical fractures indicated the stress anomaly might be controlled by local lithological facies. Comparing to the JFAST drilling, this site is out of Japan trench slip zone and shows almost parallel stress direcion to the trench (~90 degree apart of Shmin with Site C0019).
Shapiro, Allen M.
2007-01-01
A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the packers, the submersible pump, and other downhole components to land surface. Borehole geophysical logging must be conducted prior to deploying the Multifunction BAT3 in bedrock boreholes. In particular, it is important to identify the borehole diameter as a function of depth to avoid placing the packers over rough sections of the borehole, where they may be damaged during inflation. In addition, it is advantageous to identify the location of fractures intersecting the borehole wall, for example, using an acoustic televiewer log or a borehole camera. A knowledge of fracture locations is helpful in designing the length of the test interval and the locations where hydraulic tests and geochemical sampling are to be conducted. The Multifunction BAT3 is configured to conduct both fluid-injection and fluid-withdrawal tests. Fluid-injection tests are used to estimate the hydraulic properties of low-permeability fractures intersecting the borehole. The lower limit of the transmissivity that can be estimated using the configuration of the Multifunction BAT3 described in this report is approximately 10-3 square feet per day (ft2/d). Fluid-withdrawal tests are used to collect water samples for geochemical analyses and estimate the hydraulic properties of high-permeability fractures intersecting the borehole. The Multifunction BAT3 is configured with a submersible pump that can support pumping rates ranging from approximately 0.05 to 2.5 gallons per minute, and the upper limit of the of the transmissivity that can be estimated is approximately 104 ft2/d. The Multifunction BAT3 also can be used to measure the ambient hydraulic head of a section of a bedrock borehole, and to conduct single-hole tracer tests by injecting and later withdrawing a tracer solution.
Design and force analysis of end-effector for plug seedling transplanter.
Jiang, Zhuohua; Hu, Yang; Jiang, Huanyu; Tong, Junhua
2017-01-01
Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.
Design and force analysis of end-effector for plug seedling transplanter
Hu, Yang; Jiang, Huanyu; Tong, Junhua
2017-01-01
Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting. PMID:28678858
Waddell, B.; May, T.
1995-01-01
A single muscle plug was collected from each of 25 live razorback suckers inhabiting the Colorado River basin and analyzed for selenium by instrumental neutron activation. Eight fish from Ashley Creek and three from Razorback Bar exhibited selenium concentrations exceeding 8 μg/g, a level associated with reproductive failure in fish. Concentrations of selenium in eggs and milt were significantly correlated with selenium concentrations in muscle plugs and together indicate a possible explanation for the decline of this species in the Colorado River basin. Muscle plugs (<50mg) and muscle tissue (20 g) were collected from dorsal, anterior, and posterior areas of common carp, flannelmouth sucker, and an archived razorback sucker and analyzed for selenium. Concentrations of selenium in muscle plugs were significantly correlated with selenium concentrations in muscle tissue from the same location and fish (r=0.97). Coefficients of variation for selenium concentrations in each fish were <6.5% for muscle tissue, but ranged from 1.5 to 32.4% for muscle plugs. Increased variation in muscle plugs was attributed to lower selenium concentrations found in the anterior muscle plugs of flannelmouth suckers. Mean selenium concentrations in muscle plugs and tissue from dorsal and posterior areas and muscle tissue from the anterior area were not significantly different. The non-lethal collection of a muscle plug from dorsal and posterior areas of the razorback sucker and other fish species may provide an accurate assessment of selenium concentrations that exist in adjacent muscle tissue.
Xiao, Yong Jie; Chen, Fu Quan; Dong, Yi Zhi
2016-01-01
During driving sleeve of cast-in-place piles by vibratory hammers, soils were squeezed into sleeve and then soil plugging was formed. The physic-mechanical properties of the soil plug have direct influence on the load transmission between the sleeve wall and soil plug. Nevertheless, the researches on this issue are insufficient. In this study, finite element and infinite element coupling model was introduced, through the commercial code ABAQUS, to simulate the full penetration process of the sleeve driven from the ground surface to the desired depth by applying vibratory hammers. The research results indicated that the cyclic shearing action decreases both in soil shear strength and in granular cementation force when the sleeve is driven by vibratory hammers, which leads to a partially plugged mode of the soil plug inside the sleeve. Accordingly, the penetration resistance of sleeve driven by vibratory hammers is the smallest compared to those by other installation methods. When driving the sleeve, the annular soil arches forming in the soil plug at sleeve end induce a significant rise in the internal shaft resistance. Moreover, the influence of vibration frequencies, sleeve diameters, and soil layer properties on the soil plug was investigated in detail, and at the same time improved formulas were brought forward to describe the soil plug resistance inside vibratory driven sleeve.
Borehole data transmission apparatus
Kotlyar, Oleg M.
1993-01-01
A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.
This paper presents some of the results of five of the techniques: cross borehole complex resistivity (CR) also referred to as spectral induced polarization (SIP), cross borehole high resolution seismic (HRS), borehole self potential (SP), surface ground penetration radar (GPR), ...
PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...
PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In
Electric Vehicles Los Angeles Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2011 CFR
2011-07-01
... in open hole Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top of... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe;(ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and a...
Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation
Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by
Flowmeter and Ground Penetrating Radar: comparison between hydrogeological and geophysical methods
NASA Astrophysics Data System (ADS)
Villa, A.; Basirico', S.; Arato, A.; Crosta, G. B.; Frattini, P.; Godio, A.
2012-04-01
A comparison between saturated hydraulic conductivity calculated with Electromagnetic Borehole Flowmeter (EBF) and water content obtained by Ground Penetrating Radar (GPR) Zero Offset Profile (ZOP) is presented. EBF technique permits to obtain permeability profiles along one borehole in the saturated zone by using the Moltz (1993) method. The analysis of ZOP data provides information about the water content (Topp, 1980) in the section between two adjacent boreholes. Water content profiles in the saturated zone can be related to the porosity of the medium which, together with the permeability from EBF measurements, is fundamental for any hydrogeological characterization. These two methods have been applied to three different test-sites located in the Northern Italy. A first site regards a complex aquifer, characterized by a chaotic sequence of gypsum-marls. The other two sites are characterized by an alternation of sandy and silty-sandy layers. For each site, we adopted the EBF along screened boreholes with 0.25 m spacing, under ambient and stressed conditions. The cross-hole georadar survey was performed within the saturated zone by using 100 Hz borehole antennas with 0.25 m spacing. The results from the analysis of EBF and ZOP profiles show a general positive correlation between permeability and water content and porosity. This is reasonable for granular soils where the permeability is controlled by the pore space available for water flow, i.e., the effective porosity. For this soils, where EBF permeability and ZOP water-content profiles are in good agreement, the volume between the boreholes can be supposed to be homogeneous. On the other hand, a poor correlation suggests the presence of heterogeneity between the boreholes, which can be observed because the two techniques involve different volumes of soil: the EBF permeability refers to a portion of volume just around the borehole while the ZOP investigates the entire volume between the two boreholes. The poor correlation could be enhanced when enlarging the borehole separation, because the difference in the involved volume between the two techniques increases. Finally, the degree of correlation between the EBF permeability profile and the ZOP water content profile can indicate how much the volume investigated by EBF is effectively representative of the entire volume between the boreholes. Molz, F.J. and S.C. Young, 1993. Development and Application of Borehole Flowmeters for Environmental Assessment, The Log Analyst, 13-23. Topp G.C., J.L. Davis and A.P. Annan, 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water Resources Research, 16, 574-582.
IODP Expedition 340T: Borehole Logging at Atlantis Massif Oceanic Core Complex
NASA Astrophysics Data System (ADS)
Blackman, D.; Slagle, A.; Harding, A.; Guerin, G.; McCaig, A.
2013-03-01
Integrated Ocean Drilling Program (IODP) Expedition 340T returned to the 1.4-km-deep Hole U1309D at Atlantis Massif to carry out borehole logging including vertical seismic profiling (VSP). Seismic, resistivity, and temperature logs were obtained throughout the geologic section in the footwall of this oceanic core complex. Reliable downhole temperature measurements throughout and the first seismic coverage of the 800-1400 meters below seafloor (mbsf) portion of the section were obtained. Distinct changes in velocity, resistivity, and magnetic susceptibility characterize the boundaries of altered, olivine-rich troctolite intervals within the otherwise dominantly gabbroic se-quence. Some narrow fault zones also are associated with downhole resistivity or velocity excursions. Small deviations in temperature were measured in borehole fluid adjacent to known faults at 750 mbsf and 1100 mbsf. This suggests that flow of seawater remains active along these zones of faulting and rock alteration. Vertical seismic profile station coverage at zero offset now extends the full length of the hole, including the uppermost 150 mbsf, where detachment processes are expected to have left their strongest imprint. Analysis of wallrock properties, together with alteration and structural characteristics of the cores from Site U1309, highlights the likely interplay between lithology, structure, lithospheric hydration, and core complex evolution. doi:10.2204/iodp.sd.15.04.2013
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.
1984-01-01
Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.
Integrated geophysical surveys for mapping lati-andesite intrusive bodies, Chino Valley, Arizona
El-Kaliouby, Hesham; Sternberg, Ben K.; Hoffmann, John P.; Langenheim, V.E.
2012-01-01
Three different geophysical methods (magnetic, transient electromagnetic (TEM) and gravity) were used near Chino Valley, Arizona, USA in order to map a suspected lati-andesite intrusive body (plug) previously located by interpretation of aeromagnetic data. The magnetic and TEM surveys provided the best indication of the location and depth of the plug. The north-south spatial extent of this plug was estimated to be approximately 600 meters. The depth to the top of the plug was found from the TEM survey to be approximately 350 meters near the center of the survey. The location of the plug defined by the ground magnetic data is consistent with that from the TEM data. Gravity data mostly image the basin-basement interface with a small contribution from the plug of about 0.5 mGal. Results from this investigation can be used to help define the irregular subsurface topography caused by several intrusive lati-andesite plugs that could influence groundwater flow in the area.
NASA Technical Reports Server (NTRS)
Moore, Kevin D.
2017-01-01
Trying to get your experiment aboard ISS? You likely will need power. Many enditem providers do. ISS Plug-In Plan (IPiP) supports power and data for science, Payloads (or Utilization), vehicle systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Yet limited resources and increasing requirements continue to influence decisions on deployment of ISS end items. Given the fluid launch schedule and the rapidly- increasing number of end item providers requiring power support, the focus of the Plug-In Plan has evolved from a simple FIFO recommendation to provide power to end item users, to anticipating future requirements by judicious development and delivery of support equipment (cables, power supplies, power strips, and alternating current (AC) power inverters), employing innovative deployment strategies, and collaborating on end item development. This paper describes the evolution of the ISS Program Office, Engineering Directorate, Flight Operations Directorate (FOD), International Partners and the end item provider relationship and how collaboration successfully leverages unique requirements with limited on- board equipment and resources, tools and processes which result in more agile integration, and describes the process designed for the new ISS end item provider to assure that their power requirements will be met.
NASA Technical Reports Server (NTRS)
Indoe, William
2012-01-01
A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.
High temperature penetrator assembly with bayonet plug and ramp-activated lock
NASA Technical Reports Server (NTRS)
Wood, K. E. (Inventor)
1982-01-01
A penetration apparatus, for very high temperature applications in which a base plug is inserted into an opening through a bulkhead is described. The base plug has a head shape and is seated against the highest temperature surface of the bulkhead, which may be the skin of the nose cone or other part of a space vehicle intended for nondestructive atmospheric reentry. From the second side of the bulkhead at which the less severe environment is extant, a bayonet plug is inserted into the base plug and engages an internal shoulder at about 90 deg rotation. The bayonet plug has an integral flanged portion and a pair of ramping washers which are located between the flange and the second bulkhead surface with a spacing washer as necessary.
Miniature electrical connector
Casper, Robert F.
1976-01-01
A miniature coaxial cable electrical connector includes an annular compressible gasket in a receptacle member, the gasket having a generally triangular cross section resiliently engaging and encircling a conically tapered outer surface of a plug member to create an elongated current leakage path at their interface; means for preventing rotation of the plug relative to the receptacle; a metal sleeve forming a portion of the receptacle and encircling the plug member when interconnected; and a split ring in the plug having outwardly and rearwardly projecting fingers spaced from and encircling a portion of a coaxial cable and engageable with the metal sleeve to interlock the receptacle and plug.
Partial wetting gas-liquid segmented flow microreactor.
Kazemi Oskooei, S Ali; Sinton, David
2010-07-07
A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.
Borehole data transmission apparatus
Kotlyar, O.M.
1993-03-23
A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.
Methods for use in detecting seismic waves in a borehole
West, Phillip B.; Fincke, James R.; Reed, Teddy R.
2007-02-20
The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.
Drilling and completion specifications for CA series multilevel piezometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clawson, T.S.
1986-08-01
CX Series multilevel piezometer boreholes will provide information on hydraulic heads in the Rosalia, Sentinel Gap, Ginkgo, Rocky Coulee, Cohassett, Birkett, and Umtanum flow tops. The borehole sites will be located adjacent to the reference repository location. In addition, information from the boreholes will provide input data used to determine horizontal and vertical flow rates, and identify possible geologic structures. This specification includes details for drilling, piezometer design, hydrologic testing, and hydrochemical sampling of the boreholes. It includes drilling requirements, design, and installation procedures for the series piezometer nests, intervals selected for head monitoring and schedules for drilling and piezometermore » installation. Specific drilling and piezometer installation specifications for boreholes DC-24CX and DC-25CX are also included. 27 refs., 5 figs., 3 tabs.« less
Uncertainty evaluation with increasing borehole drilling in subsurface hydrogeological explorations
NASA Astrophysics Data System (ADS)
Amano, K.; Ohyama, T.; Kumamoto, S.; Shimo, M.
2016-12-01
Quantities of drilling boreholes have been a difficult subject for field investigators in such as subsurface hydrogeological explorations. This problem becomes a bigger in heterogeneous formations or rock masses so we need to develop quantitative criteria for evaluating uncertainties during borehole investigations.To test an uncertainty reduction with increasing boreholes, we prepared a simple hydrogeological model and virtual hydraulic tests were carried out by using this model. The model consists of 125,000 elements of which hydraulic conductivities are generated randomly from the log-normal distribution in a 2-kilometer cube. Uncertainties were calculated by the difference of head distributions between the original model and the inchoate models made by virtual hydraulic test one by one.The results show the level and the variance of uncertainty are strongly correlated to the average and variance of the hydraulic conductivities. This kind of trends also could be seen in the actual field data obtained from the deep borehole investigations in Horonobe Town, northern Hokkaido, Japan. Here, a new approach using fractional bias (FB) and normalized mean square error (NMSE) for evaluating uncertainty characteristics will be introduced and the possibility of use as an indicator for decision making (i.e. to stop borehole drilling or to continue borehole drilling) in field investigations will be discussed.
Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer
Paillet, F.L.; Williams, J.H.; Oki, D.S.; Knutson, K.D.
2002-01-01
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.
Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer.
Paillet, F L; Williams, J H; Oki, D S; Knutson, K D
2002-01-01
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.
Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd
2001-01-01
Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground water; and (3) an increase in primary or secondary porosity and an associated change in mineral assemblage, or decrease in ground water specific conductance, was characterized in two of the boreholes below 300 m.The results of the radar reflection logging indicate that even where data quality is marginal, borehole-radar reflection logging can provide useful information for ground-water characterization studies in fractured rock and insights into the nature and extent of fractures and fracture zones in and near boreholes.
Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments
Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.
2000-01-01
The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core, log, and seismic character of mid-Tertiary sediments across the width of the New Jersey margin is a major step in the long-standing effort to evaluate the impact of glaciouestasy on siliciclastic sediments of a passive continental margin. (C) 2000 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bour, O.; Klepikova, M.; Le Borgne, T.; De Dreuzy, J.
2013-12-01
Inverse modeling of hydraulic and geometrical properties of fractured media is a very challenging objective due to the spatial heterogeneity of the medium and the scarcity of data. Here we present a flow tomography approach that permits to characterize the location, the connectivity and the hydraulic properties of main flow paths in fractured media. The accurate characterization of the location, hydraulic properties and connectivity of major fracture zones is essential to model flow and solute transport in fractured media. Cross-borehole flowmeter tests, which consist of measuring changes in vertical borehole flows when pumping a neighboring borehole, were shown to be an efficient technique to provide information on the properties of the flow zones that connect borehole pairs [Paillet, 1998; Le Borgne et al., 2006]. The interpretation of such experiments may however be quite uncertain when multiple connections exist. In this study, we explore the potential of flow tomography (i.e., sequential cross-borehole flowmeter tests) for characterizing aquifer heterogeneity. We first propose a framework for inverting flow and drawdown data to infer fracture connectivity and transmissivities. Here we use a simplified discrete fracture network approach that highlights main connectivity structures. This conceptual model attempts to reproduce fracture network connectivity without taking fracture geometry (length, orientation, dip) into account. We then explore the potential of the method for simplified synthetic fracture network models and quantify the sensitivity of drawdown and borehole flow velocities to the transmissivity of the connecting flowpaths. Flow tomography is expected to be most effective if cross-borehole pumping induces large changes in vertical borehole velocities. The uncertainty of the transmissivity estimates increases for small borehole flow velocities. The uncertainty about the transmissivity of fractures that connect the main flowpath but not the boreholes is generally higher. We demonstrate that successively changing pumping and observation boreholes improves the quality of available information and reduces the indetermination of the problem. The inverse method is validated for different synthetic flow scenarios. It is shown to provide a good estimation of connectivity patterns and transmissivities of main flowpaths. Although the chosen fracture network geometry has been simplified, flow tomography appears to be a promising approach for characterizing connectivity patterns and transmissivities of fractured media.
NASA Astrophysics Data System (ADS)
Huffman, Katelyn A.
Understanding the orientation and magnitude of tectonic stress in active tectonic margins like subduction zones is important for understanding fault mechanics. In the Nankai Trough subduction zone, faults in the accretionary prism are thought to have historically slipped during or immediately following deep plate boundary earthquakes, often generating devastating tsunamis. I focus on quantifying stress at two locations of interest in the Nankai Trough accretionary prism, offshore Southwest Japan. I employ a method to constrain stress magnitude that combines observations of compressional borehole failure from logging-while-drilling resistivity-at-the-bit generated images (RAB) with estimates of rock strength and the relationship between tectonic stress and stress at the wall of a borehole. I use the method to constrain stress at Ocean Drilling Program (ODP) Site 808 and Integrated Ocean Drilling Program (IODP) Site C0002. At Site 808, I consider a range of parameters (assumed rock strength, friction coefficient, breakout width, and fluid pressure) in the method to constrain stress to explore uncertainty in stress magnitudes and discuss stress results in terms of the seismic cycle. I find a combination of increased fluid pressure and decreased friction along the frontal thrust or other weak faults could produce thrust-style failure, without the entire prism being at critical state failure, as other kinematic models of accretionary prism behavior during earthquakes imply. Rock strength is typically inferred using a failure criterion and unconfined compressive strength from empirical relations with P-wave velocity. I minimize uncertainty in rock strength by measuring rock strength in triaxial tests on Nankai core. I find strength of Nankai core is significantly less than empirical relations predict. I create a new empirical fit to our experiments and explore implications of this on stress magnitude estimates. I find using the new empirical fit can decrease stress predicted in the method by as much as 4 MPa at Site C0002. I constrain stress at Site C0002 using geophysical logging data from two adjacent boreholes drilled into the same sedimentary sequence with different drilling conditions in a forward model that predicts breakout width over a range of horizontal stresses (where SHmax is constrained by the ratio of stresses that would produce active faulting and Shmin is constrained from leak-off-tests) and rock strength. I then compare predicted breakout widths to observations of breakout widths from RAB images to determine the combination of stresses in the model that best match real world observations. This is the first published method to constrain both stress and strength simultaneously. Finally, I explore uncertainty in rock behavior during compressional breakout formation using a finite element model (FEM) that predicts Biot poroelastic changes in fluid pressure in rock adjacent to the borehole upon its excavation and explore the effect this has on rock failure. I test a range of permeability and rock stiffness. I find that when rock stiffness and permeability are in the range of what exists at Nankai, pore fluid pressure increase +/- 45° from Shmin and can lead to weakening of wall rock and a wider compressional failure zone than what would exist at equilibrium conditions. In a case example at, we find this can lead to an overestimate of tectonic stress using compressional failures of ~2 MPa in the area of the borehole where fluid pressure increases. In areas around the borehole where pore fluid decreases (+/- 45° from SHmax), the wall rock can strengthen which suppresses tensile failure. The implications of this research is that there are many potential pitfalls in the method to constrain stress using borehole breakouts in Nankai Trough mudstone, mostly due to uncertainty in parameters such as strength and underlying assumptions regarding constitutive rock behavior. More laboratory measurement and/or models of rock properties and rock constitutive behavior is needed to ensure the method is accurately providing constraints on stress magnitude. (Abstract shortened by ProQuest.).
Punctal occlusion for dry eye syndrome.
Ervin, Ann-Margret; Law, Andrew; Pucker, Andrew D
2017-06-26
Dry eye syndrome is a disorder of the tear film that is associated with symptoms of ocular discomfort. Punctal occlusion is a mechanical treatment that blocks the tear drainage system in order to aid in the preservation of natural tears on the ocular surface. To assess the effects of punctal plugs versus no punctal plugs, different types of punctal plugs, and other interventions for managing dry eye. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 11), MEDLINE Ovid (1946 to 8 December 2016), Embase.com (1947 to 8 December 2016), PubMed (1948 to 8 December 2016), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 8 December 2016), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com; last searched 18 November 2012 - this resource is now archived), ClinicalTrials.gov (www.clinicaltrials.gov; searched 8 December 2016), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en; searched 8 December 2016). We did not use any date or language restrictions in the electronic searches for trials. We also searched the Science Citation Index-Expanded database and reference lists of included studies. The evidence was last updated on 8 December 2016 SELECTION CRITERIA: We included randomized and quasi-randomized controlled trials of collagen or silicone punctal plugs in symptomatic participants diagnosed with aqueous tear deficiency or dry eye syndrome. Two review authors independently assessed trial quality and extracted data. We contacted study investigators for additional information when needed. We included 18 trials (711 participants, 1249 eyes) from Austria, Canada, China, Greece, Japan, Mexico, Netherlands, Turkey, the UK, and the USA in this review. We also identified one ongoing trial. Overall we judged these trials to be at unclear risk of bias because they were poorly reported. We assessed the evidence for eight comparisons.Five trials compared punctal plugs with no punctal plugs (control). Three of these trials employed a sham treatment and two trials observed the control group. Two trials did not report outcome data relevant to this review. There was very low-certainty evidence on symptomatic improvement. The three trials that reported this outcome used different scales to measure symptoms. In all three trials, there was little or no improvement in symptom scores with punctal plugs compared with no punctal plugs. Low-certainty evidence from one trial suggested less ocular surface staining in the punctal plug group compared with the no punctal plug group however this difference was small and possibly clinically unimportant (mean difference (MD) in fluorescein staining score -1.50 points, 95% CI -1.88 to -1.12; eyes = 61). Similarly there was a small difference in tear film stability with people in the punctal plug group having more stability (MD 1.93 seconds more, 95% CI 0.67 to 3.20; eyes = 28, low-certainty evidence). The number of artificial tear applications was lower in the punctal plug group compared with the no punctal plugs group in one trial (MD -2.70 applications, 95% CI -3.11 to -2.29; eyes = 61, low-certainty evidence). One trial with low-certainty evidence reported little or no difference between the groups in Schirmer scores, but did not report any quantitative data on aqueous tear production. Very low-certainty evidence on adverse events suggested that events occurred reasonably frequently in the punctal plug group and included epiphora, itching, tenderness and swelling of lids with mucous discharge, and plug displacement.One trial compared punctal plugs with cyclosporine (20 eyes) and one trial compared punctal plugs with oral pilocarpine (55 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision.Five trials compared punctal plugs with artificial tears. In one of the trials punctal plugs was combined with artificial tears and compared with artificial tears alone. There was very low-certainty evidence on symptomatic improvement. Low-certainty evidence of little or no improvement in ocular surface staining comparing punctal plugs with artificial tears (MD right eye 0.10 points higher, 0.56 lower to 0.76 higher, MD left eye 0.60 points higher, 0.10 to 1.10 higher) and low-certainty evidence of little or no difference in aqueous tear production (MD 0.00 mm/5 min, 0.33 lower to 0.33 higher)Three trials compared punctal plugs in the upper versus the lower puncta, and none of them reported the review outcomes at long-term follow-up. One trial with very low-certainty evidence reported no observed complications, but it was unclear which complications were collected.One trial compared acrylic punctal plugs with silicone punctal plugs and the trial reported outcomes at approximately 11 weeks of follow-up (36 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision.One trial compared intracanalicular punctal plugs with silicone punctal plugs at three months follow-up (57 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision.Finally, two trials with very low-certainty evidence compared collagen punctal plugs versus silicone punctal plugs (98 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Although the investigators of the individual trials concluded that punctal plugs are an effective means for treating dry eye signs and symptoms, the evidence in this systematic review suggests that improvements in symptoms and commonly tested dry eye signs are inconclusive. Despite the inclusion of 11 additional trials, the findings of this updated review are consistent with the previous review published in 2010. The type of punctal plug investigated, the type and severity of dry eye being treated, and heterogeneity in trial methodology confounds our ability to make decisive statements regarding the effectiveness of punctal plug use. Although punctal plugs are believed to be relatively safe, their use is commonly associated with epiphora and, less commonly, with inflammatory conditions such as dacryocystitis.
Punctal occlusion for dry eye syndrome
Ervin, Ann-Margret; Law, Andrew; Pucker, Andrew D
2017-01-01
Background Dry eye syndrome is a disorder of the tear film that is associated with symptoms of ocular discomfort. Punctal occlusion is a mechanical treatment that blocks the tear drainage system in order to aid in the preservation of natural tears on the ocular surface. Objectives To assess the effects of punctal plugs versus no punctal plugs, different types of punctal plugs, and other interventions for managing dry eye. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 11), MEDLINE Ovid (1946 to 8 December 2016), Embase.com (1947 to 8 December 2016), PubMed (1948 to 8 December 2016), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 8 December 2016), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com; last searched 18 November 2012 - this resource is now archived), ClinicalTrials.gov (www.clinicaltrials.gov; searched 8 December 2016), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en; searched 8 December 2016). We did not use any date or language restrictions in the electronic searches for trials. We also searched the Science Citation Index-Expanded database and reference lists of included studies. The evidence was last updated on 8 December 2016 Selection criteria We included randomized and quasi-randomized controlled trials of collagen or silicone punctal plugs in symptomatic participants diagnosed with aqueous tear deficiency or dry eye syndrome. Data collection and analysis Two review authors independently assessed trial quality and extracted data. We contacted study investigators for additional information when needed. Main results We included 18 trials (711 participants, 1249 eyes) from Austria, Canada, China, Greece, Japan, Mexico, Netherlands, Turkey, the UK, and the USA in this review. We also identified one ongoing trial. Overall we judged these trials to be at unclear risk of bias because they were poorly reported. We assessed the evidence for eight comparisons. Five trials compared punctal plugs with no punctal plugs (control). Three of these trials employed a sham treatment and two trials observed the control group. Two trials did not report outcome data relevant to this review. There was very low-certainty evidence on symptomatic improvement. The three trials that reported this outcome used different scales to measure symptoms. In all three trials, there was little or no improvement in symptom scores with punctal plugs compared with no punctal plugs. Low-certainty evidence from one trial suggested less ocular surface staining in the punctal plug group compared with the no punctal plug group however this difference was small and possibly clinically unimportant (mean difference (MD) in fluorescein staining score -1.50 points, 95% CI -1.88 to -1.12; eyes = 61). Similarly there was a small difference in tear film stability with people in the punctal plug group having more stability (MD 1.93 seconds more, 95% CI 0.67 to 3.20; eyes = 28, low-certainty evidence). The number of artificial tear applications was lower in the punctal plug group compared with the no punctal plugs group in one trial (MD -2.70 applications, 95% CI -3.11 to -2.29; eyes = 61, low-certainty evidence). One trial with low-certainty evidence reported little or no difference between the groups in Schirmer scores, but did not report any quantitative data on aqueous tear production. Very low-certainty evidence on adverse events suggested that events occurred reasonably frequently in the punctal plug group and included epiphora, itching, tenderness and swelling of lids with mucous discharge, and plug displacement. One trial compared punctal plugs with cyclosporine (20 eyes) and one trial compared punctal plugs with oral pilocarpine (55 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Five trials compared punctal plugs with artificial tears. In one of the trials punctal plugs was combined with artificial tears and compared with artificial tears alone. There was very low-certainty evidence on symptomatic improvement. Low-certainty evidence of little or no improvement in ocular surface staining comparing punctal plugs with artificial tears (MD right eye 0.10 points higher, 0.56 lower to 0.76 higher, MD left eye 0.60 points higher, 0.10 to 1.10 higher) and low-certainty evidence of little or no difference in aqueous tear production (MD 0.00 mm/5 min, 0.33 lower to 0.33 higher) Three trials compared punctal plugs in the upper versus the lower puncta, and none of them reported the review outcomes at long-term follow-up. One trial with very low-certainty evidence reported no observed complications, but it was unclear which complications were collected. One trial compared acrylic punctal plugs with silicone punctal plugs and the trial reported outcomes at approximately 11 weeks of follow-up (36 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. One trial compared intracanalicular punctal plugs with silicone punctal plugs at three months follow-up (57 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Finally, two trials with very low-certainty evidence compared collagen punctal plugs versus silicone punctal plugs (98 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Authors' conclusions Although the investigators of the individual trials concluded that punctal plugs are an effective means for treating dry eye signs and symptoms, the evidence in this systematic review suggests that improvements in symptoms and commonly tested dry eye signs are inconclusive. Despite the inclusion of 11 additional trials, the findings of this updated review are consistent with the previous review published in 2010. The type of punctal plug investigated, the type and severity of dry eye being treated, and heterogeneity in trial methodology confounds our ability to make decisive statements regarding the effectiveness of punctal plug use. Although punctal plugs are believed to be relatively safe, their use is commonly associated with epiphora and, less commonly, with inflammatory conditions such as dacryocystitis. PMID:28649802
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
Plug Load Behavioral Change Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Kandt, A.; VanGeet, O.
2011-08-01
This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E
2009-11-01
Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/( degrees/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/( degrees/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90 degrees phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice.
Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.
2009-01-01
Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/(°/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/(°/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90° phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice. PMID:19726724
A field technique for estimating aquifer parameters using flow log data
Paillet, Frederick L.
2000-01-01
A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that symmetrically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.
A Polymer Plugging Gel for the Fractured Strata and Its Application
Fan, Xiangyu; Zhao, Pengfei; Zhang, Qiangui; Zhang, Ting; Zhu, Kui; Zhou, Chenghua
2018-01-01
Well leakage of fractured strata is a tricky problem while drilling. This unwieldy problem is usually caused by the poor formation of the cementing degree, the staggered-mesh of the fracture, and the low bearing capacity of the formation, which can also lead to a narrow and even unsafe window of drilling fluid density. For fractured strata, the normal plugging material has the disadvantages of unsuitable size and low strength, resulting in unsuccessful first time plugging and an increase in cost. Therefore, we developed a polymer plugging gel for the fractured strata, named XNGJ-3. XNGJ-3 is mainly made of an acrylamide monomer and is accompanied by the reactive monomers of carboxyl and hydroxyl as ingredients. XNGJ-3 has a low viscosity before gelling. At 80 °C it becomes gelled, and the gelling time was controlled within the required time of the practical application. These conditions are beneficial for making the plugging material enter the crossing fracture smoothly and occlude the fracture. XNGJ-3 also has a good deformability and can avoid being damaged during the process of fracture closure. The well leakage simulated experiment revealed that the bearing capacity of this material can reach 21 MPa and the inverse bearing capacity can reach 20 MPa. These strengths are more than twice that of common polymer plugging gels. Finally, three leaked wells in the fractured strata of the Sichuan Basin were used to verify the plugging effect of XNGJ-3. Compared with other common plugging materials, XNGJ-3 has the advantages of having a higher success rate of first time plugging, a lower economic cost, a shorter work time, and so forth, which indicate that this plugging material has a good engineering application value in dealing with well leakage of fractured strata. PMID:29883407
Xiong, Hui; Sultan, Laith R; Cary, Theodore W; Schultz, Susan M; Bouzghar, Ghizlane; Sehgal, Chandra M
2017-05-01
To assess the diagnostic performance of a leak-plugging segmentation method that we have developed for delineating breast masses on ultrasound images. Fifty-two biopsy-proven breast lesion images were analyzed by three observers using the leak-plugging and manual segmentation methods. From each segmentation method, grayscale and morphological features were extracted and classified as malignant or benign by logistic regression analysis. The performance of leak-plugging and manual segmentations was compared by: size of the lesion, overlap area ( O a ) between the margins, and area under the ROC curves ( A z ). The lesion size from leak-plugging segmentation correlated closely with that from manual tracing ( R 2 of 0.91). O a was higher for leak plugging, 0.92 ± 0.01 and 0.86 ± 0.06 for benign and malignant masses, respectively, compared to 0.80 ± 0.04 and 0.73 ± 0.02 for manual tracings. Overall O a between leak-plugging and manual segmentations was 0.79 ± 0.14 for benign and 0.73 ± 0.14 for malignant lesions. A z for leak plugging was consistently higher (0.910 ± 0.003) compared to 0.888 ± 0.012 for manual tracings. The coefficient of variation of A z between three observers was 0.29% for leak plugging compared to 1.3% for manual tracings. The diagnostic performance, size measurements, and observer variability for automated leak-plugging segmentations were either comparable to or better than those of manual tracings.
Advanced Borehole Radar for Hydrogeology
NASA Astrophysics Data System (ADS)
Sato, M.
2014-12-01
Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.
NASA Astrophysics Data System (ADS)
Simon, H.; Buske, S.; Krauß, F.; Giese, R.; Hedin, P.; Juhlin, C.
2017-09-01
The Scandinavian Caledonides provide a well-preserved example of a Palaeozoic continent-continent collision, where surface geology in combination with geophysical data provides information about the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep cored boreholes in western Jämtland, central Sweden. In 2014, the COSC-1 borehole was successfully drilled through a thick section of the Seve Nappe Complex. This tectonostratigraphic unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during the collisional orogeny. After the drilling, a major seismic survey was conducted in and around the COSC-1 borehole with the aim to recover findings on the structure around the borehole from core analysis and downhole logging. The survey comprised both seismic reflection and transmission experiments, and included zero-offset and multiazimuthal walkaway Vertical Seismic Profile (VSP) measurements, three long offset surface lines centred on the borehole, and a limited 3-D seismic survey. In this study, the data from the multiazimuthal walkaway VSP and the surface lines were used to derive detailed velocity models around the COSC-1 borehole by inverting the first-arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated directly from the zero-offset VSP revealed clear differences in velocities for horizontally and vertically travelling waves. Therefore, an anisotropic VTI (transversely isotropic with vertical axis of symmetry) model was found that explains first-arrival traveltimes from both the surface and borehole seismic data. The model is described by a vertical P-wave velocity function derived from zero-offset VSP and the Thomsen parameters ε = 0.03 and δ = 0.3, estimated by laboratory studies and the analysis of the surface seismic and walkaway VSP data. This resulting anisotropic model provides the basis for further detailed geological and geophysical investigations in the direct vicinity of the borehole.
Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.
Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John
2016-03-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.
Good News for Borehole Climatology
NASA Astrophysics Data System (ADS)
Rath, Volker; Fidel Gonzalez-Rouco, J.; Goosse, Hugues
2010-05-01
Though the investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories, there are many open questions concerning the significance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last glacial Maximum (LGM) is still present in borehole temperature profiles. It influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries. This is shown using Monte Carlo experiments on past surface temperature change, using plausible distributions for the most important parameters, i.e.,amplitude and timing of the glacial-interglacial transition, the prior average temperature, and petrophysical properties. It has been argued that the signature of the last glacial-interglacial transition could be responsible for the high amplitudes of millennial temperature reconstructions. However, in shallow boreholes the additional effect of past climate can reasonably approximated by a linear variation of temperature with depth, and thus be accommodated by a "biased" background heat flow. This is good news for borehole climate, but implies that the geological heat flow values have to be interpreted accordingly. Borehole climate reconstructions from these shallow are most probably underestimating past variability due to the diffusive character of the heat conduction process, and the smoothness constraints necessary for obtaining stable solutions of this ill-posed inverse problem. A simple correction based on subtracting an appropriate prior surface temperature history shows promising results reducing these errors considerably, also with deeper boreholes, where the heat flow signal can not be approximated linearly, and improves the comparisons with AOGCM modeling results.
Michael Sukop,; Cunningham, Kevin J.
2014-01-01
Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.
NASA Astrophysics Data System (ADS)
Sukop, Michael C.; Cunningham, Kevin J.
2014-11-01
Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s-1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.
Sequential Pumping and Tracing Experiments Using Packer Systems in a Chalk Aquifer
NASA Astrophysics Data System (ADS)
Goderniaux, P.; Poulain, A.
2016-12-01
The hydraulic characterization of subsurface geological unit is crucial for many hydrogeological applications. The quantification and the spatial distribution of the related parameters is however not always straightforward. As a consequence, parameters values are often considered as homogeneous over the thickness of an aquifer unit. To try to catch the possible heterogeneity, sequential tracer and pumping tests have been performed between two piezometers, using inflatable packer systems to isolate and study specific sections of the boreholes. The experimental site is composed of two 50m-deep piezometers located in a chalk aquifer, in South-West Belgium. The boreholes are not equipped with any casing or screen, to allow the use of the packers. The chalk is characterized by a high porosity, which enables the storage of large quantities of groundwater, and by fractures where fast preferential flow occurs. Recordings made with a borehole camera system has evidenced the presence of many fractures along the borehole, with a mean density of 2 fractures by meter. The frequency of fracture occurrences is however variable along the borehole. Pumping and tracer tests have been performed (1) using the whole borehole depth, and (2) over specific 1-meter sections, isolated with packers. Results confirm that flow and transport parameters are heterogeneous within the chalk aquifer unit. Groundwater head variations, induced by water pumping or injection, and tracer transfer times are variable according to the studied borehole section. Tests are still going on, and the objective is to have measurements over the whole borehole, to be used for numerical interpretation.
Dust-tolerant electrical connector
NASA Technical Reports Server (NTRS)
Sadick, Shazad (Inventor); Herman, Jason (Inventor); Roberts, Dustyn (Inventor)
2011-01-01
A connector assembly includes releasably mateable plug and receptacle units. At least one socket is enclosed within the receptacle unit and is aligned with at least one permeable membrane disposed in the front end of the receptacle unit. The plug unit includes a body slidably mounted within a longitudinal bore therein. At least one pin extends from the front end of the body and is aligned with at least one permeable membrane disposed in the front end of the plug unit. The plug unit is biased toward a first, de-mate position in which the body is extended rearwardly such that the pin is enclosed with the plug unit and is slidable to a second, mate position in which the body is compressed forwardly such that the pin projects through the permeable membranes of the plug and receptacle units to electrically connect with the socket.
Self locking drive system for rotating plug of a nuclear reactor
Brubaker, James E.
1979-01-01
This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.
A Software Architecture for Intelligent Synthesis Environments
NASA Technical Reports Server (NTRS)
Filman, Robert E.; Norvig, Peter (Technical Monitor)
2001-01-01
The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
10 CFR 60.134 - Design of seals for shafts and boreholes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals shall...
Method and apparatus for in-densification of geomaterials for sealing applications
Finley, Ray E.; Zeuch, David H.
1997-01-01
A method and apparatus (10) for forming improved seals in boreholes (101) formed in host rock (100) by using the apparatus (10) to introduce a feedstock (60) into the borehole (101) and simultaneously subject the introduced feedstock to both compressive and shear stresses until the borehole becomes filled and sealed.
Method and apparatus for in-situ densification of geomaterials for sealing applications
Finley, R.E.; Zeuch, D.H.
1997-04-22
A method and apparatus is described for forming improved seals in boreholes formed in host rock by using the apparatus to introduce a feedstock into the borehole and simultaneously subjecting the introduced feedstock to both compressive and shear stresses until the borehole becomes filled and sealed. 3 figs.
30 CFR 75.1322 - Stemming boreholes
Code of Federal Regulations, 2010 CFR
2010-07-01
... water stemming bags shall be tamped to fill the entire cross sectional area of the borehole. (c... water stemming bag shall be within 1/4 of an inch of the diameter of the drill bit used to drill the borehole. (h) Water stemming bags shall be constructed of tear-resistant and flame-resistant material and...
Paillet, Frederick L.; Hodges, Richard E.; Corland, Barbara S.
2002-01-01
This report presents and describes geophysical logs for six boreholes in Lariat Gulch, a topographic gulch at the former U.S. Air Force site PJKS in Jefferson County near Denver, Colorado. Geophysical logs include gamma, normal resistivity, fluid-column temperature and resistivity, caliper, televiewer, and heat-pulse flowmeter. These logs were run in two boreholes penetrating only the Fountain Formation of Pennsylvanian and Permian age (logged to depths of about 65 and 570 feet) and in four boreholes (logged to depths of about 342 to 742 feet) penetrating mostly the Fountain Formation and terminating in Precambrian crystalline rock, which underlies the Fountain Formation. Data from the logs were used to identify fractures and bedding planes and to locate the contact between the two formations. The logs indicated few fractures in the boreholes and gave no indication of higher transmissivity in the contact zone between the two formations. Transmissivities for all fractures in each borehole were estimated to be less than 2 feet squared per day.
NASA Astrophysics Data System (ADS)
Done, Bogdan
2017-10-01
Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.
Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less
NASA Astrophysics Data System (ADS)
Hu, Xiaosong; Martinez, Clara Marina; Yang, Yalian
2017-03-01
Holistic energy management of plug-in hybrid electric vehicles (PHEVs) in smart grid environment constitutes an enormous control challenge. This paper responds to this challenge by investigating the interactions among three important control tasks, i.e., charging, on-road power management, and battery degradation mitigation, in PHEVs. Three notable original contributions distinguish our work from existing endeavors. First, a new convex programming (CP)-based cost-optimal control framework is constructed to minimize the daily operational expense of a PHEV, which seamlessly integrates costs of the three tasks. Second, a straightforward but useful sensitivity assessment of the optimization outcome is executed with respect to price changes of battery and energy carriers. The potential impact of vehicle-to-grid (V2G) power flow on the PHEV economy is eventually analyzed through a multitude of comparative studies.
Methods and apparatus for use in detecting seismic waves in a borehole
West, Phillip B.; Fincke, James R.; Reed, Teddy R.
2006-05-23
The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.
Testing for Controlled Rapid Pressurization
Steven Knudsen
2014-09-03
Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole w-1
33 CFR 183.556 - Plugs and fittings.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.556 Plugs and fittings. (a) A fuel system must not have a fitting for draining fuel. (b) A plug used to service the fuel...
Compact Fluorescent Plug-In Ballast-in-a-Socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebecca Voelker
2001-12-21
The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are usedmore » today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.« less